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Abstract

We show in many homogeneous cases that given a real analytic Riemannian manifold M,
there is a unique complex structure on a neighborhood of M in T*M that turns T*M
into a Kihler manifold whose Kiihler form is the standard symplectic form, and such
that the Kihler metric restricted to the tangent bundle of the zero section is the original
metric on M. This complex structure is characterized by the conditions

1. Im Oo = ao

2. the standard involution of T*M is an antiholomorphic map.

Here a, is the canonical one form and o is the quadratic function on T*M associated
with the metric.

We show that the function u = o is a solution of the complex homogeneous Monge-
Ampere equation (away from the zero section). This gives rise to a Monge-Ampere
exhaustion of T*M near M. We explore the geometric properties of the Kihler metric
and the Monge-Ampere foliation.

We give an explicit description of this complex structure in the case of compact Lie
groups and Riemannian locally symmetric spaces of the "compact type". In these cases
we find that the complex structure is globally defined, instead of only locally near the
zero section.
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Chapter 1

Background Material

1.1 Complex and Kihler Manifolds

A complex manifold S is a smooth manifold whose coordinate functions map into C",

and such that if q1 and 02 are two coordinate functions on an open set in f, then 2 0o -1

is a holomorphic map. Complex manifolds can be identified with real analytic manifolds

of even dimension by identifying the range of the coordinate functions in C" with open

sets in R". If the coordinate function q is given by

0() = (XI(()IY) (), .. X"((),yn(C))

then the tangent vectors d/Oa ', I/qy,..., /&Xz", /ay"n evaluated at C, form a basis for

the real tangent space TCo(. At each point (o of Q there is an endomorphism J of Tco

defined by

J _

8i ayi

a a
Jyi 8z i

It turns out that this endomorphism is canonically defined, i.e., does not depend on the

choice of coordinates. See for example Helgason [10], lemma 1.1, chapter VIII. J is called



the complex structure operator, or just the complex structure.

An almost complex manifold is a 2n real dimensional smooth manifold carrying a

type (1, 1) tensor field J (i.e. each J( is an endomorphism of T(C) such that J2 = -Id.

It is well known that an almost complex manifold is a complex manifold if and only if it

satisfies the integrability condition

N(X, Y) = [X, Y] + J[JX, Y] + J[X, JY] - [JX, JY] = 0 (1.1)

where X and Y are smooth vector fields on M. This theorem is due to Newlander-

Nirenberg, and the tensor N is known as the Nijenhuis tensor. It is easy to see that if

2 is a complex manifold with complex structure J and F: Q -+ f' is a diffeomorphism,

then the complex structure F.J = dFo J o dF -1 is integrable and turns f' into a complex

manifold.

Let n be a complex manifold of complex dimension n, and let TcQ denote the com-

plexified tangent bundle of Q, TQ 0 C. The complex structure induces a splitting of Tc

into the +V-i and -V/T eigenspaces of J, each eigenspace having complex dimension

n. The (complex valued) vector fields on Q with values in the +V-- eigenspace are

called type (1, 0) vector fields, and those with values in the -V- - eigenspace are called

type (0, 1). A local basis over CO"(t) for the type (1,0) vector fields is

S-(1 0 ), i= 1.. ,n8zi 2 ( i  'yi)II

and a local basis for the type (0, 1) vector fields is

8 18 8
S ( - +  - -), i = 1,...,n.

This also induces a decomposition of the exterior derivative d into d = 8 + i, where a

annihilates the type (1, 0) vector fields, and 8 annihilates the type (0, 1) vector fields. In

------~-----~------ rr



local coordinates, if f is a smooth function on Q, then

n Of
Of = aZ dz'

i=1 zi

i=l

Since dzi o J = -dy i and dyi o J = dxi, it is easy to check that this can be written

invariantly as

Of = -(df - -df o J)
2

Bf = -(df + df o J)

It will be important for us to note that if f is a smooth function on Q and V is a vector

field, then
1

Im Of(V) = -df(JV).
2

If Of6 and f22 are complex manifolds and F: fZ1 -+ 22 is a smooth map, then F is

called holomorphic if it can be expressed in complex local coordinates as a holomorphic

map. It is easy to check that if F is a holomorphic map, then dF satisfies

dF o J1 = J2 o dF (1.2)

where J1 , J 2 are the complex structures on I1 and Q2, respectively. Conversely, if F

is a smooth map satisfying 1.2, then the Cauchy-Riemann equations imply that F is a

holomorphic map.

A Kihler manifold is a complex manifold Q which is also a symplectic manifold with

the property that if J is the complex structure and w is the symplectic form, then for all

vector fields V, W on Q,

1. w(JV, JW) = w(V, W).



2. The symmetric form b(V, W) = w(V, JW) is positive definite.

The first condition implies that b is symmetric. The symmetric form b is a Riemannian

metric on Q, which we will refer to as the KIahler metric associated with the Kihler form

W.

1.2 Totally Real Submanifolds

Let Q be a complex manifold of complex dimension n, and let M be a real submanifold

of real dimension n. We say that M is a totally real submanifold of [Q is there exist near

every point m of M a neighborhood O of 7n in Q and a complex coordinate system

zi = x' + V yi on O such that

MnO = {( E O: y'(C) = .. = yn() = 0}.

It is clear that if M is totally real, then it is a real analytic manifold. An important result

is that diffeomorphisms of totally real submanifolds extend uniquely to holomorphic maps

of complex neighborhoods.

Lemma 1.2.1 Let M and M' be totally real submanifolds of complex manifolds f2 and

Q', and let F: M --+ M' be a real analytic diffeomorphism. Then there are neighborhoods

O and 0' of M and M' and a unique holomorphic map F: 0 --+ 0' extending F.

Proof. We will prove the local existence and uniqueness of F; then by patching together

the local representations we get a well defined holomorphic map extending F.

Let U be a neighborhood of 0 in R", and let F:U -- U' be a real analytic diffeomor-

phism. The coordinate components of F are real analytic functions on R", and can be

analytically continued to a neighborhood of U in C". This defines a local holomorphic

extension of F. To see that it is unique, suppose there are two such extensions, F and

_ __~_



G. Then for all multi-indices a,

S ) C(- G)lu = 0.

Now since F - G is an analytic function,

a a
( )"( - ) = ()a(F - ).8z az

This means that F - G vanishes to infinite order in the z variables on U, so it must be

identically zero. E

Lemma 1.2.2 Let Al be a totally real submanifold of a complez manifold 1. Then there

is a neighborhood 0 of M in 1 and a unique antiholomorphic involution r: 0 - 0 such

that Al is the fixed point set of o-.

Proof. It is enough to prove local existence and uniqueness. For the local existence,

let 0 be a coordinate neighborhood with coordinate functions z' = x' + V7 y'. Let

o(x + RV-Ty) = x - /-ly. For the uniqueness, suppose there were two such involutions,

a and a'. Their composition would then be a holomorphic map whose fixed point set is M.

By lemma 1.2.1, there is a. unique holomorphic map extending the identity diffeomorphism

of M. This map must be the identity, which proves the uniqueness. O

Lemma 1.2.3 Let Al and M' be totally real submanifolds of complex manifolds 1 and

f', let F: M - Al' be a diffeomorphism, and let a, a' be the conjugations of Al and

Al' described in lemma 1.2.2. If F is the unique holomorphic extension of F given in

lemma 1.2.1, then F o a= a' o F.

Proof. The map a' P o a is a holomorphic map which is equal to the diffeomorphism

F on AlM, so by the uniqueness part of lemma 1.2.1 it must be equal to F. O

If M is a real analytic manifold, it is known that M can be embedded as a totally

real submanifold of a complex manifold t.



Theorem 1.2.4 (Bruhat-Whitney) Every real analytic manifold M can be embedded

as a totally real submanifold of a complex manifold f. This embedding is unique in

the sense that if 1 : M --4 f1 and t 2 : M -+ 92 are two such embeddings, then there

is a neighborhood 01 of M in Of and a neighborhood 02 of M in 92 and a bijective

holomorphic map 4: 01 -- 02 such that L2 = 0 o t1.

Proof. See Bruhat-Whitney [2]. FO

1.3 The Cotangent Bundle Structure

Let M be a smooth manifold, and let T*M be the cotangent bundle of M. It is well

known that T*M has a canonical symplectic structure, that is, there is a nondegenerate,

closed two from wo on T*M. The form w, is exact, in the sense that it is (minus one

times) the exterior derivative of a one form a,o. The one form a, is canonically defined

by, for ( C T*M and V E T (T*M),

Oo(()(V ) = (drT.M(V))

where rT.M: T*M Al is the cotangent projection. It is easy to see that M is a

Lagrangian submanifold of T*M, since a, vanishes on M. The following important

result, due to B. Kostant, S. Sternberg, and A. Weinstein, shows that this is locally in

some sense a standard model for Lagrangian submanifolds of symplectic manifolds.

Theorem 1.3.1 Let Q be a symplectic manifold whose symplectic form is exact and

equal to -da. Let M be a Lagrangian submanifold of f such that a = 0 on TfIM. Then

there is a neighborhood 0 of M in Q, a neighborhood Oo of M in T*M, and a unique

diffeomorphism %1: 0 -+ 0o such that

*ao = a

I 0 = o

-~-i~----------ll Ci----L-



where z, zo are the inclusions of M in Q, T*M respectively.

Proof. This follows from propositions 3.1 and 3.2 in chapter V of Guillemin and Stern-

berg [7]. To explain how this follows, we need some terminology. A polarization of a

symplectic manifold Q, with symplectic form w, is a smooth assignment of a Lagrangian

subspace of Tc( to each ( E t in such a way that this assignment is integrable. If g is a

polarization transversal to a Lagrangian submanifold M, then in a neighborhood of M

there is a unique one form 3 such that

1. dp = w

2. for V E , /(V) = 0

3. 3Im = 0.

We say that 3 is the one form associated with the polarization G. See [7], page 228 for

details.

Proposition 3.2 in [7] says that there is a unique polarization defined on f? near M

which is transversal to M and whose one form is a. Proposition 3.1 in [7] says that there

is a symplectic diffeomorphism I of a neighborhood of M in Q with a neighborhood of

M in T*M which carries the leaves of G into the standard cotangent fibration of T*M

over M. Examining the proof of this proposition, we see that we may assume that 9 is

the identity on M. Let & = ( -l)*a. Then & - a is closed, and is locally equal to df for

some function f. Since & - a vanishes on M, we may assume f is constant on M. Note

that & - a vanishes on the tangent space to the fibers of T*M over M. This shows that

f is constant along the fibers, hence f must be a constant function and df equal to zero.

