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Abstract

Over the past several yenrs, much attention in the field

of siiiiplicial pivoting algorithms has been focused on the new

class of variable-dimension algorithms, wherin the sequence

of simplices generated varies in dimension. This study

is aimed at the combinatorial nature of variable-dimension

algorithms. In Part I, we introduce the notion of a V-complex,

sliort for variable-dimension complex. -7e show that when a

labelling function is introduced on a V-c nplex, certain path-

following properties arise. The main result of Part I is

a characterization of paths on a labelled V-complex.

Part II of t :is study uses the path-following theory of

labelled V-complexes d:ve]oned in Part I to orovide construc-

tive algorithmic proofs of a variety of combinatorial lemmas

in topology. VJe demonstrate two new dual lemmas on the n-dimen-

sionsl cube, and use a Generalized Sperner Lemma to prove a

generalizati :n of the Knaster-Kuratowski-Kazurkiewicz Covering

Lemma on tne sinnlex. 'Ve also show that Tucker's LeTima can

be derived directly from the Borsuk-Ulam Theorem. We report

the interrelationships between these results, Brouv/er ' s Fixed

Point Theorem, /^the existence of stationary points on the

simplex^
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Introduction

Over the past several years, much attention in the field of sim-

plicial pivoting algorithms has been focused on the new class of variable-

dimension algorithms, wherein the sequence of simplices generated varies in

dimension, see van der Laan and Talman [12, 13, 14, 15], Reiser [20],

Luthl [19] , and Koj ima and Yamamoto [9]. Like other simplicial algorithms,

these algorithms usually can be executed with integer or vector labels.

When vector labels are used, it is appropriate to interpret these

algorithms as piecewise-linear (PWL) path tracing as in Eaves [2]. Kojima

and Yamamoto in [ 9] present a theory of dual pairs of subdivided manifolds

that is a basis for interpreting these algorithms via PWL path tracing.

Although the integer-labelled variable dimension algorithms can

also be interpreted as PWL path tracing, it seems more appropriate to use

a combinatorial framework in which to study these algorithms. The integer-

labelled algorithms usually are associated with some combinatorial lemma in

topology, e.g. Sperner ' s Lemma , and the algorithms result in constructive

proofs.

This study is aimed at the combinatorial nature of variable-dimension

algorithms. In Part I, we introduce the notion of a V-complex, short for

variable-dimension complex. We show that when a labelling function is

introduced on a V-complex, certain path-following properties arise. The

main result of Part I is a characterization of paths on a labelled V-complex.

Whereas most of the variable-dimension integer-labelled algorithms can be

interpreted as path-following on a V-complex, see Freund [6], our interest

here lies in the study of some combinatorial lemmas in topology.



In Part II of this study, we give constructive, algorithmic proofs to a

number of combinatorial lemmas in topology, namely Sperner's Lemma [26],

Kuhn's Cubical Lemma [10], Scarf's Dual Sperner Lemma [22], a Generalized

Sperner Lemma [4], Tucker's Lemma on the cube [29], Gale's Hex Theorem [7],

and two new dual lemmas on cube [6]. We also show the variety of relationships

between these lemmas, the Brouwer fixed point theorem, and the Borsuk-Ulam

Antipodal Point Theorem, and a new set covering theorem.

This study is based on the author's doctoral disseration [6].



Notation

Let IR be real n-dimensional space, and let IR = {x € IR^^I x>0}.

Define e to be the vector of I's, namely e = (1, ...,1). The empty set is

represented by <^ . For two sets S and T, define the symmetic difference operator

SAT = {x|x€S'JT, x^SAT} and define S\T = {x| x<S, x^T}.

For xeIR
, I I

X
I
L ='Vx,+ . . .+x*", I I x I

|
= max I x .

| ,

the Euclidean and maximum norms, respectively.

Let e be the i unit vector in IR . For a matrix A, let A . be the i'^'^

column of A, and A, be the i row of A.
1.
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Preliminaries - Complexes, Pseudomanlfolds, Orientation, Trlangulatlons

An abstract complex consists of a set of vertices K and a set

of finite nonempty subsets of K , denoted K, such that

1) V e K implies {v} f K

ii) ?£ X C y 6 K implies x€ K.

The elements of K are called simplices . Suppose x f K and |xl = n+1,

where | . | denotes cardinality. Then x is called an n-dimensional simplex ,

or simply an n-simplex . Condition (i) above means that all members of K

are 0-simplices, and condition (ii) means that K is closed under subsets.

Technically, an abstract complex is defined by the pair (K,K ). However,

since the set K is implied by K, it is convenient to simply denote the

complex by K alone.

An abstract complex K is said to be finite if the set K is

finite. An abstract complex K is said to be locally finite if for each

V 6 K , the set of simplices containing v is a finite set. More formally,

K is locally finite if and only if for each v 6 K
,

{x 6 k|v fi x} is a finite set.

A subset L of K is said to be a subcomplex of K if L itself is a complex.

A particular class of complexes, called pseudomanlfolds, is central

to the theory to be developed. An n-dimensional pseudomanifold (where n^l)

or more simply an n-pseudomanifold, is a complex K such that

i) X e K implies there exists y e K with |y| = n+1,

and X C y.

ii) If X e K and |x| = n, then there are at most two n-simplices

that contain x.
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Let K be an n-pseudomanifold. The boundary of K, denoted 3K, is

defined to be the set of simplicies x € K such that x is contained in an

(n-1) -simplex y e K, and y is a subset of exactly one n-simplex of K.

An n-pseudomanifold K is said to be homogeneous if for any pair of

n-simplices x, y 6 K, there is a finite sequence x - x, , Xj* ^2* * * * »
'Sn

" ^

of n-simplices in K such that 7i^f\ *i+i ^s an (n-l)-simplex in K, for

i'l, •••f m—1

.

Let R be an n-pseudomanifold and let x be an n-simplex in K.

Let X = {v„, ..., V }. Let y = {v., .... v }. If y ^ 3K, there is uniqueOn In
w€ K such that {w, v , . . . , v } Is an n-simplex in K. The process of

exchanging v for w to obtain a new n-simplex is called a pivot . In general,

if X and z are n-simplices and z can be obtained from x by a pivot, x and z

are said to be a neighboring pair , or simply neighbors .

For the purposes of this study a 0-dimensional pseudomanifold K

is defined to be a set of one of the following two forms:

i) K - {0,ia}], where K° - {a}, or

ii) K = {0,{4,ib}}, where K° = {a,b}.

Note that K contains 0, the empty set, as a member, and so is not

properly a complex, by the usual definition. Here, however, is a -1-simplex.

If K is of type (i) , then 3K = {0}. If K is of type (ii) , then 3K = 0, i.e.

K has no boundary, and {a} and {b} are neighbors.

Let R be a homogeneous n-pseudomanifold, and let x be an n-simplex

in R. Let (v., ..., v ) be some fixed ordering of the vertices of x. For
n

an arbitrary ordering (v. , ..., v. ) of x, this ordering is said to have a
JO Jn

(+) orientation if and only if the permutation

%, .... V
is even; otherwise the orientation is (-)

.
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Now let us extend this notion to all of K. Fix an ordering of

all n-slmpllces of K. Let x be an n-slmplex and let y be an n-slmplex

obtained by pivoting on an element v. of x and replacing v. by w. We say

that the pair (x,y) is coherently-oriented if the orderings (v^ , ..., v. )
JO Jn

and (v. , ..-, V. , w, v. , . . • , v. ) are differently oriented, i.e.
JO J 1-1 J 1+1 Jn

one la (+) and the other is (-). K is said to be orientable if it is

possible to specify orientations on all n-simplices of K in a way that all

neighboring n-slmplices x, y are coherently-oriented.

