
 

ACOUSTIC WAVES (GASES) 
Basic Differences with EM Waves: 

Electromagnetic Waves Acoustic Waves 

E, H are vectors S 
Linear physics 

⊥ U(velocity) // S, P(pressure) is scalar 
Non-linear physics, use perturbations 

Non-linearities: 
1)	 Compression heats the gas; cooling by conduction and radiation 

(adiabatic assumption—no heat transfer) 
2) Compression and advection introduce position shifts in wave 
3)	 Wave velocity depends on pressure, varies along wave 

(loud sounds form shock waves) P 
z 

Choice of Acoustic Variables: 
Velocity: U[ms−1 ] = Uo + (u u set U

p 

= 

ρ1 

o = 0 here) 
Pressure: P[Nm−2 ] = Po + 

Density: ρkg m3 
 = ρo + use perturbations 
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ACOUSTIC EQUATIONS

Mass Conservation Equation: 

Recall: ∇ •  J = ∇ • ρeu = −∂ρ ∂

= −∂ρ ∂ u 
e t Conservation of charge 

Acoustics: ∇ • ρ t Conservation of mass 
Linearize: ∇ • (ρo +ρ1 ( o U

0 
) + u) = −∂(ρo +ρ1 ∂ =  −∂ρ ∂1 t ) t 

Drop 2nd Order term (ρ1u), 

Linearized Conservation of Mass: ρ ∇ •  ≅ −∂ρ ∂o u 1 t 

Linearized Force Equation (f = ma): ∇ =  −ρ ∂ ∂o p tu 

Constitutive Equation: 
Fractional changes in gas density and pressure are proportional, i.e., 

dρ/ρ = (dP/P)/γ ⇒  ρ1 = (ρo/γPo)p 

"adiabatic exponent" γ = 5/3 monotomic gas, ~1.4 air, 1-2 else 

3 Equations, 3 Unknowns: Reduce to 2 unknowns (p,u) 
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ACOUSTIC EQUATIONS

Acoustic Differential Equations: 

− ∇ =  −ρ ∂ ∂ 3 2 2 
op t [Nm ]  [kg m s ]−-u Newton’s Law (f = ma): 

Conservation of Mass: 

Acoustic Wave Equation: 
( − −∇ •  = − γ ∂ ∂1 1

o u p t [s ] )P

Combine the acoustic differential equations, eliminating u: 

∇•∇ p ⇒ ∇ 2p - (ρo/γPo) ∂2p/∂t2 = 0 "Acoustic Wave Equation" 

2nd derivative in space = 2nd derivative in time 
( )  ( 2 p t,r p t k r [Nm ]−= − • ) ωSolution to Wave Equation: 

( ) = A cos (ωt − 

(
−η

ρ ωo

1
s 

k ! "#" $) 
kz)Example: p t,r 

(ω − kz)u = −ẑ ∫ρo 
−1∇ p  dt = A cos t  

Acoustic Impedance of Gas: 
(ηs ≅ 425 Nsm-3 [≠Ω] for air 20°C) 

Substituting solution into wave equation 

ηs = ωρo/k = (ρo/γPo)0.5 

⇒ “Acoustic Dispersion Relation”: k = ω(ρo/γPo)0.5 
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ACOUSTIC PLANE WAVES


Acoustic Wave Example: 

p t,r( ) = A cos (ωt − kz), k = ω(ρo γPo )0.5 

Velocity of Sound: 
Phase velocity: vp = ω/k = (γPo/ρo)0.5 = cs 
Group velocity: vg = (∂k/∂ω)-1 = (γPo/ρo)0.5 = cs 

Example:	 Air 0°C, surface Po 
(⇒ γ  = 1.4, ρo = 1.29 kg m-3, Po = 1.01 × 105 Nm-2) 

⇒ cs ≅ 330 ms-1 

Velocity of Sound in Liquids and Solids: 

cs = (K/ρo)0.5 ≅ 1,500 ms-1 in water, ≅ 1,500 – 13,000 in solids 

“Bulk modulus” 
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ACOUSTIC POWER AND ENERGY

Poynting Theorem: 

Recall: ∇ = −ρp o ∂ ∂  u t  ∇ • u = −(γPo )−1 

Note: Wave intensity [Wm-2 ] = 
[Watts] 

