
6.013 Lecture 24: 

Overview of 6.013; Perturbations of Resonators 


A. Overview of 6.013, Electromagnetics and Applications 

"Electromagnetics and Applications" presents in a one-semester subject those 
fundamentals of electromagnetism that underlie most systems encountered by electrical 
engineers and computer scientists. Although these systems are highly diverse, the 
simplicity of Maxwell's equations and the power of basic physical concepts make this 
objective practical. The applications addressed range from wireless communications to 
analog and digital circuits, motors and generators, MEMS devices, microwave and 
photonic devices and systems, and even acoustics. 

The mathematical techniques employed included vector calculus, phasor 
representation, partial differential equations, difference equations, and their precursors. 
Several problem solving techniques were also used, such as perturbation methods, energy 
methods, duality, and methods for solving boundary value problems. 

The broad nature of electromagnetics requires an understanding not only of 
Maxwell's equations, but also of mechanics, basic quantum phenomena, circuits, signals, 
and linear systems in general. All of these domains were exercised in 6.013 in the 
context of a wide range of practical applications and systems, making 6.013 a sort of 
capstone subject for much of the basic undergraduate electrical engineering curriculum, 
and a stepping stone to professional practice. 

Follow-on electromagnetics subjects tend to focus on either the quasistatic limit, 
where device dimensions are very small compared to a wavelength so that wave 
phenomena become irrelevant, or on the wave limit where the dimensions are comparable 
to a wavelength or much larger. Both types of follow-on subject typically present more 
rigorous and complete solutions to Maxwell's equations, and address narrower sets of 
applications and physical issues in greater depth. 6.013 is merely an introduction to this 
broad technical area of wide application and impact. 

B. Perturbations of LC Resonators 

Lossless resonators are characterized by their resonant frequencies fi, of which ideal 
distributed systems have an infinite number and simple ideal LC resonators have but one. 
It is often useful to shift these resonances dynamically or during manufacture, or to use 
an observed resonant frequency to characterize some perturbation of interest. For 
example, 1) a receiver might be tuned to various frequencies by perturbing a resonant 
filter, 2) a manufacturer could tune a single type of filter to serve diverse customers, 3) 
humidity can be sensed by its impact on the permittivity of air in a resonant cavity and 
therefore on the cavity’s resonant frequency, and 4) the electromagnetic field distribution 

L24 - 1 - 12/10/02 



⇒⇒⇒ ⇒⇒⇒ ⇒⇒⇒

within a resonator can be measured by noting how much its resonant frequency is shifted 
by a small dielectric probe sphere as it moves to various positions within the resonator. 

In this lecture two approaches to calculating these shifts in resonant frequency will 
be studied, one in the context of LC resonators, and one based on photons, forces, and 
energy. The second approach is simple and powerful, and can even be applied to 
acoustic resonators and the formation of vowels by the human vocal tract. 

Consider the LC resonator illustrated in Figure 24-1a. Its resonant frequency ωo = 
(LC)-0.5. If we perturb this resonator by bringing the capacitor plates a little closer 
together, C will increase slightly and ωo will decrease slightly. 
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Figure 24-1. Transformation of an LC resonator into a cavity resonator 

This LC resonator resembles a cavity resonator in its lowest frequency mode, and 
can be similarly perturbed. It is easy to see how an LC resonator might consist of two 
plates connected by a ribbon (Figure 24-1b), where most of the electric energy is stored 
between the plates, and most magnetic energy is stored next to the conducting ribbon. 
But we could have four ribbons (Figure 24-1c), and could even widen them to form a 
closed cavity resonator, where the electromagnetic fields are standing waves that match 
the boundary conditions (Figure 24-1d). These fields correspond to the TE10 mode in 
rectangular waveguide, where the waveguide is shorted at both ends, λg/2 apart; this is 
designated the TE101 resonance of the cavity resonator, where the letters and the first two 
integers indicate the waveguide mode, and the third integer corresponds to the number of 
half-waveguide-wavelengths in the longest dimension of the cavity. 

