CIRCUIT TRANSFORMATION MAGIC

Printed Microwave Circuits (TEM lines):

Can contain R's (resistive rectangles)
Can yield L's and C's (near ω_{0})
Can be resonators for tuning or transformer use
Can match impedances to maximize power transfer
Can perform nearly all circuit functions with transistors only
Has size scale $\sim \lambda / 4 \Rightarrow f \approx 1 \mathrm{GHz}$

Waveguide Circuits and Systems:

Can be made lossy

Can have inductive or capacitive obstacles (L's and C's)
Can resonate for tuning or transforming
Can match impedances to maximize power transfer
Can make circulators (non-reciprocal devices)

Optical Circuits:

Similar to waveguide circuits, but in fibers or free space

GAMMA PLANE \Leftrightarrow SMITH CHART

TEM Lines:

$\underline{\mathrm{V}}(\mathrm{z})=\underline{\mathrm{V}}_{+} \mathrm{e}^{-\mathrm{j} k \mathrm{z}}+\underline{\mathrm{V}}_{-} \mathrm{e}^{+\mathrm{jkz}}$
$\mathrm{I}(z)=\mathrm{Y}_{0}\left[\underline{\mathrm{v}}_{+} \mathrm{e}^{-\mathrm{jkz}}-\underline{\mathrm{V}}_{-} \mathrm{e}^{+\mathrm{j} k z}\right]$
$\underline{Z}(z)=Z_{0}(1+\underline{\Gamma}(z)) /(1-\underline{\Gamma}(z))$
$\Gamma(z) \triangleq\left(\underline{\mathrm{V}}_{-} / \underline{\mathrm{v}}_{+}\right) \mathrm{e}^{2 \mathrm{jkz}}=\underline{\Gamma}_{L} \mathrm{e}^{2 \mathrm{j} \mathrm{kz}}$
$Z_{n}=\underline{Z}(z) / Z_{o}=R_{n}+j X_{n}:$
Gamma plane is useful because $\underline{\Gamma}(z)=\underline{\Gamma}_{\llcorner } \mathrm{e}^{2 k z}$, which is simply rotation on the plane.

One-to-One Mapping:

$$
\begin{aligned}
& \underline{Z}_{n}=(1+\underline{\Gamma}) /(1-\underline{\Gamma}) \\
& \underline{\Gamma}=\left(\underline{Z}_{n}-1\right) /\left(\underline{Z}_{n}+1\right)
\end{aligned}
$$

SPECIAL PROPERTIES OF THE SMITH CHART

Admittance \Leftrightarrow Impedance:

$$
\text { If } \underline{Z}_{n} \rightarrow \underline{Z}_{n}^{-1}=\underline{Y}_{n} \text {, then } \underline{\Gamma} \rightarrow \underline{\Gamma}^{*}
$$

$$
\text { Proof: } \begin{aligned}
& \underline{\Gamma}=\left(\underline{Z}_{n}-1\right) /\left(\underline{Z}_{n}+1\right) \text {, so if } \underline{Z}_{n} \rightarrow \underline{Z}_{n}{ }^{-1} \text {, then } \\
& \left({\underline{z_{n}}}^{-1}-1\right) /\left(\underline{z}_{n}^{-1}+1\right)=\left(1-\underline{Z}_{n}\right) /\left(\underline{Z}_{n}+1\right)=-\underline{\Gamma} \text { Q.E.D. }
\end{aligned}
$$

Voltage Standing Wave Ratio (VSWR):

$$
\begin{aligned}
\text { VSWR } & =\left|\underline{\mathrm{V}}_{\max }\right| /\left|\underline{\mathrm{v}}_{\text {min }}\right|=\left(\left|\underline{\mathrm{v}}_{+} \mathrm{e}^{-\mathrm{jkz}}\right|+\left|\underline{\mathrm{v}_{2}} \mathrm{e}^{+\mathrm{jkz}}\right|\right) /\left(\left|\underline{\mathrm{v}}_{+} \mathrm{e}^{-\mathrm{jkz}}\right|-\mid{\left.\underline{\mathrm{v}} _\mathrm{e}^{+j \mathrm{jkz}} \mid\right)}=(1+|\underline{\Gamma}|) /(1-|\underline{\Gamma}|)=\mathrm{R}_{\mathrm{n} \text { max }} \quad \text { (evident on Chart, on } \times \text { axis }\right)
\end{aligned}
$$

Rotation Around Chart:
$\lambda / 2$ corresponds to one full rotation around chart

$$
\left(\mathrm{e}^{2 \mathrm{jkz}} \Rightarrow \mathrm{e}^{2 \mathrm{j}(2 \pi / \lambda)(\lambda / 2)}=\mathrm{e}^{\mathrm{j} 2 \pi}=1\right)
$$

MATCHING IMPEDANCES

Problem: Losslessly Match Given Load: $I_{m}\{\underline{[}\}$

MATCHING ADMITTANCES

Reactive Tuning Elements in Parallel:

Find $\underline{Z}_{L n}$ on chart, then $\underline{Y}_{L n}$ opposite; rotate ℓ to "a" where $G_{n}=1$ and add -1.18j admittance to yield $\underline{Y}_{n}=Y_{0}$ $\underline{Y}=-1.18 j Y_{o}=1 / j \omega L$
$\Rightarrow L=Z_{o} / 1.18 \omega$

Can match any load! (beware resonances)

QUARTER-WAVE TRANSFORMER

Matching Real Impedances without L,C:

Let: $\quad \ell=\lambda / 4$, then
Setting: $\quad Z_{o}=Z_{A}{ }^{2} / R$,
Yields: $\quad Z_{A}=\left(Z_{0} R\right)^{0.5}$

Applications: coated camera lenses, glasses, optoelectronic components, high-power lasers, etc.
Invented by Prof. Smakula at Leitz

MORE QUARTER-WAVE TRANSFORMERS

Waveguide Transformers:

Z_{0} varies with waveguide sizes
$Z_{t}=\left(Z_{a} Z_{b}\right)^{0.5}$

Multi-step Transitions:

Waveguides can have N multiple steps spaced $\lambda / 4$ apart

Example, 1:256 Transformer:

For $N=2, Z_{a}=1$ ohm, $Z_{b}=256$ ohms, and $Z_{t}=(1 \times 256)^{0.5}=16$ ohms
For $N=4, Z_{t 1}=(1 \times 16)^{0.5}=4$ ohms, $Z_{t 2}=16, Z_{t 3}=(16 \times 256)^{0.5}=64$
For $N=8, Z_{t 1}=(1 \times 4)^{0.5}=2, Z_{t 2}=4$, (rest are $8,16,32,64$, and 128 ohms)

Result is exponential series

EXPONENTIAL TRANSITIONS AND HORNS

Acoustic Transformers, Exponential Horns:

We use $N \cong 4 L / \lambda_{g}$ sections, where L is the length of the transformer In the limit we can smooth the steps to yield an exponential shape

Acoustic Examples:

French horn, trumpet, loudspeakers:

