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 23 

Abstract 24 

Longitudinal behavioral data generally contains a significant amount of structure. In this work we identify the 25 

structure inherent in daily behavior with models that can accurately analyze, predict and cluster multimodal data 26 

from individuals and communities within the social network of a population. We represent this behavioral 27 

structure by the principal components of the complete behavioral dataset, a set of characteristic vectors we have 28 

termed eigenbehaviors. In our model, an individual’s behavior over a specific day can be approximated by a 29 

weighted sum of his or her primary eigenbehaviors. When these weights are calculated halfway through a day, 30 

they can be used to predict the day’s remaining behaviors with 79% accuracy for our test subjects. Additionally, 31 

we demonstrate the potential for this dimensionality reduction technique to infer community affiliations within 32 

the subjects’ social network by clustering individuals into a “behavior space” spanned by a set of their aggregate 33 

eigenbehaviors. These behavior spaces make it possible to determine the behavioral similarity between both 34 

individuals and groups, enabling 96% classification accuracy of community affiliations within the population-35 

level social network. Additionally, the distance between individuals in the behavior space can be used as an 36 

estimate for relational ties such as friendship, suggesting strong behavioral homophily amongst the subjects. This 37 

approach capitalizes on the large amount of rich data previously captured during the Reality Mining study from 38 

mobile phones continuously logging location, proximate phones, and communication of 100 subjects at MIT 39 

over the course of nine months. As wearable sensors continue to generate these types of rich, longitudinal 40 

datasets, dimensionality reduction techniques such as eigenbehaviors will play an increasingly important role in 41 

behavioral research. 42 

 43 

Introduction 44 

While discrete observations of an individual’s idiosyncratic behavior can appear almost random, 45 

typically there are repeating and easily identifiable routines in every person's life. These patterns 46 
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become more apparent when the behavior is temporally, spatially, and socially contextualized. 47 

However, building models of long-term behavior has been hampered due to the lack of contextualized 48 

behavioral data. Additionally, traditional Markov models work well for specific set of behaviors, but 49 

have difficulty incorporating temporal patterns across different timescales (Clarkson 2002). We present 50 

a new methodology for identifying the repeating structures underlying behavior. These structures are 51 

represented by eigenbehaviors, the principal components of an individual’s behavioral dataset.   52 

 53 

To capture these characteristic behaviors, we compute the principal components of an individual’s 54 

behavioral data. The principal components are a set of vectors that span a ‘behavior space’ and 55 

characterize the behavioral variation between each day. These eigenbehaviors are the eigenvectors of 56 

the covariance matrix of behavior data; the heavily weighted vectors generally represent a type of 57 

repeated behavior, such as sleeping in late and going out on the town. A linear combination of an 58 

individual’s eigenbehaviors can accurately reconstruct the behavior from each day in the data. 59 

However, we show that our subjects’ behavior can be approximated with 90% accuracy using only the 60 

six primary eigenbehaviors – the ones that have the largest eigenvalues and account for the most 61 

variance. By providing this type of behavioral caricature, it is possible for the primary eigenbehaviors 62 

to be used to accurately predict an individual’s subsequent behavior. We subsequently show how 63 

eigenbehaviors can be applied not only to individual behavior, but also be used to characterize the 64 

behavior of communities within the population’s social network. Particular groups of friends can have 65 

their own collective ‘behavior space’ which corresponds to the common behaviors of the community. 66 

How well these behavior spaces approximate an individual’s behavior depends on how the individual is 67 

similar to others in her social network. Measuring the Euclidean distance between an individual’s 68 

behavior and the behavior space of a specific community within the social network can be used to 69 

identify affiliations, relationships, and similarity between individuals.  70 
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 71 

There has been an extensive number of research efforts focused on modeling individual and group 72 

behaviors. Due to the breadth of these efforts, we will be limited here to providing only a sample of 73 

related research projects. Some closely related work in the Computer Supported Collaborative Work 74 

(CSCW) community comes from Begole et al’s techniques for “rhythm modeling” within the 75 

workplace. Through analysis of the computer usage of workgroup members, Begole et al demonstrated 76 

the potential to extract patterns in behavior of both individuals and teams (Begole et. al 2003). 77 