−2 1 pu(Nm )(ms− ) 
∂ ∂  p t  

Derivation, try: ∇ •  up = u • ∇ p + p∇ •  u 

A 
V 

ndaˆ = −ρou • ∂ ∂ − γu t ( Po )−1 p p∂ ∂t 
2

= −0.5 ∂ 
 ρo u − (γPo )−1 p2 

 ∂t 

Integral form: ( 2 2 
o A pu nda t u 2 p 2 P dv • − ∂ ∂ ρ + γ ∫ 

Kinetic and potential energy densities → Wk[Jm-3] p
Acoustic intensity I[Wm-2] 

) oV
= ∫ 

W
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ACOUSTIC POWER AND ENERGY (2)
Power P of Plane Wave = ˆ   -2pu•n Wm :

( )

( )

= η = η = = η = η
η = ρ γ ≅

=
⇒ = η = ≅

= η ≅ ∆ ≅ ω ≅

2 222
os s o s s

0.5 -3
s o o

-2

0.5 0.5 -2
o s

-1
o o s

p p u  instantaneously, I P p 2 u 2
Where: P { 425 Nsm  in surface air}
Example: I 1 Wm  at 1 kHz at the beach

p 2 I 850 30 Nm
u p 0.07 ms ; z u 1 micron

Threshold of Hearing:
Ithresh ≅ 0 dB (acoustic scale) = 10-12 [Wm-2]
po = (2ηsI)0.5 = (850 × 10-12)0.5 ≅ 3 × 10-5 [Nm-2]
uo = po/ηs = 3 × 10-5/425 ≅ 7 × 10-8 [ms-2]
∆z ≅ uoT/π= uo/πf ≅ 2 × 10-11 m = 0.2 Å

(less than an atomic diameter)



ρρρ γγγ ρρρ
BOUNDARY CONDITIONS


At Interface Having ρo,γo,Po (gases); ρo,K (solids, liquids): 
Pressure: A discontinuity in p would accelerate zero-mass gas 

boundary with ∞ acceleration; therefore ∆p = 0 
Velocity: u⊥ must be continuous across boundary (to avoid ∞ mass 

density accumulation at boundary) 
Rigid Boundaries: 

Any p is accommodated by a rigid boundary 

u⊥ = 0 (because rigid body is motionless) 

ki 

x 

kt 

θt 

θr θi 

kz 
z


Reflection at Non-Rigid Boundaries: 
Incident wave: pi = poe− jk ir = poe+jko cos θi x- jko sin θi z 

Reflected wave: pr = pre
− jk ir = pro e

-jko cos θr x- jko sin θr z 

Transmitted wave: pt = pte
− jkt ir = pto e

-jkt cos θt x- jkt sin θt z 

Velocities: Same, but pk → uk 

Matching Phases: ⇒ Snell's Law: sinθi/sinθt = kt/ko = (ρiγt/ρtγi)0.5 

(k = ω(ρo/γPo)0.5) θr = θI Critical angle: θc = sin-1(ρiγt/ρtγi)0.5 
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REFLECTIONS AT BOUNDARIES
Evanescent Waves (θθθθi > θθθθc):

Normal Incidence, two gases:

Reflections from Solid Surface ( )n̂ •u = 0 :

warm

cool
z

x

θi

tp

Recall:
Where: cos θt = (1 – sin2θt)0.5 and sin θt = (ρiγt/ρtγi)0.5 sin θi > 1
So: cos θt = ±jα/kt

cos sin sin
t to top p p= =-jk θ x- jk θ z -αx- jk θ zt t t t t te e

0
z

( )

( )

( ) ( )

jk z jk z jk zo o t
o ro to

o oro t0

o o ro o to t o t
0.5

o t o o o o

p : p e p e p e 1 T at z 0 p 0
Define p p  , T p p

u : p p p 1 T at z 0 u 0

Solving:   T 2 1   where k P

− + −+ = → + Γ = = ∆ =
Γ = =

η − η = η → − Γ = η η = ∆ =

= + η η η = ωρ = ρ γ

u
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ACOUSTIC WAVEGUIDES
A00 Mode (∂∂∂∂/∂∂∂∂x = ∂∂∂∂/∂∂∂∂y = 0):

Am0 Mode (∂∂∂∂/∂∂∂∂y = 0):

Amn Mode:

Satisfies boundary conditions
( )u 0⊥ =

p = A cos(ωt – kz)

d = mλx/2

p = A cos(mπx/2d)
cos(ωt – kz)

a = mλy/2, b = nλx/2

p = A cos(mπy/2a) cos(nπx/2b) cos (ωt – kz)

x

y z

p S
u

S(z,t)

z
cs

λzS(z,t) up=

x x

z
y

d

y
u

λz

b

a x

zy

A10 mode→

A21 mode→