Finally, we define induced orientation on the boundary of K. Let

K be a homogeneous orientable n-pseudomanlfold such that 3K is not empty.

Let y be an (n-l)-slmplex in 3K. Then there is a unique n-simplex x e K

such that y C X. Orient K coherently. Let (v^ , .... Vj ) be an ordering
JO Jn

of the vertices of x. y " x \ {v. } for some 1 uniquely determined. Denote
^1

the orientation of the ordering (v^ , . . . , v^ ) by Or(v^ , . . . , v^ ).
JQ Jn JO Jn

Then we define the induced orientation on y as

Or(vj^. ..., vj^_^, vj^_^^. ..., vj^) - (-1) Or(vj^, ..., v^^),
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Proposition 1 Induced orientation is well-defined.

PROOF . Let y be an (n-1) -simplex in 3K, and let x be the unique n-simplex

in K that contains y. Let (i , ..., i _•, ) be an ordering of the vertices

of y, and let (j^, •••» j ) and (^^, ••• ^ ) be orderings of the vertices

of x, from which (i , ..., i
_•, ) is derived, y = x \ v for some unique vf x.

V = V. = v„ for some unique r, s.

^r s

If r = s, then (j^, ..., j^) = (l^, ..., £^) , and

Or(i-, ..., i^ .) = (-1)'' Or(j , ..., j ) = (-1)^ Or(£ ..., £ )
O n-1 U n U n

trivially.

So suppose s > r. It takes s-r transpositions to change

(Jq. •••» j^) to (£q, ..., £^). Hence (-1) OrCj^, ..., j^)

= (-1)'' (-1)^"'' Or(£Q, .... £^) = (-1)^ Or(£Q, ..., £^) . ®
An n-dimensional pseudomanifold is an abstraction of a triangulation

of an n-dimensional set in IR . The m-simplices of pseudomanifolds

correspond to geometric objects, which are also called m-simplices.

» ^ ro , ^ . T„n m . J ^ i_ ^rr • 1Let V , . . . , V be vectors m IR . v , . . .
, v are said to be af finely

independent if the matrix

m
V ... v

has rank m+1. If v , ..., v are affinely independent then their convex

hull, denoted \v , . . . v / is said to be an m-dimensional simplex , or more

simply an m-simplex. All m-simplices are closed and bounded polyhedral

k m
convex sets. Let {v , ..., v } be a subset of {v , .... v }. Then

\v , ..., V /is called a k-dimensional face of k-face of ^v , . . . , v >.

Any k"face of \v , . . .
, v / is a k-simplex itself. An (m-l)-face of an

m-simplex is called a facet of the m-simplex.
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Let H be an m-dlmensional convex set In IR . Let C be a collection

of m-simplices a together vlth all of their faces. C is a triangulation

of H if

1) H - g a
atC

ii) a,T € C imply o A t e C

iii) If a is an (m-l)'^8±mplex of C, a is a face of at most

two m-simplices of C.

The connection between triangulations and pseudomanlfolds should be clear.

k
Corresponding to each simplex o in C is its set of vertices {v , . • . , v }

.

Let K be the collection of these sets of vertices together with their

nonempty subsets. Then K is an m-dimensional pseudomanlfold

.

C is said to be locally finite if for each vertex v£H, the set of

simplicies fl-^C that contain v is a finite set.

Pertinent references for complexes and pseudonanifolds are

Lefschetz C16D or Spanier C25D. Some of the material on orientation was

taken from Lemke and Grotzinger C18I1. The notion of orienting pseudo-

manifolds can be extended to triangulations by the use of determinants.

The interested reader can refer to Eaves E2D and Eaves and Scarf C33

for an exposition on orienting triangulations.

V-Complexes

This section defines a particular combinatorial framework called a

V-complex that is used in the study of combinatorial lemmas in topology, as '

well as in the study of variable-dimension simplicial pivoting algorithms for

obtaining solutions of equations. When applied to a triangulation of a set S

in IR
, a V-complex constitutes a division of S into a number of regions of

varying dimension. As an example, consider the set S = {x<IR^| - e< x

^ e) triangulated in such a manner that each coordinate axis is also

triangulated. Consider the regional division defined as follows:



R (I) - {0)
R ({!)) = { xtS\ Xj iO, x^ = )

^ R ({-!)) = { xeS| x^ SO, x^ = )

R ({2}) = { x€S| x^ = 0, X2 ^0 )

R ({-2}) = { x«S| Xj = 0, Xj SO )

R ({1,2)) = { x€S| x^ ^ 0, x^ ^ 0)

R ({1.-2)) = { x<S| Xj a 0, x^ S 0}

R ({-1.2)) = { x«S| Xj S 0. x^ ^ 0)

R ({-1,2)) = { x(S| Xj S 0. x^ S 0)

Let us define J to be the domain over which R(.) is defined, namely" =

{0, {1),{-1). {2). (-2). {1.2 ), {1,-2),

{-1,2). {-1,-2,)), and note that for S, T<5 . S(M*J . and R(SnT) =

R(S)r\R(T). Also note that each R(T) is a |T| -dimensional manifold. For a

given T<7, suppose there is a j f T such that Tu{j)f J . Then, because C

I T I

triangulates each region R(.)» each |T|-simplex x =^v**,..., v' /

in R(T) will have a imique vertex v in R(Ti'{j)) such that

<v°,...,v''^', v> is a (|T| + 1) - simplex in R(TU{j)).

Because the above-mentioned properties do not depend on the particular

triangulation of S and are more combinatoric than geometric, it is convenient

to restate them in the more abstract framework of complexes and pseudomani-

folds. Let K be the pseudomanifold corresponding to C, and K° its set of

vertices. For each 7^7, define A(T) to be the pseudomanifold corresponding to

the restriction of C to R(T). The above properties of R(.) carry over to

A(.), namely A(Sr\T) = A(S)f\A(T) for S, Te'J, and A(T) is a |T|- dimensional

ItI
pseudomanifold. Furthermore, if x = {v",..., v ) is a |T|-

dimensional simplex in A(T) and j^T but Tu{j)etJ, then there is a unique

vertex v of K° such that { v*,..., v'^' . v) € A (TU{j)).



In a typical application of a V-complex, we have a function L(.) that

assigns a label to each vertex v of the trlangulation. In the above example

consider a fimction L(.): K** - N, where N={ 1,2, -1,-2) . The properties

of A(.),^ , and N, which are formalized in a more general setting below, will

be central to the development of algorithms which will find a simplex each of

whose labels have certain desirable properties. We now proceed to define a

V-cooplex.

Let K be a locally finite slmpliclal complex with vertices K .

Let N be a fixed finite nonempty set, which we call the label set . Let 'J

denote a collection of subsets of N, which we call the admissible subsets

T K S
of N. Let A(.) be a set-to-set map. A: J"*2 \{0}, where 2 denotes the

collection of subsets of a set S. K Is said to be a V-complex with

operater A(') and admlssable sets J , if the following eight conditions are

met:
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1) K Is a locally finite complex with vertices K

11) ![ C 2^

111) T € J , S 6 7 Implies S rv T 6 7

Iv) A(.):'J->2^\ {0}

v) For any x € K, there is a Tf 7 such that x « A(T)

vl) For any S, T 6 J , A(S r\ T) - A(S) O A(T)

Vll) For T € J , A(T) is a subcomplex of K and is a pseudomanlfold

of dimension |t|, where |»| denotes the cardinality

of the set.

vill) T«7.TU{j}€^ ,j^ T implies A(T)C aA(T (J {j}).

