ACOUSTIC WAVES (GASES)

Basic Differences with EM Waves:

Electromagnetic Waves	Acoustic Waves
\overline{E} , \overline{H} are vectors $\perp \overline{S}$ Linear physics	\overline{U} (velocity) // \overline{S} , P(pressure) is scalar Non-linear physics, use perturbations

Non-linearities:

- Compression heats the gas; cooling by conduction and radiation (adiabatic assumption—no heat transfer)
- 2) Compression and advection introduce position shifts in wave
- Wave velocity depends on pressure, varies along wave (loud sounds form shock waves)

Choice of Acoustic Variables:

Velocity:
$$\overline{U}[ms^{-1}] = \overline{U}_0 +$$
 \overline{u} $= \overline{u} (set \overline{U}_0 = 0 here)$ Pressure: $P[Nm^{-2}] = P_0 +$ p Density: $\rho[kg m^3] = \rho_0 +$ ρ_1

Ζ

ACOUSTIC EQUATIONS

Mass Conservation Equation:

 $\begin{array}{ll} \mbox{Recall:} & \nabla \bullet \bar{J} = \nabla \bullet \rho_e \bar{u} = -\partial \rho_e / \partial t & \mbox{Conservation of charge} \\ \mbox{Acoustics:} & \nabla \bullet \rho \bar{u} = -\partial \rho / \partial t & \mbox{Conservation of mass} \\ \mbox{Linearize:} & \nabla \bullet (\rho_o + \rho_1) (\overline{U}_0 + \overline{u}) = -\partial (\rho_o + \rho_1) / \partial t = -\partial \rho_1 / \partial t \\ \mbox{Drop 2^{nd} Order term $(\rho_1 \bar{u})$,} \end{array}$

Linearized Conservation of Mass:

Linearized Force Equation (f = ma):

Constitutive Equation:

Fractional changes in gas density and pressure are proportional, i.e.,

 $d\rho/\rho = (dP/P)/\gamma \implies \rho_1 = (\rho_o/\gamma P_o)p$

"adiabatic exponent" $\gamma = 5/3$ monotomic gas, ~1.4 air, 1-2 else

3 Equations, 3 Unknowns: Reduce to 2 unknowns (p,\bar{u})

$$\rho_o \nabla \bullet u \cong -\partial \rho_1 / \partial t$$

$$\nabla p = -\rho_o \partial \overline{u} / \partial t$$

ACOUSTIC EQUATIONS

Acoustic Differential Equations:

Newton's Law (f = ma):

Conservation of Mass:

$$\nabla \mathbf{p} = -\rho_{o} \partial \overline{\mathbf{u}} / \partial t \quad [Nm^{-3}] [kg m^{-2}s^{-2}]$$
$$\nabla \bullet \overline{\mathbf{u}} = -(\gamma P_{o})^{-1} \partial p / \partial t \quad [s^{-1}]$$

Acoustic Wave Equation:

Combine the acoustic differential equations, eliminating \bar{u} :

 $\nabla \bullet \nabla p \implies \nabla^2 p - (\rho_o / \gamma P_o) \partial^2 p / \partial t^2 = 0 \text{ "Acoustic Wave Equation"}$ 2^{nd} derivative in space = 2^{nd} derivative in time **Solution to Wave Equation:** $p(t,\bar{r}) = p(\omega t - \bar{k} \bullet \bar{r})$ [Nm⁻²] Example: $p(t, \bar{r}) = A \cos(\omega t - kz)$ $\bar{u} = -\hat{z}\int \rho_o^{-1} \nabla p \, dt = \frac{(k/\rho_o\omega)}{A\cos(\omega t - kz)}$ Acoustic Impedance of Gas: $\eta_{\rm s} = \omega \rho_{\rm o}/k = (\rho_{\rm o}/\gamma P_{\rm o})^{0.5}$ $(\eta_s \cong 425 \text{ Nsm}^{-3} [\neq \Omega] \text{ for air } 20^{\circ}\text{C})$ Substituting solution into wave equation $k = \omega (\rho_0 / \gamma P_0)^{0.5}$ \Rightarrow "Acoustic Dispersion Relation":

