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ABSTRACT

In this paper we present theoretical results on a generalized form of partial order, called

hierarchical partial order, for enforcing seriahzabLLity that takes advantage of transaction analysis

in database systems. Transaction analysis partitions the database into data partitions that may
assume a hierarchy of priorities, such that transactions primarily updatmg less critical data parti-

tions will not interfere with transactions primarily updating the more critical data partitions, or

will do so to a lesser extent than those in conventional systems. This results from the ability of

transactions in the system to access different data partitions using different synchronization proto-

cob. The rules governing the different protocols are presented and their correctness with respect

to seriaUzabihty is proven.
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1. Introduction

Conventional algorithms for database concurrency control ensure transaction serializability

by forcing transaction dependencies to obey certain partial order. In the case of two-phase lock-

ing [Eswaran76), the partial order coincides with the order of transaction lock points. In the case

of basic timestamping algorithm [BernsteinSO, Reed78], the partial order coincides with the order

of transaction timestamps, typically the transaction initiation times. Therefore, for example, if

the basic timestamping algorithm is used, a transaction t with a timestamp TS, is allowed to

write a data element d only if d has not been read by any other transaction whose timestamp is

greater than TSi. Conventional algorithms rigidly obey this chosen partial order which is

assigned to transactions without much consideration for other factors, such as a priori knowledge

of potential interferences among classes of transactions.

In this paper we present theoretical results on a more generalized form of partial order for

enforcing serializability that takes advantage of transaction analysis. Consider a database applica-

tion system with a database D partitioned mto Di and Do. Transactions are partitioned accord-

ingly mto classes T^ and To, where transactions m Ti primarily read and update data elements m

Z?i, and those m To primarily update data elements m Dn, but also make frequent read accesses

to data elements in Dj. Using conventional concurrency control algorithm, transactions in To, due

to their read accesses to D^. would interfere with concurrent transactions in Tj. However, if T, is

considered a class of higher priority than To, this interference may be reduced or elinunated if we

allow transactions in To to use a slightly older "time slice" of Pj. In particular, assume that the

system uses timestamps. If a transaction t in T2, which has been assigned a timestamp TSt, uses

a pseudo-timestamp TS,- which is smaller than the timestamp of the oldest active transaction in

Ti at the time of access, it would not interfere at all with transactions in T,. In addition. / may

still be using TS, to coordinate accesses to data elements in Do-

In this example, data elements in Dj can be considered raw data, while data elements in Dn

derived data. It appears that transactions responsible primarily for writing derived data (e.g.,
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transactions in class T^), or, in general, transactions of lower priorities, can be prevented from

interfering with those processing the raw data, or, in general, those of higher priorities. The above

example may be generahzed to an appUcation composed of more thai \*a. partitions (and,

therefore, more than 2 transaction classes), forming an information - ir y. An information

hierarchy can be represented as a directed acyclic graph (DAG), wher^ ..ode : are data partitions

and arcs represent the derivation path or priority ordering.

We examine the following question in this paper: given a transaction class Ty which is pri-

marily responsible for writing to data partition Dj-, what are the rulis it must follow in computing

the time slice it uses for each data partition without compromising overall seriahzability of the

system' Results are presented for the case in which the information hierarchy b a semi-tree, a res-

tricted form of DAG.

Relevant work: Conflict analysis among transactions has been proposed in the research of

SDD-1 [BernsteinSOl as a vehicle to discover certain (static) conflict patterns among transaction

classes that may enable a more flexible timestamp protocol (e.g., Protocol 1 m SDD-1 's termmol-

ogy) to be used. However the SDD-1 approach stops saort of deveiopmg a generahzed theory.

\Iulti-version databasess. conducive to the implemeniai-ion of the notion of database time slices,

has been shown to provide a higher level of concurrency than the conventional smgle-version ones

[BernsteinSS, Papadimitriou84l. A relevant multi-version algorithm has been presented in

[ChanSC. Chan8.5 . The results in thb paper offer a fundamental proof method for verifying

correctness of algorithms designed specifically for information hierarchies (eg. methods proposed

in [Hsu86] is a special case of scenarios supported by results in thb paper). In comparbon, the

tree locking protocol [SilberschatzSO, Kedem83] b a non-two-phase locking protocol which aims at

reducing the amount of time the locks on the "high-level" nodes of a tree must be held by each

transaction. The hierarchy used m their tree protocol b entirely different from the kind of infor-

mation hierarchy the current paper b concerned about.



We now present 'he definition of the generalized partial order, called hierarchical partial

order, followed by the ir terpretation and the proof of the acycHcity theorem, the major result of

the paper.

As A^'..

