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ABSTRACT

This paper derives the equations of motion for a satellite in an
unbounded orbit about an oblate planet. The only force assumed present
is the one due to Vinti's spheroidal gravitational potential, which can
be fitted to the Earth so as to account exactly for the even zonal
harmonics through the second and for most of the fourth. The equations
of motion in integral form are obtained as a result of the separability
of the Hamilton-Jacobi equation. Two sets of orbital elements are used
for the solution. The first set can be obtained directly from a set of
initial conditions. The second set, which allows analytical evaluation
of the integrals, can be obtained from the first through numerical factor-
ing of a quartic polynomial. The final solution, which is summarized in
Chapter 10, is given in terms of this second set of orbital elements and
certain uniformizing variables, whose periodic terms are correct to the
second order in J2 .

The solution is valid for all inclinations, has no troublesome
poles and reduces to Keplerian hyperbolic motion for a perfectly spher-
ical planet. In order that certain series converge, however, we find
it necessary to restrict out attention to trajectories whose extensions
do not pass through a small spheroid in the center of the planet. A
computer program is also presented which calculates the trajectory about
both an oblate planet and a perfectly spherical planet for the same
initial conditions.
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CHAPTER I

INTRODUCTION

If we let r be the position vector of a satellite relative to the

center of mass of an oblate planet and if forces other than the gravi-

tational forces between the two bodies can be neglected, then the motion

of the satellite is determined by the equation

S= -VV (1.1)

The gravitational potential V of the planet can be expressed in terms of

spherical harmonics as

V =- 1 - I (re)n J P (sin) + tesseral harmonics (1.2)
r r n nn=2

where V is the product of the gravitational constant and the mass of the

planet, r is the magnitude of the position vector, re is the equatorial

radius, 6 is the declination, Pn is the nth Legendre polynomial, and the

Jn are constants which characterize the planet's potential. For the

Earth J2 = 1.08 x 10- 3 and all other Jn's are of the order 10-6 or smaller.

Most methods of solving the equations of motion involve determining

a reference trajectory using the potential V = -E and then determining
o r

the pertubations of this reference trajectory caused by the higher har-

monics of the true potential.



Vinti [1], however, derived a form for the potential of an oblate

planet as the solution of Laplace's equation in oblate spheroidal coor-

dinates which leads to separability of the Hamilton-Jacobi equation. As

used in this paper Vinti's spheroidal potential accounts for the second

zonal harmonic J2 and most of the fourth. Using his spheroidal potential

Vinti [2,3] then solved the resulting equations of motion for the case of

a bounded orbit, that is for total energies al < 0. The solution has an

exact secular part and a periodic part correct to the second order in J2 .

The main object of the present paper is to provide a solution using

Vinti's spheroidal potential for the case of an unbounded trajectory,

that is for total energy a, > 0. The approach will be to introduce

certain uniformizing variables and then to evaluate the integrals of the

equations of motion in terms of these variables in a manner analagous to

that of Vinti for the bounded case. The equations of motion are then

inverted so as to obtain the position and velocity vectors as functions

of time. In order that the similarities between the bounded case and the

unbounded case to be derived may be apparent, Vinti's notation has been

preserved as far as possible in the present treatment. In addition we

shall show that the solution for the unbounded case reduces to simple

Keplerian hyperbolic motion for a perfectly spherical planet and that the

solutions for bounded and unbounded spheroidal trajectories reduce to the

same "parabolic" trajectory for al = 0.

A computer program is also developed which calculates the trajectory

about both an oblate planet and a spherical planet for the same initial

conditions. A numerical comparison then enables us to determine the

effect of the oblateness and how it varies with the energy, inclination,

and perigee distance of the trajectory.



CHAPTER 2

THE KINETIC EQUATIONS

2.1 The Oblate Spheroidal Coordinates

Of the eleven Staeckel coordinate systems, the oblate spheroidal

system has the most appropriate symmetry for an oblate planet such as the

Earth. If X, Y, Z are the rectangular coordinates and r, e, 0 are the

spherical coordinates, then the oblate spheroidal coordinates, p, n, 0,

are defined by

X + iY = r cose exp i = P 2+c2)(ln2 exp i (2.1)

Z = r sine = pn (-1 < n < 1) (p > 0) (2.2)

Here r and 6 are the geocentric distance and declination, and 4 is the

right ascension. For the spheroidal coordinates, the surfaces of constant

p are oblate spheroids, the surfaces of constant n are hyperboloids of one

sheet, and the surfaces of constant 4 are planes through the polar axis.

The constant, c, is the radius of the focal circle in the equatorial plane.

The portion of the equatorial plane inside the focal circle is the surface

p = 0, while the portion outside is the surface n = 0. Note that for large

r, p v r and n = sine.

2.2 The Gravitational Potential

According to Vinti (1] the potential field of an oblate body may be

closely represented by

i~-----rAI-rr--
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FIGURE 2.1 The Oblate Spheroidal Coordinates
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V = -ip (p2+c2 n2)-1  (2.3)

where p is the product of the gravitational constant and the planetary

mass, and

c2 = r2 J2  (2.4)
e

where r is the planet's equatorial radius and J2 is the coefficient ofe

the second zonal harmonic in the expansion of the potential in spherical

harmonics. For the Earth J2 is approximately 1.082 x 10 - 3 and c = 210 km.

In the equation for the potential, (2.3), we have taken the center of mass

at the origin of the coordinate system.

The above potential leads to separability of the Hamilton-Jacobi

equation in spheroidal coordinates. From Vinti [1], the resulting kinetic

equations with the separation constants al, R, a3 and the Hamilton-Jacobi

function S(p,n,o) are

as= t + $ = f ± p2 F(p)dp + c2 f  n2 G (n)dn

pl n1

as 1 = 4 - n -4
a =  f (p)dp + - f ; G (n)dn (2.5)

aF a2 d f2 j+G

as = tp - -
as 63 = + c2 a3  (p 2+c 2 ) F (p)dp + a3 f ; (-n 2 )- 1 G (n)dn

pl nl

where

F(p) = c2aj + (k+2pp+2a1 2 )(p2+c2 ) (2.6)

and

G(n) = -a + (1-n2 )(-k + 2 l 1c 2 n 2 ) (2.7)



and the betas are Jacobi constants. For bounded motion, a, is negative.

For such motion Vinti [1S has shown that the constant k is negative, a

fact which leads to considerable simplification of the integrals.

2.3 The Separation Constant k

We should now like to investigate the separation constant k, for

unbounded motion a, > 0. According to Vinti [11 the final separation of

the Hamilton-Jacobi equation becomes (for the CM at the origin)

2 (aS 2  - 1 2 2E2
(2+1), - (2+1) a3 - 2ic$ - 2alc 2 =

-(l-n 2 )( S)2 - (1-n2) 1 a + 2aic 2n2 = k (2.8)

where p = c&.

Since we have taken the center of mass of the earth to be at the

origin of the coordinate system we can assume that the trajectory (or its

extension) will pass through the equatorial plane. Furthermore, we will

require this passage to occur on or outside the focal circle which is

shown in Figure 2.2. Thus n = 0 will be reached by the trajectory and

according to (2.8)

+ a3 2 =-(a ) < 0 (2.9)an

For physically realizable motion the Kinetic equations (2.5) require

that F(p) and G(n) be positive and our coordinate system requires that

n2 < 1 and p > 0. Rewriting F(p) in the form

F(p) = c2a32 + 2t1(p2+c2) 2 2 - (2.10)

and setting a 3 = 0, we find for the two real zeroes of F(p)

2
p =  V - k (2.11)

2al '1 2a

_. I__ ___ YII~-IYII-~
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The more positive of t

Equation (2.9) can be

k < -a32

A consideration of the

p = *w enables us to s

izable motion then tak

p = pl to p = a. Clea

For the case a3 #

he two roots will be labeled pl, the other P2-

rewritten as

(2.12)

derivatives of F(p) and the values of F(p) for

ketch F(p) for a3 = 0 as in Figure 2.3. Real-

es place in the shaded region of the sketch from

rly Pl is the p-perigee of the trajectory.

0 we put F(p) in the form

F(p) = 2alp 4 + 2pp 3 + (k+2alc 2 )p 2 + 2pc 2 p + c2(k+a32 ) (2.13)

At p = 0 we then have

F(0) = c2 (i+a3
2 ) (2.14)

F(0) will then be non-positive if (2.12) is imposed. For convergence of

certain series we will later find it necessary to restrict our attention

to trajectories with

2clc 2 << -k (2.15)

Thus the third and fifth terms of (2.13) are negative for p > 0 so that,

by Descarte's rule of sign, there are no more than three positive real

zeroes of F(p). A similar consideration for p < 0 reveals that F(p) has

no more than one negative real zero. F(p) might then appear as in Figure

2.4 for a3 # 0. Again realizable motion occurs only for p and F(p) non-

negative. We shall later see that case (b) of Figure 2.4 occurs only for

equatorial or very nearly equatorial orbits.
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motion ,
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Having done this we can take a2 as our new Jacobi constant. The

equations (2.5), (2.6), and (2.7) then become

a P 0

as 82 = a 2 f 2 F(p)dp + a2  G-()dn

Pi 0
2 = a2 f; = -(pd +~a a2f± Pn

as - = 23= (p2+c2)-i -(p)dp +
aa 3  

a

P1

af '(1-n 2)-1 (n)dn
0

(2.18a)

(2.18b)

(2.18c)

where

F(p) = c2 a3
2 + (p2+c2)(-a 2

2+2jp+2a1p
2 )

and

G(n) = -a 3
2 + (1-n 2 )(a2

2+2a 1C
2n 2 ) (2.20)

The a's and 's are the Jacobi constants, with al, the energy,

greater than zero for hyperbolic motion and a3 , the polar component of

angular momentum, greater than or less than zero for direct or retrograde

trajectories respectively. As c -> Oand we approach Keplerian motion the

separation constant a2 reduces to the total angular momentum, - 4 to the

11

According to (2.12) we can then set

k = -2

where

a2 2 > a 3
2

(2.16)

(2.17)

(2.19)
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time of perigee passage, 62 to the argument of perigee w, and 83 to the

longitude of the node S. (These claims will be justified in Section 7)

Since terms with c2 in them represent the deviations from a conic

trajectory (which we expect to be small) the appropriate zeroes, p, and

P2, of F(p) will approximately be equal to the zeroes of

f(p) = (-a22+2pp+2alp 2) (2.21)

Since al > 0, this tells us that one zero will be positive, the other

negative (approaching -c as al approaches zero); which is just what we

found in our investigation of F(p). The positive zero has been labeled

pl; the negative zero, P2. We will discover shortly that the other two

roots of F(p) are imaginary, except for nearly equatorial orbits.

Our ultimate objective is to solve (2.18), (2.19), and (2.20) for

p, n, * as functions of time. To do this we must first solve (2.18a) and

(2.18b) for p(t) and n(t) and substitute into (2.18c) to find 0(t). This

requires evaluating the six integrals which we shall find possible through

the introduction of certain uniformizing variables, and the ability to

factor the quartic polynomials F(p) and G(n).



F

CHAPTER 3

THE ORBITAL ELEMENTS a0 , e 0 , i 0 , al, 82 , a3

For Keplerian hyperbolic motion (c = 0) the two roots of f(p) would

pl = rl = ao(e0-1) (3.1)

P2 = r 2 = -ao(eo+l) (3.2)

where r, would be the perigee radius and r2 an unphysical quantity. For

future reference we solve for a0 and e0 from the above. Thus

a = (rl+ (3.1a)

e (rl-r2) (3.2a)rl+r2

Here we have taken

1 -1 (33)
a0 = y ga- (3.3)

and

e02 E 1 + 2la2 2p-2 (3.h)

For our spheroidal solution with c / 0 we can still define the constants

a0 and e0 as above as well as another constant

i E cos-1 (a3/a2 ) (3.5)



Thus the constants a0 , e0 , i 0 , 8 1, a2, a3 would be one possible set of

orbital elements. The corresponding semi-latus rectum P0 would then be

PO ao(e6 - 1) (3.6)

so that

a =po (3.7)

To find a0 , e0 , and i 0 we first need al, a2 , and a3 . These

constants may be determined from the initial conditions. From Vinti [2]

al = _ ppi(p + c2 n)- 1  (3.8)

a = (l-n ) - [ (p i + c 2 n i ) 2 1 + aj - 2a 1 c 2 n2 ( 1 - n 2 )] (3.9)

a3 = r
2 cos 2 6.. = X.Y. - Y.X. (3.10)i 1 1 1 1 1 1

where the subscript i denotes initial values and u is the speed. So

from the initial coordinates and their derivatives we can determine

the a's and thus find a0 , e0, and i0 . Numerical values for the a's

would allow numerical factorting of F(p) in'the fbrm

F(p) = 2al(p-p 1 )(p-p 2 )(p 2 +Ap+B) (3.11)

We can, however get an analytical solution for pl+p2, PlP2, A, and B

by following the procedure of Vinti [2] and equating corresponding

powers of p in (3.11) and (2.19). Thus we find

p 3 : pl+P 2-A = -pall = -2a0  (3.12)

p2: B+plP 2-(pl+P 2 )A = c
2-_ja 1 = 2-a0P0 (3.13)

p1 : (P1+P 2 )B-p1p2 A = -pc 2 a 1
1 = -2a 0 c 2

______~_~

(3.14)
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i~ ~ C2(2 2 - 2 -

P0 : 01P 2B = - 2 22 a3 )aj-1  = -a0P0c
2 sin2i 0  (3.15)

We can define

k0 E c2/p 2  J2  (3.16)
P0

x E (eo2-1) (3.17)

yE a3/a2 = cosi 0  (3.18)

and then solve (3.12) through (3.15) for P1P02, 1 + P2, A, and B by

assuming that each is a power series in k0

P1 * 02 E bl, kn (3.19)
n=0

00

0102 b2 n k0
n  (3.20)

n=0

AE b3n k0 n (3.21)
n=0

BE b4n k0 n (3.22)
n=0

and solving for the coefficients. For sufficiently small k0 the series

will converge rapidly (the range of validity of this assumption will be

investigated at the end of this section) and the solution to 0(k0
2 ) will

be sufficiently accurate. The series solution, which is carried out in

Appendix A, results in:

Pi + 02 = 1 + x2y2k0 + x
2y2k0

2 (8y2+3x2y2-2x2-4)+ (3.23)

0102 = - 1 -y2ko(4+x2 ) + k 0
2y2 (12x2-20x 2y2-32y 2+l6

+x4-x4 y2) + (3.2h)



A = -2k 0 P 0 Y2 1 + ko(8y2 +3x 2 y 2 -2x 2 -4)+ .. (3.25)

B = k 0 p0
2 (l-y 2 ) 1 + k 0 (4y 2 +x 2 y 2 )+ (3.26)

Note that

A2 - 4B = -4k 0 p 0
2 1-y2+k0(y2-5y4+x2y2_x2y4) (3.27)

which is positive for sin 2i0 < k0/[l+k 0(6+x
2 )] so that for equatorial or

very nearly equatorial orbits we have case (b) of Figure 2.4.

We can define the constants a and e in terms of the two real roots

of F(p). By analogy to Keplerian motion, equations (3.1), (3.2), (3.1a),

and (3.2a) we define

pl E a(e-1) (3.28)

P2 E -a(e+l) (3.29)

so that

a - (1+2) (3.30)

and

eE - P1-P2 (3.31)
p 1 9P2

the corresponding semi-latus rectum is

p a(e2-1) = _ P2 (3.32)
a

The constants a, e, and p will occur in the evaluation of the p-integrals.

We can calculate them in terms of a0 , e0 , PO, and i0 to the second order

in k0 as follows:



From (3.30)

a
ao 2a

Substituting for P1+P2 from (3.23) yields

a = 1 + kox 2y 2 + k0
2x 2y 2 (8y 2+3x 2y 2 -2x 2 -4)+ . (3

ao

Then from (3.32) and (3.30)

P__= - 1 = 2pjp2
PO apo p0o(i+P2)

Substituting for P1P2 and pl+P2 from (3.24) and (3.23) and using the

binomial expansion theorem we find

--= l-2koy2 (2+x2 ) + ko2y2 (16x2-24x2y2- 2y2+16
PO

+3x4-2x y 2 )+ ' (3

or equivalently

Rk = 1 + 2koy 2(2+x2 ) + ko2 y 2 (-3x4+6x4y 2 -16x 2

P

+40x2y2-16+h8y 2 )+ ... (3

Then since

e2-1 PI aI
e0 -l P0 a

we find

e2- 1 = 1 + koy 2 (-3x2 -4) + ko 2 y2 (5x 4 -2x 4 y 2

e0 -1

.33)

.34)

.35)

+20x 2 -28x 2 y2 +16-32y2 )+ ...

_ __~___I_

(3.36)



and thus

(e-1) = 1 + koy2(-3x2-4) + k0
2y2(20x 4

-17x 4 y2 +80x 2 -136x 2 y2 +64 - 144y 2 )+ **' (3.37)

We can calculate e in terms of e 0 by noting

e L(e2-1) + 1 (3.38)

substituting for (e2-1) from (3.36) and taking the square root we find

that, to first order in k0

e = (eo2-1)[l+koy2(-3x24)+ .-- 1.]

so that

e = [eo2 - x 2y2ko(3x 2+4)+ .** (3.39)

We shall later regard a and e as two of the final orbital elements,

since they are part of a set from which the orbit can be calculated

immediately. The above equations show how to find a, e, and related

quantities, without iteration, from those qtU&ntities a0 , e0 , and i0 which

are obtainable immediately from the initial conditions.

The quartic G(n) may be put in the factored form
-2 -2 -2 -2

G(n) (a2
2-c 3

2 ) n4( )(n 2 ) (3.40)

-2 -2

On comparing this with (2.20) we find that no-2 and n2-2 are the roots of

-4-2 c2 =0(3.41)

(a2
2- 3

2 )n + (2a1c
2-a2

2 )n - 2aj1c
2 = 0 (3.1)

-2
Solving this for n 2 we get two roots and label them as follows:

-2 1 (3.42)
S(= 222alC2)((a22-2)-1(l+W+

)  (3.42)
nO (a Xa 4



and

-2 1 (a22_2ac
2 )( 22- 32)-1(W

where

W =- 1 + 8aic2(a 2 2_a 3 2) (a 2 2-2aic2) - 2

(3.43)

(3.44)

In order to find o02 and n22 in terms of a0, eO, Po, and i0 we substitute

for the a's in the above equations according to (3.3) through (3.7).

Thus

W + kox 2 (1y2 )

1l-koxZ)z

no 2 2(1-y
2 )

(1-kox 2 )(l+W )

(3.45)

(3.46)

and

(3.47)n2 2(1-y
2)

(1-k 0 x 2 )(1-W )

Substituting W from (3.45) into (3.46) and (3.47) and performing the

required binomial expansions we find

(3.48)no = sinio + 1 kox 2y2 + kXy 2 (7y2-4 )

(1-no2) = sec io + 1 kox 2 (1-y 2 ) +

Sk 0x4 (1-y2 )(5y 2-1) +

n2- = -k 0x
2 ( + kx y +

(no/n2)2 = -kox 2(sin 2io)(1 + 2kox 2y2 + .)

-2 -

(3.49)

(3.50)

(3.51)

- -k 0 x, so that n2' is negative and n2 is imaginary. we
@ • • T

Note that n2
--



shall retain the notation n22 for the present, recalling that it is

actually a negative quantity, since we shall have no occasion to deal with

the quantity n2 alone.

For the above series expansions in powers of k0 to be valid we must

have

k0x
2  2 2 2 << 1 (3.52)

which justifies our earlier restriction in (2.15) and implies that we must

have

2- c2 << 1 (3.53)
ap -PlP2

Or, since P21 > Jp1l, we should like to keep

2
C2 << 1 (3.54)
P1

Since p1 is the value of p-perigee, if our trajectory or its

continuation through the planet does not pass too near the surface

p2 = C2  (3.55)

then (3.52) will be valid. In x, y, z coordinates this surface is an

oblate spheroid as in Figure 3.1. This small forbidden zone (recall

c = 210 kin) in the center of the Earth should not appreciably limit the

scope of problems to which this spheroidal method may be applied. Few

space vehicles are fired directly from Earth into hyperbolic orbit and

even fewer of these on paths whose extensions would have passed through

this zone. The only practical case which readily comes to mind of a



Z

1lipsoid of revolution
about the Z axis

5.

x

FIGURE 3.1 Forbidden Zone for

Convergence of Series Solutions
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trajectory which might pass through this zone is a meteor on a collision

course with the Earth. Certainly any trajectory which does not intersect

the Earth will cause no trouble.

I_~__~L_



CHAPTER 4

THE ORBITAL ELEMENTS a, e, I, 81, 82' a3

If we put G(n) in the factored form

G(n) = -2alc 2 (nj _ 2 )( _ n2) (4.1)

then on comparing this to (3.40) and equating coefficients of

equal powers of n we find

ni + ni = 1 - 2 n = 1 -an
2a z cz

(a3- aj anposin2ionn=- (c c2 = - ap~i 2 i- 2alz c z

We now define I by

(4.2)

(4.3)

I H sin-ln0g cosl > 0 for direct orbits

< 0 for retrograde orbits

Such a definition is allowed since rationalizing the denominator

of (3.46) yields

S= - (2kox) + 2kx [ (l+k 0x 2 )2 -4k 0x 2 y2

1k0 -

It then follows that n < 1, with the equality occuring for polar

traj ectoxries.

(4.4)



If we now substitute equations (3.30), (3.31), and (3.32) into

equations (3.12) through (3.15) we find

-2a - A = -2ao (4.5)

B - ap + 2aA = c2 - a0p (4.6)

-2aB + apA = -2a0 c2  (4.7)

-apB = -a0P0c
2sin 2i0  (4.8)

If we now assume a, e, and no are known (i.e. regard a, e, I,

al, 82, 83 as orbital elements), then we have six equations in the

six unknowns a , e , i , A, B, and nj. With the orbital elements a,

e, I, 81, 82, 83 it turns out that the system can be solved exactly.

This fact was first pointed out by Izsac (1960) and later utilized

by Vinti (1961) in his sphaoidl solution for bounded motion.

