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ABSTRACT

Loss mechanisms in superconducting windings are investigated with
specific emphasis on the hysteretic ac loss in the superconducting fil-
aments. The two-dimensional current distribution is given for a super-
conducting filament carrying a dc transport current in a time-varying
transverse magnetic field. The current distributions are calculated from
the critical state model by using the mathematics of complex variables
and a numerical iterative technique. Results are presented as polynomial
curves that define regions of positive and negative current. The field
required to fully penetrate the filament is given as a function of the
transport current. Hysteresis losses are computed for both the partial
penetration and full penetration regimes as a function of the transport
current and the magnitude of the perturbation field. Results are given
in non-dimensional form and the energy loss provided by the external mag-
netic field is distinguished from the energy loss provided by the trans-
port current power supply.

The ac loss theory is applied to the design of the superconducting
field winding for a 10 MVA synchronous electric generator including spec-
ification of the winding configuration and conductor. Thermal and elec-
trical performance analyses are given. Fabrication techniques for the
winding are developed and verified by the construction and testing of a
prototype superconducting coil.

Thesis Supervisor: Dr. Joseph L. Smith, Jr.
Title: Professor of Mechanical Engineering
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CHAPTER I

INTRODUCTION

Very often during the relatively short history of science and

technology great scientific breakthroughs have developed suddenly after

long years of steady but slow effort due to seemingly unrelated events.

So it was in 1911 with the accidental discovery of superconductivity by

H. Kammerlingh Onnes. The actual event that triggered the discovery of

this exciting phenomenon occured three years earlier in 1908 when Onnes

successfully liquified helium for the first time after many years of

painstaking effort by himself and other researchers. This new technology

opened the door to the vast field of extremely low temperature physics

and resulted not only in the discovery of superconductivity but also

the discovery of superfluid helium II.

Likewise superconductivity has opened another scientific door

through the benefits of very high magnetic fields and zero resistivity.

The potential applications of superconductivity span the scale from

very small microelectronic devices based upon quantum effects to ex-

tremely large scale energy devices [1,2,3]. The characteristics of

zero resistivity areattractive for increasing the speed and reducing

the power requirements of microelectronic devices. Presently speed and

power dissipation are two limitations on further development of con-

ventional electronic components. Thus a superconducting computer is

a logical extension of this rapidly developing technology. Present

small scale applications include superconducting quantum interference

IU~CI~~_ __)



devices, magnetometers, rf cavities, etc.

On a larger scale, the capability of superconducting magnets to

create very high magnetic fields over large volumes with relatively small

power requirements is being used to extend the range of conventional mag-

net technology and open up new engineering applications. For example,

superconducting magnets are rapidly replacing conventional magnets for

physics applications such as bubble chamber magnets, NMR magnets, and

particularly high energy physics particle accelerators. Superconducting

beamline dipole magnets are to be used on a very large scale for particle

accelerators at the Fermi National Accelerator Laboratory's Energy/Doubler

facility and Brookhaven National Laboratory's Isabelle Storage Ring.

Other medium scale applications include magnetic separation and magnetic

levitation.

The largest scale applications of superconductivity lie primarily

in the technologies of power and propulsion devices. Research and develop-

ment has been carried out in the late 1960's and through the 1980's on

superconducting motors and generators for ship propulsion and large

scale central power generation, superconducting ac and dc transmission

lines and superconducting energy storage magnets for power grids and

pulsed energy sources. The emerging technologies of MHD and fusion power

generation will require superconducting magnets on an extremely large

scale. Actually these last two technologies would not be feasible at

all without the use of superconducting magnets.

The subject of this thesis was developed out of research on super-

conducting machines that has been carried out since the late 1960's through



joint programs of the Cryogenic Engineering Laboratory (CEL) and the

Electric Power Systems Engineering Laboratory (EPSEL) at M.I.T. This

work at M.I.T. was begun following early work in the field by Woodson,

Stekly et al. [4,5] at Avco. The first superconducting machine built at

M.I.T. demonstrated that a superconducting winding and its liquid helium

cryostat could be successfully operated rotating at 3600 RPM and energized

to 45 kVA [6,7].

A second major advance in superconducting machinery came with

the design, construction and testing of an experimental 3 MVA generator

at M.I.T. [8,9,10,11]. This machine was temporarily connected to the

Cambridge Electric System as a synchronous condenser in a program supported

by the Electric Power Research Institute (EPRI).

Encouraged by the great success of the M.I.T.-EPRI research pro-

grams as well as by superconducting generator research by other groups

in the United States and around the world, the CEL and EPSEL laboratories

at M.I.T. began another superconducting generator program in 1976 with

support from the U.S. Department of Energy. The objective of the pro-

gram, entitled "Demonstration of an Advanced Superconducting Generator",

is to demonstrate advanced concepts in a prototype superconducting

generator [12]. The research is focused on the design, construction, and

testing of a prototype 10 MVA superconducting generator that will prove

the feasibility of design concepts to be used in a generator of 2000 MVA

rating for a central power generating station.

It is in the context of this program that the subject of this thesis

was developed. One of the key problem areas uncovered by earlier work was

~~ j__~iU~~__
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the problem of shielding the field winding from alternating magnetic

fields. Shielding from ac fields is necessary because superconductors

exhibit a hysteretic loss under the influence of changing external fields

or a changing transport current. This loss of energy when deposited in

the field winding at liquid helium temperatures could be potentially

devastating to the stable operation of the generator. Operating stability

and reliability are extremely important criteria for the selection of large

central power generating plants. In addition the cost of the refrigeration

plant required to handle this low temperature power dissipation must be

factored into any economic feasibility analysis. Thus it is extremely

important to have a clear understanding of the basic physical mechanisms

that are responsible for this energy dissipation and it is equally im-

portant to have mathematical models which can accurately predict this loss.

Only then can a truly optimized generator be designed that reflects all

the important engineering design trade-offs. In this case the general

trade-off is more shielding versus more cooling. In order to have

adequate information upon which to base the design decisions it is

necessary to be able to compute accurately the ac loss in the super-

conductor under all expected operating conditions. This information is

used in a thermal analysis to determine the adequacy of the winding cool-

ing arrangement. Of course these analyses are interrelated with electrical

and structural considerations.

Existing loss models were obtained from the literature and applied

to the field winding design of the generator. However, it became apparent

that these loss models were not totally adequate to give confident



estimates of the ac losses for all expected operating conditions. Thus

a considerable contribution to the ac loss theory could be made if the

existing loss models could be improved. This would also provide a quanti-

tative basis upon which to make design decisions for the field winding.

1.2 Problem Statement

The primary goal of this thesis is to investigate the loss

mechanisms in superconductors, make improvements to the loss models where

necessary and apply these results to the design of a superconducting field

winding for a rotating electric generator.

During the investigation of the loss models it was determined that

there was considerable area for improvement of the hysteresis loss model

for superconducting filaments. This model is inadequate because it

relies on one-dimensional solutions for flux penetration when two-

dimensional solutions are required for accuracy. This is a particular

problem whenever the filament is carrying a transport current, that is,

for most cases of practical interest.

Thus the work of this thesis is concerned with four specific

tasks, namely:

1) an investigation of all loss mechanisms in the super-

conducting winding and an estimate of their impact on the wind-

ing performance.

2) an improved analysis of one of the most important

loss mechanisms, the hysteresis loss in superconductors

carrying transport current. The model is improved by solv-

ing for the ac loss from two-dimensional solutions of the

field and current distributions, where only one-dimensional

solutions were previously used.



3) the application of tasks 1 and 2 to the design of the
superconducting field winding for a 10 MVA synchronous elec-

tric generator including specification of the conductor and

winding configuration and thermal and electrical performance

analyses.

4) the verification of the winding concept by developing

fabrication techniques and actual construction of a proto-

type winding for performance testing.

The presentation of the four tasks is roughly divided into four

chapters. Chapter II contains a general introductory survey of super-

conducting phenomena that is intended to provide a background for

further discussion of the hysteresis loss mechanisms. The concepts of

flux flow and the critical state model are discussed in order to pro-

vide the basis for the loss model presented in Chapter III. A dis-

cussion of other superconducting phenomena such as the Meissener effect

is given for general interest and to provide a context for the special

physical properties of the superconducting state.

In Chapter III the ac loss theory is developed from the critical

state model. A new mathematical technique is provided as a means for

computing the two-dimensional distributions of current and field in the

critical state. The technique uses the mathematics of complex variables

and a numerical contour integration to compute the two-dimensional

magnetic field components due to any given distribution of uniform

current density. The actual flux penetration contours are found from

an interative solution. The results are applied directly to calculate

the ac loss for partial and full penetration of the superconductor with

and without transport current. It is shown how the loss provided by



by the external magnetic field is distinguished from the loss provided

by the transport current. The loss expressions are given in non-

dimensional form so that they are valid in any superconducting winding

application and, not necessarily specific to a rotating electric genera-

tor.

The first section of Chapter IV is devoted to a discussion of

the 10 MVA generator field winding design and superconductor selection.

The results of Chapter III are then used to explicitly compute the ac

losses in the field winding for the expected operating conditions. A

thermal analysis uses different heat transfer models to ascertain the

stable operation of the winding during all transient conditions.

Chapter V gives details of the fabrication techniques used to

construct a small, superconducting experimental coil to simulate one

module of the field winding. Test results are given of the operating

performance of the coil. It is important to note that, although the

field winding design appears specific to the prototype rotating electric

generator, many of the design concepts would be useful in solving some

of the stress distribution problems and frictional heating problems

encountered in other high current density, large scale coil designs for

other applications such as MHD magnets.

A bibliography of some selected books on superconductivity has

been provided as a general informational source on this topic. Specific

references are given where required. Together the two lists should

provide a fairly comprehensive background on superconductivity for the

interested reader.



CHAPTER II

REVIEW OF SUPERCONDUCTING PHENOMENA

Superconductivity is one of the most interesting phenomena known to

modern science. With its discovery by Onnes in 1911 came an initial ex-

citement over the potential to create very high magnetic fields which would

hopefully lead to other advances in science and technology. However, it

was soon found that the known superconducting materials could not carry

very significant currents because the superconductivity was destroyed by

moderate magnetic fields; fields too low to warrant any special technical

interest. Thus further interest in research and development waned as

superconductivity became known as a very interesting curiosity with little

technical significance.

Further study proceeded at a rather low but steady level of activity.

In the 1930's this study resulted in some interesting phenomenological

discoveries and descriptions by scientists such as Meissner, the London

brothers, Pippard and others. However, it wasn't until the 1950's that

a microscopic theory of superconductivity was developed by Bardeen, Cooper,

and Schrieffer which later became widely accepted as giving a true des-

cription of superconducting phenomena. The BCS theory was based upon

the formation of paired electrons, Cooper pairs, in the superconducting

state [13]. In the same time frame a more macroscopic theory by Ginzburg

and Landau was advanced that was more useful in explaining some mixed state

phenomena [14]. Since the theory was phenomenologically based, it was given

little attention until Gorkov showed that it was truly a limiting case of



the microscopic theory [15]. Together with the work of Abrikosov [16] this

became known as the GLAG theory of superconductivity and is most useful in

explaining type II superconductivity.

The following sections of this chapter give a very brief overview

of some of the most basic superconducting phenomena in layman's terms.

Hopefully they will provide the reader with a simple introduction to a

few of the basic concepts and terms which are necessary to gain an under-

standing of the ac loss mechanisms in type II superconductors. They are

in no way meant to provide a complete and detailed description of the

microscopic theory. A bibliography is provided along with specific

references so that the reader can investigate this interesting phenomena

to any depth desired.

II.1 Zero Resistivity and the Meissner Effect

It all started in 1911 in Leiden when H. Kammerlingh Onnes was

using his newly developed helium liquification technique to measure the

low temperature resistance of mercury. He discovered that the resistance

suddenly dropped to zero at a temperature close to that of liquid helium.

This sudden phase transition from the normal conducting state to a state

of zero dc electrical resistance became known as superconductivity.

The resistivity of all metals decreases with temperature because

the resistance due to thermal vibrations of the lattice is reduced. That

is, phonon scattering of the conducting electrons decreases with decreasing

temperature. However, there will always be some residual resistivity due

to impurities in the metal or lattice defects. Figure 2.1 illustrates

the different resistive properties of a normal conductor and a supercon-
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ductor. The residual resistivity of a normal conductor can be reduced, and

even made vanishingly small at T=O , by reducing the level of impurities

and defects in the material, though it will always have a finite resistance

at a finite temperature. The superconductor on the other hand exhibits a

distinct and sudden transition to zero resistivity at a finite temperature.

The characteristic phenomena of zero dc electrical resistance,

however, is not sufficient to explain the extraordinary magnetic behavior

of materials in the superconducting state. One of the fundamental magnetic

phenomena exhibited by superconductors is their ability to expel a magnetic

field from the interior of the bulk superconductor when the material is

cooled below the transition temperature, Tc , in a magnetic field. This

was discovered by Meissner and Ochsenfeld and is referred to as the Meissner

effect [17]. A superconductor never allows any magnetic flux in the

interior. This is a characteristic of materials possessing perfect

diamagnetism. The sequence of pictures in Figs. 2.2 and 2.3 illustrate

the behavior of perfect conductance and perfect diamagnetism respectively.

The Meissner effect is shown in the sequence of Figures 2.3a to 2.3g.

The perfect conductor behavior is characterized by dB/dt = 0 everywhere

in the material, while the superconductor is characterized by B = 0 every-

where in the material.

The bulk superconductor is perfectly diamagnetic up to the critical

field, Hc when the superconducting state is destroyed by a phase change

into the normal state. The magnetization of the type I superconductor as

a function of applied magnetic field is shown in Fig. 2.4. The interior

region of the bulk conductor is completely screened by surface super-
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currents that flow in a penetration layer of depth, Under steady

state conditions the superconductor has zero resistance and these screen-

ing currents persist indefinitely.

11.2 The Critical Magnetic Field

Early attempts to create useful magnetic fields with superconductors

by putting a current through them failed when it was discovered that a

strong magnetic field would destroy superconductivity. The critical field,

H (T) , is a function of temperature and decreases to zero at the critical

temperature, T = T . At T = 0 , Hc(0) is a maximum.

The physical basis for the critical field derives from the energy

balance between the energy associated with holding the magnetic field

outside against the magnetic pressure and the difference in free energy

between the superconducting and normal phases. It can be written as

0 H (T)2 = fn(T) - fs(T) , (2.1)

where f (T) is the free energy density in the normal state and fs(T)

is the free energy density in the superconducting state at zero field.

The variation of critical magnetic field with temperature has been ex-

perimentally determined to be approximately parabolic:

Hc(T )  )[1  ( T ) ] . (2.2)

The critical field versus temperature variation is shown in Fig. 2.5.

The critical field characteristics and the Meissner effect allow

us to construct the magnetization curve for a type I superconductor. If

the magnetic field is applied parallel to a specimen such that the de-
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magnetizing coefficient is zero we can write

B = p0 (H + M) (2.3a)

and inside the specimen

B = 0 so - M = H (2.3b)

The magnetization curve (shown in Fig. 2.4) can be traced reversibly. Since

the types of superconductors that exhibit this behavior are mostly pure

elements, such as mercury, lead, tin, etc., they are sometimes called soft

superconductors.

11.3 Thermodynamic Phase Transition

The fact that the transition between the superconducting and normal

states is reversible allows the use of equilibrium thermodynamics to

describe this phase transition. According to the Gibbs Phase Rule for a

pure substance two intensive properties must be independently specified

to fix the state of one phase of the substance. Those two properties are

normally chosen to be temperature, T , and magnetic field, H since they

are the variables most normally controlled. Then the specific Gibbs free

energy g(H,T) for either phase can be written as [18]

g(H,T) = f(T) + fHdM (2.4)

where f(T) = g(O,T) . For the normal phase B = i0H from Eq. (2.3a)

because M = 0 so

2

gn(H 'T) = fn(T) - HO (2.5)



However, for the superconducting phase B = 0 (Eq. 2.3b) and

gs(H,T) = fs(T) (2.6)

Now for any two phases of a pure substance in equilibrium the Gibbs free

energy of each phase must be equal, thus

gs(H,T) = gn (H,T) (2.7)

Substituting Eqs. (2.5) and (2.6) in Eq. (2.7) and noting that H = H (T)

at the phase transition we get

H2(T)O2 ( f(T) - fs(T) (2.8)

which is identical to Eq. (2.1) which was written previously without

proof. This energy difference is called the "condensation energy".

Some other interesting thermodynamic properties such as the

latent heat and the specific heat can also be easily derived. The

specific entropy s is given by

s = - ( (2.9)

and thus the latent heat per unit volume for a reversible transition is

given by

d H
Q T(ss - s) y0T Hc dT (2.10)

For the specific heat

c = T( u (2.11)



so for the change in specific heat for the two phases we get

H 2 C2H
(cn - cs) = [T( T ) + THc 1 (2.12)

From Fig. 2.5 it can be seen that aHc/aT is always negative so

Eq. (2.10) indicates that the entropy of the superconducting phase is less

than the entropy of the normal phase. Thus it is not surprising that

the superconducting state is usually considered a more ordered state of

the material. Indeed there is a higher degree of order due to the pairing

of the electrons. At T = 0 the entropy must be zero from the third law

of thermodynamics so that the latent heat is also zero. At finite

temperatures and fields the specimen releases heat during the phase transi-

tion since Eq. (2.10) is negative. At the critical temperature, Tc the

critical magnetic field, Hc = 0 so that the latent heat is again zero.

Figure 2.6 shows the variation in the entropy of the two phases as a func-

tion of temperature.

From Eq. (2.12) it can be seen that the specific heat of the two

phases are equal to zero at T = 0 . At the critical temperature, Hc = 0

and Eq. (2.12), reduces to

aH
n - cs Tc( 3 )2 , (2.13)

that is, there is a discontinuity in the specific heat at this point.

This is called a "second order transition". It is somewhat analogous to

the jump in specific heat of liquid helium at the lambda point where it

becomes superfluid helium II. At some intermediate values of T the
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change in the specific heat is positive and at other values it is nega-

tive during the phase transition. This is shown schematically in Fig.

2.7, where the specific heat for the normal and superconducting phases

are plotted as a function of temperature.

All of this thermodynamic development has been based upon the

phase transition being reversible. Experimental measurements of the

specific heat and the critical field variation with temperatures have

confirmed the reversibility of the transition.

11.4 Electrodynamics and the Penetration Depth

In 1933 the brothers F. and H. London proposed a phenomenological

set of equations to describe the observed magnetic behavior of super-

conductors [19]. The set of equations which have become known as the London

equations are:

B = - m2 x J (2.14)
ns e

and

2n eJ ns E (2.15)
at m

where ns  is the number of superelectrons per unit volume and m and

e are their mass and electric charge, respectively. These equations

supplement but do not replace the Maxwell equations. Note that from the

Maxwell equation, V x-- = J ,
I 0

m -m BB - VxJ - 2  x(V x )
ne2 2 1ne ne O
s s



SO

B: m B 2 B
n e2  P0 P0

by vector identity and since V-B = 0

B = m 2 2 B
p0ns e

This can be rewritten as

V2 B = 1 B (2.16)

L

where

L 2=
Ionse

is the London penetration depth. This equation agrees with the observed

phenomena of the Meissner effect because it shows the interior is

exponentially screened from the applied field. For example, if the

above equation is applied to the geometry of a one-dimensional slab in a

uniform external field (Fig. 2.8) we can write

92B(x) 1
2  2B(x)

L

which has solutions of the form

x/XL -x/XL
B(x) = Cle + C2

iee~-r~ --~- --- - -~is~n~
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For B(+ d) = Be we get

B
B(x) eB(x) = cosh(d/L) cosh(X/XL)

Figure 2.8 shows the field profile in the slab superconductor. Near

the surface

-/XL
B(x) Bee

where

6 = d - x

is the distance from the surface. The London penetration depth, XL '

is based upon classical theory and thus is only qualitatively correct.

The more rigorous microscopic BCS theory and the Ginzburg-Landau theory

give more accurate values for A based upon quantum effects. However,

the London parameter is good to within a factor of about 2 and has a

typical value of order 500 A.

11.5 The Coherence Length

The other important parameter in superconductivity is the coherence

length, 5 . It was originally introduced by Pippard [20] in 1953 but a

more rigorous treatment is given by the Ginzburg-Landau theory. The

concept of the coherence length stems from the electron interaction in

the superconducting state.

The superconducting state is an ordered state of the conduction

electrons in a metal. At room temperature the conduction electrons form

a gas, but at low temperature, below Tc , they condense into a state of



lower energy in which they form loosely bound pairs. As an electron

passes near the lattice ions an attractive coulomb interaction occurs

which deforms the lattice. The disturbance propagates through the

lattice as a phonon, which transmits the momentum lost by the first

electron to a second electron, keeping the total momentum of the electron

pair a constant. The total attractive interaction must be greater than

the screened repulsion of the two electrons.

These two electrons are thus weakly bound and referred to as

Cooper pairs. The distance over which they interact is large and so

necessarily encompass many other such paired electrons. However every

pair has the same constant total momentum so that nothing prohibits a

pair from breaking up and reforming with any other pair through a phonon

interaction. This maintains the maximum possible number of pairs at any

time. If an electric field is applied the pairs behave as a single

particle with two electron charges with the center of mass of all pairs

having the same momentum. Each pair is locked in with the motion of every

other pair. They can carry a resistanceless current because none of the

paired electrons can be scattered by lattice imperfections which normally

cause low temperature residual resistance. Thus they are superconducting.

The thermal conductivity is less in the superconducting state than in the

normal state because the heat conduction occurs by an individual electron

energy exchange process.

This collective interaction of the electrons in a superconductor

is somewhat similar to but not quite the same as the collective behavior

of the helium atoms in superfluid liquid helium II.



Since superconductivity requires a strong coupling between the con-

duction electrons and the lattice, it is not surprising to find that

materials with very good normal conductance do not become superconducting.

The conduction electrons in these materials interact very weakly with the

lattice.

The distance over which the electron pair interacts is called the

coherence length. The distance is typically of the order 10 A , in

pure metals, but it is reduced by impurities in the conductor. For a

perfectly pure conductor the coherence length is denoted by 0 . Pippard

proposed that in the presence of scattering by impurities ( vary as

1 1 1

where k is the mean free path.

The true significance of 5 was shown by the Ginzburg-Landau

theory. They introduced a complex pseudowave function Q as an order

parameter of the superconducting electrons such that ns = MJ(x)1 2 where

ns is, as before, the volume density of the superelectrons. This 5

is the characteristic length of the order parameter.

