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Abstract

We show in many homogeneous cases that given a real analytic Riemannian manifold M,
there is a unique complex structure on a neighborhood of M in T*M that turns T*M
into a Kahler manifold whose Kahler form is the standard symplectic form, and such
that the Kahler metric restricted to the tangent bundle of the zero section is the original
metric on M. This complex structure is characterized by the conditions

1. Im 8¢, = a,
2. the standard involution of T*M is an antiholomorphic map.

Here a, is the canonical one form and ¢, is the quadratic function on T*M associated
with the metric.

We show that the function v = 1/, is a solution of the complex homogeneous Monge-
Ampere equation (away from the zero section). This gives rise to a Monge-Ampere
exhaustion of T*M near M. We explore the geometric properties of the Kahler metric
and the Monge-Ampere foliation.

We give an explicit description of this complex structure in the case of compact Lie
groups and Riemannian locally symmetric spaces of the “compact type”. In these cases
we find that the complex structure is globally defined, instead of only locally near the
zero section.

Thesis Supervisor: Victor W. Guillemin
Title: Professor of Mathematics
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Chapter 1

Background Material

1.1 Complex and Kahler Manifolds

A complex manifold § is a smooth manifold whose coordinate functions map into C",
and such that if ¢, and ¢, are two coordinate functions on an open set in §2, then ¢, 0 ¢7?
is a holomorphic map. Complex manifolds can be identified with real analytic manifolds
of even dimension by identifying the range of the coordinate functions in C" with open

sets in R". If the coordinate function ¢ is given by

¢(¢) = (2(¢),41(¢)y - -, 2™(¢),9™({))

then the tangent vectors 8/0z*,0/8y?,...,8/0z",0/dy™ evaluated at (, form a basis for
the real tangent space T¢ (). At each point {, of  there is an endomorphism J of T
defined by

0 0
T = oy
o _ 8
0yt Ozt

It turns out that this endomorphism is canonically defined, i.e., does not depend on the

choice of coordinates. See for example Helgason [10], lemma 1.1, chapter VIII. J is called



the complex structure operator, or just the complex structure.

An almost complex manifold is a 2n real dimensional smooth manifold carrying a
type (1,1) tensor field J (i.e. each J; is an endomorphism of T;Q) such that J? = —I4.
It is well known that an almost complex manifold is a complex manifold if and only if it

satisfies the integrability condition

N(X,Y) = [X,Y]+ J[JX,Y]+ J[X,JY] - [JX,JY] =0 (1.1)

where X and Y are smooth vector fields on M. This theorem is due to Newlander-
Nirenberg, and the tensor N is known as the Nijenhuis tensor. It is easy to see that if
1 is a complex manifold with complex structure J and F:Q — Q' is a diffeomorphism,
then the complex structure F,J = dF oJodF~! is integrable and turns ' into a complex
manifold.

Let ) be a complex manifold of complex dimension n, and let T¢§ denote the com-
plexified tangent bundle of Q, T2 ® C. The complex structure induces a splitting of T
into the +1/—1 and —+/—1 eigenspaces of J, each eigenspace having complex dimension
n. The (complex valued) vector fields on £ with values in the +4/—1 eigenspace are
called type (1,0) vector fields, and those with values in the —y/—1 eigenspace are called
type (0,1). A local basis over C*°(Q2) for the type (1,0) vector fields is

0 1,0 0

s s\lgz—7 " VvV—Li—=) .:1,""

0z 2(6.1:' lay’) ' "
and a local basis for the type (0,1) vector fields is

0 1.0 0 .

ﬁ—i(%+\/—15§;)’ ‘L~—1,...,n.

This also induces a decomposition of the exterior derivative d into d = 8 + §, where 9

annihilates the type (1,0) vector fields, and 9 annihilates the type (0,1) vector fields. In



local coordinates, if f is a smooth function on 2, then

no9 ,
of = Z(—?%dz’

=1

"8 )
3f = ;Ffd‘

Since dz' o J = —dy* and dy’ o J = dzi, it is easy to check that this can be written

invariantly as

0f = 3(df —vTdf o)
3f = %(df+\/—_1dfoJ)

It will be important for us to note that if f is a smooth function on £ and V is a vector
field, then
= 1
Imof(V) = Edf(JV).

If ©; and Q, are complex manifolds and F:Q; — 2, is a smooth map, then F is
called holomorphic if it can be expressed in complex local coordinates as a holomorphic

map. It is easy to check that if F is a holomorphic map, then dF satisfies
dF oJ; = Jy0dF (1.2)

where Ji, J, are the complex structures on ; and (2, respectively. Conversely, if F
is a smooth map satisfying 1.2, then the Cauchy-Riemann equations imply that F is a
holomorphic map.

A Kahler manifold is a complex manifold £ which is also a symplectic manifold with
the property that if J is the complex structure and w is the symplectic form, then for all
vector fields V, W on (1,

1. w(JV,JW) = w(V, W).



2. The symmetric form &V, W) = w(V,JW) is positive definite.

The first condition implies that b is symmetric. The symmetric form b is a Riemannian
metric on {1, which we will refer to as the Kahler metric associated with the Kahler form

w.

1.2 Totally Real Submanifolds

Let  be a complex manifold of complex dimension n, and let M be a real submanifold
of real dimension n. We say that M is a totally real submanifold of {2 is there exist near

every point m of M a neighborhood O of m in f and a complex coordinate system

zt = z' + /=19 on O such that
MNO={Ce0:y({)="-=y"(¢) =0}

It is clear that if M is totally real, then it is a real analytic manifold. An important result
is that diffeomorphisms of totally real submanifolds extend uniquely to holomorphic maps

of complex neighborhoods.

Lemma 1.2.1 Let M and M' be totally real submanifolds of complez manifolds Q and
V', and let F: M — M’ be a real analytic diffeomorphism. Then there are neighborhoods
O and O' of M and M' and a unique holomorphic map F: O — O' exztending F.

Proof. We will prove the local existence and uniqueness of F'; then by patching together
the local representations we get a well defined holomorphic map extending F.

Let U be a neighborhood of 0 in R", and let F:U — U’ be a real analytic diffeomor-
phism. The coordinate components of F' are real analytic functions on R”, and can be
analytically continued to a neighborhood of & in C". This defines a local holomorphic

extension of F. To see that it is unique, suppose there are two such extensions, F' and



W

G. Then for all multi-indices a,

(52)"(F = )l = 0.

Now since F — ( is an analytic function,

P LRV Sy
(5;) (F-G)—(E (F - G).

This means that F' — @ vanishes to infinite order in the z variables on I , 0 it must be

identically zero. [J

Lemma 1.2.2 Let M be a totally real submanifold of a complex manifold Q. Then there
is a neighborhood O of M in Q and a unique antiholomorphic involution o: @ — O such

that M is the fized point set of o.

Proof. It is enough to prove local existence and uniqueness. For the local existence,
let O be a coordinate neighborhood with coordinate functions z' = ai + \/—1y'. Let
o(z++/~1y) = v —/=1y. For the uniqueness, suppose there were two such involutions,
o and o'. Their composition would then be a holomorphic map whose fixed point set is M.
By lemma 1.2.1, there is a unique holomorphic map extending the identity diffeomorphism

of M. This map must be the identity, which proves the uniqueness. [

Lemma 1.2.3 Let M and M' be totally real submanifolds of complex manifolds ) and
', let F:M — M' be a diffeomorphism, and let o, o' be the conjugations of M and
M' described in lemma 1.2.2. If F is the unique holomorphic eztension of F given in

lemma 1.2.1, then Foo =¢o'o F.
Proof. The map o' o F o ¢ is a holomorphic map which is equal to the diffeomorphism
F on M, so by the uniqueness part of lemma 1.2.1 it must be equal to F. [

If M is a real analytic manifold, it is known that M can be embedded as a totally

real submanifold of a complex manifold €.

10



Theorem 1.2.4 (Bruhat-Whitney) FEvery real analytic manifold M can be embedded
as a totally real submanifold of a complez manifold Q. This embedding is unique in
the sense that if 1;: M — @y and 1;: M — Q, are two such embeddings, then there
is a neighborhood Oy of M in Q and a neighborhood O; of M in Q, and a bijective
holomorphic map ®: O, — O, such that 1, = ® 0.

Proof. See Bruhat-Whitney [2]. O

1.3 The Cotangent Bundle Structure

Let M be a smooth manifold, and let 7* M be the cotangent bundle of M. It is well
known that T*M has a canonical symplectic structure, that is, there is a nondegenerate,
closed two from w, on T*M. The form w, is exact, in the sense that it is (minus one

times) the exterior derivative of a one form a,. The one form a, is canonically defined

by, for { € T*M and V € T (T*M),

a.(E)(V) = &(drr-u(V))

where mr.pr:T*M — M is the cotangent projection. It is easy to see that M is a
Lagrangian submanifold of T*M, since a, vanishes on M. The following important
result, due to B. Kostant, S. Sternberg, and A. Weinstein, shows that this is locally in

some sense a standard model for Lagrangian submanifolds of symplectic manifolds.

Theorem 1.3.1 Let @ be a symplectic manifold whose symplectic form is ezact and
equal to —da. Let M be a Lagrangian submanifold of Q such that o« = 0 on T p. Then
there is a neighborhood O of M in Q, a neighborhood O, of M in T*M, and a unique
diffeomorphism ¥: O — O, such that

*
Va, = a
Por = 1,

11



where 1, 1, are the inclusions of M in Q, T*M respectively.

Proof. This follows from propositions 3.1 and 3.2 in chapter V of Guillemin and Stern-
berg [7]. To explain how this follows, we need some terminology. A polarization of a
symplectic manifold §2, with symplectic form w, is a smooth assignment of a Lagrangian
subspace of T;{} to each ( € {2 in such a way that this assignment is integrable. If G is a
polarization transversal to a Lagrangian submanifold M, then in a neighborhood of M

there is a unique one form 8 such that
1.dB=w
2. forVeg pgV)y=0

3. Blar = 0.

We say that (3 is the one form associated with the polarization G. See [7], page 228 for
details.

Proposition 3.2 in [7] says that there is a unique polarization defined on ) near M
which is transversal to M and whose one form is a. Proposition 3.1 in [7] says that there
is a symplectic diffeomorphism ¥ of a neighborhood of M in Q with a neighborhood of
M in T*M which carries the leaves of G into the standard cotangent fibration of T*M
over M. Examining the proof of this proposition, we see that we may assume that ¥ is
the identity on M. Let &@ = (¥~!)*a. Then & — a is closed, and is locally equal to df for
some function f. Since & — a vanishes on M, we may assume f is constant on M. Note
that @ — o vanishes on the tangent space to the fibers of T*M over M. This shows that
f is constant along the fibers, hence f must be a constant function and df equal to zero.

It remains to show that the diffeomorphism ¥ is unique. This is a standard argument
(see for example Abraham and Marsden [1], exercise 3.2F), which we will now sketch.
Suppose ¥' is another such diffeomorphism. Let ® = ¥'o ¥~1. Then & is the identity on
M, and preserves the canonical one form a, on T*M. Since ® preserves a,, it preserves

the vector field =, defined by «(Z,)da, = a,. This implies that ® is a fiber mapping.

12



Since ® is the identity on M, we conclude that mr.pr 0 ® = 7r.ps, where 7wr.pr is the

cotangent projection. Now if V € T¢ (T*M), we have

ao(2(¢:))(d2(V))
= ®(&)(d(n-p 0 B)(V))
= ®(&)(drr-m(V)).

(8" a0 )(é:)(V)

i

On the other hand, since $*a, = a,,

®(é:)(drrem(V)) = &e(drrem(V)).

Since 7r.pr is a submersion, we conclude that ¢, = ®(¢.). O

The cotangent bundle of M carries an antisymplectic involution o,, given by a,(¢) =
—{. If Q carries an antisymplectic involution o such that o*a = —a, it is not hard to see

that ¥ preserves this involution.

Proposition 1.3.2 Suppose Q, ¥ are as in theorem 1.3.1, and suppose ) has an invo-

lution o such that c*a = —a. Then 0,0 ¥ = VYoo,

Proof. Let 6 = 0,0 ¥ oo o ¥~-!. Then & preserves the canonical one form a,, and is the

identity on M. The proof of theorem 1.3.1 implies that & is the identity. [

Suppose () is a Kahler manifold with Kahler form w, M is a Lagrangian submanifold

of 2, and ¢ is a smooth function on a neighborhood of M in  such that
1. w = +/—199¢
2. ¢=dp=00n M.

We will then say that ¢ is a defining phase function for M. It is known that if M is

Lagrangian we can always find such a defining phase function.

13



Theorem 1.3.3 If M is a connected Lagrangian submanifold of a Kihler manifold 2,
then there is a neighborhood O of M in Q) and a unique defining phase function ¢ on O
for M.

Proof. See Guillemin and Sternberg [6]. O

Conversely, we have the following observation.

Lemma 1.3.4 Let M be a totally real submanifold of a complex manifold Q, and let ¢
be a real valued function on Q such that ¢ = dp =0 on M, and 8?¢/0y*0yP is a positive
definite matriz when evaluated on M. Then the two form \/—100¢ is a Kéihler form on
a neighborhood of M in (1.

Proof. Note that +/—180¢ = —dIm 84, so it is closed, and will be nondegenerate on a
neighborhood of M (still denoted by ) if the matrix 82¢/dy*dy” is positive definite on
M. This shows that /—108¢ is a symplectic form on . To show that /=190¢(J X, JY)
is equal to v/—1094(X,Y), we use a standard expression for the exterior derivative of a
one form (see for example Abraham and Marsden (1], page 121, line 6 on table 2.4.1). If

X,Y are vector fields on M, then

dIm F$(JX,JY) = —%JX(Y:;S) + %JY(XqS) - %J[JX, JY]é. (1.3)

Using the vanishing of the Nijenhuis tensor (see equation 1.1 on page 7), we can write

—5IX(Y$) = S[V,JX]6- ¥ ImTg(X)

%JY(XqS) = %[JY,X J¢ + X Im §g(Y).
Putting this into equation 1.3 gives
dIm 9p(JX,JY) = XImd(Y)— Y Imds(X) — Im 8¢([X,Y])
= dImdé(X,Y).

14



This shows that the form
b(X,Y) = dIm d¢(X,JY)

is symmetric. To see that it is positive definite, note that

1 0%

299 jamndyP
2 8yeayp " WY

—dIm 8|y =

This shows that b is positive definite when evaluated on M, so it must be positive definite

in a neighborhood of M in Q. (O

Remark. Let M, Q, ¢ be as above. Note that if we set o = Im §¢, then a vanishes
on M, and so M is a Lagrangian submanifold of { with respect to the symplectic form
w = —dIm 0. We can now apply theorem 1.3.1 to conclude that there is a unique
diffeomorphism ¥ of a neighborhood of M in Q with a neighborhood of M in T*M such
that ¥ is the identity on M, and if a, is the canonical one form on T*M, then ¥*a, = a.
We will use this procedure to construct Kahler structures on cotangent bundles, near the

zero section.

15



Chapter 2

Overview and General Theory

2.1 Overview

Let M be a compact real analytic manifold. By theorem 1.2.4 it is possible to embed
M as a totally real submanifold of a complex manifold 2. By choosing a strictly plurisub-
harmonic exhaustion function ¢ near M, vanishing to second order on M, it is possible
to consider  as a Kahler manifold with Kahler form 1/—180¢ and M as a Lagrangian
submanifold. Then the Kostant-Sternberg-Weinstein theorem gives a unique symplectic
identification of @ with a neighborhood of M in T*M. See chapter 1 for details. So
it is possible to regard T*M, at least in a neighborhood of M, as a Kahler manifold
whose Kahler form is the standard symplectic form. This identification has been very
useful in the study of Toeplitz operators by L. Boutet de Monvel and V. Guillemin; see
for example [14] and the survey article [8]. However, this identification is not in any
way canonical. It depends strongly on the choice of Bruhat-Whitney embedding and
exhaustion function.

The goal of this thesis is to show that if we are given one addition piece of data, a
real analytic Riemann metric g on M, then there is associated with (M, g) a canonical
embedding of M as a totally real submanifold of a complex manifold. This (canonically

determined) complex manifold is in fact a Kahler manifold, and the Kahler structure is

16



intimately connected with the symplectic structure of T*M. Our result, obtained jointly
with my thesis advisor Prof. V. Guillemin, is the following. We have been able to prove
it in enough homogeneous cases to perhaps allow us to call it a theorem, although we

have not proved it in full generality.

Theorem 2.1.1 Let M be a compact real analytic manifold equipped with a real analytic
Riemannian metric g. Then there is a neighborhood Q, of M in T*M and a unique
integrable complex structure J, on Q, such that if a, is the canonical one form on T*M,
0, is the standard involution of T* M, and ¢, is the quadratic function on T*M associated
with the metric g, then

Im 8¢, = a,

and o, is an antiholomorphic map, i.e. o3J, = —J,. This complez structure turns Q,

into a Kdhler manifold whose Kihler form is the standard symplectic form on T*M.

This theorem describes a completely natural and canonical complex structure on
T*M (near the zero section). It displays a previously unknown connection between the
Riemannian structure, the symplectic structure, and the complex geometry of T*M.
The symplectic structure of the cotangent bundle of any smooth manifold is completely
canonical and fixed. Given a real analytic Riemann metric on M one obtains a unique
complex structure as in theorem 2.1.1. Conversely, given a complex structure J such

that Im 0¢ = a, for some real analytic function ¢ we can define a Riemann metric g on

M by, for X and Y vector fields on M,

9(X,Y) = wo(X,JY).

If ¢ is a quadratic function, i.e. it satisfies the partial differential equation

Eo¢ = 2¢

where Z, is the radial vector field on T*M defined intrinsically by «(Z,)da, = a,, then

17



the uniqueness part of theorem 2.1.1 implies that J, = J. We postpone the proof until
the end of section 2.2.

This theorem may be formulated in several seemingly different but equivalent ways,
each of which adds a new insight into the complex geometry of T*M near the zero
section. We will show that theorem 2.1.1 is equivalent to the following result. Choose
a Bruhat-Whitney embedding of M into a complex manifold . Then there is a unique
real analytic function ¢ on a neighborhood of M in Q such that

l. ¢=dp=0o0n M.
2. If o is the complex conjugation about M then o*¢ = ¢.

3. Set a = Im ¢, w = —da. If X and Y are vector fields on M, then
w(X,JY) = ¢g(X,Y)

where J is the complex structure operator on (2.

4. Define a vector field = in terms of ¢ by ((Z)w = —a. Then ¢ satisfies the “Monge-
Ampere type” equation

¢ = 26. (2.1)

Conditions 1 and 3 are initial conditions for ¢. They say that ¢ is a defining phase
funetion for M in the Kahler manifold (,w), and that the associated Kahler metric
extends the given metric g on M. Condition 2 is needed to establish the uniqueness
of the solution ¢ via a formal power series argument. Condition 4 is the heart of the
matter; it says that when ¢ is pulled back to T*M via the Kostant-Sternberg-Weinstein
identification, it is a quadratic function. Equation 2.1 can be written in local holomorphic

coordinates as

¢a¢a = 2¢

where ¢, = a%%, and ¢ is defined by ¢5 = V—-1¢,56% We call this an equation of

18



“Monge-Ampere type” because it involves the determinant of the matrix ¢_z.
We will show that on Q\M, u = $* satisfies the homogeneous complex Monge-Ampeére

equation

(80u)" =0

(n-fold wedge product of 0u with itself), where n = dim¢Q = dimpgM. Thus we may
view {1, and hence T*M near the zero section, as a Stein manifold with center M (in
the terminology of P. M. Wong [25]) equipped with a Monge-Ampére exhaustion. Such
manifolds, called Monge- Ampeére manifolds in [25], have been studied by several authors
and much is known about their geometry. See Wong [23], [25], [24] and D. Burns (3]. In
section 2.4 we will try to survey the most interesting results about such manifolds.

We have not as yet been able to give a proof of theorem 2.1.1 in complete gener-
ality. We have been able to reduce the problem to solving locally a single equation of
“Monge-Ampere type”. We have a formal power series solution of the problem, but
the convergence of this series is not yet established. We have been able to prove theo-
rem 2.1.1 in many homogeneous situations, and for the compact Riemannian symmetric
spaces. These results extend those of Wong in [25], who essentially proved theorem 2.1.1
for the rank one symmetric spaces (albeit in a different context). Explicit constructions
will be given in chapter 4.

For the compact Riemannian symmetric spaces we have been able to show that the
complex structure described in 2.1.1 exists globally on all of T*M, not just on a neigh-
borhood of M. We show that T*M is isomorphic to a complex homogeneous space, and

a very explicit description of the complex structure operator is given.

2.2 Formulation of the Problem on a Complex

Manifold

In this section we will prove the equivalence of theorem 2.1.1 with the problem of

19



solving a certain partial differential equation of “Monge-Ampére type”. The virtue of this
approach is that we have to solve only a single equation, rather than the overdetermined
system of equations for the matrix entries of the complex structure operator. In addition

we obtain a clearer description of the canonical complex structure on T*M.

Theorem 2.2.1 Let (M,g) be a compact real analytic Riemannian manifold with a real

analytic metric g. Then the following are equivalent:

1. There is a neighborhood Q, of M in T*M and a unique integrable complez structure
Jo on Q, such that if a, is the canonical one form on T*M, o, is the standard
involution of T*M, and @, is the quadratic function on T*M associated with the
metric g, then

Im 8¢, = a,
and o0, is an antiholomorphic map, i.e. orJ, = —J,.

2. There ezists a Bruhat-Whitney embedding of M into a complez manifold Q and a

unique real valued, real analytic function ¢ on a neighborhood of M in Q such that

(a) $=dd =0 on M.
(b) If o is the complex conjugation about M, then o*¢ = ¢.

(c) Set a =Imd¢ and w = —da. If X and Y are vector fields on M and J is the

complez structure on (), then
w(X,JY) =g(X,Y).
(d) Define a vector field = by «(Z)w = —a. Then
=¢ = 2¢.