Figure 24-1d shows the electric and magnetic fields in the cavity at some instant of 
time; both have the same sinusoidal spatial character (indicated by the truncated sinusoids 
in the figure) and oscillate sinusoidally in time.  The f101 resonant frequency can be 
lowered slightly by pressing the top and bottom surfaces of the cavity resonator together 
near the middle of the top or bottom cavity walls where the electric field is strong and the 
magnetic field is weak; lowering 'C' in this way increases ωo according to the formula. 
The resulting frequency shift can be estimated quantitatively using the energy method 
presented below. 

C. Energy Method for Estimating Resonant Frequency Perturbations 

This method is based upon the facts that: 1) electromagnetic waves can alternatively 
be considered as collections of photons at frequency f, each with energy hf [J], so that the 
total energy wT in a resonator simply equals nhf, where n is the number of photons, and 
2) the number n of photons in a closed container remains constant if the walls of the 
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container move only slowly, i.e. they move much less than a wavelength in much less 
than one cycle. Therefore if wall motion causes the electromagnetic energy trapped in a 
lossless resonator to increase by ∆wT, then the resonant frequency must increase by ∆f, 
where: 

∆f = ∆wT/nh (1) 

Wall motion changes the stored electromagnetic energy because that motion does 
work on the fields if the motion is in a direction opposite to the electromagnetic force on 
the wall or, alternatively, extracts energy from the fields if the wall motion is in the same 
direction. Therefore to compute the frequency increase ∆f as resonator walls are indented 
or protruded slightly we need only to compute the electromagnetic force density vectorF 
[Nm-2] and the resulting ∆wT before using (1). 

We have seen earlier in Equations R13-6 and L13-15 that electric and magnetic force 
densities acting on perfectly conducting non-magnetic walls in vacuum are simply equal 
to the corresponding electric and magnetic energy densities adjacent to the walls, where 
the electric fields pull on the walls and the parallel magnetic fields push, as suggested in 
Figure 24-2a for the cavity resonator of Figure 24-1d. That is, 

Fe = We = εo 
2E 4 (attractive force) Nm2  Jm−3   (2) 

Fm = Wm = µo 
2H 4 (repulsive force)  Nm2  Jm−3   (3) 

The net attractive force density Fem at any point on the wall is thus: 

Fem = We - Wm [Nm-2] (4) 
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The increase in electromagnetic energy ∆wT equals the area integral of the net 
attractive electromagnetic force density Fem on the wall times the distance the wall 
protrudes outward as a result of the perturbation. That is: 

∆wT = ∫dz ∫Fem(x,y)dxdy = ∫V Fem(x,y)dv = ∫V (We - Wm)dv [J] (5) 

= ∆(we - wm) [Joules in volume V added by the change in shape] (6) 

where V is the volume enclosed by the combined original and deformed surface contours, 
as illustrated in Figure 24-2b. We also assume that V is sufficiently small thatE andH 
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are constant within it, and that the shape of the deformation is without sharp edges so 
thatE andH are minimally changed by it and remain roughly perpendicular and 
parallel, respectively, to the new wall position. 

We can now find the frequency perturbation by substituting (6) into (1) to obtain: 

∆f/f = ∆(we - wm)/wT (7) 

where wT is the total energy in the resonator prior to the perturbation, and we and wm are 
the average electric and magnetic energies stored within the small perturbation volume V, 
assuming the field strengths in V equal their unperturbed values at the wall. 

D. Examples of Resonator Frequency Perturbations 

An LC resonator provides a simple example of frequency perturbation. Suppose the 
plate separation of the capacitor C increases from d to d + ∆d, then C will decrease and 
the resonant frequency will increase from fo to fo + ∆f; what is ∆f [Hz]? 

If we calculate ∆f directly using f = (LC)-0.5/2π and C = εA/d as d → d+∆d,  then we 
find ∆f ≅  (∆d/2d)fo. This result can readily be compared to that for the energy 
perturbation method of Equation (7) by first finding ∆we/wT. First we evaluate ∆we: 

∆we = WeV = (ε |E |2/4)(A∆d) [J] (8) 

Since ∆wm = 0 in V, and since wT = 2we = (2ε|E |2/4)Ad, it follows that: 

∆f /fo ≅ ∆(we - wm)/wT ≅ (ε |E |2/4)(A∆d)/ (2ε|E |2/4)Ad (9) 

≅ ∆d/2d 

which is the same answer as determined above directly. 

A second example of the use of the frequency perturbation equation is that of the 
metallic cavity resonator with flexible walls, illustrated in Figures 24-1 and 24-2. In this 
case we shall merely identify those wall areas where indentation increases or decreases 
resonant frequencies. 

Consider the cavity resonator illustrated in Figure 24-3a; it is simply an elongated 
version of that in Figure 24-1. Referring to Equation (7) it is clear that if we indent the 
cavity where the electric energy density exceeds the magnetic energy density (and 
therefore where the attractive electric forces exceed the repulsive magnetic ones), then 
∆we and also ∆(we - wm) within the perturbation volume V will be negative (negative 
because We in V is removed by indentation), and therefore ∆f will be negative too. 
Qualitatively, the illustrated fields suggest we will exceed wm only at the central portions 
of the top and bottom plates, as indicated by small ellipses. Elsewhere any indentation 
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will press against a greater magnetic repulsive force, and will therefore increase the 
stored electromagnetic energy and the corresponding resonant frequency fo so that ∆f > 0. 

A quantitative answer requires examination of the expressions for the electric and 
magnetic fields so that the stored energy densities can be evaluated exactly. In this case 
we shall only examine the forms of those equations, which are: 

We ∝ sin2(πx/a) sin2(πy/a) [J m-3] (10) 

Wm ∝ cos2(πx/a) + cos2(πy/a) [J m-3] (11) 

as sketched in Figure 24-3b and 24-3c, respectively. 
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E. Human Acoustic Resonators 

The human vocal tract is a remarkable org
communication. Speech consists of voiced and
sounds are dominated by the natural resonances of
are generally broadband and are not generated by t
sound is generated by acoustic turbulence between 

During voiced sounds, typically vowels, the 
periodic impulses of air from the lungs at a frequen
that it has significant power up to 5-10 kHz. T
impulses is then slowly modulated by the vocal tra
cavity resonator extending from the vocal chords t
4a. When the small passage to the nasal c
characteristics of the tract to produce nasal soun
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esophagus lying behind the trachea and connecting to the stomach; the trachea connects 
the vocal tract to the lungs. 
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Figure 24-4. 
Vocal tract resonances 
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The vocal tract in Figure 24-4a has length d and is terminated by the voc
at the left end. The vocal chords act approximately like a rigid (but leaky) 
reflect sound well. The other end of the vocal tract is open to the air, which has
impedance than the tract, and therefore this junction at the teeth also reflects w
result is that each person has a natural fundamental (lowest) resonant frequency
that becomes still lower during childhood and adolescence and then becomes pe
This frequency plus the natural frequency of vocal chord vibration, called pitch,
are responsible for the major distinctions between the speech of one perso
another. Pitch generally distinguishes young from old (and high musical notes f
ones), while the tract length d generally distinguishes men from women. The be
disguising electronics can alter both the pitch and d for the regenerated speech. 

Figure 24-4b illustrates the behavior of the lowest resonant frequency
quarter-wave cavity resonator; there is a velocity null at the vocal chords and a
null at the (open) teeth. The resonances corresponding to a closed mouth can g
be ignored. Figure 24-4c illustrates the equivalent TEM resonator, where pres
analogous to voltage, and velocity u is analogous to current. The fundamental
resonant mode is illustrated in Figure 24-4d, and the first two harmonics are illus
Figure 24-4e-f. These natural frequencies are a function of d, and therefore are g
fixed and unchanging for each adult. 

Vowels are formed by articulating the vocal tract so as to perturb its 
frequencies. These resonant frequencies then shift up, down, or remain un
different combinations of shifts correspond to different basic sounds or "pho
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These resonances can also modulate the unvoiced phonemes (consonants), but such 
acoustic effects are less obvious because most consonants are generated near the front of 
the mouth, not at the back of the resonator.  Opening the passage to the nasal cavity has a 
strong effect on the resonances and is responsible for creating "nasal speech". 