To proceed with the solution we first solve for ni from (4.2)

and (4.3)

= - =  - -n (4.9)
c ni a

solving now for sin 2 i0 we find

sin 2i0  c2n (1-4) (.o- = sin2i0 = ni - (4.10)

Inserting this into (4.8)

-apB = c2n0(-a 0p 0 + c2 ) - c4n (4.11)

If we now use (4.6) to eliminate c2-a0P0 from (4.11) we find

cn - apBc Z- = B -ap + 2aA (4.12)
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Eliminating a0 between equations (4.5) and (4.7) yields

-2aB aA
-2a - A = +c c (4.13)

Equations (4.12) and (4.13) are now in terms of A and B only. Their

simultaneous solution results in

A -2ac2(1-lo2)(a 
+  2n2)

(ap+cZ)(ap + c'no') + 4aZcL no

B c2 ,a2c2 + (ap+2 no 2)(c2+p)B = ~ 20 [ p +)(ap+c2o0) + 4az2zo '

(4.14)

(4.15)

Then from (4.14) and (4.5)

p a0- = a + A_=
2aal a 2a

From (3.3), (3.7), (4.15) and (4.11)

apo= c2 (1-n0 2) + ap (ap+c2 )(ap+c2 n 2 )+4a 2 c2

2a,1 - ap+c)(ap+c2 no2)+ha=zcz no7 (4.17)

These last two equations allow the determination of a2 from the set of

orbital elements a, e, and I. Putting no = sin I into (4.10) yields

a 3 = a 2 cos I + ap 0 (4.18)

So that (4.16), (4.17) and (4.18) determine the a's, or equivalently,

the elements a0 , e0 , i0. Finally to find n22 we combine (4.3) and (4.8)

to get

n22 Ba (4.19)c. YJ

and then substitute for B from (4.15) to get

(4.16)

L____

c2(1-no 2 )(ap+c2 n 2 )

(ap+c2 ) (ap+c?-no ) + 4azczn0z



2(ap+c2)(ap+c2n2 ) + 4a2c2
2 c LaP c2 )(arpC02) + 4a2cZ 0 (4.20)

Thus equations (4.14) through (4.20) yield the required unknowns when the

orbital elements are taken to be a, e, and I. Use of these orbital ele-

ments allows factoring the quartic polynomials F(p) and G(n) and

facilitates evaluating the 0 and n integrals.

If we define a new oblateness parameter

c 2  re 2
k = 7 = -J2 (4.21)

corresponding to the orbital elements a, e, and I, then we can easily

show that, at least to first order, the results obtained in this section

agree with those of section 3.

Taking first order terms of (3.25), (3.26), (4.14), and (4.15), we

find

A = -2kopocos 2i0 = -2kpcos
2

B = kopo2sin 2io = kp2sin 21

(4.22)

(4.23)

To first order (3.33) and (4.16) become

al -= 1 - kOcos2io(e 0
2-1) = 1 - kcos21(e2-1)

a (4.24)

Solving (4.17) for pg/p to first order and using (4.24) to eliminate a0

and then comparing results with the first order portion of (3.35), we find

(4.25)2Q = 1 + 2kocos2io(e0
2+l) = 1 + 2kcos21(e2+l)

p

Then, since eo- = we find to first ordereTl p a0



e 2-e = 1 + kocos2io(3e0
2+l) = 1 +kcos2I(3e2+l) (4.26)

e -1

From (h.10)

sin2io c2cos2I 2
sinz = 1 - = 1 - k(e2-1)cos 2  (4.27)sin T a00

to first order. Taking the square root of (4.27) and comparing with the

first order inverse of (3.148) gives

sini _ 1 1in - k0 (e0
2-1)cos2i0 

= 1 - k(e2-1)cos2  (.28)

Comparing the first order portions of (3.50) and (4.20) gives

-2 -ko(e 0
2-1) = -k(e 2-1) (4.29)

Then from (3.51) and the previous equation, we find

(n/n2)2 = -ko(e 0
2-1)sin 2io = -k(e2-1)sin 2I (4.30)

Thus the results of Sections 3 and 4 agree to first order.

We have seen that, of G(n)'s four roots, two are real, n = t-n=,

while two are imaginary, n = */ n- (recalling that n22 < 0). With G(n)

in the form of (4.1) we can see that for al > 0 G(n) will approach -M for

n approaching either +w or -w. Furthermore at n = 0, G(n) = -2alc2 02 22

= a 2
2 -a3 2 , so that a sketch of G(n) can be drawn as in Figure 4.1.

Again, according to the Kinetic equation, only the portion of the

curve G(n) > 0 represents allowable motion. Thus, the real motion must

occur in the interval between the two hyperboloids

-no < n < +no (4.31)

where n0 2 < 1
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The following two sections will be devoted to evaluating the p and n

integrals in terms of the orbital elements a, e, I, and certain uniform-

izing variables H, f, and *, corresponding to the hyperbolic anomaly, the

true anomaly, and the argument of latitude respectively in Keplerian

hyperbolic motion.

As opposed to elliptic motion, where the quantities a, e, and I

might be determined by following the orbit for many revolutions and

applying some sort of least-squares process, the "one-shot" nature of

hyperbolic motion will probably require the use of a0, e5 and i0 , which

can be determined from a set of initial conditions, as orbital elements.

To find a, e, and I, one must then numerically factor F(p). This is

accomplished through order J2
2 by means of equations (3.23) through (3.26)

and equations (3.h2) and (3.h3). Once a, e, and I are thus known, we can

insert observations into the formulae resulting from equations (2.18) to

find the 8's. (see Section 7.5) Thus we can always find the orbital

elements a, e, I, 81, 82, 83. From this point on, in the evaluation of

the integrals, we shall assume that a, e, no E sin I, 81, 82, and 83 are

known and give the solution in terms of these quantities.



CHAPTER 5

THE p-INTEGRALS

In the Kinetic equations (2.18) we define

R1 E / * p2 p-dp
Pl

Rl f t F(p)+dp
P )-+dp

R2  f * F(p) p

P1

R3 f P t (P2+c2 - F(p)-d
Pi

(5.1)

(5.2)

(5.3)

where the + sign is to be used for positive dp and the - sign for nega-

tive dp. With F(p) given by (3.11), A and B by (h.14) and (4.15), and

pl by (3.28), we then write F-(p) as

F(p) - = (2ax) - 4 (p-pl) -  (p-p2) 4 p- 1 (1+Ap-1+Bp - 2 )4 ( 5 .4)

If we define

bl - A (5.5)2

(5.6)

(5.7)

(5.8)h= b2



then

(l+Ap-1 +Bp-2 - = (1-21h+h2)- 4  (5.9)

In this form we recognize the generating function for the Legendre

polynomials. Thus we can write

-.1 .-2n
(1+Ap +Bp ) = hn Pn () (5.10)

n=0

where the P () are the Legendre polynomials. According to HobSon [k]n

such replacement is valid as long as

h < 1 for X < 1 (5.11)

h < X - (12-1) for X > 1 (5.12)

The conditions under which (5.11) is satisfied are investigated in

Appendix B. The resulting limiting surface, within which we require the

extension of the trajectory not to pass, is somewhat less restrictive than

the limiting surface discussed previously in Section 3.

Putting (5.8) and (5.10) into (5.h) we find

F(p)- = (2al)- b 2 n n ()P - 1-n [(1P-P 1)(P-P 2 )] (5.13)
n=0

On putting this into (5.1) and evaluating the first two terms of the

summation, we find

(2al ) R I = f p2(p-1+b2P -[(P-l)(p - p 2 )] - (dp)
P1

00 P
+ b 2n P (X) 1-n [(P-Pl) (P-P 2 )]-(±dp) (5.14)

n=2 P1
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or equivalently

(2al) 1 = f (p+b)[(p-P)(p-p)] (±dp)

P1

+ b n n(x) P 1-n (P-P1) (P-P2 ) (±dp) (5.15)
n=2 P1

We can eliminate the plus or minus signs in the above integrals by

introducing the uniformizing variables H and f, analagous respectively to

the hyperbolic anomaly and true anomaly in Keplerian hyperbolic motion.

We thus define H and f by

p
P = a(e cosh H-1) = 1+ecosf (5.16)l+ecos f

and the requirement that they always increase with time. Here H goes

from -o on the inbound assyntote (p = o, t = -*) to +o on the outbound

assymptote (p = w, t = o). From (5.16) we find

dp = ae sinh H dh (5.17)

Using (5.16), (5.17), Pl = a(e-1), and P2 = -a(e+l) we find that

[(p-pl)(P0-p 2 )]
-  (±dp) = isinh H dH = dH (5.18)

sinh HI

Again from (5.16)

dp = e sinf df(5.19)
(1+e cosf)Z

Using (5.19) and (5.16) we find

(p-p1)(p-p2 )]
-  (*dp) = (e2-1) (l+ecosf)-1 df (5.20)

5.1 The R1 Integral

If we substitute (5.18) into the first term of (5.15) and substitute

(5.20) into the remaining terms of the series we find



H
(2ca 1 ) B 1  f (ae cosh H - a + bl)d

0
~f

+ b2' P (X) f ( p) C -n(e2-1)i(l+ecosf) df (5.21)n l+ecosf
n=2 0

which becomes

(2xl)+R1 = a(esinh-H-HB+ blH

Gf
+ p(e2_l)+ (p2)n px) f (l+ecosf)n-2df (5.22)

n=2 0

where we have replaced the lower limits of the integrals by zero, since

at pl, H = f = 0. If we define
COf

S (bZ)n P n(x) f (l+ecosf)n-2df (5.23)
p2 n 0n=2 0

or equivalently

*f
Sl - (1-) 2 (-)m Pm+ 2 (X) / (l+ecosf)m df (5.24)

Sm=0 P 0

then we should like to investigate the convergence of this series. This

is done in Appendix C for both of the cases X < 1 and X > 1. The

resulting limiting surface, within which we require the extension of the

trajectory not to pass, is found to be the same as the limiting surface

for allowing the replacement of (1 + Ap1 + Bp- )- by the Legendre

series. Thus we are certain S1 will converge as long as the trajectory

does not pass within the surface of Figure 3.1.

To evaluate R1 we need to evaluate Si and to do this we first

separate it into a part proportional to f and a periodic part. Using the

method of Vinti [2] in his treatment of the bounded case we define
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f
f (f) f (l+ecosf)m df (5.25)m

0

In Appendix D we notice that f (f) - (-)f (2w) is an odd function of f
m 2w m

of period 2w. Then, from (D.9) f (27) = 2f (w ). so that from (D.12)

if m m
f f (l+ecosf)m df = f f (l+ecosf)m df (5.26)
m 00 0

m

+ c sin j f
J=l=1mj

We have thus separated f into periodic and proportional parts. We will
m

later observe that to evaluate the periodic portions of the p-integrals

to order k2 it will only be necessary to consider values of m up to 4 in

the summation of (5.26). The proportional term of (5.26), however, requires

more analysis.

We can obtain a more convenient expression for the proportional term

of (5.26) by noting that

(z + r-- cos f)m df = w P (z) (5.27)
0

a relation which, according to Madelung [5] is valid for all z including

imaginary values. Here the P (z) are again the Legendre polynomialsm
_ - m dm  2_m

P (Z) = 2 d (z21)m (5.28)
m ml dz

If in (5.27) we substitute

Z = (5.29)

Ve7 -l

we obtain



nP [-i(e2l1)-] = f - i(--) cos m dfm 0 - J

= ( i )m i (1+e cos f)m df (5.30)

V e Z o-

so that

f (l+e cos f)m df = (i / -) m P ) (5.31)

0 m =-l

= r T (/eL .- ) (5.32)
m

where we have defined

T ( -i) - (i V-l)m Pi ) (5.33)
m m e2

The first few of these polynomials T (x) are given in Table 5.1 alongm

with the corresponding Legendre functions.

The polynomials T (x) can easily be calculated from TO(x) = 1,n

Ti(x) = 1, and the recursion formula

T (x) = [(2m-l) Tm (x) + (m-l)x2T _2(x)]/m (5.34)
m m-1 m-2

Now, substituting (5.32) into (5.26), we have in terms of T (e -fl)' ' n

f m
/ (1+e cos f)m df = f T (/ez ) + c mj sinjf (5.35)
0 m mj0 j=1

We then find the coefficients c by choosing an m, expanding (l+e cos f)m,
mj

integrating, and comparing to the right hand side of (5.35). Thus for

m= 1

f
f (1 + e cos f) df = f + e sin f (5.36)
0

Then since Tj(x) = 1 we must have cll = e and all the other clj = 0.



TABLE 5.1

THE POLYNOMIALS T (x)m

iP (- x)m x
*-- - ---

i

(- - 1)

2x+ V

1,35 30'g, x-q4- + -x-r2 + 3)

1 63i 70i 15i- --x-3- - --x

1 231 315 10517(- xT - x-q- -x - 5)

T (x)
m

1 x-(3 + x 2 )

2(5 + 3x 2

-( 5 + 3X2 )
2

'(35

'(63

+ 30x2 + 3x 4 )

+ 70x 2 + 15x 4 )

-6231 + 315x 2 + 105x4 + 5x6 )

2



Applying this method for m = 0 to m = 4 we compile Table 5.2. Substitut-

ing (5.35) into (5.23) would then give us Sl. Let us consider first the

portion of Sl proportional to f. Thus from (5.35) and (5.23) we write

p(e2l1) (Sl) prop. = p(e2-1) f (2.)n P (X) T [(e2l) ]
2p n n-

- A1 f

where we have defined

(5.39)A1  -p(e2-1) 2 np n ) Tn_2( 2 -)
n=2

then since T (~e-Yl) < (l+e)m our previous investigation of the
m

convergence of Sl shows the rapid convergence of Al.

If we now consider the periodic part of Si, we find from (5.35) and

(5.24)

( 00 b m
S(. .) (b2)mP 2 () c sinjf

p p m+2 1 m
(5.o0)

(5.41)- Al sinjf
j=l

where we have defined by (5.41)

Al = p(e2'- ~ )3 ( ) c + () P()cA = pWe'_-)' L(p -) P3(X) c1i P4(X) c2j

+ (2-) P 5 (X) c3j +
p

If in (5.42) we substitute the values of the P (bl/b 2 ) and the c
n mj

and retain only those terms through order k2 [recalling from (B.3) and

(B.4) that b, = 0(k), b2 = O(k )] we find

(5.37)

(5.38)

p(e2-1) (Sl) per.



TABLE 5.2

THE COEFFICIENTS cmj

S j1 2 3

3e33e + 3e 3

4e + 3e 3

3e 2

3e 2  e 4

2 4-



3(e2-1All = 2pL 2blb22p + b2 e (5.43)

A12  3(e2_1) b24e2 (5.44)Al2= 9 32 (5.66)

The other Aj are of order k3 or higher. Finally, substituting (5.41)

and (5.38) back into (5.22) there results

2
(2al) RI = a(e sinh H - H) + blH + Alf + I A1  sinJf (5.45)

j=l

with Al, All, and A12 given by (5.39), (5.43) and (5.44) respectively.

5.2 The R2 Integral

From (5.2) the R2 integral is

R2 = f ' F(p) dp (5.2)
Pl

If into this we insert (5.13) for F(p)- and then use (5.20) to put the

result in terms of the uniformizing variable f we find

)., 2' = 2_1)+/2 c f

(2a)R = (e2-) ()n P(X) (l+ecosf)n df (5.46)
P n=0 P n 0

We then define

0f

S 2 ( b)n P (X) f (l+ecosf)n df (5.47)
n=0 n 0

We should like to investigate the convergence of S2 . Since cos f cannot

exceed 1, we may write

00

Is21 < f I (b)n P (X) (l+e)n (5.48)
n=0 n

Evaluating the first two terms of the series we find

_T1



S21 < f + bl(l+e)f + i+e f I (-b)m Pm+2 (A)(l+e)
m  (5.49)

On comparing the third term of (5.49) with equation (C.1) of Appendix C,

we see that S2 will converge whenever S l converges. We saw in Appendix C

that we were assured of S1 (and thus S2 ) converging as long as the con-

ditions derived in Appendix B, for the replacement of (l+Ap-1+Bp-2)-  by

the Legendre series, were met.

To evaluate R2 we proceed as we did with R1 and separate it into

parts proportional to f and periodic in f. We substitute (5.35) into

(5.46) to get

(2aj) R2 = A2 f + A2 sinjf (5.50)
j=l

where we have defined

(e2_l) I b)
A2  p (e-1) b n  (X) Tn (e -1) (5.51)

n=0

and

A2 jE (e2 P P () clj + (p)2P2() c 2 j+ " (5.52)

Evaluating the A2  as before and keeping only the terms through order k2

we find

A1-(e2-1) e f--L+3b.2- b2 - 9b b 2  e2  )

A21 = p eL + 3blp2b92 - 9blb2(1+ 2-) +3 4 4+3e 2  (5.53)

A22 = (e2-1)e2 3b 2 -b 2  9b1b2 +3b 3 e (554e2)

(e2-l) e3 l2 + p (5.5)

