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6.013 Lecture 13: 
Reluctance and Permanent Magnet Motors; 

Photon Forces 
 

A. Overview 
 
 Reluctance motors generally incorporate soft-iron rotors that are pulled toward 
magnetized poles.  By switching the excitation of the poles synchronously with rotor 
motion, the motion can continue.  The forces acting on the rotor can be found by 
differentiating the total system energy with respect to rotor position.  This calculation can 
be simplified if the inductance L(θ) of the system is known as a function of rotor angle θ 
where the magnetic energy stored in L is: wm = LI2/2.  The simple expression for flux 
linkage Λ = N∫A B •  d a = LI can help relate the magnetic field B to L, where N is the 
number of turns in the excitation coils circling the area A of the stator; the flux linked in 
the stator approximately equals that at the rotor poles. 
 
 Permanent magnets cling to high permeability surfaces with a force density of 
~Bgap

2/2µo [Nm-2], where Bgap is the magnetic flux density in the thin gap separating the 
two bodies.  They can also provide the fields needed to exert force on currents flowing in 
permanent-magnet motors or generators. 
 
 Electromagnetic waves exert pressure on objects that partially or completely 
absorb or deflect them.  These forces can be computed using the Lorentz force law or by 
computing changes in photon momentum for the wave.  Photon momentum is p = ẑ hf/c 
[Nms-1], where ẑ is a unit vector in the direction of wave propagation.  The force on an 
object f =  - n(d p / dt), where n is the number of incident photons per second and d p/dt 
is the momentum change per photon induced by the object. 
 
 
B. Reluctance Motors 
 
 To find the torque on the rotor for the reluctance motor illustrated in Figure 13-1, 
the magnetic fields must first be found.  The high permeability of the stator confines the 
magnetic fields produced by the N-turn coil and guides them to the pole faces where the 
small gaps b between stator and rotor offer the path of "least resistance" for the field lines 
to close on themselves around the loop.  B must be continuous across the two gaps 
because ∇  • B = 0, so Bstator ≅ Bgap ≅ Brotor, and Hstator ≅  (µo/µ) Hgap << Hgap. 
 
 Next we must relate NI to the fields.  The integral form of ∇  ×H = J becomes  

 
∫A J•  d a = ∫c H •  d s, so that (1) 
 
NI = ∫c( Hgap + Hstator) •  d s  ≅   2bHgap (2) 

 
It follows that 
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   Hgap ≅  NI/2b  (3) 
 
independent of the cross-sectional area of the gaps (provided they don't approach zero so 
that the non-gap field leakage becomes a significant fraction of the total magnetic flux). 
 
 
 
 
 
 
 Figure 13-1.  Reluctance motor 
 
 
 
 
 
 We might be tempted to compute the torque on the rotor by differentiating the mag-
netic energy in the gap with respect to rotor position.  The total energy in the two gaps 
equals the volumes of the two gaps times the magnetic energy density stored there, or: 
 
   wgap ≅  2bRθD µo|Hgap|2/2  [Jm-3] (4) 
 
where the gap area is RθD, R is the rotor radius, θ is the angular overlap (radians) 
between rotor and stator, and D is the depth of the structure.  However, if we compute 
torque T using the usual formula: 
 
   T = -∂wgap/∂θ = -bRD µo|Hgap|2 (5) 
 
we obtain the wrong sign!  The torque actually acts to pull the rotor between the stator 
poles, so its true sign is positive, not negative as in (5).  The error here is that the total 
system energy expression did not include the power supply driving the current I through 
the windings. 
 
 Although we might include the change in power supply energy (∫Vi(t)dt) as the 
rotor turns in order to obtain the correct value for force, it is easier here to change the 
problem definition slightly by short-circuiting the input coil so that I continues to flow.  
We note that Faraday's law ∇  × E = - ∂ B/∂t becomes: 
 

   
c coil A

dE ds N B da d dt 0dt• = − • = − Λ =∫ ∫!  (6) 

 
where the contour integral is zero when the coil is short-circuited.  The magnetic flux 
linkage Λ is therefore constant: 
 
   Λ = N ∫A B •  d a  =  NBgapAgap = NµoHgapAgap = N2µoIAgap /2b (7) 
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where we used the fact that Hgap = NI/2b (see (3)).  It follows that: 
 
   L = Λ/I = N2µoAgap/2b (8) 
 
 To find the torque we differentiate the system energy with respect to θ using an 
expression that contains only θ and constants such as Λ.  Expressions containing L and I 
are problematic because they are not known to be constant.   
    