2. The Hierarchical F';.» .V'^l Order of Transactions

The hierarchical partial order among transactions requires the decomposition of a database

into a number of data partitions. We construct a data partition hierarchy which is basically a

partial order of the data partitions subject to certain constraints.

2.1. Data Partition Hierarchy and Transaction Classification

Definition. Given a data decomposition P of a database D into data partitions D^, D^

Z?,, and a transaction analysis which partitions all potential update transactions in the database

into a set 7", of update transaction types. TPi, .., TP„, a data partition hierarchy, denoted as

DPH{P,T,), is any acyclic graph with nodes corresponding to Di, D2,---, D^, such that

[Cl it is a semi-iree

(a semi-tree is an acyclic digraph where there exists one and only one undirected path

between any pair of nodes), and

[C2! if there exists a type of update transactions in the system which write m Z), and read from or

writes in Dj. then there exists a directed path between D, and D^ in DPH(P .T^].

It is noted that only update transactions need participate in constraining the data partition

hierarchy. There is no need for read-only transactions to participate in the transaction analysis,

eliminating the difficulties of pinning down, a priori, the nature of all ad hoc queries.

There may be multiple data partition hierarchies that satisfy the above definition given a

database decomposition. In particular, any total order of partitions in P satisfies the definition.

The actual choice of the data partition hierarchy will reflect the perceived priorities of the write-

processing in each of the data partitions.



Given a data partition hierarchy, each transaction is assigned to one of the data partitions it

writes into. Typically, the data partition chosen is the one in which the transaction performs all

or most of its writes. This data partition is called the home data partition of the transaction, and

all transactions with the same home data partition are grouped into a transaction class. From

[C2] of the definition of data partition hierarchy, if a transaction's home data partition is Z),,

denoted as ttDi, then there is a directed path between £>,- and any other data partition in DPH

that the transaction accesses (read or write).

In the remainder of the paper, the notation DPH refers to a particular data partition hierar-

chy chosen to base our hierarchical partial order of transactions. We say that data partition Z), is

higher than data partition D^, denoted as D,>Dj, if there exists a directed path in DPH from D.

to Z), . Intuitively, in our notation, higher level data partitions are most likely raw data from

which the lower data partitions derive their contents. We say that Z?,- and Dj are related if either

Di=Dj or D, and Dj are connected by a directed path. We also say that Z), and Dj are neighbors

if they reside on directed paths m DPH that intersect. By definition, if D, and D, are related

then they must be neighbors.

2.2. The => Relation

Definition. A relation "=>", (pronounced as 'X-foUows"), is defined for a pair of transac-

tions ij, io where t^eD^, tr.eDj. and D, and D, are neighbors m DPH. Given two functions TS and

L. we say that tr, => f, with respect to TS and L. iff there e.xists a Z)^ m DPH such that Dj, is

related to both D, and Z?y, and

where TS is a function which maps a transaction to a time value such that no two transactions

have the same time value; the function L,
^

, which stands for link function, is defined for any pair

of related data partitions Z), and Dj and maps one time value to another time value as follows:

(1) if A- = D, then L,^j(m)=m;



(2) if A >Dj then L,-,y(m )=Z).V,.,^ (m );

(3) if Di <Dj then L,-,y(m)=C/P,,y(m);

where the function UP^j, standing for UPward function, is defined for any pair of data par-

titions Z), and Dj where Di<Dj, and maps a time value to another time value; the function

DNij, standing for DowNward function, is defined for any pair of data partitions D, and Dy

where Di>Dj, and maps a time value to another time value; for any pair of Di and Dj where

Di<Dj, functions UP^ j and DNj
i
must satisfy the following three properties:

[Pi] Composible: for all Z),-, D^ and Dj where Dj>D,,>Di, for all times m,

UP,j{ UP,,,{m))= UPij{m), and DN,,(DNj,,{m))=DNj,{m)-

[P2] Non-decreasing: for all £>, and Dj where Dj>Dj and for all times m, m' where m >m'

,

UPi.j(m)>UPij{m') and DNj^,{m)>DNj^,{m').

[P3] \'alue-interlocked: for all D, and D^ where Dj>Di and for all time m,

UP,j(DS,,(m])<m. and DA}, ,( rP,,,(m))>m .

Intuitively. => is a relation between transactions based on both the timing of the transac-

tions and the hierarchical levels m the DPH of the transaction classes that the transactions belong

to. To be more specific, "tj => t^' always means that ij is "later" than t^- However, this "later"

is not only based on when the two transactions are physically active, but also on the relative lev-

els of the data partitions in which t^ and ^2 are assigned to. Clearly, => is defined only between

transactions that belong to neighboring data partitions, and the UP and DN functions are defined

only between related data partitions.

