

HD28
•M414

no- 5233

V

asm*

, JAN 1991

/

"Using a Hop-constrained Model to Generate

Alternative Communication Network Designs

A. Balakrishnan, K. Altinkemer

MIT Sloan School Working Paper #3233-91 -MSA

Revised: December 1990

.

\

Using a Hop-constrained Model to Generate

Alternative Communication Network Designs

Anantaram Balakrishnan
Sloan School of Management

Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

Ketnal Altinketner

Krannert Graduate School of Management
Purdue University

West Lafayette Indiana 47907

Revised: December 1990

Supported in part by grant DDM-8996120 from the National Science Foundation

and a grant from the AT&T Foundation

Abstract

Designing the link topology and selecting capacities in a backbone network of

a communication system involves complex tradeoffs between investment and

operating costs and service considerations such as network reliability and

vulnerability, delays, and blocking. Incorporating all these design criteria

simultaneously in a comprehensive model results in a large-scale, non-linear,

discrete optimization problem that is intractable. In this paper, we propose an

alternate optimization-based methodology that generates several cost-effective

backbone network designs with varying cost and performance characteristics.

Network planners can use the method in conjunction with detailed performance

evaluation techniques to assess the cost impact of different service requirements, and

select a design that achieves the proper balance between conflicting objectives. To

generate different configurations, the method parametrically varies a set of hop

constraints that restrict the number of links over which messages can be transmitted.

Reducing the maximum number of hops increases the number of alternate routes

but incurs higher total cost for the communication system. For a given set of hop

constraints, we develop a Lagrangian-based algorithm to identify a cost-minimizing

network design that satisfies all internode traffic requirements. We report results for

extensive computational tests of the algorithm using several randomly generated

test problems. Our results demonstrate that, even for relatively large problems, the

method identifies good heuristic solutions and tight lower bounds that confirm the

near-optimality of the selected designs. Using a 25-node example, we illustrate how

the model can be used to evaluate the cost versus performance tradeoff.

Keywords: Communication network design, cost-performance tradeoff,

Lagrangian relaxation

1. Introduction

This paper presents a methodology to support topological design and link

capacity planning decisions for the backbone network interconnecting geographically

dispersed gateway nodes and switching centers in a telecommunication system.

Topological design decisions are very important in backbone network planning

because of the enormous capital investments required for transmission and

switching facilities, and the significant impact of network configuration choices on

service levels. In selecting the configuration and capacities for a backbone network,

planners face conflicting objectives of reducing the total investment and operating

costs while ensuring adequate service levels, expressed in terms of network

performance measures such as reliability and vulnerability, alternate routing

capabilities, blocking probabilities, and queueing and transmission delays. With

increasing competition and service diversity in the communications sector, these

service considerations are becoming increasingly important.

Because of the multiple, conflicting objectives, non-linearities in service

criteria, and discrete design choices, formulating and solving a comprehensive

optimization model to support backbone network planning decisions is impractical.

Indeed, even with a single objective such as cost minimization, the design task is

very complex and challenging because the decision model must (i) incorporate

binary network design decisions to capture the significant fixed costs, and

(ii) simultaneously account for the close linkages between topological design, link

capacity, and routing decisions.

In this paper we propose an alternate approach that uses an optimization-

based method to generate several alternative network designs with varying cost-

performance characteristics. Our approach is motivated by several observations

regarding network design practice. First, network planners must often accomodate

various implicit and qualitative design considerations that cannot be adequately

represented in optimization models; hence, they prefer a decision support system

that identifies a limited set of effective designs rather than a single 'optimal'

solution for an imprecise model. Second, in most practical contexts we cannot

completely characterize network performance (reliability, delays, blocking) in a

convenient form for mathematical modeling, except under very restrictive

assumptions about traffic patterns and network behaviour. Therefore, to accurately

assess the network's performance, we require detailed evaluative techniques such as

simulation and queueing network analysis. Third, the total number of possible

network designs grows exponentially with the dimensions of the network. Since

detailed performance evaluation of each design is a time-consuming process,

1-

planners require a principled method to prune the list of all possible network

configurations to a few cost-effective designs with varying performance

characteristics. Finally, to keep the model tractable, even a single objective (cost-

minimization) model must necessarily make some approximations. In terms of

computational complexity, most (deterministic) discrete choice network design

problems in telecommunication planning are NP-hard. Therefore, we must rely on

optimization-based heuristic procedures that provide provably good solutions.

Thus, to effectively use decision support models, we propose a hierarchical

framework for telecommunication network planning. The approach consists of the

following four steps:

(1) Generate, using an optimization-based model, a small set of good 'base'

designs that span a wide range of cost and service levels.

(2) Refine each base design (e.g., selectively add buffer capacities) and modify it to

meet implicit or qualitative design requirements.

(3) Evaluate the true cost and performance of each design using detailed

analytical or simulation models.

(4) Select an appropriate design that achieves the desired tradeoff between cost

and performance.

The designs generated in Step 1 serve as the basis for marginal user-directed

enhancements in Step 2. Each base design specifies an underlying network topology,

the preferred routes between various origin-destination pairs, and a corresponding

'rough-cut' capacity plan for switching and transmission resources. The base designs

should account for tradeoffs and interrelationships between topological design and

routing issues, between fixed and variable (traffic dependent) costs, and between total

costs and connectivity (e.g., the number of alternate routes in the network). In Step

2, the planner might refine each base design (perhaps, using a decision support

model) by selectively adding buffer capacities to improve network performance, and

making minor changes to the topology and routes to accomodate context-specific

constraints. Step 3 consists of detailed evaluation of each candidate design, and Step

4 involves choosing a design that balances the planners' preferences for cost versus

service. The four steps in this approach are closely interrelated, and might be

performed iteratively with, say, Step 2 providing feedback to Step 1 and so on.

In this paper, we focus on a model to generate alternative network designs in

Step 1. We also describe model extensions to incorporate some of the design

refinements — allocating buffer capacities, and creating alternate routes — contained

in Step 2 of the hierarchical planning approach. Since the base designs incorporate

all major topological decisions, they largely determine the possible levels of service.

-2-

In particular, a base design that is sparse (i.e., contains few links) cannot accomodate

alternative routes and is, therefore, inherently unreliable, while a dense design

provides routing flexibility. Thus, in order to generate a spectrum of base designs

with varying cost-performance characteristics, we must identify topologies that differ

in their connectivity levels. For this purpose, we propose a deterministic model that

seeks cost-effective designs to meet internode traffic requirements subject to a class of

routing restrictions which we call hop constraints. For each origin-destination pair,

the hop constraint limits the number of links (or hops) on the interconnecting route.

We refer to the upper limit on the number of hops between each origin and

destination as the route's Maximum Hop Parameter (or, hop parameter in brief). By

systematically changing these hop parameters, we can generate topologies with

varying arc densities and costs. In particular, reducing the hop parameter values

increases the number of alternate paths, and impacts delays while increasing total

cost. Thus, hop constraints serve as a convenient surrogate for service restrictions to

generate alternate base designs. In addition, limiting the number of hops for each

message also simplifies the task of managing traffic over the network (see, for

example, Ash, Murray and Cardwell (1981) and Monma and Sheng (1986)). Recently,

LeBlanc and Reddoch (1990) independently developed a hop-constrained model with

explicit delay costs for reliable topology/capacity design and routing in backbone

networks.

For a given set of hop constraints, we formulate the design problem as a

mixed integer program, and propose a Lagrangian relaxation method to solve it

approximately, but with performance guarantees. We then propose a systematic

method to vary the hop parameters in order to generate a variety of design solutions.

The network designer can then apply detailed evaluative models to these candidate

designs in order to accurately assess the cost impact of different service requirements.