11.6 Type I and Type II Superconductivity

Ginzburg and Landau combined the two important parameters of

penetration depth and coherence length into a single parameter by forming

their ratio,

K - -2 (2.17)



In a pure type I superconductor K is small. Abrikosov used this

parameter to define the difference between type I and type II supercon-

ductors by investigating what happens if K is made large. The effect

is shown in Fig. 2.9. The values of superelectron density, ns , magnetic

field, H , and free energy density, f , are shown as a function of distance

from a superconducting to normal interface for both type I and type II

superconductivity. The difference between the two types is that in I the

surface energy is positive at the interface whereas in II the surface energy

is negative. For type I this means that it is energetically favorable for

superconductivity to be destroyed rather than have normal regions coexist

with suDerconducting regions for fields above Hc . Thus the bulk super-

conductor goes normal above the critical field. However, the inverse is

true for type II superconductors. In this case, regions of superconduc-

tivity can coexist with the normal material above Hc . Abrikosov dis-

covered that this does indeed occur. He determined that for values of

K > 1/2 - the material enters the mixed state with a continuous increase

of flux penetration above Hcl < Hc up to a second critical field

Hc2 = 2k H . The magnetization of the two types of superconductors as

a function of field strength is shown in Fig. 2.10.

In addition Abrikosov discovered that the flux is quantized and

enters as a regular array of individual flux tubes or vortices each con-

taining one flux quantum of magnitude 0 = 2.07 x 10-15 webers. The

central core of the tube which contains the flux quantum is normal and

the remaining superconducting material is screened from the flux by a

supercurrent ring surrounding the tube (Fig. 2.11).
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Normally for very pure or "soft" metals K is less than l/l2

and these are type I. For impure metals or alloys, is reduced, and

K is greater than 1//2 and these "hard" materials are of type II.

The different types of superconducting states as a function of K are

shown in Fig. 2.12.

Since the superconductors of technological importance are the high

critical field type II conductors, some time should be spent understanding

the flux and current structures in the mixed state. An ideal type II

superconductor will have no defects in the lattice or atom impurities to

pin the flux quanta. The equilibrium flux distribution is a triangular

lattice array of the vortices uniformly distributed over the cross section

of the material and oriented parallel to the applied field. At low values

of applied field the vortices are widely spaced. As the external field is

increased the vortices get packed in tighter and tighter until just at

the critical field all the normal cores of the vortices begin to overlap

and the remaining superconductivity is totally destroyed. The actual

vortex lattice may deviate from the ideal triangular lattice due to inter-

actions with the crystal lattice. The basic vortex lattice of an ideal

conductor is shown in Fig. 2.13.

In reality, however, there are no ideal superconductors. This is

actually very fortunate since they do not have a very high value of Hc2

or high critical current. Relatively impure type II superconductors have

high values of Hc2 due to the high value of K . In addition the de-

fects and impurities in the lattice create pinning sites for the flux

vortices. The critical current of the superconductor increases directly
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with the number and strength of the pinning sites. The reasons for this

behavior will become clear from the explanation of flux motion and flux

flow resistivity.

11.7 Flux Flow and Flux Flow Resistivity

The phenomena of flux motion and flux flow resistivity are really

the heart of the dissipative mechanism in superconductors. In order to

understand the phenomena it must be shown that the flux vortices do

indeed move and if they move, the action is dissipative. This can be

shown by considering the case of an unpinned ideal type II superconductor

carryinq a transport current in a uniform background field as shown in

Fig. 2.14. The transport current interacts with the flux quanta to

exert a Lorentz force on each flux vortex of the form fL = Jt x O

In the above expression fL is the force per unit length on the flux

vortex, Jt is the transport current density and b0  is the quantum of

flux in the vortex. The moving flux vortices will induce an electric

field E , given by

E = vL x B = vL xnq 0 (2.18)

where vL is the velocity of flux lines and n is the number of flux

lines per unit area such that B = no . Since there is no pinning force

to balance the Lorentz force, we might assume that the flux lines accelerate

and thus E would increase with time. However, the observed voltage

indicates that E is constant in time implying a drag force must exist to

balance the Lorentz force. This force balance was proposed by Kim [21] in

the form

~~ ~C~P -'-~----'--- .-.-.--.-~III(LII~--
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I VL = f = Jt x 40 (2.19)

where n is a viscous damping constant. The damping force is dissipative

and thus requires a power input P = J-E to maintain the transport current.

Equations (2.18) and (2.19) can be combined to define the "flux flow

resistivity":

E O
Pf = E - B 0  (2.20)

Experimental measurement of pf determines the viscosity coefficient n

So far, no mention has been made of exactly what is the dissipative

mechanism due to a moving vortex. Experimental measurements of pf by

Kim, Hempstead and Strand show that it is a function of temperature and

as T goes to 0 it is well correlated by the expression

Pf =  On H (2.21)
c2

where pn is the resistivity of the normal material [9]. The ratio

H/Hc 2  is just the fraction of the normal core area. This is a very

interesting result because it implies that the dissipation is due to the

transport current flowing through the normal cores of the moving flux

vortices.

Actually there have been several theories about the dissipative

mechanism but one of the more successful and simpler models was derived

by Bardeen and Stephen [22]. The model is very simple in that it assumes

that all the dissipation takes place by normal resistivity in the central

core of the flux vortices where the normal radius is assumed to be equal



n V L f = Jt x 0 (2.19)

where n is a viscous damping constant. The damping force is dissipative

and thus requires a power input P = J*E to maintain the transport current.

Equations (2.18) and (2.19) can be combined to define the "flux flow

resistivity":

E O
Pf E - (2.20)

Experimental measurement of pf determines the viscosity coefficient .

So far, no mention has been made of exactly what is the dissipative

mechanism due to a moving vortex. Experimental measurements of pf by

Kim, Hempstead and Strand show that it is a function of temperature and

as T goes to 0 it is well correlated by the expression

H
Pf = Pn H (2.21)

c2

where pn is the resistivity of the normal material [9]. The ratio

H/Hc 2 is just the fraction of the normal core area. This is a very

interesting result because it implies that the dissipation is due to the

transport current flowing through the normal cores of the moving flux

vortices.

Actually there have been several theories about the dissipative

mechanism but one of the more successful and simpler models was derived

by Bardeen and Stephen [22]. The model is very simple in that it assumes

that all the dissipation takes place by normal resistivity in the central

core of the flux vortices where the normal radius is assumed to be equal



to . They solve for the electric field distribution due to a flux

vortex moving across the specimen and then derive the current distribu-

tion and energy dissipation due to this induced electric field. The

resulting expression for the flux flow resistivity agrees with the

empirically determined expression (Eq. 2.21) given by Kim.

Other more rigorous analyses of this dissipative mechanism were

given by Schmid [23], Caroli and Maki [24], and Hu and Thompson [25] by

using time-dependent Ginzburg-Landau theory. A different approach was

taken by Clem [26] who derived the dissipation due to the irreversible

entropy generation at the trailing and leading edges of the moving flux

vortex where the normal-superconducting transitions occur. There is no

consensus as to which analysis is correct, if the different mechanisms

are additive, or if they are all different ways of calculating the same

thing. No matter, the important point is that dissipation does indeed

occur whenever the flux vortices are set in motion and the simple

empirical form for the flux flow resistivity is useful to describe this

effect.

The flux flow resistivity is the underlying dissipative mechanism

that is responsible for the ac loss but it is crucial to note that

dissipation only occurs when the vortices are set in motion. In the

next chapter it is shown how this flux motion is caused by a changing

external magnetic field or transport current. However the flux flow

resistivity is not explicitly included in the ac loss calculation. The

reasons why this is so should become more clear in Chapter III.



Now that the dissipative mechanism is quantified a lot of the

behavior of type II superconductors can be explained. For instance, an

ideal type II superconductor has a very low value of critical current,

because, in the absence of pinning sites to restrain the flux motion,

energy dissipation increases as the square of the current, thereby

excessively heating the sample above Tc and destroying the supercon-

ductivity.

By contrast, in a nonideal type II superconductor, the number and

strength of the pinning sites prevent the flux motion until very high

values of current cause the Lorentz force to exceed the pinning force.

Experimental verification of the flux flow was done by Van Ooijen and

Van Gurp [27], who showed that the flux is actually pinned in "bundles"

of many flux quanta. Flux motion is also involved in two other interest-

ing phenomena, namely flux creep and flux jumping. These will be dis-

cussed in conjunction with the critical state model.

11.8 The Critical State

The concepts of flux pinning, flux motion and viscous damping have

been used to develop the critical state model. Again let's consider a

nonideal type II superconductor with pinning. In reality, not every

vortex is pinned, just some of them. However, due to the repulsion

between fluxons, the vortex lattice is fairly rigid, thereby effectively

pinning all the vortices. Thus one can use an average pinning force per

unit length of core, f . As long as the Lorentz force due to the

transport current is less than the pinning force, i.e. Jt#0 < fp , the

system is stable.



The critical state then is just the state where the Lorentz force

is exactly equal to the pinning force and is governed by the equation:

Jc 0 = fp (2.22)

where Jc is called the critical current density. If the current

exceeds the critical current, flux flow and dissipation occur.

Bean [28] suggested that Jc = constant, whereas Kim [29]

suggested that Jc vary as 1/B , these two being the most widely used

forms of the critical state model. Each form gives accurate results for

different conditions of magnetic field.

When J is raised above Jc the Lorentz force exceeds the pinning

force and the flux vortices are set in motion. Kim, et al. [30] and

later Irie and Yamafuji [31], successfully treated this condition by

proposing a force balance between the viscous force, the Lorentz force

and the pinning force in the form,

nvL - fp =  O( J - Jc )

The induced electric field is

B00
E - (J - J ) (2.23

1 c

Since the dissipative mechanism is the same as that just discussed in

the previous section, Eq. (2.23) can be rewritten in the form

E = f(J - c )  (Pn )( J - ) . (2.24)
c2



This equation is very useful in computing the energy loss in a super-

conducting filament carrying a transport current.

Experimental evidence exists to back up Eq. (2.24) [30]. Figure

2.15a shows a typical plot of voltage along a specimen versus current.

The different curves show the effect of increasing the impurities for

pinning sites and thus increasing Jc . In Fig. 2.15b the effect of H

in Eq. (2.24) is shown. The flux flow resistivity is plotted versus

applied magnetic field at different temperatures in Fig. 2.15c. The

curves are asymptotic to the line for T = 0 at low fields. Extrapola-

tion of the measured resistivity data along this line is often done to

predict the value of Hc2 at T = 0 .

Two other interesting features of the critical state model are

phenomena called flux creep and flux jumping. Flux creep is caused by

random jumping of flux vortices from one pinning site to another due to

thermally induced vibrations. It manifests itself by slow decay of a

trapped magnetic field and/or by a measurable resistive voltage. This

phenomena has been described by the Anderson-Kim flux creep theory which

assumes the vortices move in bundles [32,33]. This creep phenomenon is

exceedingly slow resulting in decay times for persistent currents in

superconducting loops of many millions of years. However this effect

can lead to a potentially more dramatic effect called a flux jump.

The flux jump occurs due to a thermal instability. It is best

explained by a series of steps. First assume some flux vortices are

set in motion from the pinning site either by flux creep phenomena or
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due to some other distrubance, such as a change in the external field or

transport current or by an increase in temperature. The motion of the

vortices dissipates energy which locally increases the temperature. Since

the pinning strength is inversely proportional to temperature more vor-

tices can be released from their pinning sites due to the lowered pinning

force. This flux motion again leads to more dissipation, higher tempera-

tures, and thus more flux motion in a cascading effect. The total effect

is called a flux jump. If the effect is not damped out the result could

be a catastrophic flux jump in which the temperature of the sample is

rapidly increased above the critical temperature thus creating a normal

region which could rapidly propagate and quench the entire winding. Flux

creep does not necessarily always lead to flux jumps and flux jumps are

not always catastrophic.

Once the underlying physical basis of the phenomena was understood

methods of damping this instability were soon devised. These methods are

described in the following section on technical superconductors.

11.9 Superconductors for Technical Applications

With the advent of the BCS and GLAG theories of superconductivity

in the 1950's it quickly became apparent that the potential for creating

high magnetic fields and carrying large currents depended upon the develop-

ment of practical non-ideal type II superconductors. In 1961 the first

high field superconducting solenoid was constructed from reacted Nb3Sn

wire [34]. The problem with Nb3Sn however is that it is very brittle and

thus rather difficult to fabricate into winding forms other than with tape

conductors. Although much improvement has been made in the last 20 years

IJILIILIII1_IIXI__~ - -X~II Y~_



it is still somewhat restricted to very high field solenoids.

Most other early magnets were fabricated from Nb-Zr later to be

supplanted by Nb-Ti which remains to date the principal superconducting

material in use. The problem with the early magnets however was that

their performance was usually much degraded from that expected from the

short sample measured performance. The reason was primarily due to flux

jumping in the single-core large diameter superconductors. The initial

method of dealing with this situation was by means of adiabatic stabiliza-

tion [35]. That is if the heat capacity of the superconductor was in-

creased such that the maximum temperature reached was less than the

critical temperature then the conductor would be stable to the flux

jumping. This was accomplished by dividing the superconductor into very

small filaments with the maximum filament size given by

d < [ 3C 1/2 (2.25)
c

"OJc aT

where d is the filament diameter, J c is the critical current density

and C is the specific heat of the superconductor.

However it was difficult to manufacture very small single fila-

ments so the wires were manufactured by embedding many (on the order of

10 to 103) small diameter filaments in a matrix material. Not only did

this alleviate the manufacturing process but it added to the stability by

providing a low resistance shielding material to damp magnetic fluctuations

and also by providing an increased heat capacity to the conductor. This

CLl___l____rm____U~_ _~~_~_~



was called dynamic stabilization. The most common matrix material is

copper although aluminium is sometimes also used. However it was soon

discovered that the multifilamentary composite conductor with straight

filaments acted very similar to the single core conductor because the

filaments were coupled by circulating currents that returned through the

matrix material. This was alleviated by twisting the filaments within

the matrix [36]. One or two twists per inch is a common value for the

twist pitch. Thus the twisted multifilamentary composite conductors have

continued as the principal type of conductor in use.

An additional method of preventing quenching on a larger scale

was due to Kantrowitz and Stekly who proposed cryostatic stabilization

[37]. In this method of stabilization a large quantity of matrix material

is provided as a low resistance shunt for the current should the super-

conductor go normal. The current will return to the superconductor

(recovery) if the heat is convected to the liquid helium bath at a rate

greater than the rate of heat generation by joule heating in the matrix.

This usually requires matrix to superconductor ratios on the order of

10 to 20:1. This usually results in windings with very low overall

current densities but is often used in very large magnets with a great

amount of stored energy where a quench could be disastrous. Typical

applications are bubble chamber magnets and large MHD magnets.

Besides the monolithic type wire, superconducting wires have also

been manufactured in cabled or braided form. These types of wires are

primarily used where ac losses may be a severe problem. Division of the

conductors into very small separate individual wires helps alleviate the
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eddy current loss problem while also diminishing the hysteresis loss

in the extremely small diameter filaments. The individual conductors

in the braided wires are usually insulated and twisted and transposed.

Transposition is a commonly used technique for all types of electrical

wire to reduce circulating current and eddy current losses. These wires

are not very rigid though and usually require additional mechanical

support. They are commonly found in pulsed applications such as energy

storage coils or beamline dipole magnets.

Of course the most important criteria in consideration of a tech-

nical superconductor are the critical field and critical temperature

characteristics of the material. As mentioned previously Nb-Ti is the

most commonly used material but presently Nb3Sn is increasing in popularity

due to its higher values of critical field and critical temperature and

also due to advances in manufacturing technology. In addition inter-

metallic compounds such as Nb3Ge and V3Ga are currently under development

as potential high field conductors. They are presently inhibited by

manufacturing limitations, generally based upon their brittle nature.

The critical field versus critical temperature are shown for these con-

ductors in Fig. 2.16. At present a great effort is being directed by

metallurgists and physicists to further development of high temperature,

high field superconductors.



CHAPTER III

THEORY OF AC LOSSES IN SUPERCONDUCTORS

This chapter deals with the theory of ac losses in superconductors

and specifically with a detailed mathematical model from which the losses

can be quantitatively computed. Before the model is presented, however,

it is extremely important to accurately define the problem and the under-

lying assumptions. Consideration must be given to type of conductor, type

of material, conditions of magnetic field and transport current and the

time dependence of the field and transport current.

The conductor that will be considered is the multifilamentary

composite conductor which is comprised of many small diameter filaments

of superconducting material embedded in a normal resistive matrix material.

The superconductor will be a hard, type II material with many pinning

sites. It was shown in Fig. 11.9 that this type of conductor is in wide-

spread use for many technical applications either in the monolithic or

cabled or braided form. The superconducting material in predominant use

is the alloy niobium-titanium (Nb-Ti) and increasingly the compound

niobium-tin (Nb3Sn). The model will be applicable to these and other

superconducting material (e.g., Va3Ga, Nb3Ge, etc.). However, surface

loss effects will not be considered, even though this type of loss mechanism

could be significant under certain conditions and particularly for materials

other than Nb-Ti.

The multifilamentary composite conductor exhibits two independent

loss mechanisms under the influence of a changing magnetic field. One
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mechanism is an eddy current loss in the normal matrix material and the

other is a hysteresis loss in the individual superconducting filaments.

The relative contribution of the two-loss mechanisms to the total loss

depends upon several factors. The variables which affect the ac loss

are:

1) frequency of the alternating field or current,

2) amplitude of the magnetic field charge

3) current ramping rate,

4) magnitude of the background field,

5) field orientation with respect to the conductor,

6) conductor properties;

a) twist pitch

b) filament size

c) copper to superconductor ratio

d) conductivity and permeability
perpendicular to filaments

e) conductivity and permeability
parallel to filaments.

The hysteresis loss and the eddy current loss are coupled by in-

duced circulating currents which flow axially through the filaments and

return through the matrix. This loss is reduced by twisting the filaments

within the matrix and in the case of cables and braids by transposing the

individual multifilamentary wires.

The problem of calculating the eddy current loss in the normal

matrix material is significant but the underlying physical loss mechanism

is clearly understood. It is just the ohmic energy dissipated by currents

flowing through a normal resistive medium where the current density, J and

II II_ ̂_Y~II_ _UII_~__I~~XI_(i.illilllC-ri__. -(*I^II1C~F-_II^I1~^------
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electric field, E are linearly related by the material conductivity, a

in the constitutive relation, J = oE . The problem can be formidable

because the calculation of J and E is complicated by the highly non-

linear interaction with the array of superconducting filaments within the

matrix.

The most fundamental problem at hand though is to gain an under-

standing of the magnetic and electric properties of the superconductor

in a changing magnetic field and particularly when it is carrying a trans-

port current. Only then can the larger problem associated with the

composite be adequately analyzed. Thus the focus of this work is to

develop an understanding of the loss mechanisms within an individual

superconducting filament carrying a dc transport current in a changing

external magnetic field. At appropriate points within the following

sections comments will be made to relate the behavior of the single

filament to the larger context of the multifilamentary composite conductor.

The mathematical treatment will be based upon macroscopic currents and

magnetic and electric fields in bulk specimens although this is consis-

tent with the microscopic phenomena as outlined in Chapter II.

III.1 The Critical State Model Applied to AC Losses

The discussion of superconducting phenomena in Chapter II proposed

that experimental evidence exists in support of the critical state model

for type II superconductors. Acceptance of this model is crucial for it

provides a convenient method of computing the loss in a superconductor

subjected to a time varying field or transport current. That is, the

hysteresis loss in a superconductor can be computed from a succession of

_ __1_1_~ _~~I _ _(_il~~_ -~-l.._^i-YLI--_ -.--- lli*.llliXI__.
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quasistatic time steps between equilibrium distributions of magnetic

field and current within the specimen. At each equilibrium step the

superconductor is in the critical state. The mechanism which allows

the field and current distribution to change from one state to the

next is the flux flow resistivity.

However, there is no need to determine the flux flow resistivity,

pf , explicitly in order to calculate the loss. It is sufficient to

compute the electric field, E and the current distribution, J from

the quasistatic Maxwell equations

B
This condition will hold as long as << < - where B is the magnetic

Tm P

field required to fully penetrate the filament and Tm is the time con-

stant for magnetic flux to diffuse through the filament. The diffusive

time constant can be computed from the magnetic diffusivity which is

given by

PfD P (3.2)
m P0

where pf is the flux flow resistivity. The time constant then is

L2  yoL2
T (3.3)

m Dm P f

where the characteristic length, L is equal to the filament radius, d/2

An order-of-magnitude estimate gives values of Tm of order 10- 8 sec for a

~I __)_ ~ _J YIIIIY__X^_~_____ll ^YI~~I



typical Nb-Ti filament diameter of 50pm. As long as the frequency of

the external field change does not approach the gigahertz range the

quasistatic model should hold. For most practical engineering applica-

tions the perturbation field frequency would realistically never exceed

103 hertz.

III.1.1 One-Dimensional Flux Penetration

A one-dimensional slab of non-ideal Type II superconductor

is often used as a simple example to illustrate the fundamentals of the

critical state model. Consider the slab of thickness d in Fig. 3.1a to

be of infinite extent in the y and z directions. If a uniform ex-

ternal field, He , oriented parallel to the sides of the slab in the y

direction,is increased above Hc, flux vortices will begin to penetrate

the specimen. The material will be said to be in the mixed state. The

flux will penetrate to the point where the pinning force will just balance

the Lorentz force on the flux bundles. This condition is the critical

state and the induced current density is called the critical current

density, Jc . The field and current distribution will be given by

solution of the Maxwell equation VXH = J with the boundary condition that

H = He at the surface.

The exact form of the solution depends on whether Jc is considered

to be independent of H (Bean model [38]) or J is considered to be

inversely proportional to H (Kim model [29]). If we choose the former

condition the solution is of the form

H = He + Jc(X- d/2)

_ ~I I~il-_ l^tli-l ~---l~l~-^_-----_~ i-ll-_

X > 0 o (3.4)



The field penetrates to a point X given by

d eX d e (3.5)
p 2 Jc

The slab is fully penetrated when H = H where
e p

Jd
H = (3.6)

The field and current distributions that correspond to the Bean model are

shown in Figs. 3.la through 3.1c for an increasing external field and in

Figs. 3.1d through 3.lg for a decreasing external field. The hysteresis

inherent in the superconductor is shown by the trapped flux remaining in

the slab when the external field is reduced to zero (Fig. 3.1e).

The magnetization of the slab is given by

d

M =- d2 Hdx - He (3.7)

and the magnetization curve for a complete cycle to the upper critical

field limit of Hc2 is shown in Fig. 3.2, The energy loss per cycle per

unit volume is easily computed from the area under the magnetization curve

and given by

Wh f [f pOM dH]dv . (3.8)

volume cycle
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Carrying out the integration we get for the loss per cycle per unit

volume,

W H
h 2 mS= 2 m5 H < H (3.9a)V0 H-'0m -p

and

h - 2) Hm > Hp (3.9b)
V0 m p 3 H m

If Hm >> Hp

W

h ~ 2 0 Hm Hp (3.9c)

These results were originally derived by London [391

A similar procedure can be followed with the Kim model. In this

model the functional dependence of the critical current density on the

magnetic field is given by

Jc H+H0  (3.10)

J0
where J = J at H = 0 and H0 = H at J c-

The field profile then as calculated from Eq. (3.1) is

H 2 2 1 /2
H = H0{[(1 + H - )] - > 0
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and the field penetrates to

H H
Xp = - (H + ) . (3.11)

Full penetration occurs when He = Hp where

Jod
Hp =  O 1 + d) . (3.12)

Figures 3.3a through 3.3h show the field and current distributions as given

by the Kim model for various values of the external field. The hysteresis

loss per cycle can be found from Eq. (3.8) for the case when H is cycled

between Hm and -Hm ,

Wh H0 + Hm
h = 0

a Od Ho Zn( 0 . (3.13)

The purpose of going through this exercise is to show how the critical

state model is the basis for computing the hysteresis loss in the super-

conducting filaments and also to introduce some of the important parameters

such as the full penetration field, Hp o These simple slab models have

served until recently as the basis for all ac hysteresis loss calculations.

