MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

6.013 (New) Electromagnetics and Applications

	Issued: Septe	mber 10, 200	2
Problem Set 2	Due in Recitation: Septe	mber 18, 200	2
Suggested Reading:	Text (Staelin, Morgenthaler, and Kong), Sections	1.1-2, 1.6, 2.1	-
	2, and Appendix A. View UPW and dipole radiation	on movies.	

Problem 2.1

Consider a uniform plane wave having $\overline{H}(\overline{r},t) = \hat{y} \sin(10^9 t + 10x) [Am^{-1}]$. For this wave, what is its:

(a)	Frequency (Hz)?	(b) Direction of propagation?	(c) Velocity?
(d)	Wavelength?	(e) Value of μ ? ($\epsilon = \epsilon_0$ here)	(f) $\overline{E}(\overline{r},t)$?

Please always indicate the dimensional units of your answers (e.g. ms⁻¹).

Problem 2.2

For a wave in free space having $\overline{E} = \hat{x} \cos(\omega t - ky)$, determine the values for:

- (a) Electric energy density $W_e(\bar{r},t)[Jm^{-3}]$ (b) Magnetic energy density $W_m(\bar{r},t)[Jm^{-3}]$
- (c) Poynting vector $\overline{S}(\overline{r},t)$ [Wm⁻²] (d) Average intensity I [Wm⁻²]
- (e) Find a simple relationship between your answers for (a) and (b) above.
- (f) Find a simple relationship between $c[ms^{-1}]$ and your answers for (a) and (d) above.
- (g) Repeat (a) (c) for the wave $\overline{E} = \hat{x} [2\cos(\omega t ky) + \cos(\omega t + ky)]$
- (h) For the wave of (g), evaluate the complex Poynting vector $\overline{\mathbf{S}}(\overline{\mathbf{r}})$
- (i) For the wave $\overline{E} = \hat{x} \cos(\omega t ky) + \hat{z} \sin(\omega t ky)$ evaluate $\overline{S}(\overline{r}, t)$
- (j) Is the physical significance of your answers to the above questions clear?

Problem 2.3

A conducting sphere 1 cm in diameter is isolated in space and has a charge Q.

- (a) What is the electric field strength E_0 [Vm⁻¹] at the surface of the sphere?
- (b) What is its electrostatic potential $V_0 = \Phi_0$ relative to infinity (where $\Phi = 0$)?
- (c) We define capacitance C = Q/V [Farads]; what is the capacitance of this sphere?

Problem 2.4

Using the complex form of Maxwell's equations,

 $\nabla \times \ \underline{\overline{B}} = -j\omega \ \underline{\overline{B}} \qquad \nabla \times \ \underline{\overline{H}} = \ \underline{\overline{J}} + j\omega \ \underline{\overline{D}} \qquad \nabla \bullet \ \underline{\overline{D}} = \underline{\rho} = 0 \qquad \nabla \bullet \ \underline{\overline{B}} = 0,$

(a) Derive for free space ($\rho = \overline{J} = 0$) the complex form of the wave equation for $\overline{\underline{H}}$:

 $[\nabla^2 + k^2] \quad \underline{\overline{H}} = 0.$ Recall the identity $\nabla \times (\nabla \times \overline{A}) = \nabla (\nabla \cdot \overline{A}) - \nabla^2 \overline{A}.$

(b) Derive the conservation of charge equation $\nabla \cdot \overline{J} = -j\omega\rho$ for the case $\overline{J} = \sigma \overline{E}$. Recall the identity $\nabla \cdot (\nabla \times \overline{A}) = 0$.

Problem 2.5

Convert each of the following expressions to its alternate form, i.e., convert timedomain expressions to complex notation and vice versa. For example:

A sin(ω t - kz) \Leftrightarrow jA e^{-jkz}

(a) $A \cos(\omega t - \pi/2)$ (b) $(1+j)e^{+jkz}$ (c) $A \cos(\omega t - kz + \pi/2)$