MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

6.013 (New) Electromagnetics and Applications

	Issued:	October 8, 2002
Problem Set 6	Due in Recitatio	n: October 18^1 , 2002
<u>Suggested Reading:</u>	<i>Text: Sections 3.4<p88; and="" i="" pp95-6.<=""></p88;></i>	
	Notes for Lectures 10 and 11, and Recitation 11.	
<u> Ouiz 1:</u>	hursday, October 17 in lecture. Closed book quiz without alculators (equation sheet provided). Since there is another class e following hour, we shall start and end very promptly. Arriving veral minutes early would be an excellent idea. The quiz covers e first five weeks and homework sets through October 4.	

Problem 6.1

The cylindrical device illustrated below consists of two perfectly conducting cylinders, one centered inside the other, with a medium between them that is characterized by permittivity $\varepsilon = 9\varepsilon_0$ and conductivity σ [Sm⁻¹]. The radii of the two cylinders are a and b (b>a); they have length d.

- a) A DC voltage V is placed across the two cylinders, with the inner cylinder being positive with respect to the outer cylinder. What is $\overline{E}(\overline{r})$ between the two cylinders? Ignore fringing effects near the ends of the device.
- b) In terms of $\overline{E}(r = a)$, what is the surface charge density σ_s on the inner cylinder?
- c) In terms of σ_s , what is the total charge Q on this capacitor?
- d) What is the capacitance C of this capacitor? Please express your answer in terms of a, b, d, and ε .
- e) Using the results in (a), alternatively calculate the capacitance C by integrating fields to find the total stored electric energy, and then using $w_e = CV^2/2$ [J]; does your answer agree with (d)?
- f) What is the resistance R of this capacitor due to leakage arising from σ ?

¹ Note: Because of the quiz, the homework can be submitted in recitation either Wednesday (10/6) or Friday (Wednesday preferred). Note that some of these problems can be done quite quickly.

Problem 6.2

The same dual-cylinder geometry of Problem 6.1 is used to make an inductor by shorting one end and filling the interior with a medium having $\mu = 10^4 \mu_o$. The DC current I flows into the inner conductor and out of the outer conductor.

- a) What is $\overline{H}(r)$ between the cylinders?
- b) What is the flux linkage Λ ?
- c) What is the inductance L of this structure?
- d) Use (a) find the total magnetic energy storage w_m [J] in this device, and then find L using $w_m = LI^2/2$. Do your answers to (c) and (d) agree?

Problem 6.3.

Consider the illustrated circuit in which all elements are either one or two ohms or farads:

a) Determine an equivalent simplified RC circuit (one R, one C) that has the same time constant τ [s].

b) What is this τ ?

Problem 6.4.

Consider the illustrated toroidal inductor of major radius R and minor radius r; the toroid is characterized by ε_0 , $\mu = 10^4 \mu^0$. An N-turn coil is wound around one side of the toroid and fed with I amperes, DC.

- a) What is \overline{H} inside the toroid?
- b) What is the flux linkage Λ for the N-turn coil terminals?
- c) What is the inductance L of this toroid as seen at the N-turn terminals?
- d) A second coil of 2N turns is wound elsewhere on the toroid, as illustrated. Note the direction of the winding and polarity of the output voltage V_o . What is the open-circuit voltage V_o across this winding if the input current is I(t)?
- e) Let the second winding be short-circuited so that $d\Lambda/dt = 0$, regardless of the input voltage. If the input current $I(t) = I_0 \cos\omega t$, what is the resulting input voltage $V_i(t)$ of this toroid?