
An Intelligent Cooperative Control Architecture

Josh Redding, Aditya Undurti, Han-Lim Choi and Jonathan P. How

Abstract— This paper presents an extension of existing co-
operative control algorithms that have been developed for
multi-UAV applications to utilize real-time observations and/or
performance metric(s) in conjunction with learning methods
to generate a more intelligent planner response. We approach
this issue from a decentralized cooperative control perspective
and embed elements of feedback control and active learning,
resulting in an new intelligent Cooperative Control Architecture
(iCCA). We describe this architecture, discuss some of the
issues that must be addressed, and present illustrative examples
of cooperative control problems where iCCA can be applied
effectively.

I. INTRODUCTION

Most applications of heterogeneous teams of UAVs require
participating agents to remain capable or performing their
advertised range of tasks in the face of noise, unmodeled
dynamics (both internal and external) and uncertainties.
Many cooperative control algorithms have been designed to
address these and other, related issues such as humans-in-the-
loop, imperfect situational awareness, sparse communication
networks, and a partially observable, dynamic, stochastic,
and/or hostile environment [1] [2] [3]. While many of these
approaches have been successfully demonstrated in a variety
of simulations and some focused experiments, there remains
ample room for improving overall performance in real-world
applications. For example, cooperative control algorithms
are often based on simple, abstract models of the under-
lying system. This may aid computational tractability and
enable quick analysis, but at the cost of ignoring real-world
complexities such as intelligently evasive targets, adversar-
ial actions, possibly incomplete data, delayed and/or lossy
communications, and non-Gaussian noise models.

Additionally, although the negative impacts with modeling
errors are relatively well understood, simple and robust
extensions of cooperative control algorithms to account for
such errors are frequently overly conservative and generally
do not utilize observations or past experiences to refine
poorly known models [4]–[6]. Furthermore, it is often dif-
ficult, if not impossible, to tune design parameters a priori
when it is unclear what objective functions and constraints
should be included to achieve the desired mission per-
formance. Despite these issues however, cooperative con-
trol algorithms provide a baseline capability for achieving
challenging multi-agent mission objectives. In this context,
relevant research questions include:

J. Redding, Ph.D. Candidate, Aerospace Controls Lab, MIT
A. Undurti, Ph.D. Candidate, Aerospace Controls Lab, MIT
H.-L. Choi, Postdoctoral Associate, Aerospace Controls Lab, MIT
J. P. How, Professor of Aeronautics and Astronautics, MIT
{jredding,aundurti,hanlimc,jhow}@mit.edu

How can current cooperative control algorithms
be extended to result in more adaptable planning
approaches?

and
How can such planning algorithms be generalized
to develop richer policy classes that provide a more
intelligent planner response?

To address this, and improve long-term performance in
real-world applications, we propose a tighter integration of
cooperative control algorithms with recent learning tech-
niques [7]–[9]. While machine learning is certainly not a
panacea for cooperative control, many learning algorithms
are well suited for on-line adaptation in that they explicitly
use available data to refine existing models, leading to
policies that fully exploit new knowledge as it is acquired
[10], [11]. Such learning algorithms could address a key
issue with current cooperative control algorithms. In general
however, learning algorithms are prone to limitations that are
relevant in this context. Among these are the following:
• They may require significant amounts of data to con-

verge to a useful solution.
• Insufficient coverage of the training data can lead to

“overfitting” and/or poor generalization.
• There are no guarantees on the robustness of the closed

learner-in-the-loop system as robustness in learning
algorithms typically refers to the robustness of the
learning process itself.

• Exploration is often explicit (e.g., by assigning opti-
mistic values to unknown areas) which, in the context
of cooperative control, can lead to catastrophic mistakes.

• Scenarios where agents do not share complete knowl-
edge of the world may cause the learning algorithm to
converge to local minima or to fail to converge at all.