The rest of this paper is organized as follows. In Section 2, we formally

describe the design problem, state our modeling assumptions, and present the

mathematical programming formulation. Section 3 describes our Lagrangian-based

solution approach to generate upper and lower bounds on the cost of the optimal

solution, for a given set of hop constraints. In Section 4 we present extensive

computational results for several randomly generated test problems. Our first set of

computational tests focuses on evaluating the effectiveness of the proposed

algorithm for various problem sizes, cost structures, and hop restrictions. These

results demonstrate that the method constructs near-optimal solutions even for

relatively large problems with upto 30 nodes, 420 edges, and 420 commodities. Our

second set of computational experiments illustrates how the model can be used to

gain insights about the tradeoffs between cost and performance by varying the hop

-3-

restrictions. Section 5 describes some variants and enhancements of the basic hop-

constrained network design model to allocate buffer capacities, and provide for

alternate routes. Section 6 summarizes the paper and outlines directions for further

research.

2. Problem Definition and Formulation

The backbone network design problem involves selecting a subset of links to

include in the topology, determining the capacity on each selected link, and routing

all internode traffic requirements at minimum total investment and operating cost.

We emphasize that the three decisions — topological design, capacity planning, and

routing — are closely interrelated, and we seek an integrated model that addresses all

three decisions simultaneously.

Many authors have proposed methods to separately solve two components of

the backbone design problem — the capacity assignment problem and the routing

problem — assuming that the network topology is prespecified. The capacity

assignment problem (see, for example, Bonucelli (1981), Chou et al. (1978),

Maruyama and Tang (1976)) assumes that traffic routes (and, hence, the network

topology) are given, and selects the best capacity for each link from a discrete set of

available link capacities in order to minimize total cost subject to delay restrictions.

On the other hand, the routing or flow assignment problem starts with a given

choice of link topology and capacities, and seeks to identify primary routes between

various origin-destination pairs in order to minimize the average or maximum
message delay (see, for example, Ahuja (1979), Bertsekas (1980, 1984), Cantor and

Gerla (1974), Courtois and Semal (1981), Frank and Chou (1971), Gerla (1973), Tymes

(1981), and Yum (1981)).

Combined approaches that iterate between capacity and flow assignment

decisions have been discussed by Gerla et al. (1974), Gerla and Kleinrock (1977), and

Maruyama, and Fratta and Tang (1977). Gavish and Neuman (1986,1987), Gavish

and Altinkemer (1987) and Pirkul and Narasimhan (1987,1988) describe integrated

optimization methods for simultaneous capacity assignment and routing. These

papers also account for traffic delay (either as a constraint or as a 'cost' in the

objective function), node and link failures, and/or alternate routing. Incorporating

practical connectivity constraints in fixed-charge network design models is difficult.

Eswaran and Tarjan (1976) show that the problem of finding the least cost

enhancement of existing networks to satisfy even some special types of connectivity

restrictions is NP-hard.

-4

LeBlanc and Reddoch (1990) introduce two combined topology/ capacity

planning and routing models for reliable backbone network design. These models

are similar to our approach, but differ in two respects: they (i) include an explicit

(non-linear) delay cost in the objective function, and (ii) assume continuous

capacities, and linear capacity costs (our model includes an additional fixed cost for

installing links). The first model considers traffic with different priorities, and finds

the least (delay + capacity) cost design containing alternate routes for single link

failures. The second model uses hop constraints as a surrogate for reliability. Both

models permit bifurcated routing. The authors exploit the linear capacity cost

structure to solve problems with up to 100 nodes using the flow deviation

algorithm.

Next, we introduce some notation, state our modeling assumptions, and

present a mixed-integer programming formulation for the backbone network design

problem with hop constraints.

2.1 Notation and Modeling Assumptions

The hop-constrained network design problem is defined over an undirected

network G:(N,E) whose vertices N represent the backbone nodes and intermediate

switches; the edges in E correspond to possible direct connections. For every pair of

nodes p, q in the network, let d represent the projected peak internode traffic (or

demand) from p to q. We treat the traffic between each pair of nodes as a separate

commodity, with <p,q> denoting the commodity that flows from node p to node q.

Let K denote the set of all commodities, i.e., K = {<p,q> : p,q e N with dpq > 0}. For

each commodity <p,q>, the designer specifies an upper limit, denoted as h , on the

number of hops for messages originating at p and destined for q. We refer to h as

the (maximum) hop parameter for commodity <p,q>. Section 2.3 describes a method

for selecting these hop parameters.

To establish transmission capacity on each link (i,j) of the network, we incur

two types of (investment and operating) costs: a fixed cost, denoted as F-, and a

variable cost c^ that represents the cost per unit of capacity from i to j. The fixed cost

might consist of investments for acquiring land, building the infrastructure, and

installing/operating the communication link, while the variable cost component

approximates expenses for acquiring and maintaining transmission and switching

equipment. In Section 5 we indicate how these fixed and variable costs can also

account for fixed or proportional buffer capacities on each link. Our model also

accommodates economies of scale and volume discounts in the form of piecewise-

linear, concave costs (see Figure 1); we assume the simpler fixed plus variable cost

structure for expositional ease. As LeBlanc and Reddoch (1990) note, even though

transmission cables and switches can be purchased and leased only in discrete sizes,

telecommunication companies often have the option of using public

telecommunication facilities (and even leasing fractional capacities) for overflow

traffic; hence, piecewise linear, concave functions adequately represent capacity costs.

Our model includes an explicit design constraint specifying that the selected

network topology must be connected. This restriction, though not essential for our

algorithm, strengthens the problem formulation and improves the lower bound.

For certain problem contexts, when the commodity flow pattern does not necessitate

a connected solution, the following network transformation ensures connectedness.

Consider a "commodity graph" containing the original nodes, and edges {p,q} for

every commodity <p,q> with d
pq

> 0. Let v be the number of connected components

in this graph. If v = 1, we say the demand pattern is 'complete'; in this case, every

feasible design must necessarily be connected, and our connectedness restriction is

valid. When demand is not complete (i.e., if v > 1), we can augment the original

network as follows to create a complete demand pattern: introduce a dummy node,

say, node 0, and add v dummy edges {0,i
r
} connecting node to one selected node ij.

in every component r = 1,2,...,v of the commodity graph. Each dummy edge has zero

fixed cost and a very high variable cost. Add v dummy commodities <0,i
r
>, each

with unit demand and a hop restriction of 1. Observe that the commodity graph for

the augmented network has a single component; and, the optimal design for the

original problem together with the dummy edges {0,^} is optimal for the

transformed problem. Thus, augmenting the network makes the connectedness

assumption valid. Finally, the network transformation is unnecessary if the planner

wishes to explicitly impose connectedness (for instance, to facilitate alternate

routing) even with incomplete demand; in this case, our algorithm generates a

higher lower bound relative to the 'unrestricted' lower bound obtained using the

augmented network. For our computational tests, a random choice of commodity

origins and destinations resulted in complete demand for all test networks (even

with sparse demand patterns); we, therefore, did not augment the networks.

2.2 Mathematical Programming Formulation

Our mixed-integer programming formulation for the backbone network

design problem distinguishes the direction of flow on each edge of the original

undirected network G. We consider two directed arcs, denoted as (i,j) and (j,i),

corresponding to each original undirected edge {i,j}. The original set of undirected

-6-

edges is denoted as E; let A represent the corresponding set of directed arcs. Our

formulation uses two sets of binary decision variables, y^ and zPjl, defined as follows:

y- = 1 if edge {i,j} is included in the design,

otherwise, and

zPjl = 1 if commodity <p,q> is routed on arc (i,j),

otherwise.

The y variables model the edge selection decisions, while the z variables represent

the (primary) routing decisions for each commodity.