111.1.2 One-Dimensional Effect of Transport Current

The effect of a transport current in the slab specimen can

be developed by arguments consistent with the critical state model. Con-

sider the one-dimensional slab to be in a uniform external field and



carrying a transport current It  in the z-direction, that is a frac-It

tion of the critical current I such that 0 < t- < 1 . The current
c

and field distribution for the slab is shown in Fig. 3.4. Note that

the current flows everywhere in the cross-section at the critical

current density Jc which has been assumed a constant as per the Bean

model. If the external field is cycled by an amount + H about the

value He the current and field distributions will be as shown in Fig.

3.4(a-h).

Since one can picture the central region of the slab as being

occupied by the transport current the field required to fully penetrate

to this region will now be less than the field required to penetrate to

the center of the slab, that is the full penetration field at zero
Jd

transport current, H (0) = The full penetration field now

depends upon the fraction of transport current and is given by

I I
Hp( c ) = H(O)(l -It (3.14)

C C

The magnetization and the hysteresis loss can be computed as before

from Eqs. (3.7) and (3,8), respectively. The results are given below for

the energy loss per unit volume per cycle;

Hm < H p(i)

3
Wh(i) 2 H (3.15a)

V 3 "O (3.15a)
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H > H (i)
m p

Wh(i) 2 H 3(i) H (i)
V '0 H p0) + 2 po0H (O)H m( - p- )(I+i2)p m H

(3.15b)

2 2(3 H(i) 2
2 'O Hp (0) (1-i) 3 + 2 poHp(O)Hm[ - H (i (1+i

where i = It/Ic

The loss is very similar to that given in Eq. (3.9). If i=O ,

Eq. (3.15) reduces to (3.9), the loss with zero transport current. It

is interesting to note that if Hm  is less then H p(i) the hysteresis

loss is totally unaffected by the transport current. In a later section

it will be shown that this result is valid for the two-dimensional

hysteresis loss with transport current. If the specimen is carrying the

maximum possible transport current (i=l) the loss will be twice the

hysteresis loss at zero transport current, i.e.,

Wh () 2Wh(0)
V V

This condition is specific to the one-dimensional slab model.

111.2 Existing Loss Models

Much attention has been focused by many different workers since the

mid-1960's toward understanding and quantifying the ac loss mechanisms in

solid core and multifilamentary composite superconductors. The amount of



previous work is too great to review in detail in this section but a few

general comments are in order to give the reader a perspective on how the

work of this thesis complements the body of existing models.

The earliest work was aimed primarily at calculating the hysteresis

loss within the superconducting materials, since multifilamentary con-

ductors had not yet been developed. The previously referenced work by

London [39] in which he computed the hysteresis loss in a slab has served

in conjunction with the Bean model [38] as the basis for almost all

hysteresis loss calculations to date. This has become known as the Bean-

London model. Later Hancox [40] used both the Bean-London model and the

Kim model to compute the loss for a slab with a changing transport current

in conjunction with a changing external field. During this period of

time Kim [32]and Anderson [33] were reporting on the phenomena of flux

creep and flux jumping. The results of this work led to magnetic and

thermal stabilization of the superconducting filaments by surrounding

them with a material such as copper.

The addition of the stabilizing material solved the problem of flux

jumping but introduced a new loss mechanism in the form of Joule heating

by eddy currents in the matrix. Several authors treated this problem by

analyzing the behavior of a twisted pair of superconducting filaments in

a resistive matrix exposed to a time varying external field [41-44].. In

all of these cases, the effect of transport current, if included at all,

was treated by means of a one-dimensional slab model. Partial penetration

of the filaments was also treated one-dimensionally.



The most comprehensive and successful ac loss model was the aniso-

tropic continuum model developed by Carr [45-49]. Instead of treating

the currents in the matrix and the filaments separately and trying to

connect them through boundary conditions, Carr averaged the properties

of the components and treated the wire as a highly anisotropic continuum.

Thus he calculated the conductivity and magnetic permeability for

directions perpendicular and parallel to the filaments, and then solved

Maxwell's equations based upon these averaged material properties.

The results were very good and particularly accurate in the limiting

cases. The model also includes the effect of transport current but it

relies on the one-dimensional slab solutions to account for this effect.

The accuracy is improved for the intermediate cases between It = 0 and

t = Ic by using an empirically derived scaling coefficient. However,

the anisotropic continuum model averages the properties of the super-

conducting filaments and the matrix material so that the model necessarily

becomes inaccurate for operating conditions which cause the local details

of field and current distribution to vary sharply.

Ogasawara, et al. [50,51] have dealt specifically with the ac loss

in multifilamentary composite wires carrying a dc transport current both

analytically and experimentally, but they have also relied on one-

dimensional slab solutions as the basis for the transport current effect.

It became apparent that in order to improve the accuracy of these models

it was necessary to develop two-dimensional formulations for the magnetic

field and current distributions in cylindrical filaments.



As a first step in this direction several authors have computed

the two-dimensional distributions of field and current in a round super-

conductor in a uniform external field [52 - 54]. The magnetization and

hysteresis loss were calculated from these distributions and they are in

good agreement with experimentally determined values. All three previous

methods employed numerical techniques to generate the results, but the

effect of transport current was not included in the calculations.

The focus of this thesis then was to complement this body of work

by developing a two-dimensional mathematical model for the ac loss that

includes the effect of transport current. The resulting mathematical

formulation has been used to complete these calculations and is pre-

sented in the remaining sections of this chapter.

111.3 Mathematical Technique for Calculation of

Two-Dimensional Flux Penetration

A mathematical technique is presented in this section by which the

two-dimensional distributions of magnetic field and current can be

computed. It is based upon a method developed by Beth [55] for calculating

two-dimensional fields due to arbitrarily shaped regions of constant

current density. The following derivation, which follows Beth's treat-

ment, utilizes functions of complex variables and the application of

Cauchy's integral formula. In the next section the mathematical formula-

tion is applied to a cylindrical superconductor in a uniform external

magnetic field.

The problem, simply stated, is to determine the magnetic fields

inside and outside an arbitrary region, R , of constant current density, J.
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Consider the two-dimensional region, R , of uniform current density J =

constant within the boundary and J = 0 outside the boundary in Fig. 3.5.

The Maxwell relations for magnetoquasistatic fields in regions of

constant permeability are

V x R = J and V = 0

which in two-dimensions can be written

aHy Hxy= J (3.16a)9x y

H H
x + = 0 (3.16b)

ax ay

First we define a field point in the complex plane z E x+iy and the

complex field H(x,y) where

H(x,y) H y(x,y) + i Hx(x,y) (3.17)

The imaginary number i is defined by i = 7-T . Note that H is a

complex function of position in which the real part of the function de-

fines the y component of magnetic field and the imaginary part defines

the x component of magnetic field.

We would like to find an analytic function f(z) = u+iv that

describes the magnetic fields within and outside the region R , such that
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the Maxwell relations are satisfied. For a complex function to be analytic

in R it is necessary that the function be single-valued, the first

partial derivatives of u and v be continuous, and the Cauchy-Riemann

equations (3.18) be satisfied within the region R

au av
(3.18a)

x y

U - DV (3.18b)
gy ax

If a function is analytic it has derivatives of all orders which must be

continuous and it follows that the real and imaginary parts of the

analytic function are solutions of Laplace's equation

2u a2u 22 u u = V = 0 (3.19a)
ax ay

2 2
82v + v 22 = V v = 0 (3.19b)

It is clear from direct substitution of Eq. (3.17) into Eqs. (3.18a)

and (3.18b) that H(x,y) is not an analytic function in R due to the

current source J . The function H(x,y) is analytic only in those

regions where J=0

Beth defines an analytic function f(z) that is a complex combina-

tion of two real functions

f(z) = H - J z* = u + iv (3.20)2=



1
where z* - x-iy is the complex conjugate of z and u = Hy - J*x and

v = Hx + J*y . Direct substitution of Eq. (3.20) into Eqs. (3.16a) and

(3.16b) confirms that the Maxwell relations are satisfied which is identical

with satisfying Cauchy-Riemann (3.18a and b).

The problem then is to evaluate the function f(z) inside and outside

the current-carrying region R thus yielding the magnetic field components

Hx and Hy directly. This function can be evaluated by application of

the Cauchy Integral Formula

f(z) I= 1~~ C - dC (3.21)

where C is a variable that denotes a point along the contour C .

We can write separate analytic functions describing the two regions,

inside the contour and outside the contour, by applying the Cauchy Integral

Formula to obtain

Hin - Jz* for z = in
f Cfinin 2 in

Inside R , f in(z) = d = (3.22a)in 2'l C r-z
for z = z

0 for z = zin

Outside R , f out(z) 2Tr- i d = (3.22b)

0 Hou t for z = zout



The symbol zin denotes a field point lying inside the contour

and zout denotes a field point lying outside the contour. The positive

direction around the contour is defined in the standard sense by the

direction which encloses the area to the left. In Eq. (3.22),use has

been made of the Cauchy Integral Theorem to set f(z) = 0 if the point

z is not within the region enclosed by the contour C .

The boundary conditions require continuity of field at the boundary

where = z , thus

Hin = H tout

and

fin() - fout(d)
1
2 JC* (3.23)

Adding the two functions (Eqs. (3.22a) and (3.22b)) to form the single

function f(z) and using Eq. (3.23) we find

1
f(z) f. (Z) + f (Z) i1 2 J din out 2,

1H Jz*in 2

f(z) = d -z d

Hout

for z = z.inin

for z = zoutout

(3.24)



Thus the final result of all this mathematical manipulation is

Eq. (3.24) which indicates the magnetic field can be determined every-

where if the contour integration can be performed. Note that J must

be constant within the contour C . This method of computing the magnetic

fields may be easier than the more traditional methods which usually re-

quire a double integration over the area of the region R . The above

equation can be evaluated analytically for many regular geometric shapes.

111.4 Partial Penetration Flux Profiles

The previous mathematical formulation can be used to compute the

region of flux penetration into a cylindrical non-ideal type II super-

conducting filament. The model is based upon the following assumptions;

a) the constant background field is uniform and much greater than H (0),

b) the filament carries no transport current, and most important c) the

induced currents flow at the critical current density, Jc (critical state

model) which is constant and independent of H (Bean's model).

Consider the case of a cylindrical superconducting filament in a

transverse uniform background field, He as shown in Fig. 3.6. The

induced current distribution will create uniform magnetic fields in an

interior region that is equal in magnitude and antiparallel to the

external field such that the interior region is completely shielded.

The problem is to find the shape of the induced current region and thus

the limit of flux penetration that fulfills the shielding requirement.

The net magnetic field distribution is just the superposition of

the external field and the field generated by the induced current distribu-

tion,
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H(z) = iHe + H (z)

where H(z) and Hj(z) are complex functions of the complex field point

z . The magnetic fields in each case are computed from an analytic

function f(z) as determined by the methods described in the previous

sections. Figure 3.2a shows how the induced current distribution can be

formed by superimposing an area of + J bounded by the circular contour

CR and another smaller area bounded by the contour CO . The contours

CR and CO  can be further broken down into two smaller contours, C1 +

C2 , and C1 + C2 , shown in Figs. 3.7b and c, respectively. The total

field distribution then becomes

H(z) = iHe + HR(z) - Ho(z) (3.25)

where H , HR , and H0 are complex functions of x and y

First HR is computed from an analytic function fR(z) by

Eq. (3.24)

fR(z) = d4 i c 1 * d4R C -4 C C -z

(3.26)

+ c - de4f -T C --z

The contour CR is the outer boundary of the circular filament described

by the function C = Reie , and the x axis where C = x . Carrying



out the integrations of Eq. (3.26) and solving for the magnetic field

we obtain

6J z* iJ R iJcR
HR(z) - 2 + 2 R z R-z 7 (3.27)

where

-1 in regions of -J

6 = +1 in regions of +J

0 in regions of J=O

Similarly the field H0  is computed from f0 (z) by

iJ iJ
f() Jc * d i c dd0 4x 0C-z 4a C 1-z

(3.28)

+ C dC

2

However, a problem arises with evaluating Eq. (3.28) because the exact

contour CO which delineates the inner region of zero net flux and current

is not known. In theory it can be determined by setting the net field to

zero along the boundary in Eq. (3.25). After some simplification the

resulting expression that governs the shape of the contour CO can be

written
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d* C* dC - - dL = 4R(1 )H
C C-z f C -z fC C-z Hp

(3.29)

R z R-z
S2R( R )kn ( R )

where Hp = 2JcR/7 is the field required to penetrate to the center of

the filament.

The exact solution of this expression for CO 
= C1 + C2 is diffi-

cult to obtain. An approximation has been made by Kato,et al. [56] by

assuming a shape for the contour. Kato chose the shape of an ellipse

with semi-major axis a and semi-minor axis b. The field HO(z) is then

found by substitution of C = z cose + ib sine into Eq. (3.28). After

evaluating the integrals, he is left with an expression for H(z) in

terms of the two parameters a and b . These parameters are then

determined by setting H(z) = 0 at z = + a and z = + ib . This

results in two equations which are solved simultaneously for the two un-

known parameters a and b . The ellipse thus defined is not the exact

contour CO  since Eq. (3.29) is satisfied only at the four points

z = + a and z = + ib .

The technique applied in this work is similar to that taken by

Kato. First it is convenient to recast Eq. (3.25) into a more complete

form by substituting Eqs. (3.27) and (3.28) for HR(z) and HO(z),

respectively. The resulting expression for H(z) when normalized by

the full penetration field Hp is
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H(z) He  r z* 1 a 1 z (1-z)(a+z)Lt ) + z ) 9)nH H T R 2 R (a-z)(l+z)
p p

+a/R
1 R l+z I -- d(*CR)

C-z (3.30)
c-a/R
I;

-a/R
+

C +a/R
2

* -- d(C/R) }
C-z

where a is the x axis intercept of the contour and 6 is as defined

in Eq. (3.27). The technique for finding the solution for the magnetic

fields in Eq. (3.30) is as follows:

1) fix the external field He such that 0 < He/H p< 1 ,

2) assume a function r(x,y) for the shape of the contour,

3) evaluate the right-hand side of Eq. (3.30) at m field
points within and on the contour defined by C , and
set equal to the residual Rk , k=l , m

m
4) evaluate I (Rk) 2

k=l

m
5) minimize I (Rk) 2 by perturbing the function C(x,y)

k=l

6) the function r(x,y) that minimizes the sum of the squares
of the residuals defines the limits of the flux penetration
for a given value of H /Hp .

7) Repeat the process for a full range of He/H between 0 and
1.0.

m 2
Note that the exact contour is the one which gives m (Rk  -0

k=l
for every point within and on the contour .



The polynomial was chosen as the general form for the function

(x,y). Only even terms were used due to the symmetry about the y

axis. The function C is given by

= x + i(a0 + a2x2 + a4x4 + a6x + a8x8 )  (3.31)

where the variable x and the coefficients of the polynomial are real

numbers. The contour integrals in Eq. (3.30) were evaluated numerically

by a computer program that performs complex simpson quadrature integration.

The residuals were evaluated at 5 points within one quadrant of the fila-

ment as illustrated in Fig. 3.8.

The contour c was perturbed by changing the coefficients a0
through a8 in order to minimize the sum of the squares of the 5

residuals. A computer program was used to perform this minimization.

It uses a finite difference Levenberg-Marquardt algorithm [57] to minimize

the sum of squares of m functions in n variables. In this case the

m functions are the magnetic fields given by Eq. (3.30) evaluated at

5 points for a total of m=10 functions since each evaluation gives

an x and y component of magnetic field. The n variables are the

8 polynomial coefficients a0  through a8 . This type of algorithm

is well-suited to this problem since the function evaluations are highly

non-linear in the variables an . Also the functions can only be evaluated

numerically so other methods that require the derivatives in analytic

form could not be used. This program handles that condition by using a

finite difference method. Details of the computer programs that were
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Fig. 111.8. Position of field points for evaluation of residual
functions. The sum of the squares of the residual fields at these
points is minimized to determine the correct function f(x) for a
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used to find the best fit polynomial coefficients are given in Appendix

B.

The results of this analysis are shown in Table 3.1 which gives

the coefficients of the polynomial function that best describes the

limits of shilding current distribution as a function of the normalized

external field H /H . Note that for values of H /Hp approaching 1.0

fewer high order terms are required to describe the curve. The curves

are illustrated in Fig. 3.9. The accuracy of the procedure was checked

by comparing the magnitude of the residual field at various points with-

in and on the contour with the magnitude of the uniform external field.

For most cases the residual field was less than 1% of the external

field especially for values of He/Hp > .3. The accuracy was no worse

than approximately 10% for the cases of small penetration, He/Hp < .3,

but this is not much of a problem in the loss calculation since the

total error is reduced due to the double integration of the currents

over the cross-sectional area.

Recently several workers have also solved this problem through

numerical techniques [52 - 54] but none have used the method of complex

variables to compute the magnetic fields nor have they represented the

flux penetration contours as closed-form mathematical functions.

There are two major advantages of the method presented in this

work; 1) the mathematical technique of using complex variables to

formulate the problem is readily adaptable to any regular geometric shape

since only the contour integral around the outer boundary would be changed.

Other shapes such as ellipses or rectangles are analytically tractable;



TABLE 3.1 COEFFICIENTS OF POLYNOMIAL FUNCTIONS

THAT DEFINE FLUX PENETRATION CURVES

AH /H (0) 1 ae p a2 1 a4 a6 I a8 1

.1 .8695 -.432

.2 .760 -. 492

-.05 -.383 -.0045 1.0

-.209 -.0559 -.0031 1.0

-.180 -.010

.4 .529 -.450 -.095 -.038

.5 .423 -.427 -.050 -.026

.6 .328 -.420 -.001

.7 .236 -.370 -.001

.8 .150

.9 .0705

1.0 0

-.315

-. 265

-.01

-.01

0 0 0

0 .9899

0 .9627

0 .9295

0 .8828

0 .7993

0 .6850

0 .5132

0 0

x I
m

.3 .640 -.467

I~~~~ _
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Fig. 111.9. Contours of limits of flux penetration into a
circular superconducting filament for different values of
external field. One quadrant of the filament is shown.
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2) the representation of the flux penetration curves as polynomial

functions lends itself to relative analytic simplicity in further compu-

tations involving the current distributions such as the hysteresis loss

calculation.

In addition this mathematical technique can be used to find

solutions to other types of similar field problems involving fluid,

thermal or electric fields. The results of this analysis are applied

to the calculation of hysteresis losses, with and without transport

current, in the following section.

111.5 Two-Dimensional AC Loss Calculation

The two-dimensional distributions of current and field that were

calculated in the previous section are applied in this section to the

calculations of ac loss in a cylindrical filament of non-ideal Type II

superconductor carrying transport current. The development follows the

example of Section III.1 where the critical state model is used as the

basis for determining the current and field distributions at successive

quasistatic time steps. The loss is computed for the cylindrical fila-

ment as the external field is cycled while the transport current is

held constant. The current distributions of Fig. 3.9 are used in this

calculation. In order to simplify the discussion of the solutions the

problem has been divided into four different regimes, i.e.

1) no transport current, partial penetration

2) no transport current, full penetration

3) transport current, partial penetration

4) transport current, full penetration.



It will be shown that the expressions for the ac loss in regimes

1 through 3 are just limiting cases of the loss expression for regime 4

which is the most general situation.

111.5.1 Partial Penetration Without Transport Current

In this case we consider a circular cross-section super-

conducting filament situated in a uniform external field perpendicular

to the longitudinal axis of the filament as shown in Fig. 3.10a. For

the initial condition we assume the steady external field is much

greater than the field required to fully penetrate the filament given

by Hp = Jc d/T . This allows us to make two further assumptions,

namely the entire conductor is in the critical state and the screening

current density everywhere is Jc which is a constant as per the Bean

model.

Now consider what occurs as the external field is cycled by an

amount + AHe where AH < Hp << H . Screening currents will be in-

duced to shield the interior region of the filament from the field change.

On a macroscopic scale these will appear as regions of +J and -Jc

The current distribution will create a magnetic field that exactly cancels

AHe everywhere within the region circumscribed by the currents as shown

in Fig. 3.10b. The actual contours that define the current distribution

boundaries have been found by the method of complex variables and pre-

sented in Section III.4o

The actual time dependent current and flux pattern is just a series

of quasistatic steps from one critical state configuration to the next.
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The mechanism that allows this sequence to develop is the flux flow

resistivity which allows the flux to penetrate. As the external field

is changed a current J is induced to flow which is just slightly

greater than Jc , resulting in a resistivity pf . The flux then

penetrates into a new stable configuration.

The instantaneous energy dissipation can be computed from J*E

integrated over the volume of the filament. The electric field can be

found from the Maxwell equation

aB
VXE = -t (3.32)

and B is related to J by

V x B J (3.33)

The solution to the above equation is non-linear and is found from the

aforementioned method of complex variables and numerical iteration.

Since B and thus E are quite complex functions of position and time

it is easier to compute the average loss per cycle by integrating the

area within the hysteresis loop for a complete cycle:

Wh I oM(He)d He (3.34)

cycle

The magnetization M in the above expression is found by averaging the

difference between the total field and the applied field,
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M(He) = I H dV - He (3.35)

Equations (3.34) and (3.35) are identical to Eqs. (3.8) and (3.7),

respectively.