Although primarily used for location-based applications, electronic badges can also generate rich data 78 

on individual behavior within a workplace. The exposed manner in which they are worn allows line-of-79 

sight sensors, such as infrared (IR), to detect face-to-face interactions. Some of the earlier badge work 80 

to sense human behavior was done in the 80's and early 90's at Olivetti Labs (Want et. al 1992). 81 

Developments in ultrasound tracking have greatly improved the ability to localize the badge, enabling a 82 

wide range of just-in-time information applications (Schilit et. al 1993; Addlesee et. al 2001). Fogarty 83 

et al. expands this work by using low level sensor data to establish extremely accurate estimates of 84 

human interruptibility (Fogarty et. al 2005).   85 

 86 

Outside the office, GPS has been used for location detection and classification (Asbrook and Starner 87 

2003; Liao et. al 2004; Wolf et. al 2001), but the line-of-sight requirements generally prohibit it from 88 

working indoors. As an alternate approach, there has been a significant amount of literature regarding 89 

correlating cell tower ID with a user's location (Bar-Noy and Kessler 1993; Bhattacharya and Das 90 

1999; Kim and Lee 1996). Laasonen et al. describe a method of inferring the significant locations from 91 

the cell towers by calculating graph metrics from the adjacency matrix formed by proximate towers. 92 

They were able to show reasonable route recognition rates, and most importantly succeeded in running 93 

their algorithms directly on the mobile phone (Laasonen et al 2004). In the activity and pattern 94 
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recognition communities, there has been a variety of work using techniques to estimate an individual’s 95 

location and projected trajectory given a variety of sensor data such as GPS, wifi base-station 96 

positioning, and accelerometer data. Hightower and Borriello along with Patterson et al., among others, 97 

have demonstrated the potential of particle filters for route recognition (Hightower and Borriello 2004; 98 

Liao et al 2004; Patterson et al 2003).  99 

 100 

 In machine vision and computer graphics, eigenrepresentations have become one of the standard 101 

techniques for many tasks. While behavior is perhaps not as characteristic of an individual as a face, 102 

many analogies hold between the analysis of an individual’s behavior and his facial features.  Just as 103 

digital imaging created a wealth of data to train and test facial analysis tools, the explosive growth of 104 

mobile phones is beginning to enable much more comprehensive computational models of complex 105 

human behavior.  Eigendecomposition is used in face and object recognition (Turk and Pentland 1991), 106 

shape and motion description (Pentland and Sclaroff 1991), and data interpolation (Pentland 1992), and 107 

computer animation (Pentland and Williams 1989).  More recently it has been used in a wide variety of 108 

robotic and control applications.     109 

 110 

Methods 111 

To apply eigendecomposition for behavior and social network analysis, a large repository of behavioral 112 

data is necessary. In this paper we make use of the publically available Reality Mining dataset 113 

representing the behavior of 100 subjects at MIT during the 2004-2005 academic year (Eagle and 114 

Pentlad 2006). Seventy-five of the subjects were either students or faculty in the same laboratory, while 115 

the remaining twenty-five were incoming students at the business school adjacent to the laboratory. Of 116 

the seventy-five students and staff at the lab, twenty were incoming masters students and five were 117 
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incoming freshman. The data were collected using one hundred Nokia 6600 smart phones pre-installed 118 

with a version of the Context application from the University of Helsinki (Raento et. al 2005). The 119 

information collected included call logs, Bluetooth devices in proximity, cell tower IDs, application 120 

usage, and phone status (such as charging and idle). The study generated approximately 400,000 hours 121 

of data on subjects’ location, proximity, communication and device usage behavior.   122 

 123 

The collection of deeply personal human behavioral data raises justifiable concerns over privacy. While 124 

these concerns are legitimate and should be explored, the dataset we are using was collected during a 125 

social science experiment, conducted with human subject approval and consent of the subjects. 126 

Additionally, these techniques for extracting the underlying structure inherent within behavioral data 127 

are not only applicable to human populations. Eigenbehaviors are suitable for analysis of any regularly 128 

sampled behavioral data, making it also a potential analysis tool for longitudinal studies of animal 129 

behavior, where concerns about privacy are greatly reduced (Krause et. al 2009).  130 

