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Abstract

We study electronic conductance through single molecules by subjecting a molecu-
lar junction to a time dependent potential and propagating the electronic state in
real time using time-dependent density functional theory (TDDFT). This is in con-
trast with the more common steady-state nonequilibrium Green’s function (NEGF)
method. We start by examining quantum scale conductance methods in both the
steady state and real-time formulations followed by a review of computational quan-
tum chemistry methods. We then develop the real-time density functional theory
and numerical solution techniques and use them to examine transport in a simple
trans-polyacetylene wire. The remaining chapters are devoted to examining real-time
transport behavior of various systems and model chemistries. Open-shell calculation
of the polyacetylene wire reveal that, in agreement with various correlated model
calculations, charge and spin behave as separate quasiparticles with different rates of
transport. However, the transport of charge, and especially spin are highly dependent
upon the amount of exact exchange included in the approximate exchange-correlation
energy functional. This functional dependence is further illustrated when we demon-
strate that the conductance gap of a device imperfectly coupled to wires varies based
upon the non-local exchange and correlation. We also study the dynamic transport
behavior of benzene-1,4-dithiol (BDT) coupled to gold leads and find that both the
transient current and device charge density fluctuate with time,. This suggests that
the steady-state assumption of the NEGF method may not be accurate.

Thesis Supervisor: Troy Van Voorhis
Title: Associate Professor of Chemistry
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Chapter 1

Introduction

1.1 Single Molecule Electron Transport

There has recently been an explosion of interest in quantum scale electronic devices

resulting from a number of experiments that demonstrate their unique conductance

properties [2, 3, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,

24, 25, 26, 27]. This interest stems from both practical and theoretical considerations.

In terms of practical interest, a large aspect of improving both computational perfor-

mance and portability is increasing the density of electronic components. Currently,

transistors are developed at length scales of tens of nanometers. This is only about

two orders of magnitude larger than the scale of single-molecule conductors. If these

trends continue, understanding the electronic properties of quantum scale electronics

will become necessary.

In terms of theoretical interest, the properties of microscopic conductors are fun-

damentally different than those of macroscopic conductors. In this work, we focus

on resistance. For a conducting macroscopic wire, the resistance is calculated by ρL
A

where A is the cross-sectional area, L is the length, and ρ is a property of the mate-

rial. The resistance arises from scattering of the electrons by the atomic lattice. The

resistance is also potential-independent, so the current through a wire is linear with

respect to applied potential according to the well known Ohm’s law.

Resistance in a quantum scale (angstrom lengths) device is fundamentally dif-

17



Figure 1-1: From Ref. [1]. Reprinted with permission from AAAS. Schematic of the
experimental system and resulting current and conductance profile for a Gold-BDT-
Gold conductance measurement (BDT=benzene-1,4-dithiol). In this experiment, the
junction was formed by adsorption of BDT from solution into a self-assembled mono-
layer in the gap of a fractured gold wire.

ferent from macroscopic resistance. In this thesis, we will examine devices that are

several angstroms in length. This is less than the typical mean free path of metal-

lic electrons which is on the order of tens of angstroms [28], so we would expect

these devices to demonstrate a ballistic transport behavior. Using purely an electron

scattering picture of resistance, conducting devices which are too small to scatter

electrons should demonstrate essentially no resistance. Single molecule devices have

demonstrated measured resistances [1, 16, 23], and even point contacts with effectively

perfect lead-device contact show low voltage resistances corresponding to the quan-

tum conductance unit (G0 = 2e2

h
) [29, 30, 31, 32]. Furthermore, these experiments

reveal conductances that are not independent of applied potential, but instead show

a staircase-like dependence of conductance on potential. Point contact experiments

reveal step sizes of G0. A schematic of an experimental system and resulting stair-

step conductance for an example single-molecule conductance measurement (Ref. [1]

are shown in Fig. 1-1.

Beyond the ballistic conduction behavior and stair-step conductance profile, quan-

tum scale conductors display other unexpected behaviors. For example, the impact

of band-lineup on conduction can cause current to actually decrease with an increase

18



Figure 1-2: Schematic of the conducting molecular contact system. The current is
positive when particles travel from the source to the drain, and negative when they
travel in the other direction.

in potential producing negative differential resistance [15, 20, 33, 34]. Current has

been known to drive dynamics [21, 24, 35], although nuclear motion is outside of the

scope of this work. In chapter 4, we will see that open-shell modeling suggests that

the up and down spin electrons cooperatively produce spin and charge quasiparticles

that travel at different rates [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48]. Finally,

in chapter 6, we will consider the effects of coulomb blockade [1, 49, 11, 34, 18] in

which current is reduced by the energetic cost of charging the quantum conductor in

the course of charge transport. Clearly, electronic properties such a resistance arise

from a different source and show different behaviors in single molecule devices than

in macroscopic devices.

1.1.1 Landauer Formula

The interesting behavior of molecular size conductors was first explained with a new

picture of resistance by Landauer [50, 51], and later expanded by Büttiker [52, 53, 54].

We consider the system depicted in Fig. 1-2. At zero temperature, the states in the

source are filled according to fS(E) = Θ(µS − E), and the drain states are filled

according to fD(E) = Θ(µD − E). Θ(E) is the step function in energy, and the

parameters µS and µD are the chemical potentials in the leads. If we are concerned

with finite temperatures, we simply replace the step function lead distributions with

Fermi functions. For the purposes of the Landauer formula, we initially assume that

the contacts are reflectionless. This is not generally the case for molecular devices,

but is closely approximated in the case of point contacts. By reflectionless, we mean

19



that all current carrying states in the device will transmit 100% into the drain. The

contact cannot be reflectionless in the other direction because the wires have many

more current carrying states than can be accommodated by the device.

Assuming the device is one-dimensional, the current is carried by the momentum

states ψ(k) = eikt. If we take into account double filling, the current carried by the

state ψ(k) is

Ik =
2e

L

~k

me

=
2e

~L

∂Ek

∂k
, (1.1)

where e and me are the electronic charge and mass, and L is the length of the device.

The right (+) moving states (k > 0) are filled by the source and thus filled according

to fS(E). Similarly, the left (-) moving states (k < 0) are filled according to fD(E).

As a result, the total current of the one-dimensional conductor with reflectionless

contacts is

I1D =
2e

~L

(

∑

k>0

∂Ek

∂k
[Θ(µS − Ek) − Θ(µD − Ek)]

)

=
2e

~L

(

L

2π

∫ ∞

0

dk
∂Ek

∂k
[Θ(µS − Ek) − Θ(µD − Ek)]

)

=
2e

h
[max(µS, Ek=0) − max(µD, Ek=0)] .

(1.2)

The multiple of L
2π

when switching to an integral arises from the need to renormalize to

the proper state density when assuming periodic boundary conditions for the device.

This result clarifies the source of resistance in ballistic transport. It arises from the

limited number of current carrying states in the restricted space of the device. Also, if

we consider that V = µS−µD

e
, we see that the resulting conductance is the conductance

quantum. Finally, we note the use of the terms max(µS(D), Ek=0). These terms are

included to recognize that there is no guarantee that the source or drain chemical

potentials are large enough to fill any of the current carrying states on the molecule.

If, for example, the device includes a very large potential barrier, no current will flow.

There are a few additional considerations to complete our derivation of the Lan-

dauer formula. First, we consider the possibility that the leads are not reflectionless.

In the Landauer formula, this is incorporated by a factor of T , the probability that
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an electron in the device will transmit to the lead. The other consideration is to

remove our 1D conductor requirement. The additional dimensions require us to in-

clude additional quantum numbers into our current carrying state definition. As a

result, there are multiple states corresponding to each value of k. Each set of possible

quantum numbers, independent of k, represents a different channel through which to

conduct current with conductance given in equation 1.2. Each channel will activate

at a different source potential. Including these factors, the Landauer equation for the

device conductance is

GC =
2e2

h
TM(V ), (1.3)

where M(V ) counts the number of conductance channels that are activated at the

potential V . This term is responsible for the steps in the conductance profile. We

note that so far T and M are just phenomenological parameters. We will combine

them as just one energy dependent transmission function, T (E), that tells how an

electron in the source at energy E is transferred to the drain. We will explore the

commonly used method to calculate this transmission function in section 1.4.

1.2 Schrödinger Equation

In this work, we will model quantum scale conductance at the level of nonrelativis-

tic quantum mechanics. Thus, we are concerned with systems described by the

Schrödinger equation. In atomic units, the Schrödinger equation is

i
∂

∂t
Ψ(r, t) = Ĥ(t)Ψ(r, t), (1.4)

where Ĥ is the Hamiltonian or linear energy operator. Ψ(r, t) is the wavefunction

describing the system, a complex valued function of the same spatial (r) and temporal

(t) degrees of freedom as the system. The probability distribution describing a mea-

surement of the degrees of freedom of the system is given by P (r, t) = |Ψ(r, t)|2 =

Ψ∗(r, t)Ψ(r, t), so the wavefunction is normalized according to
∫

dr |Ψ(r, t)|2 = 1.

The stationary states of the system, those which vary with time only in the overall
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phase, are the eigenfunction of the Hamiltonian. This yields the time-independent

Schrödinger equation,

ĤΨ(r) = EΨ(r). (1.5)

This eigenvalue equation describes time-independent phenomena in nonrelativistic

quantum mechanics.

Equation 1.4 gives us a method to determine the time evolution of a wavefunction.

We express this time-evolution in terms of the propagation operator Û (t, t0) defined

by

Ψ (t) = Û (t, t0) Ψ (t0) . (1.6)

By integration, we find that

Û (t, t0) = T̂ exp

{

−i
∫ t

t0

dt′Ĥ(t′)

}

, (1.7)

where T̂ is the time ordering operator which dictates the proper expansion for the ex-

ponential operator. In the case that Ĥ is time-independent, or the propagation inter-

val is sufficiently small so that we can consider Ĥ to be effectively time-independent,

the propagator simplifies to

Û (t, t0) = e−iĤ(t−t0). (1.8)

In quantum mechanics, measurable quantities are described by linear operators.

For example, the energy is described by the linear operator Ĥ. Therefore, we will

describe the wavefunction as a linear combination of basis functions:

Ψ(r, t) =
∑

i

ci(t)Φ(r). (1.9)

We will discuss the specific basis functions we use for quantum chemistry calculations

in section 2.1, and here simply state that we use basis functions that are localized

with each centered on one of the atoms in our system. The establishment of a basis

allows us to describe the wavefunction by a vector of the expansion coefficients ci,

22



and each linear operator by a matrix. In Dirac notation, the wavefunction Ψ(r, t)

is described by the ket vector |Ψ(t)〉, and its complex conjugate Ψ∗(r, t) by the bra

vector 〈Ψ(t)|. The elements of the operator Â are given by

Aij = 〈i|Â|j〉 =

∫

drΦ∗(r)ÂΦ(r). (1.10)

Throughout this work, we will alternatively use Dirac notation and integral notation

as appropriate to the problem.

1.3 Conduction System Definitions

We will now establish some definitions to help us in discussing current carrying sys-

tems. A schematic of the systems under examination is shown in Fig. 1-2. As shown

in Fig. 1-2, we divide the system into three parts, the source (S) and drain (D)

metallic wires, and the molecular device (M). The same system division is common

to most single-molecule conduction studies [55, 56, 57, 58, 59, 60]. We will call elec-

trons moving from the source to the drain positive current, and electrons moving in

the other direction negative current.

Each atom belongs to one of the three regions, and each basis function is associated

with an atom. Therefore, we can also divide the matrix representation of any one-

particle system operator analogously. For example, a one-particle Hamiltonian-like

operator becomes

Ĥ =











ĤS V̂SM V̂SD

V̂ †
SM ĤM V̂MD

V̂ †
SD V̂ †

MD ĤD











. (1.11)

Because each sub-operator in equation 1.11 is formed by selecting a subset of the

complete basis, the division is basis-set dependent. For the purposes of associating

an electron population to each region, it will be helpful if there is no overlap between

regions. We accomplish this by performing the separation in an orthogonalized basis.
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We choose the Löwdin symmetrically orthogonalized basis [61, 62] which is given by

φ̃i =
∑

j

(

S−1/2
)

ij
φj, (1.12)

where S is the overlap matrix with elements defined by

Sij = 〈φi|φj〉. (1.13)

This basis has the benefit among all possible orthogonalized bases of most closely

resembling the original basis (φi) in the sense that
∑

i

∫

dr
∣

∣

∣φ̃i(r) − φi(r)
∣

∣

∣

2

is mini-

mized. Thus, we can maintain the same association between basis function and atom

when we orthogonalize the basis.

To divide a single-particle operator into Löwdin orthogonalized pieces as in equa-

tion 1.11, we first change the basis of the operator matrix:

H̃ = S−1/2HS−1/2. (1.14)

Then we separate the matrix as in equation 1.11. If necessary, we can transform back

to our original basis by left and right multiplying by S1/2, but we lose the advantage

of the reduced size of the matrix parts.

We will also use the Löwdin basis to define a population operator. The operator

to calculate the Löwdin population on the region R of the system is

n̂R =
∑

i∈R

|φ̃i〉〈φ̃i|. (1.15)

Unless otherwise noted, populations in this work are calculated according to this

definition.
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1.4 Non-Equilibrium Green’s Function Method

1.4.1 Scattering Theory and Green’s Functions

Calculating conductance involves predicting the outgoing density as a function of

incoming density. Therefore, scattering theory [59, 63] is a natural framework under

which to describe conductance. By far, the most common framework used to calculate

conductance is the non-equilibrium Green’s function (NEGF) method [64, 65, 66, 67,

68, 56] which derives from scattering theory. Scattering theory focuses on the problem

of an incoming state which interacts in a small space with a scattering potential to

produce an outgoing state. The incoming and outgoing states are described in regions

far from the scattering region in which they no longer feel the scattering interaction.

Thus it is useful to describe them in terms of free particle states. We will choose an

incoming state that is an eigenfunction of the potential free Hamiltonian Ĥ0 and find

the steady state according to the full Hamiltonian Ĥ0 + V̂ . Rearranging the time-

dependent Schrödinger equation and assuming a time-independent Hamiltonian, we

get the nonhomogeneous differential equation

(

i
∂

∂t
− Ĥ0

)

|Ψ(t)〉 = V̂ |Ψ(t)〉. (1.16)

Using the Green’s function method, the solution to 1.16 is

|Ψ(t)〉 = |Φ(t)〉 +

∫ ∞

−∞

dt′Ĝ0(t, t
′)V̂ |Ψ(t′)〉, (1.17)

where
(

i
∂

∂t
− Ĥ0

)

Ĝ0(t, t
′) = δ(t− t′). (1.18)

|Φ(t)〉 can be any function for which
(

i ∂
∂t
− Ĥ0

)

|Ψ(t)〉 = 0. Although Ĝ0(t, t
′) can

vary depending on boundary conditions, we choose the retarded Green’s operator,

ĜR
0 (t, t′) = −iΘ(t− t′)e−iĤ0(t−t′), (1.19)
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which corresponds to the wave at time t depending only on the wave at t′ < t.

Assuming a stationary state solution, so |Ψ(t′)〉 = e−iE(t′−t)|Ψ(t)〉, we evaluate the

integral by introducing an adiabatic turn-on (V̂ → lim
η→0+

V̂ e(t
′−t)η). The result is the

Lippmann-Schwinger equation

|Ψ〉 = |Φ〉 + ĜR
0 (E)V̂ |Ψ〉,

ĜR
0 (E) = lim

η→0+

(

E − Ĥ0 + iη
)−1

.
(1.20)

Clearly, |Φ〉 must be the incoming wave, because we require |Ψ〉 → |Φ〉 as V → 0. We

make special note of ĜR
0 (E), the retarded, energy-space, Green’s operator because it

is a very important operator in both scattering theory and conductance calculations.

ĜR
0 (E) amplifies the eigenvectors of Ĥ0 with energy E. If we had chosen instead the

advanced boundary condition for the time-dependent Green’s operator,

ĜA
0 (t, t′) = iΘ(t′ − t)e−iĤ0(t−t′), (1.21)

we would have found the advanced energy space Green’s operator

ĜA
0 (E) = lim

η→0+

(

E − Ĥ0 − iη
)−1

. (1.22)

We can extend our definition of the Green’s function to arbitrary Hamiltonian Ĥ

so

ĜR(A)(E) = lim
η→0+

(

E − Ĥ + (−)iη
)−1

. (1.23)

We will note one more property of the Green’s operators that is useful in calcu-

lating conductance. We define the operator

ρ̂(E) =
GA(E) −GR(E)

2πi

= lim
η→0+

η

π

∑

j

|ψj〉〈ψj|
(E − Ej)2 + η2

,
(1.24)

where the |ψj〉 are the eigenkets of Ĥ. Recognizing the Cauchy representation of
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δ(E−Ej), we see that ρ̂(E), the spectral operator, extracts from |φ〉, the components

corresponding to eigenvectors of Ĥ with eigenvalue E.

1.4.2 Dyson Equation and Self Energies

The Green’s operator contains all of the same information as the full Hamiltonian

operator. Therefore, like the Hamiltonian, calculating the exact Green’s operator can

be computationally intractable. However, it may be possible to calculate the Green’s

function for some related Hamiltonian. We will break our Hamiltonian into a zeroth

order Hamiltonian and a perturbing coupling term. Therefore, Ĥ = Ĥ0 + V̂ , and

we can determine the Green’s operators, ĜR(A)(E) and Ĝ
R(A)
0 (E), corresponding to

Ĥ and Ĥ0 respectively. Using the Green’s operator definition in equation 1.23, it is

trivial to verify the Dyson equation,

ĜR(A)(E) = Ĝ
R(A)
0 (E) + Ĝ

R(A)
0 (E)V̂ ĜR(A)(E) = Ĝ

R(A)
0 (E) + ĜR(A)(E)V̂ Ĝ

R(A)
0 (E).

(1.25)

This equation is clearly related to equation 1.20.

In the NEGF formalism, we use the Dyson equation to determine the molecule-

molecule Green’s operator without evaluating the full matrix Green’s function. To do

so, we will use the concept of a self energy, a modification to the Hamiltonian used

to include additional interactions that are not included in the Hamiltonian. Consider

the Hamiltonian of a system divided into two subspaces, A and B. If we consider our

unperturbed Hamiltonian to describe A and B in isolation,

Ĥ0 =





ĤA 0

0 ĤB



 ,

V̂ =





0 V̂AB

V̂BA 0



 .

(1.26)

From the Dyson equation, we can show that the Green’s operator on the space of A
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is

Ĝ
R(A)
A (E) = lim

η→0+

(

E − ĤA − Σ̂
R(A)
B (E) + (−)iη

)−1

,

Σ̂
R(A)
B (E) = V̂ABĜ

R(A)
0B (E)V̂BA.

(1.27)

We call Σ̂
R(A)
B (E) the retarded (advanced) self energy of subspace B. Using the system

separation in section 1.3, we will include the lead effects as self energies in the device

Green’s functions.

1.4.3 Calculating Transmission

With the results from sections 1.4.1 and 1.4.2 in place, we can now derive the NEGF

current formula. We will stick to a noninteracting particle description for simplicity

and because it is most commonly used. However, the method can be expanded

to include electron interactions within the device region [64]. We are solving for

conductance within in the system described in section 1.3 with the single-particle

Hamiltonian

Ĥ =











ĤS V̂SM 0

V̂ †
SM ĤM V̂MD

0 V̂ †
MD ĤD











. (1.28)

This Hamiltonian is identical to that given in equation 1.11 except V̂SD = V̂ †
SD = 0.

There is no direct source-drain coupling, and all current must flow through the device.

In the NEGF method, the device region typically includes some metal atoms so that

some lead effects are included in the device Hamiltonian. This will be necessary,

because the current formula acts entirely within the device space. We refer to the

block diagonal portions (ĤS, ĤM , and ĤD) as Ĥ0 and the coupling blocks as V̂ .

According to the scattering model, the lead states defined by the spectral op-

erators, ρ̂0S(E) and ρ̂0D(E), are filled according to the Fermi functions fS(D)(E)

deep inside the leads. The device conducting states are determined according to the
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Lippmann-Schwinger equation here used in a different form,

|ψ〉 = |φ〉 + ĜAV̂ |φ〉, (1.29)

where |ψ〉 is an eigenfunction of Ĥ and |φ〉 is an eigenfunction of Ĥ0. We will first

calculate the current due to states originating in the source.

We use a current operator defined according to the change in particle number in

the drain,

Î =
e

~

dN̂D

dt
=
ie

~

(

P̂DV̂ − V̂ P̂D

)

. (1.30)

Using the commutator with respect to V̂ only makes it explicit that the block diagonal

pieces yield 0 commutator.

We want to calculate the differential current for all of the source originating states

|ψS
i 〉. Using the source spectral function and equation 1.29 and taking into account

double filling, the differential current is

dIS(E) = dE
2ie

~
Tr
[(

1 + ĜA(E)V̂
)

ρ̂S(E)
(

V̂ ĜR(E) + 1
)(

P̂DV̂ − V̂ P̂D

)]

fS(E).

(1.31)

Using the Dyson equation, and taking into account that V̂ must always couple the

device and one lead, we reorganize the expression into the standard NEGF form

dIS(E) =
2e

h
Tr
[

Γ̂S(E)ĜR
M(E)Γ̂D(E)ĜA

M(E)
]

fS(E),

Γ̂S(D)(E) = V̂MS(D)ρ̂S(D)(E)V̂ †
MS(D).

(1.32)

Note that all of the operators in equation 1.32 are in the molecule subspace. We calcu-

late the molecular device Green’s function Ĝ
R(A)
M (E) using the self energy expression,

equation 1.27:

Ĝ
R(A)
M (E) = lim

η→0+

(

E − ĤM − Σ̂
R(A)
S − Σ̂

R(A)
D − (+)iη

)−1

,

Σ̂
R(A)
S(D) = V̂MS(D)Ĝ

R(A)
0S(D)V̂

†
MS(D).

(1.33)

Analogously, we can calculate the differential current from states originating in
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the drain. We get the same expression as 1.32 except the sign is reversed and the

Fermi function refers to the drain. The resulting calculated current is

I =
2e

h

∫ ∞

−∞

dETr
[

Γ̂S(E)ĜR
M(E)Γ̂D(E)ĜA

M(E)
]

(fS(E) − fD(E)) . (1.34)

By comparison to the Landauer formula, the NEGF method produces an energy

dependent transmission function

T (E) = Tr
[

Γ̂S(E)ĜR
M(E)Γ̂D(E)ĜA

M(E)
]

. (1.35)

To end this section, we will comment on the Hamiltonian used in the NEGF

method. The NEGF method as presented here can be used with any single-particle

Hamiltonian-like operator. In fact, even though the method described here does

not include interaction, the Hamiltonian can be derived from a quantum chemistry

method that includes interaction. Common approximations for NEGF include semi-

empirical [69, 70], ab initio [71], DFT [72, 73, 55, 74, 75, 76, 77, 78], and model Hamil-

tonian [79, 80, 81] methods. Formally, an exact one-particle molecular Green’s Func-

tion can be developed by including interactions as a self-energy term [82, 59]. Prac-

tically, improvements on the single particle method described here can be achieved

by generating the Green’s operator from the conducting steady state and solving self

consistently [59, 57].