The backbone design problem can now be represented mathematically as the

following integer formulation called [HCDP] (for hop-constrained design problem):

subject to:

minimize £ F
ijyjj + £ £ ^pq 2

??
(Z1)

(i,j) 0,j) <p,q>

1 if i = p

£ zW -]T zP[l = -1 if i = q for all <p,q> e K,

je N je N
if i * p,q (2.2)

Y zW < h
2,

z
lj - n

pq
(i,j)

for all <p,q> e K,

Constraints (2.2) ensure that, for each commodity <p,q>, the arcs (i,j) with zW = 1

form a route from p to q. Constraint (2.3) represents the hop restriction for

commodity <p,q>; it specifies that <p,q> must be routed over at most h arcs.

Inequalities (2.4) are forcing constraints that relate the routing and edge selection

variables: commodity <p,q> can flow in either direction on edge {i,j} only if this edge

is included in the topological design. Finally, constraint (2.5) specifies that the

selected design must be a connected subnetwork of the original network G. Our

solution method does not require an explicit mathematical representation of this

constraint.

To incorporate piecewise linear, concave capacity cost functions, we replace

each edge {i,j} of the original network with rj: parallel edges connecting i and j, where

Tjj denotes the number of linear segments in the expansion cost function for edge {i,j}

(see Figure 1). Let F[: and c[: denote, respectively, the y intercept and the slope of the

r segment; the r parallel edge in our augmented network carries a fixed charge of

F[- and a variable cost of c[:. Because the cost function is concave, the model does not

require explicit capacity constraints to enforce the upper limit of flow for each cost

range.

23 Setting the Maximum Hop Parameters

The backbone network design model's primary role is to generate various cost

minimizing solutions as the hop restrictions are parametrically changed. We
propose one possible scheme, called the Demand-based Hop Restriction Method, to

systematically vary the hop restrictions. For each commodity <p,q>, this method
selects the hop parameter h from a user-specified window or range of permissible

hop parameter values. Let hj and h
2

(> hj) denote, respectively, the smallest and

largest desired hop parameter. Within the range [h-j, h
2], our method selects lower

h values for high-demand commodities, and vice versa. In particular, we set h

= hj for the commodity <p,q> with the largest demand (among all commodities),

and h = h
2
for the commodity with the lowest demand. For commodities with

intermediate demand values, the hop parameters are calculated by linear

interpolation (rounded down to the next lower integer values) in the range [hj, h
2].

By imposing more stringent hop restrictions for commodities with higher demand,

the hop restriction method gives greater importance to these commodities in

determining the network configuration. In practice, designers may use other criteria

and methods to select and systematically vary the hop parameters for each

commodity.

8-

Observe that as hj and h2 decrease, the hop constraints become tighter, and

the resulting network designs should become more dense. Also, when hj = h
2
= hg,

say, the method selects the same hop parameter value hg for all commodities. We

refer to this special case as the Uniform Hop Restriction Method. Section 4.3,

presents computational results to illustrate the effect of various hop parameter

settings using the general (commodity-dependent) and uniform hop restriction

methods. Next, we discuss a Lagrangian-based algorithm for generating good upper

and lower bounds on the optimal value of [HCDP].

3. Solving the Hop-constrained Network Design Problem

The hop-constrained design problem generalizes the fixed-charge network

design problem which itself is known to be NP-hard (Johnson, Lenstra and Rinnooy

Kan (1978)). Finding the optimal hop-constrained solution is, therefore, a difficult

computational task. In this section, we develop a Lagrangian-based solution method

that simultaneously generates good feasible solutions as well as lower bounds on the

optimal cost, for any given set of hop parameters. These bounds provide

performance guarantees so that the user can assess the quality of the heuristic

solutions.

3.1 Lagrangian Relaxation Scheme

The Lagrangian relaxation method has been successfully applied to several

difficult discrete optimization problems (see, for example, Geoffrion (1974), Fisher

(1981)). The method exploits special structure in the problem formulation by

dualizing the complicating constraints, and solving the resulting subproblems using

efficient, specialized algorithms. For a given set of Lagrange multipliers, the c st of

the optimal Lagrangian solution serves as a lower bound on the optimal cost of the

original problem. The Lagrangian subproblem solutions also provide useful

information to construct feasible designs for the original problem. The gap between

the Lagrangian lower bound and the cost of the best feasible solution measures the

maximum possible cost differential between the optimal and heuristic solutions. To

generate good lower bounds, the Lagrange multipliers are changed iteratively using

techniques such as subgradient optimization or dual ascent (see, for example, Fisher

(1981), Balakrishnan et al. (1989)).

For the hop-constrained design problem, we consider a Lagrangian relaxation

scheme that dualizes the forcing constraints (2.4) using nonnegative Lagrangian

multipliers \iV% for all edges (i,j) and all commodities <p,q>. Observe that when

9-

constraints (2.4) are removed from formulation [HCDP], the problem decomposes

into two main subproblems: a Routing subproblem denoted as [RSPQi)], and an Edge

Selection subproblem denoted as [ESP(p.)]. The routing subproblem determines the

optimal values of the route selection variables z^, while the edge selection

subproblem calculates the values of the design variables Vj:. The routing subproblem

further decomposes by commodity; we denote the subproblem corresponding to

commodity <p,q> as [RSPp^fi)]. The next two sections describe these subproblems in

greater detail, and discuss methods to solve them.

3.2 Routing Subproblem

For any given set of Lagrange multipliers \i = {^8}, we define an adjusted

variable cost for each commodity <p,q> and every arc (i,j) as follows:

c« A Cjj + H^/dpq for all (i,j) € A, all <p,q> e K. (3.1)

Then, the routing subproblem [RSPp (^)] corresponding to commodity <p,q> has the

following formulation:

[RSPpqM

^(u) = min c^ £ c^ z^ (3.2)

(i,j)e A
subject to

1 ifi = p,

I z?? - I^M = -lifi = q,and (3.3)

je N je N
otherwise

,

IE 2
??

s Vr 3™1 (34)

> j

zW = or 1 for all (i,j) e A. (3.5)

Observe that subproblem [RSP (u)] essentially seeks the shortest directed path from

node p to node q containing a maximum of h arcs; the adjusted variable costs c^
serve as arc lengths for this hop-constrained shortest path problem. The optimal

value Lpq(n) of the routing subproblem equals d times the length of the shortest

hop-constrained path.

-10

We solve the hop-constrained shortest path subproblem using a truncated

version of the method of successive approximations (Lawler (1976)). Let U: denote

the length of the shortest path from node p (the origin) to node j containing at most

h arcs. Initially, u] = c^ if (p,j) e A; otherwise u
]
= °°. At the end of stage h, values

of U: are known for all nodes j in the network. During stage (h+1), we use the

following expression to compute u | for all j e N:

uhj
1 = min (u

h
, min [u

h
+ cW : i e N, (i,j) e A] }. (3.6)

The first term in the right-hand side of equation (3.6) is the length of the shortest

path from p to j containing at most h arcs. The second term represents the length of

the (h+l)-arc shortest path from p to j, which must consist of a h-arc shortest path

from p to i, for some intermediate node i, plus the arc from i to j.

To solve subproblem [RSPpq (|i)L we terminate the algorithm after h
pq

stages;

the method's computational complexity is 0(n h). The value u obtained at the

final stage (i.e., with h = h
pq) gives the length of the shortest hop-constrained path

from p to q. We can trace the actual path for commodity <p,q> by performing the

usual backtracking procedure.

33 Edge Selection Subproblem

Let us now consider the second Lagrangian subproblem involving the edge

selection variables Vy. Given a set n of Lagrangian multipliers, let

Fjj A Fjj - ^ for all {i,j} e E, (3.7)

represent the adjusted fixed cost for edge {i,j). The edge selection subproblem

involves selecting a subset of edges that connects all nodes of the network at

minimum total (adjusted fixed) cost. We solve this subproblem as follows: First,

select all edges with negative adjusted fixed costs, and arrange the remaining edges

in order of nondecreasing adjusted fixed cost. At each stage we refer to the

subnetwork defined by the currently selected edges as the current network. Consider

each edge {i,j} in sequence from the sorted list of unselected edges. If edge (i,j)

connects two different components of the current network, select it and update the

current network by merging the two components; otherwise, discard edge {i,j}.

