6.013 (New) Electromagnetics and Applications

Issued: \quad September 10, 2002
Problem Set 2
Due in Recitation: September 18, 2002
Suggested Reading: Text (Staelin, Morgenthaler, and Kong), Sections 1.1-2, 1.6, 2.12, and Appendix A. View UPW and dipole radiation movies.

Problem 2.1

Consider a uniform plane wave having $\overline{\mathrm{H}}(\overline{\mathrm{r}}, \mathrm{t})=\hat{y} \sin \left(10^{9} \mathrm{t}+10 \mathrm{x}\right)\left[\mathrm{Am}^{-1}\right]$. For this wave, what is its:
(a) Frequency (Hz) ?
(b) Direction of propagation?
(c) Velocity?
(d) Wavelength?
(e) Value of μ ? $\left(\varepsilon=\varepsilon_{o}\right.$ here $)$
(f) $\overline{\mathrm{E}}(\overline{\mathrm{r}}, \mathrm{t})$?

Please always indicate the dimensional units of your answers (e.g. ms^{-1}).

Problem 2.2

For a wave in free space having $\overline{\mathrm{E}}=\hat{x} \cos (\omega \mathrm{t}-\mathrm{ky})$, determine the values for:
(a) Electric energy density $W_{e}(\overline{\mathrm{r}}, \mathrm{t})\left[\mathrm{Jm}^{-3}\right]$
(b) Magnetic energy density $\mathrm{W}_{\mathrm{m}}(\overline{\mathrm{r}}, \mathrm{t})\left[\mathrm{Jm}^{-3}\right]$
(c) Poynting vector $\overline{\mathrm{S}}(\overline{\mathrm{r}}, \mathrm{t})\left[\mathrm{Wm}^{-2}\right]$
(d) Average intensity I $\left[\mathrm{Wm}^{-2}\right]$
(e) Find a simple relationship between your answers for (a) and (b) above.
(f) Find a simple relationship between $\mathrm{c}\left[\mathrm{ms}^{-1}\right]$ and your answers for (a) and (d) above.
(g) Repeat (a) - (c) for the wave $\overline{\mathrm{E}}=\hat{x}[2 \cos (\omega \mathrm{t}-\mathrm{ky})+\cos (\omega \mathrm{t}+\mathrm{ky})]$
(h) For the wave of (g), evaluate the complex Poynting vector $\underline{\overline{\mathbf{S}}}(\overline{\mathrm{r}})$
(i) For the wave $\overline{\mathrm{E}}=\hat{x} \cos (\omega \mathrm{t}-\mathrm{ky})+\hat{z} \sin (\omega \mathrm{t}-\mathrm{ky})$ evaluate $\overline{\mathrm{S}}(\overline{\mathrm{r}}, \mathrm{t})$
(j) Is the physical significance of your answers to the above questions clear?

Problem 2.3

A conducting sphere 1 cm in diameter is isolated in space and has a charge Q .
(a) What is the electric field strength $\mathrm{E}_{0}\left[\mathrm{Vm}^{-1}\right]$ at the surface of the sphere?
(b) What is its electrostatic potential $\mathrm{V}_{\mathrm{o}}=\Phi_{0}$ relative to infinity (where $\Phi=0$)?
(c) We define capacitance $\mathrm{C}=\mathrm{Q} / \mathrm{V}$ [Farads]; what is the capacitance of this sphere?

Problem 2.4

Using the complex form of Maxwell's equations,
$\nabla \times \underline{\overline{\mathrm{E}}}=-\mathrm{j} \omega \underline{\overline{\mathrm{B}}} \quad \nabla \times \underline{\overline{\mathrm{H}}}=\underline{\mathrm{J}}+\mathrm{j} \omega \underline{\overline{\mathrm{D}}} \quad \nabla \cdot \overline{\mathrm{D}}=\underline{\rho}=0 \quad \nabla \cdot \underline{\overline{\mathrm{~B}}}=0$,
(a) Derive for free space $(\rho=\underline{\bar{J}}=0)$ the complex form of the wave equation for $\overline{\bar{H}}$:

$$
\left[\nabla^{2}+\mathrm{k}^{2}\right] \underline{\overline{\mathrm{H}}}=0 \text {. Recall the identity } \nabla \times(\nabla \times \overline{\mathrm{A}})=\nabla(\nabla \cdot \overline{\mathrm{A}})-\nabla^{2} \overline{\mathrm{~A}} .
$$

(b) Derive the conservation of charge equation $\nabla \bullet \overline{\mathrm{J}}=-\mathrm{j} \omega \underline{\varrho}$ for the case $\overline{\mathrm{J}}=\sigma \overline{\overline{\mathrm{E}}}$. Recall the identity $\nabla \cdot(\nabla \times \overline{\mathrm{A}})=0$.

Problem 2.5

Convert each of the following expressions to its alternate form, i.e., convert timedomain expressions to complex notation and vice versa. For example:

$$
A \sin (\omega t-k z) \leftrightarrow j A e^{-j k z}
$$

(a) $\mathrm{A} \cos (\omega t-\pi / 2)$
(b) $(1+\mathrm{j}) \mathrm{e}^{+\mathrm{j} k z}$
(c) $\mathrm{A} \cos (\omega \mathrm{t}-\mathrm{kz}+\pi / 2)$

