VARIABLE RELUCTANCE MOTORS

Basic 2-Pole Reluctance Motor:

What is the torque on the rotor?

First find B and H :
Since $\nabla \bullet \overline{\mathrm{B}}=0$, then $\overline{\mathrm{B}}_{\text {stator }} \cong \overline{\mathrm{B}}_{\text {gap }}$ and $\bar{H}_{\text {stator }} \cong\left(\mu_{o} / \mu\right) \bar{H}_{\text {gap }} \ll \bar{H}_{\text {gap }}$

$$
\begin{aligned}
& \quad\left(\mu \cong 10^{4} \mu_{0}\right) \\
& \nabla \times \overline{\mathrm{H}}=\overline{\mathrm{J}} \Rightarrow \\
& \mathrm{NI}=\int_{\mathrm{c}}\left(\overline{\mathrm{H}}_{\text {gap }}+\overline{\mathrm{H}}_{\text {stator }}\right) \bullet \mathrm{d} \overline{\mathrm{~s}} \cong 2 \mathrm{bH} \\
& \text { gap }
\end{aligned}
$$

Therefore $\mathrm{H}_{\mathrm{gap}} \cong \mathrm{N} / 2 \mathrm{~b}$
(independent of rotor cross-sectional area)

VARIABLE RELUCTANCE MOTORS (2)

Find Torque T[Nm] by Differentiating Energy Storage:

Since: $\quad W_{m} \propto \mu \mid H^{2} / 2\left[J^{-3}\right]$ and $\bar{H}_{\text {stator }} \cong\left(\mu_{0} / \mu\right) \bar{H}_{\text {gap }}$
Therefore: $\quad \mathrm{W}_{\text {gap }} \cong\left(\mu / \mu_{\mathrm{o}}\right) \mathrm{W}_{\text {stator }}\left[\mathrm{Jm}^{-3}\right]$
So if: $\quad b / 2 R \ll \mu_{0} / \mu$
Then: $\quad \mathrm{w}_{\text {gap }} \gg \mathrm{w}_{\text {stator }}[\mathrm{J}]$ where

$$
w_{\text {gap }} \cong 2 b R \theta D \mu_{\mathrm{o}}\left|\mathrm{H}_{\text {gap }}\right|^{2} / 2
$$

Where: \quad Gap area $=\operatorname{R\theta D}\left[\mathrm{m}^{2}\right]($ for $0<\theta<\pi / 2)$
Therefore(?): $\quad \mathrm{T}=-\partial \mathrm{w}_{\text {gap }} / \partial \theta=-\mathrm{bRD}_{\mathrm{o}}\left|\mathrm{H}_{\text {gap }}\right|^{2}$

WRONG SIGN!

To find force we must always differentiate total energy, including the energy in the power supply!

To Find Torque Correctly:

Can include the changing source energy, but easier to reformulate the energy expression

FLUX LINKAGE Λ AND INDUCTANCE L

Definition of Flux Linkage Λ :

Flux Linkage $\Lambda=N \int_{A} \bar{B} \cdot d \bar{a}$
$-\nabla \times \overline{\mathrm{E}}=\partial \overline{\mathrm{B}} / \partial \mathrm{t}=\mathrm{N} \int_{\mathrm{A}}(\mathrm{d} \overline{\mathrm{B}} / \mathrm{dt}) \bullet \mathrm{d} \overline{\mathrm{a}}=\mathrm{d} \Lambda / \mathrm{dt}$
$-\int_{\mathrm{c} \text { coil }} \overline{\mathrm{E}} \bullet \mathrm{d} \overline{\mathrm{s}}=\mathrm{V}=\frac{\mathrm{d} \Lambda}{\mathrm{dt}}=\mathrm{Ldi} / \mathrm{dt}$
Therefore:

$$
\mathrm{L}=\Lambda \mathrm{i}
$$

Reluctance-Motor Flux Linkage Λ :
$\mathrm{V}=\mathrm{d} \Lambda / \mathrm{dt}=0$ if motor short-circuited; therefore
$\Lambda=$ constant $\neq \mathrm{f}(\theta)$ (key step)
$\Lambda=N \mu_{0} H_{\text {gap }} A_{\text {gap }}=N^{2} \mu_{o} \mathrm{I} \mathrm{A}_{\text {gap }} / 2 \mathrm{~b}$, where $\mathrm{H}_{\text {gap }}=\mathrm{NI} / 2 \mathrm{~b}$ [see L22-1]
$\mathrm{A}_{\text {gap }}=\mathrm{RD} \theta$ here [L22-2]
$\mathrm{L}=\Lambda / I=N^{2} \mu_{0} A_{g a p} / 2 b$

RELUCTANCE MOTOR TORQUE

Energy Storage and Torque with the Source Short-Circuited:

$$
\begin{aligned}
\mathrm{w}_{\mathrm{m}} & =\mathrm{LI}^{2} / 2=\Lambda^{2} / 2 \mathrm{~L} \quad(\mathrm{I}=\Lambda / \mathrm{L}) \\
\mathrm{T} & =-\partial \mathrm{w}_{\mathrm{m}} / \partial \theta=-\Lambda^{2} \partial(1 / 2 \mathrm{~L}) / \partial \theta=-\Lambda^{2} \partial\left(\mathrm{~b} / \mathrm{N}^{2} \mu_{\mathrm{o}} \mathrm{~A}_{\text {gap }} / \partial \theta \quad\left[\mathrm{A}_{\text {gap }}=\mathrm{R} \theta \mathrm{D}\right]\right. \\
& =-\left(\Lambda^{2} \mathrm{~b} / \mathrm{N}^{2} \mu_{0} \mathrm{RD}\right) \partial \theta^{-1} / \partial \theta=\Lambda^{2} \mathrm{~b} / \mathrm{N}^{2} \mu_{0} \mathrm{RD} \theta^{2} \\
\text { Recall } \Lambda & =\mathrm{N}^{2} \mu_{0} \mathrm{I} \mathrm{~A}_{\text {gap }} / 2 \mathrm{~b} \quad[\text { see L22-3] } \\
\mathrm{T} & =\left(\mathrm{N}^{2} \mu_{\mathrm{o}} \mathrm{IR} \theta \mathrm{D} / 2 \mathrm{~b}\right)^{2} \mathrm{~b} / \mathrm{N}^{2} \mu_{0} R D \theta^{2}
\end{aligned}
$$

Therefore:

$$
\mathrm{T}=\mathrm{N}^{2} \mu_{0} \mathrm{I}^{2} \mathrm{RD} / 4 \mathrm{~b}[\mathrm{Nm}]=\left(\mu_{0} \mathrm{H}_{\text {gap }}^{2} / 2\right)(2 \mathrm{bRD}) \not \neq \mathrm{f}(\theta) \quad(\text { e.g. for } 0<\theta<\pi / 2)
$$

$$
\mathrm{T}=\mathrm{W}_{\text {mgap }}\left(\mathrm{d} \mathrm{~V}_{\text {olume }} / \mathrm{d} \theta\right)[\mathrm{Nm}]
$$

~Same as for electric motors!
T is limited by maximum energy density
Maximize T: maximize (NI) $)^{2}$ and RD (\sim weight), minimize b (tolerances)

Motor Drive Circuit:

I is turned on when $A_{\text {gap }}$ is minimum; torque then increases $A_{\text {gap }}$ as the rotor is pulled by the stator. When $A_{\text {gap }}=$ maximum, I is set to zero and the rotor coasts until $\mathrm{A}_{\text {gap }}=$ minimum, and the cycle repeats. ($<50 \%$ duty cycle here)

3/4-POLE VARIABLE RELUCTANCE MOTOR

Winding Excitation Plan:

Start by exciting windings A, B; this pulls pole 1 into pole B; for winding A, the pole area is temporarily constant. When $\Delta \theta=\pi / 3$, the currents are switched to B, C; when $\Delta \theta=$ $2 \pi / 3$ we excite C, A. Repeating this cycle results in nearly constant clockwise torque.