 We know I = Λ/L so, using (8): 
 
   wm = LI2/2 = Λ2/2L = Λ22b/ N2µoAgap = Λ2b/ N2µoRDθ (9) 
 
The torque T [Nm] is: 
 
   T = -∂wm/∂θ = -(Λ2b/N2µoRD)∂(θ-1)/∂θ = Λ2b/N2µoRDθ2 (10) 
 
Using (7) to replace Λ we find: 
 
   T = N2µoI2RD/4b  [Nm] = (µoHgap

2/2)(2bRD)   ≠ f(θ) (11) 
 
This can be expressed more simply and physically as: 
 
   T = Wmgap(dVolume/dθ)  [Nm] (12) 
 
 Thus (12) expresses an important result, which is essentially the same result we 
found for electric motors—the torque is limited by the maximum energy density in the 
electromagnetic fields, and by the rate at which the volume of the energized gap changes 
per radian of rotation. 
 
 Equation (11) suggests that to maximize torque we should maximize NI and RD, 
and minimize the gap b.  In practice, the ratio µ/µo is sufficiently large that usually the 
gap width b, and therefore the torque, is limited in part by manufacturing, bearing, and 
life stress tolerances. 
 
 The power supply for a motor such as that shown in Figure 13-1 normally provides 
current I starting when the rotor angle θ is such that the gap area is minimum, and it stops 
when that area becomes maximum.  The rotor then coasts with I = 0 until the area is 
again minimum, when the cycle repeats. 
 
 There are ways to increase this duty cycle so drive currents operate continuously.  
Figure 13-2 illustrates an example with three stator poles and four rotor poles.  The stator 
fields will pull the rotor poles to close the gaps.  Here, if windings A and B are excited, 
then rotor pole 1 will be pulled clockwise into stator pole B.  The gap area for stator pole 
A is temporarily constant and contributes no additional torque.  After the rotor moves π/3 
radians, the currents are switched to poles B and C so as to pull rotor pole 2 into stator 
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pole C, while rotor pole 1 contributes nothing to the torque.  Next C and A are excited, 
and the cycle is repeated twice per revolution.  Counter-clockwise torque is obtained by 
reversing the excitation sequence.  Many pole combinations are possible, with the higher 
number of poles yielding higher torques because the derivative in (12) is proportional to 
the number of active poles. 
 
 
 
 
 
 
 
 Figure 13-2.  Reluctance motor with 3 
       rotor and 4 stator poles 
 
 
C. Permanent Magnets 
 
 The force f [N] attracting a permanent magnet to a high-permeability mater
be found using: 
 
   f = dwm/db  
 
where b[m] is the separation between the two, as illustrated in Figure 13-3, and wm
total energy in the magnetic fields [J].  The changing magnetic energy in the
permeability material is negligible compared to that in air because: 1) Wm [Jm-3] α 
where µ >> µo, and 2) the ratio of H in the two media is Hµ/Hµo = µo/µ << 1 b
boundary conditions require that B⊥  = µ H⊥  be continuous across the boundary be
the two media; thus the energy density in air is greater by µ/µo >> 1. 
 
 
 
 
 
 Figure 13-3.  Magnet clinging to metal 
 
 
 
 
 The variable magnetic energy is dominated by the energy wm in the gap, w
the energy density, Wm = µoHgap

2/2 = Bgap
2/2µo, times the volume of the gap Ab, w

is the area of the magnet face.  Thus: 
 
   wm ≅  µoHgap

2bA/2  [J] 
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Differentiating wm with respect to b yields the force f ≅  µoHgap
2A/2  [N], and the force 

density: 
 
    F ≅  µoHgap

2/2  [Nm-2] = Wgap[Jm-3] (15) 
 
This can be expressed in terms of B:  F = Bgap

2/2µo [Nm-2]. 
 
 Most permanent magnets have magnetic flux densities B less than one Tesla (104 
gauss).  A magnet this powerful with an area A = 10 cm2 (~the size of a silver dollar) 
would therefore exert an attractive force of AF = 0.001×12/2×4π10-7 ≅  400N (~100 pound 
force).  A more typical permanent magnet the same size might exert only a 20-pound 
force. 
 
 Permanent magnets fail above their Curie point, which is the critical temperature 
above which the magnetic domains become scrambled.  Cooling them in a strong external 
magnetic field can generally restore them.  Some types of permanent magnets can also 
fail at very low temperatures, and should not be used where that is a risk. 
 