A2 3 = 8 b 2  b (555)
p p

~~~ ~ __I___~_



3(e2-_ )b 24e4
A24 - 256pb (5.56)

The remaining A2 's are of order k
3 or higher. Thus we can rewrite

(5.50) as

(2a) R2 = A2f + A2j sinjf

j=l
(5.57)

where A2 , A2 1 , A2 2 , A2 3 , and A2 4 are given by (5.51) and (5.53) through

(5.56). Note that the convergence of A2 is assured by the convergence

of S2 .

5.3 The R3 Integral

We should now like to evaluate

R3  f± (p2+c2) F(P)dp
P1

(5.3)

Applying the binomial expansion theorem to (p2+c2)-1

(p2+c2 )-1

results in

00

-2 ()J 2J -2j

j=0

2 00
(l+ecosf) I (_1 )j ()2J (l+ecosf)2J

p J=O p
(5.58)

since pE l o. Substituting (5.58% (5.13), and (5.20) into (5.3)
1+ecosf

yields

(2 3 (e -1) (-()() 2 (l1+ecosf) 2 j n
0 j=0 n=0

(b-)np n()(l+ecosfj+2df

(5.59)

Let us consider the two series within the integrand separately. We

define

(5.60)S () ()2J (1+ecosf)2j=0



The series S31 is a geometric series with first term = 1 and a ratio

between successive terms of

2 2 2
r3l - ( ) (l+ecosf) = - (5.61)

pp

Clearly S31 will converge as long as Ir311 < 1 which requires

p > c (5.62)

Thus p = c is the limiting surface within which actual motion must not

take place if S31 is to converge. Since the substance of the Earth

effectively prohibits all actual motion in this region, S3 1 will always

converge.

We next define the series

S32 = O ( )n P (X) (l+ecosf)n+2 (5.63)
n=0

If X _ 1 then IPn(X) 5 1 and so

IS321 < (l + e c os f ) 2  (Y.)n (5.64)
n=O

We can consider (5.64) to be a geometric series and thus require the

ratio between successive terms to be less than one.

r32 = b2 < 1 (5.65)

or equivalently we require

p > b2  c sin I (5.66)

The condition p > c sin I will always be satisfied since actual motion

cannot occur within the Earth. The approximation b2 = c sin I, however,

*CI
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is only valid under the restrictions discussed at the end of Section 3.

For X > 1 our restriction on the ratio between successive terms

becomes

r 3 2 = 2b < 1 (5.67)

This restriction will certainly be satisfied if p, > 2bl, a condition

which we imposed in Appendix B in order that (1+Ap-1+Bp -2)- be the

Legendre polynomial generating function. Thus no additional restrictions

have been required in order that S32 converge. We have now established

the integrand of (5.59) as a product of two absolutely convergent series

(assuming our trajectory meets the conditions previously imposed) and,

consequently, [2] it is equal to the absolutely convergent series formed

by summing the products of the individual terms. Since this resulting

series is uniformly convergent we may integrate it term by term.

Accordingly we can rewrite (5.59) as

(e21)i f 0
2(a) R3 = pe f I D (l+ecosf)m+2 df (5.68)

p 0 m=0O

where

D = d 6 n (5.69)m jn'

and the summation takes place over all the integers j and n such that

m = 2j + n' (5.70)

In (5.69) we have defined

d = (- 1 )j (C)2i (5.71)
p



and

n -b ( 2 )n ' p X1) (5.72)
n p n

Then, since we can integrate (5.68) term by term we rewrite it as

( R-(e2l1) " f m+2
(2al) R3 = 3 Dm f (l+ecosf) df (5.73)

m=0 0

Before proceeding with the evaluation of R3 let us investigate the

convergence of our new series

f

S3 3  I Dm f (l+ecosf)m+2df (5.7h)
m=0 0

We first take the case X < 1, which excludes only near-equatorial trajec-

tories. If m is even, then n' must also be even, so we set m - 2i, n' = 2n,

and j = i-n. Thus

i i 2
D2i = d.n 62n = (-1 )i-n( p)2i

-2n b )2nP2()
i n0 - n0p p nn=O n=O

Then since IP2n(X) < 1 for X < 1
i

ID2.I < (c)2i ()2n (5.76)
n=0 c

If the extension of the trajectory does not pass through the region defined

in Section 3, then b2 = c sin I and

i.

JD2il < k Y (s in21 ) f ki(i+l) (5.77)
n=0

If, on the other hand, m is odd, then m = 2i+l, n' = 2n+l, and j = i-n.

Thus



i i
D2i+1 = d 62n+ = (-1)i-n( p2i-2n b 2n+p

n=0 n=0

and

i
Dc 2i b bg%2nID2i+i1 < (C) Z ( )

i p p cn=0

If we again take b2 c sin I

D2i 1 < k sinI (sin k (i+l)sinI
n=O

(5.78)

(5.79)

(5.80)

If we now consider A > 1, the equatorial and near-equatorial trajectories,

then by (C.10) J(bZ)n p ()l < (2bl)n. If m is even,we then find
p n pi

D12 ( )2i (2bl)2n (5.81)
n=0

Again assuming thetrajectbry'Sextension does not pass through the region

defined in Section 3, we can set b = kpcos2I, so that

(5.82)
n=u n=0

Then by finding the sum of this infinite geometric progression we must

have

(5.83)

(5.84)

Finally, if m is odd, we find

2i i~
ID2i+ll <(c) i  2 (2bL) n < 2ki+lcos2I (hk)n

i+ p p - nn=0 n=0

Again evaluating the sum of the infinite geometric progression and setting

cos21 = 1 for near-equatorial trajectories

i . i
JD2il < k 1 (4kcos4I)n <_k i Y (4k) n

D2i ki 4k)
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ID2i+ 1 I < 2ki +l 1  - (k)585)D2 -< 2_I (5.85)i+1 -1 - 4k

We now separate S3 3 into an even series and an odd series, S and Se o

respectively. Thus for X < 1
CO

iSeI < f(e+1)2 Y ki (i+l)(1+2e)2i  (5.86)
i=0

and

CO

IS ol< k sinI (1+e)3 f Y (i+l) [(k(e+1)2] i  (5.87)
i=0

co CO 
G

i = I1 n 1 xxi

Then since x 1 and ix1 =( we can see that l(i+l)x =
1-x Y _x20 0 01

(l . Applying this to (5.86) and (5.87) yields

f(e+1) 2

e [1-k(e+l)z ]

and

S < k sinl(l+e)3f (5.89)

o [1-k(e+l)z]z

so that

I (e+l)2 f[l + k sinl(e+l)]
Is33 ! [1 - k(e+1)2 ]2  (5.90)

For X >1 S and S become
e o

IS I < (e+l)2f Y[k(e+1)2] [4k2(e+1)2 1 i
e - 1 -k4k k(e+l)2=0

(e+1)2f I 1 (5i91)
1 - k 1 - k(e+1 1 - k2(e+1) (5.91)

and
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2k(e+l) f 002

Is < -2k(e+ )3  [k(e+1)2]- [4k2(e+l)2]
1=0

2k(e+1) 3f 1 1
1 - 4k 1 - k(e+l) - 1 - 4kz(e+l (5.92)

Adding these even and odd series together yields

k(e+1)4f
IS331 - [- k(e+l)z][l - 2k(e+l)] (5.93)

From (5.90) and (5.93) it is clear that S33 will converge as long as
c2

k(e+l) 2 < 1 or equivalently C <1. This requirement for the convergence
P1

of S33 is exactly the same as that discussed in Section 3.

The values of D can be found from equations (5.69) through (5.72),m

and are shown in Table 5.3 to order k2 .

These D can easily be calculated from the first two values and them

recursion formula

D=- (2 D J 2 + ()J P (bl/b 2 ) (5.94)
j p j2 p j

To evaluate R 3 we separate it into a part proportional to f and a

part periodic in f. Thus we rewrite (5.73) as

(2aj) R3 = A3f + A3  sinJf (5.95)
j=l

where according to (5.35) we must have

A3 = 5 D T +2  (5.96)
m=0 m

and

A3 I p D c (5.97)
m p m m+2,j



TABLE 5.3

VALUES OF D TO ORDER k2
m

m Order DI m

b l / p

(b2 /)
2 P 2 (bl/b 2 ) - (c/p)2

(b2/p)
3 P3 (bl/b 2 ) - (c/p)2(bl/P)

(b2/p)
4 P4(bl/b 2 ) - (c/p) 2(b2/p)

2 P2 (bl/b 2)

+ ()
p



Since R3 is multiplied by c2 = kp 2 in the Kinetic equation (2.18c) we need

only to find the periodic terms through order k in order to have the final

solution correct to order k2. Thus from (5.97) we find

A3 1 = (e2 i) e
p

(e2_1)+"
A 32 = p(e2 3

pA(e2_1)+A33 = j

(e2_l)

+3e2  (2+ c2  + 2
+ - - 2p2 -14 + 3e2

+e2 3b1 e b 2 c (3e e

(b2e3 + c2
-12p 2 )P

3-p ( 2+ c2 )

Since the other A 3j are of order k
2 or higher we can rewrite (5.95) as

(2al) 2 R3 = A3f + Y A3j sinjf
J=l

with A3 and A3J as given previously.

and

(5.98)

(5.99)

(5.100)

(5.101)

(5.102)

S+ b (3P



CHAPTER 6

THE n-INTEGRALS

In the Kinetic equations (2.18) we define the three n integrals

N1 = / *n 2 G(n) dn (6.1)
0

N2  n f ±G (n) dn (6.2)
0

N3 = / *(f-n2) - 1 G (n) dn (6.3)
0

where the upper sign is to be used for positive dn and the lower sign for

negative dn, and with G(n) given by (3.40), n22 by (4.20), a22 by (4.16)

and (4.17), and (a2
2-a3

2 ) by (4.10). Following Vinti's example for

bounded motion we introduce the uniformizing variable * defined by

* = sin- (n/no) (6.4)

and the requirement that * always increase with time. For the case of

Keplerian motion c = 0 and (6.4) becomes

sin = ~- sin (6.5)
no sin i

so that i reduces to the angle between the line of nodes and the radius

vector to the satellite, commonly referred to as the argument of latitude.

_~



Inserting (6.4) into (3.40) yields

G(n) = (a2
2- 3

2 ) cos 2 p(l + n2 sin 2p) (6.6)

where we have defined

2 n 2
n- - 7 = O(k) (6.7)

n2

Notice that n is a real positive number whose magnitude is less than one,

since In221 > 1 > n02. Thus we find

+G(n)-dn= (a22-a 32)no0(l+n2sin2)
-4 d* (6.8)

6.1 The NI Integral

Inserting (6.8) and (6.4) into (6.1) results in

N1 = (a2 2) -
3 
2  n03 f (l+n2sin 2*)- sin 2* d* (6.9)

0

To have the final result correct to 0(k2 ) we shall only need to evaluate

N1 to 0(k) since it is multiplied by c2 in the Kinetic equations. Use of

the relation

-n2 (l+n2sin2p)-sin2 = (l+n2sin2 (l+n2sin2) (6.10)

enables us to separate (6.9) into parts which can be more easily integrated.

j3 Fi dip'
N= ( 2 - /l+nZsinZ d (6.11)

7 [ 1l+nsinz* 0

The integrals are now in the form of Elliptic integrals of the first and

second kinds, with imaginary moduli. To avoid using imaginary moduli, we

employ variable transformations. If in the first integral of (6.11) we

Tr
set ' = y - 2 , d = dy, cos = siny, we find

f 1 / - s nd y  (6.12)
0 vl+nzsin* VTl 7r /2 Vl-kl sin y



where

n2

k12 n (6 .12a)

so that

d 1 d/2
f - d _ d - (6.13)

o vl+nzsin=* /nR /l-k 1Lsin y 0 Il-k 1 sin y

= 1 [F(y,kl) - K(kl)] (6.14)

where F(y,kl) is the elliptic integral of the first kind of amplitude y

and modulus kj, and K(kl) is the complete elliptic integral of the first

kind of modulus kl.

Applying the same transfamation to the second integral of (6.11)

yields

'pi Y

f/ 1 + n sinp d = 1 + n f /1 - klZsin y dy (6.15)
0 'r/2

Y r/2
= /1 + n' [2 /1 - kl2sin zy dy- f .l-k1 sinzy dy]

0 0
(6.16)

= /lHn2 [E(y, kl) - E(kl) ]  (6.17)

where E(y, kj) and E(kl) are the elliptic integral of the second kind

and the complete elliptic integral of the second kind, respectively.

We now seek to express each elliptic integral as a part proportional
CO

to y and a Fourier series of the form B sin2ny. We first note [6]

1thatthat



F( Y+ m7r, kl) = 2m K(ki) + F(y, k1 ) (6.18)

so that the function F(y, kl) - K(k1 )Y is periodic in y with period n.

Furthermore, since it is an odd function of y, we can expand it in a

Fourier series using only the sines of even multiples of y. Thus we

write

F(Y, kl) = 2 YK(kl) + F sin2my (6.19)
m=1

To calculate the Fourier coefficients we note the definition of F(y, kj)

YI
F(y, kl) f (1 - kl2sin 2 y)-  dy (6.20)

0

and then differentiate both (6.19) and (6.20) with respect to y to get

(1 - kl2sin2y)-  2 K(kl) + 2 mF cos2my (6.21)
m=1klITM1 k1m (.1

which is in the form f(x) = A0 + ~A cos . Thus by Hildebrand [7]

L 1

A = f f(x) cos nx dx or solving for the Fkm, we find
n L0 L klm

7r/2
k122fsin2y)-co m

expand the radical using the relation

(1 - kl2in21+ (2R)! k sin2  (6.23)

which can easily be proved by noting that the right hand side generates

the binomial expansion of the left hand side. Substituting (6.23) into
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(6.22) yields

0 2 2 Z 7r/2
Fklm m = k sin2y cos2my dy (6.2h)

ZX=f sin (6.24£=1 0

However, for t > 1

Z-1
2Z (2t)! + -2Z cos-j

siny = )z 2z9+ (-1)1 21-2 (1) (2)! cos(2-2j)y
J=0 

(6.25)

This relation can be proved by expanding [2(eiY-e -iY)]2 binomially and2i

rearranging terms so as to form the summation of (6.25). We also have

the identity

1 1

cos[(2L-2j)y] cos2my = cos[(2Z+2m-2J)y]+ I cos[(2X-2m-2j)y]

(6.26)

With (6.25) and (6.26) substituted into (6.24) we see that the integral

of the first term of (6.25) is zero for the limits 0 + and the terms
2

of (6.26) will yield a zero integral unless either j = Z + m or j = k - m.

However, (6.26) tells us that j < Z so that only the term corresponding

to j = k - m contributes to the integral. Thus

Ssin2y cos2my dy = 2 )m (2£)! 2 (6.27)
0 2?-'(£+m) I ( -m) !0

for m < t . Substituting this into (6.24) yields

F (-1 )m 2  (6.28)
klm = m 24(£1)z(£+m) I (£-m) I

2--m

from which we can see that Fklm = 0(kl 
2m ) = 0(n2m) = O(km). Consequently

for accuracy up to 0(k2 ) in the periodic part we need only take Fkl and

Fkj2 . To 0(k2 ) these are found to be



1 2 3kFkl = - kl2 - -
k11 832

3 k
i4

Fkl 2 = 256

Substituting these back into (6.19) yields

F(y, kl) = 2 K(kl) - 12.(1 + k12 )sin2y + 3 siny

(6.31)

We now transform back to our original variable * using y = i + -

sin2y = -sin20, and sinhy = sinh4, so that

k 2 3_ + k 2 ) i

F(*, kl) - X(k) = + kl) (1 + k 2 ) sin2

+ 3k sin4* + . (6.32)

We can now use the same method to handle the elliptic integral
2

E(y, kl). Thus E(y, kl) - 2 y E(kj) is odd in y and periodic iny with

period n, so that

E(y, kj) E Y (1 - k 1 2sin2y) dy = -E(kl)y +
0

Ekimsin2my
k=1

As before we differentiate (6.33) with respect to y to get

(1 - k1
2 sin 2y) = 2y E(kl) + 2 m m E cos2my

Sem=1 km

and evaluate the Fourier coefficients as

(6.33)

(6.34)

2 /2
E = 2--k1m miT0

(1 - k12sin2y) cos2my dy

Binomial expansion then yields

(1 -kl2 2 =1(2Z-2)! k2siny
£=i

(6.29)

(6.30)

(6.35)

(6.36)

~_______________~___~___L_ ~_L~s~z~-~i~l_-~- --------



and insertion of (6.36) into (6.35) thus gives

Eklm
2 O (2-2) k 2  "/22 ( 22-I 2  f sin2ty cos2my dy
S=l 22-1 2Z1 (£-1)l 0

(6.37)

since the integral of the first term of (6.36) is zero. Then by equation

(6.27)

m+l
Ekm = (-1) (2t-2)1 (2£)! kl2f

2. =m 22 - 1 2! (t-i)! (k+m)! (2-m)
(6.38)

so that Eklm
= 0(k 2m ) = O(n 2m ) = O(km). For accuracy to 0(k 2 ) we need

use only the first two Fourier coefficients. They are

Ekl
k2 k1

4 +
8 32

and

Ek +
Ek12 = - 5+ "

On substituting (6.39) and (6.40) into (6.33), we find

E(y,k l) = . y E(kl) + ( k8 + 3 ) sin2y - k14 siny +-256s

Transformation back to our original variable , then shows that

E(,, kl) - E(kl) = - ,E(k) - (k + k4L)sin2* - k sink+***S8 225 (6.42)

If we now substitute (6.14), (6.17), (6.32), and (6.41) back into (6.11),

we find, after some manipulation, to 0(k)

N1 = -(a2-aa2) - T03[Bip + (2-n2)sin2, + n2 sin] (6.43)

where

(6.39)

(6.4o)

(6.41)

_ _;_____~_~



B1 = -- [-[K(kl) - E(kl)] - n2() E(kl)

k3 1 3 2 1 4 + .. k 1l - 1kl2 3 , 1

We then transform B1 back to our original variable n by using

- = (l+n2) = 1- - n2 + 5 n -
n2 8-

and

= (l+n2) = 1 - + n2 n

n 2 8

Substituting (6.47) and (6.46) into B1 yields to O(k
2 )

B1 = 1 + 3 n2 15 n4 + *21327 ~ -n 128

NI is now given by (6.43) and (6.48).

6.2 The N2 Integral

The N2 integral is given by

N2  f *G (n) dn

0

or by (6.8)

N2 = ( a 222 32) 4 n0 f ' (l+n2sin2Y)-4 dp

With use of (6.14) and (6.32), this becomes

N2 = (c 2 2_ 3 2) - + * K(kj) + k8-2I

+ 3k 4 sin4p + "-

(6.49)

+ i12)sin2*

(6.50)

or, with kl 2 = + . in the periodic terms,

(6.44)

(6.45)

(6.46)

(6.47)

(6.48)

(6.2)

~__I_ __^ ___I_^_



N2 = (a2 2-a 3 2)4 no[B 2* + l(n2
_  n4)sin2

3n4
+ 25 sin4 + ***]

where

B2  - 2 K(kl) 1= kl[l + 1 2 + 9k 14 +
l=+n 7 n k

Transforming B2 back to the parameter n by means of (6.47) yields

9n4

Thus N2 is given by (6.51) and (6.53).

6.3 The Ng Integral

Inserting (3.40) into (6.3) yields N3 in the form

(a22-a32) N3 =

Since 1n2 /n2 21 <. n02 /n2 2 1 = n 2 = 0(k) we can expand (1-n2/N 22)
4

by the binomial theorem. Thus

O (2m) !
(1-n2/n22) =

where n2/N2
2 is negative. Substituting (6.55) into (6.54), we find

(6.55)

(a 2
2 -a 3 2) N3 =

00
(2m)! 2

m=0 22m(mI)2

L E f±(l-n2)-1(l-n2/no2) - n2m dn

m

for m=0

L0 E f±(l-n 2 )-1(l-n2/n 0
2 )- dn

0

(6.51)

(6.52)

(6.53)

(6.54)

where

(6.56)

(6.57)

(6.58)

---- ---~c---------_-- -11~-~f~-1-'- ~ ~-_

r(-n 2 )-1( 2 2/no2 ) ( _n2/ 2 2 ) -dn



We then notice that n2/(l-n 2 ) = 1/(l-n2 ) 1-,

n2/(l-n2 ) - n2 , n6/(l-n2 )= n4/(l-n 2 ) -n4h, etc., so that we can write

m  1 m-1

-- =-1 - n2n
n=0

for m > 1. Use of this relation in (6.57) yields

TIn 1
Lm = f*(1-ln 2 )- (1- 2/ 0no2 ) dn -

0

m-1
= L 0 - Y Lln

n=0

rn m-iJ ± 1 2 n( 1 2 /n0 2 ) -  dn
0 n=O

where

nLl n = fjn2n(l-n2/n 0 2 ) dri
0

To evaluate L0 we first rewrite it as

L0 = ]±-3(n-2_-1-(-20-no2) 4 dri

0

and then introduce the new variable X, defined by

tan x (1-no 2) tan = jcos I tan * (6.6h)

We also require that X and $ keep in step; that is, whenever p is a

multiple of r/2, X and * are equal. Using this new variable we find

(6.65)Csc 2 = l+cos2 1 cot 2X

so that

(6.66)n- 2 = 10- 2 Csc 2* = 1 + cot 2I csc 2x

Differentiating (6.66) yields

(6. 59)

(6.60)

(6.61)

(6.62)

(6.63)

n4/(l_n2) =



n- 3 dn = cot 2 I csc 2 X cot X dX

We note that

cotX dX > 0

cotX dX < 0

for dn > 0

for dn < 0
(6.68)

Then, substituting (6.67) and n=n0 sin* into (6.63), we find

LO = ItanI cotx tanx dX = JItanItdX
0 0

by (6.68). Thus L0 is given by

L0 = ItanIIx = n0o(l-nO2)x

(6.69)

(6.70)

For Keplerian hyperbolic motion (i.e. c=0) we see from (6.66)

n- 2+ csc 26 = 1 + cot 2I csc 2x (6.71)

which becomes

sinx -1 tane/ ItanI (6.72)

x - (6.73)

for direct orbits. (For retrograde orbits 4<0 and since X>0 always,

one must then reverse the sign.) Thus, for c=0, X becomes the projection

of the argument of latitude on the equator.

We then evaluate the Lln integrals by substituting n=nosinP in

(6.62). Thus

2n+ n
L1  = n 2n+  fsin2n d*

0
(6.74)

(6.67)



For n=0, we can easily integrate (6.74) to get

L10 = no0 (6.75)

To facilitate evaluating the L1n for n>0 we note that

sin2np = (2n)! +21-2n (-l)(2n)! cos2j* (6.76)
22n(n)2 1 (n+j)!(n-j)!co

a relation which can easily be proved by applying the binomial expansion

theorem to [(ei -e ie )/2i] 2nand noting that the resulting series

generates the right hand side of (6.76). Inserting (6.76) into (6.74)

and performing the integration yields

= ,2n+l (2n)! + 21 n J(2n)!sin2J(
L = 2 (2-n) (2n)!sin2(7

S 22n(n!)2 22n j=l (n+j)!(n-j) j677)

for n>0. If we now substitute (6.61), (6.70), (6.75), and (6.77)

back into (6.56), our expression for N3, we find

)0

(a22- a32 N3 = no0(ln02)4 (2m)!n2 - () 2m
m=0 22m(m)2 m=1  22m(m! )2

O ~2m M-1 2n+1(2m)ln2 n (2n)!
2m m- 2n+1 (2n)(678)

m=2 22m(m!)2 n=l 22n(n!)2

S (2m)n no 2n+ (-l)J (2n)1sin2j

m=2 22m(m!)2 n1 22n = (n+j)(n-j)! jM=2 2 n=l 2n J=l

Letting n2=1 in (6.55) results in

(1-n0-2) -  ()n2-2m
(ln2 4 = M=1 2ML)+ = 1 . I2 (6.79)

m=0 m1l

_



so that we can rewrite (6.78) as