For instance, assume the external field is cycled from H0 + AHe

to HO - AHe. The current distribution, designated CO  , would

initially appear as in Fig. 3.10a, and the magnetization due to this

current distribution is MO = M(H p) . Now as the external field is

lowered by an amount AH1 , the current pattern would appear as in

Fig. 3o10b. That is, everything within C1 is shielded. Note however

that the contour C1 , outlines the limits of the new current distribu-

tion for a field change of AH1/2 . This occurs because the net field

within the contour C1 , must remain constant due to the screening

currents. That is for r < C1 , the total field is H0 + AH + H(CO),

and this must be equated to the sum of the applied field, H0 + AHe - AH1 ,

and the field due to the new current distribution 2AHn(C 1 ) + AH(CO)
1

This requires AHn = AH1 . Another way of looking at this is to note

that the current density has changed by 2Jc thus shielding 2AH . The

net magnetization then is M0 + 2M( I AH1) . At the lower limit of

field change the magnetization is MO + 2M(AHe) . Note that for this

configuration the total external field has been decreased by 2AHe . When

the field is again increased by an amount AH2 the magnetization is
AH2

M0 + 2M(AHe) - 2M( -- ) . The complete magnetization curve can be

generated in this manner. The loss then is computed by carrying out the
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integral in Eq. (3.34). This is performed separately for two parts of

the cycle with He decreasing and He increasing. Since the integration

is over a cycle and MO  is a constant, it doesn't contribute to the

loss. For the decreasing portion of the cycle

fO i M d He

2AH e

= -1O f

Wo(ho) h0
V

2M( 1 AH1) d(AH 1) = -4WO(AHe)

M(h)dh

For the increasing portion of the cycle

SM d He

2AH

= O
0

1
[2M(AHe) - 2M( 2 AH2)]d(AH2)

= 40M(AH ) AHe - 4uoW(AHe)

Summing the two contributions, the total loss is

W (AH )
V = 41o[M(AHe) AHe - 2WO(AH )] (AHe < Hp )

The magnetization as given by Eq. (3.35) has

flux profiles given in Section III.4. Figure 3.11

been computed from the

shows the magnetization

where

(3.36a)

(3.36b)

(3.37)

(3.38)
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Fig. III.11. Magnetization loop for circular superconducting filament.
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as a function of the external field for a cycle less than or equal to

the full penetration field H . Pang [53] has shown that the magnetiza-

tion can be expressed very accurately in the simple form

M 2 AHe 3 AH 2 AH
= ; (--) - 2( -- ) + 2(-e) AH <H . (3.39)H i H H H e- pp p p p

Substituting this expression for M into Eq. (3.38) we get for

the hysteresis loss per cycle per unit volume

W 4 H AH 3 AHe 4
S(AHe) = ( )[2 ( e) - ( ) ] AH < H (3.40)V 3 He-

p p

where the external field is cycled from H0 + AHe to H0 - AH .

Equation (3.40) has also been derived by Zenkevitch [54].

111.5.2 Full Penetration Without Transport Current

This is a continuation of the previous case after AHe

exceeds H . At this point the current distribution becomes a constant

as long as AHe continues to increase and the entire filament is in the

critical state. Now as the external field is changed the current density

is increased again to just over Jc and the flux flows dissipatively.

The electric field now is relatively simple to compute if AHe > H

then the electric field is given by

E(AHe)
E = -0 t Y (3.41)
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The electric field is positive in the region of positive current density

and negative in the region of negative current density. The line separating

the regions of positive and negative current is parallel to the changing

applied field and E=O along this boundary (see Fig. 3.10e).

In the section of flux flow it was shown that the electric field

can also be related to the current by the flux flow resistively,

E = Pf(J - JC)  J > c (3.42)

Since E can be readily computed from Eq. (3.39), an order-of-magnitude

estimate of AJ = (J - Jc) can be made. This was done for typical

material constants and dimensions and AJ/J c  is approximately, 10-9

a truly small value. In fact, it is so small that there would be no

loss in accuracy by using Jc as the current density when computing

the loss from J-E .

The total loss over a complete cycle is the sum of the loss

during the partial penetration regime plus the loss when AHe exceeds

H and is given by

Wfp = Wp(Hp) + I Jc E dV dt (3.43a)

cycle volume

where d2  2

+d/2 4 x

J cE dV = -2 J 'OJc * |Aly dydx = pOJc 6- ~l (3.43b)

-d/2 0
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and

3 0Jcd3 H -AHe

J cO c - Il dt - [ -J dH

cycle H +AH -2H
0 e p

H +AH
+ f dH I

H0-AHe+2

3

: 0Jc 6 a 4(AHe- H p)

In the above expression AH is the maximum value of the external magnetic

field change during the cycle and AHe> Hp . The partial penetration loss

Wpo(He) is given by Eq. (3.40). The total loss per cycle per unit volume

then is

Wfp0 -
V-cycle

wfp0
V-cycle

W (H ) H
pO (Hp 8 pJd AHe(1 - )
V 3r Oc e AHe

4 2 AH
4 P H -- 1)3 0 p H

p
AH > H

e p

It is interesting to note that the loss per cycle for the full penetration

condition is proportional to the magnitude of the field change and not

the time dependence of the field change.

(3.43c)

(3.44)
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111.5.3 Partial Penetration with Transport Current

This case is the most interesting and also the most difficult

to solve, primarily due to the addition of the net transport current. The

transport current has the effect of destroying most of the symmetry of

the problem by the addition of the self field of the filament. In the

previous cases the net sum of the currents over the cross-section was zero

whereas now they must sum to the transport current J . The most diffi-

cult step in the analysis, however, is determining the initial state of

the superconductor. Once that condition is determined the concepts of

critical state, shielding and flux flow resistivity will be the primary

factors in determining the equilibrium distribution of shielding currents,

transport currents and the resultant magnetic field and loss.

A start can be made by estimating the relative magnitudes of the

uniform bias field, the ripple field, the full penetration field at zero

transport current, and the self-field of the filament at normal operating

conditions. The material properties and dimensions of the multifilamentary

composite superconductor for the MIT/DOE 10 MVA generator field winding

are used for this calculation. The result is

Bias Field 0Ho = 4.8 T

Ripple Field 0oAHe = 0.01 - 0.05 T

Full Penetration Field
at Zero Transport i0H (O) = 0.045 T
Current

Self Field uOHt = 0.012 T

~~ I _~_ ~ _Y~s__ ~____~I~
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Several assumptions can be made based upon these calculations:

1) the filament is in the critical state in accordance with the Bean

Model (Jc f(B)) since H0 >> AHe; 2) the filament is full penetrated

by a uniform external field long before self-field effects of the transport

current become important since H0 >> Ht; 3) both partial penetration and

full penetration losses must be computed since AHe is of the same order

of Hp (0) and thus is probably larger than Hp(It/Ic) for certain values

of I t/Ic; 4) since the net field at the filament is amplified approxi-

mately 400 times by the other wires the external field can be assumed to

be independent of the transport current, i.e., any change in the transport

current distribution will be insignificant for external field changes of

order AH .
e

The total effect of these conditions would be to assume that the

filament carries a normalized transport current i = It/Ic in a uniform

background field H0 and the filament is initially fully penetrated. The

problem is to compute the loss as the external field changes from H0 + AHe

to H0 - AHe and back while the transport current remains constant. This

must be done for two conditions: 1) AH < H p(i) and 2) AHe > H p(i)

In this section we are only interested in the first condition.

The exact initial current distribution in the filament is not known.

In fact, there is not any one true initial state since the current pattern

is determined by the past history of current and field changes.

As an initial starting point let us assume the same current distribu-

tion as proposed by Carr for the same conditions [58]. The current distri-

bution as shown in Fig. 3.12a has regions of positive and negative current
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Fig. III.12. (a-e) Current distribution in decreasing field.
(e-h) Current distribution in increasing field.
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with the interface between the two regions forming a line parallel to the

applied field. The net current is equal to the transport current and is

always given by

t  A -A_

Ic  A+ + A_

Now consider the general behavior as the external field is changed. Flux

either enters or exits from the surface of the filament inducing currents

to flow so as to maintain the flux intensity within the shielded region at

the original value. The sequence of sketches in Figs. 3.12a - 3.12h are

approximations of the quasistatic time dependence of the current distribu-

tion. The shielding current pattern will initially appear in an almost

sinusoidal distribution with negative currents induced in the right half

plane and positive currents in the left half plane, Fig. 3.12b. However,

a small region of positive current on the left (shown shaded) will appear

highly resistive due to the flux flow resistivity since the induced J

will exceed Jc . This resistivity allows more flux to diffuse out of the

negative current regions in the left plane. This unsymmetrical behavior

is indicated in Figs. 3.12c and 3.12d as the external field is further

decreased. The negative shielding current distribution in the right plane

is relatively undisturbed. At some point the entire region of negative

current in the left plane will just disappear as shown in Fig. 3.12e. The

current distribution will remain constant after this point. It is very

important to note that the net area of positive current has always remained

constant for continuity of the transport current.
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The sequence of sketches in Figs. 3.12e through 3.12h indicate the

behavior as the field is increased towards the original value. Flux can

now enter symmetrically from the left and right because the screening

currents can flow in the proper pattern to completely shield the inner

region of the filament. Again the transport current has remained con-

stant throughout the sequence but it has been redistributed into the

central region of the conductor.

Some general observations can be made about the magnetic characteris-

tics as displayed in Fig. 3.12. First, the general behavior is for the

shielding currents to flow in the outer sections of the filament while the

transport current is driven towards the core. Although I have shown this

as occurring in one cycle it may actually take several cylces to evolve.

The equiblirium distribution of currents would appear as in Fig. 3.13a.

The shielding currents will alternate sign in a region near the surface

while screening the transport current in the core as long as AHe < H p(i).

The definition of the full penetration field for transport current i

H p(i) , follows in that it is just the magnitude of the external field

change AHe which if exceeded will no longer change the current distribu-

tion in the filament.

The curves which define the boundary between shielding currents

and transport current are also known. They are just the same curves which

define the field penetration profiles for the case when i=O . This must

be true because the current distributions defined by those profiles totally

shield the region within them. The distribution as proposed by Carr,

cannot be an equilibrium distribution because the shielding pattern as
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Fig. 111.13. Regions of transport current surrounded by
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model. Areas of transport current are equal for both models.
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shown in Fig. 3.13b does not shield the internal region. That is, if the

internal region is not shielded, flux must flow there, inducing currents

and thereby altering the current pattern further. So far only the current

distributions which have recently been computed as described in Section

111.4, have been shown to fulfill the shielding requirement.

A curve H p(i) versus i has been computed from the shielding

profiles which were found by procedures discussed in Section 111.4. The

ratio It/Ic is simply the fraction of the filament area bounded by

the curve of the flux front. The integration for the area is trivial

since the curves which define the flux fronts are generated by simple

polynomials. The fraction of transport current i is given by

3 5 7 9
xm x a X a8xm

= 4 (a xm + a  + a4  
+  6 + 8 ) (3.45)

where the coefficients an and the x axis intercept xm are given in

Table 3.1 for several values of AHe/H . The full penetration flux curve

is shown in Fig. 3.14. It goes to zero at i = 1.0 because the entire

filament is filled with the transport current.

The type of reasoning which led to the current distribution in

Fig. 3.12 can also be applied to other ac conditions. For instance, if

the external field is held constant but the transport current is changed

by first increasing it to Ic lowering to Ic - AI and back to Ic ,

a series of current patterns as shown in Figs. 3.15a through 3.15f evolves.

Again after several cycles the central region will be shielded as the in-

duced current flow in the outer annular region.

I~_--_-I-LIL
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Fig. 111.14. Full penetration field as a function of the
transport current.
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The mechanism by which these current patterns evolve quasistatically

is the flux flow phenomena, just as in the zero transport current case.

Therefore the losses are computed similarly to those in Section 3.5.1

(regime 1) as long as the field change is less than the full penetration

field. Thus the loss per unit volume per cycle is given by Eq. (3.40) where

AHe < H(i)

Wpt (AH ) 2 AH 3 AHe 4

V - cycle 0 H(0O)) [2 ( He) HTU ) ] (3.46)
p p

It is interesting to note that for a given value of AHe < H (0) the

loss as a function of transport current is constant as long as H (i)>AHe

111.5.4 Full Penetration with Transport Current

This case is analogous to regime 2 when AHe exceeds H p(i)

and the current distribution becomes fully developed. At this point the

entire filament is in the critical state and any change in the external

field will penetrate into the conductor dissipatively. First consider

the condition for increasing He . The fully developed current distribu-

tion is shown in Fig. 3.16a . As He is increased by an amount AHe

greater than H p(i) flux will begin to penetrate at the surface, inducing

a shielding current J that is just greater than Jc . Since the entire

filament is in the critical state the Lorentz force will exceed the pinning

force and flux will be driven deeper into the filament with flux in the

negative current region moving to the right and flux in the positive current

region moving to the left. The flux motion will only be retarded by the

.~~~_l~llnlllll
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Fig. 111.16. Full penetration flux motion for (a) increasing external'
field and (b) decreasing external field.



118

viscous drag, and the electric field will be proportional to the flux

flow resistivity as described previously namely,

E = pf(J - c )

The induced current J will exceed the critical current by an

amount dJ which was shown to be many orders of magnitude less than

S= c + dJ

Thus the shielding field is negligible compared with AHe and the rate

of change of flux is uniform over the cross-section of the filament,

i.e.,

dH d(He)
dt dt

Now consider what happens as the flux reaches the boundary

separating regions of positive and negative current. If flux tries to

move from the negative current region to the positive current region,

the total induced current would be given by J = + Jc - dJ . The total

current density would fall below Jc , the Lorentz force would drop

below the pinning force and the flux motion would stop. The same reason-

ing holds for flux trying to cross the boundary from regions of positive

current to negative current. One may ask why the total induced current

does not change sign, thus allowing the flux motion to continue. The

answer is that the current can't change sign because it is forced to flow

~- -1- -il--L------li---r
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to fulfill the continuity of a net transport current. However an

electric field is now required to maintain the transport current.

The total effect can be summed up as follows. The magnetic

flux penetrates uniformly into the filament from both sides generating

a positive electric field in regions of positive current density and a

negative electric field in regions of negative current density. No flux

crosses the surface separating the two regions and thus E=O along

this boundary. The power dissipation is given by Jc.E and can be

separated into two contributions, one from the shielding currents and

the other from the transport current. The external field source supplies

the energy dissipated by the shielding currents and the current source

power supply provides the energy dissipated by the transport current.

At the critical current all the power is supplied by the current source.

The same arguments can be applied when the external field is

decreasing. Flux leaves the specimen from both sides and always in such

a fashion as to dissipate energy as shown in Fig. 3.16b. In a cyclic field

the energy dissipation during the rising and falling branches of the field

change are identical if the field change limits are symmetric. The energy

dissipation per unit volume for the portion of the cycle when AHe exceeds

H p(i) is given by

Wf - cycle J.E dV dt (3.47)V - cyclcycle Vvoume
cycle volume

The electric field in the above expression is given by
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for -1 < x < -x
m

E =

and x < x < 1
m

- I0 IAHeI Y d
e 2

(3.48a)

and for -x < x < x
m m

= - O IA e d (y - f(x)) (3.48b)

where x and y are normalized to the filament radius R = d and

f(x) is the function defining the curve bounding the transport current

region, defined by the coefficient of the polynomial given in Table 3.1.

The instantaneous power dissipation per unit length is given by

Joule's energy integrated over the cross-sectional area of the filament,

P J*E dA (3.49)

Substitution of Eq. (3.48) for E in the above expression gives,

1 x -x /T--

= OJcIAHel 3 f{2[ I y dydx + f m (y-f(x))dydx ]

x 0 0 f(x)
(3.50)

x f(x)
- 2 [ y dydx + 0 (y-f(x))dydx] }
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Carrying out the integrals in Eq. (3.50) for

f(x) = a0 + a2 x2 + a4 x 4 + a6x 6 + a8 x 8  (3.51)

and dividing by the area of the filament we get for the power loss per

unit volume,

P 2
VP 23 POH pAH Y (i) (3.52)

Jd
where H has been substituted for c

p

The function y(i) is given by the integrals in Eq. (3.50) and for

simplicity is shown plotted as a function of i in Fig. 3.17. However

much more information can be learned from Eq. (3.49) if we note that a

portion of the integration is over the region of the filament that carries

transport current and the remainder of the integration is over the shield-

ing current region. Then the function y(i) can be shown to be the sum

of the two contributions, i.e.

Y(i) = a(i) + (i) (3.53)

where a(i) is proportional to the loss in the shielding current region

and B(i) is proportional to the loss in the transport current region.

The source of the power proportional to a(i) is the external field and

the source for B(i) is the current supply. The two functions are given

by the following integrals;

_6_1 111. I~_i~lll~Lil--- . --.-- ~I_____~_ mLL~mm(
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1 /1 -x2  X --

(i) = [ 4 y dydx + 2 (y-f(x))dydx
x 0 0 f x)
m

(3.54)
x -f(x)

- 2 m I (y-f(x)dydx]

x f(x)

(i) =  [ m (y-f(x)) dydx] (3.55)

0 -f(x)

The functions a(i) and B(i) have been plotted in Fig. 3.17 along with

y(i). The shapes of the curves are not unexpected since at zero transport

current it is obvious that (0) = 0 and a(O) = 1. As i is increased

a(i) must decrease and B(i) must increase since a greater area of the

filament is filled with the transport current leaving less area for the

shielding currents. The maximum loss occurs when the filament carries

S3Tr
full transport current at It = Ic , and y(i) - o Note that this

result is different than that given by the slab model under similar

conditions where the loss was increased by a factor of 2 over the zero

transport current loss (see Section 111.1.2).

Now carrying out the integration for the energy loss over a complete

cycle as in regime 2 we get for the total normalized hysteresis loss per

unit volume per cycle,
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AH
S2( HepO

p

AHee
AH < H (i)

Sp

AH
+ 2[ ( e

Hpo

AHe > Hp(i)

Wo 4 H(0)0o = 3uHp

is the full penetration loss per unit volume per cycle at zero transport

current.

The first term on the right-hand side of Eq.

penetration loss due to shielding currents. We c

into distinct losses due to shielding currents, Ws
current, Wt o

(3.56b) is a partial

an now separate Wfpt

, and due to transport

The result is,

W

W
0

W
s

W
Wt

+ Wo (3.57a)

If AHe > H (i)

W

0
Wo

W

W 0

(3.56a)

)]y(i)
H (i)

