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6.013 Lecture 22: 
Optical Communications 

 
A. Overview 
 
 Optical communications is as old as smoke signals and mirrors reflecting sunlight.  
Today it is particularly important for long-haul and extremely wideband communications.  
Optical fibers now convey most intercontinental communications, although microwave 
satellites still serve geographically isolated users such as those on ships.  Satellites also 
provide moveable capacity that can address transient shortfalls or failures across the 
globe; they simply point their antenna beams at the new users.  Fibers have also been 
widely installed for both interstate and intrastate communications, and are beginning to 
migrate down into the local loop and to small businesses and homes.  Extreme data rates 
are now also being conveyed between and within computers and even chips, although 
wires still have advantages of cost and simplicity for most ultra-short applications. 
 

A significant niche market also exists for local line-of-sight optical links that 
provide extreme bandwidths for dedicated point-to-point communications.  For example, 
companies can link laser beams between buildings and can quickly bypass inadequate or 
failed wire links connecting them to the global network, as happened after 9/11 in New 
York City. 

 
Optical links also have great potential for very broadband inter-satellite or 

satellite-earth communications because small telescopes easily provide highly focused 
antenna beams.  For example, beamwidths of telescopes with 5-inch apertures are 
typically one arc-second [1 arc-second is 1/60 arc-minutes, 1/602 degrees, 1/(57.3×602) 
radians, or 1/60 of the largest apparent diameters of Venus or Jupiter in the night sky]. 
 
 The major components in fiber communications systems are the fibers themselves 
and the optoelectronic devices that manipulate the optical signals, such as detectors 
(discussed in the second recitation), amplifiers and sources (discussed in next lecture), 
modulators, mixers, switches (which can be MEMS-controlled mirrors, shutters, or 
gratings), filters, multiplexers, directional couplers, and others.  These are assembled to 
create useful communications or computing systems.  A typical wave-division 
multiplexed (WDM) amplified long fiber system is pictured in Figure 22-1.  
 
 
Figure 22-1. 
Wave-division multiplexed 
amplifier 
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In the system of Figure 22-1 different users transmit modulated signals at n 
optical wavelengths to a multiplexer (MUX) that losslessly combines them into a single 
broadband beam near 1.5-micron wavelength that can propagate long distances through a 
glass fiber before requiring amplification in an optical amplifier (OAMP).  OAMPs are 
typically erbium-doped fiber amplifiers (EFDA's) spaced about 50 miles apart; thus 
Figure 22-1 represents a ~200-mile link.  At the far end the wavelengths can be separated 
using a de-multiplexer (DEMUX) into the original user bands for local distribution.  
Without very broad band EFDA's the optical signals at each wavelength would have to be 
separately amplified, or detected and then regenerated by a new transmitter, for each of 
the n optical channels that could otherwise be amplified by a single EFDA. 
 
 
B. Optical Fibers and Dielectric Slab Waveguides 
 
 A typical glass optical fiber transmission line is perhaps 125 microns in diameter 
with a glass core having diameter ~10 microns; the fiber is surrounded by layers 
providing physical protection.  The core permittivity ε is typically ~2 percent greater than 
that of the cladding so as to trap most of the energy.  If the light beams in the core impact 
the cladding beyond the critical angle 
 

θc = sin-1(ε/(ε+∆ε)) (1) 
 
then they are perfectly reflected and thereby trapped within the core.  Only evanescent 
waves exist inside the cladding, and they decay approximately exponentially away from 
the core to negligible values at the outer cladding boundary, which is often encased in 
plastic about 0.1 mm thick.  Some fibers propagate more than one mode; these multiple 
modes generally travel at different velocities and can confuse or limit information 
extraction (data rate).  Multiple fibers are usually bundled inside a single cable.  Figure 
22-2 suggests the structure of a typical fiber. 
 
 
 Figure 22-2. 
 Optical fiber 
 
 
 
 
 
 A more rigorous but approximate way to analyze fiber-optic modes is suggested 
in Figure 22-3 where a dielectric slab waveguide in vacuum is analyzed; it is assumed to 
be infinite in the lateral (y) direction.  A similar analysis is presented in Section 7.2 of the 
text.  If we assume that the +z-propagating TE waves inside the slab are standing waves 
in the x direction, then E is some linear combination of even (cosine) or odd (sine) 
modes proportional to cos kxx or sin kxx, and to e-jkz.  We also know that for plane waves 
incident at a dielectric interface beyond the critical angle θc, the fields decay 
exponentially away from the boundary outside.  That is, outside the slab E = 

6 µm 

125 µm 

glass cladding ε1 
glass core ε2 = ε1 + ∆ε 

∆ε / ε ≅   0.02  
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zzjkxeEy −−α
1ˆ for x > d, where d marks the upper boundary of the slab, as sketched in 

Figure 22-3b. 
 