It remains to show that the diffeomorphism I' is unique. This is a standard argument

(see for example Abraham and Marsden [1], exercise 3.2F), which we will now sketch.

Suppose J' is another such diffeomorphism. Let 4 = V\Io 4-1. Then 4 is the identity on

M, and preserves the canonical one form a, on T*M. Since 4 preserves ao, it preserves

the vector field E0 defined by t(E')da = ao. This implies that 4 is a fiber mapping.

1_



Since 4 is the identity on M, we conclude that Ir.M o 4 = 7rT.M, where lrT.M is the

cotangent projection. Now if V E T .(T*M), we have

t ((m)(d(rT.M 0 4)(V))

= 4(()(drTM(V)).

On the other hand, since 4*a o = ao,

,( x)(d7rT.M(V)) = (d7rT.M(V)).

Since rT.M is a submersion, we conclude that , = 4(). O

The cotangent bundle of M carries an antisymplectic involution ao, given by ao( ) =

-(. If Q carries an antisymplectic involution a such that a*,a = -a, it is not hard to see

that xF preserves this involution.

Proposition 1.3.2 Suppose Q, T are as in theorem 1.3.1, and suppose Q has an invo-

lution a such that o*a = -a. Then , o I t = T' o a.

Proof. Let & = ao o o 4-1. Then & preserves the canonical one form a,, and is the

identity on M. The proof of theorem 1.3.1 implies that & is the identity. [O

Suppose Q is a Kihler manifold with Kiihler form w, M is a Lagrangian submanifold

of Q, and q is a smooth function on a neighborhood of M in Q such that

1. w = /--1

2. = dq = 0 on M.

We will then say that q is a defining phase function for M. It is known that if M is

Lagrangian we can always find such a defining phase function.

- --~Y~t~*I_~_- ~ICC~Plec ~~ --



Theorem 1.3.3 If M is a connected Lagrangian submanifold of a Kdhler manifold f,

then there is a neighborhood 0 of M in Q and a unique defining phase function q on 0

for M.

Proof. See Guillemin and Sternberg [6]. O

Conversely, we have the following observation.

Lemma 1.3.4 Let M be a totally real submanifold of a complex manifold Q, and let €

be a real valued function on Q2 such that q = do = 0 on M, and a2q9/y*cOy 3 is a positive

definite matrix when evaluated on M. Then the two form 8/d' is a Kahler form on

a neighborhood of M in Q.

Proof. Note that J 8/Z-00 = -d Im 0o, so it is closed, and will be nondegenerate on a

neighborhood of M (still denoted by 12) if the matrix d20/yagyP is positive definite on

M. This shows that 8x/-T-0€ is a symplectic form on Qt. To show that JV-T@0(JX, JY)

is equal to /-Z-@0q0(X, Y), we use a standard expression for the exterior derivative of a

one form (see for example Abraham and Marsden [1], page 121, line 6 on table 2.4.1). If

X, Y are vector fields on M, then

1 1 1
dim 50(JX, JY) = - JX(YO) + JY(X4) - J[JX, JY]b. (1.3)

2 2 2

Using the vanishing of the Nijenhuis tensor (see equation 1.1 on page 7), we can write

1 1
-JX(1Y) [= Y, JX]b - Y Im &5(X)

1 1
2 -JY(X ) = [JY, X] + X Im O(Y).

Putting this into equation 1.3 gives

d Im O(JX, JY) = X Im )(Y) - Y Im aO(X) - Im O([X, Y])

= dIm 4O(X, Y).

.. ---1S_ Lirr*~Prl4eJQI. .



This shows that the form

b(X, Y) = d Im o(X, JY)

is symmetric. To see that it is positive definite, note that

1 02q
-dIm 1 M - 2 dz" A dyO.

2 ayctaP

This shows that b is positive definite when evaluated on M, so it must be positive definite

in a neighborhood of M in f. OE

Remark. Let M, Q, q be as above. Note that if we set a = Im iq$, then a vanishes

on M, and so 1M is a Lagrangian submanifold of Q with respect to the symplectic form

w = -dIm 50. We can now apply theorem 1.3.1 to conclude that there is a unique

diffeomorphism 9 of a neighborhood of M in Q with a neighborhood of M in T*M such

that I is the identity on M, and if a, is the canonical one form on T*M, then *a, = a.

We will use this procedure to construct Kiihler structures on cotangent bundles, near the

zero section.

---- L-----lr-- ~- ~i---I.-- flP-



Chapter 2

Overview and General Theory

2.1 Overview

Let M be a compact real analytic manifold. By theorem 1.2.4 it is possible to embed

M as a totally real submanifold of a complex manifold Q. By choosing a strictly plurisub-

harmonic exhaustion function 0 near M, vanishing to second order on M, it is possible

to consider Q as a Kihler manifold with Kihler form J-]-0T&O and M as a Lagrangian

submanifold. Then the Kost ant- Sternberg-Weinstein theorem gives a unique symplectic

identification of f2 with a neighborhood of M in T*M. See chapter 1 for details. So

it is possible to regard T*M, at least in a neighborhood of M, as a Kiihler manifold

whose Kihler form is the standard symplectic form. This identification has been very

useful in the study of Toeplitz operators by L. Boutet de Monvel and V. Guillemin; see

for example [14] and the survey article [8]. However, this identification is not in any

way canonical. It depends strongly on the choice of Bruhat-Whitney embedding and

exhaustion function.

The goal of this thesis is to show that if we are given one addition piece of data, a

real analytic Riemann metric g on M, then there is associated with (M,g) a canonical

embedding of M as a totally real submanifold of a complex manifold. This (canonically

determined) complex manifold is in fact a Kihler manifold, and the Kiihler structure is



intimately connected with the symplectic structure of T*M. Our result, obtained jointly

with my thesis advisor Prof. V. Guillemin, is the following. We have been able to prove

it in enough homogeneous cases to perhaps allow us to call it a theorem, although we

have not proved it in full generality.

Theorem 2.1.1 Let M be a compact real analytic manifold equipped with a real analytic

Riemannian metric g. Then there is a neighborhood Qo of M in T*M and a unique

integrable complex structure J on no such that if a, is the canonical one form on T'M,

ao is the standard involution of T*M, and o,, is the quadratic function on T*M associated

with the metric g, then

Im 1'9 = a,

and o, is an antiholomorphic map, i.e. eoJo = -Jo. This complex structure turns flo

into a Kdhler manifold whose Kiihler form is the standard symplectic form on T*M.

This theorem describes a completely natural and canonical complex structure on

T*M (near the zero section). It displays a previously unknown connection between the

Riemannian structure, the symplectic structure, and the complex geometry of T*M.

The symplectic structure of the cotangent bundle of any smooth manifold is completely

canonical and fixed. Given a real analytic Riemann metric on M one obtains a unique

complex structure as in theorem 2.1.1. Conversely, given a complex structure J such

that Im d = a, for some real analytic function 0 we can define a Riemann metric g on

M by, for X and Y vector fields on M,

g(X, Y) = wo(X, JY).

If 0 is a quadratic function, i.e. it satisfies the partial differential equation

=00 = 2q

where E, is the radial vector field on T*M defined intrinsically by t(Eo)da = ao, then

___ __~~ .i __IU _ _______~_



the uniqueness part of theorem 2.1.1 implies that Jg = J. We postpone the proof until

the end of section 2.2.

This theorem may be formulated in several seemingly different but equivalent ways,

each of which adds a new insight into the complex geometry of T*M near the zero

section. We will show that theorem 2.1.1 is equivalent to the following result. Choose

a Bruhat-Whitney embedding of M into a complex manifold 11. Then there is a unique

real analytic function 6 on a neighborhood of M in f such that

1. 4 = do = 0 on M.

2. If a, is the complex conjugation about M then ao*q = 6.

3. Set a = Im 06, w = -da. If X and Y are vector fields on M, then

w(X, JY) = g(X, Y)

where J is the complex structure operator on Q.

4. Define a vector field . in terms of 0 by t(E)w = -a. Then 0 satisfies the "Monge-

Ampere type" equation

E6 = 20. (2.1)

Conditions 1 and 3 are initial conditions for 6. They say that 4 is a defining phase

function for M in the Kihler manifold (t, w), and that the associated Kiihler metric

extends the given metric g on M. Condition 2 is needed to establish the uniqueness

of the solution 0 via a formal power series argument. Condition 4 is the heart of the

matter; it says that when q is pulled back to T*M via the Kostant-Sternberg-Weinstein

identification, it is a quadratic function. Equation 2.1 can be written in local holomorphic

coordinates as

4$° c = 2

where ~ = , and Oa is defined by O = CT6,qqY. We call this an equation of

~_ _~____ __ ~



"Monge-Ampere type" because it involves the determinant of the matrix OQ.

We will show that on \M, v = 4 satisfies the homogeneous complex Monge-Ampire

equation

(89u)" = 0

(n-fold wedge product of aO-u with itself), where n = dimcQ = dimRM. Thus we may

view ~2, and hence T*M near the zero section, as a Stein manifold with center M (in

the terminology of P. M. Wong [25]) equipped with a Monge-Ampere exhaustion. Such

manifolds, called Monge-Amphre manifolds in [25], have been studied by several authors

and much is known about their geometry. See Wong [23], [25], [24] and D. Burns [3]. In

section 2.4 we will try to survey the most interesting results about such manifolds.

We have not as yet been able to give a proof of theorem 2.1.1 in complete gener-

ality. We have been able to reduce the problem to solving locally a single equation of

"Monge-Amphre type". We have a formal power series solution of the problem, but

the convergence of this series is not yet established. We have been able to prove theo-

rem 2.1.1 in many homogeneous situations, and for the compact Riemannian symmetric

spaces. These results extend those of Wong in [25], who essentially proved theorem 2.1.1

for the rank one symmetric spaces (albeit in a different context). Explicit constructions

will be given in chapter 4.

For the compact Riemannian symmetric spaces we have been able to show that the

complex structure described in 2.1.1 exists globally on all of T*M, not just on a neigh-

borhood of Al. We show that T*M is isomorphic to a complex homogeneous space, and

a very explicit description of the complex structure operator is given.

