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6.013 Lecture 11:  Inductors and Transformers

A. Inductors

All circuits carry currents that necessarily produce magnetic fields and store
magnetic energy.  Thus every wire and circuit element generally has some inductance
that may influence circuit behavior, particularly at higher frequencies.  When two circuit
branches share magnetic fields, each will typically induce a voltage in the other, thus
coupling the branches.  If this coupling is substantial, the two branches act as a
transformer.

Figure 11-1 illustrates two circuit elements connected by parallel conducting
plates, which approximate a printed circuit wire passing over a conducting ground plane
in an integrated or printed circuit.  The currents i(t) are equal and opposite.  The plates
have width W and separation d<<W.

Figure 11-1.  Parallel conducting plates

Ampere’s law enables us to find the magnetic fields and the inductance of this
structure per unit length, after which we can discover the nature of inductance.  Ampere’s
law in differential and integral form is:

∇ ×H =J + ∂D/∂t,                  
cAAdHdsJdaDdadt +∫∫∫

(1)

In the quasistatic limit ∂/∂t can be ignored and (1) relates the magnetic fieldH to the
current densityJ.  The integral ofH around the contour c is thus related to the total
current I flowing through the area A of that contour.

Referring to Figure 11-1, if the contour c circles both plates, the total current i(t)
is zero because the currents in the two plates are assumed to be equal and opposite.  If the
contour circles only one plate, then the integral ofH(t) equals i(t).  To proceed, we
assume W >> d so that the contributions to the integral of the fringing fields at the plate
edges can be neglected.  We then see thatH outside the two plates is generally zero
because otherwiseH above and below the plates must point in the same direction,
whereas the symmetry of the problem suggests no preferred direction.  Furthermore,
ifHoutside ≠ 0 there would be no unique solution toH between the plates; consider two
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contours, one circling the upper plate and one circling the lower plate, but sharing the
same path between the plates.1

Since , the contour integral (1) yields 
betweenHWy i

, or

betweenHy iW
 (2)

The inductance L of such a parallel-plate structure can be understood by short-
circuiting one end at z = 0, as illustrated in sideview in Figure 11-2, and then computing
the electric fieldE(t,z) that must result fromH(t).  Assume the device has plate
separation d (now in the y direction), width W, and length D (in the z direction), and has
a voltage v(t) across its terminals.  The current i(t) in the top plate flows to the right, and
the resultingH(t) points into the paper.

Figure 11-2.  Inductance of
shorted parallel-plate structure

The electric fieldE(t,z) follows from Faraday’s Law, which in differential and
integral form is:

∇ ×E =  -∂B/∂t      ⇒      
cAdEdsHdadt∫∫

(3)

where we use the contour c and cross-sectional area A illustrated in the y-z plane in
Figure 11-2.  These integrals are trivial to evaluate sinceE inside the perfect conductors
is zero, and H(t) = i(t)/W is uniform over the area A = zd [m2].  Thus the integral form of
Faraday’s law yields:

Ey(z,t)d  =  -(µzd/W)di(t)/dt, and           Ey(z,t) =  -(µz/W)di(t)/dt (4)

The voltage v(t) across the inductor (where z = D) follows from simple
integration ofE (using (4)) from the upper plate (1) to the lower plate (2):

v(t) = ∫1
2 E • ds = -Eyd =(µDd/W)(di(t)/dt) (5)

v(t) = L di(t)/dt    (6)

where the inductance here is:
                                                  
1 The neglected fringing fields are antisymmetric and therefore do not contribute to these integrals
around symmetric contours.
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L = µDd/W  [Henries] (7)

Note that the voltage between these two parallel plates varies with z, as seen from (4) and
(5).  Thus we have two perfect conductors with a voltage between them that depends on
z.  This violates Kirchoff’s Voltage Law because of the time-varying magnetic fieldH
that threads any contour (such as c) around which we test KVL by integratingE.

Figure 11-3.  N-turn coil

In practice we often want more inductance than is readily supplied using (7), so
we modify the structure as suggested in Figure 11-3; we convert the single-turn loop into
an N-turn coil by slicing it into wires of width Wi = W/N.  Equations (6) and (7) then
yield the voltage v(t) across one of these turns, which is now N times greater for given
i(t) because W is N times smaller.  The total voltage across N turns in series is another
factor of N times greater.  Thus the total voltage across the N-turn coil is:

v(t) = L di(t)/dt, where     L = N2µDd/W = N2µA/W (8)

and where area A = Dd; thus L is N2 times its previous value.

The magnetic energy density within this inductor L is:

Wm = µ|H(t)|2/2    [J m-3] (9)

which corresponds to total stored magnetic energy of:

wm  = µAW|H(t)|2/2 = µA(Ni)2/2W [J] (10)

where H = Ni/W.  Combining (8) and (10) yields the useful result:

wm = Li2(t)/2  [J] (11)

Inductors generally have some resistance R, which can be readily determined.  If
we construct our inductors from slabs with conductance σ [Sm-1]2, length D, thickness δ,
and cross-sectional area A = δW, then the resistance along the full length of the slab is
D/σA [ohms].  Since the length of a single turn is 2(D+d), the total resistance of an N-

                                                  
2 The units of conductance are Siemens m-1, where Siemens are the reciprocal of ohms.
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turn inductor is 2N(D+d)/σA [ohms].  It is, of course, much more important to
understand how such values are derived than to memorize any answers.