 
 
 Figure 22-3. 
 Dielectric slab 
 waveguide 
 
 
 
 
 
 Boundary conditions for TE waves say that E// must be continuous across the 
boundary, and also ∂Ey/∂x.  The derivative ∂Ey/∂x must be continuous because we know 
that ∇  ×E = -∂ H/∂t (Faraday's law), where both H and ∂ H/∂t must be continuous 
across the same boundary because H⊥ and H// are continuous; thus ∇  ×E is continuous 
too.  But ∇  ×E = ẑ ∂Ey/∂x - x̂ ∂Ey/∂z, which must therefore also be continuous across 
the boundary.  The field distributions for various modes pictured in Figure 22-3b are 
consistent with both Ey and its derivative being continuous across the boundaries at x = 
±d.   
 
 Once the form of the electric field inside and outside the slab is known, H can be 
immediately found using Faraday’s law, i.e., by computing H = -(∇  ×E)/jωµ.  The 
resulting magnetic and electric field distributions are suggested in Figure 22-4.  At the 
boundary x = d the electric (y direction) and magnetic (z component) fields inside and 
outside the slab for TE1,3,5,… are: 
 
   o x 1yE cos k d yE  ˆ ˆ=z z-jk z -αd - jk ze e  (2) 

   ( ) ( )x o x 1 ojk E sin k d j E− ωµ = − α ωµz z-jk z -αd - jk ze e  (3) 
 
where Eo is the amplitude associated with the trapped fields, and E1 is associated with the 
evanescent fields. 
 
 Figure 22-4.  Electric and magnetic 
 fields in a dielectric slab waveguide 
 
 
 

The ratio of these two equations that require continuity in parallel E (Equation 2) 
and H (Equation 3) at the boundaries can be computed to yield: 

 
 kxd tan kxd = µαd/µo  (4) 
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The two dispersion relations: 
 

 kz
2 + kx

2 = ω2µε  inside the slab,                kz
2 - α2 = ω2µoεo outside (5) 

 
can be combined by eliminating kz to yield: 
 

kx
2 + α2 = ω2(µε - µoεo) (6)   

 
Substituting the expression for kx that comes from the dispersion relation (6) into 

(4) we obtain a transcendental equation: 
 

tan kxd = (µ/µo)([ω2(µε - µoεo)d2/kx
2d2] – 1)0.5 (7) 

 
This transcendental equation (7) can be solved graphically, as shown in Figure 22-5.  The 
left-hand side is a tangent function in kxd, and the right-hand side is a curve that depends 
on kxd and ω; the solutions for kxd are where the two curves cross.   
 
 
 
 Figure 22-5.  TE modes 
 for a dielectric slab 
 waveguide 
 
 
 
 
 
 
 
 
 For ω → 0 only the TE1 mode is allowed, but it can propagate at all ω.  At low 
frequencies this slab propagates waves with small values of α that decay very slowly 
away from the slab (α→0 as ω→0; see (6) as both kxd and ω →0).  In this low-frequency 
limit most of the wave energy is actually propagating outside the slab but parallel to it.  
At sufficiently high frequencies both the TE1 (0 < kxd < π/2) and TE3 (π < kxd < 3π/2) 
modes can propagate, as illustrated.  As ω→∞, the figure suggests that the number of 
propagating odd TE modes also approaches infinity.  Not shown here are the TM modes 
and the even TE modes. 

 
These solutions for dielectric-slab wavequides are similar to the solutions for 

optical fibers, which instead take the form of Bessel functions because of the cylindrical 
geometry of fibers.  In both cases we have lateral standing waves propagating inside and 
evanescent waves propagating outside. 

 
Figure 22-6 shows four forms of optical fiber.  One is thicker and can propagate 

multiple modes, while the other is so small that only one mode can propagate.  Since it is 
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essential that the waves propagate in essentially lossless media (e.g. vacuum or glass) and 
still be mechanically supported, most fibers are clad and have a glass core with a slightly 
higher permittivity than its glass cladding (also see Figure 22-5) that can trap the waves.  
In all three cases, however, both vertically and horizontally polarized modes can 
propagate independently and therefore interfere with each other.  By making the fiber 
core elliptical, it is possible to eliminate one of these two polarizations so the signal 
becomes even more pure.  That is, one polarization decays more slowly away from the 
core so that it sees more of the absorbing material that surrounds the cladding.  Many 
fiber types have been invented, but these are some of the most widely used. 