2.2 Formulation of the Problem on a Complex

Manifold

In this section we will prove the equivalence of theorem 2.1.1 with the problem of



solving a certain partial differential equation of "Monge-Amphre type". The virtue of this

approach is that we have to solve only a single equation, rather than the overdetermined

system of equations for the matrix entries of the complex structure operator. In addition

we obtain a clearer description of the canonical complex structure on T*M.

Theorem 2.2.1 Let (M, g) be a compact real analytic Riemannian manifold with a real

analytic metric g. Then the following are equivalent:

1. There is a neighborhood o, of M in T*M and a unique integrable complex structure

Jo on o, such that if ao is the canonical one form on T*M, o is the standard

involution of T*M, and 0o, is the quadratic function on T*M associated with the

metric g, then

Im 0 o = ao

and ao is an antiholomorphic map, i.e. r,*Jo = -J o .

2. There exists a Bruhat- Whitney embedding of M into a complex manifold Q and a

unique real valued, real analytic function 0 on a neighborhood of M in f such that

(a) 0 = do = 0 on Al.

(b) If o is the complex conjugation about M, then o*o = 0.

(c) Set a = Im and w = -da. If X and Y are vector fields on M and J is the

complex structure on Q, then

w(X, JY) = g(X, Y).

(d) Define a vector field E by t(E)w = -a. Then

Eo = 20.

Proof. It is obvious that 1 implies 2 (the uniqueness follows from the uniqueness of defin-

ing phase functions; condition 2c follows from the expression for Jo given in lemma 3.3.1),
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so we must prove the other direction. The strategy is to establish the local existence of

the complex structure Jo; having done that we will show that it is uniquely determined

locally. This will enable is to "globalize" by piecing together the local complex structures

so obtained.

Let 0 be a holomorphic coordinate patch on f with holomorphic coordinates z1,..., z"

where q exists and such that

On M = {Imz = ... = Imz = 0}.

Let U = On Al. Notice that condition c implies that by shrinking 0 we may assume that

w is nondegenerate, so that (0, w) is a symplectic manifold. Since 0 vanishes to second

order on M, M is a Lagrangian submanifold of 0. By the Kostant-Sternberg-Weinstein

theorem there is a neighborhood (still denoted 0) of U, a neighborhood O, of U in T*U

and a unique diffeomorphism 4 from O to Oo such that

*ao = a,

and <4 u is the identity map. Equip 0o with the pushforward via 4 of the complex

structure on O, which we denote by Jo. This complex structure is clearly integrable. Since

a is an antiholomorphic map on 0 and 4*uo = a it is clear that o is an antiholomorphic

map on Oo.

We now show that Imn Bo = ao. It is clear from the construction that a, = Im -( o

,-1). We need to prove that in terms of the cotangent coordinates (i corresponding to

S= Re zi that o -1'(x, () = g3i jgj. Since the vector field E is defined by (E)w = -a

it is easy to see that D,= is defined by t(,.E)wo = -a,. This means that 4,E is the

radial vector field on T*M, and in coordinates

i=1
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Then

S0 o 4 - 1 = do=(E) o -1= 2(0 4-
i=1 1

It follows easily that q o 4V-1 is homogeneous of order 2 in . Since 0 o I-1 is a smooth

function, Taylor's formula shows that it must be a quadratic function in (. To determine

which quadratic function it is, we must examine the fiber Hessian of 0 o 4)-1 along the

zero section. Since 4Iu is the identity it is clear from conditions a and c above that

(2(~ 

o -1) 

O -2€ 0 (- =o = 2gij(x) (Y i 0 4-1) a (Yj 4V-'=o- (2.2)

Since q vanishes to second order on U we have

1 &2¢w oI=0 = (4-l)*W = 2 o 4- )d(x o 4-') A d(ya o 0 =o.
2 OyaRyi 3

Using condition c again and noticing that o(yao 4-1)&= = 0 since 4 preserves U and

yo - 0 on U gives

wol=o = g p (0i O I-l')dx' A dj |(=o + gap (X O -l) (ya o ~-l)d(i A d 1 j=o.

Since wo = dx' A d~i this means that

(yYo04-1) 0= giy.

Putting this into equation 2.2 shows that q o -1 = 0,. This proves the local existence

of the complex structure described in 1 above.

Now we claim that this complex structure is unique. Suppose there are two such

complex structures, Jo and J', on Oo such that Im a0o = ao = Im 'o0 (the prime

means with respect to the complex structure J'), and the standard involution or is an

antiholomorphic map. By lemma 1.2.1 we can find a diffeomorphism f of a (possibly
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smaller) neighborhood Oo, of U in T*U onto itself such that

f*J' = J

(i.e. df o J' o df - 1 = J) and which is the identity on U. We will show that f preserves

the quadratic function ,.

On each of the complex manifolds (Oo, Jo) and (0,, J,) we pose the "Monge-Ampere"

problem in 2 of the statement of theorem 2.2.1 and find unique solutions 4 and 0'. Since

Im 0 ,o = Im 'o = a, we see that 0o is the unique solution to both problems (condition

2c follows from lemma 3.3.1). So we must have q = 0' = 0,. To show that f preserves 0,

it suffices to show that 0' = f*¢, i.e. that f*5 is the unique solution for the problem given

in 2 for the complex structure J'. First we must check that f*¢ is invariant under the

complex conjugation about U with respect to the complex structure J'. This conjugation

must be the standard involution ao of T*U by the uniqueness part of lemma 1.2.2. Since

0 is invariant under oo by hypothesis, we must check that f o o = ao, o f. Consider the

map F = f- 1 o o, o f o ao. It is easy to see that F is a biholomorphism of the complex

manifold (Oo, Jo) which is the identity on U. By the uniqueness part of lemma 1.2.1, F

must be the identity. This proves that f*¢ is invariant under o.

Next we check that f*¢ satisfies 2c above. Set a' = Im 'f* and w' = -da'. Then

Im 8'f * = f' Im o

and so w' = f*w. Since f is the identity on U, for any vector field X tangent to U we

have (on U) that df(X) = X. Then for any vector fields X and Y on U and any x E U

we have

w'(X, J'Y)(x) = w(df(X), df(J'Y))(f(z))

= w(X, Jdf(Y))(x)

= w(X, JY)(x) = g(X, Y)().
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This shows that f* satisfies condition 2c above.

It is clear that f* = df*0 = 0 on U. It remains to check that if we define a vector

field E' by t(E')da' = a' then E'f* = 2f*. Since a' = f*ca we have

f*t(fE')da = f*a.

This shows that f-.E' = E. Then

E'(f*) = df -'( o f)(f* )

= d(E of) = 2f*€.

This shows that f*¢ is the unique solution to the problem given in 2 for the complex

manifold (0,, Jo), so that f*€ = o.

Since f preserves o, it also preserves a,o = Im O 0 . By the uniqueness part of the

Kostant-Sternberg-Weinstein theorem, this forces f to be the identity. Then J, = J" and

we have established the local uniqueness. We can now cover M by a finite number of

open sets in T*M, each carrying a complex structure as in part 1 of theorem 2.2.1. By the

uniqueness they agree on overlaps. This defines a complex structure on a neighborhood

of M in T*M which has the properties described in 1. O

We can now prove the result stated in section 2.1. We want to show that if J is a

complex structure on T*M near M such that Im 9 = ao for some quadratic function 0,

then J is equal to the complex structure Jg corresponding to the metric g(., -) = wo(., J.).

Note that 0 is the solution of the "Monge-Ampre type" problem for the metric g with

respect to the complex structure J. Then the proof of theorem 2.2.1 shows that there is

a unique symplectic diffeomorphism 4 which is the identity on Al, carrying Im "0 into

ao, and such that Jg = 1,J. But since Im ao = ao, ( must be the identity map (see the

uniqueness part of the proof of theorem 1.3.1).



2.3 The Complex Homogeneous Monge-Ampere

Equation

The complex homogeneous Monge-Ampere equation is

82u
det - 0

where u is a twice differentiable function and z',... , z is a local holomorphic coordinate

system. This can be written invariantly as

(011) n = o

(n-fold wedge product of u. with itself), where n is the complex dimension of the

ambient complex manifold. In this section we will show that if € is a solution of the

"Monge-Ampire type" problem posed in theorem 2.2.1, then u = € satisfies the complex

homogeneous Monge-Ampre equation away from the "center" M. We will also show that

u satisfies the nondegeneracy condition

(Ou) 
n - 1 # 0

away from M.

If 0 is a solution of the "Monge-Ampre type" problem posed in theorem 2.2.1, the

initial conditions on q imply that it has a strict minimum on M. We may assume, by

shrinking Q if need be, that q # 0 and u = t is smooth on ft\M. If w, a, and Z are as

in the statement of theorem 2.2.1, then on Q\M

a = 2v Im 5u

w = (-2)(du A Im au + u d(Im Ov))
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The equation t(--)w = -a can be written

du(E)Im u - Im O,,(E)dv + ut(E)d Ini u = u Imn u.

It's clear from the definition of E that a(E) = 0, so Im u(=E) = 0. Using du(E) = Eu = u

we have

t(E)dIm Ou = 0. (2.3)

Now E. 0 on f\M, so this says that the two-form 0Ou. has (real) rank less than 2n.

Then the 2n. form (0Ou)" must be zero on Q\M. Since

w n = 2"(nv " - '1 u A "8u A ("u)"-')

and w" is a volume form, it is clear that the nondegeneracy condition (O8u)"-1  0 holds.

Conversely, suppose v is a solution of the homogeneous Monge-Amphre equation. If

= u2 is strictly plurisubharimonic, then it is shown in §3 of [25] that 0 satisfies

Set ca = Im d, w = -da, and define E by t(E)w = -a. This definition may be written

as
1

t--)o( = - o).2

Write E = E- + -ET ' Then a short computation shows that

= 1Y-= 2 (2.4)

-1
2

so that E3 = 0/3 = 20.