Proof. It is obvious that 1 implies 2 (the uniqueness follows from the uniqueness of defin-

ing phase functions; condition 2¢ follows from the expression for J, given in lemma 3.3.1),

20



so we must prove the other direction. The strategy is to establish the local existence of
the complex structure J,; having done that we will show that it is uniquely determined
locally. This will enable is to “globalize” by piecing together the local complex structures
so obtained.

Let O be a holomorphic coordinate patch on ) with holomorphic coordinates 21,..., 2"

where ¢ exists and such that
ONM={Imz'=-.. =Imz" = 0}.

Let i = ONM. Notice that condition c implies that by shrinking O we may assume that
w is nondegenerate, so that (O,w) is a symplectic manifold. Since ¢ vanishes to second
order on M, M is a Lagrangian submanifold of 0. By the Kostant-Sternberg-Weinstein

theorem there is a neighborhood (still denoted O) of U, a neighborhood O, of ¥ in T*U
and a unique diffeomorphism @ from O to O, such that

*
®*a, = a,

and ®|y is the identity map. Equip O, with the pushforward via & of the complex
structure on O, which we denote by J,. This complex structure is clearly integrable. Since
o is an antiholomorphic map on O and ®*0, = ¢ it is clear that o, is an antiholomorphic
map on O,.

We now show that Im 8¢, = a,. It is clear from the construction that a, = Im 3((;5 o
®-1). We need to prove that in terms of the cotangent coordinates ¢; corresponding to
z' = Rez' that ¢ o ®(x,£) = g'¢;¢;. Since the vector field = is defined by ((Z)w = —a
it is easy to see that ®,Z is defined by ¢«(®.Z)w, = —a,. This means that $,Z is the

radial vector field on T*M, and in coordinates

0
0&:

(I’.E(:B,g) = Z &
i=1
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Then
3 5i‘6‘,(¢ 0® 1) =dp(Z) o @1 =2(g0 7).
i=1 aé'

It follows easily that ¢ o ®! is homogeneous of order 2 in £. Since ¢ o ®-! is a smooth
function, Taylor’s formula shows that it must be a quadratic function in ¢. To determine
which quadratic function it is, we must examine the fiber Hessian of ¢ o ®~! along the

zero section. Since ®|y is the identity it is clear from conditions a and ¢ above that

0%(po ®1)

0
9E.0%, (vod

T ¥’ 0 371)|—o. (2.2)

le=o = 2g:5(T) 51 _l)ag (

Since ¢ vanishes to second order on I we have

1. 9%

2((9 <3y 50" Dd(zP 0 1) A d(y* 0 ®7)]e=o.

Wole=0 = (®71)*wle=0 =

Using condition ¢ again and noticing that 3 (y 0 ®~1)|¢=0 = 0 since ® preserves I and

*=0on U gives

0 Iy 0
Wolg=0 = g"”ag,(y 0 @7 1)daP A dEjle0 + gaﬁ%( 0 ‘1"1)661 (y* 0 @ 1)d¢; A dEjle=o.

Since w, = dz' A d¢; this means that

o )
A 7 )e=0 = ¢

Putting this into equation 2.2 shows that ¢ o #~! = @,. This proves the local existence
of the complex structure described in 1 above.

Now we claim that this complex structure is unique. Suppose there are two such
complex structures, J, and J., on O, such that Im 8¢, = a, = Im 8 ¢, (the prime
means with respect to the complex structure J!), and the standard involution o, is an

antiholomorphic map. By lemma 1.2.1 we can find a diffeomorphism f of a (possibly
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smaller) neighborhood O, of U in T*U onto itself such that
fJ'=J

(i.e. df o J' o df~! = J) and which is the identity on . We will show that f preserves
the quadratic function ¢,.

On each of the complex manifolds (O,, J,) and (O,, J!) we pose the “Monge- Ampeére”
problem in 2 of the statement of theorem 2.2.1 and find unique solutions ¢ and ¢'. Since
Im 3¢, = ImJ ¢, = a, we see that ¢, 1s the unique solution to both problems (condition
2c follows from lemma 3.3.1). So we must have ¢ = ¢’ = ¢,. To show that f preserves ¢,
it suffices to show that ¢' = f*¢,i.e. that f*¢is the unique solution for the problem given
in 2 for the complex structure J!. First we must check that f*¢ is invariant under the
complex conjugation about 2 with respect to the complex structure J!. This conjugation
must be the starldard involution o, of T*U by the uniqueness part of lemma 1.2.2. Since
¢ is invariant under o, by hypothesis, we must check that f o o, = 0, 0 f. Consider the
map F = f~1 00,0 f 0 0,. It is easy to see that F is a biholomorphism of the complex
manifold (O,,J,) which is the identity on &/. By the uniqueness part of lemma 1.2.1, F
must be the identity. This proves that f*¢ is invariant under o,.

Next we check that f*¢ satisfies 2c above. Set o' = Im 8 f*¢ and w' = —da’. Then
Im3 f*¢ = f*Im B¢

and so w’' = f*w. Since f is the identity on U, for any vector field X tangent to & we
have (on /) that df(X) = X. Then for any vector fields X and Y on / and any ¢ € Y

we have

W'(X, J'Y)(z) = w(df(X),df (J'Y))(f(=))
= w(X, Jdf(Y))(=)

= w(X,JY)(z) = g(X,Y)(z).
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This shows that f*¢ satisfies condition 2c above.
It is clear that f*¢ = df*® = 0 on U. It remains to check that if we define a vector
field Z' by «(Z')da’ = o' then Z'f*$ = 2f*¢. Since o’ = f*a we have

Ui 2)da = f*a.
This shows that f,Z' = Z. Then
E(fé)=df (o f)(f'9)

= d§(Z o0 f) = 2f*4.

This shows that f*¢ is the unique solution to the problem given in 2 for the complex
manifold (O,, J)), so that f*¢ = ¢,.

Since f preserves ¢, it also preserves a, = Im 9¢,. By the uniqueness part of the
Kostant-Sternberg-Weinstein theorem, this forces f to be the identity. Then J, = J! and
we have established the local uniqueness. We can now cover M by a finite number of
open sets in T* M, each carrying a complex structure as in part 1 of theorem 2.2.1. By the
uniqueness they agree on overlaps. This defines a complex structure on a neighborhood

of M in T*M which has the properties described in 1. [J

We can now prove the result stated in section 2.1. We want to show that if J is a
complex structure on T*M near M such that Im 8¢ = @, for some quadratic function @,
then J is equal to the complex structure J, corresponding to the metric g(-,-) = Wo(+yJ+).
Note that ¢ is the solution of the “Monge-Ampere type” problem for the metric g with
respect to the complex structure J. Then the proof of theorem 2.2.1 shows that there is
a unique symplectic diffeomorphism @ which is the identity on M, carrying Im d¢ into
a,, and such that J, = &,J. But since Im d¢ = a,, ® must be the identity map (see the

uniqueness part of the proof of theorem 1.3.1).
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2.3 The Complex Homogeneous Monge-Ampeére
Equation

The complex homogeneous Monge-Ampére equation is

0%y

det - =
¢ 02107

0

where u is a twice differentiable function and z!,...,z" is a local holomorphic coordinate

system. This can be written invariantly as
(80u)* =0

(n-fold wedge product of d9u with itself), where n is the complex dimension of the
ambient complex manifold. In this section we will show that if ¢ is a solution of the
“Monge-Ampére type” problem posed in theorem 2.2.1, then u = ¢7 satisfies the complex
homogeneous Monge-Ampére equation away from the “center” M. We will also show that

u satisfies the nondegeneracy condition
(80u)"* £ 0

away from M.

If ¢ is a solution of the “Monge-Ampére type” problem posed in theorem 2.2.1, the
initial conditions on ¢ imply that it has a strict minimum on M. We may assume, by
shrinking Q if need be, that ¢ # 0 and v = ¢7 is smooth on O\M. If w, a, and = are as
in the statement of theorem 2.2.1, then on Q\M

a = 2u Im Bu

w = (—2)(du A Im Gu + u d(Im Ju))
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Zu = u.

The equation ¢(Z)w = —a can be written
du(Z)Im du — Im Ju(Z)du + ue(Z)d Im Ou = uIm Fu.

It’s clear from the definition of = that (=) = 0, so Imdu(Z) = 0. Using du(Z) = Zu = u

we have

(Z)dIm Ou = 0. (2.3)

Now Z # 0 on Q\M, so this says that the two-form §0u has (real) rank less than 2n.
Then the 2n form (§3u)" must be zero on @\ M. Since

w" = 2"(nu" "1 0u A Ou A (80u)*?)

and w" is a volume form, it is clear that the nondegeneracy condition (89u)"~! # 0 holds.
Conversely, suppose u is a solution of the homogeneous Monge-Ampeére equation. If

¢ = u? is strictly plurisubharmonic, then it is shown in §3 of [25] that ¢ satisfies
¢al3¢ad)§ — 2¢

Set a = Im §¢, w = —da, and define = by ¢(Z)w = —a. This definition may be written

as

(Z)0T¢ = %(% — 3¢).

Write = = 3766 + Ei.);i,. Then a short computation shows that

%5 (2.4)

so that 24 = ¢°P g5 = 2¢.
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2.4 Monge-Ampere Manifolds and Foliations

Let §2 be a n dimensional complex manifold, u: @ — [0, 00) a strictly plurisubharmonic
function, and let M = {u = 0}. We say that Q is a Monge-Ampere manifold if u is

continuous on §2, smooth on Q\M and
(80u)" =0

on Q\M. We will assume that M is a smooth manifold of real dimension n. Monge-
Ampére manifolds have been studied by several authors. See for example Wong [22], [24]
and Burns [3], [4]. The results in this section are mostly due to Wong [24]. They are
new only in that they can be applied to the cotangent bundle of a compact real analytic
Riemannian manifold, assuming theorem 2.2.1. Note that the initial conditions on u in
theorem 2.2.1 insure that u is strictly plusrisubharmonic and positive on a neighborhood

of M, so by shrinking £ we may assume this is true on f2.

Since (08u)" = 0 and (90u)"~! # 0, the distribution F defined pointwise by
F( = {V € T(QL(V)@EU = O}

is two (real) dimensional. The distribution F is integrable, since if V, W are vector

fields with values in F, then
Y[V, W])8du = Ly (W )(00u) — W)Ly (89u)

=0 — ((W)(d(V)00u — ((V)ddOu) = 0

since 88u is closed. F is also a complex distribution: if V € F and X is any vector field,
then
YJV)80u(X) = 89(JV,X) = —89(V,JX) = 0.

Thus ) carries a foliation F whose leaves are complex one dimensional submanifolds, i.e.
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Riemann surfaces. F is called the Monge- Ampeére foliation.
Let = be the vector field defined in theorem 2.2.1. By equation 2.3, = and JZ span
F. The leaves of F may be thought of as the flows of the type (1,0) vector field

This vector field is the complex gradient of ¢ = u? with respect to the Hermitian inner

product
< V,W >= 394V, W).

In other words Z is defined by

In coordinates it is easy to see that

o3, O
2= b5
so by equation 2.4, = = Re(Z). Note that the “Monge-Ampere type” equation in theo-
rem 2.2.1 can be written as

Zp=20=<2,Z>.

The first interesting result about the Monge-Ampere foliation is that the leaves are
flat and totally geodesic. This is proved in Wong [24]. We will give a slightly different
and more intrinsic proof. First we compute the covariant differentiation along the leaves,

using a few simple observations which are of independent interest.

Lemma 2.4.1 Letw, ¢, and = be as in theorem 2.2.1 and let b denote the Kdhler metric
b(X,Y) = w(X,JY). Then the vector field = is orthogonal to the level sets

e ={C€Q:¢(() =c} (c>0),
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JZ 1s tangent to the level sets 1., and the vector fields ﬁE, ﬁJE form an orthonormal
basis for the Monge-Ampére distribution.

Proof. Let V be a vector tangent to one of the level sets .. Then
b(Z,V) =w(E,JV) = —a(JV)

— _ImFH(JV) = %dq&(V) 0.

To see that J= is tangent to )., note that
(JE)¢ = dp(JE) = 2Im 8¢(Z) = —2w(Z,Z) = 0.
The modulus squared of Z with respect to the metric b is
b(Z,Z) = w(E,JZ) = —Im §¢(J =)

1 =) —
= 3d4() = ¢.

This implies that the modulus squared of JZ is also equal to ¢. O

Lemma 2.4.2 [zw = w.
Proof. Lzw = ((E)dw + di(E)w = 0+ d(—a) =w. O
Lemma 2.4.3 [Z,JZ] = J=.

Proof. For any vector field V' we have 5(JZ,V) = w(Z,V) = —a(V) = —1d¢(JV), and
b([Z,JE], V) = ([, JE])w(JV). We compute

([Z,JE))w = Let(JE)w — (JE) Lzw

= Lz(JE)w — ((JE)w.
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A simple computation shows that ((JZ)w = —2d¢. Then
5, 75w = —2dLeé + —dp = —dd + ~dp = —>d¢
(%, JEDw = —3dl=¢ + 3dé = A
Thus b(JZ, V) = §([E, JZ], V). O

Proposition 2.4.4 Let V be the Levi-Cevita connection of the Kihler metric b, and let

= be as above. Then

Proof. Since {2 is a Kahler manifold, the complex structure is parallel with respect to
V. Then since V has no torsion, we need only compute V=Z. Suppose V is a vector field

tangent to the level sets Q. = {¢ = ¢} (¢ > 0). Then

[1]

2(V=ZE, V) = 28b(Z, V) — Vb(E, E) — 26([Z, V], Z).

The first term is zero by lemma 2.4.1. By lemma 2.4.1, the second term is —V'¢, which

is also zero if V' is tangent to the level sets of ¢. The last term is
- = - 1 -
¥([E,V],E) = w(E,J[E,V]) = §d¢([:‘v 1 4)]

= (EV¢ — V=)
1
= ;(0-Vg)=0.

Thus V=Z is orthogonal to the level sets of @, so it must be a multiple of Z. To find
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which one, we compute

[1]

[n
=
[1]
(1]
(11

2b(VEE, ) = ¢ = 2‘75-

a)=

This proves that Vz= = Z. It follows immediately that VzJZ= = J= and VyzZ =

=

JZ + [JE, E], which in view of lemma 2.4.3 proves the proposition. [

Corollary 2.4.5 The leaves of the Monge-Ampére foliation are totally geodesic.
Using this information it is easy to compute that the curvature along leaves is zero.
Proposition 2.4.8 The leaves of the Monge-Ampére foliation are flat.

Proof. We will show that the (1,3) curvature tensor

R(X,Y,Z) = VxVyZ - VyVxZ - VixyZ

vanishes using the basis =, J= of the Monge-Ampére distribution. There are only two

potentially nonzero ones that we have to check:

(1]

R(JZ,Z,5) = 2V,25 = 0

R(JZ,2,J2) = 2V ;2= - V=V, =JZ = 0.
Hence the leaves are flat. [

Remark. It’s easy to that the integral curves of the orthon 1 basis 2==, 1=J=
easy to see e integ es e or ormal ba 7; ,7;

are geodesics.

2.5 Some Interesting Results

In this section we collect some interesting results about the Monge-Ampeére foliation.

Most of them are due to Wong [24]. We also record an interesting connection between
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the gradient of the exhaustion function ¢ with respect to the Kahler metric b and the
Hamiltonian vector field associated to ¢ by the symplectic structure, which seems to be
new.

The following was proved in [24], but we will give a much simpler proof.
Proposition 2.5.1 The base M is a totally geodesic submanifold of ).

Proof. Let o be the antiholomorphic involution of a neighborhood of M in Q whose
fixed point set is M (see chapter 1). Then ¢ is an antisymplectic map, since for any

vector field V on a neighborhood of M,
1
c*a(V) = §d¢(Jda(V))

= —5do*$)JV) = ~a(V).

It follows easily that o is an isometry of the Kahler metric b. If v is a geodesic tangent
to M at a point p € M with tangent V, at p, then o 0y is also a geodesic tangent to M
at p with tangent vector V,, at p. By uniqueness of geodesics, 0 0y = v (at least for short

time). Hence o fixes v, so v lies in M. O

Proposition 2.5.2 The distance minimizing geodesics between the level sets of ¢ are
integral curves of the vector field ﬁE, and the geodesic distance between level sets

and Q, is |p3(b) — ¢3(a)).
Proof. See Wong [24]. O

P. M. Wong gives a very explicit description of the leaves of the Monge-Ampére
foliation. Let F:TM — Q be the map

F(V;) = Exp,(JV)

where Exp is the Riemannian exponential map of the Kahler metric associated with

v/—180¢. This map is a global diffeomorphism. If 7 is a geodesic on M, then the image
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of the set
{(2(t),—s¥(¢)) :s,t eER} CTM

contains a leaf of the Monge-Ampeére foliation. This gives the following result.

Proposition 2.5.3 The Monge-Ampére foliation eztends across the center M. The in-
tersection of each leaf with M is a geodesic on M, and through each geodesic on M there

passes a unique extended leaf of the Monge-Ampére foliation.

Proof. See Wong [24], §5, theorem 5.1. O

Finally we show that the complex structure operator takes the gradient vector field

of ¢ into (minus one times) the Hamiltonian vector field of ¢.

Proposition 2.5.4 Let = be defined as in theorem 2.2.1, and let b denote the Rieman-

nian melric associated with the Kdhler form w. Then

1
== Egradbgb
1
JE=--H,
2 ¢

where Hy is the Hamiltonian vector field associated with ¢ by the Kihler form w.

Proof. For any vector field V on ,

Hence = = %gradbq& On the other hand,
W(JE, V) = —w(E,JV) = a(JV) = _—;-dqs(V).

This shows that J= = —2H,, where Hy is the Hamiltonian vector field associated with

¢. O
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Corollary 2.5.5 The Monge-Ampére distribution is spanned by the gradient vector field
of ¢ and the Hamiltonian vector field of ¢.

This result enables us to interpret Wong’s results in terms of Hamiltonian mechanics,
using the Kostant-Sternberg-Weinstein identification of Q with T*M near M. Motion on
a Riemannian manifold is described by the flow of X 14, Where ¢o({) = |¢|2. The integral
curves of X% 4.» When projected to M by the cotangent projection, are geodesics. This
explains why the Monge-Ampére foliation intersects the base in geodesics.

Since the flows of X%% preserve the sphere bundle L. = {¢ € T*M:¢,(¢) = c}, it
follows that the flow of X 14 OD () preserves the level sets of ¢.

Corollary 2.5.6 The flow of JZ preserves the level sets (..
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Chapter 3

Formal Proof of the Result

3.1 The Formal Power Series Solution

Let (M, g) be a real analytic Riemannian manifold. In section 2.2 we showed that

theorem 2.1.1 is equivalent to the following theorem.

Theorem 3.1.1 There exists a Bruhat-Whitney embedding of M into a complez mani-
fold Q) and a unique real valued, real analytic function ¢ on a neighborhood of M in
such that

1. ¢=d¢p=0o0n M.
2. If o is the complez conjugation about M, then o*¢ = ¢.

3. Set a = Im0¢ and w = —da. If X and Y are vector fields on M and J is the

complex structure on ), then

w(X,JY) =g(X,Y).

4. Define a vector field = by «(Z)w = —a. Then



In this section we will give a formal proof of this theorem. We will show that theorem 3.1.1
is equivalent to a certain local problem. We will write down a power series solution to
this problem, and establish the uniqueness of this solution, if it exists. But the proof
will be only formal in that we will not establish the convergence of this power series in
general. In chapter 4 we will indirectly prove the convergence of this power series for
a large class of homogeneous examples, by constructing an explicit comple?ciﬁcation of
T*M near the zero section with the properties described in theorem 2.1.1. In many cases

this complex structure will exist globally on T*M (see for example theorem 4.5.1)

3.1.1 Reduction to a Local Problem

We know from the Bruhat-Whitney embedding theorem (see theorem 1.2.4) that it is al-
ways possible to embed a compact, real analytic manifold M as a totally real submanifold
of a complex manifold Q. Fix such an embedding. Let O be a holomorphic coordinate

patch on 2 with coordinates z!,..., 2" such that
ONM={Imz'=... =Im 2" = 0}.

In this section we will express the conditions 1 through 4 in theorem 3.1.1 in terms of
these coordinates, and reduce the proof of theorem 3.1.1 to a local problem.

Write 2* = 2' + /=1y, so that M is given (locally) by y! = ... = y™ = 0. The
condition that ¢ = d¢ = 0 on M then means that ¢ vanishes to second order in y at

y = 0, or in terms of the Taylor series expansion of ¢,

¢(z,y) = aap(z)y*y” + O(¥°).

We are using the implied summation convention. Here a,s are analytic functions of
z',...,z" and O(y®) means (é(z,y) — aapy®y®)/|yl> < oo as |y| — 0. The complex
conjugation about M in these coordinates is o(z + v/ —1y) = ¢ — /=1y, so the condition

0*¢ = ¢ means that ¢(z, —y) = ¢(z,y).

36



To interpret condition 3 in theorem 3.1.1, note that

dIm 3¢ = Im 093¢ = \/-I—_IBEQS,

since 80¢ is purely imaginary if ¢ is a real valued function. Then

=, 1 ¢°
w = \/—108¢=§6yi‘;{;j

= a;j(z)dz' A dy’ + O(y).

dz' Ady’ + O(y)

So the condition w(X,JY) = g(X,Y) for vector fields X, Y on M means that a;;(z) =

9(5%, 22 ) & gij(z). Finally for condition 4 note that in section 2.3, page 26 we have

shown that the equation Z¢) = 2¢ can be written in coordinates as
$°24aty = 26.
It will be convenient to define ¢= by
¢5 = V—14,5¢".

This makes sense near {y’ = -.-y™ = 0} since condition 3 means that ¢ = evaluated at
af

y = 0 is a nonsingular matrix. Then we can write condition 4 as

V—1¢ad* = 2¢.

Suppose for any local representation g;;(z) of the metric g on M we can find a unique
real valued, real analytic function p on a neighborhood in C™ of an open set in R" such

that
L. p(z,—y) = p(z,y)

2. p(2,y) = gap(2)y*y® + O(y*)
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3. V—=1pap® = 2p.

