## **VARIABLE RELUCTANCE MOTORS**

#### **Basic 2-Pole Reluctance Motor:**

What is the torque on the rotor?

### First find B and H:

Since  $\nabla \bullet \overline{B} = 0$ , then  $\overline{B}_{stator} \cong \overline{B}_{gap}$ and  $\overline{H}_{stator} \cong (\mu_0/\mu)\overline{H}_{gap} << \overline{H}_{gap}$  $(\mu \cong 10^4 \mu_0)$  $\nabla \times \overline{H} = \overline{J} \Rightarrow$  $NI = \int (\overline{H}_{gap} + \overline{H}_{stator}) \bullet d\overline{s} \cong 2bH_{gap}$ cTherefore  $H_{gap} \cong NI/2b$ 



(independent of rotor cross-sectional area)

# **VARIABLE RELUCTANCE MOTORS (2)**

#### Find Torque T[Nm] by Differentiating Energy Storage:

Since: 
$$W_m \propto \mu |H|^2 / 2 [Jm^{-3}]$$
 and  $\overline{H}_{stator} \cong (\mu_0 / \mu) \overline{H}_{gap}$ 

Therefore:  $W_{gap} \cong (\mu/\mu_0) W_{stator} [Jm^{-3}]$ 

So if:  $b/2R \ll \mu_0/\mu$ 

Then:

 $w_{gap} \gg w_{stator}[J]$  where  $w_{gap} \approx 2bR\theta D\mu_0 |H_{gap}|^2/2$ 

Where: Gap area =  $R\theta D[m^2]$  (for  $0 < \theta < \pi/2$ )

Therefore(?): 
$$T = -\partial w_{gap} / \partial \theta = -bRD\mu_0 |H_{gap}|^2$$

WRONG SIGN!

To find force we must always differentiate <u>total</u> energy, including the energy in the power supply!

#### **To Find Torque Correctly:**

Can include the changing source energy, but easier to reformulate the energy expression

h

μ rotor

stator

N turns

μ

# FLUX LINKAGE $\Lambda$ AND INDUCTANCE L

## **Definition of Flux Linkage** $\Lambda$ :

Flux Linkage  $\Lambda = N \int_A \overline{B} \bullet d\overline{a}$ 

$$-\nabla \times \overline{E} = \partial \overline{B} / \partial t = N \int_{A} (d\overline{B} / dt) \bullet d\overline{a} = d\Lambda / dt$$
$$-\int \overline{E} \bullet d\overline{s} = V = \frac{d\Lambda}{dt} = L di / dt$$
c coil  
Therefore:



### **Reluctance-Motor Flux Linkage** $\Lambda$ :

- $V = d\Lambda/dt = 0$  if motor short-circuited; therefore
- $\Lambda = \text{constant} \neq f(\theta) \text{ (key step)}$

$$\begin{split} \Lambda &= N\mu_o H_{gap} A_{gap} = N^2 \mu_o I A_{gap}/2b, \text{ where } H_{gap} = NI/2b \text{ [see L22-1]} \\ A_{gap} &= RD\theta \text{ here [L22-2]} \\ L &= \Lambda/I = N^2 \mu_o A_{gap}/2b \end{split}$$

# **RELUCTANCE MOTOR TORQUE**

#### **Energy Storage and Torque with the Source Short-Circuited:**

$$\begin{split} & \mathsf{W}_{\mathsf{m}} = \mathsf{L}\mathsf{I}^{2}/2 = \Lambda^{2}/2\mathsf{L} \quad (\mathsf{I} = \Lambda/\mathsf{L}) \\ & \mathsf{T} = -\partial \mathsf{W}_{\mathsf{m}}/\partial\theta = -\Lambda^{2}\partial(1/2\mathsf{L})/\partial\theta = -\Lambda^{2}\partial(\mathsf{b}/\mathsf{N}^{2}\mu_{o}\mathsf{A}_{\mathsf{gap}})/\partial\theta \quad [\mathsf{A}_{\mathsf{gap}} = \mathsf{R}\theta\mathsf{D}] \\ & = -(\Lambda^{2}\mathsf{b}/\mathsf{N}^{2}\mu_{o}\mathsf{R}\mathsf{D})\partial\theta^{-1}/\partial\theta = \Lambda^{2}\mathsf{b}/\mathsf{N}^{2}\mu_{o}\mathsf{R}\mathsf{D}\theta^{2} \\ & \mathsf{Recall} \Lambda = \mathsf{N}^{2}\mu_{o}\mathsf{I}\mathsf{A}_{\mathsf{gap}}/2\mathsf{b} \quad [\mathsf{see} \ \mathsf{L}22\text{-}3] \\ & \mathsf{T} = (\mathsf{N}^{2}\mu_{o}\mathsf{I}\mathsf{R}\theta\mathsf{D}/2\mathsf{b})^{2}\mathsf{b}/\mathsf{N}^{2}\mu_{o}\mathsf{R}\mathsf{D}\theta^{2} \end{split}$$