 131 

Finally, this paper will not make the claim that the subjects in the Reality Mining study are a 132 

representative sample of society. However, regularity in behavior is not an exclusive trait of people at 133 

MIT. For many people, weekdays consist of leaving home in the morning, traveling to work, breaking 134 

for lunch, and returning home in the evening. People’s daily routines are typically coupled with 135 

routines across other temporal scales, such as going out on the town with friends on Saturday nights, or 136 

spending time with family during the December holidays. Animals exhibit similar behavior patterns, 137 

both on a daily and seasonal cycle. The remainder of this paper will be focusing on a particular 138 

technique to quantify these universal patterns in the behavior of individuals and communities within a 139 

social network.  140 

 141 
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While we have successfully applied our eigenbehavior technique to a wide range of multimodal data, 142 

for purposes of clarity in this section we will only focus on temporal location data. For this example, 143 

we characterize person I by data shown in Figure 1 as B(x,y), a two-dimensional D by 24 array of 144 

location information, where D is the total number of days that person I has been in the study. B contains 145 

n labels corresponding to behavior, where in our case these labels are {Home, Elsewhere, Work, No 146 

Signal, Off}. It has been previously shown that these labels were generated with a conditioned Hidden 147 

Markov Model with over 95% accuracy (Eagle and Pentland 2006), and while there still is noise in the 148 

signal, for our purposes we’ll take them as ground truth. To perform the analysis, we convert B into B', 149 

a D by H (where H is 24*n) array of binary values, shown in Figure 1. iΓ  is row i of B' and represents 150 

an individual’s behavior over day i; iΓ  can be represented by a single point in an H-dimensional space. 151 

A set of D days can then be described as a collection of points in this large space.  152 

  153 

Due to the significant amount of similar structure in most people’s lives, days are not distributed 154 

randomly though this large space. Rather, they are clustered, allowing the individual to be described by 155 

a relatively low dimensional ‘behavior space’. This space is defined by a subset of vectors of dimension 156 

H that can best characterize the distribution of behaviors and are referred to as the primary 157 

eigenbehaviors. The top three eigenbehaviors that characterize the individual shown in Figure 1 are 158 

plotted in Figure 2. The first eigenbehavior corresponds to either a normal day or a day spent traveling 159 

(depending on whether the associated weight is positive or negative). The second eigenbehavior has a 160 

corresponding weight that is positive on weekends and negative on weekdays, analogous to the 161 

characteristic behavior of sleeping in and spending that night out in a location besides home or work. 162 

The third eigenbehavior is emphasized when the subject is in locations with poor phone reception.  163 

 164 
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Results  165 

Eigenbehaviors for Individuals 166 

 167 

For each subject, the Reality Mining data set provides us with a set of days’ behaviors, 1Γ , 2Γ , 3Γ ...  ΓD , 168 

for a total of D days, where an individual day’s behavior vector, iΓ , has H dimensions.  Following the 169 

same notation as Turk and Pentland, the average behavior of the individual is 
1

1 D
nnD =

Ψ = Γ∑ . And 170 

i iΦ = Γ −Ψ is the deviation of an individual day from the mean. Principal components analysis is 171 

subsequently performed on these vectors generating a set of H orthonormal vectors, u , which best 172 

describes the distribution of the set of behavior data when linearly combined with their respective 173 

scalar values, λ .  These vectors and their corresponding scalars are the eigenvectors and eigenvalues of 174 

the covariance matrix of Φ , the set's deviation from the mean.  175 

1
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where the matrix [ ]1 2 3, , ,... MA = Φ Φ Φ Φ .  Each eigenbehavior can be ranked by the total amount of 177 

variance it accounts for in the data, which is essentially the associated eigenvalue. The vectors with the 178 

highest eigenvalues are considered an individual’s primary eigenbehaviors. The next section will 179 

discuss how these primary eigenbehaviors can be used for behavioral data reconstruction and 180 

prediction.   181 

  182 

An individual’s primary eigenbehaviors represent a space upon which all of his days can be projected 183 

with differing levels of accuracy. Figure 3 shows the projection of each day onto spaces created using 184 