a2-2)a3 x  o[(1_n2 2) -I

(a2 2-c 32) N3 = n0(l-002)- l-2 - X 00[(1n22)

00 m-1 2n
1 (2m)!' n (2n)! -2m

- + L 22  " (m!) 2 n(n) 2 n2 (6.80)
m=2 n=1

-2mm-1 2n n

(2m)ln2-2m 2n n (-l) (2n)!sin2j
no Y 2'm(mI ) I. In+ 7T(___ .

m=2 n=l j =1 j

or in abbreviated form

(a22_a32) N3 = 01o(l-no02)-(1-n2-2)-ix + B3

+ I B3  sin2st] (6.81)
s=1

where we have defined

- 2 )  -2m (6.82)
B 3  1 - (1-n 2  - Y n2 (682)m2

m=2

m-i
n(amndn ! (6.83)

Ym - 2 (-- (6.83)
n=1

and

B3  - -2m m-i 2nB3s sin2s) - - [ 22m) ! 2  __[ -i) )!2 ) in2 #s s m=2 m (m!)Z - 2 n+J) (n-j)'j
s1 m2 n1 j=1

(6.84)

To solve for B3s we note that the functions sin2j are orthogonal.

Suppose we multiply (6.84) by sin2s'p and integrate from 0 to !. We can

then do away with the summation over j and set j = s* for the coefficient

B3s'. Since j must be less than or equal to n, our lower bound on n

becomes s'. Similarly, n must be less than m, so the lower bound on m

becomes s' t 1. Thus



B3  (2)n-m m n 2 (-) (2n)!
s 22m(m) 2  s (n+s)l!(n-s)!sm=s+l n=s

(6.85)

-2(s+1))where we have dropped the prime from the s. Since B3s = 0(n2 )

= 0(ks+l ) we need only the B3 1 terms in order to have the sine terms of

N3 accurate to order k . Setting s = 1 in (6.85) yields to 0(k2 )

B31 = - nO2n2-4+
B32

(6.86)

Thus for our purposes (6.81) becomes

(a22_a 2) N3 = n0o[(1-no2)-((-n2-2) - B

+ B31 sin2 + **.]

with B3 and B3 1 given by (6.82), (6.83), and (6.86).

Let us now investigate the convergence of the series

Since

(2n)! 1 3 5 .. (2n-1) < 1
2zu(nI) 2 " 6 2n = 2

-2m

m=2

(6.88)

for n > i, then if we sum m-i of such terms we must have

S nm- ( 2n

n=i

Also, for m > 2

(2m)! 3
2z(m)2

Thus by (6.89) and

1i m-1S i (2n)! m-i
= =l 22n(nl)2 < 2

n=i

(6.90)

m (2n) n2n 3 m1 3 (m
22n(n )2 - 8 2 1-_1)

n=l

(6.89)

(6.90)

(2m)!
Ym 221a(m!)7

(6.87)

(6.91)



for m > 2. Thus

-n2
2m 3 -2mYm 2 < (m-1)ng

m=2 mm=2

The ratio of two successive terms is

m -2 -2r 4 - n 2  ' 2n2 -
rn-I

-2
Since n2 = 0(k), the series Y n2

m=2

-2m
converges rapidly.

Consider now the convergence of the Fourier series

0 0 2 m m-i
SB3  sin2s I < IB3s 1 (m)In II

s=1 s=l m=2 n=l

n nl
n 2-2n(2n)l

j=I(n+j)!(n'J)J=l " "-j)

But, for n > 0

(2n)I (2n)!
2z(n+s)! (n-s) -2n(n) - 1

so that

m-I n (2n)! m-i

SI 2z(n+s)!(n-s)!
<  Y n < m2

n=1 J=l n=l

and

I B3s sin2sl < I
s=l m=2

m2 (2m)! I,2-2m
22m (m!)z <

by (6.95). Then the ratio between successive terms must be less than

r5 = (m+l)2 -2 -21 (698)
rs - -- In2 I I (6.98)

for m 2. Again since -2= (k) the series converges rapidly.
for mn > 2. Again since fl2 = 0(k) the series converges rapidly.

(6.92)

(6.93)

(6.94)

(6.95)

(6.96)

(6.97)1 m2 2-2m
m=2
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Referring back to our equation for N3 (6.87), it is now clear that

all the terms are well-behaved, except for the X term which seems to

7r 3nbecome infinite for no =  (ie I = etc.) These apparent singular2'2

points represent polar trajectories. N 3, however, occurs only in the

third Kinetic equation (2.18c) where it is multiplied by a3 , the polar

component of angular momentum, which reduces to zero for a polar orbit.

Let us investigate a3N3 as no
2 - 1. For this case the X term of

N 3 will be by far the largest, so for a polar trajectory we can write

a3N 3  3(1- ) no((no2)(l-n2-2)-X + higher order terms (6.99)

or since a2
2 -a 3

2  a 2
2

a3N3 L nO(1-n2)-(l-n2-2 )- X (6.100)

But from (4.9) and (4.10) we find

a22-a 2 02 + sin2 io n2-2(1-no 2 )  
(6.101)

a2

so that

22 2) (6.102)
2 = - no2 - sin2io n2- 2(1no2) (6.102)
a2

or since sin 2io = 1 for polar trajectories

a2 = (1-n2-2)J(1-n02) (6.103)

Inserting (6.103) into (6.100) we find

a3N3 = (sgna3)X + higher order terms (6.104)

Thus a3N3 is well-behaved for a polar trajectory as long as X is well-

behaved. We can plot X versus * from equation (6.64) and the requirement



that X equal p at every multiple of ".
2*

1. For n0 2 = 0 (equatorial trajectoryj), tanX = tan

3 1
2. For n0

2 = 3, tanX = 1 tan

3. For n 0
2 = l, tanX = 0

Thus X as a function of * can be plotted as in Figure 6.1. Whenever the

J 3r
trajectory passes over a pole, 2' 2 , etc., with P > 0, then X jumps

by 7r. If the trajectory passes over a pole with ' < 0 then X drops by R.

Since for a polar orbit a3N3 is given by (6.10o), it clear from (2.18c)

that the right ascension,o, also jumps or drops by w, in accord with the

jump or drop in X.
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CHAPTER 7

SOLUTION OF THE KINETIC EQUATIONS

7.1 Summary of Integrals

Before proceeding to the solution of the Kinetic equations, let us

assemble the results of the two preceeding sections

(2al) R = a(e sinh H - H) + blH + Alf + Allsinf + Al2sin2f

(2al)+3R = A2f + A21sinf + A22 sin2f + A23sin3f + A24sin4f

(2Ia)+R 3 Agf + A31sinf + A32sin2f + A33sin3f + A34sin4f

=1 2)sin2*
N1 = -(a2 22a 32)4 n03 [Bl + V2-n2)sin2

N2 = (a22a32)
4 no0 2* + l(n2- 4)sin2*

N3 = (a2 2-32) no 11-no2)- (l-nj2) - X

+ sin4*

+ -5-sin414

+ BO + B31sin2]

(5.45)

(5.57)

(5.102)

(6.43)

(6.51)

(6.87)

Al = p(e2-l) n2 )np n ) Tnn=2

Al1 = 3(e2 2blb22p + b2 e

where

(5.39)

(5.43)



A1 2  3(e2-1)b2 4e2

32p 3

A2  ( e21 "  n ( ) Tn (V )
n=0

A21  (e2-1)e 1 + 3bb b (1 )+ 3b 44+3e2
A21 L 2 - (i - '

A2 2  - 0(e2)2 3b b

(e2-1)/e3 blb22

A23  2)3 pi +

A 24  3(e21)" b 2  e4

A2 256pb

As = ( 2 -)
P -

9bb 2
8P 3 +

3b 4  2

4~p 
2j_

D T (mJ -1)
m m+2

A31 = (e2 e 2 +
p

( 3 +3e 2 ,- b 2

P L( (2p2
C2)(4+3e2 )
p

A 32 = (e2 1)

A 3 3 = (e2-1)i
A3"---- -

A 3 4 = (e2 3

[2

12p

3b e2 -

e 4  b2

32p 2 +

B = - + 3 2 15

1 2 + -

B2 = 1 - 1 2 + 94 4

(5.44)

(5.51)

(5.53)

(5.54)

(5.55)

(5.56)

(5.96)

(5.98)

2 2 2 3e2
(3 2=e (5.99)

(b22+ c2)
2

e3

3p/-1
(5.100)

ci] (5.101)

(6.48)

(6.53)



B3 = 1 - (1-n_*2) - Ym2 - 2m  (6.82)
m=2

(2m)! m no2n(2n) (6.83)

2 2m(m!) 2 n=l 2 2f(nl)2

B31 =3 no2n2- 4 (6.86)32

n= - nr (6.7)
n2

7.2 The p and n Kinetic Equations

Our method of solving the Kinetic equations will be to solve for p

and n from the first two Kinetic equations and then use these results to

solve the third Kinetic equation for *. Before doing this it is desirable

to obtain some relationships between f and H. From p = a(e cosh H-1) =

a(e2-1)/(l+e cosf) we find

cosf = e - cosh H (7.1)
e cosh H - 1

sinf = Vr- sinh H (7.2)
e cosh H - 1

e + cosf
cosh H = e + cosf (7.3)1 + e cosf

sinh H = -i sinf (7.4)
1 + e cosf

f e+1 - Htan e+l tanh - (7.5)
2 e-1 2

so that one anomaly is uniquely determined by the value of the other.

The plus sign occurs in (7.2) and (7.4) because both f and H are positive

for all t.



Substituting the appropriate p and n integrals into the first two

Kinetic equations, (2.18a) and (2.18b), results in

t + 61 = (2al) [blH + a(esinhH-H) + Alf + A11 sinf

+ Al2sin2f] - c2(a 22-ag2)4
- n0

3[B 1

+ (2-n2)sin2 + 2- sin,] + periodic terms O(k3 ) (7.6)

82/a2 = -(2al) [A2f + A2 1sinf + A2 2sin2f + A2 3sin3f

+ A2 4 sinhf] + (a2-a32) 4 no[B 2 + !(n2_- 4)sin2*

+ sin4] + periodic terms O(k3 ) (7.7)256

Our aim is to solve the above two equations for f, H, and 4 using

the relations between f and H derived previously. With f, H, and 4 we

can then find p = a(ecoshH-l) = and n = nosin.
l+ecosf

To solve for f, H, and * we first set

f = fo + fl + f 2  (7.8)

H = H0 + H1 + H2  (7*9)

* = 0o + 1 + 4,2 (7.10)

where f0, H0 , and *0 are the solutions to the zeroth order portion of

(7.6) and (7.7) (ie the part of the equations remaining after all terms

of order J2 or higher have been dropped.) Similarly, fo + fl, HO + HI,

and 40 + 41 are solutions to the equations after the terms of order J2
2

or higher have been dropped. Finally, f2 , H2, and 42 complete the

solution to an accuracy of J2
2 . Thus f0, H0 , ~O are of order J 2

0 ;

fl, HI, *1 of order J2
1 ; and f2 , H2 , 42 of order J2

2 . We are essentially

solving for f, H, and 4 as series solutions in powers of J2.



Listing the coefficients of (7.6) and (7.7) according to their order

in J2 we find

J2
0 : a, (2ct)-, (a22_a 32)-, e, n, B1, B2, A2

J2
1 : Al, A21 , n

2, bl, c 2 , A2 2 , b2
2

J2
2 : All, A12 , A2 3, A2 4

For the zeroth order solution we set H = Ho, f a f0, p = 0 and drop all

terms of 0(J2 ) or higher. Equations (7.6) and (7.7) become

(t+Bl) = (2a) - [a(esinh HO-HO ) ]  (7.11)

and

2/2 = -(2 l) A2f 0 ' 0 (a2 2_ 32)
- 4 B2 0  (7.12)

Equation (7.11) is just Kepler's equation in hyperbolic form. We can

assume that it has been solved by some convenient method to yield the

value of Ho. We then find f0 from our previously derived anomaly relations,

e.g.

tan 0 e+l ta Ho (7.13)
2 e-1 2

Using this value of f0 we can solve for *0 from (7.12) in the form

P0 = (a22-U32) n0-1B2- 1 [82/ 2 + (2al)
- A2f0] (7.14)

Proceeding to the first order solution we set f = fo + f 1, H = H0 + HI ,

S= O+ * and drop all terms of 0(J2
2 ) or higher in (7.6) and (7.7).

Thus we find

__~ -~ 1--1_4~1_1-



t + 81 = (2al) [bHgO + aesinh(HO+H 1) - a(HO+H 1 )

+ Alf 0] - c2n03 (a2 2a 32)4 [B1p 0 + 1 sin2* 0 ] (7.15)

B2/a2 = -(2al) [A2 (f 0 +fl) + A2 1sinf 0+A2 2sin2f 0]

+ no(a 2
2_-a3

2 ) [B2(O 0+) + n- sin2o 0] (7.16)

But

sinh(HO+H 1 ) = sinh HO+ sinh Ho(cosh Hi-1) + cosh H0 sinh HI (7.17)

= sinh Ho + 2sinh HO + H 1 cosh HO (7.18)

to order J22. Substituting (7.18) into (7.15) and subtracting (7.11),

we find

0 = (2aj)- 4 [blHO + ae 2 sinh HO + aeHlcosh HO - aH1

+ Alfo] - c2n 03(a22a
- 323  [Bp 0 + - sin2 0] (7.19)

which can be put in the form

H1
2 esinh H) + H(ae cosh HO-a) + blHO + Alf 0

-c2n 0 3(2a)(a 2 -a32)- (B 1 0+ I- sin2*0) = 0 (7.20)

Equation (7.20) is a quadratic in H1, and thus yields two solutions for

H1. Since H1 is small we seek that solution of (7.20) which is closest

to the solution of (7.20) with the first term set to zero. That solution

is

H 1 = HI( - esinhHl )  H ) (7.21)
2(ecoshHO-l)

where



h = c2n 0 o(2al) (a2 2-a32 )-[B1 0+ ~in2001]-bH 0O-A1 f0 (
a(e coshHO-1) (7.22)

we then find fl from our anomaly relations, e.g.

tan ( fo+fl ) = e+l - (Ho+H 1 )
2 e-l tanh 2 (7.23)

Subtracting (7.12) from (7.16) and solving for 01 results in

01 = -B2-1 n2 sin20 0 + B2 -1(2al)-(22_a3 2) -1 [A2f

+ A2 1 sinf0 + A22 sin2fg] (7.24)

Finally, for the second order solution we set f = f 0 + fl + f 2 , H HO

+ H1 + H2, * = *0 + *i + P2 and drop only those terms of order J2
3 or

higher in (7.6) and (7.7). There results

t + 81 = (2al)-[bl(HO+H1 ) + aesinh(HO+H 1+H2 )

- a(HO+H 1 +H2 ) + Al(fO+fl) + Allsinf 0

+ A 12sin2f 0] - c2 03(a22-a32)-+[B,(*0+*)

+ (sin2*0+2*Icos2fO) - sin20 + sin0] (7.25)

and

2/a2 = -(2al)- [A2 (fO+fl+f 2 ) + A2 1(sinfo + f1cosf0)

+ A2 2 (sin2fo + 2flcos2f 0) + A2 3sin3f 0

+ A2 4sin4f 0] + n0(a22-a32)-i[B2(0+12 2)

n2  3n4  3n4
+ -4sin2f0 + 2 Icos2p0 ) - 3 sin2* 0 + - sin4 0] (7.26)

But to order J 2
2

sinh(HO+H 1+H2 ) = sinh(HO+H 1) + H2 coshH0O

_1_1 i__ ___1_1_

(7.27)



If we substitute this into (7.25), and subtract (7.15) from the result,

we find

0 = (2al)-[blH1 + aeH2 coshH0 - aH2 + Alfl

+ Allsinf0 + Al2sin2f0] - c203(a22-_32)-[B 1 l

n2  2

+ cos20 - 8 sin2*0 + r- sinh4 0] (7.28)

or solving for H2

H2 = (aecoshHo-a) - 1 -blHi-Alfl-Allsinfo

-Al2sin2f0 + c
2no03(2al )(a 22-a3 2)-[Bi1

n2 n2
+ .Lcos20 - - sin20 + sin0 (7.29)

We then solve for f2 from the anomaly relations, e.g.

tan (f+fl+f2 ) = (e+l) tanh (H0+H 1+H2 ) (7.30)
2 e-1 2

To find P2 we subtract (7.16) from (7.26) leaving

0 = -(2a l )  [A2f2+A21f lcosf 0+, 222flcos2f 0

+ A2 3sin3f 0+A24sinhf 0 ] + no(a 22-a32)-[B2*2

2  3n4  3n4
+ -- 2 Icos2 0 -32 sin2* 0 + 3n sinh 0] (7.31)

Solving for iwe find

-1 n2  3n4 3n4
2 

= 2(- =- BIcos20 + 32 sin2 0 - - sinho)

+ B2- 1 no--1(2 2)+(2),)[A2f2 + A2 1flcosf 0

+ A222flcos2f 0 + A2 3sin3f0 + A24sin4f0 ] (7.32)



This completes the solution, through order J2
2 , for f, H, and *, and thus

for the spheroidal coordinates p and n.

7.3 The Right Ascension 4

According to the final Kinetic equation (2.18c) and the definitions

of R3 and N3 we have

4 = 83 - c 2a 3R 3 + a3N3 (7.33)

Substituting above for R3 and N 3 from (5.102) and (6.87) respectively

we find

4 = B3 + a3(a22-a 2)-4n0[(l-n02 -(l-n2-2)- X

+ B3n 2~ n0202- 4 sin2p] - c2a 3 (2al)-4[A3 f

+ A3 1sinf + A32sin2f + A3 3sin3f + A34sinhf] (7.34)

where ' and f are now known and X can be found from tan X = (1-no2) tanp.

Thus the final spheroidal coordinate 4 can be found from (7.34)

From Figure 6.1 it is clear that X may vary quite rapidly as the

satellite passes over or near a pole. We can avoid such difficult

calculations, however, by expressing the position of the satellite in

rectangular coordinates. The relations between rectangular and spheroidal

coordinates are given by (2.1) and (2.2). From (7.34) it is clear that 4

may be expressed as

4 = ' + KX (7.35)

where

S + a3 2 2.a 32)
4no[B3  + 3 fn02n2-4sin2*]

- c2 
3 (2al)-[A3f + I A3 sinjf] (7.36)

j=1
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which is well-behaved near the poles and KX is that part of 4 which varies

rapidly near the poles. By definition no is positive so that we may write

K = IKI sgn a3 (7.37)

and thus find

K2= a 32(a22-a32 )-12(1-nO2 )-1 (1-n2 2)-1

a 2 n 2 2

ca2 -a 3 Z)(1no0 +n2- L n022)

(7.38)

(7.39)

Substituting for n02n22 and n0
2 + n22 from (4.3) and (4.2) respectively

we find

K2 = 1 (7.40)

so that

K = sgna3 = ±1 (7.41)

for direct or retrograde motion, respectively, so that 4 will either

always increase or always decrease. Thus

4 = 0' + Xsgn a3 (7.42)

From the relation tan X = (1-no2)i tan * and the requirement that X and

; are always positive, we find

sinx = (1-n
0 2) sin,

'l_-no sinzt
(7.43)

and

cosx = cos

Yl'o sinz*
(7.44)

so that

~~_ ___ ~_T_ ___I~L



exp iX = cos + il sin(7.45)
l-n00z sinz*

If we insert (7.45) and (7.42) into (2.1) using the relation

sgnas(l-nO2)i= sgna 3lcosII = cosI we find

X + iY = (p2+c2) [cos* + icosl sin*] exp in' (7.46)

or separately

X = (p 2+ c2)[Cosp cossv - cosI sinp sinQ'] (7.47)

and

Y = (p2+c2) [cosI sino cosQ' + sinQ' cos*] (7.48)

also from (2.2)

Z = pn (7.49)

These expressions for X, Y, and Z cover all cases and do not involve

calculating . Thus they contain no singularities or rapidly varying

quantities, causing no trouble for polar or nearly polar trajectories.

For a strictly polar trajectory cos I -+ 0, a 3 + 0, so that Q' = a3 and

X + iY = (p2+c2) cos* exp i83  (7.50)

If we did want to calculate 4 for a nearly polar trajectory, it

would be best calculated by

exp ix = cos* + i cos I l sinp (7.51)
Vcos2* + cos2I sin2z

and (7.36). Using (7.51) for x avoids the difference of two nearly equal

terms in the denominator.
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7.4 The Velocity Components

Differentiating (7.46) with respect to time yields

+ ii = [PPLc + i'l](X+iY) +

(p2+c2)(-sint + icosI cos*); exp iP'

or separately

p 7cL X - Y + (p2+c2) (-sin* cosP - cosI cos sint )

P P Y + X' + (p2+c2) (-sinp sinQ' + cosI cosp cosb')
P2+=c

Then from (7.49) we obtain

Z = pn + p; = pn + nop cosi P

(7.52)

(7.54)

(7.55)

Clearly, the three velocity components are well-behaved for all trajectories.

To find p we first combine equations (10.1) and (13.1) of Vinti [1] to get

as 2(P
2+c2n2 )

a = c (pZ +c) (7.56)

where S is the Hamilton-Jacobi function and

(7.57)

Then from equation (53.1) of Vinti [11 we find

as / •(7p
at = c(( +1)

Combining (7.56), (7.57), and (7.58) yields

(pz+czn7)

(7.58)

(7.59)

_ / i__l _CII_

(7.53)



If we take F(p) in the form of (3.11) and insert pl = a(e-1), P2 = -a(e+l),

and p = a(e cosh H-1) we find

F(p) = 2al(aesinhH)2 (p2+Ap+B) (7.60)

Since p = ae sinhH H and H > 0 for all t, sinhH < 0 accordingly

as p > 0, respectively. The 1isinhH I resulting from (7.59) and (7.60)

thus reduces to sinhH and thus

(2ai)} aesinhH(p2+Ap+B)

(p2+c22) -)

We then proceed to find n by a similar method.

Combining equations (13.2) and (10.2) of Vinti [1] yields

as p2+c 2n2 
ar T 2

But from (53.2) of the same paper

as -,Jn
an (1-n2)

so that

V7G 7n= G(
P pL rLi

If we use G(n) in the form of (3.40) and insert n = n0sin and

n 2

n2= _~T2, there results
n2

G(n) = (a22-a3
2 )(l+n 2sin 2*)cos 2p

(7.61)

(7.62)

(7.63)

(7.64)

(7.65)

Substituting (7.65) for G(n) in (7.64) results in

(a22-a2)(l+n2sin2 cos

p +c2 .

(7.66)
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The ±Icosi resulting from (7.64) becomes cosP, since cos >< 0

accordingly as n X 0, respectively. Then, since r = nOcosk we can solve

for p as

* n (ap22~ 32) (l+n2sin2pa a - (7.67)nocos n0(Pz+cznz)

To find 6' we differentiate (7.36). Thus

= a3(a2 -3 2) n0[B 3 + o02 nO24cos2P*]

- c2 a3(2al)
-i [A3 + JA3j cosfjff (7.68)

j=1

To solve for f we differentiate the relation p = p(l+ecosf)- 1. Solving

for f we find

P (7.69)
0 esinf

Using the anomaly connection (7.2) to substitute for sinf yields

Pf -
(7.70)psinhH e

Finally substituting for p from (7.61)

Sa/e (2a ) (p2+Ap+B)(f = +(7.71)

Thus equations (7.53), (7.54), (7.55), (7.61), (7.66), (7.67), (7.68),

and (7.71) form a complete algorithm for the velocity vector in X, Y, Z,

space.

7.5 Determining the 8's From an Initial State Vector

Up to this point we have merely assumed the 8's to be known constants

without specifying how they might be calculated. In this section,

therefore, we consider determining the values of the 's given an initial

state vector of the satellite.

i~_ _IL1_



We have seen previously that from this initial state vector the a's

can be calculated according to equations (3.8), (3.9), and (3.10).

Using these values of the a's we can then calculate the orbital elements

ag, e0, and i0 from equations (3.3), (3.4), and (3.5). This allows us

to calculate values for the set of orbital elements a, e, and no = sinI

from equations (3.33), (3.36), and (3.48). We can determine the initial

values of the anomalies H and f from the equation, pi = a(e
2-1)/(l+ecosfi),

and the anomaly connections (viz. equation (.5)). The initial values of

i and X can be calculated from ni = nosin i and tanXi = (1-n02)tan i.

We now have sufficient information to evaluate all the terms in the Ki-