Therefore:

 $T = N^{2}\mu_{o}I^{2}RD/4b \ [Nm] = (\mu_{o}H_{gap}^{2}/2)(2bRD) \ \neq f(\theta) \quad (e.g. \text{ for } 0 < \theta < \pi/2)$ 

 $T = W_{mgap}(dV_{olume}/d\theta)$  [Nm]

~Same as for electric motors!

T is limited by maximum energy density

Maximize T: maximize (NI)<sup>2</sup> and RD (~weight), minimize b (tolerances)

#### **Motor Drive Circuit:**

I is turned on when  $A_{gap}$  is minimum; torque then increases  $A_{gap}$  as the rotor is pulled by the stator. When  $A_{gap}$  = maximum, I is set to zero and the rotor coasts until  $A_{gap}$  = minimum, and the cycle repeats. (<50% duty cycle here)

# **¾-POLE VARIABLE RELUCTANCE MOTOR**

#### Winding Excitation Plan:

Start by exciting windings A,B; this pulls pole 1 into pole B; for winding A, the pole area is temporarily constant. When  $\Delta \theta = \pi/3$ , the currents are switched to B,C; when  $\Delta \theta = 2\pi/3$  we excite C,A. Repeating this cycle results in nearly constant clockwise torque.

To go counter-clockwise, excite BC, then AB, then CA.



#### **Torque:**

Only one pole is being pulled in; the other winding has either one rotor pole fully in, or one entering and one leaving that cancel. Many pole combinations are used (more poles, more torque).

## **PERMANENT MAGNET SYSTEMS**

#### **Refrigerator Magnets:**

Force: $f = -dw_m/db$ South poleVariable energy: $w_m \cong bA\mu_0H_{gap}^2/2$  [J]Area A $= bAB_{gap}^2/2\mu_0$  $W_m \neq -f(b)$  $W_m \neq -f(b)$ Force density: $f/A = B_{gap}^2/2\mu_0$  [Nm<sup>-2</sup>] $W_m^2$ 

Example: Let B = 1 Tesla (10,000 gauss), A = 10 cm<sup>2</sup> Then f =  $0.001 \times 1^2/2 \times 4\pi 10^{-7} \cong 400$  N  $\cong$  100-lb force

#### **Permanent Magnet Properties:**

Strength:Typical strong magnets ~0.2T; can  $\rightarrow$  1TeslaTemperature :Above ~200C they fail; some fail at low temperatures

# FORCES FROM ELECTROMAGNETIC WAVES



# PHOTON PRESSURE

## **Photon Energy:**

hf [J] = "m"
$$c^2$$

h = Planck's constant =  $6.625 \times 10^{-34}$  [Js], f = frequency [Hz]

## **Photon Momentum:**

Transferred to mirror upon reflection:  $\Delta$  momentum = 2hf/c

## Photon Pressure P [Nm<sup>-2</sup>]:

Pressure P is change of momentum  $s^{-1}m^{-2}$  [Mechanics: f = d(mv)/dt]

 $\langle P \rangle = n2hf/c = 2\langle S(t) \rangle/c$  [Nm<sup>-2</sup>] where n = # photons reflected s<sup>-1</sup>m<sup>-2</sup>

If a photon is absorbed, then  $\Delta$  momentum = hf/c, and P =  $\langle S(t) \rangle / c$ In general, if the incident and reflected fluxes are  $S_1$  and  $S_2$  [Wm<sup>-2</sup>],

$$\langle P \rangle = \langle S_1 - S_2 \rangle / c \quad \left[ Nm^{-2} \right]$$

## Solar Sailing Across Solar System:

Say 1 km<sup>2</sup> at 1.4 kW/m<sup>2</sup>  $\Rightarrow$  A  $\langle P \rangle = A2 \langle S \rangle / c = 10^6 \times 2800 / 3 \times 10^8 = 9N$ (say 10<sup>-6</sup> thick,  $\rho = 1g/cm^3$ )  $v = at = (f/m)t \cong (9/1000)3 \times 10^7 \cong 3 \times 10^5 \text{ ms}^{-1}$  in 1 year =  $10^{-3}c$