2.4 Monge-Amphre Manifolds and Foliations

Let f be a n dimensional complex manifold, u: -+ [0, oo) a strictly plurisubharmonic

function, and let Al = {u = 0}. We say that 9 is a Monge-Amphre manifold if u is

continuous on 9, smooth on Q\M and

(ou)" = 0

on Q\M. We will assume that M is a smooth manifold of real dimension n. Monge-

Ampere manifolds have been studied by several authors. See for example Wong [22], [24]

and Burns [3], [4]. The results in this section are mostly due to Wong [24]. They are

new only in that they can be applied to the cotangent bundle of a compact real analytic

Riemannian manifold, assuming theorem 2.2.1. Note that the initial conditions on u in

theorem 2.2.1 insure that u is strictly plusrisubharmonic and positive on a neighborhood

of M, so by shrinking Q we may assume this is true on t.

Since (9-u)" = 0 and (Du)n - I  0, the distribution F defined pointwise by

F = {V E T(Q: t(V)O-u = 0}

is two (real) dimensional. The distribution F is integrable, since if V, W are vector

fields with values in F, then

t([V, W])OOu = Lvt(W)(O8u) - t(W)Lv(rdu)

= 0 - t(W)(dt(V)aju - t(V)da-u) = 0

since OOu is closed. F is also a complex distribution: if V E F and X is any vector field,

then

L(JV)I9u(X) = '(JV,X) = -89(V, JX) = 0.

Thus Q carries a foliation F whose leaves are complex one dimensional submanifolds, i.e.
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Riemann surfaces. " is called the Monge-Ampere foliation.

Let E be the vector field defined in theorem 2.2.1. By equation 2.3, E and JE span

F. The leaves of F may be thought of as the flows of the type (1, 0) vector field

This vector field is the complex gradient of = u2 with respect to the Hermitian inner

product

< V, W >= 00(v, W).

In other words Z is defined by

0 (z, w) = €(w ).

In coordinates it is easy to see that

z =

so by equation 2.4, E = Re(Z). Note that the "Monge-Ampere type" equation in theo-

rem 2.2.1 can be written as

Z¢ = 2¢ =< Z,Z >.

The first interesting result about the Monge-Ampere foliation is that the leaves are

flat and totally geodesic. This is proved in Wong [24]. We will give a slightly different

and more intrinsic proof. First we compute the covariant differentiation along the leaves,

using a few simple observations which are of independent interest.

Lemma 2.4.1 Let w, q, and E be as in theorem 2.2.1 and let b denote the Kiihler metric

b(X, Y) = w(X, JY). Then the vector field E is orthogonal to the level sets

2c = {( E f: 0()= c} (c > 0),
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JE is tangent to the level sets fc, and the vector fields -, JE form an orthonormal

basis for the Monge-Ampire distribution.

Proof. Let V be a vector tangent to one of the level sets c. Then

b(Z, V) = w(Z, JV) = -a(JV)

= -Im O¢(JV) = -d¢(V) = 0.
2

To see that JE is tangent to c, note that

(JE) = dO(JE) = 2Im 0€(E) = -2w(., E) = 0.

The modulus squared of E with respect to the metric b is

b(E, E) = w(E, JE) = -Im O(JE)

2

This implies that the modulus squared of JE is also equal to q. O

Lemma 2.4.2 L-w = w.

Proof. LEw = ,(E)dw + dt(E)w = 0 + d(-a) = w. Ol

Lemma 2.4.3 [E, JE] = JE.

Proof. For any vector field V we have b(JE, V) = w(E, V) = -a(V) = - d¢(JV), and

b([-, JE], V) = t([=, JE])w(JV). We compute

([, JZ])w = L=t(JE) - t(J-)LEw

= L t(JE)w - L(JE)w.
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A simple computation shows that t(JE)w = -2de. Then

1 1 1 1
([5, J])w = -- dL= + -d = -d + -do = -- do.

2 2 2 2

Thus b(JE, V) = b([E, JE], V). OE

Proposition 2.4.4 Let V be the Levi-Cevita connection of the Kdhler metric b, and let

be as above. Then

VJE = J

V =E = V sJE = O.

Proof. Since Q is a Khler manifold, the complex structure is parallel with respect to

V. Then since V has no torsion, we need only compute V=E. Suppose V is a vector field

tangent to the level sets c = { = c} (c > 0). Then

2b(VE=, V) = 2Eb(E, V) - Vb(E, E) - 2b([E, V], E).

The first term is zero by lemma 2.4.1. By lemma 2.4.1, the second term is -V¢, which

is also zero if V is tangent to the level sets of 0. The last term is

b([E, V], E) = w(E, J[E, V]) = ldO([, V])

= (VO - V--)

= 1(0 - VO) = 0.

Thus V=E is orthogonal to the level sets of 0, so it must be a multiple of E. To find
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which one, we compute

2 I E --j(-j E = EJ = 20

This proves that Vz- = E. It follows immediately that V--JE

JE + [JE, ], which in view of lemma 2.4.3 proves the proposition.

= JE and Vj~E =

Corollary 2.4.5 The leaves of the Monge-Ampere foliation are totally geodesic.

Using this information it is easy to compute that the curvature along leaves is zero.

Proposition 2.4.6 The leaves of the Monge-Ampere foliation are flat.

Proof. We will show that the (1, 3) curvature tensor

R(X, Y, Z) = VxVyZ - VyVxZ - V[X,]Z

vanishes using the basis E, JE of the Monge-Ampere distribution. There are only two

potentially nonzero ones that we have to check:

R(JE, E, E) = 2Vj E = 0

R(JE, E, JE) = 2VJEJE - V=VjsJE = 0.

Hence the leaves are flat. O

Remark. It's easy to see that the integral curves of the orthonormal basis , E 1 j

are geodesics.

2.5 Some Interesting Results

In this section we collect some interesting results about the Monge-Amptre foliation.

Most of them are due to Wong [24]. We also record an interesting connection between
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the gradient of the exhaustion function q with respect to the Kihler metric b and the

Hamiltonian vector field associated to q by the symplectic structure, which seems to be

new.

The following was proved in [24], but we will give a much simpler proof.

Proposition 2.5.1 The base M is a totally geodesic submanifold of Q.

Proof. Let o be the antiholomorphic involution of a neighborhood of M in 2 whose

fixed point set is M (see chapter 1). Then o is an antisymplectic map, since for any

vector field V on a neighborhood of M,

O*a(V) = -d(Jdo(V))
2

= d(o*q)(JV) = -a(V).

It follows easily that a is an isometry of the KIhler metric b. If -y is a geodesic tangent

to M at a point p E M with tangent V, at p, then o -y is also a geodesic tangent to M

at p with tangent vector V, at p. By uniqueness of geodesics, o o 7 = -y (at least for short

time). Hence a fixes y, so 7 lies in M. O

Proposition 2.5.2 The distance minimizing geodesics between the level sets of 0 are

integral curves of the vector field 1 E, and the geodesic distance between level sets £b

and oa is 1i(b) - -(a).

Proof. See Wong [24]. O

P. M. Wong gives a very explicit description of the leaves of the Monge-Ampere

foliation. Let F: TM -+ Q be the map

F(V,) = Exp,(JV)

where Exp is the Riemannian exponential map of the Kfhler metric associated with

J/-08 . This map is a global diffeomorphism. If -y is a geodesic on M, then the image
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of the set

{(y(t),-s (t)) :s,t E R} C TM

contains a leaf of the Monge-Ampere foliation. This gives the following result.

Proposition 2.5.3 The Monge-Amp're foliation extends across the center M. The in-

tersection of each leaf with M is a geodesic on M, and through each geodesic on M there

passes a unique extended leaf of the Monge-Ampire foliation.

Proof. See Wong [24], §5, theorem 5.1. O

Finally we show that the complex structure operator takes the gradient vector field

of q into (minus one times) the Hamiltonian vector field of 4.

Proposition 2.5.4 Let E be defined as in theorem 2.2.1, and let b denote the Rieman-

nian metric associated with the Kiihler form w. Then

1E = -grad6O2
JE= 2 H

where H is the Hamiltonian vector field associated with 0 by the Kihler form w.

Proof. For any vector field V on Q,

b(E, V) = -a(JV)= -db(V).
2

Hence E = 2grad b. On the other hand,

w(JE, V) = -w(E, JV) = a(JV) = -- d¢(V).
2

This shows that JE = - H, where H, is the Hamiltonian vector field associated with
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Corollary 2.5.5 The Monge-Anmpire distribution is spanned by the gradient vector field

of q and the Hamiltonian vector field of 0.

This result enables us to interpret Wong's results in terms of Hamiltonian mechanics,

using the Kostant-Sternberg-Weinstein identification of Q with T*M near M. Motion on

a Riemannian manifold is described by the flow of Xieo, where q,(~) = J|. The integral

curves of X ,, when projected to M by the cotangent projection, are geodesics. This

explains why the Monge-Ampere foliation intersects the base in geodesics.

Since the flows of X ie preserve the sphere bundle Ec = {~ E T*M: #o(.) = c}, it

follows that the flow of X O on Q preserves the level sets of q.

Corollary 2.5.6 The flow of JE preserves the level sets c.
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Chapter 3

Formal Proof of the Result

3.1 The Formal Power Series Solution

Let (M, g) be a real analytic Riemannian manifold. In section 2.2 we showed that

theorem 2.1.1 is equivalent to the following theorem.

Theorem 3.1.1 There exists a Bruhat-Whitney embedding of M into a complex mani-

fold Q and a unique real valued, real analytic function 0 on a neighborhood of M in Q

such that

1. 0 = d4 = 0 on M.

2. If o, is the complex conjugation about M, then o*o = 0.

3. Set a = Im O and w = -da. If X and Y are vector fields on M and J is the

complex structure on Q, then

w(X, JY) = g(X, Y).

4. Define a vector field E by t(E)w = -a. Then

E = 20.

_ _



In this section we will give a formalproof of this theorem. We will show that theorem 3.1.1

is equivalent to a certain local problem. We will write down a power series solution to

this problem, and establish the uniqueness of this solution, if it exists. But the proof

will be only formal in that we will not establish the convergence of this power series in

general. In chapter 4 we will indirectly prove the convergence of this power series for

a large class of homogeneous examples, by constructing an explicit complexification of

T*M near the zero section with the properties described in theorem 2.1.1. In many cases

this complex structure will exist globally on T*M (see for example theorem 4.5.1)

3.1.1 Reduction to a Local Problem

We know from the Bruhat-Whitney embedding theorem (see theorem 1.2.4) that it is al-

ways possible to embed a compact, real analytic manifold M as a totally real submanifold

of a complex manifold Q. Fix such an embedding. Let 0 be a holomorphic coordinate

patch on Q with coordinates z,..., z" such that

On M = {Im zi = ... = Im z" = 0}.