 
 
 
Figure 22-5 
 
 
 
 
 
 
 
 
 
Designing optical fibers has been a major activity for the past twenty years.  The 

first initial issue was propagation loss.  Reducing to negligible levels the losses due to 
rough fiber walls was relatively easy because drawn glass fibers are so smooth.  More 
serious was the absorption due to very small levels of impurities in the glass.  Purification 
was a significant step forward.  Water posed a particularly difficult problem because one 
of its harmonics fell in the region where attenuation in glass was otherwise minimum, as 
suggested in Figure 22-6.  At wavelengths shorter than ~1.5 microns the losses are 
dominated by Rayleigh scattering of the waves from the random fluctuations in glass 
density on atomic scales.  These scattered waves exit the fiber at angles less than θc.  
Rayleigh scattering is proportional to f4 and occurs when the inhomogeneities are small 
compared to λ/2π; here the inhomogeneities have atomic scales, say 1 nm, whereas the 
wavelength is more than 1000 times larger.  Rayleigh scattering losses are best 
minimized by minimizing unnecessary inhomogeneities. 

 
 

 
 Figure 22-6.  Loss mechanisms in 
 optical fibers 
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of inter-atomic bonds, and is unavoidable.  The resulting low-attenuation band centered 
near 1.5-microns between the Rayleigh and IR attenuating regions is about 1.5 THz wide, 
enough on one fiber to let each person in the U.S.A. have a private simultaneous 
bandwidth of 1.5×1012/2.5×108 = 6 kHz, or a private telephone channel!  Most fibers used 
for local distribution do not operate anywhere close to this limit for lack of demand, 
although undersea cables are pushing in that direction.  

 
The fibers are usually manufactured first as a preform, which is a glass rod that 

subsequently can be heated at one end and drawn into a fiber of the desired thickness.  
Preforms are either solid or hollow.  The solid ones are usually made by vapor deposition 
of SiO2 and GeO2 on the outer surface of the initial core rod, which might be a millimeter 
thick.  By varying the mixture of gases, usually Si(Ge)Cl4 + O2 ⇒  Si(Ge)O2 + 2Cl2, the 
permittivity of the deposited glass cladding can be reduced about 2 percent below that of 
the core.  The boundary between core and cladding can be sharp or graded in a controlled 
way.  Alternatively, the preform cladding is large and hollow, and the core is deposited 
by hot gases from the inside in the same way; upon completion there is still a hole 
through the middle of the fiber.  Since the core is small compared to the cladding, the 
preforms can be made more rapidly this way.  When the preform is drawn into a fiber, 
any hollow core vanishes.  Sometimes the hollow core is an advantage.  For example, 
some newer types of fibers have laterally-periodic longitudinal holes that force more of 
the energy to propagate within an internal void that is even less lossy than glass. 
 

Another major issue in the design of fibers is dispersion.  We want the same 
group velocity over the entire frequency band so that pulses or other waveforms do not 
distort as they propagate.  If the optical signal is formed by multiplying the optical carrier 
by a radio-frequency modulation signal, then the optical frequency spectrum is the 
convolution of the optical carrier spectrum (an impulse) and the radio frequency 
modulation spectrum.  Those outer frequencies farthest from the carrier are generally 
associated with the sharper edges of the modulation waveform.  If vg varies over this 
narrow optical band, then the wave will distort if it propagates far enough. 

 
 
Figure 22-7.   Group velocities for 
optical fiber modes. 
   
 
 
 

 
 

The group velocity vg is the slope of the ω vs k relation (vg = (∂k/∂ω)-1) at the 
optical frequency of interest, as suggested in Figure 22-7 for three different modes.  A 
dispersive line eventually transforms a square optical pulse into something that looks 
more like a sine wave of varying frequency.  This problem can be minimized by carefully 
choosing the dispersion n(f) of the glass, the permittivity contour ε(r) in the fiber, and the 
optical center frequency fo; the glass dispersion generally dominates.  Otherwise we must 
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reduce either the bandwidth of the signal or the length of the fiber.  Alternatively, the 
signal must be detected and regenerated after propagating only very short distances, as 
was done for the first fiber systems. 

 
This natural fiber dispersion can, however, help solve the problem of fiber 

nonlinearity.  Since attenuation is always present in the fibers, the amplifiers operate at 
high powers, limited partly by their own nonlinearities and by any fiber nonlinearities.  
This problem is more severe when the signals are in the form of isolated pulses.  By 
deliberately dispersing and spreading the pulsed signals before introducing them to the 
fiber, the peak signal amplitudes and resulting nonlinear effects are reduced.  This pre-
dispersion is made opposite to that of the fiber.  That is, if the fiber propagates high 
frequencies faster, then the pre-dispersion is chosen to delay them correspondingly.  Thus 
the residual fiber dispersion gradually compensates for the pre-dispersion over the full 
length of the fiber.  At the end of the fiber the pulses reappear in their original form, but 
with peak amplitudes so weak from natural attenuation that the fiber nonlinearities are 
not triggered. 