-p(

where

(3.56b)

~~~P^I(I ~'-"LLI -L--~_I.YWI I^- e,

H (i)
2(

- ( i)
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W H (i) 3 H (i) 4 AH
W 0 2[ (H ) -2 () ] + 2 [ ( H( )

(3.57b)

H (i)
- ( O )] cr(i)

and

W AH H (i)
o = 2[( HH e HpT )].(i) (3.57c)

and for AHe < H (i)

W AH 3 AH 4
s 2[ ( eH1- ) ]  (3.57d)
o p p

= 0 (3.57e)wo

The shielding loss Ws/W o  is plotted as a function of current,

i , in Fig. 3.18, for different values of the maximum change in external

field, AH e/Hp (0) . The transport current loss, Wt/W o  is plotted

similarly in Fig. 3.19 and the total loss, Wt/W o  in Fig. 3.20. The

behavior is very interesting because, for values of AHe/Hp (0) < 1 , the

shielding loss is independent of i , and the transport current loss is

zero up to a certain value of i . The break point is a function of

AH /Hp(0). This can be explained very simply because this portion of the

-rs^l. --YrU*-LIY"Y-I~YLII~-~-..^LII~L-_ __._~i~
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loss occurs only in the shielding current region as long as the field

charge AHe < H(i) , that is the field sweep does not penetrate as the

transport current region in the central core of the filament. This type

of behavior can be similarly deduced from the one-dimensional slab model

as mentioned earlier in Section 111.1.2. If AHe > Hp (0) then the field

sweep will always intereact with the transport current for a portion of

the cycle as long as i f 0 .

The first term on the right side of Eq. (3.59b) is the magnetization

loss and the second term is the loss that occurs when the filament is

saturated. If AHe >> Hp (0) then the magnetization loss becomes negligible

and Eq. (3.57a) reduces to

W fpt- 2( H e )(a(i) + B(i)) H e y(i) (3.58)

Equation (3.58) is a well known result except in past work the transport

current effect has been given as y(i) = 1 + i2 which was derived from

the slab model. The correct function for y(i) is that plotted in Fig.

3.17, The remainder of this chapter will be concerned with reconciling

the two-dimensional loss analysis for a single filament with the loss in

a multifilamentary composite conductor.

111.6 Application to Multifilamentary Conductors and Experimental

Evidence

The preceding analysis has dealt solely with the loss in an

individual superconducting filament acting independently of any other
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conductor. In practice, though, the most common type of conductor is

the multifilamentary composite conductor. The analysis for this type

of conductor becomes somewhat more difficult due to the interaction

amongst the other superconducting filaments by coupling currents that

flow through the matrix material. However, some of the essential

features of the behavior of the composite conductor are qualitatively

understood.

One of the most important questions that must be addressed concerns

the current distribution in the composite conductor carrying a transport

current. Upon initial charge of the current up to the operating level

the current distribution will be non-uniform across the cross-section.

The exact pattern will be determined by the geometric arrangement of the

transition connections from the current supply to the composite conductor

and by the magnitude and orientation of the background field. Once the

external field is cycled, however, this current pattern is changed. One

effect of the changing field is to redistribute the current uniformly

across the composite leading to all the filaments carrying the same

amount of transport current [42,59]. This effect has also been proven

experimentally [60,61].

At very low frequencies the eddy current loss solely in the matrix

should be negligible and so should any matrix loss due to coupling between

the filaments. Thus each filament should act independently from the

surrounding filaments and matrix material allowing the results of the

previous section to be applied directly to each filament. The total loss

for the composite will just be the loss per filament multiplied by the
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number of filaments in the conductor. In the case of a pure superconduct-

ing filament the characteristic time is proportional to the time for flux

to diffuse through the filament due to the flux flow resistivity and is

given by Eq. (3.3). It was shown to be extremely small, usually much

faster than the time scale of the field change.

In a composite conductor, however, the characteristic time is given

by the time required for decay of the coupling currents in the matrix.

This time, T , is given by [62]

0 t
To = ( (3.59)

where kt is the twist pitch of the filaments and pm is the matrix

resistivity. This resistivity is usually much less than the flux flow

resistivity and, except for extremely small twist lengths, TO will

usually be much greater than Tm. Very often the frequency of the

external field change is of the same order as l/T0 . When this occurs

the filaments no longer act individually and the currents in the entire

composite become important.

At this point the composite begins to behave as a solid uniform

conductor. An important parameter to describe this behavior though is

no longer given by AH e/H p(i) since this new frequency limit must be

accounted for. Ogasawara and coworkers [50,51] have shown that the

important dimensionless parameter for this case is 6 , given by

= -H" (3.60)

a_~ _~J L;__~_____I__YL ~-LYII----~WP-r~P.~ ..-_._-.
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where He  is the time rate of change of the external magnetic field and

H is the field required to fully penetrate the composite conductor. The
p

time constant TO is given by Eq. (3.59). Their analysis was based upon

a composite conductor but used the slab model as the basis for the quanti-

tative calculations. The qualitative behavior, however, is very similar

to the two-dimensional loss behavior developed in this work, and many

analogies can be drawn. The primary difference lies in the difference

in the form of the functions for a(i), B(i), and y(i). Although they

don't compute these explicitly, they do compute separate equivalent losses

for the shielding current loss, transport current loss, and the total loss

based upon the slab model. In addition a full set of experimental data

is given that qualitatively supports the analysis. The variation of the

losses as a function of transport current, i , given in Figs. 111.18 to

111.20 bears a remarkable similarity to the data given in the work by

Ogasawara. The forms differ somewhat, once AH /H (0) > 1 or in his
e -

case once B > 1 . In the case of a single filament the losses continue

to increase with AHe . In the case of the composite the losses saturate,

i.e. all begin to fall on the same line once B > 1 . The reason for this

is because B depends upon frequency and once $ = 1 the losses become

independent of frequency because the composite acts like a single core

conductor. Since the experimental data was taken by keeping AHe constant

and increasing the frequency the losses must become constant.

Some other experimental loss measurements with transport current

are given by Carr [63], but these are not as complete as those given by

Ogasawara. However, they do exhibit similar behavior. Unfortunately
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very little experimental data of losses with transport current is published

in the literature. The reason for this is twofold; highly accurate two-

dimensional loss models for conductors with transport current did not

exist, and the measurements are difficult to make with a high level of

accuracy.

The experimental evidence that does exist is consistent with the loss

analysis of this thesis. There is also a good probability that this

analysis for a filament can be successfully extended to a composite

conductor. A full set of experiments designed specifically to test the

theoretical model is required.
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CHAPTER IV

APPLICATION OF LOSS THEORY TO A SUPERCONDUCTING GENERATOR

An experimental electrical generator with a superconducting field

winding has been designed and is presently under construction at M.I.T.

as part of a U.S. Department of Energy research program to develop ad-

vanced concepts in superconducting generators for use in large central

power generating stations [12,64,65].The prototype machine is a two pole,

3600 rpm synchronous generator with a 10 MVA rating at 13.8 kV and a

power factor of 0.85.

Details of the superconducting field winding design of this

machine are given in this chapter and the ac loss analysis as developed

in the previous chapter is applied to the superconducting winding. A

thermal analysis examines the steady state and transient operating

characteristics of the winding due to the ac loss and other heat inputs.

IV.1 Superconducting Field Winding Design for a 10 MVA Generator

The field winding is composed of a unique arrangement of fourteen

individual saddle-shaped modules supported at discrete locations by a

series of stainless steel yokes [66,67]. Figure 4.1 shows a cross-section

of the generator rotor indicating the modules of the field winding located

between the inner and outer support tubes, The structural yokes are

individually pinned to these support tubes (Fig. 4.2) so that each

module acts independent of the other modules in the winding under the

influence of the steady state and transient electromechanical loading.

The yokes follow the saddle shape around the end turns.
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Each module is composed of several layers of conductor, the number

of layers per module varying from 4 near the pole face to 10 at the rotor

midplane. Table 4.1 contains the characteristics of the field winding

geometry. The conductors have been distributed in this fashion in order

to: 1) minimize the third harmonic induced currents in the delta

connected armature; 2) reduce the peak mechanical stress in the winding

and structure; and 3) to minimize the peak magnetic field in the winding.

The conductors are bonded turn to turn within a layer, only in the

region directly surrounded by the yokes. The layers are not bonded to-

gether but are separated by double layers of teflon so that there is no

inter-layer accumulation of shear stress. This type of construction

allows for a large fraction (50%) of the conductor surface area to be in

direct contact with the liquid helium at the uninsulated portion of the

conductors spanning the unsupported distance between yokes. Details of

the winding insulation and fabrication techniques are given in Chapter V.

A schematic representation of the yoke and module arrangement is shown in

Fig. 4.3.

The actual conductor that is used in the field winding was chosen

through an iterative process in which the number of turns was traded off

against the operating current to determine the conductor size. The

copper to superconductor ratio, filament diameter and number of fila-

ments were varied in order to minimize the ac loss. The base conductor

is a multifilamentary, monolithic composite of niobium-titanium alloy

superconductor in a copper matrix. A monolithic conductor was chosen for

ease of winding into the saddle-shaped modules and for its structural

-xr~ur x~~-----*-L- I----- r~ .I



TABLE 4.1 CHARACTERISTICS OF THE FIELD WINDING MODULES

Module Angle From
Number Pole (degrees)

Total Module Axial
Length (mm)

440

506

576

654

738

830

924

Module Width (mm)

7.9

11.6

11.6

15.2

15.2

18.9

18.9

Number of Turns
Width by Height

4 x 14

6 x 14

6 x 14

8 x 14

8 x 14

10 x 14

10 x 14

Total Turns

(2 coils)

1456

--
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Fig. IV.3. Schematic Representation of Yoke Structure

and Conductor Module
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Niobium-titanium was chosen for the superconductor material due to its

proven performance in many applications, its well documented properties

and its wide availability.

Various conductors were analyzed ranging from 13,700 turns

carrying 100 A to 137 turns carrying 10,000 A. Each gave the required

number of ampere-turns, 1.37x10 6. The low current conductors are un-

desirable primarily due to the complexity of winding a large number of

very small conductors. The high current conductors are undesirable due

to the large liquid helium boiloff in the conductor leads and problems

associated with carrying large current across slip rings. A nominal

operating current of 1000 A gave a reasonable compromise on lead boiloff,

conductor size and ease of winding. Table 4.2 contains the conductor

dimensions and operating characteristics.

Other quantities that were considered in specifying the conductor

described in Table 4.2 are the copper to superconductor ratio, aspect

ratio, filament size and number of filaments. The following paragraphs

describe the criteria used to define these parameters.

A small aspect ratio was desired for two reasons: 1) a highly

aspected conductor presents mechanical difficulties when trying to form

it into a saddle-shaped winding; and 2) a large demagnetizing coefficient

reduces the critical current of the conductor at the segments of the

wire which are exposed to a magnetic field which is perpendicular to

the large dimension. Too small an aspect ratio is not desired either

since a square (1:1) conductor tends to twist when bent about two axes.

This would be a problem in the end turn region. A round conductor is
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TABLE 4.2 CONDUCTOR DIMENSIONS AND OPERATING CHARACTERISTICS

CONDUCTOR

Matrix

Superconductor

Dimensions (mm)

Matrix-Superconductor Ratio

Twist Pitch (mm)

Filament Diameter (rm)

Number of Filaments

Volume Fraction of Superconductor

Total Length (m)

Total Volume (m3 )

Copper

Nb-Ti

2.72 x 1.49

1.7:1

25.4

63

480

0.37

2530

1.02 x 10-2

OPERATING CHARACTERISTICS

Current (A)

Peak Field (T)

Conductor Current Density (A/m2)

Overall Current Density (A/m2)

Ampere Turns (A)

Critical Current Density in Superconductor

at 4.8T and 4.2K (A/m2)

Critical Current at 7.2T and 4.2K (along magnet

line) (A/m2)

Peak Discharge Ramp Rate (T/s)

Peak Transient Field Rate (T/s)

939

4.8

2.32

1.31

1.37

108

108

106

17.0 x 108

1410
.48

.20
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unsatisfactory since it reduces the packing fraction by a factor of 7/4

when wound into parallel layers. Thus the value of 1.83 evolved as a

suitable compromise consistent with the module fabrication.

A small copper to superconductor ratio was chosen to help provide

a relatively high current density field winding to insure a large power

density rating for the generator. Conductors with a large copper to

superconductor ratio tend to provide quench protection since the extra

copper acts as a thermal damper through increased heat capacity during

thermal transients. The use of an extreme amount of copper results in a

conductor which is said to be cryostable since the heat transfer to the

surrounding liquid helium is greater than the resistive heat generation

in a normal zone [37]. Thus a normal zone will collapse rather than

propagate. This stability insurance comes at a cost of a greatly re-

duced current density, a price that is economically unfeasible for

commercial power generators.

This field winding has been designed to avoid a quench under all

but the most severe operating conditions. If a quench should occur a

detector will sense this condition and rapidly extract current back

through the exciter to protect the field winding [68,69,70].

It is desirable to have small filaments for stability against

flux jumps and for reduced hysteresis loss. Flux jump stability was

previously discussed in Chapter II. The maximum filament diameter based

upon this criterion is approximately 120 im. In Chapter III it was shown

that the hysteresis loss is proportional to the filament diameter squared

so the loss can be made quite small by reducing the filament size for
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this reason also. Of course the minimum size is limited by conductor

fabrication considerations since very small filaments are more likely to

break under strain while being drawn down and twisted.

The conductor specified in Table 4.2 meets all of the above re-

quirements. It was manufactured by Intermagnetics General Corporation.

Short samples from the ends of the conductor reels were tested at the

Francis Bitter National Magnet Laboratory to determine the critical

current versus magnetic field characteristics at a temperature of 4.2 k.

The results of the test are shown in Fig. 4.4.

The remaining two sections contain an ac loss analysis to predict

the level of energy dissipation within the conductors and a thermal

analysis to calculate the temperature rise within the winding.

IV.2 AC Loss Calculation

The energy dissipated in the conductors due to alternating fields

must be calculated to determine the effect of this heat generated within

the winding space. The primary source of the alternating field is the

transient armature current which occurs during fault conditions on the

electrical system external to the machine. These fault currents generate

a transient magnetic field which is shielded from the field winding by

induced currents in the damper winding and copper can shield on the

rotor. Since the damper and copper can are not perfect shields some of

this alternating magnetic field leaks through to the field winding

although it is highly attenuated. The worst condition occurs when there

is a three phase short circuit directly across the armature terminals. In

actual operation this condition is highly improbable.
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A computer model that performs a dynamic simulation of fault

transients on the generator, including three-dimensional field effects, has

been developed at the M.I.T. Electric Power Systems Engineering Laboratory

[71]. This program has been used to compute the rate of field change,

dB/dt, at various points within the field winding during a three phase

terminal fault from rated load. Although the field change for this con-

dition is truly a transient effect it will be treated as a steady state

sinusoidal variation so that the total dissipation will be overestimated.

In addition, the peak loss rate will be assumed to be acting over the

entire winding volume. These assumptions will give a very conservative

estimate for the ac loss.

The loss calculation is divided into hysteresis and eddy current

losses. The hysteresis loss is computed from the results of Chapter III.

The eddy current loss is computed from Carr's anisotropic continuum model

[45]. The total loss then is just the linear sum of the eddy current and

hysteresis loss as long as the two mechanisms are not coupled. This will

be shown to be the case from a discussion of the anisotropic continuum

model.

IV.2.1 Eddy Current Loss

Carr defines eddy current losses for three different ranges of

excitation frequency. In the low frequency range the eddy current flow

is dominated by the composite matrix resistance given by

S= m(T lX) (4.1)

if the filaments are insulated from the matrix and by
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G m T - ) (4.2)

if the filaments are in good contact with the matrix. In Eqs. (4.1) and

(4.2) om is the electrical conductivity of the matrix material and A

is the volume fraction of superconductor. Equation (4.1) usually applies

for copper matrices because the matrix resistivity is much lower than the

interface resistance between matrix and filament. The inverse is usually

true for relatively high resistance matrix materials such as cupro-nickel.

In the low frequency range the induced currents are determined from the

time rate of change of the external field while the reaction fields of

the eddy currents are neglected. The hysteresis loss and the eddy current

loss are independent since the eddy currents do not shield the filaments

from the external field. Hysteresis loss usually dominates.

In the intermediate frequency range the eddy current loss and the

hysteresis loss become coupled, because twisted pairs of filaments carry

circulating currents induced by the changing field. The closed loop

currents link the filament pairs through the matrix material.

In the high frequency range the filaments are shielded from the

external field by induced eddy currents that flow primarily in the matrix.

Thus the hysteresis loss is small and the eddy current loss predominates.

The three frequency ranges are given by;

low frequency f << ( L2 4 ) , (4.3a)
L20 r -

intermediate frequency
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4 r 1
2 4r << f << () , (4.3b)
L V0 rI 2rrR1 0 0 ra

high frequency

f >>~ J ) 2 (4.3c)

2R 0 r-L

where L is the twist pitch, R0  is the outer radius of the filament

bundle, O is as defined in Eq. (4.1) or (4.2), and the relative per-

meability is given by

l-X

r  T7 (4.4)

If an equivalent radius is used for the design conductor

(R0 = 1.136 mm) the two cutoff frequencies are flow = 26.4 hz and

fhigh = 167 hz.

The frequency of transient field change at the field winding

for the three phase fault is less than or equal to 2 hz which is in the

low frequency range. Then the expression for the eddy current loss per

unit volume in the low frequency range is appropriate;

P 2 2 2 L 2
- 8= r R (OHm2Tf) ( r) [I + 4( 2T-R ) ] . (4.5)

~V ' 0 mlr 0

IV.2.2 Hysteresis Loss

The results of Section 111.5 are applied here to the calcula-

tion of the hysteresis loss. In the low frequency regime each filament in

the composite is exposed to the full external field change. Also it is
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assumed that the transport current is uniformly distributed among all the

filaments so that every filament carries the same fraction of critical

current as the whole composite conductor (see Section 111.6). Then it

is sufficient to compute the hysteresis loss in a single filament and

multiply this value by the number of filaments to get the total hysteresis

loss for the composite.

Based upon these assumptions several basic parameters must be com-

puted including, the fraction of transport current to critical current i

the full penetration field at zero transport current dOHp (O) , and the

field to penetrate at current i , 0 Hp (i) . These parameters are then

used in the expression for hysteresis loss derived in Section 111.5. The

appropriate equations for the total hysteresis loss per unit volume per

cycle are repeated here for convenience;

AHe  < Hp(i)

AH 3 AH 4
Wfpt = W[2( H ) e e

,AH > H (i)e p

H (i) 3 Hp(i) 4
Wfpt= o{[2( Hp( O ) - (pO) 4

AH H (i)
+ 2 H [1 - ( p ---)]y(i)}

p e

4 2
where Wo -H (0) . The instantaneous power dissipation is the loss3 er cycle multiplied by the frequency, f .
per cycle multiplied by the frequency, f
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Equations (4.5) and (3.56) have been used to compute the losses at

several different positions within the field winding during a three phase

fault. The results for two points with the greatest loss are shown in

Table 4.3. The total loss in watts assumes the loss rate is uniform over

the entire winding, and is given by

P P
P + h V (4.6)total V V4

where X is the volume fraction of superconductor in the composite and V

is the total volume of conductor in the winding.

The results are interesting because they point out the significance

of dB/dt on the loss rate. The eddy current loss is greater at position

1 than at position 2 because the frequency is greater at that point. How-

ever the hysteresis loss at position 2 is greater than at position 1 because

the magnitude of the field change, IjAHe, is greater, that is, the

hysteresis loss depends on the magnitude of the field change, not the time

rate of change of the field. However the total loss at position 1 is

greater than at position 2 since the difference in the hysteresis loss is

not sufficient to balance the difference in the eddy current loss. These

results are used in the analysis of the next section to determine their

effect on the thermal performance of the field winding.