To go counter-clockwise, excite BC, then $A B$, then $C A$.

Torque:

Only one pole is being pulled in; the other winding has either one rotor pole fully in, or one entering and one leaving that cancel. Many pole combinations are used (more poles, more torque).

PERMANENT MAGNET SYSTEMS

Refrigerator Magnets:

Force:
Variable energy:

$$
\begin{aligned}
& \mathrm{f}=-\mathrm{dw}_{\mathrm{m}} / \mathrm{db} \\
& \mathrm{w}_{\mathrm{m}} \cong \mathrm{bA} \mu_{\mathrm{o}} \mathrm{H}_{\mathrm{gap}}^{2} / 2[\mathrm{~J}] \\
&=\mathrm{bAB} \\
& \text { gap }
\end{aligned}
$$

Force density:

$$
\mathrm{f} / \mathrm{A}=\mathrm{B}_{\mathrm{gap}}{ }^{2} / 2 \mu_{\circ}\left[\mathrm{Nm}^{-2}\right]
$$

Example: \quad Let $B=1$ Tesla (10,000 gauss), $A=10 \mathrm{~cm}^{2}$
Then $\mathrm{f}=0.001 \times 1^{2} / 2 \times 4 \pi 10^{-7} \cong 400 \mathrm{~N} \cong 100-\mathrm{lb}$ force

Permanent Magnet Properties:

Strength:
Typical strong magnets $\sim 0.2 \mathrm{~T}$; can $\rightarrow 1$ Tesla
Temperature :

FORCES FROM ELECTROMAGNETIC WAVES

Waves Impacting Conductors:

$$
\begin{aligned}
& \bar{E}_{X}(z=0)=0=\left[\overline{\mathrm{E}}_{+} \cos (\omega t-k z)+\overline{\mathrm{E}}_{-} \cos (\omega t+k z)\right] \\
& H(z=0)=\hat{y}\left(2 \mathrm{E}_{+} / \eta_{\mathrm{o}}\right) \cos \omega t \Rightarrow \overline{\mathrm{~J}}_{S}=\hat{\mathrm{x}}\left(2 \mathrm{E}_{+} / \eta_{\mathrm{o}}\right) \cos \omega t
\end{aligned}
$$

Forces on Conductor:

$$
\begin{aligned}
& \overline{\mathrm{f}}=\mathrm{q}\left(\overline{\mathrm{E}}+\overline{\mathrm{v}} \times \mu_{0} \overline{\mathrm{H}}\right) \Rightarrow \text { quasistatic pressure } \mathrm{P}\left[\mathrm{Nm}^{-2}\right] ; \\
& \mathrm{F}\left[\mathrm{Nm}^{-3}\right]=n q v \mu_{0} \mathrm{H}=J \mu_{0} \mathrm{H} \text { where } \mathrm{n}=\# / \mathrm{m}^{3} \text { charge carriers } \\
& \overline{\mathrm{P}}=\int_{0}^{\infty} \overline{\mathrm{J}}(\mathrm{z}) \times \mu_{0} \overline{\mathrm{H}}(\mathrm{z}) \mathrm{dz} \text { where } \overline{\mathrm{J}}(\mathrm{z})=\nabla \times \overline{\mathrm{H}}(\mathrm{z}) \text { for } \sigma \rightarrow \infty
\end{aligned}
$$

$$
\bar{J}(z) \cong \nabla \times \bar{H}=\operatorname{det}\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
\partial \gamma \partial x_{0} & \partial / \partial y_{0} & \partial / \partial z \\
H_{x_{0}} & H_{y} & H_{z}
\end{array}\right|=-\hat{x} \partial H_{y} / \partial z
$$