Let us examine these properties. (i), (11) and (iv) reiterate

what has been said in the preceding paragraph. (ill) imposes some structure

on 7 , namely that it is closed under Intersections. (v) states that the

map A( .) covers all simplices of K. (vl) states that A(' ) is a homo-

morphism with respect to intersections. (vll) states that each A(T)

is an appropriately-dimensioned pseudomanlfold. Condition (vill) stipulates

how the pseudomanifolds A(T) are arranged relative to each other, namely

that A(T) is part of the boundary of A(T U {j}).

The nomenclature "V-complex" is short for variable-dimension complex, and

derives from property (vii) above, where the dimension of the pseudomanifolds

A(T) varies over the range of T in 7.

As an example of a V-complex, consider a triangulation C of

IR that also triangulates the coordinate axes. Let N = {±1,±2}. Let 7

be the collection of sets {1}, {-1}, {2}, {-2}, {1,2}, {1,-2}, {-1,2}, {-1,-2}

and 0. Let K be the complex (actually a pseudomanlfold itself) corresponding

to the triangulation C. Then for each T*7. we define

A(T) - {x« k|v € X implies i-vi .i >0 for each 1 6 T, and v =

if 1 f T and -1 ^ T},
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Figure 1(a) illustrates this V-complex. Note that for matters of convenience,

the set brackets { } have been deleted. In the fiaure, A(0) is the origin,

A(i) corresponds to one of the four axes emanating from the origin, and

A(i,j) corresponds to one of the four quadrants.

Figure 1(a) is by no means the only V-complex associated with

2
IR . Figures 1(b) and 1(c) demonstrate other V-complexes associated with

2
IR , with the triangulations omitted.

Suppose K is a V-complex. Let x e K. We define

T = O T
X Tt^

xtA(T)

T then is the smallest set T such that x 6 A(T) . We say x is full
X

if |x| = |t
I

+1. X is a full simplex if it is a maximum-dimension

simplex in A(T )

.

For each TfJ. we also define 3'A(T) as

8'A(T) = {x € 3A(T)1t = T}.

We illustrate the above definitions in the V-complex in Figure 2.

In the fiflure, the left-most vertex of the 2-simplex is A(0) , the "bottom"

line segment is A(l) , the left-sided line segment is A(2), and

the simplex itself is A(l,2).

For X = {d,e}, T = {1,2}, for x = {f,g}, T = {1}.

For X = {e,f,h}, T = {1,2}. The simplices {a}, {f,g}, and

{e,h,f} are all full. We have 9'A(1) = {c}, 8'A(2) = {b}, and

8'A(1,2) is the pseudomanifold corresponding to the line segment from

b to c. Thus, while both {k,£,} and {f,g} are elements of 3A(1,2),

{k,Jl} (. 9'A(1,2), whereas {f,g} ^ 3'A(1,2).

For T = 0, A(T) contains only one vertex, the origin, and the

empty set 0, and therefore 3'A(0) = {0}.



Figure 1(a)

Af2)
A0.2)

^(2.3)

"MW -ACD-

AC3)

A(1,3)

Figure 1 (b^

A(4)

A(6)

Figure 1(c)
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Let K be a V-complex with label set N. Let L(.) be a function

that assigns to each v< K an element i e N. Such a function L(.)

is a labelling function . For a simplex x = {v , . . . , v""} € K, we define

^^^^ " ^^ L(v). L(x) is the set of labels spanned by the elements

of X.

We define two distinct simplices x,y « K to be adjacent (written

X "v y) if

1) X and y are full

and ii) L (xny) = T U T .

X y

Note that adjacency is symmetric: x 'V' y if and only if y 'v x.

Also note that if x - y for some y, L(x)DT^. To see this, observe that

• if X ~ y, L(x)D Lixi\y) = T^^T^ D T^.

Figure 3 represents a V-complex whose vertices K have labels L(.)-

In the figure, we have the following adjacent simplices:

{a}'v{a,b}'\.{b,c}'v{c,d}'v{c,d,u}'\-{u,d,w}'\,{u,w,v}

{u,s,vK{s,u,t}'v{t,s,p}'\,{p,t,q}'\,{p,q}'v,{p,n}'v{n,m}'v{n,m,r}'\,{m,r,k}'v,{k,r,s}'\,{s,k,v}

{h,g,w}'v.{g,w,e}'\,{w,e,d}'v,{d,e}'\,{e,f}.

Observe that, in the figure, any full simplex is adjacent to at most

two other simplices. We shall see later on that this is true in general.

Observe also that the adjacency relationship results in the formation of three

distinct "paths" of simplices, each path being a string of simplices

adjacent to one another.

The purpose of the remainder of Part I of this study is to give a

characterization of these paths. However, we must develop the theory of

V-complexes further before a complete characterization is possible.



,3A(2)
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H-Complexes

Let R be a V-complex with label set N and admissible sets 7 .

We wish to "lift" K Into a pseudomanlfold of dimension n where

n - In], Without loss of generality, asstnne N - {1, .... n}.

Let K be the set of vertices of K. We define artlflcal vertices

q , ..., q . Let Q - {q , ..., q^}. Define

CL. - {q, € Q|1 € N N, t}. The H-complex K associated with the V-complex K is defined

K - {x U Q|x U Q i 0, X6K, QCQ },

^x

where K* is the set of 0-simpllces of K. The nomenclature "H-complex" is

short for homogeneous -dimension complex and derives from Theorem 2, below,

which states that K is an n-dimensional pseudomanlfold, i.e., its dimension

does not vary.

Theorem 2 . K Is an n-dlmenslonal pseudomanlfold.

PROOF . Clearly K is closed under nonempty subsets, and so Is a complex.

Let X U Q € K. Then there exists y € A(T ) that Is full and y D -a.

Let P " Q . Then we have xUQCy^P€ K. Furthermore,
^x

|yUp| - lyl + |P| - lyl+n-|T^| - |y|+n-(|y|-l) = n+1.

Therefore every simplex in I^ is a subset of an n-simplex in K. It only

remains to show that each (n-l)-simplex of K is contained in at most two

n-simplices.

Let X « X O Q^ be an n-simplex in R, and let 9* C x be an

(n-1) -simplex In K. Suppose y C z i x, and z Is an n-simplex In K.

_ "v -
We aim to show that z is uniquely determined by x and y. Since x

Is an n-slmplex, x is full and 0,.
" Q-j ' ^® ^^^^ three cases:
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Case 1 . y = x \ ^q.) for some q. € Q • Let z = zUQ. Ifz = x,

then Q = Q , and so z = x, a contradiction. Therefore z ?* x. But since
z X

z D X, we must have z = x U {w} for some w. Therefore Q = Q N {q.},

and so T = T V^ {i}. By property (viii) of V-complexes, the choice of
z X

w, and hence z, is unique.

Case 2 . y = x\{v} for some v 6 x, and x\ {v} is not full. We

can write y = y '--' Q where y = x \{v}. Since y is not full, we must

have z = y U {w} for some w fe K , w ^ y, and hence Q^ = Q^, whence

T = T . The choice of w is uniquely determined, since A(T ) is a
z X X

pseudomanifold

.