Repeat the procedure for all edges in the list. At termination, the final network

must be connected. The sum of the adjusted fixed costs in this network gives the

optimal value of the edge selection subproblem. The computational effort required

to solve this subproblem is dominated by the edge sorting procedure which requires

-11

0(I E I log I E I) operations. Note that, if formulation [HCDP] does not contain the

connectedness condition (2.5), the edge selection subproblem is easily solved as

follows: set Vj: = 1 if Fj: < 0, and otherwise, for all edges (i,j) e E; this solution may

have a lower value than the connected subproblem solution.

The optimal value Z(|i) of the complete Lagrangian subproblem is the sum of

(i) the edge selection subproblem value, and (ii) the optimal values L_>q(n) of the

route selection subproblems for all commodities <p,q>- For any given vector (i of

nonnegative multipliers, Z(p.) is a lower bound on the optimal value of the original

subproblem. To obtain good lower bounds, we use a subgradient method (see, for

instance, Held, Wolfe, and Crowder (1974) or Fisher (1981)) to iteratively adjust the

Lagrange multipliers.

We note that our Lagrangian relaxation scheme does not satisfy the

integrality property (Geoffrion (1974)); for example, the optimal solution to the linear

programming relaxation of the routing subproblem might possibly be fractional.

Therefore, the best lower bound obtained using our relaxation scheme may exceed

the linear programming lower bound for formulation [HCDP].

3.4 Lagrangian-based Heuristic Procedure

At each subgradient iteration, the solution to the routing subproblem

provides a set of feasible routes (that satisfy the hop restrictions) for all commodities.

Note that the edge selection subproblem may include some edges that do not belong

to any of the selected routes and/or may omit some edges belonging to these routes.

We, therefore, ignore the solution to the edge selection subproblem, and use only

the routing solution to construct an initial feasible design. Our Lagrangian-based

initial design consists of all edges belonging to the routes chosen in the routing

subproblem. For this design, we solve the hop-constrained shortest path problem for

each commodity using the original variable costs Cj: as arc lengths. The sum of the

fixed costs for the selected arcs and the (true) variable costs for all commodities gives

the cost of the heuristic solution.

We then attempt to improve this starting solution by applying a Drop

heuristic (Billheimer and Gray (1973)). The drop procedure is a local improvement

method that iteratively eliminates existing edges from the current design in order to

reduce the total cost. When we drop an edge, the total fixed cost decreases while the

variable costs might increase since some commodities must now flow on more

expensive alternate routes. At every stage, the procedure evaluates the net savings

12

Aj: obtained by dropping each edge {i,j} from the current design. If the net savings is

zero or negative for all edges, the procedure terminates. Otherwise, it drops an edge

with positive net savings, updates the current design and commodity routings, and

decreases the upper bound.

Evaluating the revised routing costs when an edge is dropped entails solving

a hop-constrained shortest path problem for each commodity that previously used

this edge. Since this computation can be time-consuming, we do not evaluate the

savings for every edge at each iteration. Instead, we maintain and iteratively update

a candidate list of edges to evaluate. Initially, this list contains all edges that yield net

savings in the first iteration. In subsequent iterations, we only evaluate the savings

for edges that belong to this list. The edge with the maximum savings is dropped

from the current design and removed from the list; edges that do not give any net

savings are also deleted from the list. When the list becomes empty, we reinitialize

it by evaluating the savings for all edges in the current design.

The local improvement heuristic can be applied at the end of each

subgradient iteration. However, to reduce computation time, we only apply the drop

procedure intermittently, say, once every 100 iterations or if the current starting

design has a lower cost than the previous best starting design. The next section

describes our computer implementation of the Lagrangian-based solution procedure,

and presents extensive computational results for several randomly generated test

problems.

4. Computational Results

We implemented the Lagrangian-based algorithm for the hop-constrained

design problem in standard FORTRAN on an IBM 3083 (model BX) computer, and

tested the algorithm using several randomly generated problems. This section first

describes some features of our implementation, and the method we used to generate

random test problems. In all, we applied the algorithm to over 65 problem instances.

Our computational tests (discussed in Sections 4.3 and 4.4) address two different

performance aspects. The first set of tests focuses on evaluating the performance of

the algorithm, in terms of computation time and quality of the Lagrangian-based

heuristic solutions, as a function of the problem size, cost structure, and hop

restrictions. We then focus on a single problem instance in order to assess the

impact on cost and performance of systematically varying the hop restrictions . This

exercise demonstrates the effectiveness of our approach for generating several

alternative base designs.

13

4.1 Implementation Details

In addition to the features described in Section 3, our implementation of the

Lagrangian relaxation algorithm incorporates: (i) a method to generate an initial

upper bound before initiating the subgradient procedure, and (ii) a non-standard

multiplier initialization method.

Generating an Initial Heuristic Solution

To generate an initial upper bound, we first construct a feasible design using a

method which we call the BUILD heuristic, and subsequently apply the drop

procedure to improve this design. The Build heuristic first sorts all commodities in

decreasing order of demand; it builds a feasible design by iteratively considering each

(k-1)
commodity in the sorted order. At the beginning of stage k, let E denote the set

of edges in the current design. This design contains feasible paths (satisfying the

respective hop constraints) for each of the first (k-1) commodities. During stage k,

the algorithm augments this design to ensure that the k commodity, say,

commodity <p,q> has a good feasible path. For this purpose, we solve a hop-

constrained shortest path problem from node p to node q with arc lengths l^ defined

as follows:

/jj
= Cjj if (i,j) e Ek_1, and

= Cjj + Fydpq if(i,j)« Ek_1 . (4.1)

Essentially, if edge {i,j} already belongs to the current design, we assign only the

variable cost q: to commodity <p,q>. Otherwise, we add the per unit cost Fj:/dpq to

the variable cost Cj:, effectively forcing commodity <p,q> to absorb the entire fixed

cost of edge {i,j}. Let P denote the set of edges belonging to the shortest hop-

constrained path from p to q using arc lengths l^. The current design is then

augmented by adding to E
(k_1)

all the new edges of Pk, i.e., we set E
k = E

(k_1) u Pk .

Thus, at the end of stage k, the current design contains feasible paths for the first k

commodities in the sorted list. By considering commodities in decreasing order of

demand, the Build heuristic gives greater importance to high-demand commodities

(which contribute more to the variable cost) in developing the design. When the

I K I

procedure terminates, the set of edges E is a feasible design. As a final step, the

algorithm reroutes all commodities over the respective shortest hop-constrained
I K I

paths in E using the original variable costs Cj: as arc lengths. We then apply the

drop procedure (described in Section 3.4) to the starting solution constructed by the

Build method. The improved solution provides the initial upper bound.

-14

Initializing the Lagrange Multipliers

Instead of initializing the Lagrange multipliers to zero, we use the initial

heuristic solution to determine the starting values for the multipliers. Let x- denote

the total flow on each edge (i,j) of the initial heuristic solution. The multiplier |j.P9 is

then set equal to Fjj/x- if commodity <p,q> uses edge {i,j} in the initial solution;

otherwise, uP^ is initialized to zero. Thus, for each edge {i,j} in the initial design, the

multiplier initializatio: method completely allocates the fixed cost Fj: to the

Lagrange multipliers for all commodities that flow on this edge.

For all computational tests, our subgradient procedure: (i) initializes the step

size factor (see, for instance, Held et al. (1974)) to 2; (ii) halves the step size factor if

the lower bound does not improve for 15 consecutive iterations; and (iii) terminates

after 250 subgradient iterations (or earlier if the gap between the current best upper

and lower bounds reduces to a very small value).