netic equations (7.6), (7.7), and (7.34), excluding the B's. Thus we can

solve for the B's numerically from these three Kinetic equations. Note

that for nearly polar orbits, where our calculation of Xi depends on the

difference of two nearly equal numbers, Xi would be better calculated by

(75.)

In summary, we have seen that the 's like the a's, can be determined

from an initial state vector.

7.6 Solution of the Kinetic Equations as c Approaches Zero

Setting c = 0 in the Kinetic equations (7.6), (7.7), and (7.34)

should reduce them to the case of simple Keplerian hyperbolic motion. In

this manner we can not only provide a rough check on our results, but

also obtain some insight into what the constants BI, 32, and 63 represent.

Dropping all terms of order k or higher in (7.6), (7.7), and (7.34)

results in

t + B1 =  (esinhH-1) (7.72)

B2 /a 2 = -(2a 1)
- - f + no(a22-a32 )

- (7.73)
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m = 83 3(a22a32 4 TIO X0S + 3 l-n

But for c = 0 we know a = ao, e = e0 , and I = i 0 so that

a

n = sinI sin* + sin6

(a22_a 32) + a2 sinI

Using these relations in (7.72), (7.73), and (7.74) we reduce the

Kinetic equations to

(7.74)

(7.75)

(7.76)

(7.77)

(7.78)

(7.79)

(7.80)

t + 81 = (a3-) (esinhH-H)

-1 sine
82 =  - f = sin ( sin) - f

S= 3 + X = 83 + sin - ( t a n e
tanI

The corresponding Keplerian relations are

t - = (a3) (esinhH-H)
11

sinI

€ = n + x = S + sin-1 (tane
tanI

These angles are defined in Figure 7.1.

(7.81)

(7.82)

(7.83)

Upon canparing the reduced Kinetic equations (7.78), (7.79), and

(7.80), to the corresponding Keplerian relations, it is apparent that to

agree identically we must have

-81 + T = time of perigee passage (7.84)



FIGURE 7.1 Definition of Angles on

the Celestial Sphere



85

B2 w m = argument of perigee (7.85)

83 Q 1 = longitude of the node (7.86)

as c goes to zero. We have also seen that f, I, and X reduce to the

true anomaly, inclination, and projection of the argument of latitude

onto the equator, respectively, as c goes to zero.

- -- ----- _- -- '-- I ---~E*L i __ _



CHAPTER 8

ASYMPTOTIC MOTION

In this section we consider the analytic determination of one of the

asymptotes of the spheroidal "hyperbola," either incoming or outgoing,

given the other asymptote. Such a solution would find application in

calculating swingby maneuvers about an oblate body. Thus given a desired

outgoing asymptote, for example, we could determine the necessary incom-

ing conditions.

The incoming asymptote is defined by p -+ r -+ o, t + -- , while the

outgoing asymptote is defined by p + r + c, t -+ c. From (2.2), these

conditions imply n -+ sine on the asymptotes. Setting p - o in (7.61),

(7.66), (7.67), (7.68), and (7.71) results in

p -+ (20a)' (8.1)

n1 0 (8.2)

0, - o (8.3)

0 o (8.4)

+ o (8.5)

Note that these equations are true on both asymptotes. Inserting (8.1)

through (8.5) into (7.53), (7.5h), and (7.55) we find



* Xr
r

* Yr
r

z + rn

But by (7.47) and (7.48)

X - r(cos* cosQ' - cosI sini sin')

Y + r(cosI sinP cosl' + sinO' cos)

(8.6)

(8.7)

(8.8)

(8.9)

(8.10)

Substituting (8.9) and (8.10) into (8.6) and (8.7) and using

n = sinI sin in (8.8) yields

X + r(cosp cos' - cosI sin* sin')

S+ r(cosI sin* cosQ' + sinX' cos)

Z - r sinI sin

(8.11)

(8.12)

(8.13)

Given a state vector on an asymptote we can most easily calculate

the a's using the modified forms of (3.8), (3.9), and (3.10)

2 2

3 = x.. - Y.. = [( r axr 2)(k+2) ]
1 1 1 1 ax ay

a2 = [r(Z -rn)]
2 + a3

2 - 2alc 2 ni2(l-n 2)

(1-n 2)

(8.14)

(8.15)

(8.16)

= ( 2 + j2 + 2)(r  2 + r 2 + r, 2) _ c22
ax ay az

where Xi + YJ + Zk is now the hyperbolic excess velocity vector and

r = r i + r a + r k is the vector from the origin to the aiming point,
-a ax ay az -
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i.e. the point on the extension of the asymptote closest to the origin.

With these values of the a's we can then determine the orbital elements

ag, e0, i0 , and the elements a, e, I using the method of the previous

section. Then equations (8.11), (8.12), and (8.13) allow us to find ti

and Q'.. Since r and I will be the same for both asymptotes, the1

problem of determining one asymptote given the other reduces to the

problem of determining the A' and A* caused by a swingby of the oblate

body. Here we have defined

*out =in + A 
(8.17)

ou = ' in+ AQ" (8.18)
out in

To solve for AA' and Ai we first consider the outgoing asymptote.

Setting t + in (7.11) yields

Hou t =0 (8.19)

and thus by (7.13)

fo cos-1 1)  (8.20)
out e a

Inserting this value of fo into (7.14) results in

= (C2-2a32+ [pa + (2aj) - A2 fa] (8.21)
out = n0aB2 a

Then by (7.22)

H' = - 1 2 = 0 (8.22)
out ae e 0 ae 1 H ...

21 31

so that by (7.21)

..



(8.23)

Proceeding similarly with the remaining equations of Section 7.2 we find

flout
= 0 (8.2h)

-1 n2
o = -B2 - sin20lout 8 sin2out

+ B2-1(2al)-

(a2
2-a32) [A21sinfa + A2 2sin2f ]0 aa

H2 out = 0

f2out = 0

202ut = B 2out
n2

4 out

(8.26)

(8.27)

(8.28)

sin 2 0out

3n 4

- sin4I out) +

[A23sin3foo u t + A24sinf0out

out = €0out + lout + 2out
(aB2-o0 2)

B2 n0

+ (2ctl)-(A2fa + A21sinfa + A22sin2fa + A23sin3fa

+ A24sin4fa)] + B2-1 n2 sin2f0out

3n4 sin2 0  3n4 sinh 0o
+ 3 sin2 out 256 out32 out 256 out

2

-- *lout cos2 0out

(8.30)

and by (7.36)

out = 8 3 + as(a22-a32) [B + no 2 n2- sin2lout

- c23(2al)- [A3fa + A31sinfa + A32sin2fa + A33sin3fa

+ A34sinhfa]

cos 2 0outout
3n 4

32

Thus

(8.29)

(8.31)

= 0H out

-1 n- (a22 _a32 22 )-



Proceeding now to the incoming asymptote we set t + -o in (7.11),

resulting in

H0in = - o (8.32)

so that by (7.13)

f. = cos- (- -) (8.33)in  e

Since foi n cannot equal f0out we must have

fOin = -fout = -fa (8.34)

Clearly equations (8.21) through (8.31) can be applied just as well to

the incoming asymptote if we replace all "out" subscripts by "in" sub-

scripts and substitute -f for f . Performing the above replacements ina a

(8.30) and then subtracting the result from (8.30) yields

A* E*22(a22-32) (2al ) - [A2fa
out in O= B2

+ A2 1sinfa + A2 2sin2fa + A2 3 sin3fa + A2 4sin4f a]

S 2  2  2

+ B2-1_ E- sin(20+2A 0 ) + - sin2 0 - --(*1+A 1)cos(2*0+2AP0)

+ - C°20 32 32

3n 4  3n
- 3 sin(4p 0+4Ap0) + 2n sin fo] (8.35)

where we have dropped the in-out subscripts in favor of letting the incom-

ing conditions be represented by 0, i1 , and the outgoing conditions by

*0 + A*0, *I + A1,. If in (8.35) we expand the sin(a+b) and cos(a+b)

terms and substitute sin n 0 = sin n in-npicos n in and cos n*0 = cos ni n

+ ni1sin nin we find that, to order J2
2 , (8.35) becomes

in

_ ___1____~___111___1_____~__
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A = 2(a2 2~ 3 2) (2a 1 )4 n 0 -I 2
1 [A2 fa + A2 1sinfa

+ A2 2sin2fa + A2 3sin3fa + A2 4sin f ]

_ n 2  2

+B2  [--- (sin2(*in+A0) - sin2i n ) - -n cos2(in+A 0)

+ 3--(sin2(in+A* 0) - sin2in)- sin(in 0)- sinin

(8.36)

where *in can be determined from the incoming asymptote as discussed

earlier in this section. If in (8.21) we replace fa by -f , change the

subscripts to "in", and subtract the result from the original equation,

we find

2A2(a22-321 (2l )- fo= 2)a (8.37)
n0B2

Performing the same operations on (8.26) and keeping only first order

terms results in

-1 n2
1 = -B2 n-- [sin2( in+6A 0) - sin2in]

+2B 2 -1 0-1(2al)-(a 22-a 32) [A21sinfa + A2 2 sin2f ] (8.38)

Thus since fa and 4in can be found for the incoming asymptote, we can

then calculate A40 , A4I , and finally A from (8.37), (8.38), and (8.36)

respectively. Then, by (8.31), AQ can be determined from

AQ' = a3 (a22-32 n [BA + 3- 2 n 2-(sin2( ji+A*)
03 32 in

- sin2*in ) ] - c2a3(2al)- 2[A3fa + A31sinfa

+ A 32sin2fa + A33sin3fa + A 34sinhfa ]  (8.39)

Having then determined out = in + Aip and = '. + AO' we canout in out in

then proceed to calculate the outgoing velocity component and thus the

outgoing asymptote, from (8.11), (8.12), and (8.13).



92

Notice that equations (8.36), (8.37), (8.38), and (8.39) can be used

equally well to find the incoming asymptote if given the outgoing

asymptote. In this case we merely replace fa by -fa and in by out

- AiO. The resulting Ap and AQ will be such that in o= out + A and

in = ou+ S.in out



CHAPTER 9

THE "PARABOLIC" TRAJECTORY

9.1 Definition and Problem Formulation

In this section we consider the special case of trajectories

which have a1 = 0. These trajectories are the analog of parabolic

motion in the Keplerian formulation. Setting al = 0 in (2.6) we find

F(p) = c2a32 + (p 2 +c 2 )(+2pp) (9.1)

to have F(p) = 0 we must have k + 2pp = -c2c 3 2(p2+c2) -1 , or for R = 0

p3 + pc2 + 22 0= (9.2)
2p

which will have one negative real root, which we will label pl, and two

imaginary roots. For k = 0 we can see from (9.1) that the slope of F(p)

will always be positive. Also from (9.1) it is clear that increasing k

from zero allows pl to be even more negative, while decreasing k from

zero forces pl to increase, finally becoming positive. The critical

value of k at which this transition occurs is seen to be

kcrit = - 3
2  (9.3)

From the above information we can sketch F(p) as in Figure 9.1.

For physically realizable motion we must have F(p) > 0, so that for

perigee, pl, to be positive k must be negative and greater in magnitude

I_ _
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FIGURE 9.1 F(f) Versus f for oi'=0

___~IIC_ _C_ _



than a3
2 . Thus, as before, we can define

S- a3
2

where

.22  032

Setting al = 0 in (2.20) results in

G(n) = - 3
2 + (-n2)a2 2

If 'no are the roots of G(n) = 0 then

no = (a22a 32)

(9.4)

(9.5)

(9.6)

(9.7)

According to (9.5) both roots are real. Then, since G(n) = -o for

n = w or n = -c we can sketch G(n) as in Figure 9.2. The motion again

takes place between -nO and +nO.

9.2 The Orbital Elements

According to (3.3), (3.4), and (3.5) the orbital elements ag, e 0 ,

and i0 become

ao0 -* C (9.8)

(9.9)

(9.10)iO E cos- 1(a3/a2 )

and by (3.7)

2
Po = 2I-I (9.11)

Note that these are the same values we would obtain from setting al = -0

__ _~I__IV*__

eg -+ 1



allowable
/ motion

FIGURE 9.2 G(~) Versus ? for c =0



in the corresponding orbital element definitions for the bounded case.

(Vinti [2] equations (3.3), (3.4), and (3.5).) Inserting (9.4) in (9.1)

results in

F(p) = c2a3
2 + (p 2+c2 )(-c 2

2+2pp)

If we put F(p) in the form

F(p) = 2p(p-pi)(p 2 +Ap+B)

(9.12)

(9.13)

we find, upon comparing coefficients of p in (9.12) and (9.13)

a2
2 = 2p(pl-A) = Ppo

C2 = B - pl A

c2 (a2
2 -a 3

2) = 2pPlB

(9.14)

(9.15)

(9.16)

With k0 and y defined as before we then seek a series solution of

the form

nP1 = I bj ko n
n=O

A = b2n kon
n=O

B = b 3n kon

n=O

(9.17)

(9.18)

(9.19)

Inserting (9.17), (9.18), and (9.19) into (9.14), (9.15), and (9.16) and

solving for the bij we find to order k02

pi 2- [1 - 4y 2 ko + 16y 2 k 0
2 (1-2y 2 )]

Pl 2

A = -2poy 2k[1l - 4ko(1-2y2 )]

(9.20)

(9.21)



B = po2 (1-y2 ) k0[l + 4y
2k0] (9.22)

For nearly equatorial trajectories (9.13) will have three positive real

roots. Note that (9.21) and (9.22) correspond exactly to the A and B

equations for the bounded case (Vinti [2] equations (3.19) and (3.20))

with x = (1-e02) = 0. They also correspond exactly to (3.25) and

(3.26) of the present paper with x = (e02-1) = 0.

Since ao -+ - for "parabolic" motion we find it more convenient to

choose as orbital elements po, e0, and i0. The elements p, e, and I are

then defined by

p 2pl (9.23)

nO E sinI (9.24)

e - e 0 = 1 (9.25)

Combining (9.20) with (9.23) results in

p/po = 1 - 4y2kO + 16y 2k0
2(l-2y2 ) + ... (9.26)

and from (9.7) and (9.10)

no = sinI = (a2= sini 0  (9.27)a2

Thus the elements I and i0 are identical for this case. Equations (9.25),

(9.26), and (9.27), which define the relationship between the two sets of

orbital elements, can be obtained alternately from the corresponding

bounded (Vinti [2]: (3.32), (3.26), and (3.40)) or unbounded (present

paper: (3.39), (3.34), and (3.48)) relations by considering the limiting

case e0 = 1. Having shown that the"parabolic" orbital elements po, eg,

i0 , or p, e, I can be derived as the limiting case of either the bounded



or unbounded equations, we can now proceed to obtain the values of the

p and n integrals for the case al = 0 from those previously derived for

the cases al < 0 or al > 0. The next two subsections are devoted to

showing that the two sets of "parabolic" equations of motion so derived

are identical.

9.3 The "Parabolic" Solution as Derived From the Unbounded Solution

In this subsection we seek to determine the "parabolic" p and n

integrals, and thus the Kinetic equations, as the limiting case, al -* 0,

of our results for unbounded motion. From (5.45) and the definition of

a 0 we find

R1 = (-) [bH - aH + aesinhH + Alf + Allsinf + A12 sin2f] (9.28)

However, substituting x2 = e0
2-1 = 0 into (3.33) we find that a = a0

so that (9.28) can be rewritten as

R " = - 1 [blH - aH + aesinhH]1 + 1 [Alf

+ Allsinf + Al2sin2f] (9.29)

Consider first the term in brackets with the subscript 1. From the

anomaly relation (7.4) we have

shH = e-sinf = (7.4)
l+ecosf

and so

-1 /eL2l sinf
H = sinh sinf (9.30)

l+ecosf

However, the series expansion of sinh-1 is
However, the series expansion of sinh is

___~~LI ___I_



100

-1 u3  3u5
sinh u = u - - + + " (9.31)

so that (9.30) may be rewritten as

2 sinf 1 (e2 -l)sin 3 f
H l=(e2-)3 1+ecosf - 6 (l+ecosf)3 + (9.32)

If we then write the subscripted bracket term in the form

(Py (e2)-4( E)( -1 [b H esinihH
( (e-1 [ ] = ( e-1) H (e L1) + (e_)

(9.33)

and insert into it (9.3) and (7.4) for H and sinhH, respectively, we find

(-)(e 2 -1) -  (0)- -
1 L sinf 1 (e2-1)sin 3f
p 1+ecosf (l+ecosf) - +

S sinf 1 sin 3f
(e+l)(l+ecosf) + (l+ecosf)

= ( ) [ tan + tan + 1 tan f] (9.35)
S p 2 2 2 6 2

in the limit as e - 1. With this result we can rewrite (9.29) as

R1  () [( 1.+ 1) tanf + tan3 .+ Al'f
p p 2 2 6 2

+ All'sinf + Al2 "sin2f] (9.36)

where by the use of (5.39), (5.43), and (5.44) we have defined

Al = (b)n P (X) T (0) (9.37)
n=2 P n n-2

SAll P (-2blb 2
2 p + b 2

4 ) (9.38)

32p
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Again using the fact that a = a0 in the limit, we can write (5.57)

in the form

R2= (

4
[A2 f + I

1 j=l
A2j sinjf] (9.40)

or, dividing the coefficients by /e4- and taking the limit as e - 1

R2 =() [A2'f +

4
A2 sinjf]

j=1

where, with the use of (5.51) and (5.53) through (5.56)

A2 = p
n=0

() n p ( ) Tn(0 )p n n

bl4+ 3b1
2-b2

2  45
A21 = p + p3pp- 8

A2 3b 2 b 2 Sb1b2

-6 p 4

b b + 21 b

21 b 4

A23' = - b8 + b

A2 4 = 256 p

In a similar fashion the R3 integral (5.102) becomes

R3 = ( )[A,-f +
j=1

A3 ' sinjf]

where from (5.96) through (5.101)

A3 = p-3 D T 2 (0)
m=0O

A31 = P-3 [2 + 5- 1 7(b 2 p c2)]

A32e = p-3 [ + 3 -bL (b 2 )

(9.41)

(9.42)

(9.43)

(9.44)

(9.45)

(9.146)

(9.47)

(9.48)

(9.49)

(9.50)

--- i
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A 33 ' = 1  3 ( + c2)

s =(b2  +
2 )

32p~ 2

(9.51)

(9.52)

In evaluating the n integrals we first note that setting x2= e0
2-1

= 0 in (3.51) results in

n2= -n02/A22 = 0 (9.53)

for the "parabola." Inserting (9.53) and (9.7) into (6.43) and (6.48)

results in

N 1 = a2 2 - sin2) exact (9.54)

Similarly (6.51) and (6.53) become

N2 =
a2

exact (9.55)

-2
To calculate N3 we note, in addition, that from (3.50) n2-2 = 0 for the

"parabola," so that (6.87) becomes

N 3 = X
a 3

exact (9.56)

It is interesting to notice that all the n integrals are exact. Substitut-

ing these integrals into the Kinetic equations (2.18) results in

t = (a, )-[( + 1) tan + 1 tan3f +Alf
1 p 2 2 6 2

2
+ I Al,' sinjf + periodic terms 0(1)]

j=l

1+ 2(a 2 ) [ - sin2*] (9.57)
a2 2 T

-
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4
82 = -a 2 ( ) [A2'f + I A2 sinjf + periodic terms O(k)]+

j=l (9.58)

- 83 = -c2a 3(P ) [A 3 'f + AS ' sinjf + periodic terms O(k 3 )]+ X

(9.59)

Setting c + 0 in the above Kinetic equations and comparing to the

corresponding Keplerian equations provides one method of checking our

solution. Thus dropping all terms of O(k) or higher from (9.57), (9.58),

and (9.59) we find

t+ 1=( tan + tan3 )  (9.60)
2 2 2 s

2 = -f = sin- (si)- f (9.61)sini

- 83 = X = sin - 1 (tan (9.62)tani

which are indeed the Keplerian equations of motion for the parabolic<,

trajectory.

9.4 The "Parabolic" Solution as Derived From the Bounded Solution

In this subsection we will show that the "parabolic" solution

obtained as the limiting case of Vinti's [2] bounded spheroidal solution

is identical to the "parabolic" solution derived in the previous sub-

section. This, of course, must be the case if both the solutions for the

bounded and unbounded cases are to be correct. Since we have previously

shown that the orbital elements p, e, i and p0, e0 , i0 have the same

value in the limit of "parabolic" motion whether derived from the bounded

or unbounded case, we can retain the notation found in Vinti's equations

without ambiguity. Furthermore, since Vinti's variable v is defined

exactly the same as f in the present paper, we may make the substitution

v -+ f in Vinti's equations.



104

From V(5.30)* and V(3.3) the R1 integral becomes

R1 = (~-) [bE + aE - aesinE +Alf + Allsinf + A 12sin2f]U1 (9.63)

Dividing V(3.26) by V(3.28) yields

a = eP/P
a0 (1-e')/(l-eo z )

1 + 2koy 2 (x 2 -2)+k 0
2y2( 3x4 2x4y2-16+24x216 2y 2 )

1 + kOgy(3x 2-h)+koZYZ(5 4-2x 4y2 -20x2+282 y2+16-32y)

(9.64)

Setting x 2 E l-e 0
2 = 0 in the above relation yields

a = ao

for the "parabola." Using this fact we can rewrite (9.63) as

R1 = (T) (1-e2)- [blE + aE - aesinE + Alf + Allsinf + A12sin2f]

(9.66)

If we then solve V(8.1a) and V(8.16) for sinE we find

sinE = (l-e2 ) sinf
l+ecosf

or, equivalently

E sin-  [(1- e2 )+sinf
l+ecosf

(9.67)

(9.68)

where sin-u may be written as the series expansion
where sin u may be written as the series expansion

-1 u3  3u5
sin u= u + g-- + + . (9.69)

If we insert (9.67) and (9.68) into (9.66), using the above series

Equations preceeded by a V indicate their origin in Vinti [2].

