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A major problem in cluster analysis is determining the number of

subpopulations from the sample data. In this study, it is assumed that

the subpopulations correspond to modes of the population density function.

The kth nearest neighbor clustering procedure, which is known to be set-

consistent for high-density clusters, is then shown to be useful in

providing: (1) a diagnostic plot which will indicate the number of sub-

populations present, and (2) a bootstrap procedure for testing the

existence of two or more subpopulations. The performance of these pro-

cedures will be illustrated by real examples.

KEWORDS: Modes; kth nearest neighbor clustering; diagnostic plot;

hypothesis testing; bootstrap.





1, INTRODUCTION

1. 1 Background

A recent study by Blashfield and Aldenderfer (1978) shows that num-

erous clustering methods have been developed in the past two decades. A

review of many of these techniques can be found in Cormack (1971)

,

Anderberg (1973), Sneath and Sokal (1973), Everitt (1974), Hartigan (1975),

and Spath (1980). The validity of the sample clusters obtained by these

methods is always questionable, however, due to the lack of development

in the probabilistic and statistical aspects of clustering methodology.

Consequently, the existing clustering procedures are often regarded as

heuristics generating artificial clusters from a given set of sample data,

and there is a need of clustering procedures that are useful for drawing

statistical inferences about the underlying population from a sample.

In this paper, we consider the important problem of assessing and testing

the number of "clusters" or "subpopulations" present in the population.

1.2 Statistical Inference Under the Density-contour Clustering Model

In this study, we assume that the clustering data consist of a sample

from a distribution F with density function f, on which population

clusters are defined by a clustering model. The clustering model that

will be used here is the "density-contour" model given in Hartigan (1975)

and Wong and Lane (1981). Using this model, the true population clusters

can be defined on f as follows: for all f* ^'0, a density-contour

cluster at level f* in the population is defined as a maximal connected



set of the form {x
i
f(x) > f'-}. The family T of such clusters

forms a tree in the sense that AeT, BeT implies either A^B, B^A, or

AoB =
(|) , the empty set.

A hierarchical clustering procedure, which produces a sample cluster-

ing tree T on the observations X , ...,X may then be evaluated by

examining whether T„ converges to T with probability one when N

to be strongly set-consistent for density-contour clusters (or T) if

for any A, BeT, AnB =
(J),

{ A^ n B^ = ^ as N - 00} = 1,

implies A,^3B , this limit result means that the tree relationship in T

converges strongly to the tree relationship in T. This consistent cluster-

estimation problem under the density-contour clustering model has been

addressed by Hartigan (1981) and Wong and Lane (1981). Hartigan (1981)

has shown that most of the best knotvm hierarchical clustering methods are

not set-consistent, while Wong and Lane (1981) developed a kth nearest

neighbor clustering procedure which is strongly set-consistent for density-

contour clusters.

The problem of hypothesis testing under the density-contour cluster-

ing model did not receive much attention. (See however, Hartigan (1977)

for a discussion of the DIP statistic for testing bimodality.) One import-

ant feature of the density function f under the density-contour clustering



model is the modes of f, each of which is the limit of a decreasing

sequence of density-contour clusters. In this paper, it is assumed that

any subpopulation in the population corresponds to a mode in the density

function f. Our aim is to develop procedures that are useful for

assessing and testing the number of modes present in f. It will be shown

that the kth nearest neighbor clustering procedure given in Wong and Lane

(1981) is useful in providing (i) a diagnostic plot for assessing the

number of modes, and (ii) a statistic for testing multimodality.

Using the above formulation, the statistical problem being considered

is that of determining the number of modes in the underlying density f.

A brief review of the literature on testing for modes will be given in

Section 2. In Section 3, the kth nearest neighbor clustering procedure

will first be reviewed, and then it will be shown how a diagnostic plot

based on this procedure can be constructed to assess multimodality. A

test statistic for examining multimodality is proposed in Section 4, and

it will also be shown how the significance level of a sample test statistic

can be estimated by using the bootstrap procedure. Generated data will be

used to illustrate the performances of these procedures. And in Section 5,

the practical utility of the proposed procedures are demonstrated by

several well-knoxTO data sets.



2. LITERATURE REVIEW

Several authors have studied the problem of testing for clusters.

In Engelman and Hartigan (1969) and Hartigan (1978), a likelihood ratio

approach to the problem of testing whether the data indicate the presence

of two different univariate normal populations or only one is proposed.

Multivariate generalizations of Engelman and Hartigan 's work can be found

in Lee (1979), in which the union-intersection principle of test construc-

tion is used to develop a multivariate test for clusters. One major

drawback of these testing procedures is that they are based on a restric-

tive parametric clustering model, where clusters are assumed to be com-

ponents of a normal mixture.