In this section we will express the conditions 1 through 4 in theorem 3.1.1 in terms of

these coordinates, and reduce the proof of theorem 3.1.1 to a local problem.

Write zt = zX + V-Ty, so that M is given (locally) by y' = ... = y" = 0. The

condition that 0 = do = 0 on M then means that q vanishes to second order in y at

y = 0, or in terms of the Taylor series expansion of q,

¢(x, y) = ap(x)y"y1 + O(y 3 ).

We are using the implied summation convention. Here aap are analytic functions of

x1,... ," and O(y 3 ) means (¢(x,y) - a,py'yO)/ly 3 < oo as jyj - 0. The complex

conjugation about M in these coordinates is cr(x + v y) = x - V~/ y, so the condition

O*0 = 0 means that O(x, -y) = O(x,y).
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To interpret condition 3 in theorem 3.1.1, note that

d Im 0 = Im € = 1 0,

since 60 is purely imaginary if q is a real valued function. Then

1 i20w = 08 = dzx A dyj + O (y )

2 -yiiyj
= aj(x)dxz A dyj + O(y).

So the condition w(X, JY) = g(X, Y) for vector fields X, Y on M means that aj(x) =

-g(, ) -- gij(x). Finally for condition 4 note that in section 2.3, page 26 we have

shown that the equation EO = 20 can be written in coordinates as

€ 0€,€.0 = 2¢.

It will be convenient to define €O by

This makes sense near {yl = ... yn = 0} since condition 3 means that 0.a evaluated at

y = 0 is a nonsingular matrix. Then we can write condition 4 as

v'7-¢0c,¢c = 20.

Suppose for any local representation gij(x) of the metric g on M we can find a unique

real valued, real analytic function p on a neighborhood in Cn of an open set in R" such

that

1. p(, -y) = p(x, y)

2. p(x,y) = gp(x)yayO + O(y4 )



3. v-/Zpopo = 2p.

We claim that being able to solve this problem implies theorem 3.1.1. Cover M by

holomorphic coordinate patches 0O on Q with coordinate functions j; = (z!,..., z')

such that each component of Oi contains only one component of M, a solution to the

local problem exists on I,(Oi), and such that if Oi n Oj is not empty, then O n Oj nAl

is not empty. See appendix A.1 for why we may arrange this, given that we can solve

the local problem above. Define the function 0 we seek in theorem 3.1.1 on the open

set Oi to be the local solution pi o V/';, where p; is obtained by solving the local problem

on O/(O) with initial data in condition 2 given by gp = g( , ) . We need to show

that if Oi n Oj is not empty, and pj is the solution to the local problem on j(Oj), then

pi o 2; = pj o [,j on Oi n Oj. Since Oi n Oj n M is not empty, we can pose the local

problem on /;,(O; n Oj), with initial data given by the coordinate representation gp of

g in the coordinates (O, /',). We must show that if we set j = pj o o ) [1 then ;

solves this local problem; then by uniqueness we can conclude that pi o 4'i = pj o ?kj.

It's obvious that 3 satisfies condition 1, since in both coordinate systems M is given by

In z1 = -.. Im z" = 0 and so the unique antiholomorphic involution fixing M is given by

S-+ Z in both coordinate systems (see lemma 1.2.2). The other two conditions can also

be formulated in a coordinate independent way as in theorem 3.1.1, so they are satisfied

in any coordinate system where AlM is given by Im zi = .. = Imn z" = 0. Thus solves

the local problem on 1V,;(O n Oj). By uniqueness of solutions to the local problem, we

conclude that p = pi on Oi n Oj. Then the function 4 we get by patching together the

local solutions is well defined, and solves the "Monge-Ampere type" problem posed in

theorem 3.1.1. This we have proved that theorem 3.1.1 is equivalent to the following

theorem.

Theorem 3.1.2 Given any positive definite matrix of real analytic functions gij(x) on an

open set U in W", there is a unique real valued, real analytic function p on a neighborhood

0 of U in Cn such that

1. p(X, -y) = p(, y)
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2. p(x,y) = go(x)yy 3 + O(y 4 )

3. -ipop o = 2p.

3.1.2 Formal Solution of the Local Problem

In this section we construct a formal power series

orem 3.1.2. Let p by a real analytic function on

coordinates z" = x" + /'Z1y " . We will write p,

define pQ by

Pp = V T pop

solution to the local problem in the-

some neighborhood of 0 in C", with

= op/Oza, and when it makes sense

(3.1)

We are of course using the implied summation convention. This will make sense in some

neighborhood of zero if p, evaluated at zero is a nonsingular matrix. Define p" by taking

the complex conjugate of equation 3.1. We will need some preliminary results.

Lemma 3.1.3 If p(x, -y) = p(x, y), then the power series expansion of p has the form

p(X,y)= - a,(x)y0 .

Proof. Since p is real analytic, we can write

p(x,y)= E ao()y + E bo(x)y'.
IaI even II odd

The map (xT,y) - (x, -y) fixes the right hand side. O

Lemma 3.1.4 Suppose p(x, -y) = p(x,y). Then

ppa(X, -y) = pap(x, y).
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Proof. If p is an even function of y, then Op/Oya is an odd function of y. Then

pa( (X,-y)= P(, y),

and it's easy to see that

p(x, - y) = pw(xyY).

Then evaluating the equation 3.1 at (x, -y) gives

pwhich means that p = -p, Then)

which means that pG = -p75 Then

pop(x, -y) --pap'(X, y)

= papa(x, ),

since p,pa is purely imaginary. Li

Lemma 3.1.5 Suppose p(z,y) = gp(x)ycy3 + O(y 4 ), where gp(x) is a nonsingular

matrix of functions. Then

p1(x, y) = 2y' + O(y').

Proof. Substituting p(x, y) = gpyy + O(y 4 ) into the equation defining pa we see that

gay' = 2(go + O(y))p + O(y2 ).

From this expression it's clear that pO(x,O) = 0. Writing p3 = c9(x)ym + O(y 2 ) and

equating terms of first order in y on both sides gives c (x)y r" = 2yo. [O

We will need to improve this result considerably.

Lemma 3.1.6 Let pk-l(x,y) be a polynomial in y with coefficients depending on x of

degree 2(k - 1) (k > 2) such that pk-1(x,-y) = pk-1(x,y) and Pk-1(X, Y) = g ()yay3 +
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O(y4 ), where ga,(x) is a nonsingular matrix of functions. Let iCk(x, y) be a homogeneous

polynomial in y of degree 2k (with coefficients depending on x), and suppose that Pk =

Pk-1 + Ck. Then

(pk)' = (Pk-_l)- 2(k - 1)g" -k + O(y2k).
By"

Proof. Substitute pk = Pk-1 + 'k and (pk) = 2yO + O(y2 ) into the equation defining

(Pk). This gives

(k-l)a k (Pk-1)(Pk) + 1 )y + O(y2k). (3.2)
2 Oya 2 o9yai9yO

Recall that Euler's relation says in this context that

y ( ) = (2k - 1)

Using this in equation 3.2 gives

v (Pk- )a + (1 - k) 0
_ = (Pk-1)a(pk) + O(y2k).)ya (

Note that (Pk-1),; = 1g0 + O(y), so (pk-l)l  = 2gal + O(y). Now multiply both sides

of the equation above by (Pk-1)° and sum on alpha. This gives

(pk-1) ' - 2(k - 1)g (pk) + O(y 2 k)
Oy"

which proves the lemma. O

We are now ready to construct a formal power series solution to the local problem in

theorem 3.1.2.

Proposition 3.1.7 Let gij(x) be a nonsingular matrix of functions. For all k = 1, 2,...

there exists a polynomial pk(x,y) in y of degree 2k (with coefficients depending on x)

such that
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1. Pk(x, -y) = Pk(X, Y)

2. pk(x,y) = gijyiyj + O(y4 )

3. - (Pk)a(Pk)a - 2pk = O(y2k+2).

If we set rk equal to the homogeneous part of x/--(p l),(p k-1)i of order 2k in y, then

we obtain Pk from Pk-1 by setting

Pk = pk-1 + rk/(2k - 1)(2k - 2).

Proof. First set P, = gijyiyj . Then an easy calculation shows that

'(pi (pl)a - 2pl = O(y 4 ).

Now suppose we have constructed Pk-1 satisfying 1, 2, and 3 above. We wish to find a

homogeneous polynomial 1I'k in y of degree 2k such that if we set pk = Pk-1 + Ok, then 3

holds for pk. Using lemma 3.1.6 we can write

V'T(Pk)a(Pk) - 2 pk = V(Pk-l)(Pk-1)a - 2Pk-1

+V-T(pk-1)~.ga (2 - 2k) (3.3)
ayr

+V/-1('k)a(pk-1 )a - 2 0k + O(y 2 k+1).

Using the inductive hypothesis we define a homogeneous polynomial rk in y of degree 2k

by

V/CT(Pk-1)a(Pk-)a - 2 Pk-1 = rk + O(y2k+2).

Notice that since pk-1 is a polynomial in y of degree 2k - 2, rk is really the homogeneous

part of V/i(Pk-)a(Pk-1)a of order 2k in y. Substituting this into 3.3, using lemma 3.1.5

and remembering that pk-1 = gijyiyj + O(y 4 ) gives

S(Pk)a(Pk)' - 2 Pk = rk + (3 - 2k) y" - 2 0k + O(y2k+)ayY

__ ----



= rk - (2k - 1)(2k - 2 )7kk + O(y2k+).

Since the left hand side is even in y we may conclude that the error is in fact O(y2k+2).

We have shown that if we set pk = Pk-1 + rk/(2k - 1)(2k - 2) then Pk satisfies 1, 2, and

3 above, which completes the proof. O

An obvious corollary of this is that if a real analytic solution exists to the "Monge-

Ampere type" problem in theorem 3.1.1 exists, then it is unique. It may be instructive

to write out the first few terms in the formal power series for 0 and the vector field E in

theorem 3.1.1 in terms of the metric g.

Proposition 3.1.8 Let -, 0 be as in theorem 3.1.1, and let 17k be the Christoffel symbols

of the metric g. Then

1L 
= (a

8 ( 
+O(Y )) +(gik OkrgPr) -) yr, y _y' + O(ys

S= gyaoy, + (gs rr -r o x )yiyy ryl + o(y 6).