However, learning and/or refining the underlying coopera-
tive control models in real-time would lead to a reduction in
the associated uncertainties and could greatly improve overall
multi-agent performance. Therefore, we propose an archi-
tecture that utilizes both cooperative control and machine
learning algorithms for that which each was intended and
creates a general, synergistic solution paradigm, which we
call an intelligent Cooperative Control Architecture (iCCA).
In general, the iCCA combines a cooperative planner, a
learner, some metric of performance-to-date and on-line
observations, as shown in Figure 1. In context, learning
algorithms can be effective given some prior knowledge to
guide the search and/or exploration away from catastrophic
decisions. A cooperative planner can offer this knowledge
by providing the baseline capability for achieving mission

objectives. In addition, the cooperative planner can generate
information-rich feedback by exploiting the large number of
agents available for learning. In return, the learning algorithm
enhances the performance of the planner by adapting it
to time-varying parameters. The synergistic combination of
these two approaches will help bridge the gap to successful
execution in real-world missions.

iCCA

Cooperative
Planner

World

Learning
Algorithm

Performance
Analysis

Agent/Vehicle

disturbances

noise

observations

Fig. 1. An intelligent Cooperative Control Architecture

In short, iCCA is a framework for integrating cooperative
control algorithms with learning techniques and a feedback
measure of system performance. The remainder of this paper
describes each of the iCCA modules and provides a sampling
of example iCCA applications. Specifically, Section II dis-
cusses the cooperative control algorithm requirements, Sec-
tion III describes the observations and performance metric(s)
and Section IV outlines the requirements and assumptions as-
sociated with the learning element of iCCA. Following these
descriptions, Section V provides a few baseline examples of
the application of iCCA.

II. COOPERATIVE CONTROL

In this section, we outline the cooperative control algo-
rithm element of iCCA. For the purposes of this research,
and indeed in general, “cooperative control” refers to a large
class of planning and control problems aimed at solving the
multi-agent path planning and resource allocation problems.
In general, an algorithm that solves a resource allocation
problem is one that matches demands with resources, i.e.
assigns resources to the demands in a manner that optimizes
some performance criterion that is commonly called the
objective function. In order to do so, the cooperative planner
must maintain an internal model of which demands require
which resources, and what the reward is for assigning a
particular resource to a demand. These models may be
probabilistic (as in the case of an MDP) or deterministic (as
might be the case in a MILP-based allocation technique).
That the planning algorithm does in fact, solve this problem
is a requirement for the cooperative planner within iCCA.
As the cooperative control algorithm is the primary source
of plan generation, even within iCCA, the performance and
robustness properties of the integrated system rely on the
accuracy of its models as well as the uncertainty representa-
tions used in the cooperative control optimization. Therefore,
the planner should provide access to these internal models if

it is desired that the learning element assist in refining these
models online.

Output from the performance analysis element is also
available to the planner for use in its internal optimization. In
general, the cooperative control algorithm could act directly
upon the performance observed. For example, measured
versus expected performance can produce what is often
referred to as “temporal-difference errors” [12], which can
drive a multitude of objective functions, including those
found in many cooperative control algorithms [13]. In short,
we connect the cooperative planner with both a learning
method and a performance analysis method in an attempt
to generate cooperative control solutions that are both robust
and adaptable to uncertainties without being unnecessarily
conservative.

In Section V, we implement two very different approaches
to the cooperative control problem and wrap iCCA around
each. The first example is an auction-based algorithms called
consensus-based bundle algorithm (CBBA) [14]. CBBA is a
distributed task allocation framework developed to address
complex missions for heterogeneous teams of autonomous
agents in dynamic environments. Second, we revisit previous
work with multi-agent Markov decision processes (MDPs)
with uncertain model parameters [10] and generalize it to fit
within iCCA.

III. OBSERVATIONS AND PERFORMANCE

The use of feedback within a planner is of course not
new. In fact, there are very few cooperative control planners
which do not employ some form of measured feedback. The
focus of the performance analysis block within iCCA is to
extract relevant information from the observation stream and
formulate a meaningful metric that can be used in the planner
itself, and/or as input to the learner.

One of the main reasons for cooperation in a cooperative
control mission is to minimize some cost metric. Very
often this involves time, risk, fuel, or some other similar
physically-meaningful quantity. In this section, we outline
the the performance analysis element of iCCA. In general,
this module may massage raw observations into some useful
form, glean useful information buried in the noisy observa-
tions and categorize it and use it to improve subsequent plans.
In other words, the purposes of the performance analysis
element of iCCA is to assist in improving agent behavior by
diligently studying its own experiences [15].

In Section V, we implement two methods of performance
analysis based on observed data. In the first example, we
construct temporal-difference errors based on expected and
observed costs. These errors then drive the learning of
uncertain parameters. Second, we use the observations to
construct the parameters of a maximum likelihood (ML)
estimator for a fuel consumption parameter with a prior Beta
distribution. Both applications fit within iCCA performance
analysis module.