In this paper, the nonparametric density-contour clustering model

is used, where clusters are defined by the density contours of the under-

lying density function. Our aim is to develop procedures that are useful

for assessing and testing multimodality. In the clustering literature,

two different statistics have been proposed for testing bimodality in one

dimension. Kruskal's test given in Giacomelli et. al. (1971) is based on

the differences between order statistics, while Hartigan's (1977) DIP

statistic looks for a large interval between two sets of small intervals

in the minimum spanning tree obtained for the sample observations. The

major problem encountered in using these test statistics is the selection

of an appropriate distribution function for the null hypothesis. The uni-

form and normal distributions have been used by both of the above authors

to compute the sampling distribution of the proposed statistics, but the

appropriateness of using these null distributions in cluster anlysis

-4-



remains questionable.

Silverman (1981) proposed a statistic for testing the multimodality

of an underlying density function f which is based on the kernel

density estimate. More importantly, he proposed an intuitively appealing

bootstrap procedure for estimating the significance level of a sample

value of his statistic, without having to use the uniform or normal as the

null distribution. In this paper, a statistic is proposed for testing

multimodality, which is based on the kth nearest neighbor clustering pro-

cedure given in Wong and Lane (1981) , and it will be shown how a modified

bootstrap procedure can be used to estimate the significance level of a

sample value of this statistic.



3. A DIAGNOSTIC PLOT FOR THE NUMBER OF MODES

3. 1 The kth Nearest Neighbor Clustering Procedure

In this section, it will be shown that the kth nearest neighbor

clustering procedure given in Wong and Lane (1981) can be used to provide

a diagnostic plot for assessing the number of modes in a density f using

some sample data X,, X^ , ..., X^^ from f. This clustering procedure can

be described as follows:

Step 1 : For i = 1, 2, ..., N, compute d, (X.), the kth nearest

neighbor distance for observation X..

Step 2: Compute the distance matrix D as follows:

D(X. , X.) = 0, if X. = X. ;

= 1/2 [d^(\) + d^a.)], if d'HX., X^) < d^(X.)

or d*(X, , X.) ^ d, (X ),

where d* is the Euclidean metric:

= «=, otherwise.

Step 3 : Apply the single linkage clustering algorithm to the computed

distance matrix D to obtain the sample tree of high-density

clusters.



3.2 A Diagnostic Plot for the Number of Modes

In Wong and Lane (1981) , it is pointed out that for the kth nearest

neighbor clustering procedure to be stongly set-consistent, k has to be

chosen in such a way that k(N)/N -* 0, and k(N)/logN ^ °°, as N ^ <".

However, the problem of choosing k in practice has not been dealt with,

although it has been suggested that a range of values of k should be

tried. Here, it is proposed that the number of modes identified in the

sample hierarchical clustering when different values of k are used should

be plotted against k because this plot is useful in suggesting the num-

ber of modes in the population.

It is not difficult to see that the value of k controls the amount

by which the data are smoothed to give the density estimate on which the

clustering procedure is based. When k increases from 1 to N, the density

estimate becomes smoother or less bumpy; that is, the number of identified

modes is a non-increasing function of k. (This result is proved in

Silverman (1981) for the kernel density estimate.) Hence, the plot of

"number of estimated modes" against k will show a non-increasing step

function; and it is expected that when the number of estimated modes

reaches the true number of modes, it will be stable over a range of values

of k. The results of a Monte Carlo study performed to examine the

effectiveness of this diagnostic plot will be reported next.

3.

3

Empirical Illustrations of the Diagnostic Plot

Sixteen experiments were run using data generated from various normal

distributions and mixtures thereof. The four diagnostic plots shown in



Figure A are obtained for two samples of size 50 and two of size 100 that

are generated according to the univariate unimodal standard normal distri-

bution, N(0,1), while those shown in Figure B are obtained for

corresponding samples generated according to the bivariate unimodal normal

distribution, BVN [(0,0),
(f^-,)]-

In all of these plots, a very extensive

plateau can be observed where the number of identified modes is 1, while

no other stable number of modes is indicated.

Figures C and D show some interesting, yet disturbing features of the

proposed diagnostic plot. Although, as can be expected of samples from

bimodal distributions, all of the plots show a wide range of stability

for bimodality, some of the plots also show stable plateaus for trimodality

(see Figures C(a2) , C(b2) , and D(b2)). Since each of the samples used to

obtain Figure C(bl) and C(b2) consists of 30 observations from N(0,1)

and 70 observations from N(8,4), it is unreasonable to expect the number

of identified modes to be greater than 1 when k is greater than 30.

Hence, the relatively short bimodality plateau shown in Figure C(b2) is not

unexpected. However, the diagnostic plots shown in Figures C(bl) and C(b2)

also show that two different samples from the same distributions can give

plateaus of fairly different widths.

