SOLUTION4 FOR 6.013

Sept.30,2002

Solution 4.1
a) One the surface of perfect conductor, $E_{v}=0, E_{h} \neq 0$, where E_{v} is the electric field vertical to terrestrial surface, E_{h} is horizontal to surface. The receiving antenna is parallel to terrestrial surface. So there is generally a null.
b) The electric field is similar to a): $E_{v}=0, E_{h} \neq 0$. But the receiving antenna is perpendicular to surface. So there is generally a peak. But when the horizontal distance between transmitting and receiving antenna is 0 , it is null.
c) See the fig.1, for the first non-zero altitude null, distance $D=\lambda / 2=2 h_{1} \cos \theta=$ $2 h_{1}\left(h_{1}+h_{2}\right) / \sqrt{r^{2}+\left(h_{1}+h_{2}\right)^{2}}$, we can get $h_{2}=\lambda r / \sqrt{16 h_{1}-\lambda^{2}}-h_{1}$
d) First we find the first and second non-zero altidude nulls for fixed geometry.

$$
\begin{aligned}
& D=\lambda_{1} / 2=2 h_{1} \cos \theta=2 h_{1}\left(h_{1}+h_{2}\right) / \sqrt{r^{2}+\left(h_{1}+h_{2}\right)^{2}}(\text { first null }) \\
& D=3 \lambda_{2} / 2(\text { second null }) \\
& \lambda_{2}=\lambda_{1} / 3 \\
& \triangle \lambda=\lambda_{2}-\lambda_{1}=-2 \lambda_{1} / 3 \\
& f=c / \lambda, \\
& \triangle f=-\frac{c}{\lambda_{1}^{2}} \triangle \lambda=2 c / 3 / \lambda_{1}=c \sqrt{r^{2}+\left(h_{1}+h_{2}\right)^{2}} /\left(6 h_{1}\left(h_{1}+h_{2}\right)\right)
\end{aligned}
$$

solution 4.2
(a) $P_{\text {rec }}=\left(\frac{P_{t r} G \sigma}{4 \pi r^{2}}\right)\left(\frac{A}{4 \pi r^{2}}\right)=\left(\frac{A}{r^{2} \lambda}\right)^{2}\left(\frac{P_{t r} \sigma}{4 \pi}\right)$

Choose $\lambda=8 \mathrm{~mm}, \mathrm{P}_{\mathrm{tr}}=10 \mathrm{w}, \mathrm{r}=100 \mathrm{~km}$,

Fig 1
$P_{r e c}=\left(\frac{A}{r^{2} \lambda}\right)^{2}\left(\frac{P_{t r} \sigma}{4 \pi}\right)=7.7 \times 10^{-17}$
It requires energy for one pulse:
$E=P_{r e c} \times T_{\text {pulse }}=7.7 \times 10^{-17} \times 10^{-6}=7.7 \times 10^{-23} \mathrm{~J}<4 \times 10^{-20} \mathrm{~J}$
So it can't satisfy the requirement.
(b) If we choose $P_{t r}=10 \mathrm{w}, \lambda=0.008 \mathrm{~mm}, r=100 \mathrm{~km}$

$$
P_{r e c}=\left(\frac{A}{r^{2} \lambda}\right)^{2}\left(\frac{P_{t r} \sigma}{4 \pi}\right)=7.7 \times 10^{-13}[\mathrm{w}]
$$

It requires energy for one pulse:
$E=P_{\text {rec }} \times T_{\text {pulse }}=7.7 \times 10^{-13} \times 10^{-6}=7.7 \times 10^{-19} \mathrm{~J}>4 \times 10^{-20} \mathrm{~J}$
So we can see this system has signal margin.
(c) Because all radars are apart in a hexagonal grid. Every radar only needs to check the area with radius $\left.r \leq \sqrt{(} 15^{2}+50^{2}\right) k m=52.2 \mathrm{~km}$. The beamwidth for parabolic dishes is $\theta_{w}=\lambda / D=0.008 / 1=0.008$. It will sweep times $2 \pi / \theta_{w}=196$. The scanning time each is about $r / c=52200 / 3 \times 10^{8}=1.74 \times 10^{-4}[\mathrm{~s}]$. Scanning time: $196 \times 1.74 \times 10^{-4}=0.03[\mathrm{~s}]$.
solution 4.3
a) The following two answers are based on $N=6 \times 10^{23}$ and $N=6 \times 10^{28}$
$f_{p}=\sqrt{\frac{N q^{2}}{m \epsilon}}=\sqrt{\frac{6 \times 10^{23} \times\left(1.6 \times 10^{-19}\right)^{2}}{9.1 \times 10^{-31} \times 8.85 \times 10^{-12}}}=6.95 \times 10^{12}[\mathrm{~Hz}]$
or
$f_{p}=\sqrt{\frac{N q^{2}}{m \epsilon}}=\sqrt{\frac{6 \times 10^{28} \times\left(1.6 \times 10^{-19}\right)^{2}}{9.1 \times 10^{-31} \times 8.85 \times 10^{-12}}}=2.2 \times 10^{15}[\mathrm{~Hz}]$
b) $f=10^{12}, \delta_{1}=\sqrt{\frac{2}{\sigma w \mu}}=\sqrt{\frac{2}{5 \times 10^{7} \times 2 \pi \times 10^{12} \times 4 \pi \times 10^{-7}}}=7.1 \times 10^{-8}[\mathrm{~m}]$
$f=60, \delta_{1}=\sqrt{\frac{2}{\sigma w \mu}}=\sqrt{\frac{2}{5 \times 10^{7} \times 2 \pi \times 60 \times 4 \pi \times 10^{-7}}}=9.1 \times 10^{-3}[\mathrm{~m}]$
c) (optional)

Solution 4.4
a) $\triangle \phi=(n+1 / 2) \pi=\left(k^{o}-k^{e}\right) d$
$k^{0}=w \sqrt{\epsilon \mu}=w \sqrt{4.004 \epsilon_{0} \mu}$
$k^{e}=w \sqrt{\epsilon \mu}=w \sqrt{4 . \epsilon_{0} \mu}$
So $(n+1 / 2) \pi=\left(k^{o}-k^{e}\right) d=(\sqrt{4.004}-\sqrt{4}) \frac{2 \pi}{\lambda} d=\pi / 2, d=0.125[\mathrm{~mm}]$
b) $1 / 2$ of field will pass the polaroid, reflect from the mirror, it has the same direction linear polarization, pass through the polaroid completely. So totally, $1 / 2$ will be reflected. The quarter-wave plate has no effect on the fraction in this case.
c) $1 / 2$ of field will pass the polaroid, the quarter-wave plate transfers it to circular polarization. After reflecting and passing the quarter-wave plate again, the wave become linear polarization again, but the direction is vertical to polarization direction in the polaroid. So no wave can pass.