IV. LEARNING

Learning has many forms. We aim to be minimally
restrictive in defining the learning component of iCCA.

However, contributions of the learner should include helping
the planner handle uncertainty in its internal models, and
perhaps even suggesting potential exploratory actions to
the planner that will expedite the learning process itself.
This “exploration” is a key concept in learning and brings
significant challenges, including how to perform bounded
exploration such that the learner can explore the parts of the
world that may lead to a better model while ensuring that
the agent remain safely within its operational envelope and
free from harm. The facilitate this, the baseline cooperative
control solution within iCCA can be used to guide the
learning, acting as a constraint to prevent the learner from
catastrophic errors during exploration, or perhaps as a prior
distribution over the policy space.

Any of supervised, unsupervised or reinforcement learning
methods could potentially fill this element of iCCA, depend-
ing on the application details. In supervised learning, an all-
knowing “teacher” is always immediately on hand to give
correct labels to training samples while a hypothesis function
is constructed. Given such supervision, a “knows what it
knows” (KWIK [7]) learner could fit nicely into this box.

Learning can also leverage the multi-agent setting by
observing self and others and using the information from
sensor data and observed or inferred mission successes (and
failures) as feedback signals to identify possible improve-
ments, such as tuning the weights of an objective function. A
canonical failure of any learning algorithm however, is that
negative information is extremely useful, albeit extremely
costly overall. Active learning algorithms can explicitly bal-
ance the cost of information gathering against the expected
value of information gathered.

In section V, we give examples of a maximum likelihood
learning in the context of a Consensus-Based Bundle Algo-
rithm and a multi-agent Markov Decision Process.

V. EXAMPLE APPLICATIONS

In this section, we implement iCCA in the context of
several cooperative control scenarios and show how mission
performance is improved over more traditional cooperative
control strategies.

A. Consensus-Based Cooperative Task Allocation

In this example, we consider a multi-agent task-allocation
scenario and implement an approximate planning algo-
rithm called consensus-based bundle algorithm (CBBA) [14].
CBBA is a decentralized auction protocol that produces
conflict-free assignments relatively robust to disparate sit-
uational awareness over the network. The task allocation
problem CBBA solves is described as follows.
Problem Formulation
Given a list of Nt tasks and Na agents, the goal of the
task allocation is to find a conflict-free matching of tasks to
agents that maximizes some global reward. An assignment
is said to be free of conflicts if each task is assigned to
no more than one agent. Each agent can be assigned a
maximum of Lt tasks, and the maximum overall number
of assignments is given by Nmax , min{Nt, NaLt}. The

global objective function is assumed to be a sum of local
reward values, while each local reward is determined as a
function of the tasks assigned to each agent. Mathematically,
this allocation problem is written as the following integer
(possibly nonlinear) program with binary decision variables
xij that indicate whether or not task j is assigned to agent
i:

max
Na∑
i=1

 Nt∑
j=1

cij(τij(pi(xi)))xij


subject to:

Nt∑
j=1

xij ≤ Lt, ∀i ∈ I

Na∑
i=1

xij ≤ 1, ∀j ∈ J (1)

xij ∈ {0, 1}, ∀(i, j) ∈ I × J

where xij = 1 if agent i is assigned to task j, and xi ∈
{0, 1}Nt is a vector whose j-th element is xij . The index
sets are defined as I , {1, . . . , Na} and J , {1, . . . , Nt}.
The vector pi ∈ (J ∪{∅})Lt represents an ordered sequence
of tasks for agent i; its k-th element is j ∈ J if agent i
conducts j at the k-th point along the path, and becomes ∅
(denoting an empty task) at the k-th point if agent i conducts
less than k tasks. The summation term in brackets in the
objective function represents the local reward for agent i. As
indicated in the objective function, it is assumed that:

1) The score cij that agent i obtains by performing task j
is defined as a function of the arrival time τij at which
the agent reaches the task (or possibly the expected
arrival time in a probabilistic setting).

2) The arrival time τij is uniquely defined as a function
of the path pi that agent i takes.

3) The path pi is uniquely defined by the assignment
vector of agent i, xi.