(9.65)
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expansion for sin-, perform the indicated division by (l-e2) , and then

take the limit as e -) 1 we find that R, reduces to

R = (+ ) tan + 1 tan3f+ Al f
p 2 2 -6 2

+ All'sinf + A 12 "sin2f] (9.70)

where

A1 = ( )n p (X) R (0) (9.71)
p n n-2n=2

and All' and Ai2' are identical to the coefficients derived previously

and given in (9.38) and (9.39). Further investigation reveals the fact

that R (0) = Tn (0), so that (9.70) and (9.37) are identical. A

comparison of (9.36) and (9.70) then shows the R1 derived from Vinti's

equations to be the same as the R1 derived previously from the unbounded

case.

From V(5.35) the R2 integral may be expressed as

R2 
= (P)' (1-e 2 )" [A2 f + A2 sinjf] (9.72)

j=l

which, upon dividing the coefficients by (1-e2) and then setting e - 1,

reduces immediately to equations (9.41) through (9.46) of the previous

subsection. Thus the R2 integrals as obtained from the limiting cases of

the two solutions are identical.

The R3 may be written from V(5.60) as

R3 = ( ) -(1-e 2 )-  [A3f + 4 A3j sinJf] (9.73)
j=1

The same manipulations used in reducing R2 allow us to reduce P3 to

equations (9.48) through (9.52) of the previous subsection. Thus, in the

limit of "parabolic" motion, the R3 integrals are identical.
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In finding the limiting values of the n integrals we first note that

for x2 = (1-e2 ) = 0 (3.42) and (3.43) become

q2 (n0/n2)2 = 0 = -2 (9.74)

Using the above relation along with (9.7) in Vinti's N 1, N2 , and N3

integrals (V(6.38) through V(6.41) and V(6.64), V(6.65), and V(6.70))

permits us to reduce them to the same n integrals obtained previously

((9.54), (9.55), and (9.56)) from the unbounded case.

We have thus shown that, for the spheroidal problem, the solutions

for bounded motion proposed by Vinti [2] and the unbounded motion given

in the present paper reduce to the same "parabolic" solution, as given by

(9.57), (9.58), and (9.59), in the limiting case al = 0.
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CHAPTER 10

SUMMARY: ALGORITHM FOR SATELLITE POSITION AND VELOCITY

In this section we summarize the results of previous chapters by

presenting an algorithm for calculating the position and velocity vectors

of a satellite on an unbounded trajectory using the spheroidal method of

solution. We assume that the constants U, re, and J2, which characterize

the gravitating body, are given and, in addition, the spheroidal orbital

elements a, e, I, 81, 82, and 83 are known. This case is entirely general

since we have seen in section 7.5 how one could calculate these elements

from a set of initial conditions. Thus with V, re, J2 a, e, I, 81, 82,

and 83 known we compute once for each trajectory

C2 = r2J2  (2.4)
e

no = sin I (4.4)

p = a(e2-1) >0 (3.32)

D = (ap+c 2 )(ap+c 2 nt) + 4a 2 c2rn (10.1)

N = (ap+c 2 )(ap+c 2n ) + 4a2c2  (10.2)

A = -2ac2(1-n )(ap+c 2n )/D <0 (4.14)

B = c2nJN/D >0

___ cll~j_

(4.15)
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-2 c 2 D
n22=- a- <

apN

bl = -A/2

b 2 = B >0

a0 = a + A/2 = a - b i < a

2
Po = [c (1-ri) + apN/D]/a 0

a2 = (PO)

a3 = a2cOSI(1 + ap )

n2=- > 0

a = (a-aj ),/no = a211-c2(

X =bl/b 2

The Legendre Polynomials are found from

PO( ) =l1

P(X) = X

and for m>1

P (A) = [(2m-1)XP (_l) - (m-1)P 2 ()]/m

X2 = e2_1

The polynomials T (x) are found fromm

To(x) = 1

(4.20)

(5.5)

(5.6)

(4.5)

(4.17)

(3.7)

(4.18)

(6.7)

(10.3)

(5.7)

(10.4)

(10.5)

(10.6)

___ *1_1_1^

(10.7)
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T (x) = 1

and for m>1

T (x) = [(2m-1)T (x) + (m-1)x 2 T (x)]/mm m-i m-2

Al = px
n=2

A2 = x
n=0

Do = 1

b2) Pn ( )T (x)
p n n

D1 = bl/p

for n>1

Dn -
n P

D n_ 2 +
n-2

n
2)Pn ( )
p n

A3 = x3
m=0

D T (x)m m+2

Bl = -B 1 = 1/2 -3n
2/16 + 15n4/128

B2 = 1 - n2/4 + 9n4/6h

(2m)I
m = 2 (m!)

m-1

n=1

B3 = 1 - (1-n-22 ) 4

n (2n) I
2 1(n!)

o

- Ym2
m=2

All =(3ex/4p3 )(-2blbjp + b)

(10.8)

(5.34)

(5.39)

(5.51)

(10.9)

(10.10)

then

(5.94)

(5.96)

(6.48)

(6.53)

(6.83)

(6.82)

n
2) Pn l)n-2(x)

(5.34)



A12 = 3xbje
2/32p3

= xe bl+ 3bj-b

A2 1 
=  _7 3 pZ

A22 
2  3b-b

A22 = p 8pz-

A2 3 = Xp [
~8 p p

xe
A3 1 = 7 [ 2 +

p
1(3 3 )e- ( 2

2p

+ 2
+ 2)
ps (4 + 3e 2 )]

A3 2 = 3
P

A3 3 = [

e2 3e2 b

ble3

12p

S 2c 2 3e2

3p 2

A3 4 = ep 5 ( +c2)

zI = (2,)- = (ao)

Then for each time t at which the satellite's position and velocity are

desired we calculate

solve for H0 :

(7.11)t + 81 = z1a(e sinh H0 - Hg)

then

[(e+ ) tanh (Ho/2)]e-2

110

(5.44)

+ 3b4(h+3e)]

9bpb
-8p

+ (3+e2/2)

(5.53)

+ 1
p

(5.54)

(5.55)

(5.56)

(5.98)

e4
+_

+ c2)]

(5.99)

(5.100)

(5.101)

(10.11)

9b lb e- 2 p S , -%

(7.13)fg = 2 tan- 1i
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o = [ 2/"2 + zlA 2f0 iB2

H [(c 2 n/zla)(-Bjp + sin 2 0) -blHo - Alfo]
=1 a(e cosh Ho -1)

H1 = Hi [1 - Hie sinh H0/2(e cosh Ho - 1)]

fl = 2 tan 1 [(e+') tanh (Ho+HI)] -

n2sin 2 +F aj [ A2 fl + A 2 1 sin f0 + A2 28B2  B2

H2 = [ -blH 1 - Alfl - Allsinf 0 - A12sin2f 0 +

2Z2

+ 4i1cos2 0 - -sin20 + ~- sinh* 0)]/a(e cosh

H = Ho + H1 + H2

f2 = 2 tan- 1 [(e+li tanh H/21 -f 0 -f0 -
e-l1

f = f 0 + fl + f 2

n2 3n 3n
2 = B21 I(cos20 + 3 sin2 0 - n sin4 )

= BS (- -T 256s

+ a2zlB 2
1 ( A2f2 + A2 1flcosf 0 + A2 22flcos2f 0

+ A23 sin3f 0 + A2 4sin4 f0)

P = 90 + 1+ P2

p = a(e cosh H - 1)

(7.14)

(7.22)

(7.21)

(7.23)

(7.24)sin2f 0]

( -Bi 1

(7.29)

HO-1)

(10.12)

(7.30)

(10.13)

(7.32)

(10.14)

(5.16)
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S= lnosin IJ

3= +"3 ( B3~ + -nIn2~in2 )
a22

- c2 a3z1 ( A3f + I A3jsin jf )
j=1

The components of the position vector are given by

S= (p2 + c2) [ cosicosno - cosIsin sin' ]i

Y = (p2 + c2) [ cosIsin~cost + sin'cos* ]i

Z = pn

The components of the velocity vector are found from

ax (p2 + Ap +B)f Z 1 (p2 + c2rZ)

p = p2efsinf/p

* = a~ (1 +n2sin 2 )/(p2 + c2n2)

S= a3, (B3 + nrn24cos2 ) - c2a3 zl(A 3 + j JA3 cosjf)f

j =1

X = " xX-Y+(p2+ 2 )(-sincos-cosIcos sinQ ' )*

Y = Y + XA + (p2+ 2 ) (- sin*sin '+cosIcostcosQO)

Z = pn + nopcos *

(6.4)

(7.36)

(7.47)

(7.48)

(7.49)

(7.71)

(7.69)

(7.67)

(7.68)

(7.53)

(7.54)

(7.55)
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This completes the algorithm for determining, at any time t, the

position and velocity vector of a satellite on an unbounded trajectory.

The next chapter deals with a computer program which compares the results

obtained from this algorithm to ordinary Keplerian hyperbolic motion.
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CHAPTER 11

NUMERICAL COMPARISON OF THE ORBITS, WITH AND WITHOUT

OBLATENESS, FOR GIVEN INITIAL CONDITIONS

In the previous chapter we summarized the algorithm that one would

use to calculate the time history of the position and velocity vectors

for a satellite on an unbounded trajectory given the oblateness param-

eter J2 of the gravitating body and the spheroidal orbital elements, a,

e, I, 81, 62, and 83- Using the state vector calculated for t = 0, we

can then rework the problem for J2 = 0 by the application of simple

conic formulae. We thus calculate the Keplerian orbital elements as,

es, Is, , w, 2 and the time history of the trajectory the satellite

would traverse if the Earth were a perfect sphere. I will refer to this

latter trajectory as the Keplerian or spherical trajectory. A flow

chart for the process is shown in Figure 11.1

In this manner we can compare the trajectories for an oblate and a

spherical planet for the same initial conditions and determine the magni-

tude of the deviations as functions of the energy, perigee distance, and

inclination of the trajectory. At this point let us derive a set of

Keplerian relations suitable for the numerical examples to be considered.

T = time of perigee passage

w = argument of perigee

Q = longitude of ascending node or, if there is only a descending node,
longitude of descending node -1800.
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FIGURE 11.1

TRAJECTORY COMPARISON FLOW CHART

Given
spheroidal method

- - r(t), v(t)

spheroidal
method

r(O), v(O) common initial conditions

spherical
method

spherical method
i r (t), v (t)

a, e, I, 81, a2, 83

as, es, Is 1 , w, 1 0
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11.1 The Keplerian Trajectory From an Initial State Vector

In this section we assume that r0 and v0, the initial position and

velocity, vectors are given and should like to determine the spherical

(i.e. J2 = 0) orbital elements as, es, Is' T, w, and Q as well as the

time history of the trajectory. Battin [8] has been used as a reference

in the following derivations.

We can find the element as from the energy equation as

a = ()-1 (11.1)
s P ro

which is greater than zero for hyperbolic motion. We then find the

angular momentum from

h = rO x V0  (11.2)

which allows us to obtain the eccentricity from

e 2 1 + h2 (11.3)
s as

We then solve for the inclination by dotting a unit vector in the h

direction with a unit vector in the z direction.

h
I = cos- ( - i ) (11.4)

s h --z

We then calculate the unit vector in the direction of perigee

i = 1 (1 1 )r 1 (r * (11.5)
-P e a roe s

and the unit vector along the line of nodes

i x h
i = - (11.6)

_ __~T~I__ i _ _IUUII



117

The longitude of the node and argument of perigee are then

S= cos-(i * i ) (11.7)
-i

w = cos (i * i ) (11.8)
-n -p

The initial value of the true anomaly is

hf iro * v0f- = tan -I ro Y (11.9)
2 2 h -- an

ro

which allows us to calculate the initial value of the hyperbolic anomaly

H = 2tanh- 1 [(e-1 tan ] (11.10)
so0  e+l 2

Since the initial time is to = 0 we finally solve for the time of

perigee passage from Kepler's equation

T = ( s)(H - e sinh H ) (11.11)
S sO s sO

Having thus found the spherical orbital elements we then calculate the

position and velocity vectors for each time t from the following set of

equations. First,we obtain H as a solution of the Kepler equation
s

( ) (t-T) = e sinhH -H (11.12)
as s s s

and then the position and velocity vectors can be found directly from

Battin [8] as

r(t) = [ as [cosh(H -Hso) - 1 r0

s t - r H-Hs - (1 3
+ [t sinh(Hs-H S) (Hs-Hs 21

as (1113)

a
s
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t) = - sinh(Hs-Hs 0)ro

+ [_ - a s  [cosh(Hs-H0s) - 1 v 0o (11.1)

This completes the algorithm for finding the spherical orbital

elements and state vector given an initial position and velocity vector.

11.2 The Computer Program

In order to compare results derived from the spheroidal method with

results of the ordinary Keplerian equations a computer program, embodying

the flow chart of Figure 11.1, was written in Fortran IV computer lan-

guage for use on the IBM 360 machine. The program, which is shown in

Appendix E, accepts values of the oblateness parameter J2 and the

spheroidal orbital elements a, e, I, 81, 02, and 83 as input. Using the

spheroidal algorithm summarized in Chapter 10 it then computes the

position and velocity vectors and the spheroidal true anomaly and

spheroidal hyperbolic anomaly for the desired values of time. The num-

ber of time steps required as well as the amount of the time step are

specified as inputs to the program. On the basis of the initial position

and velocity vectors thus calculated the program then determines the

Keplerian orbital elements and the spherical position and velocity vec-

tors for the same values of time using the algorithm derived in the

previous section. Notice that the spherical algorithm is invalid for

inclinations close to 0 or 1800 since the orbital elements w and 0 lose

their meaning. The spheroidal portion of the program, however, is valid

for all inclinations.

It is appropriate at this time to explain certain details of the

actual numerical computation performed by the program. The physical

units utilized are those of the canonical Vanguard system. In this

_ ~ _ _ __
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system the unit of length is the equatorial radius of the Earth (taken

to be 6378.388 kilometers) and the gravitational constant G is taken to

be unity. The value of the Vanguard unit of time is found to be 806.832

seconds and v, the product of the gravitational constant and the Earth's

mass, is unity.

For the purpose of this thesis arithmetic calculation was performed

in the single-precision mode, since higher numerical accuracy was

unwarranted to show the effects of oblateness (to be justified in the

following section). Only minor program changes are required to utilize

the double-precision mode and thus obtain more accurate results.

Both the spheroidal algorithm and the spherical algorithm involved

the solution of a Kepler-type equation. The iterative sequence found in

statements 141 ff. and 242 ff. of the program in Appendix E was quite

sufficient for my purposes. A flow chart of this routine is shown in

Figure 11.2. M represents the "mean anomaly" and H the "hyperbolic

anomaly."

Using the method depicted in Figure 11.2 and single-precision values

for the cosh and sinh functions AH was found to converge quite rapidly

(within ten cycles for all cases tested) to a limiting value well below

the required 10 6 . Once AH had reached this limiting value further

iterations could not decrease it. Thus the program allows 20 cycles for

AH to become less that 10- 6 , after which it prints out a warning and

proceeds with the calculations using the most recent value for H. The

twenty cycle limit was never exceeded in any of the many trajectory

calculations performed by the author.

The calculation of the spheroidal coefficients A1 , A2 , and A 3 involv-

ing convergent infinite series was also done by an iterative procedure.

As soon as the ratio of the nth term of the series to the sum of the
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FIGURE 11.2

FLOW CHART FOR SOLUTION OF KEPLER-TYPE EQUATION

start

IMI >1

Ino
H =M

yes I

H = sgnM(ln e )e

-+ M' = esinhH-H

AH = (M-M')/(ecoshH-1)

AH < 0.000001

Ino
IAH i> nIHI -

no
H = H + AH -

yes
H = H + AH

end
final value

of H

yes

AH = s nAHIHI
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-7
previous n-1 terms is less than 10 we consider the calculation complete.

Convergence of the series is normally so rapid that if the criterion has

not been met by the 10th term,the program prints out a warning and

proceeds with the calculation using the most recent value of the

coefficient.

11.3 Results of the Computer Comparison

The following six pages are samples of computer output for several

unbounded trajectories. The value of J2 used is that of the Earth and

R and V are the magnitudes of the position and velocity vectors,

respectively. The subscripts X, Y, and Z indicate components of the

vectors along the X, Y, and Z axes. The H and F are the hyperbolic and

true anomalies, respectively. An asterisk following an H or F indicates

an anomaly is defined by spheroidal coordinates, otherwise the spher-

oidal and spherical results may be compared directly.

Since the deviations between the spheroidal and spherical trajectories

are considerable, it would appear that the single-precision mode of

computation is justified for the accuracy required in this analysis.

One might well ask, however, just how much of the obseryed deviation is

due to computer roundoff or truncation error in the two different schemes

of computation. In order to answer this question the program was run for

a number of different trajectories (including the six example trajecto-

ries of the text) with the oblateness parameter J2 set equal to zero.

If all calculations were performed perfectly, i.e. no roundoff or

truncation error, we would expect the spheroidal and spherical traject-

ories to be identical. The deviations observed in this case, which can

be taken as an indication of roundoff and truncation error, in no case

exceeded 3 percent of their value for the J2 or Earth and were, in fact,

of the opposite sign. Thus the deviation of the spheroidal trajectory

.---_-~- ----------- - ---------CI-~i-LLL ---
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TRAJECTORY NUMBER 1

GIVEN J2= 0.00108228
A=1.1000 E=2.0000

BETA1=0.0000 BETA2=0.5240
I=0.3490

BETA3=0.5240

SPHEROIDAL SOLUTION

RZ
VZ

0.0 0.566089
-1.387759

3.0 -3.395325
-1.173351

6,0 -6.738613
-1.074125

9,0 -9.895065
-1.034828

12.0 -12.964940
-1.013591

0.924758
0.749889

1.513356
0.019983

1.509605
-0.012813

1.458208
-0.020096

1.393302
-0.022801

0.188184
0.489112

1.094563
0.219765

1.701618
0.191375

2.259665
0.181930

2.797706
0.177214

1.100475
1.651495

3.875118
1. 193920

7.112193
1.091115

10.254010
1.050890

13.336350
1.029218

-0.000003
-0.000005

1.456193
1.645056

1.991857
1.842113

2.324736
1.916740

2.568580
1.956570

SPHERICAL SOLUTION

THE SPHERICAL ELEMENTS ARE
AS= 0.10998500E 01ES = 0.20014740E 01 IS= 0.34903580E 00

OMGA= 0.52437630E 00 W= 0.52368600E OOTAU= 0.47857000E-04

TIME RyRX
VX

RZ
VZ

0.0 0.566089
-1.387759

3.0 -3.395430
-1.173496

6.0 -6.739287
-1.074340

9.0 -9.896434
-1.035069

12.0 -12.967060
-1.013847

0.924758
0. 749889

1.514508
0,020446

1.512132
-0.012361

1.462075
-0.019653

1.398487
-0.022364

0.188184
0.489112

1.095820
0.220269

1.704369
0,191866

2.263873
0.182413

2.803353
0.177692

1. 100475
1.651495

3.876016
1.194164

7,114026
1.091407

10.256800
1.051203

13.340140
1.029543

-0.000041
-0.000072

1.456511
1.644723

1.992273
1.841753

2.325204
1.916367

2.569081
1.956187

TIME RX
VX

m

--------- ---- --- - ----- --- ----- ----- ------

~ -- -- - ---- - -- ------------------------- U----- ----

H*
F*
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TRAJECTORY NUMBER 2

GIVEN J2= 0.00108228
A=1.1000 E=2.0000

BETA1=0.0000 BETA2=0.5240
I=0.,7850

BETA3=0.5240

SPHEROIDAL SOLUTION

RY
VY

0.0 0.630098
-1.221494

3.0 -3.022916
-1.098582

6.0 -6.159676
-1.009013

9.0 -9.126260
-0.972926

12.0 -12.013070
-0.953292

0. 814009
0.462048

0.869859
-0.109111

0. 509516
-0. 125223

0. 130345
-0. 126955

-0. 250594
-0.126889