We claim that being able to solve this problem implies theorem 3.1.1. Cover M by
holomorphic coordinate patches O; on @ with coordinate functions ¥; = (z},...,z2!)
such that each component of O; contains only one component of M, a solution to the
local problem exists on ¥(O;), and such that if O; N O; is not empty, then O; N O; N M
is not empty. See appendix A.l for why we may arrange this, given that we can solve
the local problem above. Define the function ¢ we seek in theorem 3.1.1 on the open
set O; to be the local solution p; o 9;, where p; is obtained by solving the local problem
on ¥(0;) with initial data in condition 2 given by g.g = g(%, ﬁg). We need to show
that if O; N O; is not empty, and p; is the solution to the local proiolem on ¥;(0;), then
pio; = p;o;on O;NO;. Since O; N O; N M is not empty, we can pose the local
problem on ¥;(O; N O;), with initial data given by the coordinate representation g.g of
g in the coordinates (O;,;). We must show that if we set § = p; o 9; 0 ¥;! then p
solves this local problem; then by uniqueness we can conclude that p; o ¥; = p; o 9;.
It’s obvious that j satisfies condition 1, since in both coordinate systems M is given by
Imz! = ...Imn 2" = 0 and so the unique antiholomorphic involution fixing M is given by
z — Z in both coordinate systems (see lemma 1.2.2). The other two conditions can also
be formulated in a coordinate independent way as in theoremn 3.1.1, so they are satisfied
in any coordinate system where M is given by Im z! = ... = Im 2" = 0. Thus j solves
the local problem on ¥;(0; N O;). By uniqueness of solutions to the local problem, we
conclude that p = p; on O; N O;. Then the function ¢ we get by patching together the
local solutions is well defined, and solves the “Monge-Ampeére type” problem posed in
theorem 3.1.1. This we have proved that theorem 3.1.1 is equivalent to the following

theorem.

Theorem 3.1.2 Given any positive definite matriz of real analytic functions g;;(z) on an
open set U in R", there is a unique real valued, real analytic function p on a neighborhood
O of U in C™ such that

1. p(z,~y) = p(z,y)
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2. p(z,y) = gaa(m)yayﬁ + O(y*)

3. V=1pap™ = 2p.

3.1.2 Formal Solution of the Local Problem

In this section we construct a formal power series solution to the local problem in the-
orem 3.1.2. Let p by a real analytic function on some neighborhood of 0 \in c", with
coordinates 2 = z® + /—1y®. We will write p, = 8p/82%, and when it makes sense
define p* by

p5 = V—1p.50". (3.1)

We are of course using the implied summation convention. This will make sense in some
neighborhood of zero if p, 3 evaluated at zero is a nonsingular matrix. Define p* by taking

the complex conjugate of equation 3.1. We will need some preliminary results.

Lemma 3.1.3 If p(z,—y) = p(x,y), then the power series ezpansion of p has the form
ple,y)= Y au(x)y™

|| even

Proof. Since p is real analytic, we can write

p(m’ 3/) = Z aa(r)ya + Z ba(m)ya'
la| even |a| odd
The map (z,y) — (¢, —y) fixes the right hand side. O

Lemma 3.1.4 Suppose p(x,—y) = p(z,y). Then

Pap” (T, —Y) = pap”(2,Y)-
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Proof. If p is an even function of y, then 8p/8y* is an odd function of y. Then

pa(, —y) = px(z,y),
and it’s easy to see that
po5(%, —Y) = paa(z,y).

Then evaluating the equation 3.1 at (z, —y) gives
ps(z,y) = V—1pga(z,y)p%(z, -y)

which means that p* = —p*. Then

pap™(T,—y) = —pzp®(z,y)

= papa(:l:,y),
since p,p® is purely imaginary. (J

Lemma 3.1.5 Suppose p(z,y) = gap(z)y°y® + O(y*), where gos(z) is a nonsingular
matriz of functions. Then

PPz,y) = 24" + O(v?).

Proof. Substituting p(z,y) = gapy®y”® + O(y*) into the equation defining pP we see that

. 1 -
9oy’ = 5(gas + O(y))e” + O(y*)-

From this expression it’s clear that p?(z,0) = 0. Writing p? = B (z)y™ + O(y?) and
equating terms of first order in y on both sides gives c:’i(w)y"' =2%. O

We will need to improve this result considerably.

Lemma 3.1.8 Let pi_1(z,y) be a polynomial in y with coefficients depending on z of
degree 2(k — 1) (k > 2) such that py_i(z, —y) = pr_1(z,y) and pr_1(z,y) = gap(z)y*y® +
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O(y*), where gop(z) is a nonsingular matriz of functions. Let {r(z,y) be a homogeneous
polynomial in y of degree 2k (with coefficients depending on z), and suppose that p, =
Pr-1 + Yr. Then
B _ B _ ok op 0%k 2k
(Pr)” = (pr-1)" — 2(k — 1)g 3 T O(y*™").

Proof. Substitute pp = pr_1 + ¥ and (pk)ﬁ = 2y® + O(y?) into the equation defining
(pk)E. This gives

\/—_1(p,,_1)a+%gj: = (pr-1)az(on)® + ( aa ﬂ)y +O(y™). (3.2)

Recall that Euler’s relation says in this context that

s 0 0y

3y”6 2) = (2 _1)6¢k

Using this in equation 3.2 gives

Bdk

V=1(pr-1)a + (1 — = (pr-1)a5(0x)° + O(y7).

Note that (pr_1),5 = 29ap + O(y), so (pk—l)aﬁ = 2¢°% 4+ O(y). Now multiply both sides

of the equation above by (pk_l)"‘ﬁ and sum on alpha. This gives

(s ) — 20k — 1)9“%{% = (o) + O(y)

which proves the lemma. O
We are now ready to construct a formal power series solution to the local problem in

theorem 3.1.2.

Proposition 3.1.7 Let g;;(x) be a nonsingular matriz of functions. Forallk =1,2,.
there exists a polynomial pi(z,y) in y of degree 2k (with coefficients depending on z)
such that
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1. pr(z, —y) = pr(z,y)
2. pi(z,y) = 9i;9'y’ + O(y*)
3. vV=1(pr)alpr)* — 20k = O(y***?).

If we set ), equal to the homogeneous part of v/—1(pk—1)a(pr-1)* of order 2k in y, then
we obtain py, from pr_1 by setting

Pk = Prk-1 + Tk/(Zk — 1)(2k - 2).
Proof. First set p; = g;;4'y’. Then an easy calculation shows that

V—=1(p1)alp1)* — 201 = O(y*).

Now suppose we have constructed pi_; satisfying 1, 2, and 3 above. We wish to find a
homogeneous polynomial v in y of degree 2k such that if we set p. = pr_1 + 9%, then 3

holds for pi. Using lemma 3.1.6 we can write

V=1(pr)alpr)® = 206 = V=1(Pe-1)a(pr-1)" — 2pr-1

V(e )ag™ (2 2k>§—j§

+\/:_1_(¢’k)a(/’k_1)a — 29 + O(y"‘“)-

(3.3)

Using the inductive hypothesis we define a homogeneous polynomial 7 in y of degree 2k
by
V=1(pr-1)alpr-1)" = 2p_1 = & + O(y***?).

Notice that since pi_; is a polynomial in y of degree 2k — 2, 7 is really the homogeneous
part of /—1(pk_1)a(pr—1)* of order 2k in y. Substituting this into 3.3, using lemma 3.1.5
and remembering that pr_1 = g:;;4'y’ + O(y*) gives

0
VE(pr)alp)™ =200 = 1t (3= 2k)7 27 - e+ O™
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= 7 — (2k — 1)(2k — 2)3b + O(y***1).

Since the left hand side is even in y we may conclude that the error is in fact O(y?*+2).
We have shown that if we set pr = pr_1 + 7/(2k — 1)(2k — 2) then p, satisfies 1, 2, and
3 above, which completes the proof. O

An obvious corollary of this is that if a real analytic solution exists to the “Monge-
Ampeére type” problem in theorem 3.1.1 exists, then it is unique. It may be instructive
to write out the first few terms in the formal power series for ¢ and the vector field Z in

theorem 3.1.1 in terms of the metric g.

Proposition 3.1.8 LetZ, ¢ be as in theorem 3.1.1, and let I‘f;-,c be the Christoffel symbols

of the metric g. Then

0

E = (Topy v’ + 0(?/4));9? +
ik 1 6 4 r s agﬂk agﬂ] 7 ¥ 5 _6__
(g (3 a ,y(gkr aﬁ) ggrsrwgl-\—yﬁ ( 633] 3:0" )Pa'y)y y Yy + O(y ))ayt

1 8%, 3
¢ = gaay“y’3+§(gu ilip = 552 fgﬁ,)yyy ¥’ + 0(y°).

Proof. Write = = fi-2. o+ hig: a . Substituting ¢ = g.sy>y” into the equation defining Z,
YZ)d(Im d¢) = Im J¢, (3.4)

we see that f' = O(y?) and h' = y' + O(y?). Applying o* to both sides of equation 3.4
we see that

o*'E)da = a,

—

or 0*Z = Z. This means that ¢*f* = f' and o*h’ = —h?, so the power series for f has

no odd order terms in y, and the power series for A* has no even order terms in y. Then
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we can write

[

= (400 g0+ + B + 065
¢ = F+ Fi+ 0(y°).

Here f3, h}, and Fy are homogeneous polynomials in y (with coefficients depending on
z), of the degree indicated by the subscripts, and F; = g,sy*y®. Substituting this in to
the equations

YZ)d Im 8¢ = Im 9¢

Zp = 2¢
and equating terms homogeneous of the same degree in y we get the following equations:
fori=1,...,n,
( 0*F, B 0’ F, o — 0*F, = _OF,
3230y dzidyi’’ ~ oyidy 't ox
( 0*F, 82(F2 + F4)) i 4 0*F, Vhi + ( 0*F, 0?F, VA = O(F; + Fy)
Geoai T ayay ¥ "\ yay) T Guay T eyt T T oy
OF, 0(Fy + F4) 6F
j j ]

Substituting F; = g,sy*y® in the first equation gives

] aat 18&
5l = (35 = 350"y

Thus we must take

f3 =Thay°y®

where l"f,ﬁ are the Christoffel symbols of the metric g on M.
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To determine ki and F; we apply Euler’s relation to the second and third equation

above. This gives

#F , &F .  OF &F .,  0F
dz05? T agay " T Gaigy T Gwag = 2oy
OF, . .0F,
fgb? + hga_yﬂ = —2F,. (3.5)

Now we multiply the first equation by y*, sum over ¢, and apply Euler’s relation. This

allows us to write

OF, 0*F, , . , 0'F, OF, ...
J__ £ __ e . B _ tp3
Moy = 8T GrigerYY (Geiay ~ wag V2

Substituting this into equation 3.5 gives

1 [OF, 9 F, i 8%F, 9% F, i
Fo=sligr ~ eV ~ Gaag ~ 5aiagV it

This determines Fy and hence hj. Substituting F, = g,3y°y® we see that

1 r s 1620‘ 1,7, Q
Fo= (g1 T — = .gﬁ.)yy’y ¥?,

3772 92ida
and after some manipulation,
; 4.1 0 4 (')gﬁk 6g3~ ;
hi = the =~ rI\r _ = ”Iw_' s (2= J T/ a, B,
g 3aw7(gk aﬂ) 3g iat v83 (6:12-7 dxk a’y)y )

which proves the lemma. O

3.2 Solution of the One Dimensional Problem

Let g(z) be a real analytic metric defined on an open set I in R. We want to find

an analytic function ¢ on a neighborhood of & in C such that, if z = ¢ + /=1y is the

45



standard coordinate, then

1. ¢|y=0 = dd’ly:o =0
2. %g;

|y=0 =49

3. If a =Im 8¢ and E is the vector field defined by (Z)da = a, then E¢ = 2¢

4. #(z, ~y) = #(z,y).

It is easy to translate the above into a partial differential equation for ¢. We must find
¢ satisfying
¢z + ¢y = 2¢(Pee + Puy)

¢|y=0 = d¢|y=0 =0
¢yy'y=0 =g

(here the subscripts denote partial derivatives). This is a nonlinear, characteristic Cauchy
problem. One can’t appeal to the standard Cauchy-Kovalevsky theory for existence of
solutions. However, a simple change of variables turns this into Laplace’s equation. I
would like to thank Prof. D. Jerison for pointing this out to me. Set u = ¢!/2. Then

away from y = 0, u is C*™ and we get the following equation for u:
w?Au = 0.

We of course require that u? is '™ and satisfy the initial conditions posed for ¢. These
ensure that u is real and has a strict minimum at y = 0.
It’s easy to generate solutions of Laplace’s equation; the only difficulty is the slightly

unorthodox initial conditions.

Theorem 3.2.1 The (unique) solution of the one dimensional problem is

#z,y) = (Re [ gz + v=Tt)"2dt)?
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Proof. In order to see what’s going on we give a constructive proof. The distinguishing
feature of the one dimensional case is that the boundary conditions do not preclude a

C'> solution. We seek u such that
2
(v*)uly=0 = 2unyfy=0 = 0

(“2)yy|y=0 = 2(“; + uttyy )|y=0 = 2g

We may take for initial data

Uyly=0 = 91/2

The obvious candidate for a solution of Laplace’s equation is the following harmonic

function:

(ey) = I [ g(0)2ac).

Here g(() is the analytic function g continued analytically to a tubular neighborhood of
U in C. The contour integral is independent of path, by Cauchy’s theorem. To evaluate
it we take the standard path along the coordinate axes. Along the z axis there is no
contribution, since the imaginary part is zero. We are left with the integration along the
path ((t) =« + /—1t from ¢t = 0 to t = y. This gives
y
u(e,y) = Im(\/—lf gz + V=Tt)"2dt)
0
y
— Re( / 9z + V=1t)2dt)
0

It’s now clear that u satisfies the initial condition u,|,—0 = ¢*/2. O

3.3 Some Further Remarks

We have assumed that the manifold M has a real analytic structure and the metric

g on M is real analytic. Clearly to have any hope of embedding M as a totally real
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submanifold of a complex manifold we must assume that M admits a real analytic struc-
ture. It is not so clear that the metric ¢ need be real analytic, as the problem posed in
theorem 2.1.1 makes sense for any metric (in fact one could consider Finsler metrics).
We will show that if we can find a complex structure J, as in theorem 2.1.1, then g must
be real analytic.

We will also show that the construction in theorem 2.1.1 is functorial, in the sense
that if ¢’ is equal to (G*g for some real analytic diffeomorphism G, then the complex
structure associated with ¢’ by theorem 2.1.1 is the pullback by G of the complex structure

associated to g.

3.3.1 The C*~ Case

Suppose we embed M as a totally real submanifold of a complex manifold, and ask for
a defining function ¢ as in theorem 3.1.1 when the metric g is only ("*°. By the formal
power series constructions in section 3.1 we have a canonically defined infinite order jet
of defining function. But it turns out that there is no hope of finding a function ¢
satisfying the “Monge-Ampére type” problem in theorem 3.1.1 unless g is real analytic.
Equivalently, we will show that if a complex structure J, as in theorem 2.1.1 exists, then
g must be real analytic. For this we need the following lemina, which is interesting in its

own right.

Lemma 3.3.1 Let x,£ be canonical cotangent coordinates on T*M, and represent the

complex structure operator J, described in theorem 2.1.1 by the matriz

I, = J? J;Z
JJl
where
Jog s = (Jb):j'g‘;g-F(Jb)ugg
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0

. b
- (J )Ua i

f
ETa + (J3 ):

0 —g9
Jole=0 = :
gi; 0

Proof. Recall that in these coordinates we have

‘lja£

Then

¢o = gijfifj

and

a, = &;dxt.

Writing out the condition that Im 9¢, = a, gives

10

S ke + (T oo =
and

10

: aga E6 TPk + (T Yo = 0.

Differentiating these equations with respect to ¢ and evaluating at £ = 0 gives

(Jl;f)k‘v|€=0 = Gk~

(T ivle=0 = 0.

Then writing out the condition J? = —Id shows that

(J)krle=0 = 0

(JP)krle=0 = —g

which proves the lemma. O
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Corollary 3.3.2 The metric g must be real analytic in order for any of the equivalent

problems given in theorems 2.1.1, 3.1.1, and 3.1.2 to have a solution.

Proof. The matrix entries of the complex structure operator are real analytic func-

tions. [J

3.3.2 Metrics in the Same Isometry Class

Suppose g and g’ are real analytic metrics on M in the same isometry class. By this we
mean that there is a real analytic diffeomorphism G of M such that ¢’ = G*g. Then G
induces a symplectomorphism of T*M, called the “lift” of G, by the map G, where

G(E)(V) = ((dG7H(V)).

The map G is not only symplectic; it also preserves the canonical one form a,. In fact it
can be shown that a diffeomorphism of T* M preserves a, if and only if it is the lift of a
diffeomorphism of M (see Abraham and Marsden [1], theorem 3.2.12 and exercise 3.2F).

Note also that G commutes with the standard involution o, of T*M.

Proposition 3.3.3 If J, is the complex structure on T*M associated with the metric g
on M by theorem 2.1.1, then G*J, “aG-1o J, 0dG is the complez structure associated

with the metric G*g.

Proof. Let v, vg.: TM — T*M be the metric identifications associated with g and
G*g, respectively, and let ¢4, ¢g-, be the corresponding quadratic functions. Note that
G(veg(V)) = vy(dG(V)), so G*¢g = ¢g-g. The proposition now follows from the fact

that G preserves a, and o,. O

Remark. If M is embedded as a totally real submanifold of a complex manifold (2, then
by lemma 1.2.1 G induces a unique biholomorphism G of a tubular neighborhood of M

in Q, preserving M. Furthermore, G preserves the complex conjugation o about M by
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lemma 1.2.3. It is easy to see that in the context of theorem 3.1.1, if ¢, is the solution to

the “Monge-Ampere type” problem for g, then é‘cﬁg is the solution to the problem for
G*g.
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Chapter 4

Examples and Global Results

In this chapter we will prove theorem 2.1.1 for compact Lie groups, many compact
symmetric examples (including those of Helgason’s “compact type”), and homogeneous
spaces of compact Lie groups. We give all of these examples metrics induced by the
bi-invariant metric on a compact Lie group. The proofs will be entirely constructive, and
provide a realization of T* M near the zero section as a complex homogeneous space. We
will show that in the case of a compact Lie group or a homogeneous space of a compact,
connected, semisimple Lie group, the cotangent bundle has a globally defined complex

structure with the properties described in theorem 2.1.1.

4.1 Compact Lie Groups with Bi-invariant Metrics

In this section we will show how to construct the complexification of T*G described
in theorem 2.1.1 for a compact Lie group G and the bi-invariant metric on G. Moreover
we will see that the complex structure exists globally on T*G, and identify T*G as a

complex manifold with the complexification of G.
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4.1.1 Trivialization of G. and T*G

It is well known that a compact Lie group G is a real analytic manifold, and the bi-
invariant metric is a real analytic Riemannian metric. A complexification of G is a
complex Lie group G¢ whose Lie algebra is the complexification of the Lie algebra g of

G as a vector space. In other words we may write as a direct sum decomposition

Bc =g+ v-1g.

Often it will be useful to think of gc as a 2n dimensional real vector space equipped with
a complex structure operator J corresponding to multiplication by /—1.

Following Zelobenko [25] we will say that a complex Lie group G is a regular com-
plexification of a real Lie group G if G¢ is a complexification of G' and every connected
component of G¢ contains only one component of G. Then we have the following funda-

mental result.

Theorem 4.1.1 Every compact Lie group has a regular complezification, which is unique
up to isomorphism. The regular complezification is an algebraic subvariety of Gl(n,,C)
for some n,. The group G is isomorphic to the unitary matrices in the reqular complez-

ification.

Proof. See Zelobenko [25], §106. O

From now on we will refer to the regular complexification of G as simply the com-
plexification of G, and write it as G¢. If G is semisimple, it is well known that G is

diffeomorphic to g X G by the map

(V,g) — exp(v/~1V)g.

See Helgason [10], chapter VI, theorem 1. It is perhaps less well known that this is true

for any compact Lie group, so we will outline a proof.
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Theorem 4.1.2 Let G be a compact Lie group, G¢ the complezification of G. Then G¢
is diffeomorphic to g x G by the map

(V,g9) — exp (V=1V)g. (4.1)

Proof. We may consider G¢ to be embedded in Gl(n,,V) for some n,. I { € Ge,
let { = pu be the polar decomposition of ¢ in Gl(n,,V). Here p is a positive definite
Hermitian matrix, u is a unitary matrix, and the decomposition { = pu is unique.
Zelobenko shows that both p and u are in G¢; in fact p* is in G¢ for any complex A

(see [25], §106). The positive definite Hermitian matrix p may be written
p=expX

for some X € gl(n,,C). Since p is Hermitian and p* € G¢ for all real ), it follows that
X € /=1g. We have shown that the map 4.1 is a smooth bijection. To see that the
inverse is smooth we need to show that dexp ,— is bijective for all V' € g. This is
the case if the eigenvalues of ad(1/—1 V) are real (see Varadarajan [20], theorem 2.14.3).
Since /—1V is a Hermitian matrix, the eigenvalues of v/—1 V are real. It follows that
the eigenvalues of ad(1/—1V) are also real. O

For our purposes it will be more convenient to write this identification as
(9, V) — gexp V-1V, (4.2)
This is still a diffeomorphism since exp (v/—=1V)g = gexp/—1 Ad(g~!)V and the map
(V,g) = (g,Ad(g7")V)

is a diffeomorphism. Multiplication by /—1 commutes with Ad(g) since left and right

multiplication by elements of G¢ are holomorphic maps on G¢. It is also important to
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note that the map 4.2 is real analytic. The implicit function theorem is true in the real
analytic category, so the inverse is also real analytic. Hence 4.2 is an identification of
G x g and G¢ as real analytic manifolds. We will give G x g the complex structure
induced by this identification.