IV.3 Thermal Analysis

The thermal analysis consists of determining the origin, magnitude,

and time dependence of the heat inputs to the winding space and then

developing an appropriate heat transfer model to predict the spatial varia-
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AC LOSS PARAMETERS AND RESULTS

POSITION 1* POSITION 2**

It(A)

p0He(T)

i = It/Ic at pOHe

10Hp(0)

0OHp(i)

(T)

(T)

0oAHe(T)

f (hz)

dB/dt (T/S)

LOSS

Pe/V

Pe

(w/m3)

(w)

Wh/v-cycle (J/m3-cycle)

Ph/v (w/m3 )

XPh (w)

Ptotal (w)

Position 1 at outer
(r = .144 m, =

Position 2 at outer
(r = .144 m, e =

radius of module
00, z = .220 m).

radius of module
840, z = 0.0 m).

in end turn region

#7 at center of straight section

TABLE 4.3

PARAMETER

939 939

3.15

0.26

0.06

0.035

0.02

1.93

0.22

0.072

0.046

0.047

1.7

0.20

0.37

0.11

169 50.2

0.51

1743

1.72

236

401

1.51

3.23

645

2.43

2.94
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tion and time dependence of the conductor temperature. This analysis also

determines the cryogenic refrigeration requirements. Four primary sources

of heat input to the winding space have been identified;

1) internal heat generation in conductors due to ac losses,

2) internal heat generation in conductors due to joule

heating in segments of conductor that have gone

normal;

3) conduction into the winding space due to heating in

rotor structural members and electromagnetic shields,

4) frictional heating due to relative motion between

conductor layers or between conductors and structure.

The effect of the first two heat sources are analyzed with one-

dimensional and two-dimensional steady state heat transfer models. The

third heat source is treated by a lumped, transient adiabatic heating

model. The frictional heating source is analyzed by a local transient

heating model.

IV.3.1 One-dimensional Steady State Heat Transfer Model

The individual conductors are bonded and surrounded with insula-

tion and structure only in the locations of the yokes. Elsewhere they are

in good contact with the liquid helium bath. Thus it is reasonable to

assume that there is very little heat transfer transverse to the con-

ductor axis through the insulation into the other conductors and the

yoke walls, and that the primary heat removal occurs in the uncovered

portion of the conductors by convection directly into the liquid helium.

The one-dimensional model for this condition is shown in Fig. 4.5a where

the conductor acts like a partially insulated fin with internal heat genera-
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CONDUCTOR MODULE

STRUCTURAL
YOKES

AXIAL DIRECTION

LIQUID HELIUM

h,T
f

LIQUID
HELIUM

h,Tf

Fig. IV.5.

/ . / / LIQUID
W.-INTERNAL HEAT HELIUM

S GENERATI N

Sh,Tf

K effe tiv
K e c vex

CONDUCTOR MODULE
(CONDUCTORS AND INSULATION)

Sh,Tf

LIQUID HELIUM

a) One-Dimensional Heat Transfer Model;

b) Two-Dimensional Heat Transfer Model.
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tion. Details of the mathematical heat transfer analysis are given in

Appendix C.

The maximum temperature rise in the conductor above the fluid

temperature occurs at the location directly under the center of the yoke

and is given by (47)

W. f L 2 -2BL 2 (1-f)
ATmax k { + ( 2 )+ (f L2)[ 1 + e

max k 2  2 2  
2 L2(1-f

1 - e

where Wi = uniform internal heat generation per unit volume (W/m3)

k = axial thermal conductivity of the conductor (W/m-k)

B = hP/kA = fin coefficient (m-1 )

h = convective heat transfer coefficient (W/m2k)

P = cooled perimeter of conductor (m)

A = cross-sectional area of conductor (m2 )

L2 = half the distance between yokes (m)

f = fraction of cooled conductor surface area.

Typical values of these parameters and the calculated temperature rise

are given in Table 4.4.

IV.3.2 Two-dimensional Steady State Heat Transfer Model

In the previous one-dimensional heat transfer model the

temperature gradient transverse to the conductor cross section was

neglected. In order to justify this assumption a two-dimensional heat

transfer model was developed to determine the AT across the conductor.

Figure 4.5b shows the configuration of the heat transfer model. It was

assumed there is a uniform internal heat generation with heat removal at

all four surfaces by convection to the liquid helium. Effective thermal
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TABLE 4.4 HEAT TRANSFER MODEL PARAMETERS

AND MAXIMUM TEMPERATURE RISE

Heat Transfer Parameters

One-Dimensional Model

W.(w/m3)

k (w/m-K)

h (w/m2-K)

6 (m-1)

P (m)

A (m2)

L2(m)

f

AT1ATlmax

Two-Dimensional Model

w. (w/m3)

k (w/m2K)

h (w/m-K)

B.
1

Y

AT22max

317

157

5.0 x 103

257

8.42 x 10- 3

4.05 x 10- 6 )

9.52 x 10-3

0.5

1 x 10- 4

317

115

5.0 x 103

.032

1.826

1.5 x 10-6
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conductivities in two directions were calculated to account for the

composite nature of the conductor.

The effective thermal conductivity can be easily computed by noting

that the thermal conduction problem is just a potential field problem

similar to the electric field problem for currents in a resistive com-

posite conductor. In both cases the "conductivity" is determined by

constitutive relationships, namely,

heat conduction: = k (4.8a)

electric fields: 3J = E , (4.8b)

where by analogy,

J Q/A Flux per unit area

dT
E d Potential gradient

a k Conductivity

Since the thermal conductivity of the superconducting filaments is

much less than the thermal conductivity of the copper matrix the heat

flux will tend to flow around the filaments giving an expression for the

thermal conductivity which is similar to that for electrical conductivity

in Eq. (4.1),

kx = ky = km( l ) (4.9)

where km is the thermal conductivity of the matrix material. Equation

(4.9) breaks down for values of A approaching 1 because at that limit

k is just the thermal conductivity of the filament material. However,
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Eq. (4.9) is relatively accurate for X = .37 as per the design con-

ductor.

The maximum temperature occurs in the center of the conductor. An

expression for the temperature rise above the fluid temperature has been

derived from the heat conduction equation and is presented in detail in

Appendix C. This AT is given by

t2W._ { I1 +
2max 4k B. 2 (4.10)

1 (4.10)

1 m sin( )
4 m= 2[2 +sin(2a, )][( _ )sinh(a m)+cosh(y )m m m 97 m m

where

t = conductor thickness (m)

L = conductor width (m)

k = kx = ky = thermal conductivity (W/m-k) (Eq. 4.9)

h = hx = hy = convective heat transfer coefficient (W/m2-k)

Wi = uniform internal heat generation per unit volume (W/m3)

B. = ht/2k = Biot Number

Y = L/t = conductor aspect ratio

am = the eigenvalues given by the positive roots of

am tan(am) = B. m = 1,2,3,...

The maximum temperature for various values of internal heat

generation are tabulated in Table 4.4.
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IV.3.3 Adiabatic Heating Model

This simple model is used to compute the maximum bulk

temperature of the winding space (including conductor, structure, and

liquid helium) due to transient heating from all sources during a three

phase fault. It assumes the heating occurs in a time much shorter than

that required to remove the heat from the winding space by convection and

boiling of the liquid helium at the centerline of the rotor.

The governing equation is derived from the first law of thermo-

dynamics which equates the total energy input to the winding volume with

the increase in internal energy of the components within the winding

volume,

Amax

AQ = AE = [(mCp)conductor + (m Cp )structure

O (4.11)

+ (m Cp)helium]dT

where

AE = total energy input to winding volume (J)

m = mass of component (kg)

C = specific heat of component (J/kg-K)

TO  = initial bulk temperature (K)

TAmax = final bulk temperature (K) .

The final bulk temperature, TAmax , is the unknown to be determined.

Fortunately Eq. (4.11) can be easily simplified by noting that the

specific heat of liquid helium is several orders of magnitude greater
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than the specific heat of either the conductor or structure. Although

the total mass of liquid helium is much less than the amount of either

conductor or structure the product of m - C for liquid helium still

dominates which results in Eq. (4.11) being reduced to

TAmax

AE f (mCp)conductor dT. (4.12)

T

The sources of energy input to the winding space during a transient

are primarily internal heat generation within the conductors due to ac

loss and heat conduction from the copper can shield. The copper can

shield must dissipate some energy while shielding the field winding from

transient magnetic fields and some fraction of this energy which is not

removed by the liquid helium in the shield cooling circuit leaks into the

winding space. The magnitude of this energy leak into the winding space

has been estimated by Schwoerer [72] to be approximately 110 joules.

The ac loss contribution was estimated previously and listed in

Table 4.3. The energy deposition is just the heating rate times the

duration of the heating which was assumed to be six seconds, for a total

ac loss energy of approximately 19.4 joules.

Since the specific heat of liquid helium is relatively constant

over a small temperature range near 4.2K, Eq. (4.12) can be solved for

the temperature rise ATAmax given by

ATA = (4.13)
Amax mC
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The amount of liquid helium in the winding space has been estimated at

0.75 liter. Evaluation of Eq. (4.13) gives an adiabatic temperature rise

of 0.3 K. This value is compared with the temperature rise computed by

other models in Table 4.5.

IV.3.4 Frictional Heating

This section is included for completeness to estimate the

maximum local transient temperature rise due to relative motion between

separate layers of conductor or between a layer of conductor and the yoke

sidewall. Only the results are given of a complete heat transfer analysis

developed by Tepper [66] for this condition.

The worst case that can be expected to occur, although highly

unlikely, would be for the layers of conductor to suddenly slide relative

to each from their unenergized equilibrium position to their fully

energized deformed equilibrium position. This could occur only if the

slip planes located between the conductor layers do not perform as ex-

pected and thus the static coefficient of friction is great enough to

support a shear stress just until the winding is fully energized. At

this point it would suddenly move to the new loaded equilibrium condition.

In order to put an upper bound on the energy released it is assumed that

the motion occurs instantaneously. This assumption, although unphysical,

is useful if the characteristic time for motion to occur is much less than

the thermal response time of the conductor and insulation system. It

results in an infinite temperature at the sliding surface interface but

the actual temperature at the conductor is attenuated by the intervening

layers of insulation. All cooling takes place at a position axially dis-
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TABLE 4.5 SUMMARY OF HEAT TRANSFER ANALYSES

One-Dimensional Model

Two-Dimensional Model

Adiabatic Heating Model

Frictional Heating Model

AT1max

AT2max

ATAmax

ATfmax

-4
=1 x 10 K

= 1.5 x 10- 6 K

=0.3 K

= 0.51 K

Maximum Operating Temperatures*

Steady state heating due to 3 phase fault

Adiabatic heating

transient

Frictional heating

4.2 K

4.5 K

4.71 K

Bulk fluid temperature assumed to be 4.2 K. If this temperature is

greater or less than this value the operating temperature is changed

by the same amount.
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placed from the frictional heat generation area at the uninsulated con-

ductor length between the yokes.

The results of Tepper's analysis have been applied to the field

winding design and indicate a maximum temperature rise in the conductor

of ATfmax = 0.51 K for this frictional heating condition. This is a

very conservative worst case estimate but it indicates that this could

be the most significant source of conductor heating as shown in the

summary of the heat transfer analysis results in Table 4.5. In practice

it is generally suspected that some form of frictional heating due to

relative conductor motion may be the cause of some magnets quenching and

training.

However, the thermal analyses for this field winding indicate

there will be no sources of heating during all expected operating condi-

tions that would increase the superconductor temperature locally above the

critical temperature. If a quench is initiated for any reason the field

winding will be totally protected by extraction of the energy through the

exciter circuit.
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CHAPTER V

EXPERIMENTAL COIL

The field winding and support structure of the 10 MVA generator

represents an entirely new concept in superconducting coil design. The

yoke and module winding arrangement with built-in slip planes is a new

and untried approach to solving the field, force and stress distribution

problems inherent in this high current density winding. Therefore, a

small superconducting test coil was fabricated to evaluate the feasi-

bility of such a design and to develop the tooling and winding techniques

necessary to construct the field winding modules. Although no ac loss

experiments were performed on this coil the steady state electrical,

thermal, and structural characteristics were tested.

The test coil was wound with a conductor similar to that which

is to be used in the field winding. Although this coil was wound in a

solenoidal shape to fit the testing facilities, the cross-section of

the winding and size of the structural yokes are identical to field wind-

ing module 2. This module was chosen to be simulated because it will

encounter the highest net force and stress levels in the field winding.

This section includes a discussion of the details of the coil

fabrication, assembly to the structure and test holder and also the

characteristics of the coil as determined in the test facility.

The test coil was wound as a solenoid in order to fit easily into

the large cylindrical test dewars available at the Francis Bitter National

Magnet Laboratory (FBNML). The purpose of using these facilities was to
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test the coil under full operating conditions by providing a uniform

background field with a water-cooled, copper disc Bitter coil. Thus

the overall coil dimensions were largely determined by the maximum size

dewar and Bitter coil available. This was a Janus dewar sitting in the

bore of the 10A (9-3/4 inch clear bore) magnet. The inner diameter of

this dewar is 8-5/8" (21.91 cm). The cross-sectional dimension of the

module is fixed by the field winding design and the coil O.D. was made

as large as possible considering the clearances required to fit the

dewar I.D. Figure V.1 shows a schematic of the coil and structure

cross-section indicating the final dimensions.

The conductor that was used in the test coil is a monolithic

multifilamentary composite made up of a copper matrix and 517 filaments

of Nb-Ti superconductor. Each filament has a diameter of 63 iPm and

the copper to superconductor ratio is 1.5:1. The conductor dimensions

are 2.72x1.49 mm (.107 x .059 inch),

The winding has a unique design because it is supported by a

series of individual yokes surrounding the conductors in discrete loca-

tions around the module. The module which was simulated is made up of

6 layers of conductor with 14 turns per layer. The turns in each layer

were bonded together and insulated from one another by pieces of pre-

impregnated, B-stage, woven fiberglass-epoxy tape. This insulation was

not continuous but placed only under the locations of the yokes, thus

leaving the uninsulated portion of every conductor exposed to liquid

helium in the areas between yokes. The resultant winding is well ven-

tilated.



Fig. V.1. Test coil and
structure cross section

MODULE
(6 X 14 TURN S)

YOKES
(24)



'OXY FIBERGLAS WOOF (76.2J.m)

EPOXY FIBERGLAS STRIP (76.2MM)

,-SUPERCONDUCTOR (2.72 X 1.49 Mm)

-TEFLON (25.4.im)

ONE RADIAL LAYER

Fig. V.2. Detail of the

inter-module construction
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Another unique feature of this winding is that adjacent layers of

conductors are not bonded together, but separated by two layers of insula-

tion with a very low coefficient of friction, in this case Teflon. These

layers of insulation are referred to as slip planes since they allow a

minimum amount of shear stress to be carried across the interface. The

details of the winding and insulation pattern are indicated in Fig. V.2.

Further discussion of the details of the interactions within the modules

due to electromagnetic and centrifugal loading can be found in the Ph.D.

thesis by K.A. Tepper [66].

V.1 Winding Fabrication

Basic tooling was devised to construct such a winding, in this case

a small solenoid. However this tooling had to be adaptable to winding

the saddle-shaped field winding modules. The use of radial layers in the

saddle-shaped modules precluded winding with pre-tension to hold the con-

ductors in place. Therefore a winding jig was developed to hold the con-

ductors with a series of individual linear action clamps, each positioned

at the discrete location of each yoke. The clamp chosen for this appli-

cation was the commonly available De Sta Co. model 610 toggle clamp.

Figure V.3 shows the mandrel on which the coil was wound. The top and

bottom flanges are separable from the cylinder and a clamp is provided

to hold a length of conductor inside the cylinder to form a current lead.

The complete winding jig is shown in Fig. V.4. It consists of the

mandrel, which is held to a cylindrical table by six bolts, and 24 toggle

clamps which are also bolted to the table. The toggle clamps are shown

in various positions from fully extended to fully retracted. Attached to
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Fig. V.3. Winding mandrel

Fig. V.4. Winding jig showing
the mandrel and 24 clamps
mounted to the base table



168

the end of each clamp is a machined metal block (the pusher) which pro-

vides a uniform contact surface to force and hold the conductors in the

proper radial position. These pushers are held by socket head set

screws on a stud threaded into the toggle clamp. In addition, six metal

spacer pieces, 0.072 inches thick, are positioned between the pusher and

the clamp, Each spacer is the thickness of one layer of conductor plus

insulation. These spacer pieces are removed as each layer is wound to

give positive placement of the face of the pusher when the clamp is

fully extended and locked. The toggle clamp provides whatever force is

necessary to push the conductors into the desired position.

The following paragraphs and figures describe the winding sequence.

Initially the conductor was wrapped on a spool which was suspended

directly over the winding table. The spool rotates so that the wire can

be pulled down and in addition the spool can swivel in a plane parallel

to the table to relieve any twisting. The end of the wire was fed through

a hole in the cylinder and clamped inside the mandrel. This is indicated

in Fig. V.5 which shows the wire extending from the mandrel up to the

spool overhead. The clamps are all retracted and three have the pusher

pieces removed to show how the spacers are removed.

Before any turns were wound, the mandrel surface was covered with

a sheet of Teflon .001 inch thick. Then strips of the pre-impregnated

fiberglass tape .375 inches wide by .003 inches thick were fastened to

the mandrel by adhesive tape to the top and bottom mandrel flanges. These

were located directly in front of the clamps. A second set of fiberglass

tape was located in the same position but fastened only to the bottom

flange. These were used to weave between succeeding turns.

___ __ _I~__ ____1 _I _ _ _ _ __ 1__ _L I _ __~I_ ____1~_
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Fig. V.5. Conductor started in wind-
ing mandrel and leading to spool
overhead. Note pusher pieces and
spacers.

Fig. V.6. Completion of first turn
showing phenolic transition piece
and phenolic positioning pieces.
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Winding began by extending the clamps in a clockwise sequence which

forced the conductor to lie snug against the mandrel surface. Before

each clamp was extended a phenolic spacer was positioned between the

conductor and the mandrel top flange to keep the conductor in the proper

vertical position. There were 13 sets of these phenolic spacers for the

14 turns per layer with one spacer used under each clamp, A minimum of

six clamps were kept retracted to allow space for the conductor to lead

up to the spool without kinking. The spool was swivelled through one

revolution for each turn and the conductor was pulled down as required.

At the end of the first turn a tapered phenolic piece was wound

in to serve as a transition ramp to the second turn. Figure V.6 is a

photograph of the winding jig showing the completed first turn of the

first layer, the phenolic vertical spacers, and the phenolic transition

piece. From this point on, one clamp at the leading edge is retracted

as a clamp is extended at the trailing edge. The second set of fiber-

glass insulation strips are positioned either all in front of or all

behind the conductor as each turn is applied.

The series of Figs. V.7 through V.9 show the sequence of con-

struction of the first layer. The second turn is just being wound in

Fig. V.7 while Fig. V.8 shows the layer half completed up to turn 7.

The latter figure begins to reveal the pattern of the insulation that was

threaded between turns. This insulation provided all of the .003 inch

turn-to-turn separation. Figure V.9 shows completion of the first layer.

As the last turn was applied two more phenolic pieces were placed in the

winding. One piece filled the transition space between turns 13 and 14

_:_ 1 _ ;____rr__l_____ __ __1__ _ j _ _ _T I__ _ II_
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Fig. V.7. Beginning of
winding of second turn

Fig. V.8. First layer half
complete up to turn seven.
Note interweaving of fiber-
glass tape.
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Fig. V.9. First layer
complete and ready for
short testing

Fig. V.10. First layer is
prepared for removal from
winding jig and curing in
the oven.



173

and the other was tapered radially outward to bring the last turn of layer

one out to become the first turn of layer two. To complete the layer a

third set of pieces B-staged of fiberglass tape followed by two pieces of

Teflon, each .001 inches thick, were placed between the coil and the

pusher pieces. This third set of fiberglass-epoxy tapes served in con-

junction with the other two sets to bond all the turns of the layer

together while the Teflon insulation formed the slip plane.

At this point all the clamps were pushed in and the layer was

tested for turn-to-turn shorts and shorts to ground. This was accomplished

by energizing the coil at a very low current level with a current source

and then measuring the turn-to-turn voltage drop and the voltage to ground.

The resistance of each turn was thus measured and compared with the cal-

culated value of 3.52m . Any shorts that were found were then isolated

and removed by insertion of additional insulation as required.

When the layer was shown to be free of any shorts it was prepared

for curing. All of the clamps were pushed in and the pusher pieces were

held tight against the coil by metal straps (Band-Its) (Fig. V.10). The

set screws holding the pusher pieces to the clamps were loosened and all

of the clamps retracted. A third metal strap was then tightened around

the central circumference of the pushers. At this point two thermocouples

were affixed to the conductor surface, one to measure and record the

conductor temperature and the second as the input sensor to the tempera-

ture controller of the oven which was used to cure the layer. The whole