Case 3 . y = x \{v} for some v € x, and x \ {v} is full. Again we

write y = y UQ , where y = x \ (v). Since y is full, T = T \ {i}
X y X

for some i € T , and by property (viii) of V-complexes, y € 9A(T ).
X X

Hence we cannot have z = y U {w} for any w € K . Therefore the unique

n-simplex of K containing '^ is z = yUQU {q.}. ®

We illustrate this result in Figure 4.

In Figure 4(c), A(0) consists of the north and south "poles" of the circle

and A(l) , A(2) are the right and left arcs, respectively.

Our next task is a characterization of the boundary of K.

Lemma 3 . 3K = S, (J S2, where

Si = iy ^ Qy (^ K|y € 3'A(Ty)}, and

S2 = {y ^Qy ^ KlNXdlq^e Q„}< J }.



3F= (*, (i;. '2K f1.2})

Figure 4(a)

9== (0, (1), [2})

A(2) A(1)

A(«)

Figure 4(b)

^ = (4)
, (1 }, (2)]

Figure 4 (c)
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PROOF. We first prove that S , C 9^. Let y = y ^ Q be a maximal
1 y

element of S^ . Then y £ 3'A(T ) and Q = Q . The only n-simplex that
1 y y '•y

contains y is of the form y U {v} U Q , where v is uniquely determined
y

since y€ 9'A(Ty). Therefore S^ C 8K.

Next we prove that S„C9K. Let y = y *-* Q be a maximal element

of S„. Then y is full and Q = Q„ \ {q.} for some i, where T U {i}^^ .

L y iy 1 y

Let X = y U {a} be an n-simplex in K. We need to show a is uniquely

determined. We cannot have a t K , since the set T \) {i}^ J . Hence

a = q for some j. Suppose j ?* i. Then T U {i}\{j}^tJ . and in fact

T = T IJ {i}\ {5!, whereby j = i, a contradiction. Therefore a = q^,

and so S2 C &K. Therefore S^ U S2 C 8K.

Now let us prove the converse. Let x = x U Q_ be an n-simplex
x

in K and let y C x be an element of 8K, where y = y U Q. We have

two cases:

Case 1 . X = y U {v} for some v < y. Clearly we must have y € 8A(T^) .
If y were

full, then y = y U Q , and so y ^ 9K. Therefore y is not full.

Hence y 6 S-

.

Case 2 . Q = Q L/ {q^ ) for some q. ^ Q. Suppose N \{ilq^ € Q} ^ J .

Tx J J

This means that T U (j) ^l . But then, by property (viii) of V-complexes,
X

there is a unique v <f K° s.t. y U {v} € A(T \J (j)). Hence
X

y = y U {v} W Q t R, and hence y ^ 3K, a contradiction. Therefore

N\ {i|q^ 6 Q}^ a , and y € S^.

Therefore 9K C S^ 17 S2, so 9K = S^ U S2. ®
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Labelling Vertices and Adjacency on H-Complexes

Let R be a V-complex and K Its associated H-complex. Let

L(.): K »• N be a labelling function on K°. We extend L(.) to K°

by the simple rule that L(q,) " 1 for each q. £ Q, thereby obtaining

a labelling function on K . Let x be a simplex In K. We define

L(i) - M. L(v).
v«x

We define two distinct n-slmpllces x, y € K to be adjacent

(written x '^ y) If

1) X and y are n-slmpllces

and 11) L(x A y) - N

The above definition of adjacency Is quite standard for labelling functions

on pseudomanlfolds (see Gould and Tolle [8] or Lemke and Grotzinger [18]).

Note that If x 'v- y, x and y must be neighbors.

Characterization of Paths on H-Complexes

Let K be a V-complex, K its associated H-complex, and let

L(.) be a labelling function on K, extended to K. The following theorem,

whose proof we omit, follows from the standard "ghost story" argument

of complementary pivot theory (see Lemke [17], Gould and Tolle [8],

Kuhn [11], Eaves [l], or Scarf [21].

Theorem 4 . Let x be an n-slmplex of K. Then x is adjacent to at

most two other n-slmpllces of K. If x is adjacent to only one n-simplex

of K, then there is a unique (n-1) -simplex y C ^ such that L(y) « N

and y e 3K. Q

We define B - {x € SjKx) - N} and G -= {x 6 S |L(x) •= N}.

The notations B and G are short for "bad" and "good". In most applications,

a path- following scheme will terminate with an element of B or G. G typically

contains those simplices with pre-specif ied desirable properties, whereas B does

not.
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Proposition 5 . B A G = (9 .

PROOF . Suppose x € G. Then jx] = n, so x is a maximal element of S .

We can write x = x U Q, where x is full. But then x ^ S. , since

otherwise x is not full. Therefore x ^ B. (S

With the help of Theorem 4, we can construct and characterize

"paths" on K. Let i^.f be a maximal sequence of n-simplices of K

such that L(x )=N, x-vx andx ^ x for any i. If x,

i i i+1 i-1 i+1 k

is a right-endpoint of the sequence, define x to be the unique subset

of x such that L(x^ ) = N and x € dK. If x is a left-endpoint

of the sequence, define x to be the unique subset of x such that
iC~ J. K.

L(x ) = N and x, , € 9K. The new sequence, with possible endpoints
k-1 k-1

added, is called a path on K. Note that endpoints are elements of G L/ B.

We can characterize paths on K as one of six types.

Type I . 1 X r where the sequence has no endpoints, and

i) x.-v x.^ for all -°°< i <-H=°

ii) -x. 4 X, for any i ^^ j

.

Type II . {x \ where the sequence has no endpoints, and
i i

i) X. 0, x... for all -<» <i<+»
1 1+1

ii) X . ?* X for all -« < i < +

«

iii) There is an m>2 such that x_, = x . ,
for all-»<i<+"'

1 i+m

iv) X ^ X for any 0<k<m.
1 1 I K
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Type III , ix f . where the sequence consists of only three elements.

say Xq, x^, X2, and

i) Xq, X2 t G U B, Xq / X2

ii) L(x^) = N

iii) x^ is an n-simplex and x^., x„ C x^ .

Type IV . ^x
f

has more than three elements, and has two endpoints,

say X. and x , and
m

i) x^, X € G U B, and x„ / x
u m U m

ii) X . '\' X .
, 1 for all < i < m-1

1 1+1

iii) X / X . for any i^'j, 0<i,j<m.

Type V . ^x.{. has only a left endpoint, say x^, and

i) Xq € G Ub

ii) X. "v X ^ for all i>0

iii) X. ^ X. for all i, j 2 0, i ^ j

Type VI . ^ x.f. has only a right endpoint, say x ,
and

i) X e G W B
m

ii) X. , 'V X. for all 1 <m
1-1 1

iii) X. i" X. for all i, j <m, i ?^ j

.

A type I path stretches infinitely in both directions. A type II path

is a loop. A type III path is a "degenerate" path consisting of one

n-simplex and two of its (n-1) subsimplices. A type IV path is a path

with two endpoints. A Type V or Type VI path consists of one endpoint

and stretches infinitely in one direction.

In the applications of V-complexes and H-complexes, it is the

endpoints of paths that are of interest. We have the following lemma .
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Lemma 6 . Let x fe K. Then x is an endpolnt of a path if and only if

X € G <J B.

PROOF . If X is an endpolnt of a path, by definition x i G (7 B.