Using the energy method of Section D, the perturbations of the resonances can be 
readily related to the shape of the vocal tract as modulated by the position and shape of 
the tongue. The acoustic force on the walls of a resonator is attractive where the velocity 
is maximum and repulsive where the pressure is maximum. The attractive force is 
associated with the Bernoulli effect, in which rapid fluid flows parallel to a surface tend 
to pull on that surface more than at places where the fluid flow is slower. 

Figure 24-5. Acoustic forces on resonator walls 
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For example, the net acoustic pressure at point A in Figures 24-4a and 24-5 is 
attractive if the oscillatory velocity u is relatively large there, and is repulsive if the 
oscillatory pressure p is relatively large, as suggested in Figure 24-5. If p is large at point 
A for a particular resonant mode and the force outward is positive, then constricting the 
cross-section of the vocal tract at point A would increase the total acoustic energy wTa 
stored in the acoustic resonator. But acoustic waves are quantized in units of phonons, 
just as electromagnetic waves are quantized in units of photons, and therefore: 

wTa = nhf = wp + wk (12) 

where n is the number of phonons in the resonator at the resonant frequency f, h is 
Planck's constant, wp is the total potential energy associated with p, and wk is the total 
kinetic energy associated with u. As before, n remains constant in a closed system if any 
shape changes are slow compared to the velocity of sound, and therefore any change in 
stored energy must result in a corresponding change in the resonant frequency f. 
Therefore vocal tract constrictions by the tongue at point A will increase the resonant 
frequency for a particular mode if the repulsive force at A due to p exceeds the attractive 
Bernoulli force due to u; equivalently, resonant frequencies are increased when Wp > Wk 
at point A, where W corresponds to potential or kinetic energy density. By analogy with 
(7) and without derivation we find: 

∆f/f = ∆(wp - wu)/wTa (13) 

where ∆w is defined as positive for protrusions of resonator walls, and negative for 
indentations, corresponding to adding or removing volume from the resonator. 

We can now understand how vowels are formed by considering an indentation by 
the tongue at point A along the vocal tract. Referring to Figure 24-4 we see that at point 
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A the relative values of Wp and Wu are approximately equal for the f1 resonance (Figure 
24-4d), and that Wp and Wu dominate the f2 and f3 resonances, respectively (Figures 24-4 
c and d, respectively). Therefore Equation (13) predicts that indentation at point A will 
have little effect on f1 and will decrease and increase the resonances f2 and f3, 
respectively, as suggested in Figure 24-6, where the unperturbed vocal tract is perturbed 
at time to. In this fashion we can form an enormous number of distinctive and 
recognizable phonemes, only a fraction of which are used in any given language. The 
ease with which we can predict the acoustic effects of indentations and protrusions on 
resonators clearly illustrates the power of  energy methods. 

Figure 24-6. Perturbations of acoustic resonant 
frequencies by indentation at point A along the 
vocal tract at time to. f1 
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Many musical instruments are modeled after the vocal tract. They typically have a 
vibrating reed or lips at one end, analogous to vocal chords, and are connected to a tube 
open at the other end. Usually the tube has fixed length and holes in the sides are opened 
or closed in various combinations to perturb the resonances or to select the dominant one. 
In some cases the vibrational frequency of the reed may be influenced by which 
resonance is stronger, and so feedback can enhance one resonant frequency at the 
expense of others. For example, placing open holes at the pressure maxima of undesired 
resonances fi would sap their strength in favor of one or more other desired musical 
notes. Lip and lung pressure can also raise or lower the favored frequency band. 
Furthermore, the lengths of some tubes can also be modulated, as in trombones, or 
parallel tubes of different lengths can be selected by valves, as in some horn instruments. 
Almost all such resonant waveguide instruments radiate principally from their open end, 
which is usually matched to open air by means of a bell, which is an exponentially 
widening section that functions, for example, like a series of quarter-wave impedance 
transformers. 
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