an increasing number of these primary eigenbehaviors. It can be seen that while the reconstruction of 185 

each day using 40 eigenbehaviors for this particular subject nearly perfectly matches the original data, 186 
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six eigenbehaviors captures a significant portion of the variance in the individual’s behavior. Figure 4 187 

shows the accuracy of representing behavior using a varying number of eigenbehaviors for the three 188 

different groups of subjects in the Reality Mining study. It is interesting to note that the space formed 189 

by the six primary eigenbehaviors describes individuals within the business school community of the 190 

social network with 90% reconstruction accuracy, but the senior lab students with 96% accuracy. This 191 

leads us to the conclusion that senior lab students exhibit more behavioral regularity than their business 192 

school counterparts.  193 

  194 

While there are many techniques for creating predictive models that can generate a sequence of future 195 

data given training, eigendecomposition differentiates itself in an important way. Although many of 196 

life’s patterns can be modeled as a Markov process, whereby the future state depends on the current 197 

state and observational data, these types of models have difficulty capturing correlations that span 198 

beyond several time slices. For many subjects, sleeping late in the morning is coupled in the same 199 

eigenbehavior with going out that evening – a hard pattern to recognize when using traditional models, 200 

but one that is highlighted when generating an individual’s characteristic behavior spaces.  201 

 202 

Figure 4 shows that the top six primary eigenbehaviors provide a characteristic behavior space from 203 

which an individual deviates less than 10% of the time. When these six eigenbehaviors are calculated 204 

for an individual, it becomes possible to infer the projection of an entire day using only information 205 

from a portion of that day. We use these approximations to develop predictions of an individual’s 206 

subsequent behavior. To test this concept, for each subject we calculated a behavior space using the 207 

individual’s six primary eigenbehaviors and weights generated from the first twelve hours of a subject’s 208 

day. Through the linear combination of these weights and the subject’s primary eigenbehaviors, a 12-209 

element vector is created containing one of three location states (home, work, elsewhere). Each element 210 
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in the vector corresponds to the predicted location of the subject for the subsequent hours from noon to 211 

midnight. Figure 5 shows the distribution of accuracy scores for the subjects when the sequence of 12 212 

hours is compared with the subject's actual location over the same 12 hours. 213 

  214 

Eigenbehaviors for Social Networks 215 

In the previous section we have demonstrated that we can use data from Bluetooth-enabled mobile 216 

phones to discover a great deal about an individual’s patterns of activities by reducing these complex 217 

behaviors to a set of principal components, or eigenbehaviors, characteristic of the individual.  In this 218 

section we will demonstrate the possibility of inferring the relationships and community affiliations 219 

within the social network of the population based on a comparison of these eigenbehaviors. 220 

 221 

The social network of the subjects in the Reality Mining study has a high amount of clustering based on 222 

affiliation, as shown in Figure 6. It is reasonable to assume that each of these different groups of 223 

subjects (Sloan business school students, Media Lab incoming students, Media Lab senior students, and 224 

MIT staff) have characteristic behaviors associated with the community affiliation. It is possible now to 225 

identify the eigenbehaviors of these particular communities within the social network and project 226 

individuals onto this behavior space. How well the community’s behavior space explains an 227 

individual’s behavior, as measured by the Eucleadean distance between the individual and the principal 228 

components of the community’s behavior space can then be used to infer the individual’s affiliation. 229 

Additionally, we demonstrate that the distance between a pair of subjects within the community is 230 

proportional to the probability the two individuals are connected within the friendship network.  231 

 232 
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The mathematics behind applying the eigenbehavior technique to a community of M actors is identical 233 

to that described in Section 2, with the exception that several of the variables have different 234 

interpretations. We now use a matrix B with each row corresponding to the average behavior of a 235 

particular individual in the community. After a similar transformation to B’, a matrix of M by H, it 236 

becomes possible to generate eigenbehaviors of the community as a whole. The primary eigenbehaviors 237 

correspond to the community’s characteristic behaviors.  238 

 239 

While we later will show results that incorporate a variety of data including location, phone usage and 240 

people in proximity into the community behavior space, for explanative purposes, we will show data 241 

related to solely Bluetooth proximity events for the three main groups of subjects: incoming business 242 

school students, incoming lab students, and senior lab students. Figure 7 shows the mean behaviors for 243 

each group, jΨ , while Figure 8 depicts the top three eigenbehaviors 1 2 3[ , , ]j j ju u u  of each group. 244 

