INDUCTORS

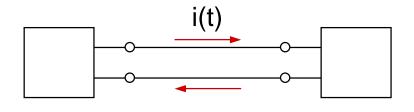
Inductance is ubiquitous:

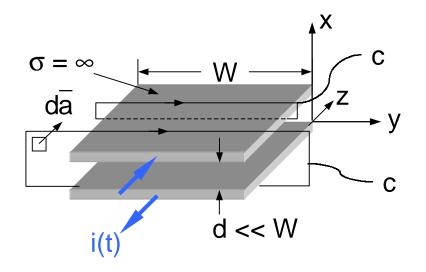
Ampere's Law: $\nabla \times \overline{H} = \overline{J} + \partial \overline{D} / \partial t$

Let $\partial/\partial t \cong 0$ Example—printed circuit:

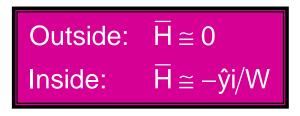
$$\oint_{C} \overline{H} \bullet d\overline{s} = \int_{A} \overline{J} \bullet d\overline{a}$$

= 0 around both wires
= i(t) around the top wire



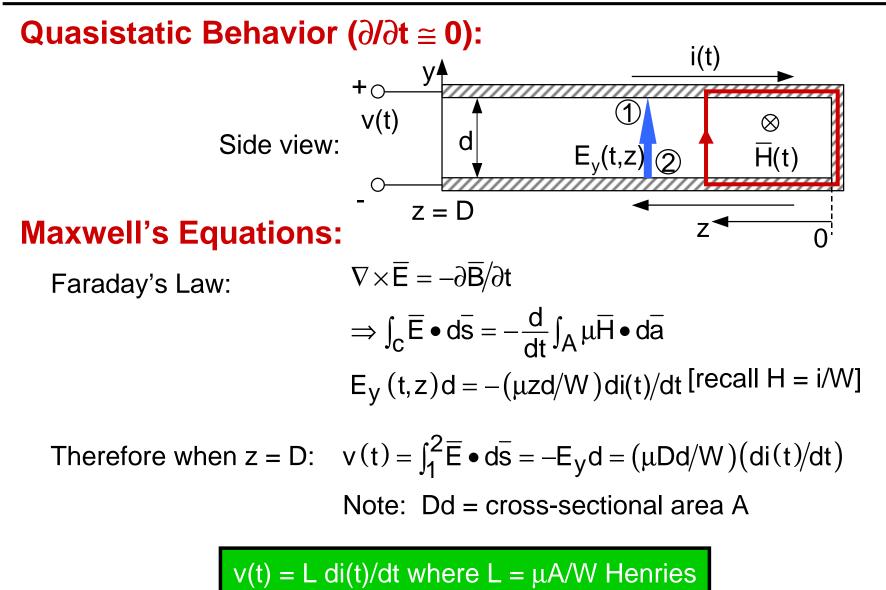


Magnetic Field H:



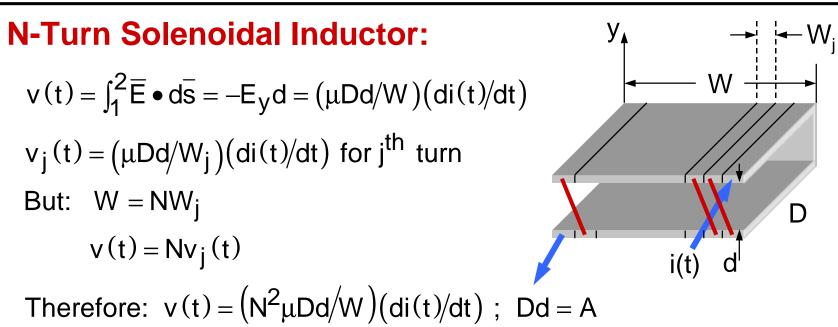
(since d << W we ignore fringing fields)

INDUCTANCE



Note: Kirchoff's voltage law not obeyed here; $E_y = f(z)$

SOLENOIDAL INDUCTORS



Inductance of N-Turn Solenoid:

Magnetic Energy Storage:

$$W_{m} = \mu |\overline{H}(t)|^{2} / 2 \quad [J m^{-3}]$$

$$w_{m} = \mu DdW |\overline{H}(t)|^{2} / 2 = \mu AW (Ni/W)^{2} / 2 \quad [J] \quad [recall H = Ni/W]$$

 $L = N^2 \mu A/W$ Henries

Therefore:

$$w_{m} = Li^{2}(t)/2 \quad [J]$$

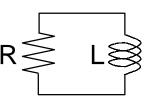
Single-Turn Inductor:

Conductance of slab of cross-sectional area S: σ S [Siemens m] Resistance of slab of length D: D/ σ S [ohms] Resistance of a single-turn inductor: 2(D + d)/ σ S [ohms] (S = δ W) Resistance of an N-turn inductor: 2N(D + d)/ σ (S/N) = 2N²(D + d)/ σ S

L/R Time Constant of Solenoidal Inductor:

 $\tau = L/R$ seconds

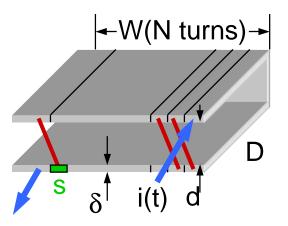
$$\left(\text{e.g. } i(t) = i_0 e^{-\tau/\tau}\right)$$



$$= \left(N^2 \mu A / W\right) / \left(2N^2 \left(D + d\right) / \sigma S\right) \cong \mu d\delta \sigma / 2N$$

where D >> d , S = δW , A = Dd

For finite size and mass, τ is limited Want d \rightarrow D , $\delta \xrightarrow{\sim} d\!/\!3$, N \rightarrow 1 , d \rightarrow W



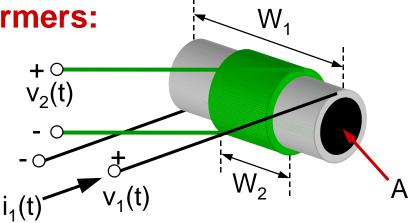
TRANSFORMERS

Air-Wound Solenoidal Transformers:

$$\oint_{C} \overline{E} \bullet d\overline{s} = -\frac{d}{dt} \int_{A} \mu \overline{H} \bullet d\overline{a}$$

Sav A₄ = A₅ W₄ = W₅ here

Say $A_1 = A_2$, $W_1 = W_2$ here $N_i =$ number of turns in coil i



Therefore:

The voltage induced in one turn of coil 2 is the same as induced in one turn of coil 1,

And the total voltage induced in coil 2 is N_2/N_1 times the total voltage induced in coil 1, regardless of whether it is generated by i_1 or i_2 .

 N_2/N_1 is called the transformer turns ratio

Step-up and Step-down Transformers:

Step-up or step-down the output voltage, correspondingly. The flux coupling between the two coils may be imperfect and the output voltage is correspondingly reduced

[flux $\Lambda = \mu HA$, and linked flux = N μHA].

Boundary Conditions:

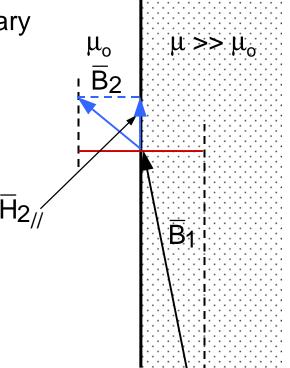
 $H_{//}$ and \overline{B}_{\perp} are continuous across the boundary $(\nabla \times \overline{H} = \overline{J} + \partial \overline{D} / \partial t; \nabla \bullet \overline{B} = 0)$

 $\overline{H}/\!/\overline{B}$ and $\overline{B}=\mu\overline{H}$

 μ/μ_0 can be as large as 10^6 .

Since $\mu \gg \mu_0$, \overline{B}_1 is essentially parallel to the interface, and trapped within the high permeability medium.

The magnetic flux \overline{B} is "trapped" inside.



