KIRCHOFF'S VOLTAGE LAW

Kirchoff's Voltage Law: Around any loop: $\Sigma_{i} V_{i}=0$ (KVL)

Faraday's Law:

contour c
$\nabla \times \overline{\mathrm{E}}=-\partial \overline{\mathrm{B}} / \partial \mathrm{t} \quad$ [differential form] Integral form is: $\oint_{C} \bar{E} \cdot d \bar{s}=-\frac{d}{d t} \int_{A} \bar{B} \cdot d \bar{a}$
[Recall Stoke's Theorem: $\int_{A}(\nabla \times \bar{G}) \bullet \hat{\mathrm{n} d a}=\oint_{\mathrm{C}} \overline{\mathrm{G}} \bullet \overline{\mathrm{d} s}$]
If $\mathrm{d} \overline{\mathrm{B}} / \mathrm{dt}=0$ in A , then Kirchoff's voltage law must be satisfied

More generally:

KVL assumes all magnetic energy is stored inside circuit elements

KIRCHOFF'S VOLTAGE LAW (2)

Undefined Circuit:

Defined Circuit:

We use small loops, thick wires, and high-impedance lumped elements

> We assume voltage drops occur only across elements, and ignore H fields generated by currents through them.

"parasitic inductance"

KIRCHOFF'S CURRENT LAW (KCL)

Kirchoff's Current Law: $\quad \sum_{i} l_{i}=0=$ Total current into any node (KCL)
Ampere's Law:

$$
\begin{aligned}
\nabla \times \overline{\mathrm{H}} & =\overline{\mathrm{J}}+\partial \overline{\mathrm{D}} / \partial \mathrm{t} \quad \text { [differential form] } \\
\nabla \bullet(\nabla \times \overline{\mathrm{H}}) & =\nabla \cdot(\overline{\mathrm{J}}+\partial \overline{\mathrm{D}} / \partial \mathrm{t})=0 \\
& =\nabla \cdot \overline{\mathrm{J}}+\partial(\nabla \cdot \overline{\mathrm{D}}) / \partial \mathrm{t} \\
& =\nabla \cdot \overline{\mathrm{J}}+\partial \rho / \partial \mathrm{t}
\end{aligned}
$$

Conservation of Charge:

$$
\nabla \bullet \bar{J}=-\partial \rho / \partial \mathrm{t}=0 \text { at each node }
$$

[Recall Gauss's Divergence Theorem: $\left.\int_{\mathrm{V}}(\nabla \bullet \overline{\mathrm{G}}) \mathrm{dv}=\int_{\mathrm{S}} \overline{\mathrm{G}} \bullet \overline{\mathrm{da}}\right]$
Current Law follows from: $\int_{S} \bar{J} \bullet d \bar{a}=\sum_{i}{ }^{i} i=0$

More generally:

> KCL assumes nodes and wires store no charge ($\partial \rho / \partial \mathrm{t}=0$), or that all electric energy is stored inside circuit elements

"parasitic capacitance"

SOLVING CIRCUITS

Generic Circuit Topology:

Assume b branches, n nodes, and p unique loops

We can show $b=n+p-1$.

$$
b=12, n=7, p=6
$$

$\mathrm{n}=\mathrm{p}=1$

$\mathrm{n}=2$

$\mathrm{n}=\mathrm{p}=2$

Every time we add a branch, the number of nodes or loops (meshes) increases by one.

Voltage sources are branches characterized by $\mathrm{v}=\mathrm{V}_{\mathrm{o}}$
Current sources are branches characterized by $\mathrm{i}=\mathrm{I}_{0}$

SOLVING CIRCUITS (2)

Number of Unknowns:

Number of Equations:

Number of unknowns is 2 b (v , i for each branch)

We have one device equation for each branch relating or specifying v and i

We also have $\mathrm{n}-1$ independent node equations (KCL) and p loop equations (KVL), for a total of:
$b+(n-1)+p=2 b$ equations = number of unknowns
(Recall $\mathrm{b}=\mathrm{n}+\mathrm{p}-1$)
Given initial conditions and all sources we can solve the equations analytically for simple circuits, or by simulation for any circuit.
(Non-unique exceptions: indeterminate flip-flop or chaotic circuits)

SIMPLE CIRCUIT ELEMENTS, R AND C

Electrostatics:

In general:	Everywhere	$\nabla \times \overline{\mathrm{E}}=0, \quad \nabla \bullet \overline{\mathrm{E}}=\rho / \varepsilon$
	At conductor	$\hat{n} \bullet \overline{\mathrm{E}}=\sigma_{\mathrm{S}} / \varepsilon, \quad \overline{\mathrm{E}} / /=0$
	Between conductors,	$\nabla \bullet \overline{\mathrm{E}}=\rho / \varepsilon=0$

Parallel-Plate Devices:

Field Solution:

$$
\begin{aligned}
& \overline{\mathrm{E}}=\hat{\mathrm{y}} \mathrm{E}_{0} \text { for rectangular geometry here } \\
& \sigma_{\mathrm{S}}=\varepsilon \mathrm{E}_{0}
\end{aligned}
$$

SIMPLE CAPACITOR

Relating Fields to Potentials:
Since:

$$
\nabla \times \overline{\mathrm{E}}=0
$$

We define

$$
\overline{\mathrm{E}}=-\nabla \Phi \quad \Phi=\int_{1}^{2} \overline{\mathrm{E}} \cdot \mathrm{~d} \overline{\mathrm{~s}}
$$

Where
Φ is the electrostatic potential of [1] relative to [2]
Therefore here: $\mathrm{E}_{\mathrm{o}} \mathrm{d}=\mathrm{V}, \mathrm{E}_{\mathrm{O}}=\mathrm{V} / \mathrm{d}$

In general, absolute potential $\Phi=0$ at infinity, by definition

SIMPLE CAPACITOR (2)

Capacitor Charge Q:

We define:

$$
\mathrm{Q}=\int_{\mathrm{A}} \sigma_{\mathrm{S}} \mathrm{da}=\mathrm{A} \varepsilon \mathrm{E}_{\mathrm{O}}=\mathrm{A} \varepsilon \mathrm{~V} / \mathrm{d}
$$

We also define:

$$
\mathrm{Q}=\mathrm{CV}
$$

Capacitance C:
Therefore:

$$
\mathrm{C}=\mathrm{A} \varepsilon / \mathrm{d}
$$

We know:

$$
q(t)=\int_{-\infty}^{t} i(t) d t=\operatorname{Cv}(t)
$$

Therefore:

$$
\begin{array}{l|l}
\hline v(t)=(1 / C) \int_{-\infty}^{t} i(t) d t & \text { Also, } \\
i=C d v / d t
\end{array}
$$

CAPACITORS IN SERIES AND PARALLEL

Capacitor in Series:

$$
1 / C_{e q}=1 / C_{1}+1 / C_{2}
$$

SIMPLE RESISTORS

Conductance σ :

$$
\begin{aligned}
& \bar{J}=\sigma \bar{E}\left[\mathrm{am}^{-2}\right] \\
& \mathrm{I}=\mathrm{AJ}=\mathrm{A} \sigma \mathrm{E}_{\mathrm{o}}=\mathrm{A} \sigma \mathrm{~V} / \mathrm{d}
\end{aligned}
$$

Resistance R:

$$
\mathrm{R}=\mathrm{V} / \mathrm{I}=\mathrm{d} / \mathrm{A} \sigma
$$

Resistors in Series:

$$
R_{e q}=R_{1}+R_{2}
$$

$$
R_{e q}=\left(V_{1}+V_{2}\right) / l
$$

Resistors in Parallel:

$$
1 / R_{e q}=1 / R_{1}+1 / R_{2}
$$

$$
1 / R_{e q}=\left(I_{1}+I_{2}\right) / V
$$

CHARGE RELAXATION

RC Circuits:

Try:
It works if $\tau=\mathrm{RC}$:

$$
\begin{aligned}
\mathrm{q}(\mathrm{t}) & =\mathrm{Cv}(\mathrm{t})=\int_{0}^{\mathrm{t}} \mathrm{i}(\mathrm{t}) \mathrm{dt}+\mathrm{q}_{0} \\
\mathrm{v}(\mathrm{t}) & =-\mathrm{i}(\mathrm{t}) \mathrm{R}=-\mathrm{RCdv}(\mathrm{t}) / \mathrm{dt}
\end{aligned}
$$

$\mathrm{v}(\mathrm{t}) \quad=\mathrm{v}_{\mathrm{O}} \mathrm{e}^{-\mathrm{t} / \tau} \quad\left[\mathrm{v}_{\mathrm{O}}\right.$ is initial condition $]$
$v_{0} e^{-t / \tau}=(-R C)(-1 / \tau) v_{0} e^{-t / \tau}$

Dielectric Relaxation:

$$
R=d / A \sigma, C=\in A / d
$$

independent of geometry