1.5 Real Time Propagation Method

While NEGF is the dominant conduction method, the focus of this dissertation is

the calculation of quantum scale currents using a real time microcanonical approach.

For this section, we assume that we can determine the time-dependent wavefunction

|Ψ(t)〉 of a molecular system including the addition of a one particle potential. We

will examine in more detail in chapter 3 a method to determine |Ψ(t)〉 in interacting

electron quantum calculation, and here will just take the ability to calculate |Ψ(t)〉
as given. In section 1.5.1, we will give an example using the Hückel method in which
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propagating a wavefunction is trivial.

The essence of the real time propagation method is the following: We prepare

an initial state by determining the ground state under one Hamiltonian, and at time

t = 0, switch to a different Hamiltonian. Based on the electronic behavior, we

determine the transport properties of the device. The initial and final Hamiltonian

differ in the addition or removal of a one particle potential operator to the lead

Hamiltonians. For some of the early calculations, we switched from one Hamiltonian

to the other slowly, but found that such ”adiabatic” switching did not significantly

change our current-voltage results.

We generally use one of two potential definitions to determine the initial and

propagation Hamiltonians. In the chemical potential method, we solve for an initial

state under the Hamiltonian Ĥ−V
2
n̂S+V

2
n̂D where Ĥ is the unperturbed Hamiltonian,

and V is the external potential. The operators n̂S and n̂D are defined by equation

1.15. The additional operator, −V
2
n̂S + V

2
n̂D increases the electronic density on the

source relative to the drain. The system is then propagated under Ĥ allowing the

state to evolve towards equilibrium. This definition resembles the definition in the

NEGF and Landauer methods in that the potential is defined in terms of differential

filling. The chemical potential method is analogous to the NEGF case in which

µS = µM + V
2
, and µD = µM − V

2
.

The voltage method is the complement to the chemical potential method. In the

voltage method, the initial state is determined under the unperturbed Hamiltonian

Ĥ, and then propagated under Ĥ + V
2
n̂S − V

2
n̂D. The system starts in equilibrium

and is pushed out by the potential that raises the orbital energy in the source and

decreases energy in the drain. The analogous NEGF formalism would set

T (E) = Tr

[

Γ̂S(E +
V

2
)ĜR

M(E)Γ̂D(E − V

2
)ĜA

M(E)

]

, (1.36)

where the difference in lead potential comes from a shift in the energies of already

filled levels [68].

We note that the spatial voltage profile defined via the Löwdin populations is not
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obvious. Other voltage definitions have been considered including step-like potentials

[74, 83], ramp potentials [72, 84], and potentials in terms of localized orbitals [55,

75, 77, 78]. All of these methods give qualitatively similar I-V results. A detailed

examination of the results of various voltage profiles may prove interesting, but is

not pursued in this work. The Löwdin profile is appropriate for our work because

it has previously been shown in our group to give consistent treatment of charge

transfer[85, 86] and spin states[87].

Reflecting equation 1.30, the current is determined by the changing electronic

populations on the system portions defined in section 1.3. Using a population operator

such as that in equation 1.15, we define time dependent regional populations

nR(t) = 〈Ψ(t)|n̂R|Ψ(t)〉. (1.37)

Thus we calculate the time dependent populations in the source (nS(t)), molecular

device (nM(t)), and drain (nD(t)).

We can use these populations to calculate the current. Consider an experiment in

which our leads are connected to infinitely large electron reservoirs via reflectionless

contacts. We can define the current in terms of changing populations in the reservoirs.

We define the current out of the source as

IS = −dnS(t)

dt
. (1.38)

Similarly, the current into the drain is

ID =
dnD(t)

dt
. (1.39)

Although these values would be equal in a true steady state, they are not exactly

equal in our numeric calculations. Because we have no reason to choose one or the

other lead to determine current, we choose the average of the two. Therefore,

IS =
1

2

d (nD(t) − nS(t))

dt
. (1.40)
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In general, we calculate the current smoothed over a time period significantly larger

than the time-step of the simulation. This reflects the typically larger time used

to make a measurement and prevents rapid oscillations in the calculated current.

Although the limits of quantum chemistry methods require us to approximate this

experiment with finite reservoirs, we use equation 1.40 to calculate transient currents.

There are several different ways for us to choose a single current value for each

propagation. In the projects presented in this work, we have variously chosen:

1. the maximum current within a specified approximately steady-state time period.

2. the average current over that time period.

3. the current calculated from the slope of the linear least-squares fit to nD(t) −
nS(t) over that same time period.

In the case of a perfect steady state, all three methods give exactly the same re-

sult. Each of the three methods has advantages. Method 1 accounts for the fact

that different voltages may require different amounts of time to overcome inertia,

and experience finite system effects at different times while method 2 keeps current

measurement times consistent across all propagations. Method 3 is generally chosen

over 2 because it shows less sensitivity to the endpoints of the measurement period.

Finally, we make a note about open shell systems. Through this section, we

have focused exclusively on total charge current and will demonstrate our method

with a closed-shell example. However, this method is trivially generalizable to open

shell examples, in which we see conduction of not only charge, but spin as well. We

will explore open shell conduction in more detail in chapter 4 when we compare the

relative transport properties of spin and charge quasiparticles.
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1.5.1 Hückel Method Example

As an example, we will calculate the I-V curve of a closed shell Hückel chain of 104

sites. The unperturbed one-particle Hamiltonian is

Ĥ = −
103
∑

j=1

βj,j+1

(

c†jcj+1 + c†j+1cj

)

, (1.41)

where βj,j+1 is the hopping parameter between the jth and (j + 1)th site. The first

50 sites are the source while the last 50 are the drain, leaving a molecular device of

4 sites. The hopping parameter is β for adjacent sites within the leads or device,

and 0.1β between the leads and device. Energies are in units of β, while times are in

units of 1/β. We will solve for the system containing Ne = 104 electrons (52 up and

52 down spin). The unperturbed Hamiltonian in equation 1.41 is used to propagate

in the chemical potential definition and to determine the initial state in the voltage

potential method. To construct the perturbed Hamiltonian and calculate densities,

we use the number operators

n̂R =
∑

j∈R

c†jcj. (1.42)

Because the electrons in the Hückel method do not interact, the ground state

and propagation calculations are much simpler than those described in chapters 2

and 3. The many electron ground state (t = 0) in the closed shell Hückel method is

determined by diagonalizing the one-particle Hamiltonian and doubly filling the Ne/2

lowest energy eigenvectors. Because the electrons do not interact, the single particle

Hamiltonian is time independent, and each electron is propagated according to

|ψ(t)〉 = e−iĤt|ψ(0)〉. (1.43)

Time dependent values of nD(t)−nS(t) are shown in Fig. 1-3a (voltage bias) and

1-3b (chemical potential bias). We determine the currents for use in the I-V curve

by linear fitting in the time period of 5.0 to 35.0 time units. In chapter 3 we will

examine our method of choosing the steady state period in more detail. The linear
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Figure 1-3: I-V calculation results for the Hückel example method. The plots depict
(a) nD(t)−nS(t) as calculated with the voltage potential method for several potentials
(b) nD(t) − nS(t) as calculated with the chemical potential method at a potential of
1.2β (only one line is shown for visual clarity), and (c) the resulting I-V curves.

35



fit lines are included in Fig. 1-3a and b. The resulting I-V curves are shown in Fig.

1-3c.

These I-V curves include several general characteristics of curves that we calculate

in the real time method. We notice the lack of conductance until a potential of about

0.5β. This conductance gap results from insufficient potential to overcome the bad

gap in the molecular device. The conductance gap decreases with stronger lead-device

coupling as the device states are broadened.

The voltage potential and chemical potential demonstrate similar conductance

[88], especially at low voltage, but include some differences and model slightly different

situations. The most clear difference is the hard step-like nature of the chemical

potential method. This results from the tendency of the initial state potential to

move whole electrons from the drain to the source. Increasing the lead size creates

more, but smaller, steps indicating that at the thermodynamic limit, these current

steps will vanish. Also, only the voltage potential method will demonstrate negative

differential conductance as the bias changes the alignment of lead and device states

during propagation. Finally, at biases too large to properly be described in a finite

system, the two methods will show different behavior. The voltage potential will have

zero current as there is no alignment between lead and device states within the finite

bias creating three essentially uncoupled regions. On the other hand, the chemical

potential definition will reach a maximum saturated current because there will be no

more electrons to transfer for the initial state. We must be aware of these differences

and sources of error when interpreting our real time conduction results.

1.5.2 Advantages and Disadvantages

It is useful to examine the advantages and disadvantages of the real time propagation

method relative to the more common NEGF method. The primary disadvantage of

the real time propagation technique is computational cost. For the polyacetylene

wires that we will study in chapters 3, 4, and 5, a single voltage point may require

one or two days of wall-time to propagate on a single processor. The NEGF method

can calculate an entire I-V curve in a few hours. Also, the real time propagations
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are restricted to finite, closed systems, so the long time dynamics do not reflect the

behavior of a real system with de facto infinite leads and electron reservoirs.

On the other hand, the real time method includes several advantages, espe-

cially when used in conjunction with density functional theory (DFT). Both the

NEGF/DFT and time-dependent density functional theory (TDDFT) make use of the

Kohn-Sham single-particle Hamiltonian, which we will discuss in chapter 2. While

the use of the single-particle Hamiltonian in TDDFT is theoretically well supported,

its use in NEGF/DFT is an uncontrolled assumption. Indeed, if the steady state

assumption is not accurate, the single-particle operator is time-dependent and the

Lippmann-Schwinger equation (1.20) on which NEGF is based is not true. This is

not a problem in the real time method, because the single-particle Hamiltonian can

vary with the density.

The other advantage that the real time definition has is that it does not require

an uncontrolled approximation of the potential when using DFT. In the Landauer

picture, the potential is simply the difference between the chemical potentials of

the two non-interacting electron reservoirs. Most modern techniques similarly define

the potential in terms of the difference in Fermi energies between left- and right-

moving electrons [67, 69, 89, 90, 91] or between electrons deep inside each lead [72,

73, 55, 74, 75, 76, 77, 78]. While this is not a problem for exact or wavefunction-

based calculations, in the fictitious non-interacting Kohn-Sham system at the heart

of modern DFT methods, the energies of orbitals other than the highest occupied

have no meaning [92, 93, 94, 95]. Therefore a potential based upon these levels is

clearly approximate. On the other hand, the potential in the real time propagation

method is based entirely on the applied potential which is, of course, known. With

such theoretical advantages, it is reasonable to explore transport behavior within real

time TDDFT to determine the important effects impacting electron transport.

Finally, we make a note about comparison of the calculated currents to experi-

mental results. It is a common feature of currents calculated using NEGF/DFT, that

the calculated currents for molecular systems are approximately one to two orders of

magnitude larger than measured currents. However, these currents show the correct
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qualitative response to potential. We will see that the real time method has the same

property. We will see in chapter 5, that this property is at least partially a result of

approximations in the quantum mechanical parts of the energy equation. It is also

possible that the lack of experimentally known geometry may impact our ability to

correctly calculate currents. We will also see some indication that the steady state

assumption of NEGF may result in some overcalculation, but this effect is unlikely

to produce overcalculation of several orders of magnitude. Correcting this error is a

large focus of research into conduction calculations.

1.6 Thesis Format

In this thesis, we will examine the electronic transport behavior of single molecule

devices using the real time propagation method described in section 1.5, occasion-

ally comparing to the behavior predicted by the NEGF method discussed in section

1.4. The methods discussed in this paper rely heavily upon computational quan-

tum chemistry. Thus, we provide a background on quantum chemistry methods in

chapter 2. The remaining chapters examine various aspects of real time electron

transport. In chapter 3, we introduce the time-dependent density functional theory

(TDDFT) method and examine closed-shell transport in simple polyacetylene model

systems. We expand to open-shell transport in chapter 4 and compare the transport

properties of spin and charge quasiparticles both on polyacetylene and under a model

Hamiltonian. DFT calculations are not exact, because the exact exchange-correlation

functional is not known. Therefore, in chapter 5, we examine the effects of exchange

and correlation on transport properties. Due to the computational cost of including

non-local correlation, we here resort to the use of a model Hamiltonian as well. Fi-

nally in chapter 6, we study a realistic system and examine the accuracy of the steady

state assumption that is the core of the NEGF method. All equations in this thesis

are presented in atomic units (~ = qe = me = 1) unless otherwise noted.
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Chapter 2

Quantum Chemistry Methods

2.1 Basis Sets

The linear nature of the Schrödinger equation allows us to solve quantum mechani-

cal problems within the confines of linear algebra leading to the use of basis sets as

described in section 1.2. Typically, when we define the basis in a quantum chemistry

calculation, we are describing the three dimensional functions from which single par-

ticle wavefunctions are constructed. In quantum chemistry, the two most common

types of bases are the plane wave basis, formed from normalized functions of the form

Ceik·r, and the Gaussian basis.

The work in this thesis is accomplished using a Gaussian basis. The Gaussian basis

is constructed using three-dimensional normalized Gaussian basis functions centered

on the atomic coordinates. Additionally, Gaussians may be multiplied by real-valued

angular functions to give basis functions with a larger angular momentum quantum

number. For example, the s and px gaussian basis functions are of the form:

φG
s (x, y, z) =

(

8α3

π3

)1/4

e−α[(x−x0)2+(y−y0)2+(z−z0)2],

φG
px

(x, y, z) =

(

128α5

π3

)1/4

xe−α[(x−x0)2+(y−y0)2+(z−z0)2],

(2.1)

where (x0, y0, z0) is the location of the atomic center. Each Gaussian basis function
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includes a parameter α which controls how diffuse the function is. Unlike for plane-

waves, there is no single parameter to adjust the size of the basis set. Instead,

a basis set may be augmented by the addition of higher angular momentum basis

functions, useful to describe polarized wavefunctions, or functions with reduced values

of α, useful for diffuse wavefunctions. Unfortunately, this makes discussing the basis

dependence of a result more complicated. In addition, for ease of computation, several

Gaussians of the form shown in equation 2.1 are often contracted into a single basis

function. Due to the complexity of defining a basis, standard Gaussian basis functions

are named and often augmented. The Gaussian basis sets used in this work are STO-

3G [96], 6-31G* [97], the minimal basis associated with the Hay-Wadt pseudopotential

[98], and the Aldrichs VDZ basis [99] augmented with heavy atom d functions.

The advantage of Gaussian functions is that they closely resemble the atomic

hydrogen orbitals, and thus by summation, the molecular orbitals. Therefore, far

fewer basis functions are needed to accurately describe the molecular wavefunction

and more sophisticated and computationally expensive quantum chemistry methods

are possible. Although plane waves are conceptually simpler, this practical advantage

has caused Gaussians to become the dominant basis for quantum chemistry studies

of molecular systems.

2.2 Variational Principle

Computational quantum mechanics relies upon the variational principle to define

a best approximation to the ground state of a quantum mechanical system within

a reduced search space. The principle states that no normalized wavefunction has

a lower expectation energy than the ground state. We can prove this principle by

noting that the set of all normalized eigenstates of a Hamiltonian Ĥ forms a complete

orthonormal basis. Therefore, we can write an arbitrary normalized wavefunction as

a linear combination of the eigenstates of Ĥ:

|Φ〉 =
∑

α

cα|ψα〉, (2.2)
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where
∑

α ||cα||2 = 1. Calculating the expectation energy of state |Φ〉, we find

〈Φ|Ĥ|Φ〉 =
∑

α,β

c∗αcβ〈ψα|Ĥ|ψβ〉

=
∑

α,β

c∗αcβEαδα,β,

〈E〉 = ||c0||2E0 +
∑

α 6=0

||cα||2Eα,

(2.3)

where the subscript 0 refers to the ground. Note that the eigenbasis here has the same

dimensionality (3*number of particles) as the many-particle wavefunction and is not a

basis for functions in three dimensional space like the plane-wave and Gaussian bases

described in section 2.1. Combining the normalization of |Φ〉 with the definition of

ground state (E0 ≤ Eα) we see that 〈E〉 is a weighted average of terms greater that

or equal to E0. The best approximation is therefore the wavefunction in the solution

space that minimizes the expectation energy. This definition becomes invaluable

in quantum chemistry methods as the immense size of the solution space of many

particle systems requires that we search for the best wavefunction within a subspace

restricted by our choice of basis set and quantum chemistry method.

When we apply the variational principle in the solution space of all normalized

functions that can be described by an arbitrary (not necessarily complete) basis, we

transform our eigenfunction problem into an eigenvector problem. If we consider our

solution as a linear combination of basis functions like in equation 2.2, we get an

expectation energy of

〈Φ|Ĥ|Φ〉 =
∑

α,β

c∗αcβ〈φα|Ĥ|φβ〉 − ǫ

(

∑

α

c∗αcα − 1

)

. (2.4)

Note that we have replaced ψ with φ because we are dealing with an arbitrary basis,

not an eigenbasis. For this same reason, we cannot replace out Hamiltonian operator

with a scalar energy. We have also added a Lagrange multiplier ǫ to enforce normal-

ization. Optimizing with respect to c∗α, by setting the derivative of the expectation
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energy to 0, we find that

0 =
∑

β

Hα,βcβ − ǫcα,

H|Ψ〉 = ǫ|Ψ〉.
(2.5)

Thus, we construct an eigenvector problem from the variational principle and an

eigenfunction problem. Such eigenvector equations form the bedrock of quantum

chemistry methods.

2.3 Electronic Hamiltonian

2.3.1 All Electron Hamiltonian

We introduced the concepts of the Schrödinger equation and Hamiltonian in section

1.2. Now, we will focus specifically on the many-particle electronic Hamiltonian of a

molecular system. If we consider the nuclei to be fixed point charges, then the full

electronic Hamiltonian is

Ĥ = −
N
∑

α

1

2
∇2

α −
α=N,A=M
∑

α,A

ZA

rα,A

+
N
∑

α,β<α

1

rα,β

, (2.6)

where M is the number of nuclei,N is the number of electrons, and rα,β is the dis-

tance between the αth and βth particles. The Hamiltonian contains both one and

two particle terms with the one particle terms often expressed as the single operator

ĥcore = −∑N
α

1
2
∇2

α −∑α=N,A=M
α,A

ZA

rα,A
. This is done because the one-particle term is

generally easy to treat in a many-electron system. On the other hand, the remain-

ing two-electron term is responsible for the computational complexity of quantum-

chemistry methods.

In sections 2.4, 2.5, and 2.6, we will examine methods to attack the complexity

caused by the two-electron term. These sections discuss methods of searching for a

3N -dimensional wavefunction that obeys the known properties of fermions. Those

properties are:
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1. Normalization - When the square modulus of the wavefunction is integrated

over all dimensions, the result is 1.

2. Exchange antisymmetry - exchanging any two electrons changes the sign of the

wavefunction.

Thus, a quantum-chemistry ground state method attempts to determine the lowest

energy eigenstate of the operator given in equation 2.6 that satisfies the above proper-

ties of fermions and lies within a solution subspace defined within the approximations

of the method.

2.3.2 Effective Core Potentials

In section 2.3.1, we discussed the full electronic Hamiltonian given in equation 2.6.

However, for atoms beyond the first few rows of the periodic table, the large number

of electrons causes very large computational cost due to the number of basis functions

required to describe them. However, many of these electrons are core electrons which

are tightly bound and do not significantly contribute to chemical behavior. Further-

more, an all-electron nonrelativistic treatment of heavy atoms will likely incorporate

non-negligible errors by ignoring relativistic effects of the core electrons.

The importance of the core electrons is their effect on valence electrons by shielding

them from the nucleus and through Pauli exclusion. Thus, it is reasonable to replace

the core electrons by an additional one-electron pseudopotential. The pseudopoten-

tials include parameters that are adjusted to correctly reproduce valence electron

structure. Generally, bases are designed with a particular pseudopotential in mind

by reducing the large exponent Gaussians in favor of more diffuse functions to model

the valence electrons. Thus, the pseudopotential method significantly reduces the size

of the basis, and hence the computational cost. In addition, a pseudopotential can

model relativistic core electrons without explicitly including relativity in our calcula-

tion [100, 101, 102]. In this work, we do not develop pseudopotentials, but use them

in chapter 6 to reduce the computational cost in modeling gold contacts. We use the

effective core potential designed by Hay and Wadt [98].
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2.4 The Hartree-Fock Method

2.4.1 Single-determinant Solution Space

The first ab initio many-electron method that we will examine is the Hartree-Fock

(HF) Method. The derivation of this method is provided in detail elsewhere [82],

so here we provide only the necessary background for this thesis. The HF method

seeks the lowest energy eigenstate of equation 2.6 within the subspace of the simplest

many-particle functions that obey the fermion property requirements listed in section

2.3.

The solution space of the HF method is the space of all Slater determinant wave-

functions, wavefunctions of the form

Ψ (r1, r2, ..., rN) =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

χ1 (r1) χ2 (r1) · · · χN (r1)

χ1 (r2) χ2 (r2) · · · χN (r2)
...

...
...

χ1 (rN) χ2 (rN) · · · χN (rN)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (2.7)

where χi is the ith single-particle spin-orbital. For the sake of conciseness, we will use

the notation

|Ψ〉 = |χ1χ2...χN〉, (2.8)

to indicate a Slater determinant wavefunction. We can see that exchanging two

electrons is equivalent to switching two rows, so the wavefunction is antisymmetric

to exchange. Additionally, as long as each of the spin-orbitals are normalized, the

Slater determinant will be normalized as well.

As we have now introduced a many-electron wavefunction, we will also introduce

the density matrix, which contains equivalent information as the filled molecular
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orbitals. The density matrix is given by

P̂ =
∑

a occ.

|a〉〈a|,

Pij =
∑

a occ.

cai c
∗a
j ,

(2.9)

and is generally used as the primary description for the electronic, single-determinant,

quantum state.

2.4.2 Fock Equation

In section 2.4.1, we constructed the Slater-determinant many-particle wavefunction

from normalized spin orbitals. Next, we will tackle the problem of determining the

single-electron spin orbitals themselves using a variational approach. We will take as

given the number of up (↑) and down (↓) spin electrons as the Hamiltonian in section

2.3 has no term which couples states of different charge or multiplicity. We start by

writing the spin orbitals in terms of the spin basis functions:

χa (r, ω) = cai φi (r, ω) . (2.10)

The spin basis functions are formed by multiplying each spatial basis function by

either the up or down spin function. Calculating the expectation energy of a Slater

determinant state, we find

〈χ1χ2...χN |Ĥ|χ1χ2...χN〉 =
∑

a occ.

〈χa|ĥcore|χa〉 +
1

2

∑

a,b occ.

(〈ab|ab〉 − 〈ab|ba〉),

E =
∑

i,j

Pjih
core
ij +

1

2

∑

i,j,k,l

PkiPlj (〈ij|kl〉 − 〈ij|lk〉),
(2.11)

where

〈ij|kl〉 =

∫

dr1dr2dω1dω2χ
∗
i (r1, ω1)χ

∗
j (r2, ω2)

1

r1,2

χk (r1, ω1)χl (r2, ω2) . (2.12)
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For the second equation, we have also included the basis set expansion coefficients in

terms of the density matrix P̂ defined in equation 2.9. Note that the single deter-

minant wavefunction produces two different kinds of energy terms from the electron-

electron repulsion operator. The first is of the type Jab = 〈ab|ab〉 and is called the

coulomb term. This term is the classical electrical repulsion between two negatively-

charged particles and tends to delocalize the electron density. The second is of the

type Kab = 〈ab|ba〉 and is called exchange. The exchange term has no classical ana-

logue, and tends to partially counteract the coulomb term. In the case that a = b,

the coulomb and exchange terms exactly cancel, so an electron does not interact with

itself.

We have determined the expectation energy of a single determinant wavefunction

in terms of the single electron spin orbital expansion parameters cai . According to the

variational principle, we can determine the best Slater determinant approximation

to the true ground state by constrained minimization of the expectation energy with

respect to the expansion coefficients. The imposed constraints are orthonormality

of the spin orbitals. We leave the algebra determining the resulting eigenproblem

to other sources [82] and here simply present the result. The spin orbitals can be

determined by solving

F[P]ca = ǫaSca,

F[P] =
∑

i,j

|i〉hcore
ij 〈j| + J[P] + K[P],

J[P] =
∑

i,j,k,l

|i〉Plj〈ij|kl〉〈k|,

K[P] =
∑

i,j,k,l

|i〉Plj〈ij|lk〉〈k|,

(2.13)

where S is the overlap matrix of the spin basis, and F is referred to as the Fock matrix

defined from the Fock operator, F̂ .

Because the Fock operator does not interact with electron spin, it commutes with

the electron spin operator, and we can factor the spin orbitals into spatial and spin

pieces without approximation. Only Fock matrix elements between spin basis func-
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tions with the same spin piece are nonzero, leading to a block diagonal structure. As

a result, we can separate both the Fock matrix and density matrix into up and down

spin components. The expectation energy with a spin separated density matrix is

given by

E[P] =
∑

i,j

(

P ↑
ji + P ↓

ji

)

hcore
i,j + EJ [P] − EK [P],

EJ [P] =
1

2

∑

i,j,k,l

(P ↑
ki + P ↓

ki)(P
↑
lj + P ↓

lj) (ij|kl),

EK [P] =
1

2

∑

i,j,k,l

(P ↑
kiP

↑
lj + P ↓

kiP
↓
lj) (ij|lk),

(2.14)

where the subscripts i, j, k, and l now refer to spatial basis functions. We now use the

notation (ij|lk) which is defined analogously to 2.12, but refers to spatial orbitals.

The resulting Fock matrices are

F↑(↓)[P] =
∑

i,j

〈i|hij|j〉 + J[P] + K↑(↓)[P],

J[P] =
∑

i,j,k,l

|i〉(P ↑
lj + P ↓

lj) (ij|kl) 〈k|,

K↑(↓)[P] =
∑

i,j,k,l

|i〉P ↑(↓)
lj (ij|lk) 〈k|.

(2.15)

The up and down spin states are coupled through the coulomb term, while the ex-

change term acts only between electrons of the same spin. The restricted energy and

Fock matrices are achieved by requiring P↑ = P↓ = P and apply to the situation that

both spins are required to have the same spatial orbitals.

Because F depends on P, P must be determined self consistently. The density

matrix P is a self consistent solution if F[P] yields the same density matrix that

was used to construct it. The self consistent field (SCF) procedure is shown in Fig.

2-1. An initially guessed P is iteratively improved until self-consistency is achieved.

The Hartree-Fock energy is variational, so iterative improvements decrease the total

energy. Several methods exist to update the density matrix. The most common

method is DIIS [103] which uses past density matrix iterations to improve the guess
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Figure 2-1: Flow chart depicting the self-consistent field procedure.

for the next iteration.

2.5 Correlated Methods

For a given wavefunction in the Slater determinant solution space, Hartree-Fock in-

cludes the exact exchange energy. This quantum mechanical decrease in energy is

achieved by enforcing antisymmetry through the Slater-determinant state. However,

a single determinant wavefunction, or equivalently the mean-field approximation, can-

not show correlation energy. By definition, correlation energy is the difference between

the lowest energy achieved by a Slater determinant wavefunction, and the minimum

energy of the non-relativistic electronic Hamiltonian within the chosen basis. The

Slater determinant assumes that the spatial distributions of individual electrons are

independent of one another. However, there is no reason to expect this to be the

case as electron 2 will tend to redistribute to avoid electron 1. Indeed, the N-electron

wavefunction is a complex function of 3N dimensions and, in general, is not separable

into a product of 3-dimensional single-electron orbitals. A correlated wavefunction is

constructed, not as a single determinant, but as a linear combination of many single

determinants. Here we briefly describe the basics of determining correlation through

post-Hartree-Fock methods. However, because this thesis does not include any post-
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Hartree-Fock calculations we give only a general overview and leave the details to

other sources [82].

The conceptually simplest method to achieve correlation is through configuration

interaction (CI). In the CI method, the full electronic Hamiltonian (equation 2.6)

is expanded in the basis of a reference Slater determinant |Ψ0〉 and related excited

determinants |Ψrst...
abc...〉. Here we simplify our discussion by ignoring the use of spin-

adapted basis functions to avoid spin contamination [82]. The excited determinant

|Ψrst...
abc...〉 refers to the determinant formed by removing electrons from filled spin orbitals

a, b, c, etc. and placing them in virtual orbitals r, s, t, etc.. The many electron

Hamiltonian matrix is determined in the single-determinant basis

We can generally think of the reference determinant as the result of a Hartree-

Fock calculation. However, if we are performing a full CI calculation, our reference

determinant can be any determinant formed from orthonormalized orbitals. That

is because altering the orbitals, while maintaining orthonormalization, is equivalent

to simply performing a unitary basis set transformation. Of course, this raises the

question of why we perform Hartree-Fock at all, rather than just perform full CI with

an arbitrary orthonormalized reference configuration. To answer that question, we

consider the size of the basis for a full CI calculation. For a calculation involving

K spatial basis functions, N up spin, and M down spin electrons, the number of

basis determinants is





K

N









K

M



 if we take into account that the Hamiltonian

cannot mix states with different total spins. As an example of how quickly this

number can grow, a calculation of N2 (7 up and 7 down spin electrons) with the

STO-3G basis set (minimal basis with 10 total basis functions) would be considered

a trivial Hartree-Fock calculation for any modern computer. On the other hand, the

full CI calculation would involve 14,400 single-determinant basis functions, nearly the

limit that can be handled by a typical CPU. Thus, it is clear that full CI is impossible

for any but the smallest systems. A reasonable reference determinant, such as that

obtained from Hartree-Fock is useful in obtaining useful results from a truncated CI-

like calculation. Several methods exits to truncate the CI expansion. We will not
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examine any of the traditional truncation methods as we do not use them in this

work. In chapter 5, we will examine a modified correlation procedure which attempts

to select determinants that are important to the problem at hand to form a basis for

the correlated calculation. Unfortunately, all wavefunction based correlation methods

are very expensive relative to Hartree-Fock. In section 2.6, we will examine density

functional theory, a method that can include at least some local correlation at about

the same computational cost as Hartree-Fock.

2.6 Density Functional Theory

Density functional theory (DFT)[104] has grown to be one of the most widely used

methods to study molecular systems. DFT is based upon the idea that one needs

only the three-dimensional electron density, not the 3N-dimensional electronic wave-

function, to describe the electronic state of the system. Depending upon the specific

functional chosen, DFT can be more accurate than Hartree-Fock at approximately

the same cost. While the most accurate functionals often include parameters that

are fit to experiment, thereby disqualifying DFT from being truly ab initio in those

cases, the practical benefit of accurate DFT methods cannot be denied.

2.6.1 Hohenberg-Kohn Theorems

The theoretical bedrock of density functional theory is the Hohenberg-Kohn theorems.

Essentially, the Hohenberg-Kohn theorems state that because all electronic structure

problems are identical except for the three-dimensional, single-particle potential on

the electrons, the three-dimensional electron density is sufficient to entirely determine

the electronic state of the system. Furthermore, the resulting energy functional of

the density is variational with respect to the electronic density. We will now examine

more rigorously the justification for the Hohenberg-Kohn theorems.

The first Hohenberg-Kohn theorem states that the external potential v(r) is deter-

mined, within a trivial additive constant, by the electron density ρ(r) [105, 104]. The

simple proof is by contradiction. We assume contrary to our theorem that we have an
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electron density ρ(r) which results from two different potentials v(r), and v′(r). Once

we specify the one-electron potential, we have entirely specified our Hamiltonian, and

therefore our wavefunction. Thus, we associate with the potential v(r), the Hamilto-

nian Ĥ, the wave function Ψ, and the ground energy E0. Likewise, we associate Ĥ ′,

Ψ′, and E ′
0 with v′(r). Applying the variational principle discussed in section 2.2, we

know

E0 = 〈Ψ|Ĥ|Ψ〉 < 〈Ψ′|Ĥ|Ψ′〉 = 〈Ψ′|Ĥ ′|Ψ′〉 + 〈Ψ′|Ĥ − Ĥ ′|Ψ′〉,

E0 < E ′
0 +

∫

drρ(r) [v(r) − v′(r)],
(2.16)

where we get the second line by realizing that the two Hamiltonians differ only in the

one-electron potential. Likewise,

E ′
0 < E0 −

∫

drρ(r) [v(r) − v′(r)]. (2.17)

Combining equations 2.16 and 2.17, we find that E0 +E ′
0 < E ′

0 +E0. This is of course

a contradiction. Thus we prove that if v(r) and v′(r), differ by more than an additive

constant (so that they result in different ground state wavefunctions), they cannot

produce the same electron density. In other words, the electron density determines

the one electron potential up to an additive constant, and we have proven the first

Hohenberg-Kohn theorem. From here, it is obvious to see that ρ(r) determines Ĥ

and Ψ. Thus ρ(r) entirely determines the electronic state of the system.

The first Hohenberg-Kohn theorem allows us to state that the total energy is a

functional of the electron density, which we will call E[ρ]. We know the one electron

potential energy, so we can separate it to define

Ev[ρ] =

∫

drρ(r)v(r) + FHK [ρ], (2.18)

where FHK [ρ] is the universal functional of ρ for the kinetic and two-electron energies

of ρ. The subscript v indicates the explicit dependence of the one-electron potential

upon v. This notation is important in determining a variational principle for ρ, which
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is the topic of the second Hohenberg-Kohn theorem.

The theorem states that for a trial density ρ̃(r), such that ρ̃(r) ≥ 0 and
∫

drρ̃(r) =

N ,

E0 ≤ Ev [ρ̃] . (2.19)

Note that to understand this theorem, one must understand the meaning of Ev [ρ̃].

Ev [ρ̃] is the energy of the trial density under the predefined potential v(r). Thus, we

clarify that Eṽ [ρ̃] = E [ρ̃], but E [ρ̃] 6= Ev [ρ̃], because they have different one-electron

potentials unless ρ̃(r) is the correct density corresponding to v(r). To prove this, we

remember that the first theorem allows us to associate a wavefunction Ψ̃ with ρ̃ which

we can apply to our predefined Hamiltonian Ĥ. By the variational theorem,

〈Ψ̃|Ĥ|Ψ̃〉 ≥ Ev[ρ]

Ev [ρ̃] ≥ Ev[ρ],
(2.20)

and we have proven the second Hohenberg-Kohn theorem. The second theorem pro-

vides a path for determining ρ(r) directly from a given potential v(r), which is the

problem we regularly tackle with quantum chemistry methods.

2.6.2 Kohn-Sham Method

The disappointing aspect of the first Hohenberg-Kohn theorem is that it has an

existence proof, not a construction proof. Thus, we know that E[ρ], or likewise

FHK [ρ] exist, but we do not know what they are. Initial attempts were made to

apply the energy functional derived for a uniform electron gas. This Thomas-Fermi

model, however, suffers from the inability to bind two atoms together [104, 106, 107].

Attempts at corrections based upon the gradient of the density have met with mixed

success [108]. Here, we discuss instead the method used in this work, and indeed

the method used in the great majority of density-functional research, that of Kohn

and Sham. Where previously attempts were focused on approximating E[ρ] directly,

Kohn and Sham divided E[ρ] into several pieces to be attacked separately. Following
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their lead, we can separate the energy functional as

E[ρ] = TS[ρ] +

∫

drρ(r)v(r) + J [ρ] + Exc[ρ],

TS[ρ] =
N
∑

i

〈ψi| −
1

2
∇2|ψi〉,

J [ρ] =
1

2

∫ ∫

dr1dr2

ρ(r1)ρ(r2)

r1,2

,

Exc[ρ] = T [ρ] − TS[ρ] + Vee[ρ] − J [ρ],

(2.21)

where Vee[ρ] is the full two electron energy and J [ρ] is the classical part of that energy.

We have introduced orbitals ψi so that we can calculate TS[ρ], the approximate kinetic

energy, using the exact kinetic energy operator. The term Exc[ρ] is the exchange-

correlation functional and contains both the nonclassical part of the two-electron

energy and the part of the true kinetic energy, T [ρ], not accounted for by TS[ρ].

Applying the variational principle of 2.19, we find that

[

−1

2
∇2 + v(r) +

∫

dr′
ρ(r′)

|r − r′| + vxc(r)

]

ψi = ǫiψi,

vxc(r) =
δExc[ρ]

δρ(r)
.

(2.22)

Thus, much like we did for Hartree-Fock, we have replaced our interacting many

electron energy expression with an eigenvalue problem describing a noninteracting

system. Because both sides of the equation depend upon ρ, ρ must be determined

self consistently. We have changed our electron density optimization into an orbital

optimization problem. Upon determining our orbitals, we can calculate the total

density using

ρ(r) =
N
∑

i

|ψi(r)|2. (2.23)

The orbitals determined do not necessarily reflect the true wavefunction for the

solution density. Where Hartree-Fock assumes an approximate form for the wavefunc-

tion, and therefore the approximate wavefunction has physical meaning, the Kohn-

Sham method instead proposes an approximate eigenvalue problem which is designed
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to return the correct total density. This discrepancy between the true wavefunction

and the calculated orbitals is the reason that T [ρ] and TS[ρ] differ.

Upon initial examination, it may be difficult to see the value in the Kohn-Sham

method. First of all, while our energy functional E[ρ] is by definition exact, it still

contains a term, Exc[ρ], that we do not know how to calculate. Additionally, we

have relinquished the simplicity of only examining total density by requiring orbitals

to calculate kinetic energy. However, we notice that the magnitude of the unknown

functional term is significantly smaller than the total energy, so an approximate func-

tional has less impact. Furthermore, the Hohenberg-Kohn theorem and Kohn-Sham

method give us a framework in which to examine a range of exchange-correlation

functionals. Where Hartree-Fock locked us into exact exchange and no correlation,

DFT provides much more flexibility to explore calculation methods. Thus, while we

are still constrained to examine orbitals, we have significantly broadened our space

for exploration.

2.6.3 Spin Density Functional Theory

As we have now examined a practical method of determining the ground state density

given v(r), it is useful to discuss practically dealing with total electron spin. This

will be important in chapter 4 when we examine spin conduction as well as charge

conduction. Spin density functional theory [109, 110, 104] seeks the ground state

electron density in the presence of not only an electric field (giving rise to v(r)),

but a magnetic field. We will consider here only the case that the magnetic field

is everywhere parallel. The direction of the magnetic field will be defined as the z

direction. Effectively, we have two different external potentials; one for the up spin

density, and one for the down spin density. We will not cover the details as they are

a simple extension of sections 2.6.1 and 2.6.2, but we must extend the Hohenberg-

Kohn theorems and Kohn-Sham method to systems in the presence of a magnetic

field. We must now consider the up and down spin electron densities (ρ↑(r) and

ρ↓(r)) as the sufficient variables to describe the full quantum mechanical electronic
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state. Furthermore, we have separate up and down spin Kohn-Sham equations:

[

−1

2
∇2 + v(r) + βeb(r) +

∫

dr′
ρ↑(r′) + ρ↓(r′)

|r − r′| + v↑xc(r)

]

ψ↑
i (r) = ǫ↑iψ

↑
i (r),

[

−1

2
∇2 + v(r) − βeb(r) +

∫

dr′
ρ↑(r′) + ρ↓(r′)

|r − r′| + v↓xc(r)

]

ψ↓
i (r) = ǫ↓iψ

↓
i (r),

v↑(↓)xc (r) =
δExc[ρ

↑, ρ↓]

δρ↑(↓)(r)
,

(2.24)

where βe is the Bohr magneton, and b(r) is the strength of the magnetic field. These

equations give us a method to determine electronic states in the presence of a magnetic

field.

Spin density functional theory is also useful in the case that b(r) = 0. While

technically, the exact Exc[ρ] in traditional density functional theory does not require

any spin assumption, and should reflect the correct spin from just the total density,

known approximations do not have this property. Instead, approximate Exc[ρ] gen-

erally assume a closed-shell solution. Open-shell treatment instead relies upon an

exchange-correlation functional of the form Exc[ρ
↑, ρ↓]. Furthermore, like Hartree-

Fock, the number of up and down spin electrons are generally specified a priori and

the constrained state search is performed within the space of the a priori determined

spin multiplicity. Thus, even when no magnetic field is present, open shell systems

are best treated within spin density functional theory.

2.6.4 Functionals

As stated in section 2.6.2, the exchange-correlation functional, Exc[ρ] is not known,

and instead must be approximated. In this section, we examine several avenues

to approximate this functional. For most of these methods, we consider the ex-

change (Ex[ρ]) and correlation (Ec[ρ]) energies separately with the understanding

that Exc[ρ] = Ex[ρ] + Ec[ρ]. All of the functionals used in this thesis are available in

most standard DFT packages except for the range separated hybrid functionals.

Local Density Approximation Local density approximate exchange-correlation
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functionals are functionals of the form.

Exc[ρ
↑, ρ↓] =

∫

drǫxc[ρ
↑(r), ρ↓(r)]. (2.25)

The exchange-correlation functional is a local functional of the density. The local

density approximation (LDA) functional used throughout this work is derived from

the uniform electron gas. Dirac [111] presented the exchange piece of the LDA as

ELDA
x [ρ↑, ρ↓] =

3

4

(

6

π

)1/3 ∫

dr
(

ρ↑4/3(r) + ρ↓4/3(r)
)

. (2.26)

Unfortunately there is no known exact closed expression for the correlation energy

of the uniform electron gas. The standard LDA functional uses a parameterized

expression that was fit to the results of Monte Carlo simulations of the uniform

electron gas at a number of electron densities. The resulting expressions, referred

to as VWN5 are too complicated to be reproduced here, but are available elsewhere

[112].

Generalized Gradient Approximation The LDA functional is based upon the

uniform electron gas and works best for systems with slowly varying electron density.

Molecular and atomic systems, however, can have very heterogeneous densities. The

next level of approximation considers variations in the electron density and acts not

only on the local density, but on the local gradient as well. As a result, these gen-

eralized gradient approximate (GGA) functionals are often referred to as semilocal.

These GGA functionals are be of the form

Exc[ρ
↑, ρ↓] =

∫

drǫxc[ρ
↑(r), ρ↓(r), ~∇ρ↑(r), ~∇ρ↓(r)]. (2.27)

Although we do not directly use any GGA functionals in this work, we shall give as

an example GGA functionals that are incorporated in the hybrid functionals we use.

As an example of a gradient approximation for the exchange functional, we give the
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Becke88 functional [113]:

EB88
x [ρ↑, ρ↓] = ELDA

x [ρ↑, ρ↓] − β
∑

σ=↑,↓

∫

drρ4/3
σ (r)

x2
σ

1 + 6βxσsinh−1xσ

,

xσ =
|∇ρσ|
ρ

4/3
σ

,

β = 0.0042,

(2.28)

where ELDA
x [ρ↑, ρ↓] is defined in equation 2.26 and β was determined by fitting to the

ab initio exchange energies of the noble gases. This exchange functional produces the

correct asymptotic electron density.

Like for LDA, we will not include the GGA correlation functional used in this

work. We use the LYP correlation functional (ELY P
c ) [114] which is generated by

gradient expansion of the local kinetic-energy density. The gradient expansion is

used to convert a second-order Hartree-Fock based correlation energy [115] into a

density functional.

Hybrid Functionals The exchange functionals examined so far are both local

and approximate. However, the Hartree-Fock method includes exchange exactly as

calculated in equation 2.14. This expression requires orbitals, but we are already

calculating Kohn-Sham orbitals to calculate the kinetic energy. Thus it seems rea-

sonable to apply the Hartree-Fock exchange energy expression to the Kohn-Sham

orbitals. We once again consider the exchange and correlation energies separately,

but use the exact exchange functional:

EHF
x [ρ↑, ρ↓] = −1

2

∫ ∫

dr1dr2

[
∣

∣ρ↑↑(r1, r2)
∣

∣

2

r1,2

+

∣

∣ρ↓↓(r1, r2)
∣

∣

2

r1,2

]

,

ρσσ(r1, r2) =
∑

a occ.

nσ
aψ

σ
a (r1)ψ

σ∗
a (r2).

(2.29)
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The Kohn-Sham equations then become

[

−1

2
∇2 + v(r) + βeb(r) +

∫

dr′
ρ↑(r′) + ρ↓(r′)

|r − r′| + v↑c (r)

]

ψ↑
i (r)

−
∫

dr′
ρ↑↑(r, r′)

|r − r′| ψ
↑
i (r

′) = ǫ↑iψ
↑
i (r),

[

−1

2
∇2 + v(r) − βeb(r) +

∫

dr′
ρ↑(r′) + ρ↓(r′)

|r − r′| + v↓c (r)

]

ψ↓
i (r)

−
∫

dr′
ρ↓↓(r, r′)

|r − r′| ψ
↓
i (r

′) = ǫ↓iψ
↓
i (r),

v↑(↓)c (r) =
δEc[ρ

↑, ρ↓]

δρ↑(↓)(r)
.

(2.30)

Equation 2.30 is no longer the Kohn-Sham method, because the effective exchange po-

tential is not local. Instead we can refer to this as Hartree-Fock Kohn-Sham (HFKS)

[104] method. Indeed, traditional Hartree-Fock can be considered an HFKS method

with Ec[ρ
↑, ρ↓] = 0.

Other than traditional HF, we do not use any methods with 100% exact exchange.