0.388986
1.010767

2.262918
0.454493

3.518383
0.395792

4,672523
0.376263

5.785276
0,366510

1.100429
1.651418

3.874980
1. 193880

7.111976
1.091072

100253680
1.050845

13,335890
1.029172

-0.000012
-0.00020

1.456170
1. 645044

1.991831
1.,842107

2.324707
1.916736

2.568548
1.956566

SPHERICAL SOLUTION

THE SPHERICAL ELEMENTS ARE
AS= 0.10992500E OI1ES= 0.20010660E 01 IS= 0.78505620E 00

OMGA= 0.52428190E 00 W= 0.52398870E OOTAU= 0.20632300E-03

TIME RX
VX

RZ
VZ

0.0 0.630098
-1.221494

3.0 -3.022852
-1.098558

6.0 -6.159600
-1.009025

9,0 -9.126246
-0.972956

12.0 -12.C13170
-0.953333

0.814009
0.462048

0. 869202
-0. 109358

0.508173
-0.125444

0. 128342
-0. 127169

-0.253214
-0.127097

0.388986
1.010767

2.264124
0.454950

3.520961
0.396245

4.676439
0.376709

5.790545
0.366954

1.100429
1.651418

3.875486
1.194055

7.113091
1.091272

10.255430
1.051059

13.338310
1.029394

-0.000179
-0.000310

1.456303
1.644755

1.992039
1.841820

2.324953
1.916447

2.568818
1.956275

TIME RX
VX

1

- -- -- -- ---- I - - -- ~ ~ 11~ ~ --- 1)- - -- II)-- -~

__ ,, --- -~-- ------- ,----r---~ -r~-----u ------ -,~~
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TRAJECTORY NUMBER 3

GIVEN J2= 0.00108228
A=1.1000 E=2.0000

BETA1=O.0000 BETA2=O.5240
1=1.2220

BETA3=0.5240

SPHEROIDAL SOLUTION

RY
VY

RZ
VZ

0.0 0.730835
-0.959983

3.0 -2.436705
-0.980796

6.0 -5.248076
-0.906431

9.0 -7.915515
-0. 875401

12.0 -10.513910
-0.858291

0.639702
0.009388

-0.143623
-0. 312648

-1.066208
-0.302474

-1.962250
-0.295460

-2.841522
-0.291026

0.517206
1.343605

3.009354
0.604602

4.679511
0.526534

6.214892
0.500555

7.695239
0.487581

1.100382
1.651341

3.874837
1.193839

7.111744
1.091029

10.253320
1.050798

13.335410
1.029122

-0.000021
-0.000036

1.456146
1.645032

1.991803
1. 842099

2.324676
1.916729

2.568515
1.956561

SPHERICAL SOLUTION

THE SPHERICAL ELEMENTS ARE
AS= 0.10996510E 01ES =  0.20006610E 01 IS= 0.12220350E 01

OMGA= 0.52413610E 00 W= 0.52429810E OOTAU= 0.36519970E-03

TIME RX

0.0 0.730835
-0.959983

3.0 -2.437115
-0,980871

6.0 -5.248691
-0.906495

9.0 -7.916330
-0. 875468

12.0 -10.514920
-0.858361

0. 639702
0.009388

-0.144968
-0.313140

-1.068955
-0.302927

-1.966333
-0.295898

-2. 846901
-0. 291456

0.517206
1 .343605

3.009115
0.604440

4.678831
0,526393

6.213802
0.500424

7.693762
0.487456

1.100382
1.651341

3.874960
1.193947

7.112162
1.091140

10.254070
1.050915

13.336500
1.029243

-0.000316
-0.000548

1.456094
1.644787

1.991803
1.841887

2.324700
1.916527

2.568555
1.956363

TIME RX
VX

_,, _~ __ __ ~ , ~

_ __ _
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TRAJECTORY NUMBER 4

GIVEN J2= 0.00108228
A=1.0500 E=2.0000

BETA1=0.0000 BETA2=0. 5240
1=0.7850

BETA3=0. 5240

SPHEROIDAL SOLUTION

0.0 0.601483
-1.250238

3.0 -3.111749
-1.113500

6.0 -6.295903
-1.025612

9.0 -9.313935
-0.990537

12.0 -12.254580
-0.971516

0.777045
0.472894

0. 807484
-0. 114662

0.434515
-0.128701

0. 045717
-0.129982

-0. 344045
-0. 129762

0.371301
1.034563

2.253247
0.457108

3.521371
0.401046

4.692794
0.382412

5.824722
0.373100

1.050449
1.690279

3.925828
1.209121

7.226840
1.108728

10.429460
1.069718

13.572780
1.048754

-0.000013
-0.000022

1.507944
1.669758

2.048168
1.856736

2.383293
1.927282

2.628592
1.964874

SPHERICAL SOLUTION

THE SPHERICAL ELEMENTS ARE
AS= 0.10492100E O1ES= 0.20011770E 01 IS= 0.78506150E 00

OMGA= 0.52430930E 00 W= 0.52399180E OOTAU= 0.21146880E-03

TIME RX
VX VY

0.0 0.601483
-1.250238

3.0 -3.111678
-1.113479

6.0 -6.295843
-1.025631

9.0 -9.313970
-0.990576

12.0 -12.254740
-0.971567

0.777045
0.472894

0.806755
-0.114930

0.433022
-0.128944

0.043499
-0.130217

-0 346939
-0.129991

0.371301
1.034563

2.254622
0.457627

3.524283
0.401555

4.697219
0.382916

5.830664
0.373602

1.050449
1.690279

3.926412
1.209324

7.228118
1.108959

10.431470
1.069963

13.575550
1.049007

-0,000197
-0.000340

1.508100
1.669440

2,048406
1,856420

2.383573
1.926964

2.628898
1.,964554

TIME
VX

-- - -- -- - - -- - -- -- - ----- - ---- --- --- - -- --

_ -- - ~ __,,~ ---- --
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TRAJECTORY NUMBER 5

GIVEN J2= 0.00108228
A=2.2000 E=1.5000

BETAl=0.0000 BETA2=0.5240
1=0.7850

BETA3=0.5240

SPHEROIDAL SOLUTION

RZ
VZ

0.0 0.630104
-1.115030

6.0 -5.343512
-0.831162

12.0 -10.029410
-0.746901

18.0 -14.399210
-0,713591

24.0 -18.621550
-0.695401

0,.814000
0.421767

-0.025309
-0.223529

-1.350449
-0.217564

-2.638868
-0. 212266

-3. 901099
-0.208695

0.388996
0.922701

2.647197
0.221752

3.841183
0.184822

4.909046
0.172768

5.925914
0.166772

1.100428
1.507500

5.963336
0.888802

10.824390
0.799597

15.440190
0.764276

19.927270
0.744949

-0.000009
-0.000020

1.555257
1.938237

2.049596
2.091274

2.360538
2.150681

2.590429
2,182991

SPHERICAL SOLUTION

THE SPHERICAL ELEMENTS ARE
AS= 0.21974100E 01ES = 0.15007840E 01 IS= 0.78507830E 00

OMGA= 0.52427880E 00 W= 0.52402680E OOTAU= 0.24921790E-03

RX
VX

RY
VY

0.0 0.630104
-1.115030

6.0 -5.343531
-0.831221

12.0 -10.029990
-0.747020

18.0 -14.400590
-0.713737

24.0 -18.623870
-0.695562

0.814000
0.421767

-0.026653
-0.223736

-1.352983
-0.217755

-2.642560
-0.212454

-3.905912
-0.208882

0.388996
0.922701

2.650151
0.222274

3.847201
0.185325

4.918029
0.173260

5.937845
0.167259

1.100428
1.507500

5.964672
0.889040

10.827380
0.799876

15.444970
0.764576

19.933940
0.745261

-0.000153
-0.000341

1.555812
1.937881

2.050305
2.090891

2.361329
2.150282

2.591276
2.182581

TIME RX
VX

- - - --- ------ U--- -- ---~- IIII~---- ~- --

___
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TRAJECTORY NUMBER 6

GIVEN J2= 0.00108228
A=0.5500 E=3.0000

BETA1=0.0000 BETA2=0.5240
I=0.7850

BETA3=0. 5240

SPHEROIDAL SOLUTION

RZ
VZ

0.0 0.630090
-1.410536

3.0 -3.596646
-1.321800

6.0 -7.463285
-1,266719

9.0 -11.228040
-1.245694

12.0 -14.946950
-1.234573

0. 814021
0, 533570

1.244234
0.044549

1. 350074
0.030250

1.435085
0.027011

1. 513955
0.025737

0.388974
1.167149

2.873891
0.699152

4.897921
0.659249

6.853011
0.645939

8,779881
0.639280

1. 100429
1.906972

4.768986
1.495978

9.028451
1.428320

13.232240
1.403466

17.400840
1.390507

-0.000014
-0.000020

1.838666
1.596584

2.444382
1.742521

2.812149
1.795166

3.077891
1.822491

SPHERICAL SOLUTION

THE SPHERICAL ELEMENTS ARE
AS= 0.5497317CE OOES= 0.30017540E 01 IS= 0.78502850E 00

OMGA= 0.52428810E 00 W= 0.52396020E OOTAU= 0.16015890E-03

TIME RX
VX

RY
VY

0.0 0.630090
-1.410536

3.0 -3.596594
-1.321776

6.0 -7.463190
-1.266710

9.0 -11.227930
-1.245693

12,0 -14.946850
-1,234576

0O814021
0.533570

1. 243654
0.044329

1.348841
0.030039

1.433243
0.026806

1.511510
0.025535

0.388974
1.167149

2.87492 8
0.699535

4.900095
0.659629

6.856337
0,646319

8.784347
0.639658

1.100429
1.906972

4.769419
1.496130

9.029368
1.428483

13.233670
1.403637

17.402800
1.390679

-0.000196
-0.000278

1.838610
1.596347

2.444357
1.742301

2.812138
1.,794950

3.077888
1.822278

TIME RX
VX

- -I--- -- - - --- )~I~- LIIIYI-~~-~ ----- -L-~ IL --

- -- ,, -- --- ---- I ---- ---- r~urr~----- l r~ lrrn-l-- -l--
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from the Keplerian trajectory as calculated by the program is conserva-

tive and can be assumed to be accurate to about 3 parts in 100. For

more critical investigations higher accuracy can be obtained, of course,

by using higher precision computation.

Let us now turn our attention to the magnitude of the deviation

caused by the oblateness as a function of the orbital geometry. Since

we have assumed the Earth to be axially symmetric we expect the amount

of deviation caused by J2 to depend most heavily on the inclination,

energy, and p-perigee distance of the trajectory. The closer the

inclination to 0 or 1800 the larger should be the effect of the oblate-

ness. Low energy trajectories, since they spend more time close to the

oblate planet, should be affected more than high energy trajectories.

Similarly, a trajectory with a low p-perigee (recall (pl = a(e-1)),

should be affected more than a trajectory which does not pass so close

to the planet (other factors being equal). To test these contentions

the twelve trajectories shown in Table 11.1 (six of which were shown

earlier as examples) were used as input to the computer program. For

all twelve cases a1, 82, and BS were taken to be 0, 0.542, and 0.542

respectively. Figures 11.3 through 11.6 show the position and velocity

deviations from the spherical trajectory as functions of time for these

twelve cases. Position deviation was calculated as rspherical

rspheroidal and velocity deviation as vspherical - Vspheroidal. Note

that the velocity deviation curves approach an asymptote as the satellite

approaches asymptotic motion.

We first note that within each of the four trajectory classifications

increasing the inclination decreases the amount of the deviations.

Comparing trajectory lA to 3A, 1B to 3B, and 1C to 3C it is clear that for

the same inclination and p-perigee decreasing the energy of the orbit
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TABLE 11.1

TRAJECTORIES USED TO COMPARE THE EFFECTS OF J2

Number
I _ I I

lA

IB

1C

1.1 2.0 0.349

0.785

1.222

Classification

"standard" trajectory

2A 1.05 2.0 0.349

2B " 0.785 lower p-perigee, but higher energy

2C " 1.222

3A 2.2 1.5 0.349

3B " " 0.785 lower energy, same p-perigee

3C " " 1.222

.55 3.0 0.349

0.785

1.222

higher energy, same p-perigee

;..^ . . -d--~CI=I-XLIY---
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FIGURE 11.) Position Deviation from a

Keplerian Hyperbolic Trajectory
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FIGURSE 11.4 Pesition Deviaton from a

Keplerian Hyperbolio Trajeobcry
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FIGURE 11.5 Velocity Deviation from a

Keplerian Hyperbolio Trajectory
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FIGURE 11.6 Velocity Deviation from a

Keplerian Hyperbolic Trajectory
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increases the deviations. Conversely comparing lA to hA, 1B to 4B, and

LC to hC, we find that the higher energy orbit has smaller deviations.

To determine the effect of p-perigee distance on the amount of deviation

we compare 1A to 2A, lB to 2B, and 1C to 2C. Note that even though the

class 2 trajectories have a slightly higher energy, their lower p-perigee

distances cause them to have higher deviations than the corresponding

"standard" trajectories. We have thus numerically confirmed the follow-

ing three points

1. Increasing the inclination (toward 90 degrees) decreases
the effect of J2 -

2. Increasing the energy of the trajectory decreases the
effect of J 2 .

3. Increasing the p-perigee distance decreases the effect of J2.

Several trajectories with perigees well within the Earth were put on

the computer to test the convergence of the involved series. According

to the investigation conducted at the end of Chapter 3 we expect diffi-

culty with the series as p-perigee, pl, approaches c (c - 0.0325 for

Earth). Indeed, when pl was decreased to 0.1 the coefficients Al and A 3

failed to converge rapidly enough to satisfy the criterion of the program.

As expected, the effect of J 2 on these low-perigee trajectories was quite

marked. For pl = 0.3(where all the series still converged) differences

between the spherical and spheroidal results in the second significant

figure were quite common.
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CHAPTER 12

CONCLUSION

12.1 Applications and Advantages of the Spheroidal Solution for

Unbounded Orbits

We have seen that the spheroidal method provides a means of calculat-

ing accurately the trajectory of an unbounded satellite for cases where

the oblateness of the gravitating body is the most important force,

other than the normal inverse-square force, acting on the satellite. In

cases where forces arising from atmospheric drag, electromagnetic fields,

or other bodies must be accounted for, the spheroidal method yields an

accurate reference orbit upon which perturbation techniques may be used.

Actual computation with the spheroidal method is rapid and no difficul-

ties are encountered with poles or inclinations.

The scope of problems to which the spheroidal method may be applied

is, however, limited by the convergence of the series involved. For

trajectories whose extensions pass too close to the center of the Earth,

i.e. within the small limiting surface derived in Chapter 3, we cannot

be certain that the series used in the solution will converge. Because

of the rather small size of this zone and the physical rarity of unbounded

trajectories whose extensions might pass through it, the applicability of

the spheroidal method is not significantly limited.

Cases in which the spheroidal solution for unbounded orbits could

be fruitfully applied are quite numerous. Some examples are listed below.

_1
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1. Calculating escape trajectories for orbiting space vehicles.

2. Determining the paths of incoming meteors.

3. Finding the required incoming asymptote to achieve a desired
outgoing asymptote (or vice-versa) on a swingby of an oblate
planet.

h. Calculating incoming trajectories to an oblate destination
planet.

12.2 Areas for Future Research

There are several areas of spheroidal theory toward which future

research effort should be devoted. One of these is the comparison of

the effects of J2 predicted by the present solution for unbounded motion

to effects predicted by other methods of analysis. Hori [9] has devel-

oped a solution using the Von Ziepel approach which includes the first

order perturbation of the oblateness of the Earth on a satellite in

hyperbolic motion. Sauer [10] uses the variation of orbital elements

approach to obtain expressions for the perturbation of each orbital

element in terms of the values of other elements and J2. The differences

in the forms of the final results as obtained by each of the three

methods make analytical comparisons between them difficult. For this

reason the application of the three methods to a set of numerical data

is perhaps the easiest way to compare them.

The solution for unbounded orbits presented in the present paper is

for a gravitational potential which includes all of the second zonal

harmonic and more than half of the fourth zonal harmonic. Vinti [11, 12],

however, has developed a form for the potential in spheroidal coordinates

which allows for the inclusion of the third zonal harmonic J 3 as well and

has extended his spheroidal solution for bounded orbits accordingly. A

similar extension for the present unbounded case would be valuable to

spheroidal theory.

~__ ~6_
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In addition to the research indicated above some effort should be

applied toward combining Vinti's spheroidal solution for bounded orbits

[2] with the present solution for unbounded orbits. The determination

of such a universally applicable solution should be facilitated by the

many similarities of the two cases and the work done in Chapter 9. Here

it was shown that solutions for both the unbounded and bounded cases

reduced to the same "parabolic" trajectory.
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APPENDIX A

SERIES SOLUTION FOR A, B, P1+P2, P1P2

From equations 3.12 through 3.18 we have

P1 + P2 - A = -2ao  (A.1)

B + P1P2 -( 1+P 2 )A = c2 - p ko p2 _ (A.2)

(pl+P 2)B - P1P 2A = -2a c
2 = -2aopk (A.3)

plP2 B = -aopoc2 in2 i = -a p3k (l-y2 ) (A.4)

We then assume series solutions in the form of (3.19) through (3.22)

p1 + P2 = I bl kn (3.19)

n=O nPl2 =  b2 kn (3.20)
n=0

A = I b3 kn  (3.21)

n=0

B = I b4 kn (3.22)

n=O

Inserting (3.19) through (3.22) into (A.1) through (A.h) and equating

coefficients of like powers of ko we find

b3o = blo + 2 ao0 0 0
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bln = b 3 n

b2ob4o = 000o

for n>0

b21b4o + b2 b4 = -aoP
3(1-y2 )

0 0 0 0

(b2b4 )n = 0 for n>l (A.5)

b2 - blo(b 10-2a ) = -aoP o

b4 1 + b2 1 - blob 3 1 - b1 1b3o P2

b4 n + b2n - (blb 3 )n = 0

(blb 4 )n - (b2b3 )n = 0 for n>l

bl b o - b2ob3 = 00 0 00o

bl bul + bl1b~o - b2ob 3 1 - b2 1b3  = -2aoP0 0 0 0 0 0

Since for the Keplerian case (c=0) we know A=B=0, we choose

b3o=b o=0 in the present case. Solution of the equations (A.5) is then

straight forward and yields (in the order in which they may be determined)

b3o = b4o = 0

bl = -2a
o o

b2 = -aoPo

b41 = p2 (l-y2 )

b3 1 = -2PoY2

b21 = aoPoy 2 (4+x2) (A.6)



b11 = -2POy 2

b42 = x2 (1_y 2 )(4+x 2 ) aOP OY 2

b32 = 2p 0 (2x 2 y 2 -3x 2y4-8y4 +4y2 )

b12 = b 3 2

b22 = -4a0p0(o3 2-5x2y 8yh4 4 2 4

Equations (3.23) through (3.26) of the text then follow.
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APPENDIX B

RANGE OF VALIDITY OF LEGENDRE EXPANSION

According to dobson [h] we may use

(1 - 2h + h2) = h2Pn(x)
h=0

as long as h < 1 and X < i1, or for X > 1 if

h < X - (X2_1)

(B.1)

(B.2)

By the definitions of bl and b2 and equations (h.22) and (h.23) we see

that to first order

b, = kp cos21 (B.3)

b2 = k psinI (B.h)

Case 1 X < 1

To have X < 1 we must have

- k cos 2 1 cscI < 1

or equivalently

tan2 1 + tan4I > k

__
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2tan2 I > (l+4k)

to order k this becomes

tan 2I > k

from Vinti [2] this occurs provided

I < I <1800 - Ic

I = 10 54c

In this case we require

h = PP P

this will occur at all points along the trajectory provided it occurs at

p-perigee, thus we ask

01

P 1 > k sin I

a(e-1) > k a(e-l) ( e+l) sinIl

k (e+l) Isin I < 1

where

(B.5)

(B.6)
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C (e+l)sinIl <1
p

P1 > clsinI

Case 2 A >1

In this region we require

h < X - (X2-1Yi

lp = bb2 Z
p b2 p

so that (B.2) is satisfied if and only if

bl < X2 - (2-_1) = g(X)
P

but Vinti [3] shows that for A > 1

1- < g(x) < 12

so the condition

p 2
p 2

(B.8)

(B.9)

(B.10)

is sufficient to satisfy (B.2). The above equation will be satisfied at

all points in the trajectory provided it is satisfied at p-perigee. Thus