winding mandrel was removed from the winding table and placed in the oven.

An opening in the oven door was provided so the conductor could lead

--- -- 1- --r-------l-~ --- -------r ; -- i- 9---F~ ____,. _~I~



Fig. V.11. Winding mandrel top and
bottom flanges have had slots machined
for better placement of the insulating
strips.
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directly up to the spool. The layer was cured at 1500 C for 4 hours,

beginning with the time the conductor temperature first reached 1500 C.

The curing process will be slightly different in the production of the

field winding modules since it is more practical to cure each layer in

place on the winding mandrel by building an oven to fit over the winding

jig.

At the end of the curing process the mandrel was removed from the

oven, all the metal straps and pushers were removed and the layer checked

again for shorts. The mandrel was reattached to the winding table and

the pushers reattached to the clamps after one metal spacer was removed

from each clamp. This set the position of the clamps for winding the next

layer. The entire winding process was repeated for the next layer be-

ginning with the placement of the fiberglass-epoxy tape pieces. The

winding procedure for the remaining layers was identical to that just

described except that alternate layers were wound from the top down. Each

layer was cured individually.

One refinement to the mandrel was made after the first layer was

wound, because there was a problem of binding of the pusher pieces on

the insulation as they moved into the mandrel between the flanges. Material

was machined away in these areas to allow the insulation to be held down

so that it didn't interefere with the motion of the clamps. This change

can be seen in Fig. V.11 which clearly shows the top and bottom flanges

with material machined away, allowing the insulation to be held vertical.

The completed coil can be seen in Fig. V.12, still mounted on the

cylindrical mandrel. A top view of the coil is shown in Fig. V.13 which

___ __ _____1___I~_11 11__ I 1_ __I__ __ __ I _ ~__~_ _I __l_~_il _I_~L_



Fig. V.12. Completed coil showing all six cured layers, still mounted on the
winding mandrel.



Fig. V.13. Top view of the coil. The
large cooling channels between the layers
are clearly visible.
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clearly shows the cooling channels between layers. Some of the phenolic

transition pieces are also visible.

V.2 Assembly to Structure

Once the coil was completed it was removed from the mandrel, the

inner layer of Teflon permitting it to slide easily. Assembly of the

yokes on the coil was begun with a trial fit-up. Each yoke was individu-

ally fit to the coil by filling the clearance between the yoke walls and

the conductors with several turns of women fiberglass-epoxy tape to serve

as ground insulation. The average number of wraps of tape was three.

In addition, two turns of .001 inch thick Teflon were wrapped over the

ground insulation to form a final slip plane at the yoke walls. This

also permitted a small amount of motion of the yokes on the coil to

facilitate alignment of the yokes and the retaining pins. Several yokes

were hand filed where necessary to allow the conductor ends to lead out

of the inner and outer layers with a minimum amount of bending. Figure

V.14 shows the coil loosely fitted into the yokes and temporarily seated

on the bottom structural plate.

A Minco thermofoil heater was inserted between the coil and one

of the yokes at the inner radius of the winding. The purpose of the

heater was to simulate heating along this surface due to friction and to

empirically determine the energy level and pulse rate required to quench

the winding.

With all 24 yokes fitted to the coil over the ground insulation

welding of the yoke caps to the yoke bottoms was begun. First the yokes

were loosely pinned to the top and bottom structural plates. This was

_:_ _ ____1_~1___ _ __ _ ~__ __ ii-11111--1 _ __C~---~l



Fig. V.14. Yokes loosely fitted to the
coil and resting on one of the support
plates.
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Fig. V. 15. The coil is loosely fitted to
the structure and prepared for welding.
Note the-weld preparations between the yoke
bottoms and yoke tops.
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done to align the yoke caps to the bottoms and to align the coil within

the yokes. Figure V.15 shows the structure loosely fitted to the coil.

At this time all the caps were tack welded at the outer weld preparation.

The plates were then removed and final welding was begun. Figure V.16

shows the copper chill and clamping arrangement that was used during the

welding process to prevent overheating of the insulation and conductors.

The C-clamp served to align and seat the top and bottom yoke pieces. The

copper chill was water-cooled to remove heat from the welded areas. The

vise-grip clamps were used to ensure surface contact for good conduction

heat transfer between the yoke walls and the chills. The chill was

designed to allow each yoke to be welded in place on the coil. All the

inner joints were welded first followed by welding of the outer joints.

Provisions were then made to allow the inner lead to pass through

one of the support plates by designing a copper bushing surrounded by a

thin cylinder of G-10. The inner lead was bent to pass through the hole

in the plate, a second length of superconductor soldered in parallel

with it and then the doubled lead was soldered to the copper bushing,

and inserted in the plate. The doubled lead and copper bushing were used

to decrease the current density to avoid any normal transitions in this

region.

Final assembly of the structure was completed in two steps. First

the yokes were pinned to the two inconenl plates by pressing the pins

through the plates until they just contacted the bottom of the blind holes

in the yokes. An arbor press and guides were used for this purpose.

i__ ~ _11~_______1_1_ _I I _ ____ I _ e I_~__ _~i__~E~~ _



COOLING TUBES

COPPER CHILL

C-CLAMP YOKE

Fig. V.16. Welding clamp and chill' arrangement.
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An inconel cylinder was located between the plates within the coil

to act as a spring of known spring constant for pre-stressing the yokes.

This simulated the stress due to the interference fit between the inner

and outer support tubes of the generator rotor. The second step of the

assembly procedure was to torque the twelve tie bolts to establish the

desired amount of pre-stress. When this was completed the entire coil

and structure was put in the oven to cure the ground wrap insulation.

V.3 Test Configuration

The magnet was set up to be tested at the Francis Bitter National

Magnet Laboratory. It was placed in a dewar which had an internal

diameter of 8.375 inches and an inside height of 87.5 inches. The magnet

was suspended near the bottom of the ewar by three 3/8 inch stainless

steel rods from a 1 inch thick phenolic top flange. Vapor-cooled current

leads rated at 2000A were connected to the coil terminals by 1.5 inch

diameter braided copper conductor. The overall configuration is shown

in Fig. V.17. The upper half of the dewar was filled with styrofoam to

reduce the heat leak due to convection and radiation. The intermediate

phenolic plates provided lateral support. The details of the copper lead

to superconducting wire interface can be seen in Fig. V.18. It shows the

inner and outer coil leads, each made of doubled superconductor, soldered

into semi-circular copper blocks. These blocks were screwed into a G-10

plate which insulated the leads from the structure. This arrangement pro-

vided a smooth transition of current from the normal copper into the super-

conductor with the transition region always covered by liquid helium.

i___ _ __ ___1______ II _ _ _ __ __ I / ~__ __~
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Fig. V.17. Coil and structure attached to
current leads and holder and ready for
insertion in test dewar.
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Fig. V.18. Arrangement of current leads and
normal to superconducting transition in
copper blocks. Instrumentation connecting
strip is at top of picture.
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The coil was instrumented with a heater and 10 voltage taps. The

connecting strip for the instrumentation leads can be seen in Fig. V.19.

Voltage taps were placed on the top, bottom, and center turns of the

innermost layer and the outermost layer. These were affixed by thread-

ing copper screws through a G-10 mounting block and soldering a lead wire

to each. The three taps on the outer layer can be clearly seen in Fig.

V.20. The stainless steel tube on the right of the picture is the liquid

helium fill tube. The picture in Fig. V.21 shows the outer superconduct-

ing current lead exiting the coil and the transition to the copper block.

The outer welds on the yokes are clearly visible in these last two

pictures.

The magnet was suspended inside the dewar which was supported on

top of the Bitter coil by a ring stand (Fig. V.22). The test coil was

concentric with the Bitter coil and axial alignment of the coil centers

was effected by adjustment of the ring stand. When energized the Bitter

coil magnetic field was directed upward and the test coil was energized to

create a magnetic field downward. The resulting Lorentz forces put the

test coil in radial compression, thus making it stable to radial motions.

The center of the test coil was adjusted to be approximately 1/4" below

the center of the Bitter coil when cold. The axial forces were thus

directed downward putting the support rods in tension and the dewar in

compression.

V.4 Test Results

Experimental runs are scheduled at FBNML in 3 hours and 15 minute

shifts. This is the amount of time that power is provided for the Bitter

I-- - --~L~- -~-- --------i_.i-_ iL I 1 ___ .. -- -- - ~ _-------------
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Fig. V.19. Close up of coil showing voltage
taps in center of picture.2-1

-er

taps n center of picture .,
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4: ,

4. E

Fig. V.20. Superconducting current lead'
transition to copper block. The conductor is'
doubled in this region to insure a low
current density.
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CURRENT
LEADS

JANUS I

RING STAND

BITTER COIL-

Fig. V.21. Schematic of set up to test the
model coil at FBNML.
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magnet. The coil was first tested on June 19, 1980. Two out of a maximum

of four generators were scheduled for this run since it was decided to

test the coil at a low field level the first time. During the magnet

cooldown a small current was put through the coil and the voltage taps

monitored on an Autodata 9 Digital Voltmeter. Thus the coil resistance

was continuously monitored until it went superconducting. All the

instrumentation leads worked well and no unusual phenomena were detected.

The voltage across the coil was monitored on two channels of a

Nicolet Digital Storage Oscilloscope. This device samples at a very high

rate and storage on a magnetic disc can be triggered by setting a trigger

voltage level. This was used to detect any measurable voltage drop in

the coil which would indicate a resistive zone and probable quench. A

record of voltage across the superconducting leads versus current was

measured on an x-y plotter.

The Bitter coil current was set at 16,000A which corresponded to a

central field of 3.04T. The test coil was very slowly energized over a

period of several minutes by a power supply rated to 10,O00A. At a value

of 710A a significant voltage was measured on the Nicolet and the power

supply circuit breakers were opened. The coil was protected by a 70 mA

shunt resistor mounted as a short across the current leads on top of the

dewar. The transient did not appear to be a quench so the coil was re-

energized. Again at 725A a similar transient was measured, but this time

it was obvious that the voltage was due to gross coil motion as the dewar

was levitated out of the Bitter coil bore. The desired axial alignment

of the coils had not been attained so the axial forces moved the coil
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Fig. V.22. Trace of voltage across coil
terminals versus time during heater induced
quench.
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vertically upward instead of downward from the high field region.

After readjustment of the axial position the coil was quickly and

uneventfully energized to the rated operating current of 940A. At this

point the shift ended.

The coil was tested again on July 7, 1980. All four generators

were available to power the Bitter coil for this test run. The instru-

mentation was the same as that used in the previous test with the addition

of a 4 channel Biomation 1015 waveform recorder. The Bitter coil current

was set at 24,446A which corresponds to a center field of 4.547T and a

peak field at the test coil windings of 4.82T. The test coil current

was raised to a level of 940A and maintained there without incident. The

peak field was calculated to be 4.98T. There were no signs of magnet

training.

A series of quench tests were then run by pusling the coil heater

and monitoring the voltage taps. Attempts were made to quench the coil

at reduced current with .2 watt power lasting for 5 ms with no success.

The pulse width and height were increased several times without any

further results. The operating current was increased to 940A and the

pulse width limit of 98.3 msec reached, still with no effect. Finally

the heater was energized continuously and the voltage across it increased

gradually to 29 volts when a normal region was started in the coil. This

test was repeated twice more with quenching occurring at the same point

each time. A typical trace of voltage across the coil versus time is

shown in Fig. V.23. The steady-state power level in the heater was

measured at 10 watts. A plot of the current versus field operating
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TEST COIL CONDUCTOR--
4.2K
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MAXIMUM OPERATION OF TEST COIL

DESIGN OPERATING POINT

2 3 4
MAGNETIC FIELD (T)

Fig. V.23. Operating characteristics
coil and generator field winding.

of test
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conditions and the short sample characteristics are shown in Fig. V.24.

The coil suffered no damage whatsoever. This is partly due to the

nature of the power supply which maintains a nearly constant voltage out-

put and the shunt protection resistor which shares a significant portion

of the current when the test coil develops a resistive zone.

Additional tests included over-energizing the coil to 1040A at a

peak field of 5.OT and rapid charge and discharge of the coil at a rate

of 21 A/sec. The coil performed perfectly during all these tests and

showed absolutely no signs of training. The relatively large power

dissipation required to initiate a quench and the recovery aided by the

protective circuit indicate good turn-to-turn cooling. The overall

excellent performance of the test coil gives confidence in the yoke-module

design for the 10 MVA generator field winding.
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CHAPTER VI

CONCLUSIONS

The conclusions to be drawn from the work performed in this thesis

can be divided into three distinct categories concerning the theoretical

ac loss analysis, the ac loss and heat transfer calculations for the 10

MVA generator field winding, and the construction and operation of the

test coil.

In regard to the theoretical ac loss analysis (Chapter III) it can

be concluded that:

1) the mathematical technique of using complex

variables is a convenient method by which to formulate

field problems with distributed sources, and it is

specifically useful for finding the unknown boundary

flux penetration in a superconductor;

2) the aforementioned mathematical technique can

be used to find the flux penetration into non-circular

superconductors with no greater difficulty than that

encountered in the circular geometry;

3) this same technique can be used in many other

similar field problems with distributed sources; these

may be found in heat transfer problems with internal

heat generation, electric field problems with distribu-

ted charge sources, or in fluid problems with vorticity;

4) the current distributions computed for the zero

transport current case can be used when the filament does

carry a transport current if the external field has been

cycled a few times while holding the transport current

constant. The number of cycles required to establish
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the new distribution is unknown but a logical estimate can

be made in the range of 2-4 cycles. The transport current

occupies the inner core of the filament while surrounded

by shielding currents;

5) Once the current distribution is established the

external field required to fully penetrate the filament

is established as a function of the transport current

(Fig. 3.13);

6) the losses are readily computed for two regimes

when AHe < H p(i) and when AHe > H p(i) . In addition

the loss is readily divided into two components; a loss

in the shielding current region provided by the external

field source and; a loss in the transport current region

provided by the current power source (Figs. 3.16 through

3.19);

7) the non-dimensional form of the loss expressions

(Eqs. 3.56 to 3.57) are valid for all circular superconduct-

ing filaments of any size.

The ac loss analysis of Chapter III has been successfully applied

to the field winding design for a 10 MVA experimental generator. The

computed losses are very small and indicate the field winding is well

shielded from alternating fields during a fault by the damper winding

and copper can shield. The worst heating of the conductors could

possibly be caused by frictional heating due to relative conductor

motion but all analyses indicate the maximum temperature in the winding

should never exceed the critical temperature. Thus the field winding

should not quench under any foreseen operating condition. Even if a

quench did occur it would not be catastrophic since the winding is pro-

tected with a quench detector and energy removal scheme.
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The experimental coil described in Chapter V was useful in

developing the tooling and winding techniques required to wind the

prototype generator field winding modules. The successful operation of

the test coil indicates a great liklihood of success with the actual

generator field winding. The yoke and module type winding and structure

configuration with the built-in slip planes can be scaled up without

difficulty to larger generator ratings such as the proposed 2000 MVA

central power station design. In addition this yoke-module design could

be applied to any other type of large scale superconducting winding where

the accumulation of stress due to Lorentz forces would present problems.

A typical application may be in large MHD magnets.

Further work needs to be done in experimentally verifying the

theoretical ac loss model. The model needs to be clearly incorporated

into the loss models for composite conductors where the interaction of

the matrix currents with the superconducting filaments complicates the

current distribution.

The work of this thesis indicates that the 10 MVA experimental

generator can be built and operated successfully and thus an optimistic

outlook for large scale application of this technology is warranted. An

improvement has been made to the theory of ac losses in superconductors

carrying transport current which should allow for minimization of ac

losses for optimum magnet system design and performance.
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APPENDIX A. SUMMARY OF IMPORTANT LOSS FORMULA

The loss formula which were developed in Chapter III for round

superconducting filaments are summarized here for convenience. All

losses are given as a normalized loss per unit volume per cycle. They

are presented for the four categories of Section 111.5 as follows:

A.1 Partial Penetration Without Transport Current

AH
e < 1 i= 0

W AH
SO0  2( )

0 p()

AH
e

(H p(0)

A.2 Full Penetration Without Transport Current

AH

pH(O)> 1

W AHe
W 0 Hp ()

i = 0

A.3 Partial Penetration with Transport Current

AHe < 1
P

W AH
W 0  Hp )WO 2 p

0 < i < 1

AH
eH- 

0
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A.4 Full Penetration with Transport Current

AH
e

Hp(i) 0 < i <

H (i) 3
S[2(Hp)

p

H (i)

p

AH
+ 2[( Hp() )

p

)]y(i)

Wfpt/W0 is the total loss. It can be further broken down into a shield-

ing current loss, Ws/W 0 and a transport current loss, Wt/W o

H (i)H (i)
= [2( HpO

AH
+ 2[( H(0 )

p

)] 0(i)

AH
2[( H() )

H (i)
H )] B(i)

W

Wfpt
W

Ws
W

Wt
W00

where

W
s
W0

H (i)
H p(0)

and

Wt

Wo

H (i)H ( H (O
0
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If AH >> H (0)If He p

W H AHW fpt 2( H I )[.(i) + (i)] =  2( H 0 y(i)
W0  Hp(0) P(0

Note (1): These losses are for a constant transport current, i = I/Ic

and for an alternating external field, He , given by

H = H + AHe

where H0  is the uniform background field.

H0 >> Hp(0)

Note (2):

Note (3):

J d
H (0) =

p4 2T

Wo  = 4 pH2(0)
0 3 op

The partial penetration field as a function of transport

current, H p(i) , is given in Fig. 111.14.

y(i) = U(i) + (i)

The coefficients a(i), B(i), and y(i) are given in Fig.

111.17. The losses Ws 0 , Wt/W0  and Wfpt/WO are

given in Figs. 111.18, II111.19, and 111.20, respectively.
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APPENDIX B - COMPUTER PROGRAMS

The curves that represent the limits of flux penetration into a

circular superconducting filament as described in Chapter III were calcu-

lated from a computer program. The main program called EBATCH2 is very

simple to use. The primary inputs are the normalized external field

H /Hp and the initial guess at the polynomial coefficients a0  through

a8 . This program calls subroutine ZXSSQ which is a program in the

International Mathematical and Statistical Library which is widely

available on many computer systems. Since the computer programs in this

library are proprietary a fortran source listing is not available.

The program ZXSSQ finds the minimum of the sum of squares of M

functions in N variables using a finite difference Levenberg-Marquardt

Algorithm. The primary input to this program are the initial coefficient

parameters X(N) and a subroutine which calculates the residual vector

F(M) . This user supplied subroutine is called FUNCE. The program

FUNCE computes the residuals by means of a subroutine called RESIDE which

requires subroutine CSQNK to perform the complex simpson quadrature

integration along a contour in Eq. (3.30). The program CSQNK is avail-

able in the M.I.T. Information Processing Center Mathlib subroutine

library. The program ZXSSQ interates on the vector X(N) until the

residual sum of squares, SSQ, is minimized. SSQ is given by

SSQ = F2 (1) + F2(2) + .... + F2(M)

Following is a simplified flowchart of the computer programs and

a fortran listing of programs EBATCH2, FUNCE, ROOTSE, RESIDE, and CSQNK.
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MAIN PROGRAM- EBATCH2

C

SUBROUTINE FUNCE

Input: H/H p , degree of polynomial

and polynomial coefficients

Set convergence criteria and other
parameters required by ZXSSQ

Call optimizing program ZXSSQ

Write output for H /Hp , coefficients

and F(1) through F(m) and SSQ

Stop

Enter from ZXSSQ with X(n)

Call ROOTSE to compute x-axis
intercept of polynomial curve y(X)

Compute the m field points FP(m) at
which the residuals are to be calculated

Call RESIDE to compute the residuals F(m)

Return to ZXSSQ with F(m)



SUBROUTINE-ROOTSE

C
203

Enter from FUNCE with the
polynomial coefficients

Call IMSL subroutine ZPOLR to
find all roots of polynomial

Set x-axis intercept LX equal
to positive real root

QReturn to FUNCE with LX

SUBROUTINE-RESIDE

Enter from FUNCE with field point
FP and polynomial coefficients

ACall CSQNK to compute contribution