ACOUSTIC PLANE WAVES

Acoustic Wave Example:

$$p(t,\bar{r}) = A\cos(\omega t - kz), \quad k = \omega(\rho_o/\gamma P_o)^{0.5}$$

Velocity of Sound:

Phase velocity: Group velocity:

Example:

Air 0°C, surface P_o
(
$$\Rightarrow \gamma = 1.4, \rho_o = 1.29 \text{ kg m}^3, P_o = 1.01 \times 10^5 \text{ Nm}^2$$
)
 $\Rightarrow \boxed{c_s \cong 330 \text{ ms}^{-1}}$

Velocity of Sound in Liquids and Solids:

c_s = (K/
$$\rho_o$$
)^{0.5} ≅ 1,500 ms⁻¹ in water, ≅ 1,500 – 13,000 in solids
"Bulk modulus"

ACOUSTIC POWER AND ENERGY

Poynting Theorem:

Recall:
$$\nabla p = -\rho_o \partial \overline{u} / \partial t$$
 $\nabla \bullet \overline{u} = -(\gamma P_o)^{-1} \partial p / \partial t$ Note:Wave intensity [Wm⁻²] = pu(Nm⁻²)(ms⁻¹)[Watts]

Derivation, try:
$$\nabla \cdot \overline{u}p = \overline{u} \cdot \nabla p + p\nabla \cdot \overline{u}$$

 $\hat{n}da$
 $= -\rho_o \overline{u} \cdot \partial \overline{u}/\partial t - (\gamma P_o)^{-1} p \partial p/\partial t$
 $= -0.5 \partial \left[\rho_o |\overline{u}|^2 - (\gamma P_o)^{-1} p^2\right]/\partial t$

Integral form: $\int_{A} p \overline{u} \bullet \hat{n} da = -(\partial/\partial t) \int_{V} \left[\rho_{o} |\overline{u}|^{2}/2 + p^{2}/2\gamma P_{o} \right] dv$ Kinetic and potential energy densities $\rightarrow W_{k}[Jm^{-3}] = W_{p}$ Acoustic intensity I[Wm⁻²]

ACOUSTIC POWER AND ENERGY (2)

Power P of Plane Wave = p\bar{u} \cdot \hat{n}[Wm^{-2}]:

$$\begin{split} p &= p^2 / \eta_s = \eta_s \left| \overline{u} \right|^2 \text{ instantaneously, } I = \langle P \rangle = p_o^2 / 2\eta_s = \eta_s \left| \overline{u}_o \right|^2 / 2 \\ \text{Where:} \quad \eta_s &= \left(\rho_o / \gamma P_o \right)^{0.5} \{ \cong 425 \text{ Nsm}^{-3} \text{ in surface air} \} \\ \text{Example:} \quad \langle I \rangle = 1 \text{ Wm}^{-2} \text{ at } 1 \text{ kHz at the beach} \\ &\Rightarrow p_o = \left(2\eta_s I \right)^{0.5} = 850^{0.5} \cong 30 \text{ Nm}^{-2} \\ &| \overline{u}_o | = p_o / \eta_s \cong 0.07 \text{ ms}^{-1}; \text{ } \Delta z \cong | \overline{u} | / \omega \cong 1 \text{ micron} \end{split}$$

Threshold of Hearing:

$$\begin{split} I_{thresh} &\cong 0 \ dB \ (acoustic \ scale) = 10^{-12} \ [Wm^{-2}] \\ p_o &= (2\eta_s I)^{0.5} = (850 \times 10^{-12})^{0.5} \cong 3 \times 10^{-5} \ [Nm^{-2}] \\ u_o &= p_o / \eta_s = 3 \times 10^{-5} / 425 \cong 7 \times 10^{-8} \ [ms^{-2}] \\ \Delta z &\cong u_o T / \pi = u_o / \pi f \cong 2 \times 10^{-11} \ m = 0.2 \ \text{\AA} \\ & (less \ than \ an \ atomic \ diameter) \end{split}$$

BOUNDARY CONDITIONS

At Interface Having ρ_o, γ_o, P_o (gases); ρ_o, K (solids, liquids):

- Pressure: A discontinuity in p would accelerate zero-mass gas boundary with ∞ acceleration; therefore $\Delta p = 0$
- Velocity: \bar{u}_{\perp} must be continuous across boundary (to avoid ∞ mass density accumulation at boundary) \uparrow^{X}