Instead, we use an example of a hybrid functional. Hybrid functionals mix traditional

local and semilocal expressions with the exact exchange method. The hybrid func-

tional we use in this work is B3LYP [116]. This method calculates the xc energy

according to the equation

EB3LY P
xc = (1 − a0)E

LDA
x + a0E

HF
x + ax(E

B88
x − ELDA

x )

+acE
LY P
c + (1 − ac)E

LDA
c ,

(2.31)

where a0 = 0.2, ax = 0.72, and ac = 0.81. These parameters were determined for a

similar set of functionals by fitting a series of energy calculations [113]. The B3LYP

functional has since become a standard for molecular calculations with the ability to

calculate bonding energies to near chemical accuracy.

The B3LYP optimized parameters clearly do not result in 100% exact exchange,

thus introducing errors in the exchange energy. This indicates that there is a sys-

tematic error in the approximate correlation energy. The error introduced into the

exchange energy must then partially counteract the correlation error.
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Range-Separated Hybrid Functionals The hybrid functionals discussed above

include several parameters to mix the approximate xc methods. However, there is

little reason to believe that the optimized parameters should be the same at all elec-

tron separations, especially if the approximate functionals are more or less accurate

at those separations. Indeed, it is common to use different parameters for different

applications. Range-separated hybrid functionals [117] are generated by separating

the Coulomb operator into a long-range and short-range piece:

1

r
=

1 − a(r)

r
+
a(r)

r
, (2.32)

where a(r) is a function that increases monotonically from 0 to 1 as r goes from 0 to

∞. The exchange-correlation functional then becomes

Exc = (1 − a(r))EShort
x c+ a(r)ELong

x c. (2.33)

In this work, we make use of the long-range corrected LDA (LC-LDA) functional

which combines the short range LDA functional with long range Hartree-Fock ex-

change with a(r) = erf(ωr) [118]. We set ω = 0.5 Å, because that value was previ-

ously shown to work well [119, 120]. We use this functional to separate the effects of

short and long range exact exchange because it has no short range exact exchange but

the correct long-range asymptotic behavior. This functional includes no long-range

correlation because HF has no correlation, and LDA includes only local correlation.

2.6.5 DFT Inaccuracies

DFT calculates the electronic energy including both exchange and correlation at

similar computational cost to Hartree-Fock. Thus it is significantly less costly than

correlated post Hartree-Fock methods. However, this reduced computational cost is

instead paid in accuracy. In this section, we will examine some of the systematic

errors in DFT calculations.

Lack of Derivative Discontinuity So far we have considered only densities that
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represent an integer number of electrons. The microstate of a system can include only

an integer number of electrons, so we can achieve non-integer densities only in the

grand canonical ensemble. Our ensemble density matrix is

Γ̂ =
∑

n

∑

i

pni|ψni〉〈ψni|. (2.34)

We are going to focus exclusively on the 0 temperature case, so we need only consider

the ground state density for each integer number of particles. Furthermore, it can

be shown as a result of the always positive concavity of the energy as a function of

electron number that the minimum energy, n-electron density matrix is

Γ̂ = (1 − ∆n)P⌊n⌋ + ∆nP⌊n⌋+1,

∆n = n− ⌊n⌋ ,
(2.35)

where ⌊n⌋ is the greatest integer less than or equal to n. We leave the proof of this

minimum energy result to other source [104, 92]. The corresponding energy is

Ev(n) = (1 − ∆n)Ev(⌊n⌋) + ∆nEv(⌊n⌋ + 1). (2.36)

This energy expression indicates that there should be a discontinuity in the chemical

potential
(

µ = ∂E
∂n

)

as a function of n. However, the local and semilocal approximate

exchange-correlation functionals do not reflect this property, often resulting in incor-

rect charge transfer properties in asymmetric bonds [92]. Furthermore, the lack of

derivative discontinuity has been shown to affect transport properties because con-

ducting state energies and populations vary too smoothly and significantly impact

the predicted band gap [121, 122].

Self Interaction Error Another source of inaccuracy present in DFT is the

presence of self-interaction error (SIE). This is the property of most approximate

functionals that an electron will interact with its own density. The source of this

error can be illustrated by examining the Hartree-Fock energy equation 2.11. In

this equation, the coulomb energy summation includes terms of the form 〈aa|aa〉,
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Figure 2-2: Dissociation energy curves of H+
2 calculated using Hartree-Fock, LDA, and

B3LYP. The HF calculation is exact within the basis set (6-311+G**) approximation
for this system.

which represents the Coulombic repulsion between an electron and itself. In the

Hartree-Fock method, the exchange summation includes terms to exactly cancel these

artifactual repulsions. However, when an approximate exchange functional is used,

these self-interaction terms do not exactly cancel.

As an example of self-interaction error, we plot the H+
2 dissociation curve as cal-

culated by Hartree-Fock, LDA, and B3LYP in Fig. 2-2. Because there is only one

electron and thus no correlation, the Hartree-Fock result is exact. Furthermore, all

three methods include the same one-electron piece, and so differ only in an artificial

two-electron energy. The differences between the Hartree-Fock and other methods is

entirely due to self-interaction. One common effect of self-interaction is an increase

in electron delocalization. Several studies have also indicated that self-interaction

significantly increases calculated conductances [123, 122, 124].

Lack of Nonlocal Correlation In the post Hartree-Fock wavefunction meth-

ods, correlation is the property introduced when switching from a single determi-
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Figure 2-3: Dissociation energy curves of H2 calculated using CI, Hartree-Fock, LDA,
and B3LYP. CI is exact within the chosen basis set (6-31+G**) for this system. The
approximated methods are calculated with a restricted (left) and unrestricted (right)
density.

nant wavefunction to a linear combination of determinants. Although in principle,

the Kohn-Sham exchange-correlation potential contains the exact correlation energy,

common local and semilocal approximations do not correctly account for nonlocal

correlation. Even the nonlocal piece of B3LYP is devoted to exchange energy.

In Fig. 2-3, we show the dissociation curve of H2 to illustrate the effects of corre-

lation. The difference between HF and the exact results is due entirely to correlation.

Due to the variational principle, nonlocal correlation will only lead to a decrease in

energy, so the CI calculated energy will always be below that calculated by HF. LDA

and B3LYP reaches lower energies due to errors in the exchange and local correlation

terms. Physically, correlation decreases the energy by allowing electrons to avoid one

another. The restricted single-determinant methods, by definition, do not allow the

electrons to avoid one another. The unrestricted calculation allows the electrons to

avoid one another by localizing each on a different atom, but this localization carries

an energy cost, especially at short distances with large coupling between atomic or-

bitals. Only the CI method can minimize the energy by allowing both electrons to

delocalize, but still avoid one another. In chapter 5, we will examine the impact of

nonlocal correlation on currents.
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2.6.6 Time-Dependent DFT

So far, we have focused upon ground state, or time-independent phenomena. Excited

state, or time-dependent behavior can be examined under time-dependent density

functional theory (TDDFT). Where ground state DFT is based upon the Hohenberg-

Kohn theorems, TDDFT derives from the Runge-Gross theorem [125]. This theorem

states the following:

For every single-particle potential v(r, t) which can be expanded into a

Taylor series with respect to the time coordinate around t = t0, a map

G : v(r, t) → n(r, t) is defined by solving the time-dependent Schrödinger

equation with a fixed initial state Φ(t0) = Φ0 and calculating the cor-

responding densities n(r, t) This map can be inverted up to an additive

merely time-dependent function in the potential.

In other words, the density determines the time-dependent potential up to a time-

dependent constant of space, and therefore determines the wavefunction up to a

phase factor. Although the proof of this theorem is more involved than that of

the Hohenberg-Kohn theorem and thus beyond the scope of this work, the proof

structures are similar. The proof relies on the Hamiltonian varying only in the single-

particle potential. Two different potentials are assumed and shown by contradiction to

produce different time-dependent densities. The same work provides another theorem

much like the variational principle of the second Hohenberg-Kohn theorem. In this

case, the correct time dependent density is shown to be a stationary point of the

quantum mechanical action integral,

A[ρ] =

∫ tf

t0

dt〈Ψ(t)|i ∂
∂t

− Ĥ|Ψ(t)〉, (2.37)

which is a functional of the density.

Finally, Runge and Gross present an extension of the Kohn-Sham formalism to

time-dependent conditions. Like the time-independent KS equations, the TDKS is

a Schrödinger-like equation with an effective potential in place of the nonclassical
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two-electron terms. Thus,

[

−1

2
∇2 + v(r, t) +

∫

dr′
ρ(r′, t)

|r − r′| + vxc(r, t)

]

ψi(r, t) = i
∂

∂t
ψ(r, t),

vxc(r, t) =
δAxc[ρ]

ρ(r, t)
,

(2.38)

where Axc[ρ] is the exchange-correlation action. In this work, we treat Axc[ρ] in the

adiabatic approximation [126] so vxc is determined from the functionals created for

ground state calculations. This approximation is most appropriate in the case of

small time-dependent changes in the potential. We do not examine the adiabatic

approximation further as it has been shown to describe low-lying excited states well

[127, 128] and we are mostly concerned with states within the voltage potential.

TDDFT is most often used in a linear response [129] framework. However, a

linear treatment is inappropriate in a number of applications such as calculating

Rydberg states [130, 131, 132] and charge transfer states [133, 134, 135] in which

the excited state varies significantly from the ground state. This is due to the local

nature of exchange-correlation functionals. The difficulty in treating charge-transfer

states is especially concerning regarding the ability of linear response TDDFT to treat

transport. However, we treat TDDFT in a fully non-linear real time propagation

framework. We will describe in chapter 3 the numerical method we use to solve the

full TDDFT equations.

2.7 Pariser-Parr-Pople Model Hamiltonian

A major drawback of the electronic structure methods explored in this chapter is their

computational cost. To save on computational cost and increase the ease of explo-

ration, it is often beneficial to perform calculations on model systems that maintain

the necessary physics while significantly reducing the degrees of freedom in the simu-

lation. For example, to demonstrate the basic physics of quantum scale conductance

in section 1.5.1, we used the Hückel model Hamiltonian. Such semi-empirical calcula-

tions can also reduce the computational cost by replacing ab initio matrix elements,
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that must be calculated, with adjustable parameters.

The Hückel model reflects the conjugated π system of single-molecule conductors

which contribute only one orbital per atom to the extended π system. However, the

Hückel system lacks the electron-electron interaction necessary for any but the most

superficial examinations. In this thesis, we make use of the Pariser-Parr-Pople (PPP)

semi-empirical model [136, 137]. This model places one basis function on each atom

like the Hückel model, but also includes electron-electron interaction described by

the Mataga-Nishimoto [138, 139] formula. Neglecting nuclear-nuclear interaction, the

Hamiltonian takes the form:

Ĥ =
∑

j,k

∑

σ=↑,↓

βjkĉ
†
j,σ ĉk,σ −

N
∑

j,k

Γj,kn̂j +
1

2

∑

j,k

Γj,kn̂jn̂k,

Γj,k =

(

rj,k +
1

gjk

)−1

.

(2.39)

In these equations, the summation indices j and k refer to atomic site. The operator

n̂j ≡
(

ĉ†j,↑ĉj,↑ + ĉ†j,↓ĉj,↓

)

is the number operator on the jth site. The terms in equation

2.39 from left to right are, the kinetic energy operator, the electron-nuclear attraction,

and the electron-electron repulsion. Note that the electron interaction energy has the

correct limits; Γjj = gjj, and Γjk → 1
rjk

as rjk → ∞. The parameters in the model

Hamiltonian are the bond distances (rjk), the site-to-site hopping parameter (βjk),

and the same site electronic interaction strength (gjk). The value of rjk is fixed by

geometry. This leaves the values of βjk and gjk to be set as parameters. Although

Mataga and Nishimoto suggested values for these parameters for some common atomic

environments, we will instead fit them to the TDDFT results we are modeling.

We use an unrestricted Hartree Fock (single determinant) prescription for the
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wavefunction analogous to section 2.4, which yields the energy:

E [P] = −
∑

j,k

βjk

(

P ↑
j,k + P ↓

j,k

)

−
N
∑

j,k

Γj,k

(

P ↑
j,j + P ↓

j,j

)

+ EJ [P] − EK [P] ,

EJ [P] =
1

2

N
∑

j,k

Γj,k

(

P ↑
j,j + P ↓

j,j

)(

P ↑
k,k + P ↓

k,k

)

,

EK [P] =
1

2

N
∑

j,k

Γj,k

(

P ↑
j,kP

↑
k,j + P ↓

j,kP
↓
k,j

)

,

(2.40)

where P is the one particle density matrix with separate up and down spin parts,

and EJ and EK are the Coulomb and exchange energies, respectively. Variationally

solving for the orbital coefficients, we find the single particle up and down spin Fock

operators:

F̂ ↑(↓) [P] = −
∑

j,k

βjkĉ
†
j,↑(↓)ĉk,↑(↓) −

N
∑

j,k

Γj,kn̂j + Ĵ [P] − K̂↑(↓) [P] ,

Ĵ [P] =
N
∑

j,k

Γj,k

(

P ↑
k,k + P ↓

k,k

)

n̂j,

K̂↑(↓) [P] =
N
∑

j,k

Γj,kP
↑(↓)
j,k ĉ†j ĉk.

(2.41)

Like the full electron methods, only the exchange piece differs between the up and

down spin Fock operators. Hence the exchange piece affects electrons of each spin

separately, while the Coulomb piece affects the total distribution.

The methods described in this chapter represent the present available means to

calculate the quantum nonrelativistic electronic state from first principles. In the

next chapter we will describe our method to examine electronic conductance using

real time simulations under the techniques described in this chapter.
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Chapter 3

Real Time TDDFT Propagation

Note: The bulk of this chapter has been published in Ref. [140].

In section 1.5, we discussed in general a method to treat conduction in a real-

time propagation framework. To make use of this method in a quantum chemistry

framework, it is necessary to develop a procedure to propagate the state described

in quantum chemistry. Our purpose in this chapter is to establish the TDDFT prop-

agation method and demonstrate it’s utility on a polyacetylene model system. In a

method first published in [140], we turn our attention to TDDFT discussed in section

2.6.6. TDDFT, in principle, gives an exact treatment of excited electronic states [141]

as opposed to the traditional NEGF/DFT method which uses the DFT single-particle

operator to approximate for the exact many-particle Hamiltonian. The method in

this chapter builds upon previous works regarding the formal basis for TDDFT con-

duction simulations [142, 143, 144] and practical techniques [84, 145, 83, 146].

3.1 TDKS Propagation Theory

We propagate the electronic state using the time-dependent Kohn-Sham (TDKS)

formalism in which we obtain an effective one-particle Schrödinger equation (2.38)

for the KS orbitals

Ĥ[ρ]KS(t)|ψa (t)〉 = i
∂

∂t
|ψa(t)〉, (3.1)
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where ρ(t) ≡∑a occ |ψa(t)|2 is the time dependent density. By formal integration, we

solve 3.1 to find

|ψa(t+ dt)〉 = Û(t+ dt)|ψa(t)〉,

Û(t+ dt) ≡ T̂ exp

{

−i
∫ t+dt

t

dt′ĤKS(t′)

}

,
(3.2)

where we write the solution in terms of a time-step dt in anticipation of our numerical

method. The operator T̂ is the time ordering operator defined in equation 1.6. We

make the adiabatic approximation [126] for ĤKS[ρ](t) in that the KS Hamiltonian

becomes ĤKS[ρ(t)], depending only on the density at time t. Thus, ĤKS[ρ](t) is

defined, according to equation 2.22, as

ĤKS(t) = −1

2
∇2 + vext(t) + vJxc(ρ(t)), (3.3)

where vext(t) includes any external potential, and vJxc(ρ(t)) includes exchange, cor-

relation, and Coulombic effects. The external potential may include explicit time

dependence while vJxc is implicitly time dependent through the density.

Although the TDKS equation is written in terms of KS orbitals, we work instead

in terms of the one-particle density matrix defined in equation 2.9. This allows us

to generalize our treatment to ensemble states and leads to more elegant equations.

The propagation equation 3.2 becomes

P(t+ dt) = Û(t+ dt, t)P(t)Û †(t+ dt, t) (3.4)

Note that P is defined in terms of the KS orbitals, the eigenfunctions of the noninter-

acting reference system, and is not the true interacting system one-particle density

matrix.
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3.2 Numerical Propagation Methods

To numerically solve the TDKS, we require a stepping method in which, for each step,

we (1) construct Û(t + dt, t) and (2) propagate the density matrix from t to t + dt.

The stepping method maintains time ordering between subsequent steps. However,

unless time-ordering and propagator unitarity are properly maintained within the

steps, we will need to use impractically short time-steps. This can be accomplished

using the Magnus expansion [147]. Formally, the propagator can be expressed as the

(time-unordered) exponential of a series of nested commutator integrals:

T̂ exp

{

−i
∫ t+dt

t

dt′ĤKS(t′)

}

= exp(Ω̂1 + Ω̂2 + Ω̂3 + · · · ),

Ω̂1 = −i
∫ t+dt

t

dτĤKS(τ),

Ω̂2 =

∫ t+dt

t

dτ1

∫ τ1

t

dτ2[ĤKS(τ1), ĤKS(τ2)],

Ω̂3 = i

∫ t+dt

t

dτ1

∫ τ1

t

dτ2

∫ τ2

t

dτ3([ĤKS(τ1), [ĤKS(τ2), ĤKS(τ3)]]

+ [[ĤKS(τ1), ĤKS(τ2)], ĤKS(τ3)]).

...

(3.5)

Following the work of Blanes et al.[148, 149], the numerical evaluation of the prop-

agator is be performed through Gauss-Legendre quadrature of the integrals defining

Ω̂i coupled to a predictor-corrector scheme.

We will describe application of the numerical evaluation to 2nd order in dt. Higher

order evaluations were examined, but empirical results indicated that the increase in

allowable step size did not justify the larger number of ĤKS evaluations needed. To

second order, the Gauss-Legendre quadrature gives:

Û(t+ dt, t) = exp(Ω̂1) +O(dt3),

Ω̂1 = −idtĤ(t+ dt/2) +O(dt3).
(3.6)
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Figure 3-1: Predictor-corrector routine for the 2nd order Magnus integrator. The
order row shows the time order (in dt) to which the matrices in the same column are
correct.

This equation indicates that to propagate from t to t + dt, we need to evaluate

ĤKS(t+ dt/2).

We obtain ĤKS(t + dt/2) through a predictor-corrector scheme. In this scheme,

we linearly extrapolate ĤKS into the time-step interval from its past values and

construct and approximate propagator. Then P̂ is propagated into the interval and

used to construct a corrected ĤKS and propagator for the full time-step.

In detail, the 2nd order algorithm is illustrated in Figure 3.2. The component

steps are:

1. (Predictor) ĤKS matrices stored from previous time steps, 1a and 1b, are used

to extrapolate ĤKS matrix 3 to order O(dt): ĤKS(3) = −3
4
ĤKS(1a)+ 7

4
ĤKS(1b).

2. (Predictor) Using 3, the density matrix 2 is propagated to 4 using Eq. 3.6. This

is correct to O(dt2).

3. (Corrector) Density matrix 4 is used to compute the ĤKS matrix 5 .

4. (Propagation) ĤKS matrix 5 is used to propagate the density matrix 2 to density

matrix 6 using Eq. 3.6. This is correct to O(dt2).
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Figure 3-2: (top) Source-wire-drain geometry for trans-polyacetylene with lead length
of N = 12 with the source and drain labeled. With larger N , the source and drain
length increase, but the device length remains the same. (mid) Chemical potential
under which the initial state is determined for potential V in the chemical potential
method. (bottom) Resulting electronic state of the polyacetylene for any time t < 0
before the potential is removed at t = 0. Red indicates electron accumulation and
green indicates electron depletion

5. (Update) For the next step, ĤKS matrix 1b becomes 1a, ĤKS matrix 5 becomes

1b, and density matrix 6 becomes 2. Other matrices are discarded, and the

process starts again from step 1.

3.3 Molecular Wire Conductance

We apply the TDDFT real time method with second order Magnus method to model

the conductance of a four-carbon segment of a trans-polyacetylene wire. The four-

carbon segment is the molecular device, and the leads will be modeled by the poly-

acetylene wires extending to the right and left of the device. Although in principle,

the leads should be semi-infinite, the limitations of our method require us to restrict
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our attention to finite systems of the form CNHN+1-C4H4-CNHN+1 with the assump-

tion that the leads must be chosen large enough to represent the thermodynamic

limit. The system structure with N = 12 is shown in Fig. 3-2. For this chapter,

we generally choose N = 23 and perform a few N = 48 calculations to demonstrate

convergence with respect to system length. We primarily use the chemical potential

method discussed in section 1.5. Figure 3-2 includes a schematic of the potential

under which we determine the initial state, and a depiction of the electronic state

for t < 0. The current is calculated by equation 1.40 which in finite difference form

becomes

I(t) =
(nD(t+ ∆t/2) − nS(t+ ∆t/2)) − (nD(t− ∆t/2) − nS(t− ∆t/2))

2∆t
. (3.7)

.

The methods discussed in sections 3.1 and 3.2 are general to any Gaussian basis

and exchange-correlation potential that can be determined from the one-particle den-

sity matrix. For this calculation, we choose B3LYP [116] and the 6-31G* [97] basis

set. The quantum chemistry calculations were performed in a modified version of

NWCHEM [150]. We use a time-step of 24.2 attoseconds (1.0 a.u.).

3.3.1 Average Currents

We begin with a study of C50H52 using a chemical potential method defined in section

1.5. We note that although the chemical potential and voltage methods, as defined in

1.5, make use of a sudden change in the Hamiltonian, test calculations indicate that

a more gradual transition does not significantly affect the IV results as long as the

transition is fast enough so that the transition is complete before finite lead effects

occur. The transient currents calculated using a ∆t of one time-step is shown in the

left of Fig. 3-3. We can see that the currents show a general increasing trend with

chemical potential and that the current pinches within about 2.5 fs. This rather short

turn-off is not surprising, because our ”device” has essentially perfect coupling to the

leads, and so the electronic density is able to equilibrate quickly.
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Figure 3-3: (left) Transient current through the central four carbons in C50H52 at
a series of different initial chemical potentials. The current increases with voltage
and includes large, persistent fluctuations. (right) Transient currents smoothed over
a time window of width ∆t = 0.36 fs. The currents are now more visible and are
converged with respect to time step. The current decays at long times due to partial
equilibration of the leads.

Although we can see a trend in the currents, the large fluctuations make assigning

a single current difficult. However, we can overcome this difficulty by realizing that

experimental measurements are made over a much coarser timescale than our simula-

tion time-step. If we instead choose ∆t = 0.36 fs, the transient currents become much

smoother as in the right of Fig. 3-3. Thus, equation 3.7 corresponds to the imaginary

experimental device that counts the difference in electrons between the source and

drain reservoirs twice with a time resolution of ∆t. The device approximates the

current via the mean value theorem and thus ignores fluctuations that occur on a

timescale faster than ∆t.

The time-averaging procedure suppresses the rapid current oscillations and reveals

a near steady state in the current. With this smoothing, we can reasonably assign a

current to each propagation. We choose the maximum smoothed current under the

belief that the current increases to approximately the steady state before equilibration

shuts the current off. With this method, we realize that the steady state is reached

very quickly (faster than 1 fs), an observation mirroring that made for a gold wire

[83]. Like the rapid equilibration, this is a result of the perfect lead-device coupling.

Interpreting the maximum smoothed currents in Fig. 3-3 as the true steady state
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Figure 3-4: Maximum smoothed current through the central four carbons of C50H52

(red pluses) and C50H52 (green squares) as a function of chemical potential bias.
The agreement between these methods demonstrates convergence with respect to
lead length. The blue dotted line is a linear fit to the C50H52 data and returns a
conductance of ≈ 0.85G0.

currents, we calculate the I-V curve shown in Fig. 3-4. The current increases nearly

linearly until it begins to level off at large bias due to saturation of the current

carrying states. Fitting the nearly ohmic I-V results perhaps surprisingly returns a

conductance of less than the conductance quantum (G0 ≈ 77.5 µS). The calculated

conductance is instead about 0.85G0. In section 3.3.2, we will establish that this is

not an effect of the finite wire length.

Even though we are probing potential differences much larger than the separation

between molecular eigenstates, we do not see evidence of a stair-step conductance

profile as suggested by the Landauer formula. Indeed, due to the very strong coupling

between the leads and device, it is not correct to interpret this result simply in terms

of the device states as suggested by the original Landauer picture. Instead, we must

consider that the device conduction states are broadened by the leads, and thus

the conduction is occurring through the superposition of broadened device states.

The stair-step conductance pattern is smeared to produce a linear I-V profile. The
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Figure 3-5: Transient current through the central four carbons in C100H102 at a series
of different chemical potentials. The current fluctuations persist, but the steady-state
current lasts longer indicating only the current ”shut-off” is a finite lead effect

numerical value of the conductance reflects the density of available conducting states.

This study does not rule out the possibility that the reduced conductance relative to

G0 is a finite basis effect.

3.3.2 Comparison to Long Wire Results

Because we are representing an infinite system with a finite model, it is worth ex-

amining which of our results can be explained by finite system effects. To that end,

we present analogous calculations with C100H102 with the same device size as our

C50H52 calculations. The transient current results are shown in Fig. 3-5, and several

I-V points are included in Fig. 3-4. Clearly the current fluctuations are still present

with the longer leads, and are therefore not a finite size effect. Furthermore, because

the fluctuations occur with larger oscillation periods than the time step, we assert

that they are not simply noise due to the numerical integration method. The current

fluctuations are characteristic of some physical process in the wire, and may indicate

the effect of bound electronic states [151] about the device.
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Figure 3-6: Maximum smoothed current through the central four carbons in C50H52

as a function of chemical potential bias using real time TDDFT (red solid line) and
an NEGF approach described in the text (blue dotted line). The two calculations are
nearly identical at low bias and differ somewhat at higher biases due to the lack of
self-consistency in the NEGF results.

In terms of the steady state current, Fig. 3-4 indicates that the I-V results remain

the same with the larger leads. Therefore in the C50H52 calculation, we have converged

to the thermodynamic limit in terms of maximum current reached. The current does

not shut off as early in the longer wire calculation indicating that indeed the current

shut-off is a finite wire effect caused by equilibration of the initial chemical potential

difference.

3.3.3 Comparison to NEGF

It is important to note that the current-voltage results from the present approach are

completely equivalent to the NEGF formalism [142], insofar as the dynamics above

approximate a true steady state of the infinite system. Therefore, a comparison

between DFT-NEGF and real-time DFT predictions of the current voltage curves

for polyacetylene provide an additional reality check for these calculations. To this

end, we have used the simple scheme of applying a Lorentzian broadening to the
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leads to obtain conductance results out of finite polyacetylene chains [76]. To be

precise, we transform ĤKS into the Löwdin orthogonalized basis and partition the

molecule in precisely the same manner as in the time dependent simulations. We

then add a constant imaginary part, ǫ = .055, to the diagonal of ĤKS in each lead

effectively broadening the lead states and approximating the state continua of infinite

wires. The value of ǫ was chosen to maximize the current making the NEGF current

analogous to the time dependent results above (which charted the maximum smoothed

current versus voltage). The current is then computed using the NEGF technique

outlined in section 1.4. This approach does not compute the current self-consistently,

because ĤKS is calculated using the equilibrium electron density. However, this simple

technique should suffice for the purposes of comparison, particularly at low bias where

the self-consistent density should resemble the ground state.

The NEGF results for C50H52 are presented in Fig. 3-6 along with the real-time

TDDFT results from the previous section. Clearly, the two techniques agree almost

quantitatively at low bias and give qualitatively similar results at larger biases. Pre-

sumably, a large fraction of the difference at large bias can be accounted for by

the lack of self-consistency in the NEGF calculations; as the bias increases, the non-

equilibrium density will deviate more significantly from the equilibrium result, leading

to larger self-consistency corrections.

Taken together the NEGF results and long wire calculations strongly indicate that

our real-time simulations are accessing the open-system limit for this process: the

conductance curve does not change appreciably if we increase the lead size (Fig. 3-5

and the results agree with a simple NEGF calculation (Fig. 3-6) in the low-bias limit.

We therefore conclude that these relatively short wires are capable of mimicking the

transport properties that would be observed in an a wire attached to much larger

(practically infinite) leads. It seems likely that similar conclusions hold for the more

experimentally relevant case of molecular junctions, namely, that by simulating the

conductance of a molecule attached to large but finite metallic leads, it should be

technically feasible to approximate the infinite-lead results with a finite system.
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Figure 3-7: Maximum smoothed current through the central four carbons in C50H52

as a function of chemical potential bias (red solid line) and voltage bias (green dashed
line). The results are very similar at low bias. At larger bias ( 4 V), the finite width
of the valence band causes the voltage bias current to drop off.

3.3.4 Comparison to Voltage Bias

We examine the I-V curve calculated under a voltage bias method to compare with

the chemical potential bias calculations we have been studying. Where the chemical

potential bias method requires the potential in Fig. 3-2 to be turned off at t = 0,

the voltage bias method requires the opposite potential to be turned on at t = 0.

The current-bias results using both the chemical potential and voltage biases are

shown in Fig. 3-7. Clearly, the low bias results are very similar for the two methods

as expected. At higher biases ( 4 V), the voltage bias calculation shows negative

differential resistance. This results from the finite width of the π band which prevents

the band line-up at larger voltages and is an artifact of the finite basis set. The

chemical potential bias produces no such band misalignment, and thus shows no

negative differential resistance. We do, however, expect the chemical potential current

to level off as the available valence states in the source become saturated at very large
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bias.

3.4 Conclusions

In this chapter, we have demonstrated real-time TDDFT simulations of charge trans-

port through a molecular wire at finite bias. In doing so, we have established the

local basis set TDDFT method that will be used through the remainder of this the-

sis. Using trans-polyacetylene, we have performed quantitative finite-bias calculations

of quantum scale conductance, that show good agreement with the NEGF method in

the strong coupling limit. Additionally, we have established some general results of

real-time transport. We have demonstrated that the conducting device shows oscil-

lations in transient current which are not artifacts of the stepping procedure. These

oscillations require the transient current to be time-averaged to produce a reason-

able result for the steady state current. We have verified that for polyacetylene, the

currents are converged with respect to lead sized with leads consisting of 23 carbon

atoms. Additionally, the long wire calculations verify that the current oscillations are

not finite size effects or the result of the numerical integration, but represent a real

physical behavior of the system. These oscillations may be a source of inaccuracy in

the NEGF/DFT method which relies upon a steady state assumption.

In the remaining chapters we will further explore real time dynamics in systems

undergoing electron transport and examine some questions left unanswered in this

chapter. We will extend this method to open-shell systems, explore the effects of

the various available approximate exchange-correlation functionals, further examine

the current oscillations demonstrated here, and apply this TDDFT method to more

chemically and technologically relevant systems.
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Chapter 4

Spin-Charge Separation in

Open-Shell Propagations

Note: The bulk of this chapter has been published in Ref. [152].

In this chapter we focus on the phenomenon of spin charge separation in simple

molecular wires, namely the fact that the net rates of spin and charge flow through

low dimensional systems need not be the same [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,

47, 48]. On the technological side, this effect could be exploited in spintronic devices.

On the more fundamental side, spin-charge separation in molecular wires has been

of theoretical interest for decades, both in the quantum chemistry community and

the solid state community. Within the solid state community, spin-charge separation

in low dimensional systems was first proposed by Haldane as a consequence of the

Luttinger Liquid model [36]. Several Hubbard Hamiltonian calculations have demon-

strated that in one-dimensional systems, spin and charge waves travel at different

rates, with charge generally moving more rapidly than spin [37, 38, 39]. These calcu-

lations indicate that the dynamics of the up and down spin electrons work together

to create effectively independent charge and spin dynamics.

For the specific case of conducting polymers, spin and charge behavior have been

studied extensively in the static limit. Work has focused on the creation of spin or

charge density waves in conjunction with the formation of a soliton, or perturbation

of the bond length alternation, in polyacetylene. Solitons were initially described by

81



Su et. al. [153] and further studied by Bredas and Silbey [154, 155, 156, 157, 158]

among others [159, 160, 161, 162, 163, 164] using semiempirical calculations. Solitons

in polyacetylene cause either spin or density waves depending on the charge of the

molecule. In general, it was discovered that the spin density waves are more localized

than the charge density waves [156, 157]. While the initial studies examined systems

with only spin density waves or charge density waves, recent theoretical [165] and

experimental [166, 167, 168, 169, 170, 171] studies have demonstrated both types in

coexistence.

Within the transport community, the effects of spin on charge conductance have

also come under scrutiny [172]. It has been recognized that spin-restricted calcula-

tions can give vastly different currents than spin-unrestricted ones [173, 77], and it is

thought these differences may explain at least some part of the hundredfold discrep-

ancy between the theory and experiments for metal-molecule-metal junction conduc-

tance. Furthermore, several studies have indicated the importance of the nonlocal ex-

change interaction in calculating molecular conductance [123, 124, 174, 121, 122, 175].

These DFT studies indicate that the self-interaction error produced by lack of exact

exchange and the resulting charge delocalization greatly enhance conductance.

In this chapter, we study the dynamics of spin-charge separation in simple poly-

acetylene wires using real-time propagation of the quantum wavefunctions. We study

both the charge and spin transport due to fundamental interest in the problem and

as a test case to examine the impact of various DFT approximations on each type of

transport. Our primary results are obtained with TDDFT, but we also resort to a

simple PPP model Hamiltonian in order to interpret our results and determine which

effects are real and which are artifactual. We find that spin and charge can have

significantly different rates of transport, even through these simple molecular wires

and neglecting soliton effects. Further, we find that electron-electron interaction and

self-interaction error (SIE) have profound impact on the results even at a qualitative

level. In particular, we find that the large SIE present in existing density functionals

radically changes the spin current characteristics of these wires. Finally, we discuss

the implications of these findings for future simulations.
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4.1 Methods

4.1.1 Systems

As in chapter 3 [140], we focus on the polyacetylene molecular wire C50H52 as a simple

example of a conjugated molecule that supports electron transport. The system

division mirrors Fig. 3-2 in that the central four carbon atoms are defined as the

device giving a source–device–drain division of C23H24–C4H4–C23H24. We use the

6-31g* basis set and either Hartree-Fock (which contains 100% exact exchange but

no correlation) or the B3LYP functional (which contains some correlation but only

20% exact exchange). All DFT calculations were performed using a local version of

Q-Chem [176]. Unlike in chapter 3, we simulate the cation (C50H
+
52) and the anion

(C50H
−
52) rather than the neutral chain. Since these chains now contain an odd number

of electrons the system will have a net spin polarization and we can independently

consider the rates of spin and charge transport through the wire as the voltage is

applied.

4.1.2 Real-Time Density Functional Conductance Simulations

The all-electron conductance is calculated in the real-time propagation method (sec-

tion 1.5) with TDDFT (chapter 3). Because we have previously describe this method,

we here describe only the details that change for this chapter.

The primary difference between this chapter and chapter 3 is the use of open-

rather than closed-shell quantum chemistry methods. The TDKS equation (3.1) for

the open shell system becomes

Ĥ
[

ρ↑, ρ↓
]↑

KS
ψ↑

a (t) = i~
∂ψ↑

a (t)

∂t
,

Ĥ
[

ρ↑, ρ↓
]↓

KS
ψ↓

a (t) = i~
∂ψ↓

a (t)

∂t
,

(4.1)

where ρ↑(↓) (t) =
∑

a occ.

∣

∣

∣
ψ

↑(↓)
a (t)

∣

∣

∣

2

. The details of the numerical propagation scheme

remain the same save for the fact that we must apply the scheme to both spin den-
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sity matrices. Equation 4.1 propagates each spin channel separately (i.e. it is spin

unrestricted) and the propagations are coupled, because the effective Hamiltonians

depend on both the ↑ and ↓ densities simultaneously. We examine properties that can

be described using the total density difference (Ntot(t)) and spin density difference

(Mspin(t)) in the source and drain. We define Ntot(t) and Mspin(t) as

Ntot =
(

n↑
S + n↓

S

)

−
(

n↑
D + n↓

D

)

, (4.2)

Mspin =
(

n↑
S − n↓

S

)

−
(

n↑
D − n↓

D

)

, (4.3)

where the variables n↑
S(t), n↑

D(t), n↓
S(t), and n↓

D(t) are the up (↑) and down (↓)
spin analogues of the time dependent populations (equation 1.37) with the Löwdin

population definition. While we previously calculated only charge current, we here

calculate transient currents both for total charge (Itot(t)) and spin (Ispin(t)) according

to the open shell analogue of equation 3.7,

Itot (t) =
Ntot (t+ ∆t/2) −Ntot (t− ∆t/2)

2∆t
, (4.4)

Ispin (t) =
Mspin (t+ ∆t/2) −Mspin (t− ∆t/2)

2∆t
, (4.5)

where Ntot andMspin are defined by equations 4.2 and 4.3. For this chapter, ∆t = 0.48

fs, which is close to the value chosen in chapter 3. We use the maximum current

definition from that chapter to choose a single current for each propagation as well.

While the potential in this chapter is defined according to a chemical potential

bias, we often describe the initial state of the system by population distribution rather

than potential profile. The initial state of the system is determined by constrained

DFT [85, 86]. We want to control the values of Ntot and Mspin defined in equations

4.2 and 4.3. For each of n↑
S, n↑

D, n↓
S, and n↓

D in the above equations, we can define

an associated operator - n̂↑
S (r), n̂↑

D (r), n̂↓
S (r), n̂↓

D (r) - that measures the appropriate

number of electrons using the Becke weight definition. This is similar to equation

1.15. We use a different population definition here only due to software availability.

We define operators N̂tot (r) ≡ n̂↑
S(r)+ n̂↓

S(r)− n̂↑
D(r)− n̂↓

D(r) and M̂spin (r) ≡ n̂↑
S(r)−
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n̂↓
S(r) − n̂↑

D(r) + n̂↓
D(r) and associate with each a Lagrange multiplier - Vtot

2
or

Vspin

2
.

The factor of 1
2

makes our potential definition consistent with our previous chapters

and Fig. 3-2. Our desire is to find an initial state that has a prescribed set of Ntot

and Mspin values. We enforce this by extremizing

W [ρ, Vtot, Vspin] = E [ρ] − Vtot

2

(∫

N̂tot(r)ρ(r)dr −Ntot

)

− Vspin

2

(∫

M̂spin(r)ρ(r)dr −Mspin

)

, (4.6)

where E [ρ] is the DFT energy functional (equation 2.18), and each subsequent term

enforces one of the particle number constraints. Due to the conjugate relationship

between the numbers and their Lagrange multipliers we can use either a chemical

potential (e.g. Vtot) or a number (e.g. Ntot) as our independent variable in what

follows. In choosing initial conditions, we choose systems with integer values of Ntot

and Mspin.

4.1.3 Empirical Model Hamiltonians

To interpret our results, we found it useful to fit our TDDFT data to simple, param-

eterized, semiempirical Hamiltonians representing the conjugated π backbone of our

molecule. These techniques have been used extensively to study charge transport in

organic molecules in the past[69, 70, 177, 178, 179]. The difference here is that in

our calculations, the model parameters are determined post hoc from the DFT data.

Thus, the model Hamiltonian is tailored to give a charge transfer energy landscape

that is as close as possible to the TDDFT results. The goal is to develop a simpli-

fied system that displays similar behavior to the DFT simulations described above.

However, by reducing the number of degrees of freedom, we are able to perform calcu-

lations much more quickly allowing us to test, for example, a larger range of voltages,

and to better understand the physics involved.

We use the Pariser-Parr-Pople (PPP) Hamiltonian [136, 137] with electron-electron

interaction defined by the Mataga-Nishimoto [138, 139] formula as described in sec-
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tion 2.7. To model the 50 carbon chain under study, we set the site-site separa-

tion as rj,k = r0 |j − k| where r0 = 2.647, the carbon-carbon separation in benzene.

The number of sites is N = 50, and we model the anion or cation by consider-

ing 51 or 49 electron systems respectively. We allow only adjacent site hopping

(βjk = β(δj+1,k + δj−1,k)) and use only one on-site electron repulsion parameter for all

sites (gjk = g). The values of β and g are set as parameters.

We calculate currents in the PPP model using a method analogous to that used for

our TDDFT calculations: An initial nonequilibrium state is prepared in the presence

of independent chemical potentials on the leads, and the potentials are released at

time t = 0. The system is propagated via time dependent HF,

F̂ ↑ [P]ψ↑ (t) = i~
∂ψ↑ (t)

∂t
,

F̂ ↓ [P]ψ↓ (t) = i~
∂ψ↓ (t)

∂t
,

(4.7)

where F̂ ↑[P] and F̂ ↓[P] are the Fock operators from equation 2.41. This equation is

very similar to TDKS (equation 4.1). The propagation is performed with the second

order Magnus method [140], populations {n↑
S(t), n↓

S(t), n↑
D(t), n↓

D(t)} are determined

by the Löwdin definition, and currents are determined by equations 4.4 and 4.5.

Several variations of the Hamiltonian and parameters will be useful in what fol-

lows. In particular, we will introduce self-interaction error (SIE), described in section

2.6.5, into the PPP model (PPP-SIE). SIE arises when coulomb repulsion is not

exactly canceled by an approximate exchange interaction, so there is always some

residual SIE in a functional like B3LYP. To introduce analogous SIE into the PPP

model, we multiply the exchange component of the PPP energy (equation 2.40) by

aX =0.5 so that the exchange and Coulomb pieces no longer cancel. Additionally

we performed PPP model calculations in the Hartree (PPP-Hartree, aX = 0) and

Hückel (g → 0) approximations which neglect, respectively, all exchange and all

electron-electron repulsion.
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Figure 4-1: Plot of Itot and Ispin as a function of initial Ntot and Mspin as determined
using B3LYP or HF for the anion (left) and cation (right) case. The value of the
fixed initial Mspin or Ntot is set to 1.0. B3LYP produces more linear current profiles
than HF due to a reduction in exact exchange. Likewise, spin current profiles are less
linear than charge current profiles because spin is more sensitive to exact exchange.

4.2 Results

4.2.1 Real-Time TDDFT Currents

In Figure 4-1 we present the TDB3LYP and TDHF spin and charge currents as a

function of initial Ntot with fixed initial Mspin = 1 and as a function of initial Mspin

with fixed initial Ntot = 1. We choose to present currents as a function of initial

distribution to directly compare charge and spin behavior even though this choice

does not allow a direct calculation of conductance. Focusing first on the DFT results,

we see that the charge current increases nearly linearly with the initial Ntot. Under

the same circumstances, spin current is nearly constant showing only very small

dependence on initial Ntot. Also as expected, the spin current generally increases
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with increased initial Mspin. However, for spin the trend is much less linear than it

is for charge. We see non-zero spin currents for initial Mspin = 0. Although this is

initially surprising, we must remember that the propagation is not beginning from

an equilibrium initial state because Ntot 6= 0, so some spin motion can be expected.

Finally, just as Ntot weakly influenced spin current, so Mspin has little effect on the

charge current.

The B3LYP results in Figure 4-1 agree with known properties of spin-charge sep-

aration. For the case of Mspin = Ntot = 1, the charge current is larger than the spin

current. This occurs despite the fact that the initial charge and spin differences are

equivalent. Similarly, the total current for a particular value of Ntot is larger than

the spin current for that value of Mspin. For example, for Mspin = Ntot = 1 we have

Itot/Ispin = 1.7 for the anion and Itot/Ispin = 1.3 for the cation. This behavior has been

shown previously in correlated systems [37, 38, 39]. In correlated calculations, one

measures charge and spin wave velocity in the Hubbard model to give vtot/vspin = 1

with no onsite electron-electron interaction (g = 0) and vtot/vspin ≈ Ne with large

onsite electron-electron interaction (g ≥ 10β) where Ne is the number of electrons.

As we will see in section 4.2.2, the B3LYP propagation is best modeled with g = 3.4β.

Thus, the charge-spin current ratio falls between the zero electron-electron repulsion

and the large repulsion limit as we expect.

Turning our attention to the Hartree-Fock calculated currents, we note that both

the spin and charge currents calculated with the Hartree-Fock functional fluctuate

more as a function of particle number than those calculated with B3LYP. We will see

in section 4.2.3 that these fluctuations result from exact exchange in the HF func-

tional. While the nonmonotonic nature of the data makes determining trends for the

spin currents impossible with the data available, the charge currents approximately

follow the trends established by B3LYP. We note that, while previous investigations

have demonstrated the effect of HF exchange on the magnitude of the current pre-

dicted at low bias[123, 122, 124, 180], to our knowledge this is the first example of

the effect of HF exchange on the qualitative shape of the current-bias curve.
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4.2.2 Obtaining Model Hamiltonian Parameters

We have empirically fit the PPP model parameters, β and g, to reproduce the equilib-

rium behavior of DFT under various chemical potential biases. The parameters are

adjusted until the two methods show approximate agreement for the values of Ntot

and Mspin over the range −8 < Vtot < 8 and −1.5 < Vspin < 1.5. Note that we are us-

ing PPP as an interpretive tool, rather than a quantitative analysis technique. Thus,

we adjust β and g by visual inspection and do not concern ourselves with numerical

fitting. The fitting for two different parameters is aided by the empirical observation

that g primarily influences the slope of the Ntot versus Vtot plot while only β affects

the slope of Mspin versus Vspin. The parameters chosen are β = 0.16 and g = 0.55.

These values are not too far off the values of β = 0.0878 and g = 0.398 suggested

by Mataga and Nishimoto[139]. The charge and spin number versus potential plots

for the cation and anion are shown in Figure 4-2. Clearly the parameters chosen give

the correct overall slope to these plots. Furthermore, the step-like nature of HF is

reproduced by PPP. However, the B3LYP results show smooth dependence of Ntot on

Vtot while PPP and HF produce steps. We note that the step-like behavior of PPP

was not influenced in any way by the parameter choice.