Algorithm Description
CBBA consists of iterations between two phases: In the first
phase, each vehicle generates a single ordered bundle of tasks
by sequentially selecting the task giving the largest marginal
score. The second phase resolves inconsistent or conflicting
assignments through local communication between neighbor-
ing agents. In the local communication round, some agent
i sends out to its neighboring agents two vectors of length
Nt: the winning agents vector zi ∈ IN

t and the winning bids
vector yi ∈ RNt

+ . The j-th entries of the zi and yi indicate
who agent i thinks is the best agent to take task j, and what
is the score that agent gets from task j, respectively. The
essence of CBBA is to enforce every agent to agree upon
these two vectors, leading to agreement on some conflict-
free assignment regardless of inconsistencies in situational
awareness over the team.

There are several core features of CBBA identified in
[14]. First, CBBA is a decentralized decision architecture.
For a large team of autonomous agents, it would be too
restrictive to assume the presence of a central planner (or
server) with which every agent communicates. Instead, it

is more natural for each agent to share information via
local communication with its neighbors. Second, CBBA is
a polynomial-time algorithm. The worst-case complexity of
the bundle construction is O(NtLt) and CBBA converges
within max{Nt, LtNa}D iterations, where Nt denotes the
number of tasks, Lt the maximum number of tasks an agent
can win, Na the number of agents and D is the network
diameter, which is always less than Na. Thus, the CBBA
methodology scales well with the size of the network and/or
the number of tasks (or equivalently, the length of the
planning horizon). Third, various design objectives, agent
models, and constraints can be incorporated by defining
appropriate scoring functions. If the resulting scoring scheme
satisfies a certain property called diminishing marginal gain
(DMG), a provably good feasible solution is guaranteed.

While the score functions primarily used in [14] was time-
discounted reward, the authors have extended the algorithm
to appropriately handle that have finite time windows of
validity, heterogeneity in the agent capabilities, and vehicle
fuel costs while preserving the robust convergence properties
[16]. This paper takes this extended CBBA algorithm as a
cooperative planner.
iCCA Application
Figure 2 shows how this example was wrapped within the

iCCA

Consensus
Based
Bundle

Algorithm

World

MAP
Estimator

TD Error
Calculation

Agent/Vehicle

disturbances

noise

observations

Fig. 2. iCCA formulation with a CBBA planner and a MAP learner driven
by TD error observations.

framework of iCCA. As seen, the CBBA algorithm serves
as the cooperative planner which uses models of vehicle
dynamics and fuel burn to score bids placed by participating
agents. These models, like many used in cooperative control
algorithms, are good approximations and serve their purpose
well. However, refining these model parameters online can
serve to both make the planner more robust as well as
increase overall performance. As an example, we selected
the fuel burn cost as a model parameter worth adapting
and refining due to its high sensitivity to variations in
external conditions. As mentioned, this fuel burn parameter
is used in the CBBA scoring function and is available to the
learning algorithm for online refinement. We implemented
a maximum likelihood estimator as the learning algorithm
which receives input from the performance analysis element
in the form of temporal difference errors.

The performance analysis element, labelled “TD error
Calculation”, calculates expected costs and collects actual

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
810

820

830

840

850

860

870

880
Mission Score

Estimation Gain

Fig. 3. Comparison of mission score as a function of estimator gain.
Without the iCCA framework corresponds to gain = 0.

costs from the observation stream. A TD error of the form
δ = E[x] − x captures any discrepancies between actual
and expected costs of servicing the tasks won during the
bidding process. Results of the multi-agent task allocation
scenario both within the iCCA framework and outside are
shown in Figure 3. In the mission scenario, rewards are
received as a result of accomplishing tasks while costs are
accrued as a result of traveling between tasks. Figure 3 shows
the conglomerate mission score as a function of the ML
estimator gain k(σ2). In the case under the iCCA framework,
we see the mission score increases with the estimation gain.

B. Multi-agent Persistent Surveillance

In this example, we formulated a multi-agent Markov
Decision Process (MDP) while considering a persistent
surveillance mission scenario. Markov decision processes
(MDPs) are a natural framework for solving multi-agent
planning problems as their versatility allows modeling of
stochastic system dynamics as well as interdependencies
between agents [2], [15], [17]–[19].