4.2 Random Problem Generation

We implemented a random problem generator to construct a wide range of

test problems for the Lagrangian relaxation algorithm. The problem generator can

create test problems with different sizes, edge and commodity densities, cost

structures and hop restrictions. To generate a test problem, the user must first

specify the following parameters: (i) seed for random number generator; (ii) network

size information: number of nodes n, edges m, and commodities I K
I ; (iii) cost

structure information: weight w for the random component in edge costs, and fixed-

to-variable cost ratio r ''these parameters are explained later); (iv) average demand d;

and (v) hop-restriction information: the lower and upper limits, h| and h^, defining

the range of desired hop parameters.

The program first locates the required number of nodes randomly on a 1000 x

1000 grid, and generates a random spanning tree over these nodes (to ensure

problem feasibility). It then adds the required number of additional edges (i.e., m-(n-

1) edges) randomly to the tree. Having constructed the underlying network G:(N,E),

the problem generator calculates the fixed and variable costs for each edge in G. Let

ejj denote the Euclidean distance between nodes i and j. The fixed cost F^ of edge (i,j)

is then computed as:

Fjj = (1 - w) ej
j
+ w C

,

(4.2)

where w is the user-specified weight (0 < w < 1), and £ is a random number derived

from a uniform distribution with range [0,1000]. Observe that, by varying w, the user

can generate cost values that are either completely random (when w = 1) or directly

15-

proportional to Euclidean distance (when w = 0); intermediate values of w give a

mixture of random and Euclidean costs. We refer to w as the cost randomness factor.

Note that when w > 0, the fixed costs may not satisfy the triangle inequality.

The variable cost Cj: for edge {i,j} is obtained by dividing the fixed cost F-by

the user-specified fixed-to-variable cost ratio r. When r is very small, the fixed costs

are negligible compared to the variable costs; in this case, the union of the hop-

constrained shortest paths (using the variable costs as arc lengths) for all

commodities gives the best design. At the other extreme, when r is very large, the

variable costs are negligible, and the best solution is a network with the smallest total

fixed cost that contains at least one hop-constrained path for every origin-destination

pair. In particular, when h = (n-1) for all commodities <p,q>, the optimal solution

for large values of r is the minimal spanning tree.

After calculating the edge costs, the problem generator randomly identifies

the required number (I K I) of origin-destination pairs which define the

commodities. For each commodity, the demand d is selected from a uniform

distribution ranging from to 2d; we set d = 5 units in all cases. For all our test

problems (even with IK I less than 50% of the maximum possible number of

commodities), the random choice of origin-destination pairs resulted in complete

demand patterns (as defined in Section 2.1).

Finally, the program generates the hop parameters for each commodity using

the demand-based method described in Section 2.3, i.e., by interpolation in the range

[hi, h^]/ with high-demand commodities having lower hop parameter values and

vice versa. Given a set of hop parameters, our implementation first checks for

problem feasibility. If the network does not contain any feasible path for some

commodity, the user must either increase the hop parameter(s) or try a different

random number seed.

The next two sections describe the results of our computational experiments

to assess the effectiveness of the Lagrangian relaxation algorithm, and generate

different cost minimizing designs by varying the hop restrictions.

4.3 Testing the Performance of the Lagrangian Relaxation Algorithm

We use two performance measures to evaluate the effectiveness of the

Lagrangian relaxation algorithm: (i) the % gap, defined as the difference between the

best upper and lower bounds expressed as a percentage of the best lower bound,

-16-

which measures the quality of the heuristic solutions, and (ii) the computation time

(in CPU seconds) required for the entire procedure.

Our computational tests attempt to evaluate the effect of three problem

characteristics - problem size, cost structure, and hop restrictions - on the algorithmic

performance measures (% gap and computation time). Problem size depends on the

number of nodes in the network, the number (or density) of edges, and the number

of commodities. The cost structure is determined by two factors: the cost

randomness factor w, and the fixed-to-variable cost ratio r. The third problem

characteristic affecting algorithmic effectiveness is the tightness of the hop

restrictions measured, for instance, by (hj + h
2)/2 (the mid-point of the user-

specified window). For convenience, in this section we consider only the uniform

hop restriction method, with h^ = h
2
= hQ ; results for the more general hop

restriction method (with h^ < h
2

) are reported in Section 4.4.

4.3.2 Effect of Cost Structure and Hop Restrictions

To isolate the effect of each of the three problem characteristics on algorithmic

performance, we first consider different cost structures (i.e., different cost

randomness factors and fixed-to-variable cost ratios) and hop restrictions for a 20-

node network with 180 edges and 180 commodities. For this network size, we

generated 3 different problem instances (using different random number seeds) with

varying cost randomness factors, namely, w = 0, 0.5, and 1. For each network, we

applied the Lagrangian relaxation algorithm with three fixed-to-variable cost ratios, r

= 10, 20, and 50, and three different (uniform) hop parameter values, hg = 3, 4, and 5

hops. This set of parameters represents a wide spectrum of possible problem

structures, ranging from Euclidean costs to completely random costs, and moderate

to high fixed costs (relative to the variable costs).

Table I summarizes the results of our analysis. For each combination of w, r,

and hg, this table shows: (i) the fixed cost as a percentage of total cost in the final

heuristic solution (denoted as % FC); (ii) the number of edges included in the final

design (# of edges); (iii) the weighted average number of hops h (ave. hop) over all

commodities, which is defined as

<pq> <pq>
where h ' (< h) is the actual number of hops for commodity <p,q> in the final

heuristic solution; (iv) the gap between the final upper and lower bounds expressed

as a percentage of the best lower bound (% gap); and (v) the total CPU time (in

seconds on an IBM 3083) for generating heuristic solutions and subgradient

-17-

optimization (CPU). The first three statistics describe the structure of the final

heuristic solution, while the last two measure the algorithm's effectiveness.

As expected, the results in Table I show that the % FC and % gap increase

while the number of edges in the final design decreases as the fixed-to-variable cost

ratio increases from 10 to 50. For ratios of 10 and 20, all gaps are less than or equal to

5%. For one problem instance in this category, the algorithm generated the optimal

solution and proved its optimality (by generating a lower bound equal to the upper

bound); for 8 other instances, the gap was less than 1%. With a fixed-to-variable cost

ratio of 50, the gaps are larger (ranging from 4 to 23%). These latter problems

represent extreme values of fixed costs, and might have inherently higher duality

gaps. For consistency, all the % gaps reported in Table I correspond to the difference

between the best upper and lower bounds at the end of 250 subgradient iterations.

(The gaps might possibly be lower if we increased the limit on the number of

subgradient iterations. For example, for the test problem with \\q = 3 and r = 50, we

were able to reduce the 20% gap to 17% by applying the subgradient procedure for

100 more iterations; however, the CPU time increased by 75%.)

As the hop restrictions become tighter (i.e., when h^ decreases from 5 to 3),

the final design becomes more dense as expected, but the problems also become more

difficult to solve (the % gap increases). Interestingly, the % gap does not exhibit any

consistent pattern of variation as the cost randomness factor changes from 0.0

(Euclidean costs) to 1 .0 (completely random costs). The Build heuristic generates

good initial upper bounds with very little computational effort (less than 2 seconds

of CPU time in almost all instances). Applying the drop heuristic at intermediate

stages of the subgradient procedure reduces the initial cost by 4.5% on average. The

subgradient procedure requires around 70% of the total computational time, and

improves the initial lower bound by an average of 30.6%.

43.2 Effect of Problem Size and Hop Restrictions

In Section 4.3.1, we fixed the problem size and considered the effect of cost

structure and hop restrictions on algorithmic performance. We now study the effect

of problem size on the quality of bounds and computation time. For this set of tests,

we fixed the cost randomness factor at 0.5, and the fixed-to-variable cost ratio at 20.