It is difficult to account for the trimodality plateau that is evident

in Figure C(a2) , but at least in this case it is significantly narrower

than the very stable bimodality plateau. For Figure D(b2), a look at the

corresponding scatterplot (Figure E) suggests that the appearance of a

sizeable trimodality plateau in the diagnostic plot is not unreasonable.

In this section, we have sho^m that the proposed diagnostic plot is

useful in indicating the number of modes that are present in a population.



It is also useful in suggesting the possible existence of finer sub-

populations. It is however, sensitive to the sample sizes from different

subpopulations , but only in as much as they impose upper bounds on the

width of the plateaus. On the whole, the proposed plot seems to be a

valuable diagnostic tool for assessing multimodality

.



4. A TEST STATISTIC FOR TESTING THE MULTIMODALITY OF A

UNIVARIATE DENSITY f

4.1 The Test Statistic

Investigation of the number of modes or maxima in a density has been

considered by several authors, for example Good and Gaskins (1980) and

Silverman (1981). As remarked by Silverman (1981), it is unfortunate

that most of the proposed methods seem to depend on some arbitr-

ary implicit or explicit choice of the scale of the effects being studied.

, The simple approach based on the kth nearest neighbor clustering pro-

cedure described in this paper has the virtue of making this choice in an

automatic and natural way.

A possible test statistic for hypotheses concerning the number of

modes in a univariate density f can be obtained by applying the kth nearest

neighbor clustering procedure to the sample data from f. Now, the value

of k controls the amount by which the data are smoothed to obtain the

density estimate on which the clustering procedure is based. Therefore,

for example, if the data are strongly bimodal, a large value of k will

be needed to give a sample hierarchical clustering with only one mode.

Suppose that we wish to test the null hypothesis that the density f under-

lying the data has M modes, against the alternative that f has more

k . = inf {k; f(., k) has at most M modes} where f(-, k) is
crit

the density estimate obtained by the kth nearest neighbor procedure.



4,2 Assessing the Significance Level P of a Sample Value of k

k for testing H : f has M modes against H, : f has more than M
o '' o "A

modes. Our aim is to estimate the observed significance level

P = P {k . > k
I

H is true]
r crxt o ' o

so that we can reiect H when P is sufficiently small. It is shown

below how an estimate of P can be obtained by using a bootstrap procedure

(See Efron, 1979).

To obtain a conservative estimate of P, an appealing choice for the

null distribution f , from which simulated samples are to be taken, is

the density estimate obtained when k is used as the value of the para-^ o ^

meter k, scaled to have variance equal to the sample variance S~ of the

data. For univariate data, it is easv to simulate from f bv using the
' ' o '

bootstrap method. As pointed out in Efron (1979), N independent observa-

tions from f are given by

d- (x^(.^) yili

1 + —-^ (X^(,) + d^^ ()4(.))Pi[-i,i])
3s / o

where X^ / • \ SlX& sampled uniformly, with replacement, from the data

2
X , Xj , ..., X^; s is the sample variance of the data, d (X , ..) is

o

the k th nearest neighbor distance of observation X ,.,, and y.[-l,l]

is an independent sequence of uniform random variables distributed between

-1 and +1. And the value of P can then be estimated by finding the pro-
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portion of R bootstrap samples of size N which give values of ^^^^

greater than k .

The computational procedure can be summarized as follows:

2
Step : Compute s and find k^ for the sample data.

Step 1 : For i = 1 to N

,

sample with replacement from {1, 2, ..., N};

let I(i) be the ith pick, and let

i (^(i)) \-^/2

^hii)^\ ^hu)^ u,[-l,l]).

Step 2; Apply the kth nearest neighbor clustering procedure,

with k = k , to the bootstrapped data y,, y^,...,y^.

Test if the number of sample-modes SM is greater than

M.

Step 3 : Repeat steps 1 and 2 R times (we will use R=120)

,

Step A: Let the estimate of P
# times that (SM > M)

120

Then, H is accepted at the 5% level if the p-value p is greater

than 0.05.

It should be borne in mind that this test is very conservative as it

uses the most extreme k that yields M-modality for the sample

-12-



X,, x^, ..., x^.

We applied the above test to various univariate normal distributions

and mixtures thereof. Twentyfive samples of size 100 were taken for each

distribution studied, the results of the test for various null hypotheses

(one, two, and three modes) are given in Table 1 below; they consist of

values of k (the value of k . obtained from the sample) and the corres-
o crit

'^

ponding estimates of P. Note that these results must of course be

interpreted as a hierarchical set of significance tests: If (M-1) -

modality is not rejected by the test, then there is no point in testing

for M-modality. So we should test successively for an increasing number

of modes until we find a number that is accepted. In the following

discussion, we will use a significance level of 5%.