The reason for the differences between PPP and B3LYP is relatively simple: for

PPP one is using an SIE-free Hartree-Fock (HF) prescription for the energy, while

B3LYP includes spurious self-interaction terms. This distinction is important because

it has been shown that SIE can have a profound effect on charge transfer, current

dynamics and spin states [181, 121, 87]. The same is true in this case, as artificially

reducing the exchange term in PPP by 50% (PPP-SIE) improves agreement with

B3LYP in the static, potential-dependent Ntot and Mspin. The PPP-SIE method

produces nearly linear results for total density, and step behavior for the spin density

in agreement with B3LYP. We have run similar calculations with PPP-Hartree (0%

exact exchange) and find near-linear particle number versus potential behavior for both

charge and spin. On the other hand, Figure 4-2 shows that full PPP (100% exchange)

produces steps for both total and spin density. Only with partial cancellation of the
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Figure 4-2: Dependence of Ntot upon Vtot with Vspin = 0.272V and Mspin upon Vspin

with Vtot = 1.36V for the anion (left) and cation (right) as predicted by B3LYP,
PPP, and PPP-SIE. The stair-step nature of the Ntot and Mspin profiles increases
with decreasing exact exchange and the spin profiles are more step-like than charge
profiles.
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SIE (as with PPP-SIE) can we obtain qualitative agreement with the B3LYP data.

The self-interaction induced smoothing of the Ntot versus Vtot steps has previously

been reported by Baer et al for weakly coupled subsystems [182] and is known to

reflect the tendency of SIE to favor for charge delocalization. Here we see that these

steps persist even in a molecular wire that is strongly coupled to the leads. Steps also

occur for spin distribution, reflecting spin localization as well. The small amount of

exact exchange in B3LYP predicts the unusual situation of spin localization together

with charge delocalization. This unusual localization-delocalization situation is closely

coupled to the transport predictions of the previous subsection [180].

4.2.3 Model Hamiltonian Currents

The PPP current versus number plots are shown in Figure 4-3. As expected from the

static calculations in Section 4.2.2 the full PPP currents resemble those calculated by

HF while PPP-SIE gives much better qualitative agreement with B3LYP. In addition

to PPP-SIE (aX = .5), PPP-Hartree (aX=0) and Hückel (g → 0) results are also

included in Figure 4-3. We first examine the charge currents. With PPP-SIE, charge

currents increase essentially monotonically while the PPP calculated current profile

fluctuates. Furthermore, we notice that PPP-Hartree and PPP-SIE agree almost

quantitatively for charge currents. This suggests that below a certain threshold (i.e.

with less than 50% exchange), exchange has little impact on charge current. From

the comparison of Hückel and PPP-Hartree we also see that removing the Coulomb

interaction significantly reduces charge current, so that a non-interacting picture of

these wires is inadequate.

Considering spin properties, we see that for PPP-SIE, there is only one small

region of non-monotonic behavior (in the anion spin current plot at initial Mspin =

1). On the other hand, PPP produces fluctuating spin current profiles such that

even determining a trend is difficult. Meanwhile, the spin current plots are nearly

identical for PPP-Hartree and Hückel propagation. Thus, we see that the exchange

interaction is much more important than the Coulombic interaction in determining

spin transport. The importance of the exchange piece over the Coulomb piece can be
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Figure 4-3: Maximum total and spin currents plotted against initial Ntot and Mspin

respectively as calculated by PPP, PPP-SIE, PPP-Hartree, and Hückel propagation
for the anion (left) and cation (right). The unvaried initial Ntot or Mspin is held to
1.0. The model results qualitatively mirror the all-electron results when the fraction
of exact exchange is adjusted to reflect the DFT exchange-correlation functionals.
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explained by realizing that the coulomb interaction acts between any two electrons

regardless of spin while the exchange interaction only acts between electrons of the

same spin. Thus, changing the spin density while allowing the charge density to

remain the same by switching an up and down spin electron will change exchange

energy, but not Coulomb. We thus see that the phenomenon of spin-charge separation

is inextricably linked to the description of electronic exchange. The deep connection

between spins and currents in TDDFT has been addressed previously in a completely

different context [183, 184].

Examining the time series data (not shown) reveals that a major source of the

erratic current behavior in PPP and HF is that these full exchange propagations do

not always relax towards symmetric charge and spin distributions. As an example,

for the anion with initial Ntot = Mspin = 1, Hartree-Fock predicts relaxation towards

Ntot ≈ 1 and Mspin ≈ 2.3 resulting in near 0 charge current and negative spin current

as shown in Figure 4-1. This unusual behavior does not occur with B3LYP or PPP-

SIE. The tendency of exact exchange methods to relax towards broken symmetry

charge or spin densities is likely related to the step-like behavior of the Ntot and Mspin

dependence on Vtot/spin in that both seem to indicate local minima in the electronic

potential energy surface other than the symmetric distribution. Indeed, such charge

and spin localization are known to be favored by exact exchange.

4.3 Discussion

Note that the PPP model is computationally inexpensive, so we can perform analo-

gous calculations on much longer wires, allowing us to approach the thermodynamic

limit. To demonstrate this, we show in Figure 4-4 the PPP-SIE calculated current

versus potential plots for the carbon chains of length 50, 100, and 200 with a fixed

molecule segment of 4 sites. We have chosen potential rather than number as our

independent variable because the former is size intensive, facilitating the comparison

of different length chains. For both the charge and spin plots, the slopes remain the

same with increasing chain length, converging to a junction conductance of about
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Figure 4-4: Maximum total and spin currents plotted against initial Vtot and Vspin

respectively as calculated by PPP-SIE, for chains of length 50, 100, and 200 sites. The
fixed initial potentials are Vspin = 0.272V for the total current plots and Vtot = 1.36V
for the spin current plots. These calculations indicate the ease with which we can
approach the thermodynamic limit in the model system.
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0.5G0 for charges, but 1.2G0 for spins, in qualitative agreement with previous simu-

lations [140]. We thus see the unusual fact that while an individual spin moves more

slowly than an individual charge by a factor of Icharge/Ispin ≈ 1.3 − 1.7 (vide infra)

yet the molecular conductivity for spins is higher because less potential needs to be

applied to separate spins as opposed to charges.

Another interesting point is that increasing chain length produces more closely

spaced steps in the IV plot. This can be explained by considering that an increase in

chain length means that a given potential transfers more whole electrons from one side

to the other creating more steps. These results suggest that one may regain a smooth

spin IV curve in the infinite chain limit. We could easily repeat these calculations

using any of our PPP methods, but at the moment we simply wish to demonstrate

that large chain calculations are possible with the model Hamiltonian used in this

study.

The TDDFT calculations presented in this paper suggest that for one-dimensional

systems, charge and spin do indeed behave as separate quasiparticles. This separation

is seen most clearly in that, for B3LYP, charge transport occurs more quickly than spin

transport from analogous initial states in agreement with the results of correlated, real

time model system simulations [37, 38, 39]. Hartree-Fock shows large fluctuations in

the current profiles for charge and spin, making it difficult to assess which quasiparticle

travels more quickly. Similarly, spin and charge show different particle number versus

potential behavior as seen in Figure 4-2. Both the greater step behavior in Figure

4-2 and reduced transport properties of spin relative to charge relate to the greater

localization of spin over charge demonstrated in studies of density waves caused by

solitons [156, 157]. The tendency of charge to delocalize increases the probability of

partial charges on the right and left leads of the system. Furthermore, the same forces

that cause electrons to delocalize also cause charge to travel more quickly than spin.

We have demonstrated real-time transport calculations in which DFT with the

B3LYP functional and Hartree-Fock produce qualitatively different results. This

presents an interesting exploration opportunity because density functional theory

and Hartree-Fock both present certain advantages for predicting transport. It is well
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known that Hartree-Fock is free of self-interaction-error. Several previous studies have

indicated that removing SIE may also significantly reduce electron transport across

a molecular device [123, 122, 124]. Given the often one to two orders of magnitude

overestimate of charge currents from existing DFT calculations, one would thus be

tempted to conclude that a method like HF might offer some distinct advantages. On

the other hand, Hartree-Fock clearly lacks important pieces of the Hamiltonian. The

single-determinant picture includes no correlation, while modern density function-

als contain at least an approximate correlation energy. These semilocal correlation

functionals allow modern DFT to predict energies with surprising accuracy, even in

the presence of SIE. The cancellation of errors which leads to accurate equilibrium

properties in DFT may also contribute to accuracy in transport simulations. Specif-

ically, it is known that describing density of state alignment between the leads and

device is very important in describing transport properties [174]. Furthermore, recent

studies [123] indicate that Hartree-Fock greatly overestimates the HOMO-LUMO gap

resulting in artificially reduced conductance properties, while B3LYP provides more

consistent energy gaps, potentially leading to more reliable currents. In order to re-

solve which method is actually closer to reality for these systems, one would really

need to perform correlated ab initio calculations. Such simulations are outside the

scope of this work, but would certainly advance the field.

The questions posed in regards to the impact of exchange and correlation on mod-

eling transport are critical due to the large difference between theory and experiment

in these studies. Numerous potential sources of this difference exist. Those sources

include self-interaction-error from less than 100% exact exchange as discussed in this

chapter or correlation effects. Additionally, recent theoretical evidence [185] indi-

cates the powerful impact that contact atomic geometry can have on the electronic

transmission function, and therefore conductance. NEGF methods may also develop

errors in the use of an equilibrium single particle Fock matrix as a substitute for the

non-equilibrium many particle Hamiltonian. With all these potential sources of error,

it is necessary to clarify the impact of each of these approximations.

Our work clarifies the differences in both charge and spin behaviors when calculated
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with 100% exact exchange (Hartree-Fock, PPP) compared to calculations with less

than 100% exact exchange (B3LYP, PPP-SIE). With exact exchange, we see results

associated with localization, while introducing SIE tends to favor delocalized, partial

charge and spin states. In particular, we see that localization effects are enhanced in

spin transport simulations relative to charge transport. We propose this sensitivity

of spin transport properties can act as a measure of how well exchange properties are

described by a particular method.

4.4 Conclusions

We have analyzed real-time spin and charge currents through polyacetylene wires

using TDDFT. Our calculations agree that spin and charge do indeed behave as

separate particles, with charges moving faster than spins by a factor of between

1.3 and 1.7. We find that the spin dynamics in particular are critically sensitive

to the nonlocal exchange interaction, as TDB3LYP and TDHF show qualitatively

different behavior for the spin dynamics. The former shows a smooth, essentially

monotonic increase in spin current as the initial Mspin is increased, while the latter

shows fluctuational and even negative currents as a function of Mspin. Meanwhile,

the charge currents are primarily modulated by the strength of the classical Coulomb

repulsion. We find empirically that the TDB3LYP dynamics can be well-reproduced

by a simple PPP model if we artificially introduce some self-interaction error into the

PPP model by reducing the amount of nonlocal exchange by 50%. Conversely, PPP

without SIE reproduces the fluctuating behavior of TDHF. Thus, we see that methods

with 100% exact exchange give qualitatively different results as regards spin/charge

separation from those with some amount of self-interaction. The enhanced influence

of the exchange force on the shape of the spin current-voltage curve has not previously

been noted and we propose that this could be a powerful tool for calibrating exchange-

correlation functionals for transport calculations.

These results call into question the accuracy of using existing functionals for the

prediction of currents in open shell systems and may help explain the erroneously
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large currents predicted in metal-molecule-metal junctions. Few functionals include

100% exact exchange which seems to significantly impact charge and especially spin

transport. On the other hand, Hartree-Fock, which includes exact exchange, does

not include correlation. It is unclear how the inclusion of both exact exchange and

correlation will impact our transport results, but the two effects together may give

much better agreement with experiment than we have so far seen in single-molecule

charge transport calculations. In chapter 5, we will study in more detail the influence

of the choice of functional, and hence the degree of SIE, on currents.
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Chapter 5

Importance of Non-local Exchange

and Correlation

In the previous chapters [140, 152], we used real-time TDDFT to study transport

in molecular wires using common approximations to the exchange-correlation (xc)

functional. We have demonstrated, in agreement with several other studies [123, 124,

174, 121, 122, 175], the sensitivity of both spin and charge currents to the choice of

xc functional. Unfortunately, common approximations in TDDFT do not form a con-

vergent hierarchy, so that it is not possible to say with certainty that one functional

gives uniformly better results than another. Thus, the wide variety of predictions

obtainable with standard TDDFT makes it practically impossible to identify which

functionals, if any, give an accurate description of transport. This ambiguity is par-

ticularly acute given that simulations and experiments in this field often disagree by

one to two orders of magnitude [121, 122]. The situation can be ameliorated by using

wavefunction-based techniques [71], but because the microcanonical picture requires

such calculations be performed on the entire molecule+leads system - often contain-

ing several hundred atoms - correlated ab initio investigations along these lines are

simply not feasible. One is thus left with significant uncertainty as to the best way

to simulate electron transport in molecular junctions.

In this chapter, we critically examine a number of approximate microcanonical

simulations to determine which ingredients are required to obtain electron transport
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dynamics. We focus on a single model system(see Fig 5-1), but vary the model chem-

istry under which it is described.. First, we simulate the conductance using a variety

of semilocal and hybrid density functionals and find that the predicted current-voltage

curves depend only on the fraction of non-local Hartree-Fock exchange included in the

functional. The presence or absence of semi-local correlation has a negligible effect

on the system at any bias. This is consistent with the fact that, at zero bias, the

resistance only depends on the infinite-ranged part of the xc potential [122, 56]. To

assess the impact of non-local wavefunction-based correlation on transport, we make

use of the computationally simple Pariser-Parr-Pople (PPP) model Hamiltonian de-

scribed in section 2.7. We then employ the generator coordinate method (GCM)

to rapidly incorporate non-local correlation within the model space. We find that

non-local correlation has a negligible effect on transport in the ballistic regime, but

significantly increases the transport gap. This behavior is not reproduced by any of

the semilocal xc functionals we have tested. We therefore conclude that, at a funda-

mental level, non-locality is required in both the exchange and correlation functionals

if one wants to obtain an accurate description of transport. The article concludes with

some discussion of the physical implications of these results.

5.1 System and Methods

All the calculations presented in this article concern the model junction depicted

in Figure 5-1. This molecule closely resembles the trans-polyacetylene studied in

chapters 3 and 4. Like the previous chapters, the leads are represented by long

conjugated trans-polyenes, this time containing 48 carbon atoms each. However, the

molecular device is a trans-butadiene residue, connected to the leads via two saturated

CH2 segments. Unlike chapters 3 and 4, the system is designed in such a way that

the coupling of the molecular device to the leads is rather weak. The conjugation is

interrupted by the CH2 groups, leading to poor overlap of the π orbitals. Although the

chain of C–C σ-bonds is not interrupted, the electrons in the σ-orbitals are typically

much less mobile.
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Figure 5-1: Chemical structure representation of the model system and the voltage
bias. The saturated linking groups destroy the planar nature of the system, so the
full geometry is not shown.

In this chapter, we make use of the voltage bias definition of the time-dependent

potential in which the ground state of the unperturbed system is subjected to a

Löwdin population defined potential bias for times t ≥ 0. The potential profile

corresponding to a voltage V , shown in Fig. 5-1, is opposite to the chemical potential

in Fig. 3-2. Like in previous chapters, we record the time-dependent charge difference

between the drain and source leads (nD(t)−nS(t)) and use it to determine current via

equation 1.40. However, for this chapter, rather than choose the maximum smoothed

current, we use the slope of the linear fit to nD(t) − nS(t) in the steady-state region.

The charge-difference dynamics in 5.1 indicate that the steady state lasts much longer

than in chapter 3. As long as the leads are chosen to be large enough, it is only at much

longer times that the current through the wire reverses itself (e.g. around 15 fs in

Figure 5.1 rather than 2 fs in chapter 3). We can see this by comparing the dynamics

to the linear fit line which is fit over 1 to 5 fs. The longer steady state result from the

weakened coupling reducing that rate at which the charge difference can equilibrate.

We can see that like the current method in chapters 3 and 4, there is some statistical

uncertainty in choosing the current of these finite systems. For example, in Figure 5.1

one would obtain a slightly different current if one fitted from 5 fs to 10 fs than if one

fitted from 1 fs to 5 fs and neither result could be considered wrong. It has been shown
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Figure 5-2: Time dependent charge difference between the drain and source in the
model junction. The system begins in the ground state and a bias is applied at time
zero. After a transient period of a few hundred attoseconds, a quasi-steady state is
achieved. This steady state lasts until the charge in the leads is depleted at around
15 fs. Steady state currents can be obtained from the linear fit slope of nD −nS vs. t
as illustrated by the broken line. These results are with TD-LDA and a voltage bias
of 5.44 V, but similar physics prevails for all methods in this article.
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recently [83, 140, 186] that with existing computational resources, these numerical

uncertainties can be minimized so that the currents obtained in this microcanonical

picture are a faithful representation of the true steady state currents. Further, the

use of a linear fit rather than a maximum current or average current method should

help to limit current dependence upon local oscillations or chosen endpoints.

The entire current-voltage profile is obtained by performing propagations at sev-

eral potentials and separately fitting each to determine current. This procedure was

previously illustrated in Fig. 1-3. At this point it is important to realize that the only

uncontrolled approximation we make in this procedure relates to the level of electronic

structure theory we use to determine and propagate the initial state. The focus of

what follows, then, is the impact of approximations to the electronic structure on the

predicted currents. In particular, we will focus on determining the correct I-V curve

for our model wire and establish what level of theory one needs to employ to get the

right answer.

5.2 Real-Time Density Functional Conductance Sim-

ulations

The real time density propagation is performed via second order Magnus numerical

solution to the TDKS as described in sections 3.1, and 3.2[140]. Calculations were

performed on a local version of Q-Chem [176].

All practical DFT methods for molecular conductance rely on common approx-

imations to the exchange-correlation (xc) energy. The particular choice of the xc

functional has been shown to dramatically affect the results of conductance calcula-

tions [121, 182, 123, 173, 174, 187]. This existing work has primarily been focused

on the low-bias behavior, but two important conclusions can be drawn. First, the

self-interaction error (SIE) present in commonly employed local and semilocal xc func-

tionals is extremely harmful for conductance simulations. As a direct consequence of

SIE, semilocal functionals erroneously predict metallic transport even in insulating
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Figure 5-3: Comparison of the I-V curves obtained using the 6-31G* basis set on the
entire system with the I-V curves obtained using a mixed basis set (STO-3G on the
leads, 6-31G* elsewhere).

molecules in weak contact with the leads [121, 174, 187]. At the same time, it can be

shown that at zero bias the xc contribution to the conductance depends only on the

induced shift in vxc infinitely deep in the leads [122, 56]. For a semi-local functional,

this shift must be zero because the density deep in the leads is unaffected by the

effective bias. Thus, at low bias, one expects a semilocal correction to vxc to have

negligible effect on the transport. In order to address these issues, we have performed

real time TDDFT simulations on the model junction with a variety of functionals

that differ in the ways they incorporate non-locality and SIE.

For the test system shown in Fig. 5-1 and using the methodology described in Sec-

tion 5.1, we compute the I-V curves using four different electronic structure methods:

1) the local density approximation (LDA) 2) a global hybrid of LDA with 50% of the

Hartree-Fock-type exchange, which we call “Half&Half” 3) Hartree-Fock (HF) theory

and 4) long-range corrected LDA (LC-LDA) which combines the short-range LDA

exchange[117, 118] with the long-range HF exchange. In LC-LDA, the standard error
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function is used to split the Coulomb operator into short- and long-range parts, and

the range-separation parameter ω = 0.5 Bohr−1 is used which has been shown to work

well in many cases [119, 120]. The LDA, Half&Half, and LC-LDA xc functionals all

include the uniform electron gas correlation functional of Vosko, Wilk and Nusair[112]

commonly known as VWN5.

We have optimized the geometry of the junction with B3LYP/6-31G*. To save

time in the conductance simulations, most of our calculations use the minimal STO-

3G[96] basis set for the leads and a larger 6-31G* [97] basis set for the molecular

device and the CH2 groups. Since our model system does not directly simulate any

real-world experimental setup, the minimal basis set should suffice for the description

of the leads, which simply serve as a source and a drain of electrons. To assess the

effect of the choice of the basis set for the leads, we have performed a few calculations

using 6-31G* for the entire system and compared them to the calculations using the

mixed basis described above. The results, given in Fig. 5-3, show that the qualitative

shapes of the I-V curves are not affected by the choice of the leads’ basis set. As

we replace 6-31G* by STO-3G on the leads, we observe a decrease in the current at

larger voltages. This can be explained by the fact that the STO-3G basis set is more

restricted and less diffuse, which effectively results in weaker coupling.

Fig. 5-4 compares the I-V curves obtained with four electronic structure methods.

LDA predicts a nonzero current even for very small applied voltages (v≈2.5 V). The

Half&Half hybrid gives nonzero fit current only for V > 5.4 V. HF and LC-LDA

yield nonzero current only for V > 10.8 V. The I-V curve obtained with LC-LDA is

very similar to the HF result, both qualitatively and quantitatively. These results are

consistent with the band gap predictions for an isolated butadiene molecule obtained

with the various functionals. LDA predicts a very small gap ( 4.1 eV), Half&Half

predicts a much larger gap ( 7.9 eV), and HF and LC-LDA predict the largest gaps

(12.0 and 11.5 eV, respectively). One expects this, because in both situations the

reduction of the gap is linked to the presence of SIE in the approximate exchange

correlation functionals [92, 93, 94, 121].

Fig. 5-4 clearly illustrates a well-known[121] problem of LDA: in the weakly-
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Figure 5-4: The I-V curves computed with four different methods. The STO-3G
basis set is used for the leads and 6-31G* for the rest of the model system.

coupled limit, LDA gives too large currents at low voltage biases. This problem is

attributed to the SIE and lack of the proper derivative discontinuity. The Half&Half

hybrid yields an I-V curve that is shifted halfway in-between the LDA and HF curves

(see Fig. 5-4). This is expected since the Half&Half exchange functional is a linear

combination of LDA and HF exchange. LC-LDA hybrid combines LDA and HF in a

very different way, preserving the correct long-range behavior of the exchange poten-

tial. As evidenced by the results in Fig. 5-4, this correct long-range behavior is crucial

for proper description of the electronic transport in a molecular device weakly cou-

pled to the leads. Finally, we note that LC-LDA includes local correlation, whereas

HF has none. Inclusion of local correlation appears to have very little effect on the

conductance at any bias. Taken together, these observations essentially extend the

conclusions of Refs. [122, 56] to finite bias: at any value of V it is only the non-local

portion of the xc functional that influences the charge transport. In commonly used

functionals, only the exchange has a non-local component, and so the exchange plays

a decisive role in the transport predictions
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5.3 Model Hamiltonian Conductance Simulations

5.3.1 The PPP Model Hamiltonian

Because the conductance curves show such a strong variability with the choice of xc

functional, it is not possible to conclusively determine the correct form of the I-V

curve from the data above. Among the four methods represented in Fig. 5-4, one

might consider the LC-LDA and HF results to be the most realistic since HF and

LC-LDA are free (or nearly free) of SIE. But neither of these include any effects of

non-local correlation, and it is entirely possible that the effects of non-local correlation

counteract all or part of the non-local exchange contribution. To put it another way, it

is possible that a semi-local functional might actually give a better prediction through

cancellation of errors between SIE and the missing part of the correlation energy. To

settle this uncertainty, one would like to perform wavefunction-based simulations of

the conductance. Unfortunately, with commonly used quantum chemistry techniques

(e.g. MP2 or CCSD) this is not computationally feasible for a junction of this size.