Note also that the functions TS , UP and DN are not completely specified; only their neces-

sary properties have been specified. This means that, by manipulating the instantiation of these

functions, different instances of the relation => may be defined. For example, both the initiation

timestamp function, which maps a transaction to its initiation time, and the commit timestamp

function, which maps a transaction to its commit time, are acceptable instantiations of the TS

function. An example of a construction of UP, j and DNji which satisfies the non-decreasing and
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value-interlocking properties is UP^ j{m)=m — Cij and DNj i{m)=m + Cij for an appropriate con-

stant Cij .

2.3. The Acyclicity Theorem

The key result of the paper is the following theorem:

Tht Acyclicity Theorem. A digraph where nodes are transactions and every arc '2~*'i

implies t^ => <i has no cycle.

The theorem states that if a concurrency control algorithm allows a transaction dependency

h~*h •'O occur only when fo => t^ holds, then seriaUzabihty is guaranteed. Given the structure

of an information hierarchy, and the desire to reduce or ehminate interferences from lower-

priority transactions to higher-priority transactions, one needs to:

(1) Define a TS function;

(2) Construct a function UP which maps time values to successively smaller values along the

hierarchical path upwards m DPH. and a DN whcih maps time values to successively larger

values downwards, where UP and D!\^ also satbfy the composibUity. non-decreasmg and

value-mteriockmg requiremenis;

(3) Allow lower-level transactions [tiD,] to access an older time shce before UP, j(TSi] in a

higher data partition Dj. and

(4) Allow higher-level transactions (teDj) to access and timestamp a lower-level data partition

(A) with the time value DNji{TS,).

It is noted that when DPH consists of a single data partition, or when UP and DN are

assigned identity functions, => degenerates to the partial order typically enforced in conven-

tional algorithms.



2.4. Proof

To prove this theorem, we will first define a weaker relation ~>, (pronounced as "weakly

L_foIlows",) such that => implies «> and t2~^'i implies -'(<i= ><2)- ^^ prove that «i> is

locally transitive, i.e., if t3s;>/2 and <2^><i and <i, ^2 and ^3 are neighbors of one another then

'3*=^><i- Local transitivity completes the proof of the Acyclicity Theorem for a data partition

hierarchy in which all data partitions are neighbors of one another. Finally we extend the transi-

tivity result to show global transitivity. (In the following proofs, for notational convenience, we

denote the home data partition of a transaction f,- as D,-.)

Definition. Given the definition of =>, we say that tn weakly => f,, denoted as <2~->'i>

if (a) if D, and Do are related then for all D„ on the shortest path in DPH between D, and Do

inclusive, Lo„,{TS,^>L^„,{TSlJ [0-l]> and (b) if D, and Do are not related but the shortest path

between them turns direction at D^, then for all Dp on the shortest path in DPH between Do and

Dm inclusive, Lop(TSt^>L,„p{Li„{TStJ) [0.2], and for all D, on the shortest path in DPH

between D; and D„ mclusive, Lo„,(L„,{TSi^)>Li^^{TS,) [0.3]. (Note that by the fact that

DPH is a semi-tree there exists one and only one shortest path between any pair of data parti-

tions, and by definition of neighbors the shortest path between any neighbormg data partitions

can turn direction at most once. i.e.. the path between any pair of neighbormg data partitions is

either one-phase or two-phase.)

Lemma 1. to=>t^ implies f2~^'i-

Proof. We want to show that (a) [O.l] in the above definition of :=»> is true, and (b) [0.2]

and [0.3] in the definition of ^> is true. Since t2=>ti, let Lo,(TS,^>Lii{TSt^) for some £>,-

related to both D^ and Do [l.l].

(a) Suppose [O.li is not true. Then there exists Di, on the shortest path between Dj and Do

mclusive such that Loi,{TS,^<Lii{TS,J '2.ll. (For brevity, "inclusive" is always implied from

now on.) Consider the following two cases: (a.l) Di>Do. Let D^, be any data partition on the



shortest path in DPH between Dj and D^. Then applying UP/, p to both sides of [2.1] and making

use of the properties of UP and DN functions we have UP2^p{TS,}<.DN]p{TSt)- Similarly let

D. be any data partition on the shortest path in DPH between D2 and D/,. By applying .DA*^ on

both sides of [2.1] we have UP.^,{TSt^<DNi^,{TS,). Therefore if [2.1] were true then for all D„

in between D^ and Dn we have UP2,„{TSt^<DNi,„(TSt^). However, if this were true then there

cannot exbt any D,- satisfying [l.l], contradictory. Therefore [2.1] cannot be true. (a. 2) £>o>Z)|.