Proof. Write E= fi + h'i. Substituting g = g,yayO into the equation defining E,

t(E)d(Im 0q) = Im q0, (3.4)

we see that fi = O(y 2) and hi = yi + O(y 2 ). Applying a* to both sides of equation 3.4

we see that

t(*E)da = a,

or 0*- = E. This means that a*fi = fi and cr*h' = -h i, so the power series for fi has

no odd order terms in y, and the power series for hi has no even order terms in y. Then

_



we can write

= (f + O(y4)) (yi + 5 + O(y))

= F2 + F4 + O(y 6 ).

Here f2, h', and F4 are homogeneous polynomials in y (with coefficients depending on

x), of the degree indicated by the subscripts, and F2 = g,ayy3. Substituting this in to

the equations

(-)d Im 8€ = Im -6

and equating terms homogeneous of the same degree in y we get the following equations:

for i = 1,..,n,
2F2

xO( jyi
02F2
ziay)y3Oxily3

02F2 f

yOja yi

OF2

xzi
02(F2 + F4)

yi )Y +
Yydy

a2F2
yi )h

(5Oy-.3y

+ 2F2

(zjayi

2F2ox)fOy
Oziyj

O(F2 + F4 )
Oyi

Yj(F 2 + F4 )
+ y

Oyj
+ h F  = 2(F 2 + F4 ).

Oyj

Substituting F2 = gyay in the first equation gives

Ogai
gijfi = ( 8zi

1 )g a U y "

2 iBx

Thus we must take

fi = rI yy

where FrI are the Christoffel symbols of the metric g on M.

02F2
19xiaxi

fOF2
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To determine hi and F4 we apply Euler's relation to the second and third equation

above. This gives

0 2 F2
xiaxJ +

v2F2

OyiOyJ 3

02F2
+ ( Ox'y

0 2F2  OF 4
o )f = -2

ziyj ay i

OF2'-57 + hi. = -2F4.
OyJ (3.5)

Now we multiply the first equation by yi, sum over i, and apply Euler's relation. This

allows us to write

. F2hi -8F 4 -
3 yj

0 2 F 2

Oxixy ' y
0 2 F 2

x- ( yi
a2F2
X)y fOxiOy3

Substituting this into equation 3.5 gives

02 F2

OxOxa Y
02F2

- (xyi

S2F2
S )y'f2 }.

808dyd

This determines F4 and hence h'. Substituting F 2 = gyay'y we see that

1 1a2g ) yy,
F4 = t(gs fr - )mn pYYY y

and after some manipulation,

hi = gik( 3 (kr ) 4 (r s3 ( gk
3 'a --Y azi gjk ),)yo)y Y

which proves the lemma. E

3.2 Solution of the One Dimensional Problem

Let g(x) be a real analytic metric defined on an open set U in R. We want to find

an analytic function 0 on a neighborhood of U in C such that, if z = x + ,r y is the

1 '4F 2
F4 = -f Ox6 8'
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standard coordinate, then

1. qly=o = doly=o = 0

2. lyo = g

3. If a = Im 0q and E is the vector field defined by t(E)da = a, then E0 = 2q

4. q(x,-y) = c(x, y).

It is easy to translate the above into a partial differential equation for €. We must find

A satisfying

€$ + €Y= 2(€x,, + Cyy)

S1y=O = djly=0 = 0

0YY y= = g

(here the subscripts denote partial derivatives). This is a nonlinear, characteristic Cauchy

problem. One can't appeal to the standard Cauchy-Kovalevsky theory for existence of

solutions. However, a simple change of variables turns this into Laplace's equation. I

would like to thank Prof. D. Jerison for pointing this out to me. Set u = 1/2. Then

away from y = 0, u is C" and we get the following equation for u:

u 3U = 0.

We of course require that u2 is C"o and satisfy the initial conditions posed for 0. These

ensure that u is real and has a strict minimum at y = 0.

It's easy to generate solutions of Laplace's equation; the only difficulty is the slightly

unorthodox initial conditions.

Theorem 3.2.1 The (unique) solution of the one dimensional problem is

(X Iy) = (Ref g(x+ TWt)I 2dt) 2



Proof. In order to see what's going on we give a constructive proof. The distinguishing

feature of the one dimensional case is that the boundary conditions do not preclude a

c1" solution. We seek u such that

(u2)yIj= = 2uuyl,=o = 0

(u 2)Y lj=0 = 2(u2 + uuy)ly=o = 2g

We may take for initial data

Uly=0 = 91/2

The obvious candidate for a solution of Laplace's equation is the following harmonic

function:

u(x,y) = Im(j g(()/2d().

Here g(() is the analytic function g continued analytically to a tubular neighborhood of

U in C. The contour integral is independent of path, by Cauchy's theorem. To evaluate

it we take the standard path along the coordinate axes. Along the x axis there is no

contribution, since the imaginary part is zero. We are left with the integration along the

path C(t) = x + /-it from t = 0 to t = y. This gives

u(x,y) = Im(x g(x + Tt)1/2dt)

= Re(j g(x + 1 t)'/'dt)

It's now clear that u satisfies the initial condition uYlY=o = g1/ 2 . O

3.3 Some Further Remarks

We have assumed that the manifold M has a real analytic structure and the metric

g on M is real analytic. Clearly to have any hope of embedding M as a totally real



submanifold of a complex manifold we must assume that M admits a real analytic struc-

ture. It is not so clear that the metric g need be real analytic, as the problem posed in

theorem 2.1.1 makes sense for any metric (in fact one could consider Finsler metrics).

We will show that if we can find a complex structure Jo as in theorem 2.1.1, then g must

be real analytic.

We will also show that the construction in theorem 2.1.1 is functorial, in the sense

that if g' is equal to G*g for some real analytic diffeomorphism G, then the complex

structure associated with g' by theorem 2.1.1 is the pullback by G of the complex structure

associated to g.

3.3.1 The C Case

Suppose we embed M as a, totally real submanifold of a. complex manifold, and ask for

a defining function q as in theorem 3.1.1 when the metric g is only C"'. By the formal

power series constructions in section 3.1 we have a canonically defined infinite order jet

of defining function. But it turns out that there is no hope of finding a function 0

satisfying the "Monge-Ampere type" problem in theorem 3.1.1 unless g is real analytic.

Equivalently, we will show that if a complex structure Jo as in theorem 2.1.1 exists, then

g must be real analytic. For this we need the following lemma, which is interesting in its

own right.

Lemma 3.3.1 Let x, be canonical cotangent coordinates on T*M, and represent the

complez structure operator Jo described in theorem 2.1.1 by the matrix

J = b

Jb 4f

where

i boj ( J



,t 0f"

Then

Jo4J=o = (
0

Proof. Recall that in these coordinates we have

o = gs"ij

and

ao = idxi .

Writing out the condition that Im 0o$ = ao gives

1 '9gi J
2 8,fib(Jb)ka + f'ia i(jbf )ka = k

and

g) + g' 
-2 ixa 'ik(Jf)k-a + g9^ (Jf,)k_ = 0.

Differentiating these equations with respect to ( and evaluating at ( = 0 gives

(Jbf )ky- =o

(J f )k-=O

- gk

= 0.

Then writing out the condition J 2 = -Id shows that

(Jbb)ky =o

(J b)k-y (1=0

= 0

= _kky

which proves the lemma. O
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Corollary 3.3.2 The metric g must be real analytic in order for any of the equivalent

problems given in theorems 2.1.1, 3.1.1, and 3.1.2 to have a solution.

Proof. The matrix entries of the complex structure operator are real analytic func-

tions. O

3.3.2 Metrics in the Same Isometry Class

Suppose g and g' are real analytic metrics on Al in the same isometry class. By this we

mean that there is a real analytic diffeomorphism G of M such that g' = G*g. Then G

induces a symplectomlorphism of T*M, called the "lift" of G, by the map G, where

G( )(V) = ((dG- (VE

The map G is not, only symplectic; it also preserves the canonical one form ao. In fact it

can be shown that a diffeomorphism of T*M preserves a, if and only if it is the lift of a

diffeomorphism of Al (see Abraham and Marsden [1], theorem 3.2.12 and exercise 3.2F).

Note also that G commutes with the standard involution o of T*M.

Proposition 3.3.3 If Jg is the complex structure on T*M associated with the metric g

on Al by theorem 2.1.1, then G*Jg dW'-1 o Jg o dG is the complex structure associated

with the metric G*g.

Proof. Let vg, VG.g:TM --+ T*M be the metric identifications associated with g and

G*g, respectively, and let Og, Ga'g be the corresponding quadratic functions. Note that

G(vG.g(V)) = vg(dG(V)), so G* g = OG-g. The proposition now follows from the fact

that G preserves a, and oo. O

Remark. If M is embedded as a totally real submanifold of a complex manifold ft, then

by lemma 1.2.1 G induces a unique biholomorphism G of a tubular neighborhood of MA

in ft, preserving M. Furthermore, G preserves the complex conjugation a about M by



lemma 1.2.3. It is easy to see that in the context of theorem 3.1.1, if q is the solution to

the "Monge-Ampere type" problem for g, then G*, is the solution to the problem for

G*g.
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Chapter 4

Examples and Global Results

In this chapter we will prove theorem 2.1.1 for compact Lie groups, many compact

symmetric examples (including those of Helgason's "compact type"), and homogeneous

spaces of compact Lie groups. We give all of these examples metrics induced by the

bi-invariant metric on a compact Lie group. The proofs will be entirely constructive, and

provide a realization of T*M near the zero section as a complex homogeneous space. We

will show that in the case of a compact Lie group or a homogeneous space of a compact,

connected, semisimple Lie group, the cotangent bundle has a globally defined complex

structure with the properties described in theorem 2.1.1.

4.1 Compact Lie Groups with Bi-invariant Metrics

In this section we will show how to construct the complexification of T*G described

in theorem 2.1.1 for a compact Lie group G and the bi-invariant metric on G. Moreover

we will see that the complex structure exists globally on T*G, and identify T*G as a

complex manifold with the complexification of G.
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4.1.1 Trivialization of Gc and T*G

It is well known that a compact Lie group G is a real analytic manifold, and the bi-

invariant metric is a real analytic Riemannian metric. A complexification of G is a

complex Lie group G, whose Lie algebra is the complexification of the Lie algebra g of

G as a vector space. In other words we may write as a direct sum decomposition

gC = g + /- Tg.