 245 

As expected, the top eigenvector in each of the groups closely corresponds to the mean. For individuals 246 

within the business school community, there is particular emphasis during the school’s coffee breaks at 247 

10:30.  Besides this emphasis, the other pattern is simply reflective of the standard course times (nine 248 

until noon, a lunch break, and the subsequently afternoon courses). The lab students have less of an 249 

enforced structure on their day. While the entire group of incoming lab students is taking courses, along 250 

with approximately half of the senior students, these courses can be selected by the students from 251 

anywhere in the institution and typically are not attended by many other subjects. However, each of the 252 

lab students has an office within the lab and typically works from there when not in class. While the 253 

two groups of lab students share virtually identical principal eigenbehavior, the secondary 254 

eigenbehaviors are more telling about the differences. It is common knowledge around the lab that 255 

incoming students tend to get overwhelmed by over-commitments to coursework and research leading 256 
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to late nights at the workplace. This characteristic is emphasized from the group’s second and third 257 

eigenbehaviors with an emphasis from 20:00 to 2:00.   258 

 259 

When a community’s behavior space is created from the aggregate behavior of its individual members, 260 

it becomes possible to determine the similarity of the members by identifying how accurately their 261 

behavior can be approximated by the community’s primary eigenbehaviors. Because the Reality 262 

Mining dataset contains data for both incoming and senior students, it is possible to verify the onset of 263 

concordance between the incoming lab students and the rest of the laboratory. Likewise it is possible to 264 

distinguish communities by their aggregate behavior, such as business school students and engineering 265 

students. An individual's behavior (Γ) can be projected onto the j community's behavior space through 266 

the following transformation.  267 

( )j j
k k juω = Γ −Ψ    268 

for k=1,..., H and jΨ  is the mean behavior of the community. jΨ  for Bluetooth encounters of senior lab 269 

students, incoming lab students, and business school students is shown in Figure 7.    270 

  271 

These weights form a vector 1 2 3 ', , ,...T j j j j
j Mω ω ω ω⎡ ⎤Ω = ⎣ ⎦  which is the optimal weighting scheme to get the 272 

new behavior as close as possible to the behavior space. Each element in the vector gives a scalar value 273 

corresponding to the amount of emphasis to place on its respective eigenbehavior when reconstructing 274 

the original behavior Γ . By treating the eigenbehaviors as a set of basis behaviors, the vector  TΩ , can 275 

be used to determine which person k  the individual is most similar to in a particular community,  j. We 276 

follow the method of Turk and Pentland by using Euclidean distance as our metric for describing 277 

similarity.  278 

22
k

j j
j kε = Ω −Ω    279 
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where j
kΩ  are the reconstruction weights for the kth person in community j. Figure 9 shows values for 280 

jε , the distance between one business school student and other subjects. This method can also be 281 

applied to data from a single individual to determine which days are most like the ongoing one.   282 

  283 

Instead of comparing one individual to another, it is also possible to determine how much an individual 284 

'fits in' with the community as a whole by determining the distance ε  as the difference between the 285 

individual’s projection onto the behavior space of a community and the individual’s original behavior. 286 

We again use Euclidian distance to calculate the difference between the mean-adjusted behavior, 287 

j jΦ = Γ −Ψ , and its projection onto the community's behavior space '

1
jMj j j

b i ii
uω

=
Φ =∑ .  288 

22 j j
j bε = Φ −Φ    289 

When determining the affiliation of an individual, there can be four possible outcomes, as shown on 290 