Rigid Boundaries:

Any p is accommodated by a rigid boundary \bar{u}_{\perp} = 0 (because rigid body is motionless)

Reflection at Non-Rigid Boundaries:

Incident wave: $\underline{p}_i = p_o e^{-jk \cdot r} = p_o e^{-jk \cdot r}$ Reflected wave: $\underline{p}_r = \underline{p}_r e^{-j\bar{k}\cdot\bar{r}} = \underline{p}_{ro} e^{-j\bar{k}\cdot\bar{r}}$ Transmitted wave: $\underline{p}_t = \underline{p}_t e^{-j\bar{k}t\cdot\bar{r}} = \underline{p}_{to}$ Velocities:Same, but $\underline{p}_k \rightarrow \underline{p}_k$

Matching Phases: \Rightarrow (k = $\omega(\rho_o/\gamma P_o)^{0.5}$)

$$\underline{\underline{p}}_{i} = \underline{p}_{o} e^{-j\overline{k}\cdot\overline{r}} = \underline{p}_{o} e^{+jk_{o}\cos\theta_{i}x - jk_{o}\sin\theta_{i}z}$$

$$\underline{\underline{p}}_{r} = \underline{\underline{p}}_{r} e^{-j\overline{k}\cdot\overline{r}} = \underline{\underline{p}}_{ro} e^{-jk_{o}\cos\theta_{r}x - jk_{o}\sin\theta_{r}z}$$

$$\underline{\underline{p}}_{t} = \underline{\underline{p}}_{t} e^{-j\overline{k}t\cdot\overline{r}} = \underline{\underline{p}}_{to} e^{-jk_{t}\cos\theta_{t}x - jk_{t}\sin\theta_{t}z}$$
Same, but $\underline{\underline{p}}_{k} \to \underline{\underline{u}}_{k}$

$$\begin{array}{c} & X \\ & \theta_{r} \\ & \theta_{r} \\ & \theta_{t} \\ & k_{z} \\ & k_{t} \end{array}$$

Snell's Law: $\sin\theta_i / \sin\theta_t = k_t / k_o = (\rho_i \gamma_t / \rho_t \gamma_i)^{0.5}$ $\theta_r = \theta_l$ Critical angle: $\theta_c = \sin^{-1}(\rho_i \gamma_t / \rho_t \gamma_i)^{0.5}$

REFLECTIONS AT BOUNDARIES

$$\begin{array}{ll} \underline{p}: \ p_o e^{-jk_0 z} + p_{ro} e^{+jk_0 z} = p_{to} e^{-jk_t z} \rightarrow 1 + \underline{\Gamma} = \underline{T} & \text{at } z = 0 \ (\Delta p = 0) \\ \\ \text{Define } \underline{\Gamma} = \underline{p}_{ro} / p_o \ , \ \underline{T} = \underline{p}_{to} / p_o \\ \\ \text{u: } p_o / \eta_o - p_{ro} / \eta_o = p_{to} / \eta_t & \rightarrow 1 - \underline{\Gamma} = \underline{T} \eta_o / \eta_t \ \text{at } z = 0 \ (\Delta \overline{u} = 0) \\ \\ \text{Solving: } \underline{T} = 2 / (1 + \eta_o / \eta_t) \ \text{where } \eta_o = \omega \rho_o / k = (\rho_o / \gamma P_o)^{0.5} \end{array}$$

Reflections from Solid Surface $(\hat{\mathbf{n}} \cdot \overline{\mathbf{u}} = \mathbf{0})$:

ACOUSTIC WAVEGUIDES

 A_{00} Mode ($\partial/\partial x = \partial/\partial y = 0$):

Satisfies boundary conditions $(\bar{u}_{\perp} = 0)$

 $p = A \cos(\omega t - kz)$

 A_{m0} Mode ($\partial/\partial y = 0$):

 $d = m\lambda_{x}/2$ $A_{10} \mod p$ $p = A \cos(m\pi x/2d)$ $\cos(\omega t - kz)$

Wode: $a = m\lambda_y/2, b = n\lambda_x/2$ $A_{21} \mod x$ $p = A \cos(m\pi y/2a) \cos(n\pi x/2b) \cos(\omega t - kz)$