Let v : g — g* be the identification via the bi-invariant metric <,> at the identity.
We identify T*G and G x g by associating a covector {; with the pair (v=!(dL}¢,),g).
We will write this as

U:Gxg— TG

where ¥(g,V) = dL;_,v(V). This identification is G-equivariant for the standard left
G action on T*G and the action on G x g which is trivial (the identity) on g and left

multiplication on G.

4.1.2 The Complex Structure on G x g

We have identified G x g and G¢ by the real analytic diffeomorphism ®:G x g — Ge
given by
®(g,V)=gexpyv/-1V.

In order to prove theorem 2.1.1 we will need an explicit description of the complex

structure operator Jgxg on G x g. By definition,
Joxg = d® 1o Jge 0d®

where Jg is the complex strucure on Gc. We will identify the tangent space T(yv)(G x g)
with dL,g X g in the obvious manner. To compute d® we need to know how to compute

the differential of the exponential map.

Lemma 4.1.3 Let exp : gc — G be the ezponential map. Then for U, X € g,
dexpy(X) = dLexpu o (
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Here we have identified Ty(gc) with gc, and (1 — e=#)/A stands for

o0

D (=A)"/(m +1)!

0

when A is a linear operator.

Proof. See Helgason [10], theorem 1.7, chapter II. J

We can now compute the differential of &.

Lemma 4.1.4 Let $:G x g — G¢ be as above. Then

d®(g, V)(dL,W,Y) = dL Lo e Ty + e Ty
(g’ )( [-AAA] )_ gexp\/——lV( ad( —].V) ( - )+€ )'

Proof. It’s easy to see that

r 1- e—ad(\/—_IV)
d®,v)(0,Y) = dLyodexp 5y (V-1Y) =dL, ., v e (V=IY))

and

d@(y,V)(dLQW’O) = dLy o dRexp\/—_lV(VV) = Lgcxp\/—V(e \/_V)W)

which proves the lemma. [

Power series such as e~4v=1V) behave very much like their one variable counterparts.

For example,

e *V=1Y) = cos ad(V) — -1 sinad(V).

Note that sin z, cos z, sin z/z and (1 — cos z)/z are entire functions. Thus it makes sense

to use the operators defined by their power series:

sinad(V) = "ad(V)2"+1/(2n + 1)!

Y
cosad(V) = i 1)ad(V)*"/(2n)!

56



sinad(V) & yan

)~ 2 [@n+1)
1 — cosad(V) = n —_—

ad(V) B zo: ~Aed(V)T e+ 20

We interpret ad(V')° as the identity operator on g.
Using this remark and the fact that multiplication by /=1 commutes with ad(v/=1 V)

we can rewrite the result in the lemma above as d®, v)(dL,W,Y) =

1 — cos ad(

dLgexp\/ﬁV(—;d-(—i;—)-l/—)(Y) + cosad(V)W + v/—1(—a’t sinad(V)

2d(V) ————(Y) —sinad(V)W)).

Using the notation

U+\/—_IS:(U)
S

and identifying (W,Y’) € g x g with the column vector

()

we may write this as d®, v )(dL,W,Y) =

cosad(V) (1 — cosad(V))/ad(V) ) ( w ) , (4.3)

dL expy/ -1V
gexpV-1 (—sinad(V) sinad(V)/ad(V) Y

We want to find the inverse of d®. Identify the tangent space to G¢ at gexp+/—1V
with dL ., ~7vgc in the obvious way. Note that if Si(z), Sz(z), S3(z) are analytic
functions near zero in the single indeterminate x which satisfy S,(z)S,(z) = S3(z), then
if A is a continuous linear operator of small enough norm we have 5;(4)S,(A) = S5(A)

(and similarly for sums). The adjoint representation

ad:g — End(g)
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by V — ad(V) is a linear map between finite dimensional vector spaces, hence bounded.

Then it is easily checked that for small enough V,

d® (L, (U + V=18)) =
I (cosad(V)—1)/sinad(V) ) ( Z ) (4.4)

d(Ly x Id) ( .
ad(V) cosad(V)(ad(V)/sinad(V))

We can now give an explicit form for the complex structure on G x g.

Lemma 4.1.5 The complex structure on G x g induced by the identification ® is given

near G X 0 by (Joxg)g,v) =

(I — cosad(V))/sinad(V) 2(cosad(V) — 1)/ad(V)sinad(V)

) d(Lg-1x1d).
ad(V)/sinad(V) (cosad(V) — 1)/sin ad(V)

d(L,xId) (

Proof. Represent the complex structure on gc by the matrix

o)

Formally multiplying the relevant matrices gives the expression for Jgyg above. For small

enough V, the result will converge. O

Remark. In fact this expression for Jgyg is valid on all of G x g. The expression for
d® in equation 4.3 is valid for all V € g. The argument in lemma 4.3.11 shows that
sinad(V)/ad(V) is an invertible linear operator on g for all V € g. This shows that the
expression for d®~! in equation (4.4) is valid for all V € g. Hence the expression for

Jexg is valid on all of G x g.
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4.1.3 Proof of the Result

Let ¢,: T*G — R be the modulus of a covector squared with respect to the bi-invariant
metric on G. If v:g — g* is the identification via the bi-invariant metric at the identity,

it is easy to see that

¢o(§g) =< V_l(dL;‘fg)aV—l(dL;‘fg) >

where <, > is the Ad(G)-invariant inner product on g. Let ¢ = ¥*¢, be the object on
G x g corresponding to @, under the identification ¥ of G x g with T*G given above.
Since (g, V') is mapped to the covector dL;_,v(V) by ¥, it is clear that

&g, V)=<V,V >.
From this it’s easy to see that
dogvy(dLW,Y) =2 < VY >.

Let a, be the canonical one-form on T*G. At a point £, € T*G, a, applied to a
tangent vector X € T, (T*G) is given by

ao(§g)(X) = {y(drrec(X))

where n7.g: T*G — G is the cotangent projection. Let a = ¥*a, be the corresponding
object on G x g. Then for (¢,V) € G x g and (dL,W,Y) € dL,g x g (which we have
identified with T, v)(G x g)), we have

a(g, V)(dL,W,Y) =< V,dLy-1 o drreg 0 dU(dL,W,Y) > .
It is easy to see that dnr.g 0 d¥(dL,W,Y) = dL,W. This shows that
a(g, V)(dL,W,Y) =< V,W > .
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We can now prove the main result of this section.

Proposition 4.1.8 Give T*G the structure of a complez manifold by identifying it with
G¢ via the map

& — gexp \/—_lu‘l(dL;;{g).

Let o, be the canonical one-form on T*G and let ¢, be the quadratic function on T*G
associated with the bi-invariant metric on G. Then with this complez structure, Im 8¢, =

a, and the standard involution of T*G is an antiholomorphic map.

Proof. To show that Im 8¢, = a, we may as well show that Im 8¢ = a when we give
G x g the complex structure induced by the identification with G¢ above. Denote the
complex strucure on G x g simply by J. We need to show that for all (¢,V) € G x g and
all (dL,W,Y) € dL,g x g,

S8 o (LW, Y) = —alg, V)(Jgw)(dLgW, Y)).
Using the observations above, this means we must show that

<WVY >= — < V,pryd(Lyg-1 x Id)Jg vy (dL,W,Y) > (4.5)
where pr; denotes projection onto the first factor in g x g. By lemma 4.1.5 we have

pryd(Lg-1 x Id)J (g v)(dL,W,Y) =
(1 —cosad(V))/sinad(V)(W) + 2(cosad(V) — 1)/ad(V)sin ad(V)(Y).

This is a power series in ad(V'), and the term of order zero in ad(V') is —Y. Higher order

terms in ad(V) will make no contribution in equation 4.5 since for all X € g,
<V,ad(V)X >=0

if <,> is Ad(G)-invariant. This shows that Im d¢ = a.
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It remains to show that o*J = —J, where ¢ is the involution on G x g sending (g,V)

to (g, —V). Explicitly, we need to show that for all V € g and all g € G,
do(g,-v)J(g,-v)d0(gv) = —J(g,v)-

Examining the matrix of J we see that evaluating J at (g, —V') instead of (g, V') has the
effect of multiplying the diagonal entries by —1. It is easily checked that this operation
followed by conjugation by do is the same as multiplying J by —1 and evaluating at
(9,V). O

We have proved theorem 2.1.1 for a compact Lie group and the bi-invariant metric.
We will have another proof of this when we prove theorem 2.1.1 for a compact Rieman-
nian symmetric space, since a compact Lie group with the bi-invariant metric is also a
Riemannian symmetric space.

We close this section with a remark about stability of the Kahler form we on Ge¢
induced by the symplectic structure of T*G. We say wc is stable if zero is a regular value
of the associated moment map (see [7], §2). It is easy to see that we is a G-invariant
Kahler form on Gc. If we set ¢c = ($71)*¢ then it is easily checked that we = +/~180¢c.
In [7] it is shown that either ¢ has no critical points, or the set of critical points of ¢
consists of a single (G orbit on which ¢ takes its unique minimum value; furthermore, it
is shown that w¢ is stable if and only if the second of these alternatives is true.

Since dpe = dp o dP~1, it is clear that the set of critical points of ¢¢ is exactly G,

where ¢ is zero. Hence we is stable.

4.2 Rank One Compact Riemannian Symmetric
Spaces

In this section we will review the work of P. M. Wong [25], who essentially proved

theorem 2.1.1 for compact Riemannian symmetric spaces of rank one. We will interpret
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his results in terms of theorem 2.2.1. The compact Riemannian symmetric spaces of rank

one are:

1. S”, the standard n-sphere (n > 2)

2. RP", real projective n-space (n > 2)

3. CP", complex projective n-space (n > 1)

4. HP™ !, the quaternionic projective n-space (n > 2)

5. KP?, the Cayley projective plane.

These, with the exception of the Cayley projective plane, have standard models as “cen-
ter” manifolds of complex affine algebraic submanifolds of CV for some N. The Cayley
projective plane is difficult to describe geometrically and will not be dealt with here. A
center manifold of a complex manifold carrying a strictly plurisubharmonic exhaustion is
the minimum set of that exhaustion. Center manifolds are also totally real submanifolds
(see Harvey and Wells [9]). These complex algebraic manifolds are natural candidates
for the complex manifolds Q in theorem 2.2.1, in which the compact symmetric space
M is embedded as a totally real submanifold. We will describe these manifolds below,
following closely the exposition and notation in Wong [24]. Superscripts indicate the
real dimension of M (= complex dimension of ) and subscripts refer to the symmetric

spaces on the list above.
L O} ={224...422,, =1} C C"*!, the complex affine hyperquadric. The condition

z2+---+ 22, = 1 means that if z = z + /=1y, then

|z - |yl*’=1 and z.y=0.

It’s clear that S™ is given by |y|? = 0. This is the minimum set of the exhaustion

p = |z|?, since on 2} we have

|=I” = le|* + lyl* = 1+ 2Jy/*.
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Note also that S™ is the fixed point set of the complex conjugation of QF induced

by the complex conjugation of C™+1,

. 3 = CcP"\Q""!. Here Q™! is the compact hyperquadric in CP",
Q' ={lzo:-1za] €ECP™ 22+ ... 4 22, =0}

Note that RP" is embedded in CP" as the fixed point set of the complex conju-
gation of CP™, [z] — [2]. It’s clear that RP™ C CP™\Q"~'. We obtain a two-fold
unramified cover of 7 by Q7 by the map f sending a point in Q™ to the complex
line determined by it. When restricted to the real points S™ in Q", the map 3 is
the standard two-fold unramified cover of RP™ by S™. The exhaustion p = |2|? is
constant on preimages of 3, so gives an exhaustion g = po 8~! on Q3. Then RP"

is given by the minimum set, p = 1.

. Q2" = (CP" x CP")\Po(CN-1), N = (n + 1) — 1. We consider CP"™ x CP™ to be
embedded in CPV by the Segre embedding,

([z], [w]) — [¢],

where (o3 = zawg, 0 < o, 3 < n. P,(CN-!) is the hyperplane at infinity in CP¥

given by
Y laa = 0.
a=0

The underlying real manifold of CP™ is embedded in CP™ x CP™ by the map

[2] = ({21, [z])-

This is the fixed point set of the antiholomorphic involution
([z], [w]) — ([@], [2])-
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The image of CP" under the Segre embedding is given by

[Can] = [Zufﬁ],

which is disjoint from Pe(CV-!). The image of CP" is the minimum set of the

strictly plurisubharmonic exhaustion R of CPV\ P (CV-1) given by

. EO(Q,B<n |Caﬁ’2
N([Q]) N IZ_OSa;n cha|2 Z .

The metric on CP" induced by the Fubini-Study metric on CPY is the metric on

CP™ as a Riemannian symmetric space.

C 5 = Gr(2,2n,C)\Po(CV1), N = n(2n — 1) — 1. Gr(2,2n,C) is the Grass-
mannian manifold of complex two-planes through the origin in C?". We regard
31(2,2n,C) as embedded in CPY by the Pliicker embedding: if a plane p €
Gr(2,2n,C) is spanned by two linearly independent vectors z = (zy,...,2s,) and

w = (w;,...,ws,), then
P — [Cap] = [2ats — zpw4]

where 1 < a < 8 < 2n. Here P (CV-1) is the hyperplane at infinity
> G126 = 0.
k=1

The quaternions H are identified with C* by ¢ = (a + by/—1) + (¢ + dy/—1)j, and
so H" is identified with €?>". This identification induces a “multiplication by j”
operation on C?" which takes a complex subspace to a complex subspace, and so
induces a map on Gr(2,2n,C). This map is in fact an antiholomorphic involution
of Gr(2,2n,C), and the quaternionic projective space HP"~! is naturally identified

with the fixed point set of this involution. Hence HP™~! is embedded as a totally
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real submanifold of Gr(2,2n,C). See Huckleberry-Snow [12] for more details.

With respect to the basis {e1,je,...,en,,j€,} of C*" (where {e1,...,e,} is the
standard basis of C"), the map “multiplication by j” is given by

((zl,wl)a ey (vawn)) - (('"-ﬁ-’Tvz_l)y LR ] (—TUT,Z_I))

If p is a quaternionic line in Gr(2,2n,C) and z is a point on p, then z and jz span
p. If pis a quaternionic line and [(] is the image of p under the Pliccker embedding
then

[Car—1,2k) = [|z2k-1)® + |225]%],

so the image of HP™"! does not intersect the hyperplane P,(CN-1). HP"! is the

minimum set of the strictly plurisubharmonic exhaustion

~ D 8]*
N(C) _ La<a<fi<2n l( 6| > 1.

- | ZlSaSn C20—1y20|2 -

5. Q1% is a 16 dimensional Stein manifold. It is difficult to describe geometrically. See

Huckleberry-Snow [12] for a description in terms of quotients of Lie groups.

Let p; be the strictly plurisubharmonic exhaustions of Q; given above (: = 1,...,4):

pi(z) = |z

p2([2]) = 1B7([=])?
pa([¢]) = 2R([(]) -1
pa([C]) = 2R([¢]) - 1.

It can be shown that p; is a smooth (in fact real analytic), strictly plurisubharmonic
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exhaustion of §2; such that the center M; is given by {p; = 1}. The function
u; = cosh™! p;

is strictly plurisubharmonic on 2;\M;, and on Q;\M;, u; satisfies the homogeneous
Monge-Ampére equation. See §2 of Wong [24] for proof. Thus the (u;)? are obvious
candidates for the function ¢ in theorem 2.2.1. It is not immediately obvious that the
(u;)? are even C™, since the function cosh™ ¢ is not differentiable at ¢ = 1. However the

singularity is of the correct type, as the following lemma shows.

Lemma 4.2.1 Suppose f is a real analytic function on a manifold 0 such that f > 1.

Then (cosh™ f)? is also a real analytic function on Q.

Proof. It suffices to show that (cosh™ s)? is analytic at s = 1. Let y = cosh™! s. Then

2n

s:coshy:Z y
o (2

(2n)!

Let v = y?. Then

=3 (2”:)! “ P().

Note F'(0) # 0, so the inverse exists (and is analytic) near v = 0. This shows that

v = (cosh™ 5)? is an analytic function of s near s = 1. O

“We can now state the main result of this section.

Proposition 4.2.2 The Monge-Ampére manifolds Q; and their ezhaustions p; construct-
ed above prove theorem 2.1.1 for the compact rank one Riemannian symmetric spaces with

their standard metrics, with the ezception of the Cayley projective plane.

Proof. We need only show that if we set ¢; = (cosh™ p;)? then ¢; solves the “Monge-
Ampere type” problem posed in part 2 of theorem 2.2.1. We have shown that ¢; is real
analytic, and it’s clear that ¢; = d¢; = 0 on the center M;. By inspection it is clear that
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the functions p; are invariant under the antiholomorphic involutions of ; fixing M;, so
the ¢; are also. Since u; = cosh™! p; satisfies the homogeneous Monge-Ampere equation,
the remarks in section 2.3 show that ¢; satisfies the “Monge-Ampere type” equation
Z¢; = 2¢;. It can be shown that ¢; is strictly plurisubharmonic, since the p; are. Hence

we get a metric on M; by
gi(X,Y) = —d(Im 8¢, )(X, JY).

Thus we have proved theorem 2.1.1 for some metric g; on M;. To see which metric,
note that dp; = 0 on the center M; (see theorem 4.1 in Wong [25] for the Taylor series
expansion of p;). Hence
0% , 9’p;

— 7 = G (—E

Goagah M (g5 Im
where G is the inverse of the function F' in lemma 4.2.1 (in fact G'(1) = 2). The Kahler
metrics on §); associated with the Kahler form /—100p; induce the standard metrics on

M; as Riemannian symmetric spaces. This shows we have proved theorem 2.1.1 for the

compact rank one Riemannian symmetric spaces. OJ

The Cayley projective plane is not treated explicitly by Wong in [25]. In particular
he does not construct a Monge-Ampére exhaustion for Q1¢. The proof of theorem 2.1.1
for this case follows from our treatment of compact Riemannian symmetric spaces as
quoiients of Lie groups in section 4.3. In fact we will prove theorem 2.1.1 for compact

Riemannian symmetric spaces of arbitrary rank.

4.3 Compact Riemannian Symmetric Spaces

We now consider the case where M is a Riemannian locally symmetric space of the
compact type. By this we mean that M = G/K where G is a compact, connected,

semisimple Lie group, K is a closed subgroup of GG, and there exists an involutive auto-
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morphism 6 of the Lie algebra g of G such that the Lie algebra k of K is the +1 eigenspace
of §. The —1 eigenspace of 6 is denoted by p, and g = k+p is a direct decomposition of g.
The eigenspaces are orthogonal with respect to the Ad(G)-invariant nondegenerate inner
product on g, since in this case the invariant inner product is the Killing form, and any
automorphism of g leaves the Killing form invariant. If 7g/x denotes the projection of
G onto G/K, then (drg/k)|p is a bijection of p onto T.xG/K. This identification gives
T.xG/K a nondegenerate, positive definite inner product corresponding to minus one
times the Killing form on g. G acts on G/K as a transitive group of diffeomorphisms,
so we get a metric on G/K which is well-defined due to the Ad(G)-invariance of the
Killing form. This metric turns G/K into a Riemannian locally symmetric space. See
Helgason [10] for details, for example proposition 1.1 of chapter VII. We show that there
is a global identification of T*G/K with a complex homogeneous manifold, and that this
identification induces a complex structure on T*G/K with the properties described in

theorem 2.1.1.

4.3.1 Complexification of G/K

In this section we will embed G/K as a totally real submanifold of a canonically de-
termined non-compact complex homogeneous space. It is important to note that this
construction does not require any assumptions on G' and K other than that both are
compact. We will refer to this section when we prove theorem 2.1.1 for other homoge-
neous examples (see also theorems 4.1.1 and 4.1.2).

Since every compact Lie group has a faithful unitary representation, we may assume
that G is a subgroup of the unitary group U(n,) for some n,. Then we have the following

result concerning the existence of complexifications of G' and K.

Theorem 4.3.1 i) There ezists an algebraic variety A(G) C GL(n,,C) such that A(G)
is a Lie group, G = A(G)NU(n,), and A(G) is a regular complezification of G (i.e., A(G)
is a complezification of G and each component of A(G) contains only one component of

G).
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i) If K C G is a compact subgroup, then we can find an algebraic variety A(K) C
A(G) such that A(K) is a Lie group, K = A(K)NU(n,), and A(K) is a regular com-
plezification of K .

Proof. i) See Zelobenko [26], §106, lemmas 3-5. ii) Clear from the construction of .A(G)
in [26], §106.07

Let Ge¢ = A(G), K¢ = A(K). Then G¢, K¢ are the complexifications of G, K
respectively as Lie groups. Since G¢ and K¢ are algebraic varieties in Gl(n,,C), K¢ is
a closed subgroup of G.. We can now form the homogeneous manifold G¢/K,. The

following standard result gives the basic information about G¢/K¢ that will be needed.

Theorem 4.3.2 G¢/K is a complez manifold. The G¢ action on G¢/K¢ consists of

holomorphic maps, and the projection of G¢ onto G¢/K¢ is a holomorphic map.

Proof. See [19], page 227 (3), or [17], chapter X, §6. O

The complex manifold G./K¢ is an obvious candidate for the complexification of M.

We will now show that M is naturally embedded as a totally real submanifold of G¢/Ke¢.

Lemma 4.3.3 The map : M — G¢/K¢e given by 1(gK) = gK¢ is well-defined and
embeds M as a totally real submanifold of G¢ /K.

Proof. To see that ¢ is well-defined, suppose gk = gK. Then gg-' € K C K, so
gKc = GHKc. To see that 1 is globally one-to-one, suppose gK¢ = gKc. Then gg~! €
G N K¢. But by theorem 4.3.1, G = Ge N U(n,) so GN K¢ = U(n,) N K¢ = K. Thus
gK = gK.