Figure 10. The dark gray plane represents the community behavior space, containing any set of 291 

behaviors that would constitute being part of the community. The first option has the input behavior on 292 

the behavior space as well as proximate to other individuals, 
3j

Ω , within the behavior space. The 293 

second example can be approximated accurately by the behavior space, but there are no other 294 

individuals in the same area of the space.  Input three appears to have something in common with some 295 

members in the community's behavior space, however contains behavioral elements that cannot be 296 

reconciled within the behavior space. Lastly, four is a disparate input neither near the behavior space 297 

nor any individual in the space.  298 

  299 

Until now, we have been focusing on analysis of Bluetooth or location data independently, but this 300 

technique enables us to aggregate multimodal datasets. Instead of limiting a community to only one 301 

behavior space, for our affiliation classification we generate a set of primary eigenbehaviors for each 302 
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type of data captured. This enables us to determine every group’s Bluetooth, location and phone usage 303 

behavior space. When these spaces are computed, it is subsequently possible to calculate each 304 

individual’s Euclidian distance from each space. Figure 11 shows the distances for each subject from 305 

the three business school behavior spaces. We used cross validation to prevent the test subject’s data 306 

from contributing to the generated behavior space, and were able to classify whether each subject was a 307 

member of the business school community with 96% accuracy.   308 

 309 

Lastly, the projected clustering of individual subjects onto the behavior space shown in Figure 11 has 310 

an additional interesting characteristic beyond affiliation inference. By simply measuring the distance 311 

between two individuals within this behavior space, it becomes possible to estimate the probability the 312 

pair is connected within the social network of the population. Figure 12 shows that the probability of 313 

friendship tails off dramatically as distance increases, until it converges on a steady-state probability of 314 

friendship that appears to be irrespective of the behavioral differences between the pair. This 315 

relationship follows a distribution qualitatively similar to that discovered within an online friendship 316 

network and the physical, geographic distance between each pair of users (Liben-Nowell et al 2005).  317 

 318 

Discussion 319 

We have shown that eigenbehaviors can be used effectively to extract the underlying structure in the 320 

daily patterns of human behavior, predict subsequent behavior, infer community affiliations, and 321 

estimate the probability of a tie within the friendship network of the population. We are currently 322 

building applications that leverage this new technique in two main realms, behavior-based 323 

segmentation and data interpolation.  324 

 325 
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We have found that communities within a population’s social network tend to be clustered within the 326 

same behavior space. It seems reasonable that this type of behavioral homophily is present in a variety 327 

of social networks. It should be possible for practitioners, using virtually any type of longitudinal 328 

behavior data, to similarly quantify the behavior space of a particular group or individual of interest 329 

using the eigenbehaviors technique described above. If strong behavioral homophily is present in the 330 

data, it should equally be possible to infer an individual’s affiliations by quantifying the individual’s 331 

distance from a community’s behavior space.  332 

 333 

When collecting large amounts of data from many subjects of an extended period of time, data loss is 334 

unavoidable. The Reality Mining logs account for approximately 85.3% of the time since the phones 335 

have been deployed. Approximately 5% of this is due to data corruption, while the majority of the 336 

missing 14.7% is due to the phones being turned off. However, with a set of these characteristic 337 

eigenbehaviors defined for each individual, it becomes possible to generate a rich synthetic dataset 338 

from the approximations of the individual’s eigenvalues over a particular time window of interest. 339 

Using the behavior space generated from an individual’s six primary eigenbehaviors, we have shown 340 

we can generate a 12-hour chunk of data with 79% accuracy. If we incorporated the individual’s future 341 

behavioral data as well as the past, this accuracy should continue to increase.   342 

 343 

It is inevitable that the next generation of wearable sensors will be appropriate for the long-term passive 344 

monitoring of an increasing set of living creatures. The behavioral data generated from these new 345 

devices will require fundamentally new techniques for analysis. To analyze data of such magnitude, 346 

eigendecompositions are useful because they provide a low-dimensional characterization of complex 347 

phenomena. This is because the first few eigenvectors of the decomposition typically account for a very 348 

large percentage of the overall variance in the signal. Because only few parameters are required, it 349 
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becomes easier to analyze the individual and community behavior, and thus possible to predict the 350 

behavior of the individual elements as well as the behavior of the system as a whole.   351 

