## SOLUTION 8 FOR 6.013

Oct.29,2002
Solution 8.1
a) Ignore the magnetic field outside the coil,

$$
\int \bar{H} d \bar{l}=N I, H \cdot D=N I, H=\frac{N I}{D}=\frac{1000 I_{o}}{0.04}=2.5 \times 10^{4} I_{o}
$$

b) According to energy conservation

$$
e V=\frac{1}{2} m v^{2}, v=\sqrt{\frac{2 e V}{m}}=\sqrt{\frac{2 \times 1.6 \times 10^{-19} \times 2.0 \times 10^{4}}{9.1 \times 10^{-31}}}=8.386 \times 10^{7}=0.28 c
$$

c)Apply Lorentz force law,

$$
\bar{f}=q \bar{v} \times \bar{B}=q v \mu H \hat{f}=4.2 \times 10^{-13} I_{0} \hat{f}
$$

The direction of force is vertical to the velocity.
d) The centrifugal force

$$
F=\frac{m v^{2}}{R}=q v B=q v \mu \frac{N I}{D}, R=\frac{d / 2}{\sin 5^{0}}
$$

Plug the second equation into the first,

$$
I=\frac{2 m D \sin 5^{0}}{N d q \mu} v=\frac{2 m D \sin 5^{0}}{N d q \mu} \sqrt{\frac{2 q V}{m}}=0.066[\mathrm{~A}]
$$

Solution 8.2
(a) Use integral form of the Faraday's law

$$
\begin{aligned}
& V=\int \bar{E} d \bar{l}=-\frac{\partial}{\partial t} \int \bar{B} d \bar{S}=-\frac{\partial}{\partial t} B x d=-B d \frac{\partial x}{\partial t} \\
& =-B d v=-10^{-4} \times 4.5 \times 10^{4} \times 3.3 \times 10^{6}=-1.485 \times 10^{7}[\mathrm{v}]
\end{aligned}
$$

The positive charges will accumulate on the back face.
b)Lorentz force law,

$$
\bar{f}=\bar{I} d \times \bar{B}=3.3 \times 10^{6} \times \frac{1.485 \times 10^{7}}{1} \times 10^{-4} \hat{f}=4.9 \times 10^{9} \bar{f}
$$

The direction of force points to East. It will accelarate Io.

Solution 8.3
a) The magnetice strength in the gap

$$
H=\frac{N i}{g-x} \text {, where } x \text { is the change of gap seperation }
$$

The energy in the gap

$$
W=\frac{1}{2} \mu H^{2} \cdot A(d-x)=\frac{1}{2} \mu\left(\frac{N i}{d-x}\right)^{2} \cdot A(d-x)=\frac{1}{2} \mu \frac{(N i)^{2}}{d-x} A
$$

Then the force

$$
f=-\frac{\partial W}{\partial x}=-\frac{1}{2} \mu A\left(\frac{N i}{d-x}\right)^{2}
$$

b) We know the inductance of the system:

$$
L=\frac{\mu A N^{2}}{d}=\frac{\mu \sqrt{A}(\sqrt{A}-z) N^{2}}{d}
$$

The energy in the gap

$$
W=\frac{1}{2} L i^{2}=\frac{1}{2} i^{2} \frac{\mu \sqrt{A}(\sqrt{A}-z) N^{2}}{d}
$$

The the force

$$
f=-\frac{\partial W}{\partial z}=\frac{\mu \sqrt{A}(N i)^{2}}{2 d}
$$

c) $V=\frac{d \Lambda}{d t}=\frac{d L i}{d t}=i \frac{d L}{d t}=i \frac{d}{d t}\left(\frac{\mu A N^{2}}{d}\right)=i \mu A N^{2} \frac{d}{d t}\left(\frac{1}{d(1+\cos w t)}\right)=\frac{i \mu A N^{2} w \sin w t}{d(1+\cos w t)^{2}}$

Here $\mathrm{i}(\mathrm{t})$ is assumed as constant in terms of time.

Solution 8.4

$$
f=m a=\frac{d P}{d t}=n \frac{h f}{c}, a=\frac{n h f}{m c}=6.62 \times 10^{17}\left[\mathrm{~m} / \mathrm{s}^{2}\right]
$$