Conversely, let x^ GU B. There is a unique n-simplex z = x ^ {a}

for some a 6 K , and L(z) = N. We can construct a path starting at

X = x , X. = z, etc. (S

Corollary 7 . If K is finite, B and G have the same parity.

PROOF . If K is finite, the total number of endpoints of paths is finite

and even. Each endpolnt is in exactly one of the two sets above; hence,

they have the same parity. ®

Characterization of Paths on V-Complexes

The characterization of paths on V-complexes is achieved by

establishing certain equivalence relationships between V-complexes and

H-complexes. The first equivalence is given in the following lemma.

Lemma 8 . Let x and y be n-simplices of K. Let x = x U Q ,

y = y U Q . Then x '^ y if and only if x ^ y

.

PROOF . Suppose x -v y. This means L(x r\ y) = N. We have

N = L(x A y) = L(x A y)U L(Q^ A Q^) = L(x f\y)U ((N\(T^) U (N\Ty))

Therefore

L(x r\ y) = N\((N-ST ) A (N\T )) = N^(N\(T U T )) = T U T .

X y X y X y

Thus we see that L(x A y) = T (J T , and so x 'v^ y. The same argument
X y

in reverse shows that if x -x- y, then x '^ y . ^

Define G = {x f k|x is full, L(x) D T^, and L(x) ^ T }•
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G can be thought of as the goal set , for in most applications of V-complexes,

the algorithm searches for an element of G.

Define B = {x € KJx 6 a'A(T ), and L(x) = T }. We have the
X X

following lemmas:

Lemma 9 . Let x € K, and let x = x U Q . Then x € B if and only

if X 6 B.

PROOF . Let X € B. L(x) = T . L(x) = L(x) U L(Q ) = T V^ (N \ T ) = N.
X

^x * ^

Furthermore, x€ 9'A(T ) , so xfe S . Therefore xe B.
X 1

Conversely let x € B. Then x € 9'A(T ) and L(x) = N\L(Q )

= N\(N\T3j) = T^, whence x € B. ® ^

Lemma 10 . Let x e K and let x = x <J Q Then x £ G if and only if x € G.
H.X;

PROOF. Let X € G. Then L(x) = T U {1} for some i ^ T , where
X ~ X

T^^ iiX'J . \(x) =
^T

"^
^''j^^^T ' ^° ^ ^ ^- ^^^°'

N\{i|q e Q } = N\(N\(T U {j})) = T ^ {j) ^ "^
. Furthermore,

X Li \X/ X X

L(x) = L(x)U L(Q ) = L(x) U (N\(L(x)) = N. Therefore x e G.
Hx^

Conversely, let x € G. Then L(x) =N\{i|q € Q s) i 1 .

i L (x^

Hence x € G. ^

Let X € K be full. We define the degree of x, written deg(x),

to be the number of distinct simplices of K adjacent to x.

Lemma 11 . For any x £ K, deg(x) < 2.

PROOF. From Lemma 8 , we have x '^ y if and only if x ^' y, where

X = X (J Q and y = y W Q . Since x is adjacent to at most two simplices,
X y

so is X. (^
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With the help of Lemma 11, we can construct paths on K. Let ^x V.

be a maximal sequence of full simplices in K such that x '^ ^j,-, >

^i-1 * \+l*

Let x^ be a left endpoint of the sequence. Then x^ is a left endpoint

of the associated sequence in K. Define \. , as in the last section and

define x^ such that x^_ = x^_ U Q for appropriate Q C Q. Like-

vise, if jL is a right endpoint, define ^c ,, analogously. The new

sequence, with possible endpoints added, is a path on K.

Lemma 12 . Let x fe K. Then x is an endpoint of a path on K if

and only if x € G U B.

PROOF . Let X be an endpoint of a path on K. Then x = x U Q (for

appropriate choice of Q C Q) is an endpoint of a path on K.

x€GUB. So x€GUB.®

Lemma 13 . If K if finite, B and G have the same parity.

PROOF . B and G, by definition, have no simplices in common. There is

a one-to-one correspondence between elements of B (G) and elements of B

(G) . Also, if K is finite, so is K. Thus, by Corollary 7, B and

G have the same parity. ®

We thus see a complete equivalence between paths on K and on K.

Hence we can classify paths on K as one of six types.

Type I . ^x \ , where the sequence has no endpoints, and

i) X
.

'^^ '^\+-[ ^°^ ^^^ ^

ii) X . ?^ X . for all i ?^ j

.
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Type II . '(x r , where the sequence has no endpoints, and

1) x^ '\' X for all i

ii) x^_ ^ X for all i

ill) There is an m > 2 such that x^ = x for all i
1 i+m

iv) x^ / x^^^ for all i, all 0<k<m.

Type III . \x^^^, where the sequence consists of only three elements,

say Xq, x^, x^, and

i)
^0' "^2 ^ ^^ ^

ii) L(xJ 2> T
1 x

iii) x is full and x , x C x .

Type IV . {x^}^ has more than three elements, and has two endpoints,

say X- and x , and
u m

i) x^, x € G U B and x^ ?i x
U m m

ii) x^ 'V' x^_j_j^ for all < i < m-1

iii) x^ / X. for any i =^ j, 0<i, j<m.

Type V. ^'^±(± has only a left endpoint, say Xq, and

i) Xq f G UB

ii) x^ '\- x^^^ for all i >

iii) x^ 7^ x. for any i, j >0, i ^ j

Type VI . ^x^*^^ has only a right endpoint, say x^, and

i) x^e G KJB

ii) x^_-|^ 'V x^ for all i<m

iii) x^ / X. for all i, j <m, i / j
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There are two ways to develop an algorithm based on a V-complex

and a labelling function L(.). depending on the nature of the set A(0)

.

If A(0) consists of a single 0-almplex, say {w} and the empty

set 0, then « B, since 6 3'A(0) and L(0) - = T^. Thus our

algorithm consists of following a path whose endpolnt is 0.

If A(0) consists of two 0-slmpllces, say {v} and {w} , we

have V -v- w, since L({v} (\ {w}) = L(0) - = U - T^v}^ "^{w}'
"^^^

the algorithm consists of following the path containing {v} and {w}

in one or both directions.

The purpose of the preceding exposition has been to show how to construct

and follow paths on a V-complex. We used the construction of an H-complex to

expedite the development of the theory. It should be noted that the

characterization of paths on a V-complex can be demonstrated without resorting

to the H-complex superstructure. However, the introduction of the H-complex

renders the proofs less cumbersome, and shows the equivalence of

path-following on a V-complex and path- following on n-dimensional

pseudomani folds. The latter is ein "ordinary" phenomenon familiar to most

researchers in complementary pivot theory. When viewed properly, path

following on a V-complex is equivalent to path- following on n-dimensional

pseudomanifolds , and can be viewed as the "projection" onto K of

path- following on K.

In most algorithms based on V-complexes, we search for an element

of G. We have seen that the set G is derived from the structural

properties of J , and hence the way our complex K is divided up into the

A(T) is intimately connected to what we can expect to look for In an

algorittin on K. Conversely, suppose we wish to find elements x of K

with certain labels L(x) 6 G, where G is some set. If we can divide

the space Into A(T) , T ^ J , such that G arises from *] , we are close

to our stated purpose.
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Orientation

This section develops an orientation theory on V- and H-complexes. At

issue are conditions which guarantee that paths of siinplices have certain

orientation properties. This is accomplished in theorems 27 and 28, which

give necessary and sufficient conditions on a V-complex for its associated

H-complex to be orientable. The orientation theory is developed in the

context of H-complexes, which are pseudomanifolds . This material could be

developed for V-complexes without explicit reference to the associated

H-complex. However, the development would be much more cumbersome, and would

not show the implicit equivalence with orientation on pseudomanifolds.