To show that 2 is an embedding we go to local coordinates on G/K. Let g be the Lie
algebra of G, let k be the Lie algebra of K, and let k' be the orthogonal complement of
k with respect to the Ad(G)-invariant inner product on g. In the symmetric case k' is
usually denoted as p, and

g=k+p
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is a decomposition of g into eigenspaces of an involutive automorphism of g. In any case,
local coordinates near gK in G/K are given by, for a suitable neighborhood u of zero in
ki, the map

ud X +—mgxkoLlsoexpX € G/K

where 7g/k is the projection of G onto G/K. In these coordinates ¢ is given by the map
Ud X +— g ke © Lgoexp X

(here mg. /K. is the projection of G¢ onto G¢/Kc, and we are considering G as a subset
of G¢; the exponential map is the same for G and G¢). From this expression it is clear
that the kernel of (di),x is zero and that : is an open map into :(G/K) with the relative
topology, so that 2 is an embedding.

To show that 2 embeds G/K as a totally real submanifold of G¢/K. we use complex
local coordinates on G¢/Kc. These are given near gK¢ by, for a suitable neighborhood

uc of zero in ki, the map
uc 3 X +v-1Y +— 7g ke © Lgoexp (X + v—1Y).

Clearly G/K is defined near gK¢ by Y = 0.0

This construction produces essentially the same complex manifolds as the ones de-

scribed in section 4.2, as the following examples show.

1. M = §" is the homogeneous space SO(n + 1,R)/SO(n,R). SO(n,R) is embedded
in SO(n + 1,R) as matrices of the form
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The natural complexification of M is SO(n+1,C)/SO(n,C). SO(n+1,C) consists
of those complex matrices of determinant one which preserve the standard quadratic
form on C",

. 2 2
zZ—= 2+t 2z,

We will show that SO(n + 1,C)/SO(n,C) is biholomorphically equivalent to the
standard hyperquadric in C", QF. It’s clear that SO(n + 1, C) acts holomorhpically
on C**! and preserves the hyperquadric Q7. An arbitrary non-zero vector in C*+!
can be made, by the ordinary Gram-Schmidt orthogonalization process, to be the
first column in an orthogonal matrix with determinant one, so SO(n + 1,C) acts
transitively. This shows that 7 is biholomorphically equivalent to SO(n + 1,C)

modulo the stabilizer of the point
z, = (1,0,...,0) € QF.

A matrix A, fixing z, must have the form

It follows from the identity ALA, = I that A, € SO(n,R). This shows that Q7 is
biholomorphically equivalent to SO(n + 1,€)/SO(n,C).

2. M = RP" is the homogeneous space SO(n + 1,R)/O(n,R). We consider O(n,R) to
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be the closed subgroup of SO(n + 1,R) consisting of matrices of the form

1/det A ... 0
0

0

with A € O(n,R). The natural complexification of M is SO(n+1,C)/O(n,C). The
action of SO(n + 1,C) on )} descends to a transitive holomorphic action on 07,
by the map 3 sending a point z in Q7 to the complex line [z] in CP™ determined
by z. If A, fixes the point

[20) = [(1,0,...,0)] € Q3

then A, must have the form

The stabilizer of [2,]) is O(n,C). This shows that Q7 is biholomorphically equivalent
to SO(n + 1,€)/0O(n, C).

3. M = CP" is the homogeneous space SU(n + 1)/U(n) (here U(n) is embedded in
SU(n + 1) in the same way that O(n) is in SO(n + 1,R)). The natural complexi-
fication of M is SL(n + 1,€)/GL(n,C). We will show that SL(n + 1,€)/GL(n,C)
is biholomorphically equivalent to 23" = CP™ x CP™\ Py (CV~1), N = (n 4+ 1)2 — 1.
Recall that CP™ x CP" is embedded in CPY by the Segre embedding

([2], [w]) = [¢ap] = [zaws].
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Notice that Q2" is the projective image of the complex n+ 1 by n + 1 matrices with
complex rank one and non-zero trace. Consider the action of SL(n +1,C) on CP¥

by matrix conjugation:

[¢) — [A¢A™].

This is clearly a holomorphic action of SL(n+1,C) on 22", since matrix conjugation
preserves the rank and the trace. If { is a rank one matrix with nonzero trace, then
the Jordan canonical form of ( is diagonal'. Thus there is an A in SL(n + 1,C)

such that

ACA™ = tr ¢

0

This shows that SL(n + 1,C) acts transitively on §2". It is easy to see that if A

fixes the projective image of the point

then A must be in GL(n,C). This shows that Q2" is biholomorphically equivalent
to SL(n +1,C)/GL(n,C).

4.3.2 Identification of G /K. and T*G/K.

Let G be a compact Lie group, and K a closed subgroup of G. Let k be the Lie algebra
of K, and let k' be the orthogonal complement of k with respect to the Ad(G)-invariant

inner product on g. Define the vector bundle G x g k' to be G x k' modulo the proper,

1See Strang [20], p. 81-82.
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free action of K given by

(9, X) — (gk, Ad(k~")X).

This makes sense since Ad(K) preserves the orthogonal complement of k. In the case of
a Riemannian symmetric space, this inner product is (minus one times) the Killing form,
and k', denoted by p, is the —1 eigenspace of an involutive automorphism of g.
Identify TG /K with T*G/K by a Riemannian metric on G/K. We will show that
TG/K is diffeomorphic to G xg k' as a real analytic manifold. If G is a compact,
connected, semisimple Lie group and G, K. are the complexifications of G and K
described above, then we will show that G¢/K¢ is diffeomorphic to G xg ki as a real
analytic manifold. We are very grateful to Professor David Vogan for his help with this

problem.

Proposition 4.3.4 Let G be a compact Lie group, K a closed subgroup. Then TG/K

is diffeomorphic to G x g k* as a real analytic manifold.

Proof. Let 7(g) denote the natural action of G on G/K. Consider the following diagram:

b
Gxkt — Gxgkt
a |
TG/K

where b is the natural projection sending (g, X) onto its equivalence class in G x g ki,

and a is the equally natural map

(9,X) — dr(g)dmg/k(V).

We want to show that there is a real analytic map c,

G xg kt — TG/K,
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which makes the diagram above commute. To see this it suffices to show that ¢ and
b are surjective submersions, and a is constant on the fibers of b (this follows from
the implicit function theorem; see Loos [13], lemma 1.5, chapter I). The differentiable
structure on G x g k' is defined so that b is a submersion, and b is clearly surjective. If

b(g, X) = b(g', X"), then there exists a k € K such that (g, X) = (¢g'k, Ad(k=1)X"). Then
a(g, X) = dr(g')dr(k)drg x(Ad(k~1)X").
It is easy to verify that dr(k)dre/x(Ad(k~1)X") = dngx(X"), since for all X € k<,
r(k)rg/k(exp Ad(k™)X) = r(k)r/x (k™" exp Xk) = gk (exp X).

This shows that
a’(g’X) = dr(g,)dﬂ'G/K(X') = a(.qlaX,)a

so a is constant on the fibers of b. It is clear that a is surjective, since G acts transitively
on G/K and T.xG/K is identified with k* via drg/x. The map

a:Gxg—TG/K

given by a(g,X) = dr(g)drg/k(X) is clearly a submersion, and a is just o restriced
to G x k. To show a is a submersion we need to show that for all (g,V) € G x ki,
doe,v)(T(gvy(G xkt)) is all of Ty, vy(TG/K). This is clear since T(y,v)(G xg) = T,G xg,

and doggv)(0,k) = 0. Hence there is a unique map
c¢:G xgkt = TG/K

such that @ = cob. This map is a surjective submersion, and is real analytic by the
implicit function theorem for real analytic functions.

To show that c is in fact a real analytic diffeomorphism we will construct an inverse
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by reversing the roles of a and b above. We need only check that b is constant on the

fibers of a. If a(g, X) = a(g', X"), then
drgx(X) = dr(97"g" Ydne/k (X').
Then there is a k € K such that ¢g7'¢’ = k, and
drg/k(X) = dng/k (Ad(k)X").

This shows that ¢’ = gk and X' = Ad(k71)X, so b(g,X) = b(g’, X’'). Then there is a
unique real analytic map ¢/,

:TG/K — G xg kt,

such that b = ¢ oa. Then b= c ocoband a = co ¢ 0 a, which shows that ¢ is invertible

and ¢’ =¢1. O

Remark. Note that the action of G on G x k* which is the standard action on G and
the trivial action on k' preserves the fibers of b, inducing a G action on G xx k*. It is

easy to see that the map c is equivariant with respect to this action and the dr(G) action

on TG/K.

We will need the following results to show that if G is a compact, connected, semisim-

ple Lie group, then G¢/ K¢ is diffeomorphic to G x i k' as a real analytic manifold.

Theorem 4.3.5 (Mostow, 1955) Let G be a connected, semisimple Lie group and let
G = K+E be a Cartan decomposition of its Lie algebra with K compact. Let E' be a linear
subspace of E such that [X,[X,Y]] € E' forall X,Y € E'. LetF = {X € E:B(X,FE') = 0},
where B is the Killing form of G. Then G decomposes topologically into K - F - E', where

~

K is the analytic subgroup determined by K, F = expF, E' = expE'.

Proof. See Mostow [16], or Helgason [10], theorem 1.4, §1, chapter VI. In Helgason the

order of the factors is reversed, but that is easily remedied by taking inverses. [J
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To apply this we take G to be G¢. G is semisimple and connected if G is, and
gc = g++v —1gisa Cartan decomposition with g compact. Take for E’ the linear subspace

vV—1k of v/—1g. It is clear that for X,Y € k, [=1X,[v/=1X,v/=1Y]] € v/=1k.
Note that the orthogonal complement of 4/~1k in /—1g with respect to the Killing
form Be of G¢ is the same as \/—1 times the orthogonal complement of k in g, since
Be(v/-1X,v/=1Y) = —B(X,Y) and the bi-invariant metric at the identity is just (minus
one times) the Killing form of G. Thus we take for F the subspace v/—1k* of /—1g. The
analytic subgroup determined by g is just G, since G is connected. Then G decomposes

topologically as

Ge = G -expyv/—1kt -expv/—T1k.

We will need the following sharpening of theorem 4.3.5.

Theorem 4.3.6 Let G be a compact, connected, semisimple Lie group, and let k, k' be

as above. Then the map I': /—1k x \/—1k* x G — G given by
I'v-1X,v-1V,g) =expv/—-1Xexpv—-1Vg

is a real analytic diffeomorphism.

Proof. We follow the proof in Loos [13], page 160-161. The first step is to prove that
G¢/G is diffeomorphic to v/—1k x v/—1k* by the map 7,

y:vV/ Tk x =1kt = G¢/G,

given by

Y(V=1X,V=1Y) = r(exp V=1 X)Exp V-1Y

where Exp is the Riemannian exponential map from g to G¢/G. Since G¢/G is a

Riemannian globally symmetric space of the noncompact type, the map Exp is a diffeo-
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morphism?. Explicitly, Exp is given by®
Expv—-1X = mg/c(exp v~1X)

where 7. /G is the coset projection of G¢ onto G¢/G. Let S = Exp +/—1k. The normal
bundle of S is naturally identified with /=1 kx /—Tk*, and the map 7 is the exponential
map from the normal bundle of S to G¢/G. It is clearly smooth, in fact it is real analytic.
To see that it is a bijection, note that G¢/G is a complete, simply connected Riemannian
manifold of negative sectional curvature?. S is a closed, totally geodesic submanifold of
Gc/G, since /—T1k is a “Lie triple system”®, i.e., [v/—1k,[v/—=1k,[v/=1k]]] C v/=1k.
This implies® that at each point ( € S, the geodesics perpendicular to S through ¢ are
a submanifold S({)* of G¢/G, and G¢/G is the disjoint union of the geodesics through
S perpendicular to S,

Gc/G = U S(C)l-

CeS
This shows that the exponential map from the normal bundle of §, v, is a real analytic
bijection. Since G¢/G is a complete Riemannian manifold of negative curvature, the
exponential map is everywhere regular’. Hence v is a real analytic diffeomorphism.

Now consider the map T,
I:v/—1k x vV=1k* x G = G,

given by

Nv-1X,v-1V,g) = expv/—-1Xexpv/—-1Vg.

This is a real analytic bijection, by theorem 4.3.5. We need to see that the inverse

2See Helgason [10], theorem 1.1, Chapter VI.
31bid, §3 and §4 of chapter IV.

4Ibid, theorem 3.1, chapter V.

5Ibid, theorem 7.2, chapter IV .

Ibid, theorem 14.6, chapter I

7Ibid, theorem 13.3(i), chapter I

78



is real analytic. The map 77! o mg. /¢ is real analytic by the above discussion. Let

v omge/c(¢) = (V=1 X({),v/=1Y(¢)). By theorem 4.3.5,

(exp —v—1X({) exp —v=1Y(¢))¢
is an element of G, and the map

¢ — g(¢) = (exp —vV—=TX(¢) exp —v=1Y({))¢

is analytic. Then the map I'-! is given by

¢ = (V=1X(¢), V-1V (¢),9(¢)),
so T is a real analytic diffeomorphism. ]
Corollary 4.3.7 The map T:G x k* x k — G¢ given by

T(g,V,X)=gexpv/—1Vexpv—-1X

is a real analytic diffeomorphism.

Proof. T can be expressed as the composition of real analytic diffeomorphisms

Y(g9,V,X) = (expv/—1X exp \/__lvg—l)-l.

We are now ready to prove the main result of this section.

Proposition 4.3.8 Let G be a compact, connected, semisimple Lie group, let K be a
closed subgroup of G, and let G, K¢ be the complezifications of G and K described in
section 4.3.1. Then G¢/Kc is diffeomorphic to G Xk kt as a real analytic manifold.
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Proof. As in proposition 4.3.4 we consider the following natural maps:

b
G xkt — Gxgkt
ac 1
Ge/Ke

where b is the coset projection and a is the map
ac(9,V) = mgc/xc(9expvV—-1V)

(Tee/Ke is the natural projection of G¢ onto G¢/K¢). As in proposition 4.3.4, we want

to construct a real analytic map cc,
cc:Gg x kt = G¢/Ke,

such that ac = cc o b. All the maps involved are real analytic, and b is a submer-
sion. It is easy to see that ac is constant on the fibers of b, since gexp/—1V - K¢ =
gkexp+/—1Ad(k™!)V - K. This shows that there is a unique real analytic map c¢ such
that ac = cc 0 b.

To show that cc is a real analytic diffeomorphism we need to be able to reverse the

role of ac and b above. Suppose we can show that
1. bis constant on the fibers of ac
2. ac¢ is a submersion.

Then there exists a unique real analytic map ¢,

ce:Ge/Ke — G xg kt,

such that b = c¢ 0 ac. By the same reasoning as before we can conclude that ¢, = ¢!
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and c¢ is a real analytic diffeomorphism.
Proof of 1. Suppose 7g/kc(9€xpv/—=1V) = nge k(9" exp /=1 V'). Then there is a
ke € K¢ such that
gexpV—1V = g'expv/—1 V'ke.

By theorem 4.1.2 and the remarks following we have the polar decomposition
kc =kexpv/—-1X
with k € K and X € k. Thus

gexpyv—1V = gdgexpv-1V'kexpv/—-1X
= g'kexpv/—1Ad(k™")V'exp X.

Note that V, Ad(k~)V’ € k', X € k, and g, ¢ € G. By the uniqueness of the

decomposition

Ge = G -expv—1k* -expv/—1k

in corollary 4.3.7, we conclude that X = 0, ¢ = g'k, and V = Ad(k~!)V’. This shows
that b(g,V) = b(¢', V'), and proves 1.

Proof of 2. Let T be as in corollary 4.3.7. To show that ac is a submersion, note that
@cOPIgykt = TGe/Ke © 1. Since T is a diffeomorphism, g, /x0T is a submersion. This

shows that ac is a submersion, and completes the proof of 2 (and the proposition). O

Remark. Note that G acts on G¢/Kc in the obvious way, as a subgroup of G¢. It’s
easy to see that the map c¢ is equivariant with respect to this action on G¢/K¢ and the

G action on G x x kt described above.

Combining propositions 4.3.4 and 4.3.8 we have proved that, under suitable hypothe-
ses on G, there is a real analytic diffeomorphism of TG/K and G/ K,

ccoc :TG/K — G¢/Ke.
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We can easily write down this map for the record. If V,x € TG/K can be written as
Vox = dr(g)dng/x (V)

for some (g,V) € G x k*, then

ccoc  (Vog) =gexpv/—1V - Ke.

It may be instructive to check directly that this procedure for computing c¢c 0 ¢! is well-

defined. If V,x = dr(g')dng/kx(V') for another (¢',V’) € G x kt, then g~'¢’' € K and
V = Ad(g~'g')V. Then

gexpyv—1V - K¢ = gexpv—lAd(g"lg’)V' Ke=g'expv—-1V'. K.

-1 is equivariant with respect to the

dr(G) action on TG/K and the obvious G action on G/K.

It’s also a trivial matter to check directly that cc o c

It may be useful to keep in mind the following picture.

G x kt
&/ N\ %€
TG/K lb Ge/Kc
¢\ 7 e
G XK kJ‘

We summarize the results of this section in the following theorem.

Theorem 4.3.9 Let G be a compact, connected, semisimple Lie group and let K be a
closed subgroup of G. Then the tangent bundle of G/K s canonically identified with a
complex homogeneous manifold. A real analytic Riemannian metric on G/K induces a
complez structure on the cotangent bundle of G/K by the metric identification of TG/K
and T*G/K.
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4.3.3 The Complex Structure on G xg p

We now have global identifications of T*G/K, TG/K, G xk kt, and G¢/K. as real
analytic manifolds. Each of these inherits a symplectic structure from T*G/K, and a
complex structure from G¢/Kc. In this section we will study the complex structure so
obtained. In order to write down the complex structure operator explicitly, we need to
know how to compute the projection onto k* of ad(V)(X) for V € k! and X € g. In
the non-symmetric case there is no reason to expect to know how to do this, so it is not
possible in general to write down the complex structure operator on G x i k' explicitly.
In the symmetric case the situation is more satisfactory. We have a decomposition of g

into eigenspaces of an involutory automorphism 8 of g:

Here k is the +1 eigenspace of # (since k is a subalgebra), and p is the —1 eigenspace.
The eigenspaces are orthogonal with respect to the Ad(G)-invariant inner product on
g. Since this is an eigenspace decomposition, it is easy to see how the action of ad(g)

permutes the subspaces k and p.
Lemma 4.3.10 [p,k] cp [pa P] C k7 and [k’k] - k.

Proof. Since 6 is an automorphism of g, we have
9[X,Y] = [0X,0Y].

X € pand Y € k, then [X,Y] = —[X,Y], so [X,Y] € p. The others follow simi-
larly. O
Since sin «/z and cos z are entire functions, it makes sense to speak of the operators

sinad(V)/ad(V) = > (-1)"ad(V)*"/(2n + 1)!

0
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cosad(V) = i(—l)”ad(V)h/(Zn)!

0

with V € g. We interpret ad(V')° as the identity operator on g.

Lemma 4.3.11 The operators sinad(V)/ad(V') and cos ad(V') are symmetric, invertible
linear operators ong. If V € p or V € k, then these operators preserve the subspaces k

and p.

Proof. If <,> is any Ad(G)-invariant nondegenerate inner product on g, then ad(g)
consists of skew-symmetric endomorphisms. Furthermore, —ad(V)? is a non-negative

operator, since

— <ad(V)2X, X >=< ad(V)X,ad(V)X >> 0.

Since ad(V')? is a strictly positive operator, it follows that sin ad(V')/ad(V) and cosad(V)
are strictly positive, symmetric operators. This proves the invertibility. It’s clear from
lemma 4.3.10 that if V € p then ad(V')? preserves k and p. If V € k then ad(V) preserves

the subspaces k and p. O

To describe the complex structure on TG/K we will need a convenient method of
representing the tangent bundles of these manifolds. We will do so in terms of the image
of vector fields on G x p under the differentials of the maps a and a.. Note that p,
being a vector space, is an Abelian Lie group and G X p has the product group structure.
If (W,Y) € g x p, we denote the corresponding left invariant vector field on G x p by
(W,Y)~. Using the natural identification of T{yv)(G x p) with T,G x p, the vector field
(W,Y)~ is simply

(9,V)— (dL,W,Y).

Such vector fields form a basis for the tangent space of G x p at each point. Since ac is
a surjective submersion, every vector in TG¢/K can be represented as dac(W, Y)ov
for some (not necessarily unique) (¢,V) € G x p and (W,Y) € g x p. Similarly, each
vector in T(T'G/K ) can be represented as da(W,Y); v, and each vector in TG xk p can
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be represented as db(W,Y)(; ). Then the following gives an explicit description of the

complex structure on TG/K, G Xk p, and G¢/ K, in terms of these vector fields.

Proposition 4.3.12 Let Jg /k. denote the operator “multiplication by /—1” on the
tangent bundle of G¢/Ke, and let Jox,p, Jrg/x denote the corresponding operators on
the tangent bundles of G x g p and TG/ K under the identifications given in section 4.3.2.
Let (g,V) € G x p and let T(V) denote the operator

(sinad(V)/ad(V))™! o cosad(V),
which preserves the subspaces k and p by lemma 4.3.11. Then for all (W,Y) € g x p,

JGC/chac(W,Y)C;,V) = dac(=T(V)™'Y + tanad(V)W,, T(V)Wp)&’v)
Troigda(W,Y ),y = da(=T(V)™'Y + tan ad(V)Wi, T(V)Wp), v,
Torpdb(W,Y)yyy = dbl—T(V)™Y + tan ad(V )Wy T(V)Wo )iy,

Here tan ad(V) means (cosad(V))~! osinad(V), and the subscripts k and p denote pro-

Jection onto those spaces relative to the decomposition g = k + p.

Proof. Recall that ac: G x p — G¢/K¢ is the map

ac(g,V) = 7l'Cv'c/Kc(g expv—-1V).