Table 1(a) shows that none of the 25 samples fron N(0,1) leads to

a rejection of a unimodal null hypothesis. Equally encouraging are

the results for the fifty-fifty mixture of N(0,1) and N(4,l); bimodality

is rejected only once out of twenty-five samples; Moreover, the empirical

power of testing "H : the distribution is unimodal", against "H : the

distribution is bimodal" for samples from this mixture is very good: 92%

For the trimodal mixture in Table 1(b) (25 observations from N(0,1),

25 from N(4,l) and 50 from N(8,l)), the test fails to reject unimodality

in 21 cases out of 25; and in two out of the remaining four cases, bi-

modality cannot be rejected. The reason for the poor performance of the pro-

posed test for this mixture is thought to lie primarily in the small (25 ob-

servations) and uneven (25/25/50) subsample sizes. Indeed the density esti-

mate turns unimodal for k around 25 because of the small subsample sizes.



but for k = 25 (small with respect to the sample size of 100), the
o

density estimate is still very sensitive to perturbations around the sam-

ple points, and as perturbations are exactly what the bootstrap does, the

bootstrapped sample is most likely to be multimodal for k ; hence the

test tends to accept unimodality. It should again be pointed out that the

proposed test is hierarchical in nature, and there is little point in

testing for bimodality if unimodality cannot be rejected.

For the results in Table 1(c), (25 observations from N(0,1), 50 for

N(4,l), 25 from N(8,l)), unimodality cannot be rejected for any of

the 25 samples, so indeed we have a very conservative test.

[Table 1 about here]

The proposed test statistic has been shown to perform well in one

dimension for truly unimodal distributions and for bimodal distributions

with nicely separated modes of equal importance. It behaves comparatively

poorly when the subsample sizes are small and /or uneven. In fact, it is

more conservative than expected, and needs to be improved if it is to be

a sharp testing tool; especially since its computational expenditure is

non-negligible (on the average, about one hour of CPU-time is consumed on

a Prime 850, for a program that tests for 1,2,3, and 4 modes using a

sample of size 100, i.e., roughly a quarter of an hour of CPU-time per

null hypothesis tested). Moreover, although the proposed test statistic

is also well-defined for multivariate data, the bootstrap procedure de-

scribed above for estimating the p-value of a sample test statistic cannot

be easily generalized to several dimensions. Hence, much work has yet

to be done to develop an appropriate generalization of this testing pro-

cedure.



5. ILLUSTRATIVE EXAMPLES

In this section, the effectiveness of the proposed diagnostic plot

and the testing procedure are illustrated with real examples.

The real univariate data sets used are:

(1) the chondrite data from Good and Gaskins (1981), 22 observa-

tions.

(2) the petal lengths of Fisher's Iris data, (Fisher, 1936), for two

Iris species (setosa and versicolor), 100 observations, (2x50)

(3) the petal lengths of Fisher's Iris data for three Iris species

(Setosa, versicolor and virginica) , 150 observations (3x50).

- Data Set (1)

We have analyzed the data which consist of the distribution of silica

in 22 chrondrite meteors; this data has been studied previously, among

others, by Good and Gaskins (1981), and Silverman (1981).

Percentages y Silica in 22 Chondrites

y



The diagnostic plot (Figure F(a)) reveals only one very stable

plateau for unimodality. Small plateaus are also detected for two and

three modes.

The testing procedure developed in Section 4 yields the following

H

unimodal 8 0.067

bimodal 5 0.677

trimodal 2 0.833

Consequently, we cannot reject unimodality at the 5% level. (Note that

we can at the 10% level, in which case we accept biraodality of the popu-

lation). We cannot accept trimodality exclusive of uni- or biraodality,

which is not surprising considering the small number of observations; they

could be sampled from any distribution. We do find a finer trimodal

substructure, indicated by the diagnostic plot, but no more than an

indication of it (see also Good and Gaskins (1981), and Silverman (1981)

whose conclusion is questionable).

-Date set (2) consists of the petal lengths of two iris species, setosa

and versicolor.

The diagnostic plot (Figure F(b)) reveals a stable plateau at 2 modes,

but also suggests small three- and four-mode plateaus. It seems to

indicate a basic bimodal population with possibly some finer substructures

(small additional modal regions).



When we tested for various numbers of modes, we obtained the follow-

ing results

:

\



The test does not reject unimodality. Now, it is known that the Iris

Setosa species is very different from the other two which are not distinct

from one another; so why does the test not reject unimodality? The main

culprit seems to be the fact that the two modes one expects to find are

of uneven sizes, and the test is very sensitive to uneven subsample sizes

as seen earlier on.
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Diagnostic Plots

(a) chondrite data (1)

(b) iris data, 2 species (2)

(c) iris data, 3 species (3)
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