 
D. Forces Arising from Electromagnetic Waves 
 
 Electromagnetic wave forces on media can be computed using the Lorentz force 
law or Newton's law for photons.  First consider the Lorentz forces exerted by a uniform 
z-directed plane wave normally incident upon a perfect conductor, as illustrated in Figure 
13-4.  At the surface of the conductor the electric and magnetic fields are: 
 
    Ex(z = 0) = 0 = E+cos(ωt – kz) + E-cos(ωt + kz) (16) 
 
    H(z = 0) = ŷ  (2E+/ηo)cos ωt (17) 
 
 
 
 
 
 Figure 13-4.  Uniform plane wave impacting 
       a perfect conductor 
 
 
 The boundary condition for a perfect conductor is
[Am-1] is: 
 
    Js = n̂ ×H = x̂ (2E+/ηo)cos ωt 
 
The Lorentz force law 
 
    f = q( E + v × µo H) 
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yields the electromagnetic pressure P [Nm-2], which is found as follows.  First we 
calculate the force density: 
 
    F[Nm-3] = nqvµoH = JµoH (20) 
 
where n is the number of moving electrons per cubic meter, q is their charge, and v is 
their velocity.  But n is a function of depth into the conductor, so we must integrate the 
force density over depth z to obtain the pressure P: 
 
   P = ∫0∞[ J(z) × µo H(z)] dz (21) 
 
Inside the conductor  J(z) = ∇  ×H(z) for σ → ∞, and so: 
 
   J(z)  = ∇  ×H = - x̂ ∂Hy/∂z (22) 
 
Therefore (21) becomes: 
 

P(t) = - ẑ µo ∫0∞
 (∂Hy/∂z)Hy dz = - ẑ µo ∫

=
==

0
)0( 0

y

yy

H
HzH HydHy  = ẑ µoHy0

2(t)/2 (23) 

 
which is the same answer as before—the magnetic pressure equals the magnetic energy 
density when the magnetic energy density in the adjacent medium is negligible in 
comparison.  In the sinusoidal steady state the time average pressure is half the value 
given by (23), and can also be expressed in terms of the time-average Poynting vector 
< S(t)>: 
 
   <P(t)> = ẑ µo<Hy0

2(t)>/4 = 2<S(t)>/c [Nm-2] (24) 
 
where Hy0 = 2H+ and <S(t)> = ηoH+

2/2 = (µo/c)H+
2/2.  By expressing the pressure in 

terms of <S(t)> it is easy to relate it to the photon momentum flux, which also yields 
pressure. 
 
 We recall that photon energy is hf [J].  If the photon had mass "m", its kinetic 
energy K = hf would be "m"c2 and its momentum M would be "m"c or K/c.  Therefore: 
 
   photon momentum M = hf/c [Nms-1] (25) 
 
The momentum transferred to a mirror upon perfect reflection backwards of a single 
photon is therefore 2hf/c.  We recall from mechanics that the force f required to change 
momentum mv is: 
 
   f = d(mv)/dt [N] (26) 
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so that the total radiation pressure on a mirror reflecting directly backwards n photons    
s-1m-2  is: 
 
   <P> = n2hf/c = 2<S(t)>/c [Nm-2] (27) 
 
The factor of two arises because the photon momentum was not just zeroed, but was 
reversed.  If these photons were absorbed rather than reflected, the rate of momentum 
transfer to the absorber would be half.  In general if the incident and reflected power 
densities are <S1> and <S2>, respectively, then the average radiation pressure on the 
mirror is: 
 
   <P> = <S1 + S2>/c  [Nm-2] (28) 
 
 Consider the simple example of a solar sail blown by radiation pressure across the 
solar system, sailing from planet to planet.  At earth the solar radiation intensity is ~1.4 
kW/m2, so (28) yields a total force on a sail intercepting one square kilometer of radiation 
of <P> = 106×2800/3×108 = 9 N.  A sail this size one micron thick and having the density 
of water would have a mass of 1000 kg.  Since the sail velocity v = at = (f/m)t where a is 
acceleration, it follows that after one year the accumulated velocity of a sail facing such 
pressure would be (9/1000)3×107 ≅  3×105 ms-1 = c/1000.  Since gravity also acts on such 
sails, orbital mechanics must also be considered in order to obtain accurate results. 