In the persistent surveillance problem [20], there is a group
of n UAVs, each equipped with some type(s) of sensors.
The UAVs are initially located at a base location, which
is separated by some (possibly large) distance from the
surveillance location. The objective of the problem is to
maintain a specified number r of requested UAVs over the
surveillance location at all times. This represents a practical
scenario that can show well the benefits of agent cooperation.
The uncertainty in this case is a simple fuel consumption
model based on the probability of a vehicle burning fuel
at the nominal rate, pnom. That is, with probability pnom,
vehicle i will burn fuel at the known nominal rate during
time step j, ∀(i, j) When pnom is known exactly, a policy
can be constructed to optimally hedge against running out
of fuel while maximizing surveillance time and minimiz-
ing fuel consumption. Otherwise, policies constructed under

overly conservative (pnom too high) or naive (pnom too low)
estimates of pnom will respectively result in vehicles more
frequently running out of fuel, or a higher frequency of
vehicle phasing (which translates to unnecessarily high fuel
consumption).

1) MDP Formulation: Given the qualitative description
of the persistent surveillance problem, an MDP can now be
formulated. The MDP is specified by (S,A, P, g), where S
is the state space, A is the action space, Pxy(u) gives the
transition probability from state x to state y under action
u, and g(x,u) gives the cost of taking action u in state
x. Future costs are discounted by a factor 0 < α < 1. A
policy of the MDP is denoted by µ : S → A. Given the
MDP specification, the problem is to minimize the so-called
cost-to-go function Jµ over the set of admissible policies Π:

min
µ∈Π

Jµ(x0) = min
µ∈Π

E

[∞∑
k=0

αkg(xk, µ(xk))

]
.

State Space S
The state of each UAV is given by two scalar variables
describing the vehicle’s flight status and fuel remaining. The
flight status yi describes the UAV location,

yi ∈ {Yb, Y0, Y1, . . . , Ys, Yc}

where Yb is the base location, Ys is the surveillance location,
{Y0, Y1, . . . , Ys−1} are transition states between the base and
surveillance locations (capturing the fact that it takes finite
time to fly between the two locations), and Yc is a special
state denoting that the vehicle has crashed.

Similarly, the fuel state fi is described by a discrete set
of possible fuel quantities,

fi ∈ {0,∆f, 2∆f, . . . , Fmax −∆f, Fmax}

where ∆f is an appropriate discrete fuel quantity. The total
system state vector x is thus given by the states yi and fi for
each UAV, along with r, the number of requested vehicles:

x = (y1, y2, . . . , yn; f1, f2, . . . , fn; r)T

Control Space A
The controls ui available for the ith UAV depend on the
UAV’s current flight status yi.

• If yi ∈ {Y0, . . . , Ys − 1}, then the vehicle is in the
transition area and may either move away from base or
toward base: ui ∈ {“ + ”, “− ”}

• If yi = Yc, then the vehicle has crashed and no action
for that vehicle can be taken: ui = ∅

• If yi = Yb, then the vehicle is at base and may either
take off or remain at base: ui ∈ {“take off”,“remain at
base”}

• If yi = Ys, then the vehicle is at the surveillance
location and may loiter there or move toward base:
ui ∈ {“loiter”,“− ”}

The full control vector u is thus given by the controls for
each UAV:

u = (u1, . . . , un)T (2)

State Transition Model P
The state transition model P captures the qualitative descrip-
tion of the dynamics given at the start of this section. The
model can be partitioned into dynamics for each individual
UAV.

The dynamics for the flight status yi are described by the
following rules:
• If yi ∈ {Y0, . . . , Ys− 1}, then the UAV moves one unit

away from or toward base as specified by the action
ui ∈ {“ + ”, “− ”}.

• If yi = Yc, then the vehicle has crashed and remains in
the crashed state forever afterward.

• If yi = Yb, then the UAV remains at the base location
if the action “remain at base” is selected. If the action
“take off” is selected, it moves to state Y0.

• If yi = Ys, then if the action “loiter” is selected, the
UAV remains at the surveillance location. Otherwise, if
the action “−” is selected, it moves one unit toward
base.

• If at any time the UAV’s fuel level fi reaches zero, the
UAV transitions to the crashed state (yi = Yc).

The dynamics for the fuel state fi are described by the
following rules:
• If yi = Yb, then fi increases at the rate Ḟrefuel (the

vehicle refuels).
• If yi = Yc, then the fuel state remains the same (the

vehicle is crashed).
• Otherwise, the vehicle is in a flying state and burns fuel

at a stochastically modeled rate: fi decreases by Ḟburn

with probability pnom and decreases by 2Ḟburn with
probability (1− pnom).