However, if we first map the dynamics onto a model Hamiltonian we can vastly reduce

the number of degrees of freedom, making highly accurate wavefunction predictions

possible.

Toward this end, we attempt to reproduce the conductance results of the full

TDDFT and TDHF dynamics with those generated by the PPP [136, 137, 138, 139]

model (sections 2.7 and 4.1.3). We have shown in chapter 4 [152] that, given the

proper parameters, PPP can do an excellent job of reproducing the real time conduc-

tion predictions obtained in more sophisticated TDDFT simulations.

In the PPP picture, one models the π electrons by including only the pz orbitals

on each carbon atom in the conjugated chain. Thus, for our junction we will have

N = 48 + 4 + 48 = 100 orbitals in the model space. The PPP Hamiltonian is given

in equation 2.39. We set rj,k = 2.647 |j − k|, gjk = 0.55 and fix the adjacent hopping

parameter βj,j+1 to the constant value β0 = 0.16 as long as j and j+1 both belong to

either a lead or the molecule. All non-adjacent hopping parameters are zero. These

values were shown in chapter 4 to reproduce the TDDFT predictions of both charge
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and spin dynamics of conjugated carbon chains quite well [152]. Meanwhile, if j

belongs to the molecule and j + 1 to a lead (or vice versa), the hopping parameter

is reduced by a factor of 0.15 to βGap = 0.024. This reflects the reduced overlap

between the pz orbitals separated by a saturated CH2 unit. Reasonable variations in

the magnitude of of βGap have little effect on the shape of the I-V curve, but have a

significant impact on the magnitude of the overall current.

5.3.2 Non-local Exchange in the PPP model

In order to be sure that the PPP model contains the proper physics, one would

like to obtain PPP-based models that reproduce the different TDDFT results above

(LDA, Half&Half, HF, LC-LDA). We determine the PPP-HF effective one-electron

Hamiltonian according to the Hartree-Fock method to give equation 2.41. Currents

are obtained strictly analogously to TDDFT by the slope of the quasi-steady state

linear fit of N(t) in the closed shell equivalent of equation 4.7.

In order to obtain analogs for the various density functionals within the PPP

model, we begin with the working hypothesis that only the non-local part of the

xc functional matters. On this basis, one would conclude that LDA - which has no

non-local xc part - should be represented by an effective Hamiltonian of the form of

Eq. 2.41 with the non-local exchange term removed (PPP-LDA). Continuing along

this line of thought, one obtains PPP-Half&Half by multiplying the exchange term

by 1
2

and PPP-LC by multiplying Γjk in the exchange term by erf(0.5rjk). The reader

will recognize PPP-HF, PPP-LDA, and PPP-Half&Half as the methods PPP, PPP-

Hartree, and PPP-SIE from chapter 4 here renamed to clarify their relationships to

the all-electron methods. On the one hand, these are drastic approximations because

one neglects all the effects of local exchange and correlation. On the other hand, this

picture is certainly consistent with the results of the previous section and previous

work [122, 56, 121, 174, 187, 152] and so one anticipates it may be effective.

Fig. 5-5 compares the I-V curves calculated using the PPP models described

above with those calculated using TDDFT with various functionals. We note that,

like the TDDFT methods, the PPP results show a gap between V = 0 and the
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Figure 5-5: Current-voltage plots calculated using several all electron (left) and PPP
(right) methods. Analogous all electron and PPP method pairs are given the same
color and line type. The conductance gap shows the same trend with respect to
nonlocal exchange for the PPP and all-electron calculations.

first appearance of current. Furthermore, the change in the size of gap with the

amount of exact exchange mirrors the result calculated with all-electron methods.

We find the largest conductance gap with 100% exact exchange methods (HF) and

the smallest gap with methods that include no exact exchange (LDA). The 50%

exact exchange methods (Half&Half) show an intermediate gap. Finally, like the all

electron results, the long range corrected method (LC-LDA) is quantitatively very

similar to PPP-HF. We note that in each case, the all electron methods show a

monotonic increase in current after turn-on, while the PPP results tend to saturate.

This difference is likely due to the absence of any orbitals besides the pz orbitals

in the PPP calculations. While unimportant at low biases, the σ orbitals will play

a significant role at higher bias, leading ultimately to a discrepancy between the

methods for large values of V . Finally, we note that the quantitative differences

between the PPP and TDDFT(TDHF) turn-on voltages could be adjusted somewhat

by changing the electron repulsion parameter g.

Overall, the strong qualitative agreement between the PPP model and the TDDFT

results points toward two conclusions. First, it provides further evidence that non-

local exchange dominates the conductance behavior of these functionals. We have

completely neglected local xc-contributions to obtain the PPP-LDA, PPP-Half&Half

and PPP-LC results. The fact that these are even remotely correct suggests that the
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local contributions are small compared to the dominant HF exchange contribution.

Second, these results strongly suggest that the PPP model, while simple, contains

enough physics to describe influence of exchange and correlation on transport in

these junctions.

5.3.3 Correlated Conductance of the PPP model

Now that we have validated our model Hamiltonian and examined the importance

of non-local exchange, we would like to answer the question: what effect does non-

local correlation have on the conductance? We will address this point using a time-

dependent version of the generator-coordinate method (GCM). The GCM was first

introduced by Wheeler and Hill to describe correlation in nuclear matter [188, 189].

More recently, the GCM has been used to make connections between DFT and

wavefunction-based approaches to correlation [190, 191]. For a time independent

problem, the fundamental idea is to write the target wavefunction, Ψ, as a linear

transformation of a continuous set of states:

|Ψ〉 =

∫

c(η)|Φ(η)〉dη. (5.1)

Here |Φ(η)〉 is some approximate wavefunction and the variable η could be any con-

tinuous parameter that deforms Φ. In order to determine the optimal ground state

Ψ, one solves the Wheeler-Hill (WH) equation for the coefficients, c(η):

∫

[

Ĥ(η; η′) − EŜ(η; η′)
]

c(η′)dη′ = 0, (5.2)

where H(η; η′) ≡ 〈Φ(η)|Ĥ|Φ(η′)〉 and S(η; η′) ≡ 〈Φ(η)|Φ(η′)〉 are the matrix repre-

sentations of the Hamiltonian and overlap, respectively. The GCM can also be used

to describe correlated dynamics [191]. Here one writes the time-dependent GCM

wavefunction, Ψ(t), as

|Ψ(t)〉 =

∫

c(t; η)|Φ(η)〉dη, (5.3)
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where the time evolution of the coefficients, c(t; η), is governed by the time-dependent

WH (TD-WH) equation:

∫ (

Ĥb(η; η
′) − i

∂

∂t
Ŝ(η; η′)

)

c(t; η′)dη′ = 0. (5.4)

The physical picture in the GCM model is that, while the approximate Φ(η) may not

provide an accurate picture of either the ground state Ψ or Ψ(t), one expects that

the set of all Φ(η) will provide a good basis for expanding the true solutions. For

example, while each Φ(η) might be a single determinant, the correlated state Ψ can

in principle involve an infinite number of determinants.

In practice, Eq. 5.2 is discretized by choosing a fixed set of deformations {ηi}.
The WH equation is then equivalent to a nonorthogonal configuration interaction

(CI) calculation in the space spanned by the states |Φi〉 ≡ |Φ(ηi)〉:

H · c = ES · c. (5.5)

The Hamiltonian matrix, H, has elements Hij ≡ 〈Φ(ηi)|Ĥ|Φ(ηj)〉 and the overlap

matrix , S, is defined by Sij ≡ 〈Φ(ηi)|Φ(ηj)〉. Meanwhile, the TD-WH equation can

be rearranged to:

i
∂

∂t
c(t) = S−1 · H · c(t), (5.6)

which can be integrated using standard numerical integration techniques. Like any CI

method, GCM is exact if enough discrete deformations are included. In practice, the

GCM with even a few ηi can describe correlated ground state properties extremely

well [190].

In our case, we want to describe the wavefunction as a function of two obvious

deformation parameters: potential bias (V ) and time (τ). Thus we write the time

dependent GCM wavefunction in terms of the group parameter η = {V, τ}:

|Ψ(t)〉 =

∫

c(t; η)|Φ(η)〉dη =

∫

c(t;V, τ)|Φ(V, τ)〉dV dτ. (5.7)
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Here, |Φ(V, τ)〉 is an approximate (e.g. HF or DFT) wavefunction propagated for a

time τ in a potential bias V . We can then determine the ground state in the absence

of the potential by the analogous WH equation:

∫

(H(V, τ ;V ′, τ ′) − ES(V, τ ;V ′, τ ′)) c(0;V ′, τ ′)dV ′dτ ′ = 0. (5.8)

Here H(V, τ ;V ′, τ ′) ≡ 〈Φ(V, τ)|Ĥ|Φ(V ′, τ ′)〉 and S(V, τ ;V ′, τ ′) ≡ 〈Φ(V, τ)|Φ(V ′, τ ′)〉.
Given that the system starts in the ground state (Eq. 5.8) we can also follow the time

evolution in the presence of a bias potential, Vb, by solving the TD-WH equation:

∫ (

Hb(V, τ ;V
′, τ ′) − i

∂

∂t
S(V, τ ;V ′, τ ′)

)

c(t;V ′, τ ′)dV ′dτ ′ = 0, (5.9)

where Hb(V, τ ;V
′, τ ′) ≡ 〈Φ(V, τ)|Ĥ + V̂b|Φ(V ′, τ ′)〉 is the matrix representation of the

Hamiltonian in the presence of the bias. To be clear, in the above equation t and Vb

correspond to the physical time and physical bias potential in the simulation, while

V, τ, V ′ and τ ′ correspond to the deformation parameters used as generator coordi-

nates. It is important to recognize that this realization of TD-GCM does not assume

that TDDFT or TDHF provides a good picture for the dynamics. Rather, one as-

sumes that the TDDFT/TDHF wavefunctions with different biases and evolved for

different times provide a good basis for expanding the true time-dependent wavefunc-

tion. In this respect, the present formulation of time dependent GCM is somewhat

more flexible than previous versions [191]. Like the canonical version, the TD-GCM

is exact if enough determinants are included in the expansion.

TD-GCM provides a powerful and flexible means of examining explicit non-local

correlation effects on electron dynamics. Here, we perform microcanonical transport

simulations using the above TD-GCM formalism as follows. 1) The integral form for

the wavefunction (Eq. 5.7) is discretized in both time, τi, and potential, Vj. Because

there are 100 orbitals and 50 electrons in our PPP model of the junction, a complete

CI calculation would require approximately (100
50 )2 ≈ 1028 determinants. Clearly it is

impossible to include even a small fraction of these states in our TD-GCM space. At
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this point, the choice of basis states in TD-GCM becomes significant: the TDDFT

evolution used to generate the basis states naturally selects only configurations that

are important to the dynamics. In practice, we find that ≈ 30 time points and ≈ 300

biases (for a total of only 30 × 300 ≈ 104 determinants) gives essentially converged

results. We also find that faster convergence is achieved if different potentials are

applied to the ↑ and ↓ electrons (V ↑
j 6= V ↓

j ) in a spin-unrestricted fashion. We suspect

this relates to the difficulty of representing open shell singlet configurations in terms

of closed shell basis states. 2) We solve for the lowest eigenvector of H (Eq. 5.5) and

use this as the initial state for all subsequent propagation. To solve the eigenvalue

problem, we first transform to an orthogonal basis by pre- and post-multiplying by

S−1/2. 3) The time evolved coefficients, c(t), under the bias, Vb, are obtained from

Eq. 5.6 by constructing the time evolution operator U(t) ≡ exp [−i(H + Vb)t] in

the orthogonalized basis. 4) Using the thus computed c(t) one computes the time

evolution of N(t). A linear fit of N(t) versus t in the quasi-steady state region gives

the predicted current I for the present bias. 5) Steps 3&4 are repeated for several

voltages to generate an I-V curve.

Using the above prescription for the PPP model of the junction in Figure 5-1,

we obtain the GCM results shown in Figure 5-6. For comparison, the PPP results

from Fig. 5-5 are also reproduced in Figure 5-6. The GCM results in this figure were

obtained from a basis of 560 potentials with −27 V < V ↑+V ↓

2
< 27 V , −2.7 V <

V ↑−V ↓

2
< 2.7 V and 32 times, τ , with −24 fs < τ < 24 fs. There are a total

of 17,920 determinants, but the results are not appreciably different if the GCM

space is reduced by 50%. Further, the basis selecting propagation in this example

was performed with PPP-HF, although similar results could be obtained with other

functionals. The striking feature of the TD-GCM results is that the transport gap

is actually somewhat larger than that predicted by TDHF. This trend is opposite

the effect predicted by any of the semilocal xc functionals. Those functionals tend to

significantly narrow the gap if less than 100% long range exact exchange is included,

and have negligible impact otherwise. Thus, none of the commonly used functionals

provides an appropriate treatment of electron correlation in these junctions. This
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Figure 5-6: Current-voltage plots calculated using several PPP methods. The non-
local correlation present in the GCM calculations results in qualitative changes in the
current including a near doubling of the conductance gap.

trend in the transport gap is at odds with the typical expectation for band gaps:

usually, while semilocal functionals severely underestimate gaps [93, 94], 100% non-

local exchange overestimates them [192]. We attribute the unusual behavior in this

case to the fairly large U value of g = .55 a.u. (15.0 eV) in these polyethylene

wires, which places the system very near a Mott insulator transition [193]. In a Mott

insulator, every site becomes strictly singly occupied in the ground state and only

the spin on each site varies: | ↑↓↑ ...〉. In order to induce transport in the Mott

regime, one site must become doubly occupied, which incurs a penalty of g relative to

the all-singly occupied configuration. Thus, if our system were a true Mott insulator

the gap would be g
e

= 15.0 V , which is actually quite close to the transport gap

predicted in the GCM calculations. Thus we conclude that, in the GCM calculations,

the transport gap is larger because the correlated ground state is more Mott-like than

the HF one.

The second obvious feature of the GCM results is that after the gap is overcome,

114



the currents are somewhat larger in the correlated calculations. We note that there

is a fair bit of uncertainty in the correlated currents because the N vs. t plots for

GCM are much less linear than they are for HF. An example of this is illustrated

in Fig. 5-7. Clearly, the GCM results show long-time oscillation superimposed on a

generally linear trend. The persistent oscillation in N(t) might be evidence of a long-

lived quasi-bound state on the molecule [151], but we have not been able to verify

this possibility. In any case, the variation of N(t) makes precise estimation of the

true steady-state current difficult. We have chosen to use the short-time data (e.g.

the first 2.5 fs in Fig. 5-7) to tabulate the currents in Fig. 5-6, since this avoids any

potential complications from finite-size effects at long times. If we had instead chosen

to average over a long time interval (e.g. over the first 6 fs in Fig 5-7) the overall

currents would be smaller - similar in magnitude to the HF results, in fact. However,

if we fit over the longer interval, the computed GCM transport gap also becomes

even larger (17 V) because the oscillations tend to wash out any directed charge flow

when the current is small. Thus, while the GCM result in Fig. 5-6 should be viewed

as somewhat imprecise, one conclusion is unavoidable: nonlocal correlation shifts the

I-V curve opposite the direction predicted by semilocal DFT.

5.4 Conclusions

In this chapter we have examined the impact of common approximations to exchange

and correlation on the simulation of electron transport through molecular junctions.

We use the prototypical device shown in Figure 5-1 as a model system, and employ the

microcanonical picture of real time electron transport to study the conductance with

various approximations to the electronic structure. The microcanonical picture has

the advantage that it is in principle exact for any formalism, such as TDDFT, that

produces the exact density. Real-time TDDFT simulations with different approxi-

mate xc functionals reveal that only the non-local Hartree-Fock exchange has any

significant impact on transport - the choice of local functional has only a marginal ef-

fect. These observations are consistent with previous results concerning the zero-bias
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Figure 5-7: Time-dependent lead charge difference in TD-GCM and TDHF calcula-
tions at a fixed bias of 20 V. The correlated results show persistent oscillations not
present in the uncorrelated results.

conductance of a junction [122, 56]. In order to examine the influence of non-local

correlation on transport, we first map the molecular junction onto a PPP model

Hamiltonian. We demonstrate that appropriately parametrized PPP dynamics pro-

vide a reasonably faithful description of the TDDFT charge currents obtained with

different xc functionals. Meanwhile, because of the simplicity of the PPP model, the

complicated effects of non-local correlation can be easily incorporated using the gen-

erator coordinate method. We find that non-local correlation actually tends to widen

the transport gap in our model junction, whereas all commonly used approximate xc

functionals narrow the gap. Thus, conductance could be something of a worst-case

scenario for semilocal xc functionals, which are most successful when there is a partial

cancellation between nonlocal exchange and nonlocal correlation. In the particular

model studied here, these two nonlocal energy components shift the gap in the same

direction, so that partial neglect of one of these terms is bound to lead to large errors.

Our work has a number of implications in the ongoing search for accurate meth-
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ods for predicting molecular electron transport properties. First, our results strongly

suggest that most existing approximate functionals significantly overestimate the cur-

rent in molecular devices because they do not contain 100% exact exchange. Typical

metal-molecule-metal junction experiments are performed in the tunneling regime,

which corresponds to the low bias region in this paper. In this situation, nearly all

the functionals predict low currents, but the ones with larger transport gaps will

produce exponentially smaller currents. We find that by far the dominant factor

in determining the transport gap is the non-local HF exchange term. Second, our

results show that non-local correlation has a much smaller effect on the current in

the ballistic regime, where the bias is large enough to push an electron on or off the

molecule.

Moving forward, our findings suggest several avenues for future research. First, it

should be noted that all our conclusions have been drawn from a single test system.

It will be very interesting to see how these results change, or if they change at all,

for a more realistic molecular junction such as the Gold-BDT-Gold junction that is

used as a common test case of molecular transport. We will explore this system in

chapter 6. Second, our findings argue for increased investigation of non-local density

functionals in conductance simulations. We have here demonstrated that a fully non-

local exchange model - as in LC-LDA - can provide a significant improvement in DFT

transport predictions. It would be extremely interesting to explore the analogous

influence of truly non-local correlation methods. For example, one would expect that

a method like GW-BSE [194] or EOM-CC [195] should significantly improve DFT

transport predictions. A more computationally practical approach might be given by

TD current DFT [196, 197], where at least some degree of density non-locality can be

encoded by the local current [198, 199, 124]. It is our expectation that investigations

along these lines will lead to advances both in the accurate prediction of electron

transport and the accurate description of electronic structure using wavefunction-

and density-based techniques.
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Chapter 6

Dynamic Coulomb Blockade in a

Metal-Molecule-Metal Junction

When examining conductance through systems, such as organic molecules, in which

electronic motion is hindered relative to metals, we must consider coulomb blockade.

Coulomb blockade, a term borrowed from the study of quantum dots [49] refers to

the small conductance caused by the energetic cost of adding or removing an electron

from the molecular device in the process of conduction [18, 6]. As a result of this

energy cost, theoretical results have suggested that within the coulomb blockade

regime, conductance is especially sensitive to the charge on the molecular device

[200, 185, 201, 202].

Closely related to molecular charge and coulomb blockade is the application of a

gate potential. While the current is driven by a voltage applied within the metallic

leads, a gate voltage is applied to the conducting device to alter it’s conductance

properties. By shifting the energies of the molecule states, the gate voltage can

either mimic or induce charging of the device making gating a natural method to

study charging effects. Single-molecule gate voltage experiments have been performed

[203, 204, 6], however the difficulty in constructing three terminal devices using a

molecule as small as benzene-1,4-dithiol (BDT), the device under examination in this

chapter, makes obtaining reliable results difficult. Theoretical studies [205, 206] of

gating effects are not hindered by such issues, so we here apply a gate voltage to
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examine charging effects.

Recall from section 1.4 that NEGF, the most common method to calculate quan-

tum scale conductance, assumes a steady state conduction picture. However, deriva-

tions performed by Stefanucci [151] suggest that the conducting electronic state un-

dergoes current and density oscillations in the presence of bound states. Likewise in

chapter 3, we demonstrated rapid fluctuations of the transient current in a polyacety-

lene model system. In this case, a steady-state assumption is inappropriate.

In this chapter, we apply our real-time DFT propagation method to the gold-

BDT-gold system. We calculate the current-voltage behavior for small potentials

using each of three exchange-correlation methods, LDA, B3LYP, and Hartree-Fock,

to examine conductance in the coulomb blockade regime. In addition to the current-

voltage behavior, we also examine dynamic transport and molecular charge behavior

in the LDA method to examine the applicability of the steady-state assumption.

Finally, we calculate currents under a gate voltage to examine in more detail the

charge effects on transport.

6.1 System and Method

The system geometry under study is a BDT molecule covalently bound to the 111

face between two Au114 clusters in the FCC position. We construct the geometry by

reflection symmetry on portions of a previously optimized geometry[207] for phenylth-

iol chemisorbed to a gold surface. We replicate the gold layers in the 111 reciprocal

direction to produce an elongated wire structure. The system geometry is included

as appendix A. We choose a structure elongated in the direction of electron transport

(Z) to allow sufficient density of momentum states in the Z-direction and sufficient

time before reflection at the wire ends manifests in the current. The electrons are

described by the Hay-Wadt pseudopotential and minimal basis [98] on the gold atoms

and the Aldrichs VDZ basis [99] augmented with heavy atom d functions on all other

atoms. Quantum chemistry calculations are performed using a development version

of Q-Chem [176]. The system is divided into source, molecular device, and electron
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Figure 6-1: (a) Au114-BDT-Au114 system with source and lead regions labeled along
with the effect of lead potential, V , and gate potential, Vg, on electronic energies in
each region. Atoms depicted include H (gray), C (light blue), S (green), and Au (gold)
(b) Time dependent density difference (nD−nS) with linear fitting in the steady state
region and (c) resulting current-voltage curve.

121



drain regions for the purpose of voltage profile and density definitions as shown in

Fig. 6-1a.

We calculate currents via the voltage bias method defined in section 1.5 and used in

chapter 5. For some of the calculations in this chapter, we include a gate voltage with

the additional term Vgn̂M . The effect of the lead and gate voltages on the electronic

state energies in each region is shown in Fig 6-1a. We determine the current from

the time-dependent densities by the least-squares linear regression fitting method.In

this chapter, the current is calculated over the time period of 0.24 to 1.57 fs. As an

example, the regression fitting and I-V plot for the LDA functional are shown in Fig.