IRON-CORE TRANSFORMERS (2)

Flux trapping inside high permeability materials:

The magnetic flux density \overline{B} is trapped inside high-permeability materials, e.g.:

Flux $\Lambda = \int_A \overline{B} \bullet d\overline{a} \cong constant$

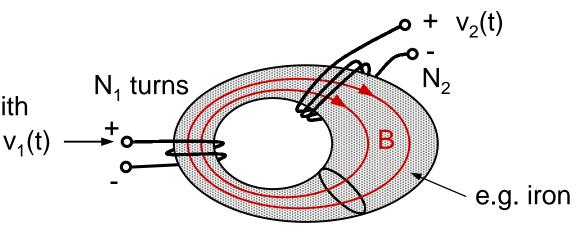
Cross-sectional

B

area A

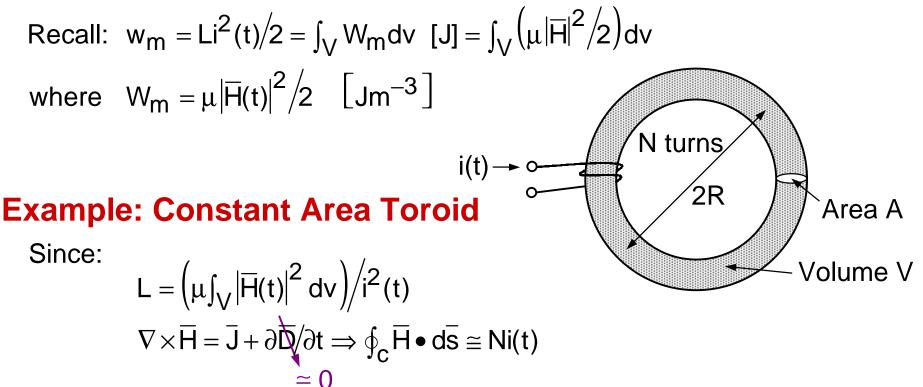
Transformer Output:

 $v_2(t) = (N_2/N_1)v_1(t)$ The flux is highly linked with little leakage $v_1(t)$



INDUCTANCE OF IRON TOROID (1)

Inductance L of N turns around toroid $(N_2 = 0)$:



Therefore:

$$\begin{split} & 2\pi R \left| \overline{H} \right| \cong Ni \ (R \text{ varies slightly over } A) \\ & L \cong \mu {\int_V} \left(N\!/2\pi R \right)^2 dv \cong \mu {\left(N\!/2\pi R \right)}^2 \, V \cong \mu N^2 A \big/\!2\pi R \ [\text{Henries}] \\ & \text{where } V \cong 2\pi R A \left[m^3 \right] \end{split}$$

INDUCTANCE OF IRON TOROID (2)

i(t)

2R

Inductance L of a toroid with a gap:

Recall: $w_m = Li^2(t)/2 = \int_V W_m dv [J]$

where $W_m = \mu |\overline{H}(t)|^2/2$ [Jm⁻³]

Therefore: L = $\left(\mu \int_{V} |\overline{H}(t)|^{2} dv\right) / i^{2}(t)$, as before

Finding |H(t)|:

Since: $\oint_{C} \overline{H} \bullet d\overline{s} \cong Ni(t)$

Therefore: $\left|\overline{H}_{\mu}\right|(2\pi R - d) + \left|\overline{H}_{\mu_{0}}\right|d \cong Ni(t)$

But $\nabla \bullet \overline{B} = 0$, so $\mu_0 H_0 = \mu H$ where we assume $\mu \gg \mu_0$

Therefore: Magnetic energy density in gap is $(\mu/\mu_o)^2$ greater than inside the torus, and dominates unless $(\mu/\mu_o)^2 << 2\pi R/d$ (we require $d > 2\pi R (\mu_o/\mu)^2$)

gap

d[m]

INDUCTANCE OF IRON TOROID (3)

Inductance L of a toroid with a gap:

Therefore: $L \cong \mu Ad(N/d)^2$ or, for a small-gap torus:

$$L \cong \mu_0 A N^2 / d$$
 Henries
provided that $d \lesssim 2\pi R (\mu_0 / \mu)^2$