We considered four basic network sizes containing 10, 20, 25 and 30 nodes,

respectively. For each network size, we generated sparse as well as dense networks

(with correspondingly sparse and dense demand patterns). Table II reports the

performance of the Lagrangian relaxation algorithm for 8 test networks with

different sizes, for various (uniform) hop restrictions.

18-

Again, the % gaps decrease as the hop parameter increases. In all but three

instances, the gaps reduce to below 10% within 250 iterations. The % gaps do not

show any consistent variation as the network size and density increase; for the 10-

node problem the % gap is higher for the denser network, while the converse is true

for the 20-node problem. As expected, the computation times increase with problem

size.

In summary, our computational results suggest that the Lagrangian-based

algorithm is quite effective. For almost all problems with fixed-to-variable cost ratios

of up to 20, the method generates tight lower bounds and good heuristic solutions

that are generally guaranteed to be within 10% or less from the optimal solutions.

We emphasize that many of our test problems are very difficult to solve optimally.

For instance, the integer programming formulation corresponding to the 30-node,

420-edge test problem contains 353,220 integer variables, and 542,640 constraints; this

problem size is well beyond the realm of capabilities of current state-of-the-art,

general integer programming methods.

4.4 The Network Cost-Performance Tradeoff

The results of the previous section show that the Lagrangian-based algorithm

is effective in generating good cost-minimizing solutions for the hop-constrained

design model for a wide range of problem structures. This section attempts to

demonstrate that, by systematically varying the hop parameters, the hop-constrained

model achieves our original objective of generating a variety of base network designs

with different cost-performance characteristics. In general, evaluating the

performance (i.e., reliability, blocking, delay, etc.) of each design would require

detailed context-specific analyses and simulations which we did not implement.

Instead, to illustrate the effect of hop constraints on service level, we use two sample

performance metrics - average number of hops, and average connectivity.

The (weighted) average number of hops h, defined in Section 4.3, might serve

as a measure of operational (routing) complexity, with lower values corresponding

to easier routing. Furthermore, under certain assumptions, the average delay per

message T in a packet switched network is directly proportional to the average

number of hops h. (For example, if the traffic arrivals and service rates satisfy

Kleinrock's assumptions, say, Possion arrivals and independent, exponentially

distributed message lengths with mean \/\l on every link, and if each link has a fixed

buffer capacity B, then T = h/uB.) Thus, h might serve as a rough indicator to assess

changes in delay performance.

-19

The (weighted) average connectivity statistic is a surrogate measure for

network vulnerability. For a given commodity <p,q>, we define connectivity as the

number of alternate arc-disjoint paths from p to q in the final design; it gives a lower

bound on the number of arcs that must fail before all p-to-q communication is

blocked. Using the relative demands for all commodities as the weights for their

respective connectivity values gives average connectivity. Thus, providing multiple

paths for high demand commodities is considered more important. Our

implementation uses a maximum flow algorithm to compute the connectivity of

each commodity in a given design. When each edge of the final design has a capacity

of 1 unit, the maximum flow from p to q gives the number of alternate arc-disjoint

paths for commodity <p,q>.

To study the effect of various hop restrictions on cost, average number of

hops, and average connectivity, we consider a single problem instance with 25 nodes,

300 edges, and 300 commodities. Observe that this network has a complete topology

(i.e., it contains one edge connecting every pair of nodes) and complete demand (i.e.,

the set of commodities K contains one commodity for each node pair). The cost

randomness factor is fixed at 0.5, the average demand at 5 units, and the fixed-to-

variable cost ratio at 20.

Table III shows the computational results for 22 different hop restrictions.

The first 7 solutions correspond to uniform hop restrictions, with parameter hg

(=h-[= h
2

) ranging from 1 to 7; the other 15 solutions correspond to commodity-

dependent hop restrictions with varying means and widths. For example, the hop

restriction [2,2] corresponds to a uniform restriction of 2 hops for all commodities.

On the other hand, the restriction [2,5] generates commodity-dependent hop

parameters with a range width of 3 and mean of 3.5; in this case, high demand

commodities have hop parameters close to 2 and low demand commodities may use

up to 5 edges.

Since the data is randomly generated, the actual cost values for different final

solutions are not very meaningful. Instead, we consider a normalized cost index

that expresses the actual cost as a percentage of the lowest total cost over all 22

solutions (obtained with the least stringent hop restrictions). Thus, a design with a

cost index of 140 is 40% more expensive than the lowest cost design. Using this

normalized cost criterion facilitates our assessment of the cost-benefit tradeoff as the

hop restrictions vary.

-20-

As expected, the results of Table III show that total cost and average

connectivity increase, while the average number of hops decreases as the hop

constraints become more restrictive. In particular, with a uniform hop parameter hQ

of 1 (solution #1), the design must contain all edges of the original network, every

commodity must have a single-hop route, and each commodity has 24 alternate arc-

disjoint paths (including the single-hop route). For our problem instance, this

design is also the most expensive because of the significant fixed costs. As we relax

the hop constraints, the designs become less expensive while average connectivity

declines. The lowest cost design corresponds to the least restrictive (uniform) hop

restriction with hg = 7.

Observe that, as we increase the hop parameters beyond a certain threshold,

the same final design remains optimal. For example, in the uniform hop case, the

solution is unchanged when h
Q
increases from 6 to 7. Similarly, with commodity-

dependent hop parameters, the same final design satisfies the hop restrictions [3,6]

and [3,7]. Finally, we note that for all but one instance the % gap is less than 6.5%,

implying that the costs shown in Table III closely approximate the optimal costs for

different hop restrictions.

To better assess the cost versus performance tradeoff, Figure 2 shows a

graphical display of the average number of hops and normalized cost for different

solutions. (Solution # 1 is not shown in this figure since it has a normalized cost of

over 400, while the remaining solutions have normalized costs ranging from 100 to

150.) As this figure illustrates, the method generates several 'dominated' solutions.

For instance, solution # 2 (with hop restriction [2,2]) dominates solution #10 (with

hop restriction [1,4]) since the latter design has higher cost and higher average

number of hops (and lower connectivity). Similarly, solution # 3 dominates

solution #18. The set of undominated solutions define an "efficient" frontier that

characterizes the cost-benefit tradeoff when the average number of hops changes.

The piecewise linear curve in Figure 2 shows, for instance, that reducing the average

number of hops from 1.74 (solution # 2) to 1.71 (solution # 9) increases the total cost

by over 16% (relative to the lowest cost design).

To summarize, our hop-constrained network design model helps to identify a

selected subset of good solutions with varying performance characteristics. A
pictorial representation such as Figure 2 can greatly assist the network designer in

assessing the tradeoffs between conflicting criteria before selecting an appropriate

backbone network topology. We emphasize that we have used average connectivity

and average number of hops as measures of service performance only for illustrative

-21

purposes. In general, similar tradeoff analyses can be performed using any desired

performance measure.

5. Model Variants and Extensions

In Section 2 we presented a basic version of the hop-constrained design model

that selects primary routes for each commodity and provides adequate capacity on

these routes. This section briefly describes how to adapt and extend the model to

plan buffer capacities and select alternate routes.

5.1 Planning buffer capacities

Buffer capacities improve service levels by decreasing delays, and

accomodating contingency traffic. We briefly outline two methods to judiciously

allocate these capacities - a two-step process and an integrated model.

5.1.1 Two-step process

Planning buffer capacities might be viewed as the second step of the

hierarchical process described in Section 1. In this scheme, the hop-constrained

model first generates several network topologies and corresponding base capacities.