As this material is not central to this study, and the subsequent

development is not very elegant, the reader can omit this section without

detracting from the exposition.
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The use of orientation In complementary pivot schemes was first

developed by Shapley [24] for the linear complementarity problem, advanced

by Eaves and Scarf [3] and Eaves [2] for subdivided manifolds, and extended to

pseudomanlfolds by Lemke and Grotzlnger [18], An extensive treatment of orientation

in the context of complementary P^vot algorithms Is presented in [28). Our set-up

i. .lightly different than that of Lemke and Grotzlnger; however, the interested

r«ader can easily establish the similarity.

Pivots and C-Plvots on Pseudomanlfolds

Let K be an orlentable H-complex of dimension n, oriented

by Or(.). with vertex set K . Let N = (l, . . . , n) and let L(-):K •* N.

We define the set

D={x€K||x| = n+1, L(x) = N}(J {x £ 3K| |x| = n, L(x) = N}.

D consists then of n-slmpllces of K whose labels exhaust N, and

slmpllcles on the boundary of K whose labels exhaust N. We remark

that the two sets above whose union is D are disjoint. Denote these sets

by D, and Dj, respectively.

Let X € D. There is a very natural way to order the elements

of X. If X € D , we can write x = {v , . . . , v } . The ordering
1 On

(v, , , V ) of X Is called a C-orderlng if and only if:
^0 ^n

L(v^ ) = j. j = 1, ..., n.

Note there are always twofbrderings of x. The reason for this is that

among the labels of x, there is some unique r € N such that two vertices

of X have the label r. For j < N\{r}, the j— component of a C-orderlng

of X must be the unique vertex v C x for which L(v ) " j. Denote

by v' and v" those two vertices in x whose labels are r. Then the

two C-orderings of x are:
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(v", V , ..., V , V, V , .... V )

1 r-1 ^r+1 n
and

(v', V , .... V , v", V , ,.., V )

1 r-1 "-r+l n

Also note that these two orderings have opposite orientations, i.e. one

is (+) and the other is (-)

.

If X 6 D , we can write x = {v., ..., v }. The ordering
2 in

(v , . . . , V ) is called a C-ordering if and only if
^1 ^n

L(v. ) = j, j = 1, ..., n.

_
^j

The C-ordering for x € D2 is unique.

With the notion of a pivot in mind, we now define a C-pivot on

elements of D. For x € D . let (v^ , ..., v. ) be a C-ordering of x.

A C-pivot is performed on x as follows:

Case 1 . {v. , . . . , V . } € 8K. In this case, simply drop v. from x,
1 n ^0

and let y = {v , ..., v }. The derived ordering on y is
1 n

(v^ , . . . , v^ )

.

1 n

Case 2 . {v. , ..,, v } d 9K. In this case, there is a unique v 6 K , v ?* v.
il in _ _ _

^0

such that {v^ , ..., v^ , v} ^ K. L(v) = r for some r^ N. Set
1 n

y = {v^ , ..., v^ , v} and form the new ordering (v , v. , ..., v ,

1 n _ ^r ^1 ^r-1
V, V. , .. ., V. ) of y.

r+1 ^n

If X ^ D , let (v , . . . , V ) be the C-ordering of x. A
^ X^ XIn

C-pivot on X is performed as follow^ :

Let V be the unique element of K such that x U {v} is an

n-simplex of K. L(v) = r for some r 6 N. Set y = {v, , . . .
, v , , v}

X4 X
1 n

and from the new ordering (v , v , . . . , v , v, v , ..., v ) of y.

r ^1 ^r-1 ^r+1 ^n
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We have the following results on C-pivots:

Proposition 14 . Let y be derived from a C-pivot on x 6 D . Then the

ordering of y is a C-ordering and the orderings on x and y as specified

in the C-pivot have the same orientation.

PROOF. The first conclusion of the proposition follows immediately from

the ordering defined on y. The second conclusion follows from a case

analysis.

Case 1. y € 9K. Then Or(v^ , ..., v^ ) = (-1)° Or(v , ..., V ) = Or(v , .... v )

^0 n ^1 n ^1 n

Case 2 . y i 3K. Then

Or(v , ..., V ) = -Or(v, v , .... v )

^0 ^n -^1 Ti

= 0r(v. , V. , ..., v. , V, v. , ..., v. ). ®
^r ^1 ^r-1 ^r+1 n

Proposition 15 . Let y be derived from a CSpivot on x 6 D . Then the

ordering of y is a C-ordering and the orderings on x and y, as specified

in the C-pivot, have opposite orientation.

PROOF. The first conclusion follows directly from the ordering fixed on

y. For the second conclusion, note that

Or(v, , V , ,.., v , V, V , ..., V )

^r ^1 r-1 "-r+l n

= -Or(v, v^ , . . . , v^ ) = -Or(vj^ , . . . , v^^ ) . ®In In
Orientations on Paths Generated by C-Pivots

-0
Let K be an orientable H-complex oriented by Or(-), K its

vertex set, and assume, without loss of generality, that N = {1, ..., n}.

Let L(-):K°-^N be a labelling function. Let ( x ( be a path on K,

possibly without left and/or right endpoints.
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Choose X an element of the path. Note that L(x) = N. If x

Is an endpoint of the path (say a left endpoint, and we can assume x = x ,

without loss of generality), there is a unique C-ordering of x . Let y

be derived from x by a C-pivot on x . Then y = x , and Or(x ) = -Or(x )

from Proposition 15. We can keep performing C-pivots on the x., until we reach

the right endpoint of the path, if it exists. For each of these pivots, we

have Or(x ) = Or(x ) by Proposition 14. We have just proved the following

Lemma 16 . Let \X f . be a path with left endpoint x . If x

is obtained from x by a C-pivot, Or(x ) = -Or(x ) for all i>0.8>

In particular, we have

Corollary 17 . Let \x ) be a path with left- and right-endpoints

x„ and X , generated by a series of C-pivots starting at x . Then
m

i) Or(x^) = -Or(x ),
U m

and

11) Or(x ) = Or(x.) for all 0<i, j<m. ^

Corollary 17 is analogous to other path orientation theorems

presented elsewhere, see, for example, Shapley [23], Eaves and Scarf [3],

Eaves [2], and Lemke and Grotzinger [18]. All of these theorems assert

that the orientation along a path is constant except at the endpoints,

whose orientations are opposite in sign.

Now suppose that x. is an element of the path Nx.V and
1 i i

X is not an endpoint. Then x 6 D . Since L(x) = N, we can choose two

C-orderings of x, each one opposite in sign. C-pivoting on one of these

orderings will yield x , and the C-ordering of x will have the same
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orientation as the C-ordering of x . Continuing the C-pivot process,

we will generate the path elements x , x , x , ..., terminating if and

only if \x V has a right endpoint. By Proposition 14, Or(x ) = Or(x )

for all j > i. A parallel arginnent for the other C-ordering completes the

proof of the following.