Then for all D^ s.t. Do>Dp>Di, we have DN2_p{TSt^<UPij,(TSt), smce if this were not true

then we get DN2^i,{TS,^>UP^_i,(TSt^), contradictory to [2.1]. Similarly for all D, s.t. D^>D^>D^

we have DN2 ^{TSt^<l'Pi,^(TSi ). Using same argument in (a.l) we obtain contradiction to l.lj

and therefore [2.1] cannot be true. Combming (a.l) and (a. 2) we conclude [O.l] is true.

(b) We have Lo^( TS,J>Li^f TS,
) [3.1] since if this were not true there cannot exist D,

such that [l.ll is true. Consider two cases: (b.l) D,„>Z)|,Do. Applying DN„^ to both sides of

[3.1; we have D^„JL2.JTSJ)>UP,JTS,J. i.e., I,„.,(Lo,„( 75J)>L,.,( 75,,). therefore [0.3] is

true. Suppose [0.2] were not true. Then we have some D^ such that Ln p{TS,J<L„ p(Li „{TS, ))

[3.2:. Applying (Tp,m to both sides of |3.2] we have tPo.mf 7'5(^<Z. i^( TS,,), contradictor.- to

[3.1]. Therefore [0.2] must be true. So we have both [0.2] and [0.3] hold, (b.2) Di.D2>D„.

Usmg similar arguments as presented in (b.l) one can show [0.2] and [0.3] hold. Combming (b.l)

and (b.2) we conclude [0.2] and [0.3] true.

Lemma 2. t^ssXi imphes ~'('i= >'2)-

Proof. From Lemma 1, it is clear that if <2~>ti then for all D^ related to both D^ and D;

L2ATS,)>L,,,{TS,). Therefore -^[t,= >t2).

Lemma 3. (Local Transitivity) The relation *:> is transitive, i.e.. if there exists t^(D^,

<2<7'o, tn,iDn,, such that /;~><i, ly^>t2 and Dj, Do and D^ are neighbors of one another, then
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ProoJ. Since £>,, Dn and D3 are neighbors of one another, let the shortest path between D-^

and D^ contains D„, where D„ is on the path between Dj and D^ and D^ and D^^. Then every

Dp between D^ and Z)„ b also on that between 2)3 and Do, and every P^ between D^ and Z)„ is

also on that between Do and Dj. For D,- and Dy neighbors, we denote as LLij{x) either Z-,y(i) if

Z),- and Dj are related, or Ltj(L,_i(2)) if D,- and Dy are not related but the shortest path between

them turns at D^. Then by fo«>/,, tz~>ln we have LLz,„(TSi^>LL2,„{TSt^ >LLi^„{TStJ.

Therefore LL,,,{TS,^>LL,JTS,^ =LL„JLL2^„(TS,^) >L„JLL,^„{TS,)) =L,JTS,). Simi-

larly we derive LL3 ,(r5,^>LIi ,(75,^). Therefore for all D, in between D^ and D3 we have

IL3.j(rS,j>LLi.,(r5,_). Therefore <3»^><i.

Next we extend local transitivity to allow for more general data partition hierarchy.

Lemma 4. Given a DPH. if tt, = > =>t,, denoted as LF{ti,,t,), and Pj and D, are

neighbors, then f(,~>f,

.

Proof. We prove by induction in the length / (i.e., number of arcs) in LF{t^,t^). (a) If 1=2.

then f(,~>fj by local transitivity (b) Show that if /,-^>i,- for any LF[t,.tj) whose length is less

than g and D, and D^ are neighbors, then 'i~>',+i for any LF{ti.tj^^) =

ii=>io=>...= >ij = ><j^i whose length is g and D^ and D^^i are neighbors. Consider two sub-

cases: (b.l) If Di and D^ are neighbors, then fi^X,. Therefore fi~>f5+i. (b.2) If D, and D^,

are not neighbors, then since they have a common neighbor D^+j, there exists t,, such that

LF{ti,tg) = <!=>.. = >f^ = >..= >?j and Dj are neighbors of both D, and D^^^. Since LF{ti,ti,)

has length less than <;, we have <i~>^t. Likewise we have 'i~>'j+i. By local transitivity, we

have ti^>tg^i. Q.E.D.

Proof of Acyclicity Theorem. Suppose there is a transaction dependency cycle

<!—...—<„—<,. Then from Lemma 4. we have t^^>t^, and therefore, from Lemma 2. we have

—i(f, = >(i). This means that there cannot be a transaction dependency i„—<,, contradictory

with the given. Therefore there cannot be a cycle. Q.E.D.
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