We need to compute the differential of ac. Let M /=T denote multiplication by +/—1 in

gc, and let M:G¢ X G¢ — G¢ denote the group multiplication. Then we can write a¢ as
ac = Tge/ke © Mo (Idg x (expoM /)
and so for (W,Y) € g x p,

dac(W,Y)pv) =
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d(WGC/KC)gexp\/—_lV o d(M)(g,exp\/?lV) o d(IdG X (exp OM\/——I))(W7 Y)rg,V)

To compute this we write (W,Y)r ) = (dL,W,Y). Then
d(Idg x (expoM, =))(W,Y)gy) = (dL;W,d(exp) /5v(V—-1Y)).

The differential of the exponential map is given by, for U € g,

1 — e~ad(U)

d(exp)y = dLexpu © W

(see lemma 4.1.3). Then

d(Idg x (expoM =))(W,Y)Gv) =
1 — e—2d(v-1V)

ad(v/=1V)

(dLgW, dL, .\, /5v © (V=1Y)).

The differential of the group multiplication is given by, for {, n € G¢ and U; € T,Gq,
‘/11 E TnGc,
AM)¢n)(Ue, V) = d(L¢)n(Vy) + d(Ry ) (Ue). (4.6)

Then

d(M)(g,exp\/:TV) ° d(IdG X (exp OM\/TI-))(W? Y)Fg,V) =

1 — e—ed(vTV)
d(Lgexp\/-—lV)( ad(\/-—_lV) (\/__IY)) + d(Rexp\/Tl_V o LO)(W)'

Using the fact that left and right multiplication commutes we can write this as

d(M)(g.cxp\/—_lV) o d(IdG X (exp OM\/——I))(W7 )T)G,V)
1 — e—2d(vV=1V) i
= ey gy (VIY) + Ad(exp —V =TV ()

_ e-8d(VIV)
= ALy i g T (VTY) 4 € TI))
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Note that g /k. 0 L¢ = 7(() 0 TG /ke- Thus we have computed

dac(W’ }V)Fg‘v) =
1— e—ad(\/——lV)

ATy VI eI,

dr(gexpv—-1V)odnge ke(
Recall that the kernel of dng /K. is ke, and
(dﬂ-Gc/Kc)’Pc: Pc — eKch/I{c

is a bijection. So it will be useful to find the projection onto pc of the expression

1— e—ad(\/jV)

—ad(v/=T
(VT (V1Y) + e dV=TV)(y).

Since ad(gc) consists of complex linear maps, it is easy to see that

1 — e—2d(v=1V) i 1 — e2d(V-1V) .
ad(v/—1V) (V=17) = ad(V) ¥)
1 — cosad(V) sin ad(V)
= —;W(Y) + \/_—_TW(Y)

and

e VTV (W) = cos ad(V)(W) — /=1 sinad(V)(W).

Examining the power series for (1 — cosad(V))/ad(V), sinad(V)/ad(V) and using lem-
ma 4.3.10, we see that since V| Y € p,

1 — cosad(V)

2d (V) (Y)ek
sinad(V) _,
Ty P
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Given W € g, write Wy and W}, to denote its projections onto k and p respectively. Then

recalling that V' € p we can see that

cosad(V)(W) = cosad(V)(Wy) + cosad(V)(Wp)

€k €p
sinad(V)(W) = sinad(V)(W,) + finad(Y)(Wp).

eEp €k

Combining these we see that

_ e—sd(vTIV)
P (g (VITY) + ()
= cosad(V)(Wp) + \/—_I(Si%;-(ii‘-g)i)(l’) — sin ad(V)(Wy)).

Thus we have shown that

dac(W,Y ), y) = (4.7)

dr(gexpv—1V) o (dnge ke )lpe(cosad(V)(Wp) + v=1( sin ad(V)

2d(V) (Y) — sin ad(V)(Wy))).

Conversely, suppose we are given a vector U + /—1X with U, X € p. Then this

expression shows that

sinad(V)

(g xp V=TV )oldrae e pe(U+V/ =T X) = dac((cosad (V) (0), (S

)_I(X))C;,V)'

Now it is easy to see that

V—=1dac(W, Y)5ov)
— dr(gexpv=IV)o (dwccmcnpc(smad(V)(Wk)—-S‘“(d(‘)/)(l)w_lcosad( (W)
_ ~1sina _sinad(V) v sinad(V),_, cosa
= dac((cosad(V))" (sinad(V)(Wy) — v, (B2t cosad(v)(Wy)
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= dac(=T(V)™(Y) + tan ad(V)(Wy), T(V)(W})).

This proves the first equality in the proposition. The other equalities follow more or less

functorially. Recall
Jre/x = d(cocgt) o Jg ke 0 d(ce 0 c7?).
Since b = ¢7! 0 a, we have

Jre/k oda = d(cocz')Jge/red(ce 0 b)

= d(c o CEI)JGC/chac-

Now using the expression for Jg./x. 0dac we get the corresponding expression for Jrg /KO
da. Since

Jexxp = dCEl 0 Jge/Ke © dee,
the expression for Jgy, p © db follows similarly. O

Corollary 4.3.13 At each point (¢,V) € G x p, da maps (p,p)(Ng,V) bijectively onto the
tangent space Toov)(TG/K). If (W,Y) € p X p, then

JGc/cha“C(W, Y)CQ,V) = dac(_T(V)_IY’ T(V)W)&,V)
Jre/kda(W,Y)g ) = da(=T(V)'Y,T(V)W), v,
Joxxpdd(W,Y )5 vy = do(=T(V)'Y,T(V)W), 1)

Proof. If (W,Y) € p x p and dac(W, Y)G’V) = 0, then from equation 4.7 we must have

sin ad(V)

cosad(V)(W) = 2d(V)

(¥) =0,
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which implies that W = Y = 0. Now bijectivity follows from dimensional arguments.

The expressions for the complex structure are obvious, since W € p. O

4.3.4 Proof of the Result

In this section we will complete the proof of theorem 2.1.1 for the compact locally sym-
metric space G/K. Let @) denote the metric on G/K corresponding to the bi-invariant
metric on G as described in the beginning of this section, and let v»: TG/K — T*G/K

be the metric identification,
v(Vor )(Wok ) = Q(Vox, Wk ).

Let ¢, be the quadratic function on T*G/K associated with the metric Q on G/K,
and let ¢ = v*¢, be the corresponding function on TG/K under the metric identifica-
tion. Similarly let a, be the canonical one form on T*G/K, and let & = v*a, be the
corresponding one form on TG/K.

We have turned TG/K into a complex manifold by identifying it with G¢/K¢, and
we give T*G/K the complex structure induced by the metric identification v. To show

that Im 8¢, = a, it suffices to show that Im 3¢ = a, since a, = (v~ !)*a and

1

Im 8¢,(U) = §d¢>o(JT~c/K U)

= %dd)o(du o Jrg/x o dv™(U))

= (v"))*Im J(V).

To show that Im 8¢ = a it suffices to show that ¢*Im 0¢ = a*a, since a is a surjective
submersion. This is the course we will take to prove theorem 2.1.1 in this case. The
following lemma shows how to compute these. Since we don’t need to assume that G/K
is locally symmetric for this lemma, we will use the notation k' instead of p. In fact we

don’t even need to assume that G is semisimple, only that G is compact.
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Lemma 4.3.14 Let (m,E) € G x k* and (4, B) € g x k*. Let <,> denote the Ad(G)-

invariant inner product on g. Then
1. a*a((A,B)(Nm’E)) =< E,A >
2. a*¢((m,E)) =< E,E >
3. d(a*¢)((A, B)jnp) =2< E,B >.

Proof. Let {,x € T*G/K, U € T¢,,.(T*G/K). Then the canonical one form on T*G/K
is given by

o(€gx )(U) = &or (dmrec/k U)

where 7r.g/k is the cotangent projection. For V,x € TG/K, X € Ty, (TG/K), a is

given by

(Ve )(X) = ao(v(Ver))(dv(X))
= v(Vox )(d(7reg/K 0 v)(X))
= Q(Vik,d(nreg/k o v)(X))

where @ is the Riemannian metricon G/K. Now let (m, E) € Gxk* and (4, B) € gxk-.
Then

(a’a)((A, B)Gn,p)) = a*a(m, E)((dLnA,B))
= afe(m, E))((da)(m,5)(dLm A, B))
= Q(a(m, E), d(?l’Tag/K ovo a)(m,E)(dLmA, B))

It’s clear that v is a fiber preserving map, so TT+G/K OV = Trg K, Where mrg/k: TG/ K —

G/K is the tangent projection. Recall that

a(m, E) = dr(m)dng/k(F)
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where 7g/x: G — G/K is the coset projection. Then 7re/K © @ is just gk o pry, where

pr, denotes projection onto the first factor in G x kt. Then

(a*a)((A, B)(m,gy)) = Qdr(m)dng/k(E),dng/k 0 dLm(A))
= Q(drg/k(E),drg/k(A))

since 7g/k©Lm = T(m)omg/k, and the metric Q) is invariant under the action of G. Recall
that the metric @ at the identity coset is given by the Ad(G)-invariant inner product
<,> on g (minus one times the Killing form if G is semisimple) under the identification

of T.xG/K and k' by drg/k restricted to k*. This means that
(a*a)((4, B)jn k) =< pres(E), pra(4) > .
But we assumed that A € k', and so
< prgu(E),pryi(A) >=< pryi(E),A >=< E, A > .
This proves 1. To prove 2, just compute

a*¢(m,E) = ¢(dr(m)odnrg/k(F))
= Q(dr(m)odng/k(E),dr(m)odrg/k(E))
= Q(drg/k(E),dng/k(E))

= < prgs(E),prg.(E) >=< E,E >

since E € k* by assumption. Now 3 follows immediately. O

Remark. When G is semisimple we have a global identification of TG/K and G¢/KL.
If we let ¢¢, ac be the objects on G /K¢ corresponding to ¢ and o on TG/ K, then it’s

easy to see that a*¢ = agéc and a*a = alac.
Returning to the symmetric case, we are now ready to show that ¢*Im 8¢ = a*a. Let
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(9,V) € G x p, (W,Y) € g x p. Then
o*Tm BH((W, Y )7, ) = %qu(JTG/Kda(W, Y)ov)-
By proposition 4.3.12 this is
a*Im 0p((W, Y)ev) = %d(a‘gb)((—T(V)'lY + tan ad(V)W,, T(V)Wp)&‘v))
which by lemma 4.3.14 becomes
a*Im (W, Y ), v) =< V, T(V)Wp > .

Note that T(V) = (cosad(V))~! o (sinad(V)/ad(V)) is a symmetric operator by lem-
ma 4.3.11, so
a*Im 94((W, Y)ew) =<T(V)V,W, >.

Now note that V is an eigenvector of cos ad(V') and sin ad(V)/ad(V), with eigenvalue 1.
Hence T(V)V =V, and

a‘IIn EQS((‘V, )r)&‘v)) = < V, Wp >
= <V,W>

since V € p. On the other hand, by lemma 4.3.14,
aa((W,Y)5v) =<V, W >.

This proves that Im 8¢ = a.
To complete the proof of theorem 2.1.1 in the symmetric case, we need to show that
the standard involution o, of T*G/K is an antiholomorphic map. Equivalently, we must

show that the involution ¢ of TG/K that takes a tangent vector to its negative is an
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antiholomorphic map. Let U € To(,v)(TG/K), and write
U= da(W, Y)'(Vg,v)

for some (g,V) € G x p, (W,Y) € g x p. Note that o o a is equal to a composed with
multiplication by —1 on the second factor. Thus

do o da(W,Y)( vy = da(W,=Y); 4.
Then
Jr/k 0 do(U) = Jrg/xda(W,-Y), _v,)
= da(~=T(-V) 7 (=Y) + tanad(= V)W, T(-=V)W,)7; _y).-
Note that T(—V) = T(V) and tanad(—V) = —tanad(V). Then
Jre/x 0 do(U) = da(T(V)7'Y — tanad(V)Wy, T(V)W,)(, _y,
= —dooda(=T(V)'Y + tanad(V)W,, T(V)Wp)iw)

= —dooJrg/xda(W,Y)(
= —do o Jrg/k(U).

This completes the proof of theorem 2.1.1 in the symmetric case. Moreover, we have
shown that the complex structure described in theorem 2.1.1 exists globally on T*G/K

in this case.

4.4 Homogeneous Spaces of Compact Lie Groups

We now consider the case of a homogeneous space of an arbitrary compact Lie group
G. Let M = G/H with G a compact Lie group and H a closed subgroup. We will use H

instead of K to distinguish this case from the symmetric case. The bi-invariant metric on
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G induces an Ad(G)-invariant inner product <, > on g, and an orthogonal decomposition
of the Lie algebra g of G,
g = h + hl.

Let mg;k:G — G/H be the coset projection. Then dmg/k restricted to h' gives an
identification of h' and T,y G/H, and hence a positive definite inner product on T.yG/H.
Due to the Ad(G)-invariance of the inner product, this gives rise to a metric Q on G/H.
In this section we will prove theorem 2.1.1 for (M, g) = (G/H, Q).

If G is a compact, connected, semisimple Lie group, then TG/ H is globally diffeomor-
phic to G¢/H¢. If G is not semisimple, we have only been able to obtain an identification
of a tubular neighborhood of G/H in TG/H with a neighborhood of G/H in G¢/Hc.
All of our results become local in this situation, and the proofs consist mainly of compu-

tations in local coordinate systems.

4.4.1 Complexification of T*G/H

Using the results of section 4.3.1, we can embed G/H as a totally real submanifold of
G¢/He. We want to construct a real analytic identification of a neighborhood of G/H
in T*G/H with a neighborhood of G/H in G¢/Hc. As before we will identify T*G/H
with TG/H by the Riemannian metric on G/H, and then complexify TG/ H in a tubular
neighborhood of G/H. Let g /g.: Ge — G¢/He denote the coset projection, and let 7
denote the natural action of G on G/H.

Proposition 4.4.1 Let $:TG/H — G¢/H¢ be the map

®(Vor) = mac/ac(gexp vV—1(dng/gly) 'dr (g7 ) Vom).

This map is well defined, and is a diffeomorphism of a neighborhood of G/H in TG/H
with a neighborhood of G/H in G¢/He.
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Before proving the proposition we will explain what the map @ is doing. If V,5 €
T,uG/H, then dr(g=')V,u is in the tangent space to the identity coset. We are using
(dmg/m)lhe to identify T.gyG/H with h'. Then /—1(dng/g|p.)~tdr(g~!)V,x is in gc,
and we can exponentiate onto G¢ and project onto G¢/He.

Proof. First we show that @ is well-defined. If Vi = Vj; then there is an h € H such
that ¢' = gh—!. Then

®(Vor) = (g'hexpv=1(dmg/mln.) " dr((¢'h)")V,g) - He
= (¢'expV-1Ad(h)(dnggln) " dr(h™")dr(g"")V,g) - He.

We know that for X € h*, h € H,
dr(R)dray(X) = dreys o Ad(R)(X).
Since Ad(h) preserves ht, it follows that
(drg/mln) " dr(h) = Ad(h)(dmg/mln.) ™"

This shows that (V) = ®(V] ).

Next we show that @ is real analytic. This may seem obvious, but we will give a proof
using real analytic local coordinates because we will need these later. Let x, be the real
analytic local coordinate near gH € G/H given by, for X in a neighborhood of zero in
ht,

kg(X) = ng/g o Lgoexp X.

Then coordinates on a neighborhood of 0y in TG/ H are given by

1 — e—ad(X)

Sy(X,V) = d(maym o Ly o exp)x(V) = dr(g exp X) oy )(—qm—(V))
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(here X is as above and V € h'; see Helgason [10], theorem 1.7, chapter II for the

differential of the exponential map). Thus it’s easy to see that

1 — e-8d(X)

! — X sy -
® ok, (X,V) = (gexp X)exp v —1pry.( (%)

V))- He (4.8)

where pry. denotes projection onto the subspace ht with respect to the orthogonal
decomposition g = h + h*. From the expression 4.8 it is clear that & is real analytic.
To show that & is a local diffeomorphism near the zero section it suffices to show that

d(®o ng)(o,o) is nonsingular for every g € G. Note for W, Y € h+,

d
d(®o ng)(o,p)(W,U) = zzltzogexp tW . He = dr(g) o drg (W),

d ,
d(®o ng)(o‘o)(O, Y)= -ﬁlmggexp V—=1(tY) - He = dr(g) o drge/uc(v—-1Y)

This shows that
d(® 0 K4)0.0)(W,Y) = dr(g) o dng /(W + V—1Y).

Since W +1/=1Y € h} and (d”Gc/Hc)lhé is an isomorphism, it follows that d(® o ! )00
is nonsingular.

To show that @ is a diffeomorphism of a tubular neighborhood of G/H in TG/H to
a neighborhood of G/H in G¢/H¢, note that @ restricted to G/H is globally one-to-one,
since it is just the embedding of G/H into G¢/H¢ given in lemma 4.3.3. Then by a
standard argument (see for example Lang [17], page 97-98), ® is a diffeomorphism when
restricted to a sufficiently small neighborhood of the zero section in TG/H. O

From now on we will give a neighborhood of G/H in TG/H the complex structure

induced by this identification.
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4.4.2 Proof of the Result

In this section we will prove theorem 2.1.1 for homogeneous spaces of compact Lie groups,
with the Riemannian metric Q) described above. If ¢, is the quadratic function on T*G/H
associated with the Riemannian metric ¢ and a, is the canonical one form on T*M, we
must show that Im 8¢, = a,, and that the standard involution o, of T*G/H is an
antiholomorphic map with respect to the complex structure given by proposition 4.4.1.

Let a, ¢ be the objects on TG/H corresponding to a, and ¢, under the metric
identification v: TG/H — T*G/H. Then it suffices to show that Im 9¢ = a, and that
the corresponding involution of TG/H is an antiholomorphic map with respect to the
complex structure on TG/ H.

We first show that it suffices to verify that the equation
Im 9¢ = a (4.9)

holds on a neighborhood of zero in the fiber over the identity coset, T.yG/H. The group
G permutes the fibers transitively, and it’s easy to see that ¢ and a are invariant under
the action of G on TG/H. The identification of TG/H with G¢/H¢ is equivariant with
respect to the natural (G actions on TG/H and G¢/H¢. It follows that the complex
structure on TG/ H induced by this identification is G-invariant, so equation 4.9 is G-
invariant. If we can verify that equation 4.9 holds on a neighborhood of eH in T.yG/H,
we will have shown it holds locally near each point of the zero section G/H in TG/H,
and hence on a neighborhood of G/H in TG/H.

Let Jrg/u denote the complex structure operator on T'G/H near the zero section
given by the identification in proposition 4.4.1. Let o denote the identity coset e H. We
must show that for all V, in a neighborhood of zero in T,G/H and all U, € Ty,(TG/H),

2@y, (U.) = —a(V.)Jre/nll).

The proof is a detailed computation in local coordinates, which will be broken up into
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several steps. Throughout we will use the following local coordinates. Let u be a neighbor-
hood of zero in ht. Then local coordinates on G/H near zero are given by x:u — G/H,
where

K(X) = mg/u(exp X).

Vector bundle coordinates on TG/H near 0, are given by x!:u x ht — TG/H, where
X, V) = (dr)x(V).

It is easily seen, using the formula for dexp in Helgason [10], theorem 1.7, chapter II,

that

1 — e—28d(X)

K'(X,V) = dr(exp X) o dmgg o (_adtk—)_)(v)

The fiber over the identity coset is the image of the set {0} x h* under the map «!.
Let ¢!, of, J}G/H denote the objects on u x h' corresponding to ¢, a, Jrg/g on TG/H
under the identification x!. Then it suffices to show that for all (0,V) in the domain of
Jte/g and all (W,Y) € Tovy(u x ht) = ht x ht,

S8 01 (W,Y) = a0, V)((The,mom (W, Y)). (4.10)

To prove theorem 2.1.1 we must get reasonably good expressions for the complex structure
operator J}. /i and the forms d@!, o! over {0} x h*. The difficult part is obtaining an

expression for J,}G /i S0 we will tackle that problem first. By definition,
(J;G/H)(O,V) = d(‘b o n“)—lM\/j d(‘I’ o} K")(O,V)

where M 5 is multiplication by /—1 on the tangent space Tsont(0,v)Ge/He. The first

step is to compute d(® o k¥)(o,v).

Lemma 4.4.2 Let (0,V) € {0} x ht, and let (W,Y) € h' x ht, which we identify with
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the tangent space T(o,v)(u x ht). Then

d(® o n")(o,v)(w, Y)=

1— e—ad(\/:TV)
dr(exp v —-1V)dnge/nc((

ad(V)

(¥ = 3prnaad(W)V)) + e TV(w)),

Proof. We first compute d(® o x*)(,v)(W,0). From equation 4.8 we have

d

d(@ (o) K")(O’V)(W, 0) = E't:o

(® o &)(tW, V)

d 1 — e-—ad(tW)
= ZE"=° Tee/He (exptW exp v/ —1 Prhx(w(v)))

d 1 — e—2d(tW)
= d"ch/Hc(Elmo exptWexpv—1 PIhL(—aa‘('tW)—-(V)))-

Let M:G¢ X G¢ — G¢ denote the group multiplication. We can write this as

d(@ (o) KH)(o,V)(W, 0) =
d 1 — e—od(tW)
dﬂ'Gc/Hc o dM(e,exp\/——-TV)(W’ d(eXp)\/_—lvﬂlzzo v —1 pth(W(V))).

By examining the power series for (1 — e~*d(t"))/ad(tW) we see that

d 1 — e—2d(tW) v -1 AWV
ﬁltzopfhi(w)—( ))— TPrhla ( ) .

Recalling the formula for the differential of group multiplication given in equation 4.6,

we see that

UM g erp (W d(exp) o S oy ad (V) =

d(exp)\/jV( prhlad(W)V) + dchp\/——l'V(W)'
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Using Helgason’s formula for dexp in lemma 4.1.3, we have

M) (e expv=1v)(Ws d(exp ) =1 v ( Jprhad(W)V) =

ALy ey (VIS 2L ad(W)V)) + =TT
exp\/:TV - ad(\/jiV) 2 p ht ‘

Putting all this together we find that

d(q’ 0] KI)(O,V)(W, 0) =
1—evV-1V

dr(exp \/—_IV) ¢] dWGC/Hc(\/-——l'(W—I—V)(_Tlprh; ad(W)V)) + e_ad(\/:TV)(W)).