we require

1
-

(B.7)

but

(B.2)

(B.11)bl
P
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from (h.14)

ac2 (1-n2)(ap+c2nq 2 )bl = (ap+c2 )(ap+c no ) + 4a2czn0

so that

b< ac2 (l-no 2 )(ap+c2 nl2 ) =ap+22 ac2s2I

P1 P1(ap+c')(ap+cznoz) p1(ap+c
2 )

so it will be sufficient to have

2ac2 cos21cos < (ap+c 2 )
P1

(B. 12)

(B.13)

(B.14)

2c2cos2I c2

PP1 ap

2c2cos 2I - c2(e-l)
PPl

<1

p12 (e+l) > 2c2cos2 I - c2 (e-1) (B.15)

There will be no trouble satisfying this for e > 3. The worst case

occurs for the "parabola" where e = 1. Here (B.15) becomes

Pl > cIcosIJ, for e =l1 (B.16)

Conditions (B.7) and (B.16) are, at worst, no more restrictive than

the limitations discussed at the end of Chapter 3. Thus for all trajec-

tories whose extensions do not pass within the surface of Figure 3.1 we

may certainly replace (1-2Xh+h2) - by the Legendre Polynomial series.

_ ~
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APPENDIX C

INVESTIGATION OF THE CONVERGENCE OF S1

We should like to investigate the convergence of the series involved

in the evaluation of R1

(5.24)
I()2 0 (2)m f

S1 = ( 2 ( )mP 2(A ) f (l+ecosf)m
p 0 p m+2m=clearly since cosf never exceeds 1 we can say

clearly since cosf never exceeds i we can say

IsI < ( )2
p m=O0

< ( 2) ( 2) P (x)
SY p m+2m= 0

f
J (l+e)m df
0

(l+e)m f

Case 1: X < 1

For this case

n(Px) < 1
n "

(C.1)

(C.2)

so that

(C.3)Is1l < ( ) f [b (e+l)]m

If the ratio

b2 (e+l) <r = (C.4)
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then the summation of (C.3) can be considered an infinite geometric

progression with first term of 1 and a ratio rl. In this case we would

have

S[b2 (l+e) ]m _ 1
p 1 - b(e+l) (5)

p

and so

(Z 2 f

Is , P(c.6)
1 - b2 (e+l)

p

Consequently we should like to know the conditions under which (c.4) is

true. Substituting b2  k psinI into (C.4) we are thus requiring

jk p sinI (e+l)l < 1
p

or

clsinI (e+l) <
p1(e+l)

P1 > cisinI! (C.7)

Case 2: X > 1

According to Vinti [3] we can write for this case

P (X) = [ + (X12-) cosx]n dx (C.8)
n 0

where x is a dummy variable. Then

(b)n 1 Pblp-1 + -1(b2b2 2) cosx]n dx (C.9)
(b)n.pnl ) = -j~l- I + b2_2

so that
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I( b 2 n P (  
<

) [bl+ bl (1- 2) ]n
p n p p

< (2b )n
P

(C.10)

since we are now considering A > 1. Thus S1 becomes

I1, < 2 (El)n
n=2

f
(1+ecosf)n- 2 df

again since cosf cannot exceed 1

Is i f ( p )
P

(C.11)
m=0

If we now define the ratio

_ 2bl (e+l)r2 (C.12)

then the summation of (C.11) can be considered an infinite geometric

progression of sum

m=0

m 1
r 2  = 1-r2

1-r2
1

-2b (e+l)
(C.13)

as long as we require that

2 =2bl(l+e) = 2b1 <
P P1

(C. 14)

(C.15)b < 1
P1 2

but this is the same condition we were required to satisfy in order to

replace (l+A- +B ) by the Legendre series y hn P n().
n=0

In Appendix

B we saw that this condition reduced to

(c.16)p12(e+l) > 2c2 cos2 I - c2(e-1)
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so that for e > 3, the series always converges.

Thus comparing (C.7) and (C.16) to the results of Appendix B we see

that the requirements for S1 to converge are identical to the requirements

-1 .2
on P1 in order that (l+Ap- +Bp )-' be the generating function for the

Legendre polynomials.

For a trajectory which does not hit the Earth, the series converges

faster than a geometric series of ratio

c c = 302C
Pi r 30 (0.17)e
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APPENDIX D

INVESTIGATION OF f (f) E f (l+ecosf)m dfm
0

In determining the R1 integral we found it necessary to evaluate

f ( f )  f f (l+ecosx) m dx
m

where x is a dummy variable. We also define

g(f) 2~- f (2)f (D.2)

We should first like to prove that fm(f)-gm(f) is an odd function of f.

Noting that

f (-f)= f
m

(l+ecosx)m dx

if in the above equation we replace x = -y, then dx = -dy, cosx = cosy,

and the limits of integration become 0 - f. Thus

(D.3)f (-f) = - (l+ecosy)m dy = -f (f)m m
0

Therefore fm(f) is an odd function. By its definition gm is an odd

function since

gm 1
g,(-f = f fm(2n)(f) = g (f)

(D.h)

As a consequence of (D.3) and (D.4 ) the function fm(f)-gm(f) must be odd.

To find the period of f (f)-g (f) we first note
m m

2n+f
(l+ecosx)m dx + ff (f+2 )= f

m
(l+ecosx)m dx (D.5)
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If, in the second of these integrals we replace x = y+2w, then dx = dy,

cosx = cosy, and the limits of integration become 0 + f so that (D.5)

becomes

f (f+2W) =
m 0

f
(l+ecosx)m dx + / (l+ecosy)m dy

0

so that

f (f+2) = f (2w) + f (f)
m m m

we also note that

(f+2w) = 1 f (2'r)(f+2w) = gm(f) + fm(2W) (D.7)

Thus by (D.6) and (D.7)

(D.8)fm(f+2w) - gm(f+2) = f (f) - g(f)

So that fm ( f ) - gm(f) has been established to be odd and of period 2w.

Then we see that

f (2v) = J (l+ecosx)m dx + f
m

0 w
(l+ecosx)m dx

If in the second integral we set x = 2w-y, so that dx = -dy, cosx = -cosy

and the limits of integration become w + 0

m (l+ecosx)m dx - f (l+ecosy)m dy = 2 f (r)
0 7I m

(D.9)

Using (D.9) we can write

(D.10)m( f ) = fm ( )

Then since fm (f)-g(f) is odd of period 2w

(D.6)
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m
f (f) - f () = c sinJf (D.11)m 7m mj

j=1

or equivalently

f 7 m
f (f) f (l+ecosf)m df = - J (l+ecosf)m df + c jsinjf (D.12)

m 0 0 J=l m1

The fourier series in (D.12) terminates at j = m, because the

integrand of (D.1) may be expressed as a trigonometric polynomial in

cosjx, with j < m.
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APPENDIX E

THE COMPUTER PROGRAM

The following Fortran IV computer program was run as problem number

M6973 at the MIT Computation Center to generate data used in the text on

the comparison between the spheroidal solution and a normal Keplerian

trajectory. Inputs to the program are the oblateness parameter of the

gravitating body (J2 ), the spheroidal orbital elements (a, e, I, a1, 2,

83), the number of time steps N for which the state vector is desired,

the amount DT of each time step, and the number of different trajectories

NTRAJ included in the data. Output is as shown in Chapter 11; formatting

1
allows cutting to standard 8 1 by 11 sheets. Units are assumed to be

those of the canonical Vanguard system discussed in the text.

It may be of some value to note that the six example trajectories

of Chapter 11 required a total of 4.3 seconds execution time on the IBM 360.

The small computation time required for such a large increase in accuracy

is one of the main advantages of the spheroidal method.

_ I_ ; 1__~ _1411- __1
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EXPLANATION OF PARAMETERS

Parameters used in the computer programs are related to the param-

eters used in the text as follows:

Input Parameters

C2 = c 2 = J2

N = number of time steps

DT = amount of each time step

NTRAJ = number of different trajectories to be computed

A, E, I, BETA1, BETA2, BETA3 = spheroidal orbital elements

Other Parameters

NU0 = no

NU02= o02

X2 = x2 = e2-1

NU22 = n22

BSI = bl

BS2 = b2

AO = ao

PO = P0

N2 = n2

Al = Al, etc

All = All, etc.

BlP = B1

B2 = B2 , etc.

OMGA = 0

W = m

ROX = rox, etc.

PL(N) = P

n

D(N) = T n

GN = y

TIME = t

HO = H0 , etc

FO = f0, etc

PSIO = 0,

NU = n

RX = X, etc.

VX = X, etc.

FDT = f

RHODT = p

PSIDT =

OMGADT = 2

OMGAP = Q'

Legendre polynomials

C.
etc.

II __ _ ____ _~/I_
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$JOB HYP,KP=29,TIME=4,PAGES=100
C **t*s*S* S lttS*************************k***** ********W******

C THIS PROGRAM ACCEPTS VALUES FOR THE SPHEROIDAL ORBITAL ELEMENTS-
C (A,E,I,BETA1,BETA2,BETA3) AND A VALUE OF J2. FROM THIS IT COMPUTES,
C USING THE SPHEROIDAL SOLN, THE STATE VECTOR (RX,RY,RZ,VX,VY,VZ),
C THE MA-GNITUDE OF THE POSITION AND VELOCITY VECTORS (R,V),
C AND THE VALUES OF THE SPHEROIDAL ANOMALIES (H*,F*), AS FUNCTIONS
C OF TIME. THEN, ON THE BASIS OF THE POS AND VEL VECTORS AT
C TIME=ZERO, IT COMPUTES, USING THE SPHERICAL SOLN, THE SPHERICAL
C ORBITAL ELEMENTS (ASES,IS,OMGA=LONG OF NODE,W=ARG OF PER,TAU),
C THE STATE VECTOR, THE MAGN OF THE POS AND VFL VECTORS, AND THE
C VALUES OF THE SPHERICAL ANOMALIES (H,F), AS FUNCTIOS OF TIME.
C LIMITATIONS....GOOD ONLY FOR UNBOUND TRAJECTORIES AND
C INCLINATIONS NOT TOO CLOSE TO 0 OR 180 DEGREES
C PHYSICAL UNITS EMPLOYED ARE THOSE OF THE CANONICAL VANGUARD SYSTEM
C UNIT OF LENGTH=EQUATORIAL RADIUS= 6378.388 KILOMETERS
C UNIT OF TIME= 806.832 SECONDS
C MU= 1
C ****************************************

1 DIMENSION PL(11),T(11),D(9)
2 REAL I,NU,NUONU02,NF,NU22,N2,LAMB,M,MNH
3 REAL HO,HIPHI,H2 ,NU,OMGAP,OMGADT
4 REAL HX,HY,HZ,NUM4,IS,NUM1, IZX,IZY,TZZ, INX,INYMGA,HO
5 RFAL NUM2,HYP,NUM5,NUM6,NUM7,NUM8
6 300 FORMAT (6F10.4)
7 301 FORMAT (E13.5,13,F6.3)
8 307 FORMAT (' Al DID NOT CONVERGE')
9 308 FORMAT (' A2 DID NOT CONVERGE')
10 309 FORMAT (' A3 DID NOT CONVERGE')
11 310 FORMAT (' ***KEPLER EQUATION TOOK 20 CYCLES***')
12 321 FORMAT (131
13 350 FORMAT (//36X,'TRAJECTORY NUMBER ',I12)
14 351 FORMAT (36X,20(IH_))
15 352 FORMAT (1I6X,'GIVEN J2=',FI.8)
16 353 FORMAT (24X,'A=',F6.4,7X,'E=',F6.4,TX,'T=',F6.4)
17 354 FORMAT (20X,'RETAl=',F6.4,3X,'8ETA2=',F6.4,3X,'BETA3=',F6.4/)
18 355 FORMAT (36X,'SPHEROIDAL SOLUTION')
19 356 FORMAT (36X,I9(IHj)
20 357 FORMAT (/16X,'TIME',SX,'RX',9X,'RY',9X,'RZ',9X,'R',10X,tH*')
21 358 FORMAT (25X,'VX',9X,VY',9X,'VZ',9X,'V',10X,'F*')
22 359 FORMAT (16Xt60(IH_))
23 360 FORMAT (16X,F4.1,5(1X,FlO.6))
24 361 FORMAT (20X,5(IX,FI0.6)/)
25 362 FORMAT (37X,'SPHERICAL SOLUTION')
26 363 FORMAT (37X,18(IH_))
27 364 FORMAT (/16X,'THE SPHERICAL ELEMENTS ARE')
28 365 FORMAT (18X,'AS=',E16.8,'ES=',E16.8,' IS=',E16.81
29 366 FORMAT (16X,'OMGA=',E16.8,' W=',E16.8,'TAU=',E16.8)
30 367 FORMAT (/16X,'TIME',5X,'RX',9X,'RY',9X,'RZ0,9X,'R',IOXt'H')
31 368 FORMAT (25X,'VX',9X,'VY',9X,'VZ',9Xt'V',IOXIF'I
32 READ (5,321) NTRAJ
33 DO 999 NTRA=1,NTRAJ

C START OF SPHEROIDAL SOLUTION
34 READ (5,300) A,EI,BETA1,BETA2,BETA3
35 READ (5,301) C2,N,DT

_ _ a_ ~I_ _/ ___X_ 1II_
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36 WRITE (6,350) NTRA
37 WRITE (6,351)
38 WRITE (6,352) C2
39 WRITE (6,353) A,E,I
40 WRITE (6,354) BETA,ETA2,BETA3
41 WRITE (6,355)
42 WRITE (6,356)
43 WRITE (6,357)
44 WRITE (6,358)
45 WRITE (6,359)
46 NUO=SIN(I)
47 NU02=NUO**2
48 X2=E**2-1.0
49 X=SQRT(X2)
50 P=A*X2
51 DF=(A*P+C2)*(A*P+C2*NU02)+4.0*(A**2)*C2*NUO2
52 NF=(A*P+C2)*(A*P+C2*NU02)+4.0*(A**2)*C2
53 AF=(-2.0*A*C2*(1.0-NU02)*(A*P+C2*NU02))/DF
54 BF=C2*NUO2*NF/DF
55 NU22=-(C2*DF)/(A*P*NF)
56 BSI=-AF/2.0
57 BS2=SQRT(BF)
58 AO=A-RSI
59 PO=(C2*(1.O-NU2?)+A*P*NF/DF)/AO
60 ALPHA2=SQRT(PO)
61 ALPHA3=ALPHA2*COS(I)*SQRT(1.0+C2*NU02/(AO*PO))
62 N2=ABS(NU02*NU22)
63 P2=P**2
64 P3=P**3
65 P4=P**4
66 ALPH2=ALPHA2*SQRT(1.O-C2*(1.0-NU02)/(AO*PO))
67 LAMB=RS1/8S2

C CALCULATION OF LEGENDRE POLYNOMIALS,PL(N)
68 PL(1)=1.0
69 PL(2=LAMB
70 DO 401 K=3,11
71 J=K-1
72 PL(K)=((2*J-1)*LAMA*PL(K-I)-(J-1)*PL(K-2) /J
73 401 CONTINUE

C CALCULATION OF POLYNOMIALS, T(N)
74 T(1)=1.O
75 T(21=1.0
76 T(3)=(3.0+X2)/2.0
77 DO 402 K=4,11
78 J=K-1
79 T(K)=((2*J-1)*T(K-1)+(J-1)*X2*T(K-2))/J
80 402 CONTINUE
81 Z2=BS2/P
82 73=C2/(P**2)

C CALCULATION OF Al
83 AI=P*X*(Z2**2)*PL(3)
84 DO 403 J=3,10
85 DA1=P*X*(Z2**J)*PL(J+1)*T(J-1)
86 A1=A1+DA1
87 IF (ARS(DAI/Al) .LT. .0000001) GO TO 404

- I
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88 403 CONTINUE
89 WRITE (6,307)
90 404 CONTINUE

C CALCULATION OF A2
91 A2=X/P
92 DO 405 J=1,10
93 DA2=(X/P)*(Z2**J *PL(J+1)*T(J+l)
94 A2=A2+0A2
95 IF (ABS(DA2/A2) .LT. .0000001) GO TO 406
96 405 CONTINUE
97 WRITE (6,308)
98 406 CONTINUE

C CALCULAFION OF D(N)
99 D(1)=1.0
100 D(2)=Z 2*LAMB
101 FAC=Z2
102 DO 407 K=3,9
103 FAC=Z2*FAC
104 D(K)=-Z3*D(K-2)+PL(K)*FAC
105 407 CONTINUE

C CALCULATION OF A3
106 A3=X*T(31/P3
107 00O 408 K=2,9
108 DA3=X*D( K)*T(K+2)/P3
109 A3=A3+DA3
110 IF (ARS(DA3/A3) .LT. .0000001) GO TO 409
111 408 CONTINUE
112 WRITE (6,309)
113 409 CONTINUE

C CALCULATION OF 81 PRIME AND 82
114 RIP=.5-3.0*N2/16.0+15.0*N2**2/128.0
115 82=1.0-N2/4.0+9.0*N2**2/64.0

C CALCULATION OF THE GAMMAS AND 83
116 G2=3.0*NU02/16.0
117 G3=5.0*( 3. 0*NU02/4.0+1 .f l*'1U02/32.0
118 G4=35.0*((5.O*NU02/8.0+.75)*NU?0+1.0)*NU02/256.0
119 G5=63.*( ( 35. 0*NU02/64.0+5.0/8.0)*NU02+.75)*NU02+1.O)*NUOC2/512.0
120 R3=I.O-1.0/SQRT(1.0-NU2?)-G2*NU22**P-G3*NU22**3-G4*NU22**4-GS*

1NU22**5
C CALCULATION OF THE A(IJ)

121 RF2=BF**2
122 BS12=BS1**2
123 E2=E**2
124 All=(.75*X*E/P3)*(-2.0*BS1*BF*P+BF2)
125 A12=3.0*X*BF2*E2/(32.0*P3)
126 A21=(X*E/P)*(RSI/P( 3.0*BS12-BF)/P2-4.5*BSI*RF*( 1.0+E24.0)/P3

1+3.0*RF2*(4.0+3.0*E2)/(8.0*P4))
127 A?2=(X*E2/P)*((3.0*BS12-BF)/(8.0*P2)-q.0*BSI*BF/(8.0*P3)

1+3.0*BF2*(3.0+E2/206.0/6.*P4))
128 A23=(X*E2*E/(8.0*P4))*(-BS1*BF+BF2/P)
129 A24=3.0*8F2*E2**2/(256.0*P3*P2)
130 Z5=(BF/2.0+C21/P2
131 E3=E**3
132 E4=E2**2
133 A31=(X*E/P3)*(2.0+BS1*(3.0 _+.75*E)/P-Z5*(4.0+3.0*E2))

_ -=I
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134 t32=(X/P3)*(E2/4.0+S1*.75*E2/P-Z5*(1.5*E2+E4/4.0))
135 A33=(X/P3)*(BS1IE3/(12.0P)-Z5*E3/3.0)
136 A34=(X/P3)*(-Z5*E4/32.0)
137 Z1=SQRT(AO)
138 TIME=0.O

C CALCULATIONS FOR EACH TIME STEP
139 DO 498 L=1,N
140 M=(TIME+BETAl)/(Z1*A)

C SOLVING KEPLERS EQUATION
141 INDEX=
142 IF (ABS(M) .GT. 1.0) GO TO 452
143 HO=M
144 453 MN=E*SINH(HO)-HO
145 INDEX=INDEX+1
146 DELT=(M-MN)/(E*COSH(HO)-1.0
147 IF (ABS(DELT) .LT. .000001) GO TO 454
148 IF (INDEX .GT. 20) GO TO 457
149 IF (ARS(DELT) .GT. ABS(HO)) GO TO 455
150 456 HO=HO+DELT
151 GO TO 453
152 452 Z=ALOG(ABS(M) *2.0/E
153 HO=SIGN(Z,M)
154 GO TO 453
155 455 DELT=DELT*ARS(HO)/ABS(DELT)
156 GO TO 456
157 457 WRITE (6,310)
158 454 HO=HO+DELT
159 FO=2.0*ATAN(SQRT((E+1.O)/(E-1.0)*TANH(HO/2.))
160 PSIO=ALPH2*(BETA2/ALPHA2+ZI*A?*FO)/B2
161 HIP=((C2*NU02)*(-BIP*PSTO+.25*SIN(2.0*PSIO))/(ZI*ALPH2)

I-BS1*HO-AIFO)/(A*( E*COSHfHO)-l.0))
162 HI=H1P*(1.O-HIP*E*SINH(HO)/(2.0*(E*COSH(HO)-1.0)))
163 Fl=2.0*ATAN(SQRT((E+1.0)/(E-1.0))*T4NH((HO+H1/2.0) )-FO
164 PSI =-N2*SIN(2.0*PSIO)/(8.0*82)+(ZI*ALPH2/82)*(A2*FI+A,1*SIN(FO)

1+A22*SIN(2.0*FO))
165 H2=(-BS1*H1-A*F1I-A11*SIN(FO)-A2*SIN(2.0*FO)+(C2*NU02)/(Z1*ALPH2)

1*t-81P*SI1+P+PSIl*COS(2.0*PSIO)/2.0-N2*SIN(2.*PSIO)/8.
1+N2*SIN(4.0*PSIO)/64.0))/(A*(E*COSH(H)-.01O))

166 H=HO+H1+H2
167 F=2.0tATAN(SQRT((E+1.0)/(E-1.0))*TANH(H/2.011
168 F2=F-FO-FI
169 PSI2=(-N2*PSII*COS(2.0*PSIO)/4.0+3.0*(N2**2)*SIN 2.0*PSIO)/32.O

1-3.0*(N2**2)*SIN(4.0*PSIO)/256.0+ALPH2*Z1*(A2*F2+A21*FI*COS(F0O
I+A22*2.0*Fl*COS(2.0*FO)+A?3*SIN(3.0FO)+A24*SIN(4.0*FO)))/B2

170 PSI=PSIO+PSII+PSI2
171 RHO=A*(E*COSH(H)-1.0)
172 NU=NUO*SIN(PSI)
173 Z6=A31*SIN(F)+A32*SIN(2.0*F)+A33*SIN(3.0*F)+A34*SIN(4.0*F)
174 OMGAP=BETA3+ALPHA3/ALPH2*(B3*PSI+3.0*NUO2*(NU22**2)*SIN(2.0*

IPSI)/2.0)-C2*ALPHA3*Zl *(A3*F+Z6)
C THE POSITION AND VELOCITY VECTORS

175 RX=SQRT(RHO**2+C2)*(COS(PSI)*COS(OMGAP)
1-COS(I)*SIN(PSI)*SIN(OMGAP))

176 RY=SQRT(RHO**2+C2)*(COS(I)*SIN(PSI)*COS(OMGAPI
1+SINfnMGAP)*COS(PSII)
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177 RZ=RHO*NU
178 FDT=A*X*SQRT(RHO**2+AF*RHO+rBF)/(RHO*Zl*(RHO**2+C2*(N**

2)))179 RHODT=(RHO**2)*E*SIN(F)*FDT/P
180 PSIDT=ALPH2*SQRT ( 1.0+N2 ( S IN(PSI)**2)/RHO*2+C2*(N **2))
181 Z7=A31*COS(F)+2.0*A32*COS(2.0*F)+3.0*A33*COS(3.0*F)

1+4.0*A34*COS(4.0*F)
182 OMGADT=ALPHA3:*PSIDT/ALPH?*(83+3.0*NIJ02*(NU22**2) *

ICOS(2.0*PSI)/16.0)-C2*ALPHA3*Z1*(A3+Z7)*FDT
183 VX=RHO*RHODT*RX/(RHn**2+C2)-OMGADTRY+SQRT(RHO**2+C )*(-SIN(PSTI

1*COS(OMGAP)-CrOS(I)*COS(PSI)*SIN(OMGAP))*PSIDT
194 VY=RHn*RHnDT*RY/(RHo**2+CC2+ MGADT*RX+SQRT(RHO**2+C2)*(-SIN(PSII

1*'yN(MGAP)+COS(I)*COS(PSI*COS(OMGAP))*PSIDT
185 VZ=RHODT*NU+NUC*RHO*COS(PSI)*PSIDT
186 R=SQRT(RX**2+RY**2+RZ**2)
187 V=SQRT(VX**?+VY**2+VZ**2)
188 IF (L .GT. 11 Gn TO 459
189 ROX=RX
190 RnY=RY
191 ROZ=RZ
192 VOX=VX
193 VOY=VY
194 VOZ=VZ
195 459 CONTINUE
196 WRITE (6,360) TIME,RX,RY,RZ,R,H
197 WRITE (6,361) VX,VYVZ,V,F
198 TIME=TIME+DT
199 498 CONTINUE

C CALCULATION OF SPHERICAL ELEMENTS
C BEWARE OF I=0 IN CALC OF 0MGA AND W

200 WRITE (6,362)
201 WRITE (6,363)
202 WRITF (6,364)
203 RO=SQRT(ROX**2+ROY**2+ROZ**?)
204 VO2=VnX**?+VOY**?+VOZ**
205 Vn=SQRT(VO2)
206 AS=1.0/(VO02-2.0/RO)
207 HX=ROY*VOZ-ROZ*VOY
208 HY=ROZ*VOX-ROX*VOZ
209 HZ=ROK*VOY-ROY*VOX
210 H=SQRT(HX**2+HY**?+HZ**2)
211 NUM4=ROX*VOX+ROY*VOY+ROZ*VOZ
212 ES=SQRT((H**2/RO-1.0)**?+(H*NUM4/RO,**2)
213 IS=ARCOS(HZ/H)
214 NUM1=(1.0/AS+1.OIROI/ES
215 NUM2= NUM4/ES
216 IZX=NUMI*ROX-NUM?*VOX
217 IZY=NUM1*ROY-NUM2*VOY
218 IZZ=NUM*RO7-NUM2*VOIZ
219 INX=-HY/SQRT(HX**2+HY**2)
220 INY=HX/SQRT(HX**2+HY**2)
221 OMGA=ARCOS(INX)
222 Z=INX*IZX+INY*IZY
223 IF (ABS(Z) .GE. 1.0) GO TO 207
224 W=ARCOS(Z)
2?5 GO TO 208
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226 207 W=0.0
227 208 Fn=ATAN(H*NUM4/(H**2-RO))
228 X=SQR T(ES**2-1 .0) *SIN(FO)/(1 .0+ES*COS (FO) )
229 Y=X+SQRT(X**2+1.0)
?30 HO=ALCG(Y)
231 TAU=SQRT(AS**3)*( HO-ES*SINH(HO))
232 TIME=0.O
233 WRITF (6,365) ASES,IS
234 WRITE (6,366) OMGA,WtTAU
235 WRITE (6,367)
236 WRITE (6,368)
237 WPITE (6,359)
238 WRITE (6,360) TIME,ROX,ROY,ROZROHn
239 WRITE (6,361) VX,VOYVVOZ,VO,FO

C CALCULATION OF R AND V FOR ANY T
240 DO 201 J=2,N
241 TIME=TIME+DT

C SOLVING KEPLERS EQUATION
242 INDEX=O
243 M=(TIME-TAU) /SORT( S**)
244 IF (ABS(M) .GT. 1.0) GO TO 702
245 HYP=M
246 203 MN=ES*SINH(HYP)-HYP
247 INDEX=INDEX+1
248 DELT=(M-MN)/(ES*CnSH(HYP)-1.0)
249 IF (ABS(DELT) .LT. .000001) GO TO 704
250 IF (INDEX .GT. 20) GO TO 217
251 IF (ABS(DELT) .GT. ABS(HYP)) GO TO 205
252 206 HYP=HYP+DELT
253 GO TO 203
254 202 Z=ALOG(ARS(M)*?.0/ES)
255 HYP=SIGN(Z,M)
256 GO TO 203
257 205 DELT=DELT*ARS(HYP)/ABS()ELT)
258 GO [0 206
259 217 WRITF (6,310)
260 204 HYP=HYP+DELT
261 NUMS=1.0-AS*(COSH(HYP-HO)-1.O )/RO
262 NUM6=TIME-(SINH(HYP-HO)-(HYP-HO))*SQRT(AS**3)
263 RX=NUM5*ROX+NUM6*VOX
264 RY=NUM5*ROY+NUM6*VOY
265 RZ=NUM5*ROZ+NUM6*VOZ
266 R=SQRT(RX**2+RY**2+RZ**,)
267 NUM7=-SQRT(AS)*SINH(HYP-HO/(R*RO)
268 NUM8=1.O-AS*(CnSH(HYP-HO)-1.0)/R
269 VX=NUM7*ROX+NUM8*VnX
270 VY= NU M7*ROY+NUM 8* VOY
271 VZ=NUM7*ROZ+NUMA*VOZ
272 V=SQRT(VX**2+VY**2+VZ**2
273 F=2.0*ATAN(SQRT((FS+1.0)/(ES-I.0)I*TANH(HYP/2.0))
274 WRITE (6,360) TIME,RX,RY,RZ,RHYP
275 WRITE (6,361) VX,VY,VZVF
276 201 CONTINUE
277 999 CONTINUE
278 RETURN
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