Cost Function g
The cost function g(x,u) penalizes three undesirable out-
comes in the persistent surveillance mission. First, any gaps
in surveillance coverage (i.e. times when fewer vehicles are
on station in the surveillance area than were requested) are
penalized with a high cost. Second, a small cost is associated
with each unit of fuel used. This cost is meant to prevent
the system from simply launching every UAV on hand;
this approach would certainly result in good surveillance
coverage but is undesirable from an efficiency standpoint.
Finally, a high cost is associated with any vehicle crashes.
The cost function can be expressed as

g(x,u) = Cloc max{0, (r−ns(x))}+Ccrncr(x)+Cfnf (x)

where:
• ns(x): number of UAVs in surveillance area in state x,
• ncr(x): number of crashed UAVs in state x,
• nf (x): total number of fuel units burned in state x,

and Cloc, Ccr, and Cf are the relative costs of loss of
coverage events, crashes, and fuel usage, respectively.

2) iCCA Application: Wrapping the above MDP for-
mulation within iCCA, the multi-agent MDP fits nicely
as the cooperative planner, while the performance analysis
block consists of a few simple counters that track discretely

observed fuel burn events. Two learning algorithms were
implemented in this example scenario, both of which are
based on a maximum likelihood estimator whose parameters
are updated using the number of observed fuel burn events,
αi, as counted by the performance analysis element. First,
the passive learner simply uses these αi inputs to calculate
p̂nom and the corresponding variance. Second, the active
learner which, after calculating p̂nom and the corresponding
variance, searches the possible actions and “suggests” to the
planner that it take the action leading to the largest reduction
in variance around pnom.

iCCA

Multi-Agent
Markov
Decision
Process

World

MAP
Estimator

Observation
Counter

Agent/Vehicle

disturbances

noise

observations

Fig. 4. iCCA formulation with a multi-agent MDP planner and a MAP
learner driven by β distribution observation counts.

Specifically, for the case of the active learner, we embed
a ML estimator into the MDP formulation such that the
resulting policy will bias exploration toward those state
transitions that will result in the largest reduction in the
expected variance of the ML estimate p̂nom. The resulting
cost function is then formed as

g′(x,u) = g(x,u) + Cσ2σ2(p̂nom)(x)

where Cσ2 represents a scalar gain that acts as a knob we
can turn to weight exploration, and σ2(p̂nom)(x) denotes the
variance of the model estimate in state x. The variance of
the Beta distribution is expressed as

σ2(p̂nom)(x) =
α1(x)α2(x)

(α1(x) + α2(x))2(α1(x) + α2(x) + 1)

where α1(x) and α2(x) denote the counts of nominal and
off-nominal fuel flow transitions observed in state x re-
spectively, by the performance module labelled “Observation
Counter”.

Figure 5 compares the rate at which the model parameter
pnom is learned using the ML estimator that was constructed
using online observations of vehicle fuel consumption. In
the active learning case, the planner was given additional
bonuses in the objective function for visiting states that the
learner believed would result in a large reduction of the
variance surrounding the uncertain parameter, pnom. In the
passive learning case, the planner chose actions based on
its own internal objective function, without being “nudged”
by the learner. These actions naturally led to observations,
which in turn reduced the variance around pnom, only not as
much. As seen, in Figure 5 both active and passive learning

0 10 20 30 40 50 60

0.6

0.65

0.7

0.75

0.8

Probability of Nominal Fuel Burn Rate

Time Steps

P
(N

o
m

 F
u

el
 B

u
rn

)

Actual P(Non Fuel Burn)
iCCA − Active Learning
iCCA − Passive Learning
Non iCCA

Fig. 5. Comparison of estimator results under MDP formulation

methods approach the true value for pnom in time, however
the active learner approaches much faster, as expected. For
the case without iCCA, no learning is achieved and the
planner assumes pnom is known and therefore acts sub-
optimally.

VI. CONCLUSIONS

In conclusion, we have shown how existing cooperative
control algorithms can be extended to utilize real-time ob-
servations and performance metric(s) in conjunction with
learning methods to generate a more intelligent planner re-
sponse. We approached the issue from a cooperative control
perspective and have embedded elements of feedback control
and active learning, resulting in an intelligent Cooperative
Control Architecture (iCCA). We described this architecture
and presented illustrative examples of cooperative control
problems where iCCA was applied.