Next we compute d(® o k)(0,v)(0,Y); this is somewhat easier. Using equation 4.8 we

have

d
d(® 0 k)or)(0,Y) = —Zlimo (20 !)(0,V +1Y)

d
= Et'ltzo Tee/He(€xp vV —1(V + tY))
= dmge/nc © d(exp ) gv(V-1Y)

1— —ad(/=1V)
= dr(expv—-1V)odrg/u.(vV-1( -

(V1Y) (Y))

This shows that

d(® o n“)(o,y)(W, Y)=

1— e—ad(\/jV) 1
dr(expv—1V)odnge/nc(V—-1( — =prpad(W)V)) + e V=TV (),

ad(v/—1V) ¥ 2

This proves the lemma, since

V=I(1 = eI fad (VT V) = (1 — e *4V=TV)) fag(V).
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The next step is to understand how to invert d(® o £)(o,v). Our strategy will be to
write d(® o x¥)o,1) as a composition of maps which are invertible for small enough V.

Note that for any W, X € h*t,

_ eV Ta
- ad(V) dl(V)(X) + e VTV(W) =
0 + conad(VY(W) + VTS 06) — simad (V)W)

We are thus led to define the following maps:

1. Py:ht x h* — h' x h' given by

1
Py(W,X)= (W, X + Eprhlad(V)W)

2. Ry:ht x ht — ht x ht given by

Ry (W, X) = prhlxhl(l—‘—afg-jf;‘;ﬂ(mwos ad(V)(W), %’;‘(‘-}S)ﬁm—sin ad(V)(W))

3. S:ht x ht — hl is the standard identification, S(W,X) = W + /=1 X.

Then it is clear that we can write
d(® o &%) o,v)(W,Y) = dr(exp/—1V) o (d7Ge/me)lng © S o Ry o Py(W,Y).  (4.11)

Obviously S, Py, and (d7gc/me)lh 4 are bijections. For Ry we have the following lemma.
Lemma 4.4.3 For small enough V, Ry is a bijection.

Proof. We can write Ry as

Ry(W,X)= (W, X)+

—cosad(V sin a.
prhlxhl(}-—m#()&') + (cosad(V) — 1)(W), (—ad—(d—lg‘)ﬁ —1)(X) — sinad(V)(W)).

102



Define the linear operator Hy:h* x ht — hi x ht by

Hy (W, X) =
prhlxhl(l—"a‘%’%‘;—‘;@(,\f) + (cosad(V) — 1)(W),(-‘°'-‘:Ta(d‘£)ﬂ — 1)(X) — sin ad(V)(W)).

Then Ry can be written as

Ry = Idpiype + Hy.

Suppose we put a norm || - || on ht x h* (all norms on a finite dimensional vector space

are equivalent). Then it suffices to show that for all V sufficiently small,
|Hy|| < 1.

If this is true, then we can invert Ry by a Neumann series and conclude that Ry is a

bijection. The most convenient norm to use on ht x ht is the “box” norm:
(W, X)Il = W]l + ||IX]|

where || - || is the norm on h' induced by the Ad(G)-invariant inner product. Then we

have

1H (W, X)|| < uprhl(l-_ﬁ‘_j.@

sinad(V)
ad(V)

N XN + llprhs(cos ad(V) — 1)(W)]|

+llprh ( = (X! + lipraa (sin ad(V))(W).

It’s clear that ||pry.|| <1, so this becomes

18X < (e + s - i
H(l(cosad(V) ~ 1) + [ simned(VIDIW].  (412)
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The adjoint representation

ad:g — End(g)

by V' — ad(V) is a linear map between finite dimensional vector spaces, hence bounded.

So there exists a constant C, independent of V, such that

lad(V)|| < C||V||.

The power series for the analytic functions appearing in the estimate 4.12 have no con-

stant term. By examining these power series one sees that

max( gL N = D cos ad(V) D) sinad (V)
sicnuvu"-

So by taking V sufficiently small we can arrange that ||Hy|| < 1. O

We can now write down an expression for the complex structure J}G /u- Recall that
by definition,
JIU,G/H =d(®or")" o M, 0d(®or").

Since TG, /p, and the G¢ action are holomorphic maps, we can write using equation 4.11

(Jre/u)ov) = Pyt o Ry' 0 Jyuxns 0 Ry o Py (4.13)

where J, ., 1 is the standard complex structure on ht x h*, Jy, o (W,Y) = (=Y, W).

Using the Neumann series to invert Ry, for small V, we have

R‘_,l = Idhlxh_L—Hv-{-H;",—
= Idhlxh_j_—HVOR‘_rl.

Substituting this into 4.13 gives us the expression that will be useful for proving theo-
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rem 2.1.1:

(Jrasm)ov) = Pi'oJdhixhi o Py + Pyl o Jyuhe o Hy o Py (4.14)

—P‘:,_1 OHV OR‘—,1 OJh_LXhJ, o Ry o Py.

To see why this is useful we must compute the other things that enter into the expression

for Im ¢ = a in these coordinates, which is given by equation 4.10.

Lemma 4.4.4 Let (X,V) € ux ht, let (W,Y) € Tovy(u x h') (which we identify with
ht x ht), and let <,> denote the Ad(G)-invariant inner product on g. Then

1. 30, VYW,Y) =< V, W >
2. $H(X,V) =< =5570(V), pria (5 (V)) >

3. (d¢u)(0‘v)(w, Y) =2< V, Y >.

Proof. Since o! = (vok!)*a, where v: TG/H — T*G/H is the metric identification, we
have

a0, V)(W,Y) = v ok (0, V)(d(rr-c i o v 0 k)01 (W, Y)).

It’s easy to see that 7r.q g ov = m76/g, and TTG/H © k! = kopr; where pr, is projection

onto the first component. By the definitions we see that
d(K [¢] pl'l )(o,v)(W, Y) = K,”(O, W) = d?l’(;/H(W).

Thus o}(0,V)(W,Y) = Qo(dme/u(V),dng/n(W)) =< V,W > since V,W € ht, which
proves 1.

To prove 2, we just unravel the definitions:

qﬁ“(X,V) = ¢oovorl(X,V)
= Q(K"(‘X’V)anﬂ(-‘xy,vr))
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1 e—ad(X) 1 e-sd(X)
= Q(d"G/H(W(V))ad”G/H(W(V)))

1 — e—2d(X) 1 — e—2d(X)
= < Pth(—W—(V)),Pth(W(V)) > .

This proves 2 since the projection onto h' is a symmetric operator.

It’s clear that (d¢')o,v)(0,Y) =2 < V,Y >. To find (d¢')o,v)(W,0), we note that

1— e—ad(tW)

t 2
g =1 3+ 0@)

Then

d t t
(dé")0,)(W,0) = ‘-ﬁ|t=o <V - §[W, V], prpu(V - §[W, V]) >

1
= _§(< Viprp [W, V] > + < W, V]9V >).

Since pry. is a symmetric operator, V is in h*, and ad(V) is a skew symmetric operator
PTh y P y P s

this quantity is zero. This proves 3. O

We are now ready to verify the equation
308 (W, ¥) = —ad(0,V)((Thgym)am(W, V). (415)
By the lemma above, we must show that
< VY >= — <V,pry((Jhg/m)om(W,Y)) >

where pr; means projection onto the first factor in h x ht. First we note that since
Py is only a translation in the second factor, pr; o P;! = pr,. So we may forget about

the P;* factors in the expression for (J1 /i)(o,v) in equation 4.14. Then recalling the

106



definition of Py we can write

1
- <Vipr(Srg/mon(W,Y) > = <V, Y+ 7Prhad(V)W >
- < V,pl’l(Jh_Lth. o HV o] PV(W,Y)) >
+ < V,pry(Hy o Ry o Jyipe 0 Ry o Py(W,Y)) > .

We now come to the crucial point that makes this whole thing work: the range of

ad(V') is orthogonal to V. This means in particular that
1
<VY + §prhlad(V)W >=< VY >.

Since (sinad(V)/ad(V))—1, sinad(V), (1—cosad(V))/ad(V), and cos ad(V)—1 are ana-
Iytic functions of ad(V') without constant term, the range of these operators is orthogonal

to V also. This means that

0 = < V,prl(']hlxhl oHyo PV(W’ Y)) >
= < V’Prl(HV 0 Ri71 OJh-Lxhl o Ry OPV(Way)) > .

So we have shown that
— < V,pry((hg /oy (W, Y)) >=< VY >,

verifying equation 4.15.

To complete the proof of theorem 2.1.1 we need to show that the standard involution
o, of T*G/H is an antiholomorphic map. We need only show that the corresponding
map on TG/H, 0:Vyg — —V,g, is an antiholomorphic map. Since ¢ commutes with the

G action on TG/ H, it suffices to show that for all V € h* sufficiently small,

(Jre/m)0,-v) 0 do = —do o (Jre/n )o,v)-
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To prove this we use the coordinates introduced above and consider the corresponding

map on u x ht, o¥:(X,V) — (X, ~V). We need to show that

(J’}G/H)(O»—V) odot = _d"go,v) ° (J}'G/H)(O,V)'

We will use the decomposition of (J;«G /i )(o,v) given by equation 4.13, and the following

trivial observations.
Lemma 4.4.5 P_y o dU?O,V) = (Id x —Id) o Py.

Proof. Just compute from the definitions:

P_y odoly(W,Y) = P_y(W,-Y)=(W,-Y — %ad(V)W)
= (Id x —Id)o Py(W,Y).

Lemma 4.4.6 R_y o (Id x —Id) = (Id x —Id) o Ry.

Proof. Recall we can write Ry = Idp.,p. + Hy, where Hy is given by

Hy(W,X) =
1 — cosad(V)

sin ad(V)
prhlxhl(w T2

(X) + (cosad(V) — 1)(W),( ad(V)

— 1)(X) — sinad(V)(W)).

Note that (1—cos z)/z, sin z are odd functions, and cos z, (sin z/z)— 1 are even functions.

Then it’s easy to see that

H_yo(Idx —Id)(W,X) = (Id x —Id) o Hy(W, X).
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To complete the proof of theorem 2.1.1, we simply observe that

(J3a/m)o-v)0dolyy, = P} oRIyoJyichi o Roy o Py odolyy,
= Py oR}oJpipeo(Idx —Id)o Ryo Py
= —P3lo R:{, o(Idx —Id)o Jyi pe © Ry o Py
= —dofyy 0 Pyl o Ry o Jhuyni o Rv o Py

) g
= —da(o’v) o (JTG/H)(ovv)‘

This shows that the standard involution o, of T*G/ H is antiholomorphic. The uniqueness
of this complex structure now follows from the formal power series construction in sec-
tion 3.1 (see the remark on page 43). Thus we have completed the proof of theorem 2.1.1

in the homogeneous case.

4.5 Homogeneous Spaces of Compact Semisimple
Lie Groups

Suppose G is a compact, connected, semisimple Lie group, and H is a closed subgroup.
Then the map @ in proposition 4.4.1 is the same as the map cc o ¢~! in the proof of
proposition 4.3.8. So by theorem 4.3.9, ® extends to a global diffeomorphism of TG/H
and G¢/Hc. The identification of T*G/H and TG/H by the Riemannian metric is also
global, so we get a globally defined complex structure on T*G/H. We can hope for a
global version of theorem 2.1.1 in this case. The following theorem shows that in fact we

do have such a global theorem.

Theorem 4.5.1 Let G be a compact, connected, semisimple Lie group and let H be a
closed subgroup. Give G/H the Riemannian metric corresponding to the bi-invariant
metric on G. Then there is a globally defined complex structure on T*G/H having the

properties described in theorem 2.1.1.
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Proof. The one form Im8¢,— a, exists globally, and when paired with an analytic vector
field gives an analytic function. By the results of section 4.4.2, this analytic function
vanishes on a neighborhood of G/H, so by the uniqueness of analytic continuation it
must be identically zero. We conclude that Im 8¢, = «, on all of T*G/H. Similarly, the
analytic (1,1)-tensor o*J, + J, vanishes in a neighborhood of G/H in T*G/H, so it must

be identically zero. [J
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Chapter 5

Toeplitz Operators

In this final chapter we will apply the ideas we have worked out in the preceding
sections to a problem in analysis. We will construct a pseudodifferential operator on M,
a totally real submanifold of a complex manifold, that models the process of analytic
continuation of Hardy functions from the boundary of a tubular neighborhood of M in
2. We will find that this process is very much like solving a certain “heat type” equation

on M, and make explicit computations in the case of spheres and tori.

5.1 Analytic Continuation as Heat Flow

Suppose M is embedded as a totally real submanifold of a complex manifold 2, and
let p be a strictly plurisubharmonic exhaustion of a neighborhood of M in € such that
p>0and p=dp=0o0n M only. Let

O ={( € Q:p(¢) <e'}.

Note that as ¢ goes to infinity, {2, shrinks to M. Due to the strict plurisubharmonicity of
P, (1t is a strictly pseudoconvex domain for ¢ sufficiently large. The two form —d Im8p will
be nondegenerate for ¢ sufficiently large, so by the Kostant-Sternberg-Weinstein theorem

we have a symplectic identification of a neighborhood of M in © and a neighborhood
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of M in T*M. By scaling p we may assume that £y is compactly contained in such a
neighborhood, still denoted by 2. '
In this way the boundary of Q; (¢ > 0) inherits the cosphere fibration, which we will

denote by
pe: 0, — M.

The fibration of course depends on the choice of a symplectic structure on {2, and therefore
the choice of exhaustion function p. This fibration is important because it allows us to
associate functions on 89, with functions on M by “fiber integration”. Let m € M.
The fibers p;!(m) C 89 are submanifolds of 2, and so inherit a measure p;,, from the
Riemannian structure of {2, which varies smoothly with m. If h is a smooth function on
9%);, we can transform h into a smooth function p;.h on M by integrating over the fibers
of p;:
(pek)m) = [, hdueom.

Pyt (m)
This makes sense since the fibers p;'(m) are compact. We could also use some other
measure besides the Riemannian measure on the fibers; we will suppress from the notation
the dependence of p;, on the choice of measure. The notation p;, is used because p.,h is
in a sense the push-forward of h by the map p;. See Guillemin [8], §5 for more details.
Let H*™ denote the smooth Hardy space,

H>(89;) = {h € C=(89): I a holomorphic function h on £, such that A = k|sq,}.

We could also characterize this space as the kernel of a certain differential operator
on 0%, the 8, operator, and define Hardy spaces of L? functions or distributions. For
simplicity, we will consider only smooth functions. L. Boutet de Monvel and V. Guillemin

have obtained the following remarkable result.

Theorem 5.1.1 The map p;. when restricted to H*® has finite dimensional kernel and

cokernel.
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Proof. See V. Guillemin [8], theorem 5.1.

Recently Melrose and Epstein [14] have proven that this correspondence is actually
bijective, for all ¢t sufficiently large (as ¢ becomes large, (2, becomes small). By scaling the
exhaustion p we may assume this is true for all £ > 0. This allows us to identify C>(M)
with H>(94,), (t > 0), and operators on H*>(9;) with operators on C®(M).

One of the most natural operators on Hardy functions is analytic continuation to
the interior of 9%,, since these are precisely the functions on the boundary which have
such extensions. There is a natural map from H>®(3%) to H*(9Q,), given by analytic
continuation followed by restriction: if A € H>(8%) and A is the holomorphic function

on {}p whose boundary value is h, then we send
H®(0) 3 h — hloa, < h, € H=(09,).

This gives us an operator S; on M, which is the bottom arrow of the following diagram:

H®(02) — H>()

(Pox | (a00)) ™" 7 i} Dte|1o(a0,)
C=(M) 2% C=(M)

It is easy to see that microlocally this operator is not very exciting; it can be extended
to a map which sends distributions into smooth functions. Its interest is in that it is the
solution operator to a certain type of heat equation, which we will study in the rest of

this chapter.

5.1.1 Heat Flow From the Boundary of a Complex Tube

The ideas we will describe can be formulated in terms of a Bruhat-Whitney embedding
of M into a complex manifold and any strictly plurisubharmonic exhaustion p. In what

follows we will use the complex structure on T*M near the zero section described in
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theorem 2.1.1, and the quadratic exhaustion function ¢, induced by a Riemannian metric
g on M. Then the fibration p; is just the cotangent fibration restricted to the cosphere
bundle (measured with respect to the dual metric on the fibers of T*M), and the vector
field Z in theorem 2.1.1 is the radial vector field E, = ¥ ¢;0/9¢,.

We can use the flow of Z, to identify o\ M with [0, o0) X 0 by

F:[0,00) x 00 3 (t,&n) — e %¢,, € Q\M.

We have chosen to use the flow of —%Eo so that F, def F(t,-) identifies 9 with 99,.
Let Hy, be the Hamiltonian vector field associated with ¢,, defined by

wo(Hy,, X) = dgo(X).
Then Hy, is tangent to 0§, since

H¢‘o(¢o) = d¢o(H¢>o) = wO(H¢o7H¢o) = 0.

We can consider Hy, as a differential operator on [0, 00) x 8Qp. This allows us to formulate
a simple yet elegant result relating the analytic continuation of Hardy functions on 8%

to a Cauchy initial value problem on [0,00) x 8.
Proposition 5.1.2 Let h € H®(9%). Then the unique solution to the Cauchy problem

Ou V-1
o T TTg Hev

ult:o = h

is given by u(t,€m) = h(e=*/%¢,,), where h is the holomorphic eztension of h to Qy.

Proof. By proposition 2.5.4 we know that Hy, = —2J,Z,. Since this is a real analytic
differential operator, by classical Cauchy-Kovalevsky theory we know that there exists

a unique solution u to the initial value problem above (see for example Courant and
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Hilbert [5]). Let & be the holomorphic extension of & to Q9. If Z is any type (0,1) vector
field (i.e., Z can be written locally as Z = T aa(a:,y)g.‘Z—a), then Zh = 0 on Q. Now let
Z = Z,+ v/—1JZ,. The identification of Q\M with [0, 00) x 8 has been constructed
so that if we set u(t, &) = h(e~/?¢,,), then

_ Ou
Zoh = —2—5—t-.
The equation ZA = 0 becomes
Ou _ VL re

ot~ 2
which proves the proposition. O

The analytic continuation of Hardy functions is analogous to a sort of heat flow on

[0,00) x 8%, governed by the equation
— = ————Hy u. (5.1)

Under the Boutet de Monvel-Guillemin identification of H*(9%;) with C®(M), the
differential operator Hy, corresponds to a pseuododifferential operator on M, and the
partial differential equation 5.1 corresponds to a pseudodifferential equation on M. In

the remainder of this chapter we will study this operator, and work out some examples.

5.1.2 Analytic Continuation as a Pseudodifferential Equation

on M
In order to convert equation 5.1 into a pseudodifferential equation on M by fiber integra-
tion, we will need to specify the measures y;m to be used in computing the fiber integral

more precisely. We want to choose these measure so that “0/8¢” commutes with p,,. If

h is a smooth function on $y and %, denotes its restriction to 0, then we would like to
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have
1

=.h): ).
5 )to)

d .
E lto(Pt*ht) = pto*((_

The simplest way to arrange this is to fix a smooth measure o, on the fibers py Y(m)
and set

pem = (F t)" tom

where Fi: 0Q — 0, is the map Fi(¢,) = e t/%¢,,. Then

J - d -
FleEehm) = Gl [ B ) duan(tn)

Po

-/ L @R e ) ditom(£n)

= unl(—5Zoh))(m).

Using the measures p;,, we can translate the differential equation 5.1 into a pseudod-

ifferential heat equation on M.

Proposition 5.1.3 There ezists a first order pseudodifferential operator P, on M such

that S, is the solution operator for the associated heat equation,

dg

Proof. Let f € ("*(M), and let h be the Hardy function (pe,)~!f (we write (pe.)?
to mean the inverse of p;, restricted to H>(89;)). Let u(t,¢,) be the solution to the

Cauchy problem

Ou v—-1
E = ——4-—H¢ou (53)

u’lt:O = h

which by proposition 5.1.2 is given by u(t,&m) = h(e=t/3¢,,), where h is the analytic

continuation of k to {lo. Now transfer this equation to M by integrating over the fibers
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of p;. This gives for the left hand side of 5.3

Ju 1_ - d .
pt*(a) - pt*(—g'—'oh) = ‘d_t(pttht)’
where h, is the restriction of & to 9. Recalling the construction of the operator S; on
page 113, we see that after integrating over the fibers of p;,, the left hand side of 5.3
becomes

Ju d
pe(Zy = Lisip).

For the right hand side of 5.3, note that

u(t,&m) = h(e™%,) = ((Per) 1 Se f) (72 ).

So after integrating over the fibers, equation 5.3 becomes

L (5e) = =L B (5P

Here we are considering H,, as an operator on 9Q;. Thus we are led to the operator

de f \/—]. _
P = - 1 Pes Hy, (Pes) g

The operators p;, and (p;.)~! are Fourier integral operators, which always compose well
with differential operators. So P, is also a Fourier integral operator. In fact it is a
pseudodifferential operator, since the canonical relation associated with the vector field
Hy, is the identity canonical relation, so the canonical relation associated with P, is also
the identity relation (i.e., the conormal bundle of the diagonal in T*(M x M)). It’s clear

that P, is a first order pseudodifferential operator. [J

In fact P is an elliptic pseudodifferential operator. Rather than prove this, we will
refer to the examples to follow. These examples will show that P, looks very much like

the Laplace operator on M. From these examples we make the following conjecture.
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Conjecture. P, = ¢;(t)y/Agy + c2(t)Id modulo a compact operator.
g

5.2 The Torus

Let T" be the standard n torus, R"/2xZ", with the metric induced by the standard
metric on R". This is exactly the bi-invariant metric on T" as a Lie group. The tangent
bundle of T" is naturally identified with T™ x R", which is then identified with T*T"
by the metric. The complex structure on T" x R™ described by theorem 2.1.1 is given
in lemma 4.1.5. Since T" is commutative, ad(V) is identically zero and so the complex
structure is the one obtained by identifying the tangent space T, y)(T" x R") with C"
in the usual way. It is easy to see that C"/27Z" is the universal complexification of T™

given in theorem 4.1.1. Here C"/2xZ" is C" modulo the 277" action

r+vV-1y — (z+2mq)++/-1y.

