
VARIABLE RELUCTANCE MOTORS


Basic 2-Pole Reluctance Motor: 
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What is the torque on the rotor? 

First find B and H: 
Since ∇ •  B = 0, then Bstator ≅ Bgap 
and Hstator ≅ µ o µ)Hgap << Hgap( 

(µ ≅  104 µo ) 
∇ ×  H J  ⇒= 

NI = ∫ (Hgap + Hstator ds 

NI 2b 

• ) ≅ 2bHgap 
c + V -

Therefore Hgap ≅ 

(independent of rotor cross-sectional area) 
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WRONG SIGN!
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VARIABLE RELUCTANCE MOTORS (2) 
Find Torque T[Nm] by Differentiating Energy Storage: 

Since: Wm ∝ µ  2 H 2 Jm −3  and Hstator ≅ (µo µ)Hgap 

Therefore: Wgap ≅ µ  µ( o ) Wstator  Jm−3  
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So if: b 2R << µo


Then: wgap >>


wgap ≅ 

Where: Gap area (

stator 
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2Therefore(?): T = −∂wgap ∂θ = −bRDµo Hgap 

WRONG SIGN! To find force we must always differentiate total energy, 
including the energy in the power supply! 

To Find Torque Correctly: 
Can include the changing source energy, but easier to 

reformulate the energy expression L13-2 
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FLUX LINKAGE ΛΛΛΛ AND INDUCTANCE L
Definition of Flux Linkage ΛΛΛΛ:

(A

c

E t N dB dt da d dt

dE ds V Ldi dtdt

−∇ × = ∂ ∂ = • = Λ

Λ− = = =

∫

∫
coil

AFlux Linkage  N B daΛ = •∫

Therefore: L = Λ/i

Reluctance-Motor Flux Linkage ΛΛΛΛ:
V = dΛ/dt = 0 if motor short-circuited; therefore
Λ = constant ≠ f(θ)  (key step)
Λ = NµoHgapAgap = N2µoIAgap/2b, where Hgap = NI/2b [see L22-1]
Agap= RDθ here [L22-2]
L  Λ/I = N2µoAgap/2b
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RELUCTANCE MOTOR TORQUE

Energy Storage and Torque with the Source Short-Circuited:


wm = LI2/2 = Λ2/2L (I = Λ/L) 
T = -∂wm/∂θ = -Λ2∂(1/2L)/∂θ = -Λ2∂(b/N2µoAgap)/∂θ [Agap = RθD] 

= -(Λ2b/N2µoRD)∂θ-1/∂θ = Λ2b/N2µoRDθ2 

Recall Λ = N2µoIAgap/2b [see L22-3] 
T = (N2µoIRθD /2b)2b/N2µoRDθ2 

Therefore: 

T = N2µoI2RD/4b [Nm] = (µoHgap
2/2)(2bRD) ≠ f(θ) (e.g. for 0 < θ < π/2) 

T = Wmgap(dVolume/dθ) Nm] [ ~Same as for electric motors!

T is limited by maximum energy density


Maximize T: maximize (NI)2 and RD (~weight), minimize b (tolerances) 

Motor Drive Circuit: 
I is turned on when Agap is minimum; torque then increases Agap as the 
rotor is pulled by the stator.  When Agap = maximum, I is set to zero and 
the rotor coasts until Agap = minimum, and the cycle repeats. (<50% duty 
cycle here) 
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¾-POLE VARIABLE RELUCTANCE MOTOR
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Winding Excitation Plan:

Start by exciting windings A,B; this pulls pole 
1 into pole B; for winding A, the pole area is 
temporarily constant.  When ∆θ = π/3, the 
currents are switched to B,C; when ∆θ = 
2π/3 we excite C,A.  ycle 
results in nearly constant clockwise torque.

To go counter-clockwise, excite BC, then 
AB, then CA.

Torque:
Only one pole is being pulled in; the other winding has either one rotor 
pole fully in, or one entering and one leaving that cancel.  any pole  
combinations are used (more poles, more torque).

Repeating this c

M



PERMANENT MAGNET SYSTEMS


Refrigerator Magnets: 
Force: f = -dwm/db 
Variable energy: wm ≅ bAµoHgap

2/2 [J] 
= bABgap

2/2µo 

Force density: f/A = Bgap
2/2µo [Nm-2] 

South pole 

Area A 

Wm ≠ ~f(b) 

b 

µ>>µo 

Example:	 Let B = 1 Tesla (10,000 gauss), A = 10 cm2 

Then f = 0.001 × 12/2×4π10-7 ≅ 400 N ≅ 100-lb force 

Permanent Magnet Properties: 

Strength: Typical strong magnets ~0.2T; can → 1Tesla 
Temperature : Above ~200C they fail; some fail at low temperatures 

L13-6 



 

 

 





 

FORCES FROM ELECTROMAGNETIC WAVES

Waves Impacting Conductors: E 

Ex(z = 0) = 0 = E+ cos(ωt − kz) + E− cos(ωt + kz) z
H(z = 0) = ŷ (2E+ ηo )cos ωt ⇒ (s J x 2E= ηˆ + o )cos ωt H

S 
x 

y 

Forces on Conductor: x 

f = q(E + v ×µoH) ⇒ quasistatic pressure P Nm−2  ; 

F Nm−3  = nqvµoH = JµoH where n = # m3 charge carriers 

P = ∫0 
∞ J(z) ×µoH(z)dz where J(z) = ∇ × H(z) for σ → ∞ 

y x̂ H= − ∂ ∂ 

0 

y z 

σ→∞ 

x z 

ˆ ˆ x z
J(z) H det x y z 

H
≅ ∇ × = ∂ ∂ ∂ ∂ ∂ ∂

0 0 

0 y 

ˆ y

HH
z 

H
y
y =0

0) Hyo 
HydHy = ẑµoHyo

2P(t) = −ẑµo ∫0 
∞(∂Hy ∂z)Hydz = −ẑµo ∫H (z= =  

[same as L22-6] 
(t) 2 

2
o 0ˆP(t) z H (t) 4 2 S(t) c = µ = y

where Hy0 = 2H+ and 

S(t) = ηoH+ 
2 2 = µocH+ 

2 
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PHOTON PRESSURE


hf [J] = “m”c2
Photon Energy:

h = Planck’s constant = 6.625 × 10-34 [Js], f = frequency [Hz] 

“m”c = hf/c [Nms-1]Photon Momentum:

Transferred to mirror upon reflection: ∆ momentum = 2hf/c


Photon Pressure P [Nm-2]:

Pressure P is change of momentum s-1m-2 [Mechanics: f = d(mv)/dt] 

where n = # photons reflected s-1m-2-2 P 2hf c 2 S(t) c Nm = n =  

If a photon is absorbed, then ∆ momentum = hf/c, and P = (t) cS
In general, if the incident and reflected fluxes are S1 and S2 [Wm-2], 

-2
1 P S c Nm =   2S − 

Solar Sailing Across Solar System:

Say 1 km2 at 1.4 kW/m2 ⇒
 A P A2 S c= = 106 ×2800 3 ×108 = 9N


(say 10-6 thick, ρ = 1g/cm3) 
v = at = (f/m)t ≅ (9/1000)3×107 ≅ 3×105 ms-1 in 1 year = 10-3c L13-8 


