MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

6.013 Electromagnetics and Applications

Quiz 2

Closed book, no calculators

November 14, 2002

Please note the two pages of formulas provided on a separate sheet. There are 3 problems on two pages. Please simplify all expressions, circle and dimension your answers, and present numerical answers to the extent practical without a calculator or tedious computation. You may leave natural constants in symbolic form $(\pi, \varepsilon_0, h, e, etc.)$.

Problem 1. (36/100 points)

The illustrated generic device has an inductance of L Henries and the two plates have areas A and are separated by d meters. The medium between the plates is characterized by conductivity σ , permittivity ϵ , and permeability μ . Depending on frequency f, the impedance \underline{Z} of this device is dominated either by resistive, inductive, or capacitive effects.

- a) What is the capacitance C [Farads] of this device?
- b) What is the resistance R [ohms] of this device?
- c) As $f \to \infty$, is this device primarily resistive, inductive, or capacitive? That is, which effect dominates the device impedance $|\underline{Z}|$? Explain briefly.

Problem 2. (28/100 points)

Two motionless conducting plates of area A and separation d are in vacuum. Ignore fringing fields.

- a) What is the magnitude of the force f [N] attracting the two plates?
- Area A

 Charge +Q

 V

 Charge -Q

 H
- b) Both plates now move in the +y direction with velocity vector $\overline{\mathbf{v}}$ perpendicular to the illustrated magnetic field vector $\overline{\mathbf{H}}$. What is the additional force f between the plates of magnetic origin? Is it attractive or repulsive?

Problem 3. (36/100 points)

A unit-step voltage source u(t) directly excites an air-filled TEM line with impedance Z_o and length D. The TEM line is terminated with an inductor and resistor in series, as illustrated.

- a) Sketch the <u>current</u> i(z) on the line at t = D/3c and dimension your answer.
- b) Sketch the voltage v(t) at the terminals a' a at the right-hand end for 0 < t < 3D/c, and fully dimension your answer.
- c) What is the voltage v_{∞} across the terminals a'a in the limit where $t \to \infty$?

- 2 - 11/13/02