LeTTima 18 . Let \x ) be a path on K and let x be an element of this

path that is not an endpoint. Let the entire path be generated from x

by its two C-orderings. We have Or(x.) = -Or(x^) for all j < i < k. ®

In particular, we have

Corollary 19 . Let \x ) be a path on K with left and right endpoints

X and X , respectively. If this path is generated from x , 0<l<m,
m i

by the two C-orderings of x , then

and

i) Or(x^) = -Or(x ),
m

ii) Or(x ) = -Or(x ) for all j<i<k. (X>
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By way of concluding thus far, we remark that the usual path

orientation results for manifolds carry over to H-complexes. Actually,

they do more than this—they carry over to orientable n-pseudomanifolds.

For the only properties of H-complexes used in these two sections was that

K is an orientable n-pseudomanifold and that the label set N contains

n elements.

Conditions for which an H-complex is Orientable

In this section we give conditions on K that guarantee that K

is orientable. Let K.J^N, and A(') define a V-complex, and let K be

the H-complex associated with K. Let |n| = n. Assume that

i) for each 16^ , A(T) is orientable, and hence homogeneous,

and

ii) for all S, T£ J , there is a sequence S , ..., S such that
m

S^fe 1,1 = 0, ..., m, Sq = S, S^ = T, and \s^_-^ AS^| ^ 1, 1 = 1, .... m.

We will show that K,T,N, and A(') satisfy the above two assumptions if and

only if K is orientable.

Towards proving our main result, we make the following:

Definition . For T € tJ , define

A(T) = {xU qIx e A(T), Q C Q^, xU Q ^ 0}.

A(T) can be thought of as a conical construction of A(T) with each

q , 1 ^ T. We have:

Lemma 20. A(T) is an orientable n-pseudomanlfold.
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PROOF . Clearly A(T) is closed under nonempty subsets. Let x UQ ^ A(T) .

Then there is a y in A(T) such that T = T, since A(T) is a pseudo-

manifold. Then x U Q C y ^ Q^, and
]
y U Q^| =

|

T| + 1 + n -
|

T| = n+1.

Any n-simplex of A(T) is of the form y L' Q , where y is a

I

T| -simplex in A(T) . Let x U Q be an (n-1) -simplex in A(T) , that is a

subset of y U Q . Suppose x^QCzt/Q,|zUQl = n+1, and

z U Q ?^ y U Q_. But then Q = Q_, and since A(T) is a pseudomanifold,
z T z i

the choice of z is unique. This proves A(T) is an n-pseudomanif old.

Now let X L/ Q and y Uq be n-simplices in A(T) . Then x

and y are |t| -simplices in A(T) . Since A(T) is homogeneous, there is a

sequence x = s, , s„, ..., s = y of I TI -simplices in A(T) such that
1 z m '

'

l^i ^ ^i+ll
" l"^!' i = 1. •••. in-1- Then x U Q^ = s^U Q^, s^U Q^,

. . . , s U Q-T. = y U Q,r. is a sequence of n-simplices in A(T) and

\is^^ Qj) A (s^+i^ Q^)| = n, i = 1, ..., m-1. Therefore A(T) is

homogeneous.

Finally, we show that A(T) is oricntable. Let Or(') be a

coherent orientation of the |t| -simplices of A(T) . Let x c' Q be an

n-simplex of A(T) . Let |t| = t. Order the vertices of x U Q as

(v , ..., V ), and let p be the number of transpositions needed to transpose

those V. € Q to the last n-t places of the ordering, while preserving

the local ordering of those v € A(T) and the local ordering of those

V. e Q^. Then we define Or(v^, ..., v ) = (-1)^ Or(x)
1 1 u n

P

P
If y € Q is obtained from x UQ^ by a pivot, Or(yOQ^) = (-1) Or(y)

= (-1)^ (-Or(x)) = -Or(xUQ^). Thus A(T) is orientable.®
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Lemma 21 . ^ = '^^ A(T)

PROOF ; Let x e K. Then we can write x = x U Q where x € K, and

Q C Q, and Q C Q^ . But then x€ A(T^) . Conversely, let x ^Q€ A(T)

.

X

Then Q C Q and so x U Q C K. ®
X

Lemma 22 . Any n-slmplex of K is an element of exactly one A(T)

.

PROOF ; Let x \J Q be an n-simplex in K. Then Q = Q^, and x is full.
X

Thus X U Q € A(T^). Suppose xU Q t A(S) for some S € 'J . Then x€ A(S)

and hence S ^ T . Also Q„ C Qq which implies S CT . Thus S = T . (&

Thus we see that as T ranges over all elements of "J , the A(T)

partition K into "disjoint" n-pseudomanifolds. We use disjoint loosely

since this partitioning only takes place among the n-simplices of K.

Next we have

Proposition 23 . K is homogeneous.

PROOF : Let x and y be n-simplices in K. We can write x = x f Q ,

^x

y = y U Q„ for appropriate x, y £ K. By Assumption (ii), there is a

sequence T^^ = T-^, ..., T^^ = T such that T^i"^ , i = 1, . . . , m, and

'^i ^ Vl' = ^' i = 1» •••' ""-I-

We shall now show how to construct a sequence of neighboring simplices

in K that have x and y as endpoints, using an induction argument on m.

If m = 1, then such a sequence of neighboring simplices exists because

X, y 6 A(T) C K, and A(T) is homogeneous. Suppose a sequence of neighboring

i

i=

either T^ = T^.^^ U {k} for some k < Tjjj.;^' °^
"^m

= T^-i^^^} for some k ^ Tj^.^.

simplices <s ) ~ exists whose endpoints are x and z € T . Then
i 1=0 m-1
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In the former case, z = z \{q, }U{w} Is an n-simplex in K, that is in A(T ),k m

for some unique w€ K . Since A(T ) is homogeneous, there is a sequence
m

of neighboring n-simplices ^t
V ^_ , where t = z, t. = y. Thus the

sequence

- %
X = s^, ..., s = z, z = tQ, ..., tj = y

of neighboring simplices has x and y as Its endpoints. An analogous

argument establishes the result when T = T ,\{k}. ®
m m-1

The next results will also be used in the proof that K is

orientable.

Proposition 24 . There is a unique set T* € 1 such that S ^ J implies

s :> T?

PROOF . Define T*= Q^ S. Then T* t "^ and any S ^ contains T*.

Clearly T* is uniquely determined. ®

Proposition 25 . Let S, T £ ^ , S ?^ T, |S| =It| . Then A(S) A A(T)

contains no (n-1) -simplices.

PROOF . Let x U Q € A(S) C\ A(T) . Let t = |S| = |T| . We have

X € A(S), X € A(T), so X € A(S CXl) . But |S A T| < t-1. Thus [x] < *.

Also Q C Qg r\ Q^ = Qgy^ < n - (t+1) . Thus |xL/Q|<t -^ n-t-1

< n -1 . Therefore x U Q cannot be an (n-l)-simplex. IS>

We are now ready to describe an inductive procedure for brienting

K. Let T* t '3 be the set described in Proposition 24. Let d =
| T* |

.

Let m = maxlTl - d. Then we partition tl into m+1 classes, 5',, ..., "j+^>
"^

in

where 'J^ = il e ^ ||t| = k} .
Note that 5 = j^i^ ^d+m'

^^^ ^°^ ^-^-^

^ ^ i > Ju ^ J ~ ^' Our procedure for orientating K is as follows:
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Step . Orient A(T*) . Let Or(.) denote the orientation on A(T*)

.

Set K = A(T*).

Step i . (i = 1, .... b): Let K^ = K^_.,^^( .j,'^ A(T)). Extend the orientation

Or(') to K^ by using the induced orientation on K._, to orient

A(T), TC '^^.