For each topology, a subsequent step augments capacities on selected links to

improve performance. This second step might, for instance, use a model similar to

the approach proposed by Kleinrock (1976). Kleinrock's model selectively allocates

buffer capacities to links in the base design in order to minimize average delay per

message subject to a budget restriction. In particular, under certain assumptions

about traffic arrivals, message sizes, and link expansion costs, Kleinrock proposes a

"square-root" formula for optimally allocating a budgeted amount De to reduce

average delay. Bitran and Tirupati (1988) propose (in the manufacturing context)

enhancements and variants of this model to improve the performance of queueing

networks. For instance, they describe models to minimize the total additional

investment required to achieve a prespecified delay target, and to reallocate capacities

from one part of the network to another for reducing delays.

5.1.2 Integrated models

Instead of applying a separate buffer allocation model as the second step, the

hop-constrained model can itself be easily modified to account for certain types of

buffer capacities. The modifications involve changing the fixed and variable cost

parameters (Fjj and cj and the demand values d . We describe the model

enhancements for three different types of buffers - fixed buffers, proportional buffers,

-22-

and commodity-dependent buffers. Designers might use any combination of these

three buffer types.

Consider first a fixed buffer policy which specifies that each selected link (i,j}

of the network must have a (fixed) spare capacity of bj: units. The hop-constrained

model can incorporate this requirement by using a higher fixed cost; in particular, we
A

use an inflated fixed cost F^ which is equal to the original fixed cost Fj: plus bj^Cj:

(the second terms is the incremental cost of the required buffer capacity).

A proportional buffer policy specifies the required buffer level on each link as

a proportion of the traffic volume on that link. Suppose we specify a proportion
(3jj

for each link {i,j}, i.e., {i,j} must have spare capacity of at least Pj:*X units if it carries a

flow of X units. To represent this requirement in the hop-constrained design model,
A

we use inflated variable costs c ^ = (1+Pjj)*Cjj, where c^ is the original cost per unit of

capacity on link (i,j). In fact, since the hop-constrained model can also handle

piecewise-linear concave costs, we can represent capacity-dependent proportional

buffers, where the incremental buffer proportion, say, Yj;(X) declines as the volume

of flow X increases. This type of buffering strategy is consistent with Kleinrock's

(1976) observation that, as throughput increases, a smaller buffer proportion suffices

to maintain the same delay performance. In general, we can approximate any

concave buffer capacity requirement (as reflected, for instance, in Kleinrock's square

root law for buffer allocation) with a piecewise linear function in the hop-

constrained model.

Finally, suppose the planner specifies commodity-dependent buffer

requirements as follows: the selected route for each commodity <p,q> must have

excess capacity equal to a fraction 8
Q
of the projected demand d . The hop-

constrained model can accomodate this requirement by using a modified demand

value of d *(l+8 a) for each commodity <p,q> (or equivalently a modified variable
r 1 r 4

cost for each commodity).

The hop-constrained formulation's ability to model fixed buffers, volume-

dependent proportional buffers, and commodity-dependent buffers provides a

powerful set of capabilities to the network planner. Just as we parameterize the hop

constraints to generate various network configurations, we can also parametrically

change the buffer specifications (i.e., change the parameters b—, (3-, y-, and 8). For

each specification, the hop-constrained model identifies a cost-effective design that

serves as the basis for secondary enhancements and detailed performance

evaluation.

-23

5.2 Modeling alternate routes

The hop constraints indirectly influence the density of the topological design,

and hence the availability of alternate routes for various commodities. To plan

(contingency) capacities on these alternate routes, we can employ the buffering

strategies described earlier and /or explicitly model the contingency flows. As we

illustrate next, the latter approach requires additional decision variables and

constraints in the hop-constrained formulation. Fortunately, the decomposition

method proposed in Section 3 also solves the relaxation of this enhanced model.

Suppose we wish to select a design that has adequate capacity to accomodate at

least a prespecified fraction of various demands along alternate routes. In this

scheme, we select (as before) a primary route for each commodity; this primary route

is the preferred communication path whenever all its links are operational. We
must also select and plan capacities for a secondary route that will be used when one

or more links on the primary path fail (or are highly congested). For purposes of this

discussion, we will consider primary and secondary routes that are arc-disjoint, i.e.,

they do not have any links in common. Also, for convenience, we assume that the

secondary route has no hop restrictions. Let 6.^, (0 < A-,, < 1) be the fraction of the
P4 FH

demand d
pq

that the secondary route must accomodate.

To incorporate alternate routing, we change the original hop-constrained

formulation as follows:

• add a new set of binary routing variables, say, w^ for each commodity <p,q>.

Let wW = 1 ii commodity <p,q> uses (directed) arc (i,j) for its secondary route,

and otherwise;

• include the w-variables in the forcing constraints (2.4) of formulation [HCDP]

as follows:

zM + zW + wM + wW < y
tj

for all <p,q> e K, all (i,j) e E. (2.4')

The new forcing constraints specify that edge {i,j} must be included in the

design if it belongs to either the primary or secondary route for commodity

<p,q>. Since y^ is at most 1, edge {i,j} cannot simultaneously belong to both

the primary and secondary routes; thus, constraints (2.4') ensure that these

two routes are arc-disjoint; and

• add the cost term V V q; <t>r>Q
d™ w P9 to the objective function to

(i,j) <p,q>

account for the spare capacity on the secondary route.

24

To solve this enhanced formulation, we again dualize the forcing constraints

(2.4'). The Lagrangian problem decomposes into an edge selection subproblem and a

routing subproblem for each commodity. The edge selection subproblem is the same

as before, while the routing subproblems now involve determining both the z and w
variables. To find the optimal values of the z-variables we use the hop-constrained

shortest path algorithm as before; a regular shortest path solution provides the

optimal w-values (since we assumed that secondary routes do not have hop

constraints). Observe that the Lagrangian subproblem solution may not necessarily

select exclusive arcs for the primary and secondary paths (since we have dualized

constraints (2.4') which ensure arc-disjoint paths). Thus, to obtain a feasible starting

solution for local improvement, we might: (i) use the z-solution to select the

primary route for each commodity, and (ii) generate alternate routes by applying a

shortest path algorithm (perhaps, using some information from the w-solution) to

the residual network when links of the primary route are removed.

We might also consider a stronger relaxation that involves simultaneously

generating the hop-constrained primary routes and arc-disjoint secondary routes to

minimize total variable costs. Effectively, the problem formulation contains an

additional set of strengthening constraints

zPfl + ZW + WP9 + wrfl < i for all <p,q> e K, all (i,j) e E,

which are not dualized (and hence appear in the routing subproblem). We suspect

that this arc-disjoint routing subproblem is not polynomially solvable, necessitating

an enumerative technique to find the optimal routing. One interesting possibility is

to develop a variant of the K-shortest path algorithm (see, for example, Dreyfus

(1969)), modified to account for hop constraints on the primary routes.

6. Conclusions

In this paper, we have proposed a hop-constrained network design model to

support long-term network planning decisions. For this model, we developed an

effective solution method that can solve relatively large problems. By systematically

varying the hop restrictions, we demonstrated the method's ability to generate

several alternative cost-minimizing designs with different performance

characteristics.

Using hop constraints as a surrogate for service restrictions greatly reduces the

complexity of the model, and enables us to generate provably near-optimal solutions

relatively quickly using an optimization-based approach. In contrast, representing

-25

delay restrictions explicitly requires numerous assumptions about traffic arrivals,

service rates, failure rates, etc., and might possibly introduce non-linearities in the

model. Modeling connectivity restrictions (for instance, the requirement that the

network must be 3-connected) is equally complex. Consequently, models that

explicitly incorporate both delay and connectivity restrictions can often be solved

only by heuristic methods that do not provide any bounds on the quality of the

solutions. Because we can solve the hop-constrained model effectively, our

approach provides a useful design tool for performing sensitivity analyses. Similar

models might also apply to other large-scale planning problems in logistics and

manufacturing systems design.