VII. ACKNOWLEDGEMENTS

This research was supported in part by AFOSR (FA9550-
08-1-0086) and Boeing Research & Technology. In addition,
the authors would like to thank MIT Professors Nick Roy
and Emilio Frazzoli for their many insightful conversations
and contributions on this subject.

REFERENCES

[1] E. F. Ketan Savla, Tom Temple, “Human-in-the-loop vehicle routing
policies for dynamic environments,” in IEEE Conference on Decision
and Control, 2008.

[2] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial Intelli-
gence, vol. 101, pp. 99–134, 1998.

[3] A. B. H. Brendan McMahan, Geoffrey J. Gordon, “Planning in the
presence of cost functions controlled by an adversary,” in Proceedings
of the Twentieth International Conference on Machine Learning, 2003.

[4] M. Alighanbari, L. F. Bertuccelli, and J. P. How, “A robust approach
to the uav task assignment problem,” in IEEE Conf. on Decision and
Control, 2006.

[5] R. Rockafellar and S. Uryasev, “Optimization of conditional value at
risk,” http://www.ise.ufl.edu/uryasev, 1999.

[6] L. F. Bertuccelli, “Robust decision-making with model uncertainty in
aerospace systems,” Ph.D. dissertation, MIT, 2008.

[7] L. Li, M. Littman, and T. Walsh, “Knows what it knows: a framework
for self-aware learning,” in Proceedings of the 25th international
conference on Machine learning. ACM New York, NY, USA, 2008,
pp. 568–575.

[8] M. Bowling, “Convergence and no-regret in multiagent learning,” in
Advances in neural information processing systems 17: proceedings
of the 2004 conference. The MIT Press, 2005, p. 209.

[9] A. Greenwald, A. Jafari, and C. Marks, “A general class of no-regret
learning algorithms and game-theoretic equilibria,” in Learning theory
and Kernel machines: 16th Annual Conference on Learning Theory
and 7th Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA,
August 24-27, 2003: proceedings. Springer Verlag, 2003, p. 2.

[10] J. Redding, B. Bethke, L. Bertuccelli and J. How, “Active Learning in
Persistent Surveillance UAV Missions,” in AIAA Infotech@Aerospace,
Seattle, WA, 2009.

[11] M. Likhachev and A. Stentz, “PPCP: Efficient probabilistic planning
with clear preferences in partially-known environments,” in PRO-
CEEDINGS OF THE NATIONAL CONFERENCE ON ARTIFICIAL
INTELLIGENCE, vol. 21, no. 1. Menlo Park, CA; Cambridge, MA;
London; AAAI Press; MIT Press; 1999, 2006, p. 860.

[12] D. Bertsekas and J. Tsitsiklis, Neuro-Dynamic Programming. Bel-
mont, MA: Athena Scientific, 1996.

[13] R. Murphey and P. Pardalos, Cooperative control and optimization.
Kluwer Academic Pub, 2002.

[14] H.-L. Choi, L. Brunet, and J. P. How, “Consensus-based decentralized
auctions for robust task allocation,” IEEE Trans. on Robotics, vol. 25
(4), pp. 912 – 926, 2009.

[15] S. Russell and P. Norvig, “Artificial Intelligence, A Modern Ap-
proach,” 2003.

[16] S. Ponda, J. Redding, H.-L. Choi, B. Bethke, J. P. How, M. Vavrina,
and J. L. Vian, “Decentralized planning for complex missions with dy-
namic communication constraints,” in submitted to American Control
Conference, 2010.

[17] R. A. Howard, “Dynamic programming and markov processes,” 1960.
[18] M. L. Puterman, “Markov decision processes,” 1994.
[19] M. L. Littman, T. L. Dean, and L. P. Kaelbling, “On the complexity

of solving markov decision problems,” in In Proc. of the Eleventh
International Conference on Uncertainty in Artificial Intelligence,
1995, pp. 394–402.

[20] B. Bethke, J. P. How, and J. Vian, “Group Health Management of UAV
Teams With Applications to Persistent Surveillance,” in American
Control Conference, June 2008, pp. 3145–3150.