 352 

These unique properties make eigenbehaviors ideal as a representation of daily movements, 353 

interactions, and communication behaviors.  The low dimensional representation provided by the 354 

eigendecomposition will allow us to characterize an individual quickly, match him to similar 355 

individuals, and predict his behavior in the near future. The technique also provides us with a 356 

representation of the behavior characteristic of a community as a whole and enables us to estimate the 357 

probability of a tie within the larger social network of the population. As rich, longitudinal behavioral 358 

data becomes increasingly available, it is our hope that these techniques will prove useful to researchers 359 

studying a wide range of human and animal behavior.  360 

 361 
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 List of Figures 406 

 407 

 408 

Fig 1. Transformation from B to B' . The plot on the left corresponds to the subject’s behavior over the course of 113 days for 5 situations. 409 

The same data can be represented as a binary matrix of 113 days (D) by 120 (H, which is 24 multiplied by the 5 possible situations).  410 

 411 

 412 
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   413 

Fig 2. The top three eigenbehaviors, 1 2 3[ , , ]u u u , for Subject 4. The first eigenbehavior (represented with the first column of three 414 

figures) corresponds to whether it is a normal day, or whether the individual is traveling. If the first weight is positive, then this 415 

eigenbehavior shows that the subject’s typical pattern of behavior consists of midnight to 9:00 at home, 10:00 to 20:00 at work, and then 416 

the subject returns home at approximately 21:00. The second eigenbehavior (and similarly the middle column of three figures) 417 

corresponds to typical weekend behavior. It is highly likely the subject will remain at home past 10:00 in the morning and will be out on 418 

the town (‘elsewhere’) later that evening. The third eigenbehavior is most active when the individual is in locations where the phone has 419 

no signal. 420 

 421 
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Fig 3. Behavior approximation of 115 days using a varying number of eigenbehaviors. The left-most figure corresponds to behavioral 424 

approximation using only one eigenbehavior. The approximation accuracy increases with the number of eigenbehaviors.  425 

 426 
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 429 

 430 

 431 

 432 
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  434 

Fig 4. Approximation error (y-axis) for the different subject groups as a function of the number of eigenbehaviors used (x-axis) with the 435 

states off and no signal removed.  436 
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443 
   444 

Fig 5. Behavior prediction accuracy for behaviors from noon to midnight given the previous 12 hours of behavioral data and the six 445 

primary eigenbehaviors for each subject, an average of 79% accuracy is obtained. 446 
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 455 

Fig 6. The social network of the population. The blue circles represent the community of business school students. The red triangles are 456 

senior lab students, the orange diamonds represent the incoming students, and the white squares represent the laboratory staff and faculty.  457 
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   465 

Fig 7. The average number of Bluetooth devices seen, jΨ , for the senior lab students, incoming lab students, and incoming business 466 

school students. The values in these plots correspond to the total number of devices discovered in each hour of scanning over the course of 467 

a day (with time of day on the x-axis).    468 

 469 

 470 
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  472 

Fig 8. The top three eigenbehaviors 1 2 3[ , , ]j j ju u u  for each group, j, comprised of the incoming business school students, incoming lab 473 

students and senior lab students. The business school coffee break at 10:30 is highlighted in their first eigenbehavior. Comparing the 474 

second eigenbehaviors for the Media Lab students, it can be seen that the incoming students have developed a routine of staying later in 475 

lab than the more senior students.  476 
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 481 

Fig 9. Values corresponding to jε , the Euclidian distance between each subject and a single business school student. The distance 482 

between two individuals reflects the similarity of their behavior.  483 
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 504 

 505 

Fig 10. A toy example of community behavior space. Individuals 1 and 2 are on the behavior space and can be affiliated with the 506 

community. Individual 1 can also be affiliated with the particular clique, 3
jΩ . There is much more distance between 3 and 4 and the 507 

behavior space, and there-fore their projections onto the behavior space do not yield an accurate representation of the two people.  508 
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520 
   521 

Fig 11. The cross-validated distance jε  between the three groups of students and the Bluetooth, Location and Phone Usage business 522 

school behavior spaces.   523 
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 524 

Fig 12. Behavioral Distance vs. Probability of Friendship. The Euclidean distance between every subject’s projection onto the behavior 525 

space is calculated and compared with whether a friendship was reported between the two individuals. The figure suggests strong 526 

behavioral homoplipy, that is, subjects with similar behavior are more likely to be friends.  527 