Several extensions and variants of the basic model merit further

investigation. First, it would be interesting to develop and test alternative

multiplier adjustment schemes (such as dual ascent) and heuristic initialization and

improvement methods to further improve the quality of the upper and lower

bounds. Second, our model applies to the design of new networks that have no

current transmission and switching capacity. Adapting the model and solution

method for network expansion planning is an important next step. To account for

an existing network, we require additional capacity constraints in the problem

formulation; these constraints make the problem more difficult to solve and might

adversely aftect algorithmic performance. Finally, developing multi-period versions

of the hop-constrained model is a fruitful area for further development. In the

multi-period setting, demands for various commodities are specified for each period

of the planning horizon, and network expansion costs change over time. The model

must account for two types of tradeoffs: fixed design costs versus routing costs in

each period, and expanding the network beyond current requirements in

anticipation of future demand in order to exploit economies of scale. The basic hop-

constrained network design model that we have developed in this paper can serve as

the building block for these and other model extensions.

Acknowledgements: We would like to thank the referees and editors for their

insightful comments and helpful suggestions to correct, clarify and improve the

presentation.

-26

References

AHUJA, V. 1979. Routing and Flow Control in Systems Network Architecture. IBM
Syst.J. 18, 298-314.

ASH, G. R., R. H. CARDWELL, and R. P. MURRAY. 1981. Design and Optimization

of Networks with Dynamic Routing. The Bell System Technical Journal, 60, 1787-

1820.

BALAKRISHNAN, A., T. L. MAGNANTI and R. T. WONG. 1989. A Dual Ascent

Procedure for Large Scale Uncapacitated Network Design. Operations Research

37, 716-740.

BERTSEKAS, D. P. 1980. A Class of Optimal Routing Algorithms for

Communication Networks Proc. 1980 Int. Conf. on Circuits and Computers,

Atlanta, Georgia.

BERTSEKAS, D. P. 1984. Second Derivative Algorithms for Minimum Delay

Distributed Routing in Networks. 7EEE Trans. Communications COM—32, 911—

919.

BILLHEIMER, J., and P. GRAY. 1973. Network Design with Fixed and Variable Cost

Elements. Trans. Sci. 7, 49—74.

BONUCCELLI, M. A. 1981. Allocating Additional Link Capacities in Computer
Communication Networks. IBM Res. Report RC 8967, Yorktown Heights, New
York.

CANTOR, D. G., and M. GERLA. 1974. Optimal Routing in a Packet Switched

Computer Network. IEEE Trans. Computers C-23, 1062-1069.

CHOU, W., F. FERRANTE and M. BALAGANGADHAR. 1978. Integrated

Optimization of Distributed Processing Networks. Nat. Comp. Conf., 795-811.

COURTOIS, P. J., and P. SEMAL. 1981. An Algorithm for the Optimization of

Nonbifurcated Flows in Computer Networks. Perform. Eval. 1, 139-152.

DREYFUS, S. E.. 1969. An Appraisal of Some Shortest Path Algorithms. Oper. Res.

17,395-412.

ESWARAN, K. P., and R. E. TARJAN. 1976. Augmentation Problems. SIAM J.

Comput. 5, 653—665.

FISHER, M. L. 1981. The Lagrangian Relaxation Method for Solving Integer

Programming Problems. Man. Sci. 27, 1-18.

FRANK, H., and W. CHOU. 1971. Routing in Computer Networks. Networks 1, 99-

122.

FRATTA, L., M. GERLA and L. KLEINROCK. 1973. The Flow Deviation Algorithm:

An Approach to Store—and-Forward Computer Communication Network
Design. Networks 3, 97--133.

GAVISH, B., and K. ALTINKEMER. 1987. Backbone Network Design Tools with

Economic Tradeoffs. Working Paper. Krannert Graduate School of Management,

Purdue University

GAVISH, B., and I. NEUMAN. 1986. Capacity and Flow Assignment in Large

computer Networks. Proc IEEE-INFOCOM 86, 275-284.

GAVISH, B., and I. NEUMAN. 1987. Routing in a Network with Unreliable

Components. Working Paper, Graduate School of Business, New York

University, New York.

GEOFFRION, A. M. 1974. Lagrangean Relaxation and its Uses in Integer

Programming. Math. Prog. Study!, 82-114.

GERLA, M. 1973. Deterministic and Adaptive Routing Policies in Packet Switched

Computer Networks. Presented at the ACM—IEEE 3rd Data Communications
Symposium, Tampa, Florida.

GERLA, M., H. FRANK, W. CHOU, and J. ECKL. 1974. A Cut Saturation Algorithm

for Topological Design of Packet Switched Communication Networks. Proc. Nat.

Telecomm. Conj. NTC--74, 1074-1085.

GERLA, M., and L. KLEINROCK. 1977. On the Topological Design of Distributed

Computer Networks. IEEE Trans. Communications COM—25, 48—60.

HELD, M., P. WOLFE and H. P. CROWDER. 1974. Validation of Subgradient

Optimization. Math. Prog. 6, 62—88.

JOHNSON, D S., J. K. LENSTRA and A. H. G. RINNOOY KAN. 1978. The
Complexity of the Network Design Problem. Networks 8, 279-285.

KLEINROCK L. 1976. Queueing Systems, Volume 2: Computer Applications John

Wiley, New York

LAWLER, E. L. 1976. Combinatorial Optimization: Networks and Matroids. Holt,

Rinehart and Winston, New York.

LEBLANC, L. J., and R. REDDOCH. 1990. Reliable Link Topology/Capacity Design

and Routing in Backbone Telecommunication Networks. Working Paper No.
90-08, Owen Graduate School of Management, Vanderbilt University, Nashville,

Tennessee, October.

MAGNANTI, T. L., and R. T. WONG. 1981. Accelerating Benders Decomposition:
Algorithmic Enhancements and Model Selection Criteria. Oper. Res. 29, 464-484.

MARUYAMA, K., K. FRATTA and D.T. TANG. 1977. Heuristic Design Algorithm

for Computer Communication Networks with Different Classes of Packets. IBM
J. Res. Develop., 21, 360--369.

MARUYAMA, K., and D.T. TANG. 1976. Discrete Link Capacity Assignment in

Communication Networks. Proc. Third Int. Comput. Comm. Conf., 92-97.

MONMA, C. L., and D. D. SHENG. 1986. Backbone Network Design and Performance

Analysis: A Methodology for Packet Switching Networks. IEEE Journal on

Selected Areas in Communications, SAC-4, 946-965.

PIRKUL, H., and S. NARASIMHAN. 1987. A New Algorithm for the Design of

Backbone Networks. Working Paper, College of Business, The Ohio State

University, Columbus, Ohio.

PIRKUL, H., and S. NARASIMHAN. 1988. Primary and Secondary Route Selection

in Backbone Computer Networks. Working Paper, College of Business, The Ohio

State University, Columbus, Ohio.

TYMES, L. R. W. 1981. Routing and Flow Control in TYMNET. IEEE Trans.

Communications COM--29, 392-398.

YUM, T. 1981. The Design and Analysis of a Semidynamic Deterministic Routing

Rule. IEEE Trans. Communications COM--29, 498-504.

ZANGWILL, W. I. 1968. Minimum Concave Cost Flows in Certain Networks Man.
Sci. 14, 429-450

Table I. The effect of Cost Randomness Factor and FC/VC Ratio on
Algorithmic Performance

FC/VC

ratio

r

Table II. Effect of Problem Size on Algorithmic Performance

Network

Table III. The effect of hop restriction on algorithmic performance

Prob

No.

FIGURE 1: Piecewise Linear, Concave Cost Function

Total
cost

I

F. .

—

13

13

F —
ij

13

Traffic on edge (ij)

CO
0-

O
PS

w
o
<
as

>
<
VI

3
«5
U
>

H
c/2

O
U

P

i

00

to

as

o

o

-- cs

vO

8 o o
en

o

•o

N
4J

o

a

Date Due

09

Lib-26-67

MIT LIBRARIES

3 TOflO QD7DlflSfl