6-1b and c. This figure shows that we maintain a fairly good early time steady state

with systems more complicated than the essentially one-dimensional polyacetylene

systems we studied in chapters 3, 4, and 5.

6.2 Results and Discussion

Using these methods, we have generated small bias I-V curves with the LDA, B3LYP,

and Hartree-Fock functionals. These results are shown in Fig. 6-2. We note that the

calculated I-V curves are mostly linear over the low-bias regime shown. For Hartree-

Fock, the average conductance over the calculated range is 0, indicating that this

voltage range lies within the HF predicted conductance gap for the system. On the

other hand, both B3LYP and LDA predict no conductance gap at the plot resolution

of Fig. 6-2. A decrease in the conductance gap with methods that do not include 100%

exact exchange has been previously reported [123, 208]. The average conductances,

calculated from the largest plotted voltage point are 16 µS with LDA, and 10 µS with

B3LYP. For comparison, the conductance quantum is 77 µS and the experimental

conductance of BDT at the first conductance step (at 1.3V ) is approximately 0.05 µS

[1]. Recall that this orders of magnitude overestimation of current over experiment

is a common property of conduction calculations [56], especially with reduced exact

exchange.

Although the difference in conductance between these methods has been asso-
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Figure 6-2: TDDFT calculated current-voltage curve using B3LYP, LDA, and
Hartree-Fock exchange-correlation functionals. The calculated conductances are 16
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ciated with a decrease in the device HOMO-LUMO gap with the introduction of

self-interaction error [123, 122, 124], we also notice a correlation with the density

distribution in the equilibrium state. Using the Löwdin population definition, the to-

tal charge on the molecule is -1.38 with Hartree-Fock, -0.955 with B3LYP, and -0.851

with LDA. Thus, a more negative electronic charge on the molecular device correlates

with a decrease in its conductance. This behavior resembles the coulomb blockade de-

scribed earlier in that the additional Coulombic energy cost from increased electronic

density correlates with decreased conductance.

We can estimate the coulomb energy associated with the charge differences if

we simplify the molecular device to be a sphere of uniform charge density. In that

case, the Coulombic repulsion energy is EC = 3q2

20πǫ0R
where q is the total charge, and

R is the radius. We choose the radius to be half the distance between the sulfur

atoms in the BDT device, so R = 3.2 Å. The resulting energy difference between

the LDA and HF calculated charges is 3.2 eV. This energy is certainly sufficient to

push the conduction states outside of the voltage window. Furthermore, it is likely

that charging the device to -1 or below saturates the conduction bands. Thus it

is reasonable that the difference in equilibrium molecular charge predicted by the

various functionals accounts for the differences in conduction behavior.

We generate the I-V curves from relatively short time dynamics (t < 1.75 fs) in

which the current is approximately steady, but we find significantly different behav-

ior at longer times. In Fig. 6-3, we plot dynamics results for the LDA calculated

propagation under several external potentials. The dynamics data indicate that the

electron density transport from the source to the drain does not occur at a constant

rate. All three of the propagations include regions in which the time derivative of

nD − nS, and therefore the transient current, is 0 or even negative. We see similar

current oscillations with B3LYP, but because these long-time dynamics are compu-

tationally intensive, we choose to focus on the LDA results with the expectation that

the B3LYP results would be qualitatively similar. Qualitative similarities in the I-V

curve outside of the conductance gap with the various functionals [208, 123] suggests

we may see similar results with HF as well.
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In addition to the current oscillations, the long time simulations also demonstrate

oscillations in the density on the molecule. These current and density oscillations

demonstrate that the system does not evolve towards a steady state, but instead

shows oscillatory behavior in support of the predictions of Stefanucci [151]. We have

demonstrated the rapid oscillations previously [140] for simple conjugated wires, but

this is the first work in which we examine oscillations with time periods as large

as several fs. Stefannuci ascribes these oscillations to bound states in the system.

Although this suggests that the oscillations represent resonance with molecular states,

energies associated with the large period oscillations are smaller than the HOMO-

LUMO gap of the bare molecular device. Additionally, their periods are sensitive to

the applied potential, so the states corresponding to these oscillations must have a

significant component on the metallic leads.

The lead dependent nature of the oscillations initially suggests the they are a finite

system effect and that the periods of zero current may be caused by saturation of

the finite leads or reflection off the ends of the wire. We discount the first possibility,

because the positive current reappears and transports more electrons to the drain.

We examined the second possibility by performing test calculations using shorter gold

wires and found that the oscillation frequencies do not show a systematic change with

wire length. Thus, the oscillations are not simply a finite lead effect.

The dynamics in Fig. 6-3 indicate a correlation of a period of zero current, with

increased negative molecular device charge. The first period of zero current begins

at 8.8 fs for the 0.544 V propagation, 4.0 fs for 1.09V , and 1.9 fs for 2.18V. At all

of these points, the molecular charge profile indicates a region of increased negative

charge. Although the 0.03 electron variation in charge is small, the uniform spheri-

cal charge approximation discussed above leads to a Coulombic energy variation of

approximately 0.15 eV, which is significant relative to the voltages considered. Thus,

we see a dynamic as well as static association between device charge and current,

indicating a dynamic equivalent of coulomb blockade.

We note that the correlation observed between molecular charge and current is

opposite to the previously reported [185, 201] tendency of a more negative charge to
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Figure 6-4: I-V plots calculated using both the real time propagation method and
the voltage potential version of the NEGF procedure described in section 3.3.3. Both
methods produce similar profiles, and there is no systematic difference between the
two methods.

increase current. This calculation, unlike the other reported results, does not involve

changes in lead-device separation which may impact current. This result may indicate

a lowest unfilled molecular orbital influence on transport which would cause current

to decrease with a more negatively charged device.

The oscillatory current behavior shown in Fig. 6-3 is relevant to the NEGF formal-

ism, because the NEGF formalism is based upon a steady state assumption. However,

the long time calculations indicate that the system reaches a persistent oscillatory,

not steady, state. In our method, we generally calculate the current from the early

steady state period in which the density is most like the equilibrium distribution

used in the majority of NEGF studies. Indeed, we showed in chapter 3 [140] for the

trans-polyacetylene wire that the NEGF method gives simlar results to the current

found in the short time by averaging over the rapid oscillations. The NEGF I-V
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curves shown in Fig. 6.2 show that this remains the case for Au114-BDT-Au114. The

NEGF curves are calculated using the voltage potential (equation 1.36) version of

the (non-self-consistent) NEGF procedure described in section 3.3.3. For the system

under study, this early time current is certainly larger than the long-time average

current including oscillations. If the large early time current is a general behavior,

including oscillations would reduce calculated currents.

We do consider the possibility that the present oscillations result from the sudden

change in the Hamiltonian at time t = 0. We note that by turning the voltage

potential on slowly (V (t) = Vbias [erf(ωt− 2) + 1] with ω = 2.07 fs−1) we are able to

eliminate the rapid oscillations. We cannot perform a sufficiently long propagation

to explore switching slowly enough to impact the slow (hundreds of femptoseconds)

oscillations. However, removing the rapid oscillations does not significantly change

the short-time I-V results. Indeed it is not clear how quickly we should switch on the

potential to properly model experiment.

The association between charge and current suggests that we may be able to alter

the current by inducing a change in the device charge . To that end, we introduce a

gate voltage to the system under an external bias. Based upon the definition of gate

voltage in Fig. 6-1a, we expect a positive potential to produce a less negative charge

on the molecular device.

We show in Fig. 6-5, the early time current with an external potential of 1.09 V as

a function of gate voltage. As we did for external potentials, we focus on small gate

voltages to avoid overwhelming the chosen basis. Examination of the charge dynamics

(not shown) verifies that the linear fit time period for current calculation occurs after

the molecular charge has equilibrated in response to the gate voltage. The results

indicate that by increasing the gate voltage, and thereby making the device charge

less negative, we increase the current. We calculate a low voltage response of current

to gate voltage of 5.8 µA/V, or 36% of the response to external voltage.

This simulation suggests that we can control the current through BDT with the

application of a gate voltage. As a positive gate voltage creates a less negative device

charge, the current increases. The device charge changes at a rate of 7.5 qe/V leading
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Figure 6-5: TDDFT calculated current as a function of gate voltage with left-right
voltage set to 1.09 V and calculated with LDA. The response of current to gate voltage
is 5.8 µA/V.

to a current to charge response of 0.77 µA/qe. This is clearly much less than the re-

sponse demonstrated in the dynamic results, however the impact of charge on current

is significantly counteracted by the gate voltage required to generate that charge.

6.3 Conclusions

Our real-time propagation of the Au114-BDT-Au114 cluster indicate oscillations, not

steady state, in both the charge on the BDT molecule and the current from one gold

wire to the other as predicted by Stefanucci [151]. A reduction in current is associated

with a more negative charge on BDT in agreement with the charge and current

comparisons from current calculations under several exchange-correlation functionals.

This behavior suggests a dynamic equivalent to the coulomb blockade. We further

demonstrate that a gate voltage can be used to induce molecular charging, and thus

impact the current. We see that consideration of device charge is essential to predict
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low bias conductance through single molecules like BDT. Furthermore, the presence

of charge and current oscillations suggest that the steady state approximation may

be inappropriate for single-molecule current calculations.
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Chapter 7

Conclusions

We have applied real time propagation in time-dependent density functional theory

to examine electron transport through quantum scale devices. Our real time method

relies upon the time-dependent Kohn-Sham equations in which the single particle

Hamiltonian is allowed to vary in time with a changing electron density. This is in

contrast with the more common NEGF formalism in which the electronic-state, and

therefore the single particle Hamiltonian, are assumed to be time-independent.

We discover in agreement with NEGF studies that transport behavior is highly

dependent upon the exchange-correlation approximation. Specifically, we find that

a reduction in the fraction of nonlocal, or exact, exchange causes more metallic-like

transport. This is more apparent in spin conduction than charge conduction where we

lack the coulomb interaction that seems to mitigate the results of exchange approxi-

mation. Unlike many properties calculated via density functional theory, conduction

does not appear to benefit from a fortuitous cancelation of errors. Indeed, the corre-

lated results in chapter 5 seem to indicate that the correlation errors add to rather

than counteract exchange errors.

Where time-dependent conduction calculations improve upon standard NEGF

is in rigorous application within density functional theory. TDDFT and the time-

dependent KS equations act as a solid formalism in which to apply our propagation

method. Furthermore, defining the potential by an externally applied single-particle

operator is unambiguous. On the other hand, NEGF with DFT includes two un-
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controlled approximations. First, the definition of potential in DFT relies upon the

orbital energies of the noninteracting reference system, which are not physically rele-

vant. Second, NEGF makes a time-independent Hamiltonian assumption which may

not be appropriate in light of the current and density oscillations we have seen. The

rapid oscillations in the polyacetylene calculations could be smoothed to give a cur-

rent similar to that predicted by NEGF. However, the longer time oscillations shown

by BDT will likely produce a smaller longtime current than the short time dynam-

ics which correspond to the NEGF formalism. The ability of the time-dependent

framework to examine time varying transport behavior is essential to examine this

question.
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Appendix A

Geometry of the Gold-BDT-Gold

System

Table A.1: Geometry of the Au114-BDT-Au114 system
studies in chapter 6. Coordinates are Cartesian and in
Å.

Atom Type X Y Z
Au 9.43053269 4.45477272 45.991
Au 12.0025027 5.93969272 45.991
Au 9.44247983 7.42561905 45.991
Au 9.43053846 1.48492 45.991
Au 6.85856846 2.96985 45.991
Au 12.0037941 2.97263118 45.991
Au 6.85857423 5.93969272 45.991
Au 11.1451769 1.48492 43.569
Au 11.1451827 7.42462272 43.569
Au 8.57321269 5.93969272 43.569
Au 11.1451827 4.45477272 43.569
Au 8.57321846 2.96985 43.569
Au 6.00125423 4.45477272 43.569
Au 7.71582314 1.48492 41.147
Au 7.71581737 7.42462272 41.147
Au 10.2877874 5.93969272 41.147
Au 7.71581737 4.45477272 41.147
Au 10.2877816 2.96985 41.147
Au 12.8597458 4.45477272 41.147
Au 9.43053269 4.45477272 38.725

Continued on next page
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Table A.1 – continued from previous page
Atom Type X Y Z

Au 12.0025027 5.93969272 38.725
Au 9.44247983 7.42561905 38.725
Au 9.43053846 1.48492 38.725
Au 6.85856846 2.96985 38.725
Au 12.0037941 2.97263118 38.725
Au 6.85857423 5.93969272 38.725
Au 11.1451769 1.48492 36.303
Au 11.1451827 7.42462272 36.303
Au 8.57321269 5.93969272 36.303
Au 11.1451827 4.45477272 36.303
Au 8.57321846 2.96985 36.303
Au 6.00125423 4.45477272 36.303
Au 7.71582314 1.48492 33.881
Au 7.71581737 7.42462272 33.881
Au 10.2877874 5.93969272 33.881
Au 7.71581737 4.45477272 33.881
Au 10.2877816 2.96985 33.881
Au 12.8597458 4.45477272 33.881
Au 9.43053269 4.45477272 31.459
Au 12.0025027 5.93969272 31.459
Au 9.44247983 7.42561905 31.459
Au 9.43053846 1.48492 31.459
Au 6.85856846 2.96985 31.459
Au 12.0037941 2.97263118 31.459
Au 6.85857423 5.93969272 31.459
Au 11.1451769 1.48492 29.037
Au 11.1451827 7.42462272 29.037
Au 8.57321269 5.93969272 29.037
Au 11.1451827 4.45477272 29.037
Au 8.57321846 2.96985 29.037
Au 6.00125423 4.45477272 29.037
Au 7.71582314 1.48492 26.615
Au 7.71581737 7.42462272 26.615
Au 10.2877874 5.93969272 26.615
Au 7.71581737 4.45477272 26.615
Au 10.2877816 2.96985 26.615
Au 12.8597458 4.45477272 26.615
Au 9.43053269 4.45477272 24.193
Au 12.0025027 5.93969272 24.193
Au 9.44247983 7.42561905 24.193
Au 9.43053846 1.48492 24.193
Au 6.85856846 2.96985 24.193
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Au 12.0037941 2.97263118 24.193
Au 6.85857423 5.93969272 24.193
Au 11.1451769 1.48492 21.771
Au 11.1451827 7.42462272 21.771
Au 8.57321269 5.93969272 21.771
Au 11.1451827 4.45477272 21.771
Au 8.57321846 2.96985 21.771
Au 6.00125423 4.45477272 21.771
Au 7.71582314 1.48492 19.349
Au 7.71581737 7.42462272 19.349
Au 10.2877874 5.93969272 19.349
Au 7.71581737 4.45477272 19.349
Au 10.2877816 2.96985 19.349
Au 12.8597458 4.45477272 19.349
Au 9.43053269 4.45477272 16.927
Au 12.00250269 5.93969272 16.927
Au 9.44247983 7.42561905 16.927
Au 9.43053846 1.48492000 16.927
Au 6.85856846 2.96985000 16.927
Au 12.00379407 2.97263118 16.927
Au 6.85857423 5.93969272 16.927
Au 11.14517692 1.48492000 14.505
Au 11.14518269 7.42462272 14.505
Au 8.57321269 5.93969272 14.505
Au 11.14518269 4.45477272 14.505
Au 8.57321846 2.96985000 14.505
Au 6.00125423 4.45477272 14.505
Au 7.72387181 1.48479035 12.08177282
Au 7.72559365 7.42686223 12.07125607
Au 12.85690016 4.46409916 12.08287122
Au 7.71589269 4.45477272 12.08818000
Au 10.28785269 5.93969272 12.08818000
Au 10.28785846 2.96985000 12.08818000
Au 9.43053269 4.45477272 9.66331002
Au 12.00250269 5.93969272 9.66331002
Au 9.44247983 7.42561905 9.64513185
Au 9.43053846 1.48492000 9.66331002
Au 6.85856846 2.96985000 9.66331002
Au 12.00379407 2.97263118 9.66785691
Au 6.85857423 5.93969272 9.66331002
Au 11.14517692 1.48492000 7.23844002
Au 11.14518269 7.42462272 7.23844002
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Au 8.57321269 5.93969272 7.23844002
Au 11.14518269 4.45477272 7.23844002
Au 8.57321846 2.96985000 7.23844002
Au 6.00125423 4.45477272 7.23844002
Au 7.80784846 1.63192000 4.86144002
Au 7.80753423 7.27479272 4.86743002
Au 12.69427115 4.45306272 4.86009002
Au 10.37949846 2.82002000 4.86743002
Au 10.37981269 6.08669272 4.86144002
Au 7.55034269 4.45306272 4.86009002
S 9.43377829 4.45329819 3.17589923
C 9.43309269 4.45181272 1.39799998
H 11.29703269 5.52873272 1.23048998
H 7.56958269 3.37835272 1.22848998
C 10.47694269 5.05453272 0.69637998
C 10.48324269 5.05978272 -0.69458002
C 8.38420269 3.84977272 -0.69692002
C 8.39145269 3.85096272 0.69522998
H 11.29693269 5.53211272 -1.24060002
H 7.56849269 3.38200272 -1.24418002
C 9.43284269 4.45637272 -1.39447002
S 9.43497269 4.45764272 -3.17174002

Au 7.80784846 1.63192000 -4.86144002
Au 10.37949846 2.82002000 -4.86743002
Au 10.37981269 6.08669272 -4.86144002
Au 7.55034269 4.45306272 -4.86009002
Au 7.80753423 7.27479272 -4.86743002
Au 12.69427115 4.45306272 -4.86009002
Au 11.14517692 1.48492000 -7.23844002
Au 8.57321846 2.96985000 -7.23844002
Au 6.00125423 4.45477272 -7.23844002
Au 11.14518269 4.45477272 -7.23844002
Au 8.57321269 5.93969272 -7.23844002
Au 11.14518269 7.42462272 -7.23844002
Au 9.43053846 1.48492000 -9.66331002
Au 6.85856846 2.96985000 -9.66331002
Au 12.00249692 2.96985000 -9.66331002
Au 6.85857423 5.93969272 -9.66331002
Au 9.43053269 4.45477272 -9.66331002
Au 12.00250269 5.93969272 -9.66331002
Au 9.43053269 7.42462272 -9.66331002
Au 7.71589269 4.45477272 -12.08818000
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Au 10.28785846 2.96985000 -12.08818000
Au 10.28785269 5.93969272 -12.08818000
Au 7.72387181 1.48479035 -12.08177282
Au 7.72559365 7.42686223 -12.07125607
Au 12.85690016 4.46409916 -12.08287122
Au 11.14517692 1.48492000 -14.505
Au 11.14518269 7.42462272 -14.505
Au 8.57321269 5.93969272 -14.505
Au 11.14518269 4.45477272 -14.505
Au 8.57321846 2.96985000 -14.505
Au 6.00125423 4.45477272 -14.505
Au 9.43053269 4.45477272 -16.927
Au 12.00250269 5.93969272 -16.927
Au 9.44247983 7.42561905 -16.927
Au 9.43053846 1.48492000 -16.927
Au 6.85856846 2.96985000 -16.927
Au 12.00379407 2.97263118 -16.927
Au 6.85857423 5.93969272 -16.927
Au 7.71582314 1.48492 -19.349
Au 7.71581737 7.42462272 -19.349
Au 10.2877874 5.93969272 -19.349
Au 7.71581737 4.45477272 -19.349
Au 10.2877816 2.96985 -19.349
Au 12.8597458 4.45477272 -19.349
Au 11.1451769 1.48492 -21.771
Au 11.1451827 7.42462272 -21.771
Au 8.57321269 5.93969272 -21.771
Au 11.1451827 4.45477272 -21.771
Au 8.57321846 2.96985 -21.771
Au 6.00125423 4.45477272 -21.771
Au 9.43053269 4.45477272 -24.193
Au 12.0025027 5.93969272 -24.193
Au 9.44247983 7.42561905 -24.193
Au 9.43053846 1.48492 -24.193
Au 6.85856846 2.96985 -24.193
Au 12.0037941 2.97263118 -24.193
Au 6.85857423 5.93969272 -24.193
Au 7.71582314 1.48492 -26.615
Au 7.71581737 7.42462272 -26.615
Au 10.2877874 5.93969272 -26.615
Au 7.71581737 4.45477272 -26.615
Au 10.2877816 2.96985 -26.615
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Au 12.8597458 4.45477272 -26.615
Au 11.1451769 1.48492 -29.037
Au 11.1451827 7.42462272 -29.037
Au 8.57321269 5.93969272 -29.037
Au 11.1451827 4.45477272 -29.037
Au 8.57321846 2.96985 -29.037
Au 6.00125423 4.45477272 -29.037
Au 9.43053269 4.45477272 -31.459
Au 12.0025027 5.93969272 -31.459
Au 9.44247983 7.42561905 -31.459
Au 9.43053846 1.48492 -31.459
Au 6.85856846 2.96985 -31.459
Au 12.0037941 2.97263118 -31.459
Au 6.85857423 5.93969272 -31.459
Au 7.71582314 1.48492 -33.881
Au 7.71581737 7.42462272 -33.881
Au 10.2877874 5.93969272 -33.881
Au 7.71581737 4.45477272 -33.881
Au 10.2877816 2.96985 -33.881
Au 12.8597458 4.45477272 -33.881
Au 11.1451769 1.48492 -36.303
Au 11.1451827 7.42462272 -36.303
Au 8.57321269 5.93969272 -36.303
Au 11.1451827 4.45477272 -36.303
Au 8.57321846 2.96985 -36.303
Au 6.00125423 4.45477272 -36.303
Au 9.43053269 4.45477272 -38.725
Au 12.0025027 5.93969272 -38.725
Au 9.44247983 7.42561905 -38.725
Au 9.43053846 1.48492 -38.725
Au 6.85856846 2.96985 -38.725
Au 12.0037941 2.97263118 -38.725
Au 6.85857423 5.93969272 -38.725
Au 7.71582314 1.48492 -41.147
Au 7.71581737 7.42462272 -41.147
Au 10.2877874 5.93969272 -41.147
Au 7.71581737 4.45477272 -41.147
Au 10.2877816 2.96985 -41.147
Au 12.8597458 4.45477272 -41.147
Au 11.1451769 1.48492 -43.569
Au 11.1451827 7.42462272 -43.569
Au 8.57321269 5.93969272 -43.569
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Au 11.1451827 4.45477272 -43.569
Au 8.57321846 2.96985 -43.569
Au 6.00125423 4.45477272 -43.569
Au 9.43053269 4.45477272 -45.991
Au 12.0025027 5.93969272 -45.991
Au 9.44247983 7.42561905 -45.991
Au 9.43053846 1.48492 -45.991
Au 6.85856846 2.96985 -45.991
Au 12.0037941 2.97263118 -45.991
Au 6.85857423 5.93969272 -45.991
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