We now show that each step of this procedure is executable and

the result is a coherent orientation of K. Note K = K. Our proof is

as follows:

Clearly Step is executable, since A(T*) is orientable.

Suppose steps 0, ..., i-1 are executable and result in a coherent orienta-

tion of K . The following lemma serves as a basis for our proof:

Lemma 26 . Suppose T' € !J ^. Then K^_j^A A(T') is an orientable

(n-l)-pseudomanifold and is a subset of 9K£_-j^ and 9A(T').

PROOF. By the induction hypothesis K^_i is an orientable n-pseudomanifold.

So is A(T'). Let us denote L = K,_^r\A(T') for notational convenience.

L then is closed under nonempty subsets, and so is a complex. Let x y Q fe L.

Then x € A(T) for some T, |t| < d+i, and x € A(T'), QCQ ,. By assumption

(ii), there exists k 6 T' such that x 6 A(T'\{k}). Let ye A(T'\{k}) be full and

contain x (x C y) , such that T =T'\{k}. Then xVQCy(JQ„,.

Note y U Q^, € L. Furthermore |y<J Q^,| = d + i + n -(d +i) = n. Thus

every element of L is a subset of an (n-1) -simplex of L.

Now let X U Q be an (n-l)-simplex of L. From the preceding

remarks, we know T = T'\{k} for some k e T' , and Q = Q„ , . Let

X U Q\{a} be an (n-2)-simplex of L, and suppose x \J Q\{a} ^ {6} is an

(n-1) -simplex of L, 3 / a. We need to show that there is at most one choice

of 6. Clearly, a ^ Q, so a 6 x. We have two cases:
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Case I. x\{a} is not full. Then since x\{a}U (6) must be full,

3 is the unique element of K such that x \ {a} ^ {6} is a (d+i-1)-

simplex of A(T'\ {k}).

Case 2. x\{a} is full. In this case T . . = T'\{k}\ {j }x\{a}

for some j ^ k, j £ T'.

Since x \ {a} U {6} must be a full (d +. i - l)-simplex, B is the unique

element of K such that x\{a} U {g} is a (d + i - l)-simplex of

A(T'\{j}).

Thus we see that L is a pseudomanifold of dimension (n-1)

.

Our next task is to show that L is homogeneous. Let x U Q ,

,

y UQ„, be distinct (n-l)-simplices in L. If T = T , then since A(T )

is homogeneous, there is a sequence x = s , ..., s = y of neighbors such

that each s . 6 A(T^) , j =0, . . . , k. Then x U Q^, = s^ U Q^, , .... s (J Q^, ,

..., s U Q , is a sequence of neighbors in L. Suppose then T j' T .

T = T'\{i}, T = T'\{k}, for some j, k, where j
?f k, j 6 T' , k 6 T'

.

X y

Let z € A(T'\ {j}\ {k}). Then there exists a, 6 K such that

z U {a} € A(T'\{j}), z \J {&) e A(T'\{k}). Let x = s^, ..., s^ = z U {a}

be a sequence of neighbors in A(T'\{j}), z U {g} = t , ..., t = y a sequence

of neighbors in A(T'\{k}). Then the sequence x U Q^, = s U Q^ , , ..., s l/Q^,,

t U Q , , ..., t U Q , is a sequence of neighbors in L. Thus L is homogeneous,

Next we show that L C 3K._, . Let x f Q„, be an (n-1) -simplex

of L. Since T = T' \{k} for some k fc T', we can write x U Q^, =

X VJ Q„ \ {q, }. Any n-simpiex of K is of the foran y l^ Q^ where
X _ y

|t
I
<d + i - 1. Thus the unique n-simplex of K._, containing x ^ Q_,,

is X U Q„ , and hence x £ 8K._, . A similar argument shows that L 1) 3A(T').
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It only remains to show that L is orientable. Since K. is

orientable, Or(*) on K._, induces an orientation Or(«) on L C9Kj^_i.

We need to show that this induced orientation is coherent. Let x, y ^ L

be neighbors. Let us assign labels to elements of K._, as follows:

For V € R , V ^ X U y, let L(v) =1. We can write x = {v , . . . , v }

,

i—

1

1 n

y =
{\+x' "^2' *"'

^n^
^"*^ ^^^ L(v^) = L(v^^^) = 1, L(v^) = i,

i = 2, ..., n. Let us do C-pivots on the C-ordering of x. This will trace

a path of simplices of K , which if it has a right endpoint, the right

endpoint will be y. Furthermore, by the nature of our labelling function,

all elements of the path will contain x (\ y . At least one element of x H y

will be an element of K , and since K is locally finite, the path will have

a right endpoint. From the results of the first part of this section,

Or(x) = -Or(y) , thus establishing that L/Or(-) is coherent on L. ®

With Lemma 26 established, we can orient L using the induced

orientation Or(') from K. . Now let x = irv,, ..., v } be a fixed ordered

element of L. Since x € ^^i_i» ^ ^ 3A(T'), there exist unique elements

a, 6 £ K such that {a, v^^, . . . , v^} 6 K^.^^, (3, v^, .. . , v^} £ A(T') .

Define Or(6, v, , ..., v ) = -Or(a, v,, ..., v ), and extend Or(-) to all

of A(t') by using {6, v, , ..., v } as a "seed". This makes A(T')

coherently oriented, and also K._, U A(T') coherently oriented. We can

repeat this procedure for all T' ^ J since for any S, T ^ J

A(S) r\ A(T) contains no (n-l)-simplices or n-simplices, i.e. A(S) and

A(T) share no common boundary.

Thus step i, i = 1, ..., m, of our procedure is executable and

results in a coherent orientation of K , . Hence K = K is orientable.
i m

We have just proved:
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Theorem 27 . Let A( •) , tJ . N, K satisfy assumptions (i) and (ii) of this

section. Then K is orientable. (S

We also have:

Theorem 28 . Let K be orientable. Then A(-),'J, N, and K satisfy

assumption (i) and (ii) of this section.

PROOF . Suppose assumption (i) does not hold. Then for some T^J ,

A(T) is not orientable. But then A(T) , the conical construction of A(T)

with the q , i ^ T, is not orientable, whence K = J^„ A(T) is not

orientable, a contradiction. Thus assumption (i) is satisfied.

Suppose assumption (ii) does not hold. Then for some S, T 6 j ,

there is no sequence S = S^.S,, .... S = T, such that |s^ A S.^, | ^ 1

i = 0, ..., m-1, and S.e'J , i = 0, ..., m. Let x e A(S) , y € A(T).

If K is orientable, it is homogeneous. Hence there is a sequence of

n-simplices x = x^ , x^ , . . . , x. = y such that x. and x. - are neighbors.

Let S. = ! i where x. = x *«J . Because x^^ and x^+]^ are neighbors,

we must have
|
Sj A Sj^-,

|

^ 1, a contradiction. Thus assumption (ii) is

satisfied. ®
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Conclusion and Remarks

In Part I of this study, we have defined a V-complex and characterized

paths induced on simplices of a V-complex by a labelling function L(«).

We have also demonstrated necessary and sufficient conditions for the H-complex

associated with a V-complex to be orientable. Part II of this study will

use these results to present constructive algorithmic proofs of a variety

of combinatorial lemmas in topology^ some new, some old. These lemmas give ^^J<,

to proofs of fixed point, antipodal point, and stationary point theorems,

and to a new set covering theorem on the simplex.
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