It is easy to check that the obvious global identification of T*T" with C"/2xZ" is the
complex structure described in theorem 2.1.1. The exhaustion function ¢ is ¢(z,¢) = [¢[2.

The functions ex(z) = eV=1%= k € z", form a Hilbert space basis for L*(T"), and
every smooth function on T™ can be expanded in a Fourier series in this basis. It can be

shown that the functions
ere(z,€) = e\/——lk'(”ﬁmam

form a Hilbert space basis for the L? closure of the smooth Hardy space on 89Q, C T*T".
Due to the invariance under the obvious group actions of our operators, it will be enough

to compute with these elementary functions.

Lemma 5.2.1 (pi.er)(x) = Jo(e ¥2|k|)ex(z), where J, is the zeroth order Bessel func-
tion

1 e
Jn(v) = r,,_,/_l e (1 — 82) ds.
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Here T',_» is the volume of the n — 2 sphere (n > 3).

Proof. Let ¢ = ¢t/2, Then

(pt‘ek’t)(ic) = AI e\/~_1ko(z+\/:fe£) df
¢2=1

= e;re(ac)/;"_l e % dw

where dw is the standard measure on S"~!. The integral is rotationally invariant in k,

so it is a function J, of €|k|. To compute it we set ek = v/(0,...,0,1). Then

Jo(v) = /57._1 e " dw.

Using cylindrical polar coordinates on S™1,

w = (wiy..e wniy)
r = |w'|=cosd
w, = sinf

dv = T,_3(cosf)""%df

(T2 = volume of §7~2),

we see that

x/2 .
Jn(v) = To_s / =751 cos §)"~2 df.

-

Setting s = sin @ this becomes
1 n-3
Jo(v) = T_s / e (1 — s7)>F ds
-1

which proves the lemma. O

Remark. Note that J,(v) > 0, so in this case we have a direct proof that p, is bijective

when restricted to the Hardy space.
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Corollary 5.2.2 The operator S; is given by

Jo(e=/2[k])

Stk = =T

€.

We can now describe the operator P, on T™.

Proposition 5.2.3 The operator P, is given by

e~ 21k|)? Loz Juia(e”*/?[K])

|
Ben = S T T, (e TR

where I',, is the volume of the n sphere.

Proof. The Hamiltonian vector field Hy, is

0
Hy, =2)" fi%-

Then

Hy,(pea) ‘er(z, &) = Te—zt/—zlk—l)\/__l(k - €)er(z,€).

The operator P, is then

1
Pier(z) = m?t*((’c “§)ene)-

Setting € = e~*/? we have

pul(k - Eewe) = [ (k- )™ dt ex(a)

As before the integral depends only on |k|. We can write it as

/ (k-el)e k¢ de = e|k|/ wpelklen 4o
jel=1 sn-1
n-3

1
= e|k|rn—2‘/‘1 e_elklsS(]. - 82)—2— d8.
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After integrating by parts this becomes

2 1 .
/!el—l(k ref)e™dE = (1€Ifl,)z | /_1 e lkls(1 — %)% ds
_ (k)T
= T, (e,
This shows that
elk])? T,
Pl k) = FELZER T (el

which proves the proposition. [J

To understand this operator we need the following asymptotic expansion of J,,.

Lemma 5.2.4 There ezist constants a;, depending only on the dimension n, such that

e'”uE;—I'Jn(u) ~ Z a;v?

1=0

with ag > 0.

Proof. See appendix A.2 O

Let A be the Laplacian on 7", A = — E(b‘%)z. Then it follows immediately from the

lemma that there exist constants a;, depending only on the dimension n, such that
P, ~ aje”*VA + a, + Z a_,-(e‘t/z\/x)"i
i=1

with @; < 0. The meaning of the symbol “~” is that the difference between P, and the
first k terms on the right maps L?(T") into the Sobolov space Wk-1(T").

This verifies conjecture given at the end of section 5.1.2 for the n torus with its
standard metric. It also provides further justification for thinking of analytic continuation
as a sort of heat flow.

When n = 3 it is easy to compute the integrals defining J,(v). The result of this
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computation (which we will omit) is that for n = 3,

L) = TG —e)
2

Tua(v) = To(S)e™ + e+ (e — &)

<

Then if we set € = e~t/? we have

—€|k| e—2e|k| +14 ;_le_l_(e—hlkl _ 1)
2 1 — e—2elk]

Ptek = )ek.

This shows that in the ring of pseudodifferential operators we have for n = 3,

P = -;-(—e"/zx/z + Id).

5.3 The Sphere

In this section we will study the operator P; on the n sphere, for n odd, and write
down an exact expression for P, as a pseudodifferential operator when n = 3. The results
will be very similar to the case of the torus.

To do the computations it will be most convenient to work in the context of theo-
rem 3.1.1, thinking of S™ as the “center” of a complex Monge-Ampere manifold. We
have given a very explicit realization of this in the case of the sphere in section 4.2, due

to P. M. Wong [25]. Let
Q:{z:m-{-\/—lyeC"“:zf+---+z,2,+1 =1}

¢ = (cosh™" p)?

where p(z) = |z|>. We have shown that ¢ is the solution to the “Monge-Ampére type”
problem posed in theorem 3.1.1 for S™ with its standard metric (see proposition 4.2.2).

This identifies  with T*S™, and we have shown in theorem 4.5.1 that this identification
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is global. We need to describe the cotangent foliation on 2, the radial vector field and
its integral curves. P. M. Wong shows in [25] that the Monge-Ampére distribution, as a
complex one dimensional subbundle of the holomorphic tangent bundle of {2, is spanned

by the vector field
n+1

i iy O
V= ;(PZ -z )@h

Recalling the discussion in section 2.4, we see that the vector field = must be a multiple

of the real part of V. Using the condition that Z¢ = 2¢ we can determine =. The result

is that
cosh™p &l ., .8 i 2 O
== 80 PN aigr L il 5.4
Tyl 2" M g VIl gy (54)
Let

2, =0n {¢(Z) < e't}.

Since () is defined by |z|> — |y|2 = 1 and z - y = 0, we see that this can be written as

Q=2n{lyl < —1—(—1 + cosh e™*/2)1}.

V2

One can check that if * + /=1y is in 0%, then the integral curve of —-;—E through
x4+ /=1y is given by

F(t,z,y) = %(1 + cosh e"/z)%-i + -—_1-(—1 + cosh e~%/2)

lz| = V2

1y
ly|

The cotangent fibration is given by following the integral curves of —3Z through z++/—1y
to where they intersect the center S”. This shows that the cotangent fibration of 82,

over S™ is just the obvious one,

pe(z+v-1y) = =

T
|=|
The map F: 00 — 0\ M above gives the identification of 8% x [0, 00) with 2\ M needed

to construct the one parameter family of operators P,.
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To compute the “averaging” operator p;, we will have to rely heavily on the group
invariance present. The orthogonal group O(n + 1) acts on S™ by rotations. Under this
action L?(S™) decomposes into a Hilbert space direct sum of inequivalent, irreducible

representations of O(n + 1),
L*(8™) = > Vi,
k=0

where the finite dimensional subspaces V;, are the “spherical harmonics of degree k”,
Vi = span of {for(m) = (a1m1 + -+ + anyimnqr)* 1 ¢l + -+ a2, =0, a; € C}.

See for example Helgason [11], theorem 3.1, introduction. The orthogonal group O(n+1)

acts on (2 as well by

A-(z++/—-1y) = Az + /-1 Ay.

This action preserves the complex structure, so it induces an action on the L? closure of
the smooth Hardy space, H%(0f;). We will show that we get a similar decomposition of
H2(09,).

Lemma 5.3.1 Under this O(n+1) action, H?(9SY;) breaks up into a Hilbert space direct

sum of inequivalent, irreducible representations of O(n + 1),
H(O) = Vi,
0

where

V,ft = {polynomials h(z)|sq,: h(z)|s» € Vi}.

Proof. The V}fi are clearly inequivalent, irreducible representations of O(n + 1), since
the Vj are. Since polynomials in z restricted to 952, are dense in H?(81,), we need only
show that if P(z) is a polynomial in 2z homogeneous of degree k, then P restricted to
0, is in the algebraic direct sum of the V;c#t Since P restricted to R™ is a homogeneous

polynomial on R™ of degree k, there exist harmonic polynomials kg, hy_z,...,hx_2p (p =
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integer part of k/2) such that
Plan = hi(x) + |2 hica(2) + - - + |2[Pha_szp(2)

(see for example Helgason [11], proof of theorem 3.1, introduction). This shows that P(z)

can be written as
P(z) = hi(2) + (2 + -+ zopn)hiez oo 4 (2 4 4 2000 Phig(2).
Then when restricted to 9, we have, since 22 + ...+ 22, = 1 on {,
Plaq, = hiloa, + -+ - + hi—2ploq,-

This proves the lemma, since the hj_,; restricted to S™ are in Vie—e;. O

The fibers p;* are n — 1 spheres, so if h, € H(9Q,) we see that

—;—1-(-1 + cosh e7/?)1y) dpug .

(Pexhe)(m) = / ht(-\—}_g(l + cosh e't/z)%m +

{yeSn:y-m=0}

We take for the measures pq,, the standard measure on S™~1. It is clear from this expres-
sion that p,, commutes with the O(n+1) actions. It follows that pt.(V,ft) is an irreducible
representation of O(n 4 1). Schur’s lemma says that either pe.( Vkﬁ) is inequivalent as a
representation to Vkﬁ and pf,(%ﬁ) is zero, or it is an equivalent representation, in which
case there is a unique map from l/;ji to pt*(‘/kﬁ) commuting with the O(n + 1) actions,
up to a constant multiple. See Zelobenko [25], §20. We conclude that there is a function
A¢(k) such that for each hy, € Vkﬁ,

ph(hk,t) = )‘t(k)hk,tlsﬂ .

To compute A;(k) we set hiy(z) = (23 + v/—123)* and evaluate both sides of the above
equation at m = (1,0,...,0). Set a = 71;(1 +cosh e~t/2)7, b = 715(—1+cosh e~t/?)%, and
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let w = (y2,...yYnt1). Then

(k) = [., (e bon)* o

where dw is the standard measure on S"~!. Using cylindrical polar coordinates as in

section 5.2, we can write this as

1 n-3
(k) = To_s /l(a + bs)k(1 — s?)°F ds.

This is clearly nonzero for all t € [0,00), k = 0,1,.... Thus we have shown the following.

Proposition 5.83.2 The map p.. is a bijection from H?(0R,) to L*(S™), and is given by,
fO?‘ hk.t € ‘/kﬁ:
1 e
pea(his) = Ty / (@ bs)H(1 = 67)"F* ds hy]se.

where I',,_, is the volume of the n — 2 sphere.

We can now write down an expression for P,. Using the expression for Z in equation 5.4

we have
cosh™! cosh™ p s ' 0
Hy = -2J= = y'lz |2 -ty
Tel & ov

A quick computation shows that H, commutes with the O(n + 1) action on 8, so P,
commutes with the O(n + 1) action on S”. By Schur’s lemma there is a function 8,(k)

such that
PtIV.= = ﬂt(k)ld. (5.5)

Set fi(m) = (m; + v/—1m;)* and evaluate both sides of the above equation at m =
(1,0,...,0). Then

—v-1_1
(

Bulk) = —— (k)

Ptt(H¢fkt)(1 0,...,0)
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where f,ft is the function (2z; 4+ /=1 2z3)* restricted to 3Q,. We need to evaluate

pt*(HQSflft)(l’Oa'-"O) = / H¢f}f¢(am+ \/—lby) du
{y€Sn:y; =0}

= —kv—1cosh™!(1+ 262)/ 1(b — aw;)(a — bw, )* ! dw

€S-

where a(t), b(t) are as above. We are assuming that k > 0; if k = 0, then P.f, = 0.

Using cylindrical polar coordinates, this becomes

Pea(Hy) fF,(1,0,...,0) =
1 o
—kv-1 cosh—l(l — 2b2)1‘n_2/ (b+ as)(a+ bs)k_l(l _ 32)’5_3 ds
-1

where I';,_» is the volume of the n — 2 sphere. Recalling the expression for \,(k) above

and the definition of b, we have proved the following.

Proposition 5.3.3 The operator P, on S™ is given by, for f, € Vi,

n-3

—k -t/zle(b + as)(a + bs)*-1(1 — s2)*F ds
—e

P f. = —
i 4 f_ll(a,+bs)’°(l —32)T3 ds

ke

To understand this operator we need to get asymptotic expansions for these integrals

as k — oo. We will assume that 252 &f g is an integer, i.e. that n is odd.

Lemma 5.3.4 Let I,(k) denote the integral in the denominator in proposition 5.3.3.
Then
It(k) ~ k_(q"'l)(a + b)k Z k_lcn’t,[

=0
where if r(s) = In (2£8), o = (1 — 52)9, then
(Ut d
R e
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Proof. We can write the integral as

Ii(k) = (a + b)* / " ey (s) ds.

-1

Integrating by parts N times gives

i N (=1) d 1
L(k) =k (a+b)k(z=zok ’W aﬁ)‘w,:l
d1

(k) [ ST (5)ds) 4 O(k).

Since 7(s) < 0 for s € [—1,1), the remainder term is of order k~V. Since ¢ vanishes to

gth order at s = 1, this proves the lemma. O

Lemma 5.3.5 Let I}(k) denote the integral in the denominator in proposition 5.3.3.
Then
Iy(k) = k=@ (a + b)* Y kMd,,

=0

where if r(s) is as above and ¢ = bhes)(1 - s2)"F, then

(=1)+9 d 1
(1) (EZ;'T

)H-q’»z’la:l'

dn,t,l =

Proof. Note that for s € [-1,1],a+bs > a—b=1/(a+b) > 0, since a® — b? = 1. This
shows that ¢ is a smooth function. The proof of the asymptotic expansion is exactly the

same as in the previous lemma. O

We can now obtain an asymptotic expansion for the Fourier coefficients Be(k) in
equation 5.5. Using the asymptotic expansion of I,(k) and I,(k) above and the expression

for P, fi in proposition 5.3.3, we obtain

e-t/2

d, 1 dny. _
(k 40 4 (dnt1 — tocn,t,l)) + O(k 1).

4 Cn,t.O Cn,t,O C1'1,t,0

Bu(k) = —
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One can easily compute the first term in this expansion:

Cnt0 = dnto = (a : b)(q+1)q!2".
Then
-—t/2
ﬂt(k) k+atn+0(k )
where
e~t/2 b 41, 1
QAtn = 4 (a + b)q (q'zq )(dn,t,l - Cn,t,l)-

We want to compare this with /A, where A is the (positive) Laplace operator on S™
associated with the standard metric. The Fourier coefficients of /A are

VAfi = Vk(k+n-1)f
n—1

(k7)) fe-

This shows that
_e—t/2

P =

\/_+ lat,,Id—{—Is

where K is a compact operator on L?(S").

When n = 3 it is possible to evaluate the integrals directly. The result is

) = (@t 8 = (a4 5)H

@+ 8~ (B (@t b = (a4 b)),

L) = b(k + 1)

Note that (a+ b)~* is rapidly decreasing! as k — oo, since a+b> 1for t € [0,00). Then

we see that when n = 3, the Fourier coefficients of P, are

—et/2 a
Bu(k) = 64 (k+1-2)+0(,k™).

!By this we mean that k¥ (a + b)~* — 0 as k — oo for all N
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Then
P,

where K is a compact operator.

e-t/2

T g

(—VA + %Id) +K
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Appendix A

Appendix

A.1 A Covering Lemma

We will show in this appendix that given any open cover V; of M by open sets
in  we can cover M by holomorphic coordinate patches @; with coordinate functions

¥; = (z},...,2") such that
1. Each O; is contained in some V;
2. MNO;is given by {{ € O;:Im 2}(¢) = -+ = Im 2?(¢) = 0}
3. Each O; contains ony one component of M
4. If O; N O; is not empty, then O; N O; N M is not empty.

It is clear that we can arrange for conditions 1 through 3 above to be satisfied, and that
if O; is a covering of M with open sets with @, C O;, then conditions 1 through 3 above
continue to hold for the coordinate system (O;, Yilg,)-

To arrange for condition 4 to be satisfied we use a standard tubular neighborhood
theorem. We may assume that there is a neighborhood M of M in {2, a neighborhood
My of M in the normal bundle of M, and a diffeomorphism F from My to M (see for
example [1], theorem 2.7.5). We may assume that O; C M, and that N=1(0;) contains a

131



set diffeomorphic to O; N M x B,(0) for some € sufficiently small, where B,(0) is a ball of
radius € about 0 in R". So we may assume by shrinking the O; that O; is diffeomorphic

to O; N M x B.(0). Then if O; N O; is not empty, neither is
(Oi NM x Be.(O)) N (OJ NMx Be,' (0))

= 0,‘ N OJ NM x Bmin(e,,tj)(o)'

This shows that O; N O; N M is not empty.

A.2 Asymptotic Expansion of J,

The results in this appendix are from a course on hyperfunctions given by Prof. V.
Guillemin. Write

1 n-3
Jo(v) = I‘,,-g/ (1 — s*)"F ds + 0(2°).
0
Set r =1 — 5. Then

=3

1 n n—3
Jo(v) = Tn_se” /0 e (2 — 1) dr 4+ O(0).

Now let v = vr. Then

v

Jn(l/) = I‘n_2eul/i‘2_'—ll/ € uuﬂT—A(z _ U, n-3
0

)T du+ O(V°).

v
We can write for some constants a;, depending only on the dimension n,

(2- 2% ~ T a2y,

J=0

Then
ey Ja(v) =Tn_2 Y via; /V e~ u T+ duy + o(°).
._o 0
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Note that

/u e Uy Tt dy = / e~ u T H du + O(v=")
0 0
n—3

= (%5

+7)+0(W™).

This shows that

n—1 > - 3 .
VI (v) ~ Tace Y 4T (P +§) + 0(v™)
j=0

which proves lemma 5.2.4.

A.3 Notational Conventions

We will denote the interior product of a vector V with a form w by «(V)w. The Lie
derivative of w by the vector field V will be denoted by Lyw.

The subscript o will usually refer to objects on the cotangent bundle of a manifold
M. For example, a, denotes the canonical one form, w, denotes the symplectic form on
T*M.

Lie algebras will be written with sans serif letters. For example, if G is a Lie group,

then the Lie algebra of GG is written as g.

133



Bibliography

[1] R. Abraham and J. E. Marsden, Foundations of Mechanics, second edition, Ben-
jamin/Cummings (1985).

[2] F. Bruhat and H. Whitney, Quelques proprietes fondamentales des ensambles
analytiques-réels, Comment. Math. Helv. 33 (1959), 132-160.

[3] Burns, D., Curvature of Monge-Ampere foliations, Ann. Math. 115 (1982), 349-373.

[4] Burns, D., Les equations de Monge- Ampére homogenes, et des exhaustions speciales

de varietes affines, Seminaire Goulaouic-Meyer-Schwartz 1983-1984, Expose no. IV.

(5] Courant, R., and Hilbert, D., Methods of Mathematical Physics, Volume 2. Wiley,
New York (1962).

[6] Guillemin, V. and Sternberg, S., Analytic Lagrangian Submanifolds, preprint.

(7] Guillemin, V., Sternberg, S., Convexity properties of the moment mapping II. Invent.

Math. 77, 533-546 (1984).

8] V. Guillemin, Toeplitz operators in n-dimensions, in “Integral Equations and Oper-
g q p

ator Theory”, Vol 7 (1984).

[9] Harvey, R. and Wells, R. O., Zero sets of nonnegative strictly plurisubharmonic
functions. Math. Ann. 201, 165-170.

[10] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic
Press, second edition (1978).

134




[11] S. Helgason, Groups and Geometric Analysis, Academic Press (1984).

(12] Huckleberry, A. T., and Snow, D., A classification of strictly pseudoconcave homo-
geneous manifolds. Ann. Scuola Norm. Sup. Pisa, Series 4, Vol. 8, 231-255 (1981).

(13] O. Loos, Symmetric Spaces I. General Theory, W. A. Benjamin, Inc. (1969).
[14] R. B. Melrose and C. L. Epstein, personal communication.

[15] L. Boutet de Monvel and V. Guillemin, The Spectral Theory of Toeplitz Operators,
Princeton University Press (1981).

16] G. D. Mostow, Some new decomposition theorems for semisimple Lie groups, Mem-
group

oirs of the Amer. Math. Soc., No. 14 (1955).

[17] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry V. II, Inter-
science Publishers (1969).

(18] S. Lang, Differential Manifolds, Addison-Wesley Publishing Co. (1970).
[19] Y. Matsushima, Differentiable Manifolds, Marcel Dekker, Inc. (1972).
[20] G. Strang, Introduction to Applied Mathematics, Wellesley-Cambridge Press (1986).

[21] Varadarajan, V. S., Lie Groups, Lie Algebras, and Their Representations, Springer-
Verlag (1984).

[22] P. M. Wong, Complex Monge-Ampere equation and related problems, Lecture Notes
in Math, Vol 1277 (1987), 303-330.

[23] P. M. Wong, Geometry of the complex homogeneous Monge-Ampére equation, In-
vent. Math. 261-274 (1982).

[24] G. Patrizio and P. M. Wong, Stability of the Monge-Ampére foliation, Math. Ann.
268, 13-29 (1983).

135



[25] G. Patrizio and P. M. Wong, Stein manifolds with compact symmetric centers,

preprint.

[26] D. P. Zelobenko, Compact Lie Groups and their Representations, Amer. Math. Soc.,
Providence, Rhode Island (1973).

136