to residual field from contour integration

along the polynomial function

I Compute residual F(m) at
point FP(m). Equation 3.30

Return to FUNCE with F(m)

3

C

--

I



FILE: EBATCH2 FORTRAN A

C*********************************************EBA0010
C* THIS PROGRAM COMPUTES THE OPTIMUM COEFFICIENTS OF A POLY- *EBA00020
C* NOMIAL CURVE THAT APPROXIMATES THE FLUX PENETRATION IN A ROUND *EBA00030
C* SUPERCONDUCTOR. IT USES THE IMSL SUBROUTINE ZXSSQ WHICH GIVES *EBA00040
C* THE SUM OF SQUARES OF M FUNCTIONS IN N VARIABLES USING A * EBAO0050
C* FINITE DIFFERENCE LEVENBERG-MARQUARDT ALGORITHM. THE PROGRAM *EBAO0060
C* ALSO MAKES USE OF THE IMSL SUBROUTINE ZPOLR TO FIND THE ROOTS OF*EBA00070
C* A REAL POLYNOMIAL. THE M FUNCTIONS ARE THE RESIDUALS OF THE *EBA00080
C* MAGNETIC FIELD AT M FIELD POINTS. THE N VARIABLES ARE THE N *EBA00090
C* COEFFICIENTS OF THE POLYNOMIAL. *EBA00100
C***************************+************

C* EBA00120
C* EBA00130

REAL*4 HEA,X(6)/6*0.0/,F(10 ) ,PARM(4),XJAC(10,5),XJTJ(15) EBA00140
REAL*4 WORK(60),EPS,DELTA,SGN EBA00150
INTEGER*4 I,NDEG,M,N,IXJAX,NSIG,MAXFN,IOPT,INFER,IER,K,IRUN EBAO0160
EXTERNAL FUNCE EBA00170
COMMON /FUNC1/HEA,NDEG EBA00180

C* EBA00190
C* EBA00200
C* INPUT VARIABLES EBA00210

READ(5,*)IRUN EBA00220
DO 20 J=1,IRUN EBA00230
READ(5,*)HEA,NDEG EBA00240
N=NDEG+1 EBA00250 C
READ(5,*)(X(I),I=1,N) EBA00260

C***** SET CONVERGENCE AND OTHER PARAMETERS FOR CALLING ZXSSQ EBAOO0270
C** SET M, NUMBER OF RESIDUAL (FIELD) POINTS EBA00280

M=10 EBA00290
C** SET FIRST CONVERGENCE CRITERION EBA00300

NSIG=4 EBA00310
C** SET SECOND CONVERGENCE CRITERION EBA00320

EPS=0.0001 EBA0033U
C** SET THIRD CONVERGENCE CRITERION EBA00340

DELTA=0.0001 EBA00350
C** SET MAXIMUM NUMBER OF FUNCTION EVALUATIONS EBA003GO

MAXFN=500 EBA00370
C** SET OPTIONS PARAMETER EBA00380

IOPT=O EBA00390
C** PARM(I) NOT REQUIRED UNLESS IOPT=2 EBA00400
C** SET IXJAC=M EBA00410

IXJAC=M EBA00420
C** NOW CALL THE OPTIMIZING FUNCTION ZXSSQ EBA00430

PRINT 1100 EBAO0440
CALL ZXSSQ(FUNCE,M,N,NSIG,EPS,DELTA,MAXFN,IOPT,PARM, EBA00450

1 X,SSQ,F,XJAC,IXJAC,XJTu,WORK,INFER,IER) EBA00460
PRINT 1200 EBA00470

C** NOW PRINT THE OUTPUT EBA00480
WRITE(6,300) HEA EBA00490
PRINT 400 EBA00500
WRITE(6,500) X(5),X(4),X(3),X(2),X(1) EBA00510
WRITE(6,600) SSQ EBA00520
WRITE(6,700) (F(I),I=1,M) EBA00530
DO 10 K=1,5 EBA00540
WRITE(6,800)K,WORK(K) EBA00550

PAGE 001CONVERSATIONAL MONITOR SYSTEM



FILE: EBATCH2 FORTRAN A CONVERSATIONAL MONITOR SYSTEM

10 CONTINUE
WRITE(6,900) INFER
WRITE(6,1000) IER

20 CONTINUE
C***** FORMAT STATEMENTS *********
300 FORMAT(15X,'OTUPUT FOR CASE HE/HA=',F7.4,/)
400 FORMAT(5X,'COEFFICIENTS OF THE POLYNOMIAL',/)
500 FORMAT(' AO=',F1O.5,' A2=',F10.5,' A4=',F10.5,' A

1 ' A8=',F10.5)
600 FORMAT(' RESIDUAL SUM OF SQUARES=' ,F10.6)
700 FORMAT(' RESIDUALS OF FIELDS=',1OF10.6)
800 FORMAT(' WORK(',11,')=',FIO.6)
900 FORMAT( CONVERGENCE CRITERION,INFER=',I1)
1000 FORMAT(' ERROR CODE=',I3)
1100 FORMAT(' NOW ZXSSQ IS BEING CALLED****************')
1200 FORMAT(' RETURN FROM ZXSSQ AND READY TO PRINT OUTPUT')

STOP
END

EBA00560
EBA00570
EBAOO580
EBA00590
EBA00600
EBA00610
EBA00620

6=',FlO.5,EBA00630
EBA00640
EBA00650
EBA00660
EBA00670
EBA00680
EBA00690
EBA00700
EBA00710
EBA00720
EBA00730

PAGE 002
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FILE: ROOTSE FORTRAN A

SUBROUTINE ROOTSE(Q,NDEG,LX) RO000010
C*********************************** RO0000020
C* THIS PROGRAM, ROOTS, COMPUTES THE REAL * RO0000030
C* ROOTS OF A POLYNOMIAL BY USE OF THE IMSL * R0000040
C* SUBROUTINE ZPOLR(A,NDEG,Z,IER). * RO000050
C************************************************* P0000060
C** R0000070
C** R0000080

REAL*4 Q(9),ZR(8),LX,ZI(8) RO000090
INTEGER*4 NDEG,IER,N R0000100
COMPLEX*8 Z(8) R0000110
CALL ZPOLR(Q,NDEG,Z,IER) R0000120
DO 10 N=1,NDEG R0000130
ZR(N)=REAL(Z(N)) R0000140
ZI(N)=AIMAG(Z(N)) R0000150
IF(ZI(N).EQ.0.0..AND.ZR(N).GT. .0) LX=ZR(N) R0000160

10 CONTINUE R0000170
IF(IER.NE.0) PRINT 100 R0000180

100 FORMAT(' *****WARNING-ERROR IN ROOTS SUBROUTINE!!!****') R0000190
RETURN R0000200
END R0000210

0_
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SUBROUTINE RESIDE(HEA,ZP,A,X,R) RES00010
C***********************************************************************RES****0
C* THIS PROGRAM TAKES AS INPUT THE COEFFICIENTS OF A POLYNOMIAL THAT*RES00030
C* APPROXIMATES THE EXACT CONTOUR OF FIELD PENETRATION IN A SUPER- *RES00040
C* CONDUCTOR. IT INTEGRATES A COMPLEX FUNCTION ALONG THIS CONTOUR *RES00050
C* USING A FUNCTION SUBPROGRAM CSQNK FOUND IN THE IPS MATHLIB LIB- *RES00060
C* RARY. A RESIDUAL OF A FUNCTION IS RETURNED AT SPECIFIED FIELD *RES00070
C* POINTS WITHIN THE CONTOUR. DEVIATION OF THE RESIDUAL FROM ZERO *RES00080
C* INDICATES RELATIVE INACCURACY OF THE CONTOUR *RES00090
C***********************************************************************RES00100
C* RESO0110

REAL*4 A,B,HEA,AO,A2,A4,A6,AB,DUMI,X(6) RES00120
COMPLEX*8 W,CSQNK,TOL,FIFTH,RETERR,CURVE1,CURVE2,FUN,R,Z,ZP RES00130
COMPLEX*8 JLOG,W1,DUM,ARG,ZCON,FUDGE,ZPP RES00140
INTEGER*4 NO RES00150
EXTERNAL CURVEI,CURVE2,FUN RES00160
COMMON /POLY/AO,A2,A4,A6,A8 RES00170
COMMON /POINT/ZPP RES00180

C** RES00190
ZPP=ZP RES00200
AB=X(1 ) RES00210
A6=X(2) RES00220
A4=X(3) RES00230
A2=X(4) RES00240
AO=X(5) RES00250 C
TOL=CMPLX(.0001,.0001) RES00260 00
B=-A RES00270
W=CSQNK(B,A,TOL,FIFTH,RETERR,NO,CURVE1,FUN) RES00280
W1=CSQNK(A,B,TOL,FIFTH,RETERR,NO,CURVE2,FUN) RES00290

C** RES00300
R=HEA-1./2.*(1.-A)-ZP/4.*JLOG((1.-ZP)*(A+ZP)/((A-ZP) RES00310

1 *(1.+ZP)))-1./(4.*ZP)*JLOG((1.+ZP)/(1.-ZP))-1./8.*(W-W1) RES00320
C** RES00330

FUDGE=W-W1 RES00340
RETURN RES00350
END RES00360

C*** FUNCTION SUBPROGRAMS RES00370
COMPLEX FUNCTION JLOG*8(ARG) RES00380
REAL*4 DUMI RES00390
COMPLEX*8 ARG,DUM RES00400
DUM=CLOG(ARG) RES00410
DUMI=AIMAG(ARG) RES00420
IF(DUMI.LT.O.0) DUM=CMPLX(REAL(DUM),AIMAG(DUM)+2.*3.141592654) RES00430
JLOG=DUM RES00440
RETURN RES00450
END RESOO4GO

C** RES00470
COMPLEX FUNCTION CURVE1*8(T,DZDT) RES00480
REAL*4 T RES00490
COMPLEX*8 DZDT RES00500
COMMON /POLY/AO,A2,A4,A6,AB RES00510
CURVEI=CMPLX(T,AO+A2*T**2+A4*T**4+A6*T**6+AB*T**8) RES00520
DZDT=CMPLX(1 .,2.*A2*T+4.*A4*T**3+6.*A6*T**5+8.*A8*T**7) RES00530
RETURN RES00540
END RES00550
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C** RES00560
COMPLEX FUNCTION CURVE2*8(T,DZDT) RES00570
REAL*4 T RES00580
COMPLEX*8 DZDT RES00590
COMMON /POLY/AO,A2,A4,A6,AB RES00600
CURVE2=CMPLX(T,-(AO+A2*T**2+A4*T**4+A6*T**6+A8*T**8)) RES00610
DZDT=CMPLX(1 .,-(2.*A2*T+4.*A4*T**3+6.*A6*T**5+8.*T**7)) RES00620
RETURN RES00630
END RES00640

C** RES00650
C** RES00660

COMPLEX FUNCTION FUN*8(Z) RES00670
COMPLEX*8 Z,ZPP,ZCON RES00680
COMMON /POINT/ZPP RES00690
ZCON=CONJG(Z) RES00700
FUN=ZCON/(Z-ZPP) RES00710
RETURN RES00720
END RES00730

Lo
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C BEEN CARRIED OUT IN THE SUBROUTINE IN ANY CASE. IN THIS WAY HE 00000560
C PREVENTS CHANCE LOW ORDER FALSE CONVERGENCE AT VIRTUALLY NO ADDI- 00000570
C TIONAL COST. NOTE THAT THE SUM OF PARAMETERS *ERROR* FOR THE 00000580
C SUB-INTERVALS SHOULD CORRESPOND TO THE VALUE REQUIRED FOR THE WHOLE 00000590
C INTERVAL. 00000600
C 00000610
C NIM NUMBERING SYSTEM AND LOGIC 00000620
C 00000630
C THE INTERVAL (A,B) IS DEFINED NIM = 1, LEVEL = 0. 00000640
C THE INTERVAL NIM = N, LEVEL = L IS BISECTED, IF NECESSARY, INTO 00000650
C TWO INTERVALS, NIM = 2*N AND NIM = 2*N + 1, BOTH AT LEVEL = L +1. 00000660
C IF INTERVAL NIM = N, LEVEL = L DOES NOT CONVERGE, THE NEXT INTERVAL 00000670
C CONSIDERED IS NIM = 2*N, LEVEL = L + I. 00000680
C IF INTERVAL NIM=N,LEVEL=L DOES CONVERGE, THE NEXT INTERVAL CONSIDERED00000690
C IS NIM = M(R) + 1, LEVEL = L-R, WHERE M(R) IS THE FIRST 00000700
C EVEN MEMBER OF THE SEQUENCE M(O) = N, M(S+1) = (M(S)-1)/2. IF THIS00000710
C GIVES LEVEL = 0, THE CALCULATION IS COMPLETE. 00000720
C 00000730
C SCALING TO AVOID EXCESSIVE DIVISION BY TWO. 00000740
C 00000750
C THE INTERVAL(X1,X5) IF OF LENGTH H = X5-X1. THE POINTS Xl ,X2,X3,X4,X500000760
C ARE THE POINTS OF QUARTERSECTION OF THIS INTERVAL AND FX1,FX2,FX3, 00000770
C FX4,FX5 ARE THE CORRESPONDING FUNCTION VALUES. 00000780
C EST IS APPROXIMATION TO (6.O/H)* INTEGRAL(X1,X5). 00000790
C (ESTI+EST2) IS APPROXIMATION TO (12.0/H) * INTEGRAL(X1,X5). 00000800 -
C SUM IS APPROXIMATION TO (12.0) * INTEGRAL(A,X1). 00000810 H
C 00000820
C STORAGE 00000830
C 00000840
C X3ST(L) = 0.5*(X5ST(L) + Xl). THUS X3ST(L) COULD BE RECALCULATED 00000850
C AT EACH STAGE TO AVOID STORAGE. ESTST(L) IS SAME IN THIS RESPRECT. 00000860
C THE RESULTS OF AOVE RECALCULATION ARE IDENTICAL MACHINE NUMBERS. 00000870
C X5ST(L) = X1 + (B-A)*(2**(-L)). THIS COULD ALSO BE RECALCULATED. BUT00000880
C IN THIS CASE CALCULATION IS EXCESSIVE AND THERE IS A POSSIBILITY OF00000890
C ROUND OFF ERROR ARISING BECAUSE THE SAME POINT IS BEING CALCULATED 00000900
C IN TWO OR MORE DIFFERENT WAYS. 00000910
C 00000920
C AVOIDANCE OF ROUND OFF ERROR TROUBLE 00000930
C 00000940
C IF INTERVAL DOES NOT CONVERGE, FOLLOWING INTERVAL SHOULD HAVE ADIFF 00000950
C (ADIFFI) VALUE APPROXIMATELY EQUAL TO (1/16) TIME PREVIOUS ADIFF 00000960
C (ADIFFI) VALUE, CALLED ADIFF1 (ADIFI1) IN THE CODE. THERE IS A 00000970
C THEOREM WHICH STATES THAT, UNLESS THE FOURTH DERIVATIVE OF FUN(X) 00000980
C VANISHES IN THE PREVIOUS INTERVAL, ADIFF (ADIFFI) IS LESS THAN OR 00000990
C EQUAL TO ADIFF1 (ADIFIl). IF THIS DOES NOT HAPPEN, IT IS TAKEN TO BE 00001000
C AN INDICATION OF POSSIBLE ROUND OFF LEVEL. IN THIS CASE. UNLESS LEV 00001010
C IS LESS THAN FIVE, THE CURRENT TOLERANCE LEVEL, CEPS (CEPSI), IS 00001020
C APPROPRIATELY ADJUSTED. HOWEVER CEPS (CEPSI) IS RESET AS AND WHEN IT00001030
C APPEARS THAT IT SHOULD BE ADJUSTED EITHER UP OR DOWN. IT IS REDUCED 00001040
C IF CONVERGENCE OCCURS WITH A NON-ZERO ADIFF STRICTLY LESS THAN 00001050
C 0.25*CEPS (0.25*CEPSI). AN INVOLVED SECTION OF CODING GUARDS TO SOME00001060
C EXTENT AGAINST AN UNREALISTIC VALUE ARISING AS A RESULT OF A ZERIO IN 00001070
C THE FOURTH DERIVATIVE. A FACTOR EFACT (EFACTI) IS CALCULATED WHICH 00001080
C ADJUSTS THE CLAIMED TOLERANCE TO TAKE INTO ACCOUNT THESE ALTERATIONS 00001090
C IN THE TOLERANCE LEVEL. THE ROUTINE ENTERS THESE INVOLVED SECTIONS 00001100
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C OF CODING ONLY IF ROUND-OFF ERROR APPEARS TO BE PRESENT. IN A NORMAL00001110
C (ROUND OFF ERROR FREE) RUN, THESE SECTIONS ARE SKIPPED AT A COST OF A00001120
C SINGLE COMPARISON PER ITERATION (TWO FUNCTION EVALUATIONS). 00001130
C 00001140
C ARBITRARY CONSTANTS 00001150
C 00001160
C THE FOLLOWING CONSTANTS HAVE BEEN ASSIGNED IN THE LIGHT OF EXPERIENCE00001170
C WITH NO THEORETICAL JUSTIFICATION. 00001180
C (1) NO CONVERGENCE IS ALLOWED AT LEVEL = **ZERO**. THIS MEANS THAT 00001190
C THE ROUTINE IS CONSTRAINED TO BASE THE RESULT ON AT LEAST 9 FUNCTION 00001200
C VALUES. 00001210
C (2) NO UPWARD ADJUSTMENT OF THE TOLERANCE LEVEL IS CONSIDERED AT 00001220
C LEVEL LOWER THAN LEVEL = **FIVE**. THE POINT SPACING IS THEN 00001230
C (BIG-A)/128.0. 00001240
C (3) PHYSICAL LIMIT. HIGHEST LEVEL ALLOWED IS LEVEL = **THIRTY**. HERE00001250
C CONVERGENCE IS ASSIGNED WHETHER OR NOT THE INTERVAL HAS CONVERGED. 00001260
C THE POINT SPACING IS THEN ABOUT (BIG-A)*2.0*10**-10. 00001270
C (4) UPWARD ADJUSTMENT OF TOLERANCE LEVEL IS LIMITED IN GENERAL TO 00001280
C A FACTOR **2.0** OR LESS. 00001290
C (5) DOWNWARD ADJUSTMENT OF TOLERANCE LEVEL IS INHIBITED IN GENERAL 00001300
C UNLESS BY A FACTOR GREATER THAN **4.0**. 00001310
C 00001320
C SOME NOTATION 00001330
C 00001340
C SUM AND SIM ARE RUNNING SUMS, INCREASED AT STAGE EIGHT. THEY ARE 00001350 I-
C RESPECTIVELY 12.0 * (THIRD ORDER APPROXIMATION TO THE INTEGRAL) 00001360 N
C AND -180.0 * (FIFTH ORDER ADJUSTMENT TO THE INTEGRAL). 00001370
C CEPSF (CEPSFI) IS THE REQUIRED (SCALED) TOLERANCE. 00001380
C CEPS (CEPSI) IS THE RUNNING VALUE OF THE ADJUSTED TOLERANCE. 00001390
C QCEPS = 0.25*CEPS QCEPSI = 0.25*CEPSI 00001400
C LEVTAG (LEVTGI) = -1 OR 0,2,3 INDICATES WHETHER TOLERANCE IS NOT OR 00001410
C IS CURRENTLY ADJUSTED. (SEE COMMENF IN STAGE SEVEN.) 00001420
C EFACT (EFACTI) IS RUNNING SUM CORRESPONDING TO 180.0 * RUM 00001430
C FACERR (FACERI) = 15.0 OR 1.0 DEPENDING ON WHETHER TOLERANCE IS OR IS00001440
C NOT CURRENTLY ADJUSTED. IF IT IS, THERE IS NO JUSTIFICATION FOR 00001450
C THE FIFTH ORDER ADJUSTMENT AND ACCURACY IS NOT EXPECTED TO BE 00001460
C (1/15) TIMES THE DIFFERENCE OF APPROXIMATIONS. FACERR (FACERI) = 00001470
C 15.0 REMOVES THE BUILT IN 15. FACTOR FOR CALCULATION OF EFACT 00001480
C (EFACTI). 00001490
C EPMACH - THE MACHINE ACCURACY PARAMETER. THE ROUND-OFF ERROR GUARD 00001500
C DOES NOT REQUIRE THIS NUMBER. IT IS MACHINE INDEPENDENT. THIS IS 00001510
C ONLY USED TO HELP IN AN INITIAL GUESS IN STAGE TWO IF THE VALUE OF 00001520
C ERROR HAPPENS TO BE ZERO. ANY NON-ZERO NUMBER MAY BE USED INSTEAD,00001530
C WITH VERY SMALL PENALTY IN NUMBER OF FUNCTION EVALUATIONS IF A 00001540
C COMPLETELY UNREASONABLE NUMBER IS USED. 00001550

DIMENSION X3ST(30),X5ST(30),PREDIF(30),PREDFI(30) 00001570
COMPLEX FX1,FX2,FX3,FX4,FX5,EST,EST1,EST2,DIFF,THIRD,FIFTH 00001580
COMPLEX FUN,CURVE,W,DZDT,RUM,ERROR,CMPLX 00001590
COMPLEX FX3ST(30),FX5ST(30),ESTST(30) 00001600
COMPLEX*16 SUM.SIM 00001610
INTEGER SW1,SW2 00001620
COMMON /TOL/CEPSF,CEPSFI,FX1,FX3,FX5,EPMACH,CEPS,CEPSI,LEVTAG, 00001630

ILEVTGI,FACERR,FACERI,QCEPS,QCEPSI 00001640
COMMON /RND/LEV,X1,XZERO 00001650
EPMACH = 0.0000000000075 00001660
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CRITI=ADIFFI-CEPSI 00002220
C **** STAGE FOUR **** 00002230

SWl=O 00002240
IF (CRIT) 310,310,400 00002250

400 CALL ROUND(ADIFF,ADIFF1,EFACT,FACERR,CEPS,LEVTAG,QCEPS,&309,&310) 00002260
309 SWI=1 00002270
310 IF (CRITI) 311,311,401 00002280
311 IF (LEV) 312,401,312 00002290
312 IF (SWI) 700,700,500 00002300
401 CALL ROUND(ADIFFI,ADIFI1,EFACTI,FACERI,CEPSI,LEVTGI,QCEPSI,&500, 00002310

18&499) 00002320
499 IF (SWI) 800,800,500 00002330

C END OF CENTRAL LOOP 00002340
C SUBROUTINE ROUND IS CALLED IN CASE OF NO NATURAL CONVERGENCE 00002350
C NEXT STAGE IS STAGE SEVEN IN CASE OF NATURAL CONVERGENCE 00002360
C **** STAGE FIVE **** 00002370
C NO ACTUAL CONVERGENCE. 00002380
C STORE RIGHT HAND ELEMENTS 00002390
500 CONTINUE 00002400

NIM = 2*NIM 00002410
LEV = LEV + 1 00002420
ESTST(LEV) = EST2 00002430
X3ST(LEV) = X4 00002440
X5ST(LEV) = X5 00002450
FX3ST(LEV) = FX4 00002460
FX5ST(LEV) = FX5 00002470
PREDIF(LEV) = ADIFF 00002480
PREDFI(LEV)=ADIFFI 00002490

C **** STAGE SIX **** 00002500
C SET UP QUANTITIES FOR CENTRAL CALCULATION. 00002510
C READY TO GO AHEAD AT LEVEL LOWER WITH LEFT HAND ELEMENTS 00002520
C Xl AND FX1 ARE THE SAME AS BEFORE 00002530

X5 = X3 00002540
X3 = X2 00002550
FX5 = FX3 00002560
FX3 = FX2 00002570
EST = EST1 00002580
GO TO 300 00002590

C **** STAGE SEVEN ***** 00002600
700 CONTINUE 00002610
C CHECK THAT IT WAS NOT LEVEL ZERO INTERVAL. IF SO ASSIGN NON CONVERGEN00002620

IF(LEV) 400, 400, 705 00002630
705 SW2=0 00002640

CALL CHECK(LEVTAG,CEPS,CEPST,CRIT,ADIFF,ADIFF1,QCEPS,EFACT,FACERR,00002650
1CEPSF,&715,&710) 00002660

710 SW2=1 00002670
QCEPS=0.25*CEPS 00002680

715 CALL CHECK(LEVTGI,CEPSI,CEPSTI,CRITI,ADIFFI,ADIFI1,QCEPSI,EFACTI, 00002690
1FACERI,CEPSFI,&725,&720) 00002700

720 QCEPSI=0.25*CEPSI 00002710
GO TO 500 00002720

725 IF (SW2) 800,800,500 00002730
C **** STAGE EIGHT **** 00002740
C ACTUAL CONVERGENCE IN PREVIOUS INTERVAL. INCREMENTS ADDED INTO 00002750
C RUNNING SUMS 00002760
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C ADD INTO SUM AND SIM
800 CONTINUE

SUM = SUM + (EST1+EST2)*(X5-X1l
IF(LEVTAG)804,810,810

804 IF(LEVTGI)805,810. 810
C WE ADD INTO SIM ONLY IF WE ARE CLEAR OF ROUND OFF LEVEL.
805 SIM=SIM+DIFF*(X5-X1)

810 CONTINUE
C **** STAGE NINE ****
C SORT OUT WHCIH LEVEL TO GO TO. THIS INVOLVES NIM NUMBERING SYSTEM
C DESCRIBED BEFORE STAGE ONE.
905 NUM = NIM/2

NOM = NIM - 2*NUM

IF(NOM) 910, 915, 910
910 NIM = NUM

LEV = LEV - 1

GO TO 905
915 NIM = NIM + 1
C NEW LEVEL IS SET. IF LEV = 0 WE HAVE FINISHED

IF(LEV) 1100, 1100, 1000
C **** STAGE TEN ****
C SET UP QUANTITIES FOR CENTRAL CALCULATION.
1000 CONTINUE

Xl = X5
FX1 = FX5
X3 = X3ST(LEV)
X5 = X5ST(LEV)
FX3 = FX3ST(LEV)
FX5 = FX5ST(LEV)
EST = ESTST(LEV)
ADIFF = PREDIF(LEV)
ADIFFI=PREDFI(LEV)
GO TO 300

C **** STAGE ELEVEN ****
C CALCULATION NOW COMPLETE. FINALIZE.
1100 CONTINUE

EFACT = EFACT + CEPS *(BIG-XZERO)*FACERR
EFACTI=EFACTI+CEPSI*(BIG-XZERO)*FACERI
RUM=CMPLX(EFACT/180.0,EFACTI/180.0)
THIRD=SUM/(12.0,0.0)
FIFTH=-SIM/(180.0,0.0)
CSQNK=THIRD+FIFTH
RETURN

C END OF CSQNK
END
SUBROUTINE SETTOL

C SET STARTING VALUES FOR THE TOLERANCES WHEN CEPSF OR CEPSFI = 0.
COMMON /TOL/CEPSF,CEPSFI,FX1,FX3,FX5,EPMACH,CEPS,CEPSI,LEVTAG,
1LEVTGI,FACERR,FACERI,QCEPS,QCEPSI
COMPLEX FX1,FX3,FX5

C SET STARTING VALUES FOR THE TOLERANCES IN THE CASE THAT CEPSF=O.
IF (CEPSF) 240,205,240

205 LEVTAG=O
FACERR=15.0

C SET REAL TOLERANCE

00002770
00002780
00002790
00002800
00002810
00002820
00002830
00002840
00002850
00002860
00002870
00002880
00002890
00002900
00002910
00002920
00002930
00002940
00002950
00002960
00002970
00002980
00002990
00003000
00003010
00003020
00003030
00003040
00003050
00003060
00003070
00003080
00003090
00003100
00003110
00003120
00003130
00003140
00003150
00003160
00003170
00003180
00003190
00003200
00003210
00003220
00003230
00003240
00003250
00003260
00003270
00003280
00003290
00003300
00003310
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C FACTOR TWO JUMP IN CEPS 00003870
435 CEPS = 2.0*CEPS 00003880

IF(LEVTAG - 3) 440, 445, 445 00003890
440 LEVTAG = 2 00003900
445 QCEPS = 0.25*CEPS 00003910
500 RETURN 1 00003920

END 00003930
SUBROUTINE CHECK(LEVTAG,CEPS,CEPST,CRIT,ADIFF,ADIFF1,QCEPS,EFACT, 00003940

1 FACERR,CEPSF,*,*) 00003950
C NATURAL CONVERGENCE IN PREVIOUS INTERVAL. THE FOLLOWING COMPLEX SEQUE00003960
C CHECKS PRIMARILY THAT TOLERANCE LEVEL IS NOT TOO HIGH. UNDER CERTAIN 00003970
C CIRCUMSTANCES NON CONVERGENCE IS ASSIGNED AND / OR TOLERANCE LEVEL 00003980
C IS RE-SET. 00003990

COMMON /RND/LEV,X1,XZERO 00004000
C LEVTAG = -1 CEPS = CEPSF, ITS ORIGINAL VALUE. 00004010
C LEVTAG = 0 CEPS IS GREATER THAN CEPSF. REGULAR SITUATION. 00004020
C LEVTAG = 2 CEPS IF GREATER THAN CEPSF. CEPS PREVIOUSLY ASKED FOR A B00004030
C JUMP, BUT DID NOT GET ONE. 00004040
C LEVTAG = 3 CEPS IS GREATER THAN CEPSF. CEPS PREVIOUSLY HAD A BIG JUM00004050
705 IF(LEVTAG) 800, 710, 710 00004060
C IN A NORMAL RUN WITH NO ROUND OFF ERROR PROBLEM, LEVTAG = -1 AND THE 00004070
C REAT OF STAGE SEVEN IS OMITTED. 00004080
710 CEPST = 15.0*CEPS 00004090
C CEPST HERE IS FACERR*CURRENT VALUE OF CEPS 00004100

IF(CRIT) 715, 800, 800 00004110
715 IF(LEVTAG-2) 720, 740, 750 00004120
C LEVTAG = 0 00004130
720 IF(ADIFF) 800, 800, 725 00004140
725 IF(ADIFF - QCEPS) 730, 800, 800 00004150
730 IF(ADIFF - CEPSF) 770, 770, 735 00004160
735 LEVTAG = 0 00004170

CEPS = ADIFF 00004180
EFACT = EFACT + CEPST * (Xl - XZERO) 00004190
XZERO = Xl 00004200
RETURN 2 00004210

C LEVTAG = 2 00004220
740 LEVTAG = 0 00004230

IF(ADIFF)765, 765, 725 00004240
C LEVTAG = 3 00004250
750 LEVTAG = 0 00004260

IF(ADIFF) 775, 775, 730 00004270
765 CEPS = ADIFF1 00004280

GO TO 775 00004290
770 LEVTAG = -1 00004300

FACERR = 1.0 00004310
CEPS = CEPSF 00004320

775 EFACT = EFACT + CEPST*(X1 - XZERO) 00004330
XZERO = X1 00004340

780 CONTINUE 00004350
QCEPS = 0.25*CEPS 00004360

800 RETURN 1 00004370
END 00004380

FILE: CSQNK FORTRAN A PAGE 008
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APPENDIX C - HEAT TRANSFER MODELS

Details of the heat transfer solutions for the field winding con-

ductors are given in this section. The object of the analysis is to

determine the maximum steady-state temperature within a conductor due to

internal heat generation from the combined eddy current and hysteresis ac

loss. A one-dimensional solution is given for temperature gradients

along the conductor axis and a two-dimensional solution is given for

temperature gradients across the conductor cross-section.

C.1 One-Dimensional Model

The yoke-module winding configuration can be thermally modelled

as a one-dimensional fin with internal heat generation. The schematic

representation of the field winding in Fig. IV.5.a can be thermally

modelled as shown in Fig. C.l. Assume a one-dimensional temperature

dependence in the x-direction. The solution is divided into two regions.

In region 1 it is assumed the conductor is well insulated and since, by

symmetry, there can be no temperature gradient at x=O all of the

internal heat generated must leave the region at X=L1 , in the steady-

state. In region 2 the heat flux into the section at X=L1 , plus the heat

generated internally leaves the conductor along its length by convection

to the liquid helium bath. Again symmetry requires there be no heat flux

at X=L 2 . Solutions for the two regions are written independently and

joined by boundary conditions at the common boundary. Let
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(a)

(b)

ae ae2

ax ax

I dQ=hpe 2dx

d - -dx

ae2  d ae
-kA - + -(-kA ) dx

ax dX ax

Fig. C.1 One-dimensional heat transfer model; a) schematic of conductor;

b) boundary conditions; c) differential element of region 2.

(c)

ae2 -

ax

ax862-kA
aX
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61 = T1 -Tf

62 = T2 - Tf (C.1)

and k = k = k

where Tf is the temperature of the fluid bath, and k is the thermal

conductivity of the conductor in the axial direction.

The governing equation for region 1 is

a26 -w.
2 - k (C.2)

ax

The general solution has the form

-w. x
81 = 2k + Clx + c2 . (C.3)

The governing equation for region 2 can be determined by writing

the steady-state energy balance for the differential element of Fig. C.l.c.

The resulting simplified equation is given by

282 -w.
2_ (h) i (C.4)

x2  kA 2 k

where hpo 2 dx has been substituted for d and P and A are the wetted

perimeter and cross-sectional area respectively. The combined homogeneous

and particular solutions to Eq. (C.4) are
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w.
-E2 4 1 - (C.5)

2 2  + C3 e + Ce (C.5)
k

where = /hp/kA is the fin coefficient.

The constant coefficients C1 through C4 are found from simul-

taneous solution of the boundary conditions;

x = 0 - 0

91 
2x = L

(C.6)
x = L1 1 2

02
x = L 2 0

2 ax

Substitution of Eqns. (C.3) and (C.5) into Eqns. (C.6) and solving for the

maximum temperature at x=O results in

w i fBL2 2 -2BL 2 (l-f)
(max k 2 1 + ( 2 ) + (fL 2) [ 1 + e (C.7)

max 2 2 -2L 2 (1-f) (C.7)

where f = L1/L2 and 0max = TO - Tf . The temperature T0  is the

maximum temperature.

C.2 Two-Dimensional Model

The previous section neglected temperature gradients across the

conductor transverse to the axial direction. In order to justify this

assumption a thermal model is given to determine the transverse temperature
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gradient in a conductor. The solution for steady heat flow in a rectangle

with internal heat generation and convective cooling on all surfaces can

be found in the literature but it is developed here for completeness [73].

The governing equation for the configuration of Fig. C.2 is given

by

2 2 w.2  92 - (C.8)
ax 2 y

The homogeneous solution is given by

eh = (C1sinx + C2cosax)(C3sinhay + C4coshay) (C.9)

and a particular solution is given by

wi x2 th w't2

p 2kx + wi (C.10): 2 k i 2 8k (C.10)

The total solution is given by the sum of Eqns. (C.9) and (C.10).

Noting the symmetry about x=O , y=O , the boundary conditions

are;

x = 0 x = 0 (C.lla)ax

x - - k = he (C.llb)' 9x

y = 0 = 0 (C.llc)
9y

w ey = -k - = he (C.11.d)' ~y•..
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h,Tf

h,Tf

Fig. C.2 Two-dimensional heat transfer model.

,Tf
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Substituting Eqns. (C.9) and (C.10) into Eqns. (C.lla,b) and (C.ll.c) and

solving for the unknown constants results in

w . 2  wo.t
e = _- (- - x) + 2- + I A cos( nX) cosh(a y) (C.12)

m=1 n

where an are the eigenvalues given by the positive roots of

(an ) tan(a n ) = (h ) (C.13)

The coefficients A are determined from the last boundaryn

condition, Eq. (C.ll.d). The result is

4w.
A kn k

sin(an )

ak
a2[t2 + sin(ta) -- ) sinh( ! an ) + cosh( a]

* (C.14)

The maximum temperature occurs at x=O, y=O and is given by

t2
- 4k{- + 2

1
emax

- m=l
Mmj

sin(a m)

2m
am[2am + sin(2cl)][( % ) sinh(yam )1

where B - ht is the Biot number, y= and amBiot mr

form of an given by

am tan am

(C.15)

+ cosh(yam)]

is the non-dimensional

m = 1,2,3,...= B.1
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