Should we have a simple RL circuit which has an initial current i(t=0) = Io, then it
is easy to show that i(t) = Ioe-t/τ, where the time constant τ = L/R seconds.  If we short
circuit our N-turn inductor we can substitute our values for L and R to yield:

τ = L/R =  (N2µDd/W)/(2N2(D+d)/σA) ≅ µdδσ/2  [s] (12)

where D>>d and A = (W/N)δ.  Thus long time constants τ are achieved by maximizing µ,
d2 (since δ < ~d), and σ; this sometimes motivates use of large massive structures.

B. Transformers

Figure 11-4 illustrates a solenoidal (cylindrical) transformer comprising two coils
wound about the same air-filled cylinder of cross-sectional area A and length W (we
assume A and W are the same for both coils).  To determine the behavior of the
transformer we use the integral form of Faraday’s law:

ocAdEdsHdadt µ∫∫
(13)

Figure 11-4.  Solenoidal transformer

If we compute the contour integral (13) around one turn of either coil we obtain
the same answer, which is µHA, the magnetic flux linked by one turn.  Therefore the total
voltage induced in either coil by the same changing magnetic flux is proportional to its
number of turns.  This total voltage induced across coil 2 is therefore N2/N1 times the
voltage across coil 1, where N2/N1 is called the transformer turns ratio and can be greater
or less than unity.  If the flux coupling between the two coils is imperfect, then the output
voltage is correspondingly reduced.  If the wires have resistance, that can alter these
voltages in proportion to the currents.

Many transformers have coils wound on iron cores rather than around air, partly
in order to reduce flux leakage.  Consider the boundary between air and a high-
permeability material, as illustrated in Figure 11-5.  The boundary conditions are thatH//

andB⊥ are continuous across any interface.  SinceB = µH in the permeable core
andB = µoH in air, where µ/µο >> 1, and sinceH// are equal on both sides of the
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boundary, thereforeB// differs by the large factor µ/µο.  In contrast,B⊥ is the same on
both sides.  Therefore, as shown in Figure 11-5, we see thatB2 in air is nearly
perpendicular to the boundary becauseH// is so very small, whileB1 inside the boundary
is nearly parallel and therefore largely trapped there, even if that boundary curves.

   H1// =H2//

Figure 11-5.  Magnetic fields at boundaries

Figure 11-6 shows howB can be trapped inside a toroid so that coils can be
placed anywhere around its perimeter and still be well coupled since the magnetic flux Λ
is approximately constant around the loop, where

Λ = ∫AB •  da (14)

Figure 11-6.  Toroidal transformer

Note the polarity of the output voltage v2(t) relative to v1(t) for the given directions in
which the coils in Figure 11-6 are wound.  The polarity of v2(t) relative to ∂B/∂t  is
governed by (13) and that ofB relative to i1(t) is governed by (1).

C. Toroidal Inductors

A toroidal inductor such as that illustrated in Figure-6 (without the second coil)
has inductance L, which is related to the stored magnetic energy by (9) and (11):

wm = Li2(t)/2 = ∫V (µ|H(t)|2/2) dv  [J] (15)

FindingH(t) is easier if the toroid has constant cross-section A and is circular with
radius R >> A0.5.  From Ampere’s law we learn that the integral ofH around the 2πR
circumference of the toroid is:

µo µ >> µo
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∫cH • ds ≅ 2πRH ≅ Ni (16)

where the only linked current is i(t) flowing through the N turns of wire threading the
toroid.  Equation (16) yields H ≅ Ni/2πR and (15) relatesH to wm and L.  Therefore the
inductance L of such a toroid is:

L = µi-2∫V(Ni/2πR)2dv ≅ µ(N/2πR)22πRA = µNA/2πR   [Henries] (17)

The inductance is proportional to µ, N, and A, but declines as R increases.  The most
compact toroids are therefore fat with almost no hole in the middle; the hole size is
determined by N and wire diameter.

Figure 11-7.  Toroidal inductor with a gap

The inductance of a toroid is strongly affected if even a small gap of width d
exists in the magnetic path, as shown in Figure 11-7.  To compute the total magnetic
energy wm using (15), the integral ∫V must include all space; the magnetic energy stored
in the small gap can then easily dominate.  Since 

B
 is continuous across the gap,µµµ µ

 and 
µµ

.  Equation (16), when integrated around the toroid inside

µ along a contour c that includes the gap, yields:

|Hµ|(2πR – d)  +  |Hµo|d  ≅  N i(t)  ≅  |Hµo|d  (18)

which occurs for modest values for R/d and values of (µ/µο) sufficiently large that Hµo

dominates.  Thus most non-zero gaps dominate the inductance because |H| and wm are
relatively so large there.  The approximate inductance L then follows from equations (15)
and (18):

L ≅ µοAd(Ni/d)2/i2(t) = µοAN2/d  [Henries] (19)

Comparing (17) and (19) we see that the gap reduces L by a factor of µ/µο,
commonly 104 - 106, but gains a factor in L of N2πR/d, which can be made very large.
Equation (19) explains how small air gaps in magnetic motors control motor inductance,
as discussed further later.
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