$$
\overline{\mathrm{P}}(\mathrm{t})=-\hat{z} \mu_{\mathrm{o}} \int_{0}^{\infty}\left(\partial \mathrm{H}_{\mathrm{y}} / \partial \mathrm{z}\right) \mathrm{H}_{\mathrm{y}} \mathrm{dz}=-\hat{z} \mu_{0} \int_{\mathrm{H}_{\mathrm{y}}(\mathrm{z}=0)=\mathrm{H}_{\mathrm{y}_{0}}}^{\mathrm{H}_{\mathrm{y}}=0} \mathrm{H}_{\mathrm{y}} \mathrm{dH} \mathrm{H}_{\mathrm{y}}=\hat{z} \mu_{0} \mathrm{H}_{\mathrm{y}_{\mathrm{o}}}{ }^{2}(\mathrm{t}) / 2
$$

[same as L22-6]

$$
\langle\overline{\mathrm{P}}(\mathrm{t})\rangle=\hat{\mathrm{z}} \mu_{\mathrm{o}}\left\langle\mathrm{H}_{\mathrm{y} 0}{ }^{2}(\mathrm{t})\right\rangle / 4=2\langle\overline{\mathrm{~S}}(\mathrm{t})\rangle / \mathrm{c}
$$

where $\mathrm{H}_{\mathrm{y} 0}=2 \mathrm{H}_{+}$and

$$
\langle\mathrm{S}(\mathrm{t})\rangle=\eta_{\mathrm{o}} \mathrm{H}_{+}^{2} / 2=\mu_{\mathrm{o}} \mathrm{cH}_{+}^{2} / 2
$$

PHOTON PRESSURE

Photon Energy:

$$
\mathrm{hf}[\mathrm{~J}]=" \mathrm{~m}{ }^{2} \mathrm{c}^{2}
$$

$\mathrm{h}=$ Planck's constant $=6.625 \times 10^{-34}[\mathrm{Js}], \mathrm{f}=$ frequency $[\mathrm{Hz}]$

Photon Momentum:

$$
\text { "m"c }=\mathrm{hf} / \mathrm{c}\left[\mathrm{Nms}^{-1}\right]
$$

Transferred to mirror upon reflection: Δ momentum $=2 \mathrm{hf} / \mathrm{c}$ Photon Pressure P [Nm^{-2}]:

Pressure P is change of momentum $\mathrm{s}^{-1} \mathrm{~m}^{-2}$ [Mechanics: $\left.f=\mathrm{d}(\mathrm{mv}) / \mathrm{dt}\right]$ $\langle P\rangle=n 2 h f / c=2\langle S(t)\rangle / c \quad\left[\mathrm{Nm}^{-2}\right]$ where $\mathrm{n}=\#$ photons reflected $\mathrm{s}^{-1} \mathrm{~m}^{-2}$

If a photon is absorbed, then Δ momentum $=\mathrm{hf} / \mathrm{c}$, and $\mathrm{P}=\langle\mathrm{S}(\mathrm{t})\rangle / \mathrm{c}$ In general, if the incident and reflected fluxes are S_{1} and $\mathrm{S}_{2}\left[\mathrm{Wm}^{-2}\right]$,

$$
\langle P\rangle=\left\langle\mathrm{S}_{1}-\mathrm{S}_{2}\right\rangle / \mathrm{c}\left[\mathrm{Nm}^{-2}\right]
$$

Solar Sailing Across Solar System:

Say $1 \mathrm{~km}^{2}$ at $1.4 \mathrm{~kW} / \mathrm{m}^{2} \Rightarrow A\langle P\rangle=\mathrm{A} 2\langle\mathrm{~S}\rangle / \mathrm{c}=10^{6} \times 2800 / 3 \times 10^{8}=9 \mathrm{~N}$ (say 10^{-6} thick, $\rho=1 \mathrm{~g} / \mathrm{cm}^{3}$)
$v=a t=(f / m) t \cong(9 / 1000) 3 \times 10^{7} \cong 3 \times 10^{5} \mathrm{~ms}^{-1}$ in 1 year $=10^{-3} \mathrm{c}$

