
∫ 

INDUCTORS


Inductance is ubiquitous: 

Ampere's Law: ∇ ×  H J D = + ∂ ∂t 

i(t) 

Let ∂/∂t ≅ 0 
Example—printed circuit: 

•îcH ds = ∫A J • da 

i(t) 

da 
σ = ∞ 

d << W 

W 
z 

x 
c 

y 
= 0 around both wires 

c= i(t) around the top wire 

Magnetic Field H: 

(since d << W we ignore fringing fields) 
Outside: H 0 

ˆInside: H yi W 
≅ 
≅ −  
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INDUCTANCE

Quasistatic Behavior (∂/∂t ≅ 0): 

+ 

Side view: 
1 

2 H(t) d 

i(t) 

v(t) 
Ey(t,z) 

y 

- z = D
Maxwell’s Equations: z 0 

Faraday’s Law: ∇ ×  = −∂ ∂

= − µ • ∫ 

E t 
d E ds H da• ∫A 

B 

⇒ c dt 
y ( )E t,z d = −(µzd W di(t) dt [recall H = i/W]) 

Therefore when z = D: v t( ) = ∫1
2E • ds = −Eyd = (µDd W )(di( )  dtt )

Note: Dd = cross-sectional area A 

v(t) = L di(t)/dt where L = µA/W Henries 

Note: Kirchoff’s voltage law not obeyed here; Ey = f(z) 
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

SOLENOIDAL INDUCTORS

N-Turn Solenoidal Inductor: 

( ) = ∫1
2E • ds = −Eyd = (µDd W )(di( )  dtt )v t  

v j ( ) = µDd Wj )(di( )  dtt ) for jth  turnt ( 
But: W = NWj 

( ) = Nv j (t)v t  

tTherefore: v ( ) = (N2µDd W )(di( )  dtt ) ; D

W 

D 

d i(t) 

Wj 
y 

d = A 

Inductance of N-Turn Solenoid: L = N2µA/W Henries 

Magnetic Energy Storage: 
Wm = µ  ( )  

( )  

2 

2 
t 2 J m 

dW H t 2 

 H 

D

-3  

wm = µ  = µAW Ni W( )2 2 [ ]  [recall H = Ni W ]J 

Therefore: ( )  [ ]2 
m w i t 2 J = L
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RESISTIVE INDUCTORS


Single-Turn Inductor: 
Conductance of slab of cross-sectional area S: σS [Siemens m]

Resistance of slab of length D: D/σS [ohms]

Resistance of a single-turn inductor:  2(D + d)/σS [ohms] (S = δW)

Resistance of an N-turn inductor:  2N(D + d)/σ(S/N) = 2N2(D + d)/σS


L/R Time Constant of Solenoidal Inductor: 

τ = L/R seconds (e.g.  i

≅ µ δσ 2N 

i e−τ τ(t) = o ) R L 

= (N A  W2µ () 2N2 (D + d σ) S) d 
where D >> d , S = δW, A = Dd 

For finite size and mass, τ is limited 
!Want d → D , δ → d 3  , N → 1 , d → W

W(N turns) 

D 
d i(t) s 

δ 
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TRANSFORMERS
Air-Wound Solenoidal Transformers:

A

W1

W2

+

+
-

-

v2(t)

v1(t)i1(t)

• − µ •∫îc
dE ds H da
dt

Say A1 = A2, W1 = W2 here
Ni = number of turns in coil i

Therefore:
The voltage induced in one turn of coil 2 is the same as induced in one 
turn of coil 1,
And the total voltage induced in coil 2 is N2/N1 times the total voltage 
induced in coil 1, regardless of whether it is generated by i1 or i2.
N2/N1 is called the transformer turns ratio

Step-up and Step-down Transformers:
Step-up or step-down the output voltage, correspondingly. 
The flux coupling between the two coils may be imperfect 
and the output voltage is correspondingly reduced

[flux Λ = µHA, and linked flux = NµHA].

N1
N1 N2

N2

= ∫A



IRON-CORE TRANSFORMERS (1)

Boundary Conditions: 

H//  and B⊥ are continuous across the boundary 
(∇ ×  H J  D = + ∂ ∂t; ∇ • B = 0) 

H//B  and B = µH 

µ µo  can be as large as 106. H2 

Since µ >> µo, B1 is essentially 
parallel to the interface, and trapped 
within the high permeability medium. 

The magnetic flux B is "trapped" inside. 

µo µ >> µo 

1B 

2B 

// 
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IRON-CORE TRANSFORMERS (2)
Flux trapping inside high permeability materials:

The magnetic flux density B is trapped 
inside high-permeability materials, e.g.:

AFlux B da constantΛ = • ≅∫

i(t)

Transformer Output:
v2(t) = (N2/N1)v1(t)
The flux is highly linked with 
little leakage

Cross-sectional 
area A

B

B

+
-
N2

v2(t)

e.g. iron

+
N1 turns

v1(t)
-



 

∫

 





INDUCTANCE OF IRON TOROID (1) 
Inductance L of N turns around toroid (N2 = 0): 

Recall: wm = Li (t) 22 = ∫V Wmdv [J] = ∫V (µ 
2H 2 dv) 

where Wm = µ  
2H(t) 2  Jm−3  

i(t) 

Example: Constant Area Toroid 

Volume V 

N turns 

2R Area A 
Since: 

L = µ( 
= + ∂ ∂ H J  D 

∫V H(t) 2 dv ) i (t)2 

∇ ×  t ⇒ îcH • ds ≅ Ni(t) 
≅ 0 

Therefore: 

(≅ µ ∫V 

2 R H Ni (R varies slightly over A) 

N 2 R 

≅ π 

L π )2 dv ≅ µ(N 2 Rπ )2 V ≅ µ N A 2 R2 π [Henries] 

where V ≅ π2 RA m3  
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∫



INDUCTANCE OF IRON TOROID (2) 

Inductance L of a toroid with a gap: 

Recall: wm = i (t) 2L 2 = ∫V Wmdv [ ]  2Ri(t) 
gapJ


where Wm = µ  
2 

= µ∫V H(t) 

H(t) 2  Jm−3  
d[m] 

Therefore: L ( 2 dv ) i (t), as before2 

Finding H(t) : 
Since: îcH • ds ≅ Ni(t) 

π −  d) + Hµo d ≅ Ni(t)Therefore: Hµ (2 R 

But ∇ •  B = 0, so µo o  = µH where we assume µ >> µoH 
Therefore:	 Magnetic energy density in gap is (µ/µo)2 greater than 

inside the torus, and dominates unless (µ/µo)2 << 2πR/d 

! 2 R (µo µ)2 )(we require d > π  
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INDUCTANCE OF IRON TOROID (3)

Inductance L of a toroid 

2R i(t) 

little fringing (d << A0.5) and we neglect 

with a gap: 

Recall: L=(µ(t)∫V H 2 dv ) i2 
gap

Hµ (2 Rπ −  d) + Hµo d ≅ Ni(t) d[m] 

Where: Hµo d ≅ Ni(t) for a small gap with 

the energy storage inside the torus 

Therefore: L ≅ µ d N dA ( )2 or, for a small-gap torus: 

2 
oL N d Henries ≅ µ A

! 2 R (µ µo )2provided that d > π  
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