Often it will be useful to think of gc as a 2n dimensional real vector space equipped with

a complex structure operator J corresponding to multiplication by V-i'.
Following Zelobenko [25] we will say that a complex Lie group Gc is a regular com-

plexification of a real Lie group G if G, is a complexification of G and every connected

component of Gc contains only one component of G. Then we have the following funda-

mental result.

Theorem 4.1.1 Every compact Lie group has a regular complezification, which is unique

up to isomorphism. The regular complexification is an algebraic subvariety of Gl(no, C)

for some no. The group G is isomorphic to the unitary matrices in the regular complez-

ification.

Proof. See Zelobenko [25], §106. O

From now on we will refer to the regular complexification of G as simply the com-

plexification of G, and write it as G,. If G is semisimple, it is well known that Gc is

diffeomorphic to g x G by the map

(V, g) - exp (v V)g.

See Helgason [10], chapter VI, theorem 1. It is perhaps less well known that this is true

for any compact Lie group, so we will outline a proof.
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Theorem 4.1.2 Let G be a compact Lie group, G, the complexification of G. Then Gc

is diffeomorphic to g x G by the map

(V, g) --+ exp ( -V)g. (4.1)

Proof. We may consider G, to be embedded in Gl(no, V) for some no,. If C E G,,

let ( = pu be the polar decomposition of C in Gl(n,, V). Here p is a positive definite

Hermitian matrix, u is a unitary matrix, and the decomposition C = pu is unique.

Zelobenko shows that both p and u are in Gc; in fact p' is in Gc for any complex A

(see [25], §106). The positive definite Hermitian matrix p may be written

p = exp X

for some X E gl(no, C). Since p is Hermitian and p' E Gc for all real A, it follows that

X E --- g. We have shown that the map 4.1 is a smooth bijection. To see that the

inverse is smooth we need to show that dexp-1v is bijective for all V E g. This is

the case if the eigenvalues of ad(i yl V) are real (see Varadarajan [20], theorem 2.14.3).

Since V-T V is a Hermitian matrix, the eigenvalues of V-T V are real. It follows that

the eigenvalues of ad(VT V) are also real. O

For our purposes it will be more convenient to write this identification as

(g, V) - g exp / V. (4.2)

This is still a diffeomorphism since exp (/-T V)g = g exp VCT Ad(g-')V and the map

(V, g) -+ (g, Ad(g-')V)

is a diffeomorphism. Multiplication by C-T commutes with Ad(g) since left and right

multiplication by elements of G, are holomorphic maps on Gc. It is also important to
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note that the map 4.2 is real analytic. The implicit function theorem is true in the real

analytic category, so the inverse is also real analytic. Hence 4.2 is an identification of

G x g and Gc as real analytic manifolds. We will give G x g the complex structure

induced by this identification.

Let v :g - g* be the identification via the bi-invariant metric <, > at the identity.

We identify T*G and G x g by associating a covector g with the pair (v-'(dLg(,),g).

We will write this as

: G x g -+ T*G

where 1(g, V) = dL*_, v(V). This identification is G-equivariant for the standard left

G action on T*G and the action on G x g which is trivial (the identity) on g and left

multiplication on G.

4.1.2 The Complex Structure on G x g

We have identified G x g and Gc by the real analytic diffeomorphism 4: G x g -+ G,

given by

4(g, V) = g9 exp v' V.

In order to prove theorem 2.1.1 we will need an explicit description of the complex

structure operator JGxg on G x g. By definition,

JGxg = d - o JG, o d4

where JGc is the complex strucure on G,. We will identify the tangent space T(g,v)(G x g)

with dLgg x g in the obvious manner. To compute d4 we need to know how to compute

the differential of the exponential map.

Lemma 4.1.3 Let exp : gc --+ Gc be the exponential map. Then for U, X E go,

1 - e - ad(U)
d exp u(X) = dL,,xp r o ( )(X).

ad(U)

--



Here we have identified Tu(gc) with gc, and (1 - e-A)/A stands for

00

>(-A)m/(m + 1)!
0

when A is a linear operator.

Proof. See Helgason [10], theorem 1.7, chapter II. R

We can now compute the differential of 4.

Lemma 4.1.4 Let (: G x g -+ Gc be as above. Then

1 - e-ad(v'iv)
d4(g, V)(dLgW, Y) = dLgexpjv( ad( V ) (-i Y) + e-ad(v-V)).

Proof. It's easy to see that

1 - e-ad(/ v)
d(b(g,v)(0, Y) = dLg o dexp 1v(V--1Y) = dLgexp-J--v( ad(N/ V)Y))

and

dt(,,v)(dLW, 0) = dL o dRexp ,r (W) = dLgexp ,d (-1d( 'V)W)

which proves the lemma. O

Power series such as e- ad(V/pV) behave very much like their one variable counterparts.

For example,

e- ad('v) = cos ad(V) - VET sin ad(V).

Note that sin x, cos x, sin x/x and (1 - cos x)/x are entire functions. Thus it makes sense

to use the operators defined by their power series:

sin ad(V) = Z(-1)"ad(V) 2"+'/(2n + 1)!
0

00oo

cosad(V) = (-1)"ad(V)2"/(2n)!
0
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sin ad(V)
ad(V)

1 - cos ad(V)
ad(V)

(-1)nad(V) ~ /(2n + 1)!
0

D -(1)l"ad(V)2n+i/(2n + 2)!
0

We interpret ad(V)o as the identity operator on g.

Using this remark and the fact that multiplication by V-Ei commutes with ad(VZT" V)

we can rewrite the result in the lemma above as d4'(g,v)(dLgW, Y) =

1 - cos ad(V) sin ad(V)
dLgexp V 1ad(V) (Y) + cos ad(V)W + sin ad(V) (Y) - sin ad(V)W)).

ad(V) ad(V)

Using the notation

U / + /zS=( U

Sand identifying (W, ) g x g with the column vector

and identifying (W, Y) E g x g with the column vector

W
Vi,

ir /

we may write this as d4(g,v)(dLgW, Y) =

cos ad(V)
dLgexpv-fv - sin ad(V)

(1 - cos ad(V))/ad(V)

sin ad(V)/ad(V)

We want to find the inverse of d4. Identify the tangent space to Gc at g exp VET V
with dLgexp,~,-vgc in the obvious way. Note that if SI(z), S 2 (z), S3(x) are analytic

functions near zero in the single indeterminate z which satisfy SI(x)S 2(x) = S3 (x), then

if A is a continuous linear operator of small enough norm we have S, (A)S 2(A) = S3(A)

(and similarly for sums). The adjoint representation

ad:g - End(g)

(4.3)
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by V -- ad(V) is a linear map between finite dimensional vector spaces, hence bounded.

Then it is easily checked that for small enough V,

d-i'(dLgexp /:TV(U + V-iS)) =

d(LgI (cos ad(V) - 1)/ sin ad(V) U (44)

ad(V) cos ad(V)(ad(V)/ sin ad(V)) S

We can now give an explicit form for the complex structure on G x g.

Lemma 4.1.5 The complex structure on G x g induced by the identification 4 is given

near G x 0 by (JGxg)(g,V) =

d(LogxId) ((1 - cos ad(V))/ sin ad(V) 2(cos ad(V) - 1)/ad(V) sin ad(V) d(Lgi xId).

ad(V)/ sin ad(V) (cos ad(V) - 1)/ sin ad(V)

Proof. Represent the complex structure on gc by the matrix

0 -I
Formally multiplying the relevant matrices gives the expression for JGxg above. For small

enough V, the result will converge. O

Remark. In fact this expression for JGxg is valid on all of G x g. The expression for

d4Q in equation 4.3 is valid for all V E g. The argument in lemma 4.3.11 shows that

sin ad(V)/ad(V) is an invertible linear operator on g for all V E g. This shows that the

expression for d - 1 in equation (4.4) is valid for all V E g. Hence the expression for

JGxg is valid on all of G x g.
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4.1.3 Proof of the Result

Let 0,: T*G --+ R be the modulus of a covector squared with respect to the bi-invariant

metric on G. If v: g - g* is the identification via the bi-invariant metric at the identity,

it is easy to see that

0o(G) =< V-l(dL* (),v-l(dL* () >

where <, > is the Ad(G)-invariant inner product on g. Let q = *#o be the object on

G x g corresponding to o0 under the identification IF of G x g with T*G given above.

Since (g, V) is mapped to the covector dL*_, v(V) by IF, it is clear that

(g, V) =< V,V >.

From this it's easy to see that

d(g,v)(dLgW, Y) = 2 < V, Y >.

Let ao be the canonical one-form on T*G. At a point (g E T*G, ao applied to a

tangent vector X E Ty,(T*G) is given by

ao( g)(X) = g(d7rT*G(X))

where rT*G: T*G -- G is the cotangent projection. Let a = 4*ao be the corresponding

object on G x g. Then for (g, V) E G x g and (dLg W, Y) E dLg x g (which we have

identified with T(g,v)(G x g)), we have

a(g, V)(dL9 W, Y) =< V, dL_ 0 dlrT.G o d (dLgW,Y) >.

It is easy to see that drT.c o d4'(dLW, Y) = dLgW. This shows that

a(g, V)(dLgW, Y) =< V, W >.
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We can now prove the main result of this section.

Proposition 4.1.6 Give T*G the structure of a complez manifold by identifying it with

GC via the map

, 4 g exp V/- v-'(dL* g).

Let a, be the canonical one-form on T*G and let o, be the quadratic function on T*G

associated with the bi-invariant metric on G. Then with this complex structure, ImOo, =

ao and the standard involution of T*G is an antiholomorphic map.

Proof. To show that Im 50, = a, we may as well show that Im 50 = a when we give

G x g the complex structure induced by the identification with G, above. Denote the

complex strucure on G x g simply by J. We need to show that for all (g, V) E G x g and

all (dLgW, Y) dLgg x g,

1
I(do)(g,v) (dLg W, Y) = -a(g, V)(J(g,v)(dL W, Y)).

Using the observations above, this means we must show that

< V, Y >= - < V,prld(Lg-l x Id)J(g,v)(dLgW, Y) > (4.5)

where pr1 denotes projection onto the first factor in g x g. By lemma 4.1.5 we have

prid(Lg,- x Id)J(g,v)(dLgW, Y) =

(1 - cos ad(V))/ sin ad(V)(W) + 2(cos ad(V) - 1)/ad(V) sin ad(V)(Y).

This is a power series in ad(V), and the term of order zero in ad(V) is -Y. Higher order

terms in ad(V) will make no contribution in equation 4.5 since for all X E g,

< V, ad(V)X >= 0

if <, > is Ad(G)-invariant. This shows that Im 0€ = a.



It remains to show that ar*J = -J, where a is the involution on G x g sending (g, V)

to (g, -V). Explicitly, we need to show that for all V E g and all g E G,

dao(g,,v) J(g,v)do(g,v) = -J(g,v).

Examining the matrix of J we see that evaluating J at (g, -V) instead of (g, V) has the

effect of multiplying the diagonal entries by -1. It is easily checked that this operation

followed by conjugation by do is the same as multiplying J by -1 and evaluating at

(g, V). O

We have proved theorem 2.1.1 for a compact Lie group and the bi-invariant metric.

We will have another proof of this when we prove theorem 2.1.1 for a compact Rieman-

nian symmetric space, since a compact Lie group with the bi-invariant metric is also a

Riemannian symmetric space.

We close this section with a remark about stability of the Kiihler form w, on G,

induced by the symplectic structure of T*G. We say w, is stable if zero is a regular value

of the associated moment map (see [7], §2). It is easy to see that w, is a G-invariant

Kiihler form on G,. If we set #c = (-1)*V 4 then it is easily checked that w, = vT0-00c.

In [7] it is shown that either #c has no critical points, or the set of critical points of c

consists of a single G orbit on which c takes its unique minimum value; furthermore, it

is shown that Wc is stable if and only if the second of these alternatives is true.

Since do, = do o d, - 1' , it is clear that the set of critical points of Oc is exactly G,

where Oc is zero. Hence wc is stable.

4.2 Rank One Compact Riemannian Symmetric

Spaces

In this section we will review the work of P. M. Wong [25], who essentially proved

theorem 2.1.1 for compact Riemannian symmetric spaces of rank one. We will interpret



his results in terms of theorem 2.2.1. The compact Riemannian symmetric spaces of rank

one are:

1. Sn, the standard n-sphere (n > 2)

2. RP n , real projective n-space (n 2 2)

3. CP", complex projective n-space (n > 1)

4. HP - 1', the quaternionic projective n-space (n > 2)

5. KP 2 , the Cayley projective plane.

These, with the exception of the Cayley projective plane, have standard models as "cen-

ter" manifolds of complex affine algebraic submanifolds of CN for some N. The Cayley

projective plane is difficult to describe geometrically and will not be dealt with here. A

center manifold of a complex manifold carrying a strictly plurisubharmonic exhaustion is

the minimum set of that exhaustion. Center manifolds are also totally real submanifolds

(see Harvey and Wells [9]). These complex algebraic manifolds are natural candidates

for the complex manifolds 9f in theorem 2.2.1, in which the compact symmetric space

M is embedded as a totally real submanifold. We will describe these manifolds below,

following closely the exposition and notation in Wong [24]. Superscripts indicate the

real dimension of M (= complex dimension of Q) and subscripts refer to the symmetric

spaces on the list above.

1. 0n = {z2 + .. + zn,+ = 1} C C"+1 , the complex affine hyperquadric. The condition

z +... + z = 1 means that if z = x + 'T-iy, then

X12 - Iy12 =1 and x.y=O.

It's clear that S" is given by Jy| 2 = 0. This is the minimum set of the exhaustion

p = |z| 2, since on Un we have

Jz12 = 1Xz1 + Jv12 = 1 + 2yv 2.
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Note also that S" is the fixed point set of the complex conjugation of Sn induced

by the complex conjugation of Cn + l .

2. S = CP"\Qn- 1. Here Qn-1 is the compact hyperquadric in CP",

On-1 = {[zo :..: Z,] E CP": z2 + ...+ z2+1 = 01.

Note that RP n is embedded in CP n as the fixed point set of the complex conju-

gation of CP", [z] -+ [2]. It's clear that RP " C CPn\Qn- 1. We obtain a two-fold

unramified cover of 1t by 0f by the map / sending a point in Qn to the complex

line determined by it. When restricted to the real points S" in Q", the map P is

the standard two-fold unramified cover of RP" by S". The exhaustion p = Iz| 2 is

constant on preimages of 3, so gives an exhaustion = p o 0-1 on 11n. Then RP"

is given by the minimum set, p = 1.

3. " = (CP" x CP")\P,(CN-1), N = (n + 1)2 - 1. We consider CP" x CP" to be

embedded in CPN by the Segre embedding,

([z], [w]) -4 [M],

where (cp = z,wp, 0 < a,/3 < n. P,(CN-1) is the hyperplane at infinity in CPN

given by

a=O

The underlying real manifold of CP" is embedded in CP" x CP n by the map

[z] -- ([, [~l D.

This is the fixed point set of the antiholomorphic involution

([z], [w]) -+ ([ , []).



The image of CP" under the Segre embedding is given by

which is disjoint from P,(CN-1). The image of CP" is the minimum set of the

strictly plurisubharmonic exhaustion 1 of CPN\Po(CN-1) given by

VO<ae3<n 1 >12

I EO<a<n CaCoo -

The metric on CP" induced by the Fubini-Study metric on CPN is the metric on

CP" as a Riemannian symmetric space.

4. o<("-1 = Gr(2,2n,C)\P,(CN-1), N = n(2n - 1) - 1. Gr(2,2n,C) is the Grass-

mannian manifold of complex two-planes through the origin in C2". We regard

Gr(2,2n, C) as embedded in CPN by the Pliicker embedding: if a plane p E

Gr(2, 2n7, C) is spanned by two linearly independent vectors z = (zI,..., z2,) and

It = (1l1,..., 2,,), then

where 1 < a < / < 2n. Here p,(C N - 1) is the hyperplane at infinity

n

(2k-1,2k = 0.
k=1

The quaternions H are identified with C2 by q = (a + bT--") + (c + dyT-)j, and

so H" is identified with C2". This identification induces a "multiplication by j"

operation on C 2" which takes a complex subspace to a complex subspace, and so

induces a map on Gr(2, 2n, C). This map is in fact an antiholomorphic involution

of Gr(2, 27n, C), and the quaternionic projective space HP"-' is naturally identified

with the fixed point set of this involution. Hence HP"-' is embedded as a totally
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real submanifold of Gr(2, 2n, C). See Huckleberry-Snow [12] for more details.

With respect to the basis {ei,jel,... ,en, je} of C2' (where {el,...,e,} is the

standard basis of Cn), the map "multiplication by j" is given by

((zi, w ), ... , (z, w, )) -+ ((-+ , ),.. ,(- , ))

If p is a quaternionic line in Gr(2, 2n, C) and z is a point on p, then z and jz span

p. If p is a quaternionic line and [C] is the image of p under the Pliicker embedding

then

[C2k-1,2k] = [Iz2k-112 + Iz2k12],

so the image of HP " -1 does not intersect the hyperplane P,(CN-1). HP n - 1 is the

minimum set of the strictly plurisubharmonic exhaustion

(l<<= 1 2n ICC 1.
I E<a<n 2a-1,2a 1 -

5. Q16 is a 16 dimensional Stein manifold. It is difficult to describe geometrically. See

Huckleberry-Snow [12] for a description in terms of quotients of Lie groups.

Let pi be the strictly plurisubharmonic exhaustions of Qi given above (i = 1,...,4):

pl(z) = z12

P2([z])= I/-1([Z])12

P3([(]) = 2V([C]) - 1

P4([(]) = 2R([(])- 1.

It can be shown that pi is a smooth (in fact real analytic), strictly plurisubharmonic
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exhaustion of Qi such that the center Mi is given by {pi = 1}. The function

Iti = cosh - 1 pi

is strictly plurisubharmonic on Qi\Mi, and on Qi\Mi, ui satisfies the homogeneous

Monge-Ampkre equation. See §2 of Wong [24] for proof. Thus the (ui)2 are obvious

candidates for the function q in theorem 2.2.1. It is not immediately obvious that the

(u,)2 are even C, since the function cosh- 1 t is not differentiable at t = 1. However the

singularity is of the correct type, as the following lemma shows.

Lemma 4.2.1 Suppose f is a real analytic function on a manifold Q such that f > 1.

Then (cosh-1 f) 2 is also a real analytic function on Q.

Proof. It suffices to show that (cosh - ' s)2 is analytic at s = 1. Let y = cosh - 1 s. Then

00 2n
8 = COSh y =

o (2n)!

Let v = y2 . Then

-== F(v).
o (2n)!

Note F'(O) 5 0, so the inverse exists (and is analytic) near v = 0. This shows that

v = (cosh - 1 s)2 is an analytic function of s near s = 1. O

We can now state the main result of this section.

Proposition 4.2.2 The Monge-Ampere manifolds 'i and their ezhaustions pi construct-

ed above prove theorem 2.1.1 for the compact rank one Riemannian symmetric spaces with

their standard metrics, with the exception of the Cayley projective plane.

Proof. We need only show that if we set q4 = (cosh - ' p1) 2 then qi solves the "Monge-

Ampere type" problem posed in part 2 of theorem 2.2.1. We have shown that qi is real

analytic, and it's clear that O4 = db4 = 0 on the center Mi. By inspection it is clear that
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the functions pi are invariant under the antiholomorphic involutions of ;i fixing Ai, so

the qi are also. Since u; = cosh - 1 pi satisfies the homogeneous Monge-Ampre equation,

the remarks in section 2.3 show that Oi satisfies the "Monge-Ampere type" equation

Ei = 24i. It can be shown that Oi is strictly plurisubharmonic, since the pi are. Hence

we get a metric on Mi by

gi(X, Y) = -d(Im i )(X, JY).

Thus we have proved theorem 2.1.1 for some metric gi on Ali. To see which metric,

note that dp = 0 on the center Mi (see theorem 4.1 in Wong [25] for the Taylor series

expansion of pi). Hence

9 zogh IM = G'(1)(z)IM,

where G is the inverse of the function F in lemma 4.2.1 (in fact G'(1) = 2). The Kiihler

metrics on Qi associated with the Kihler form /--Z'5pi induce the standard metrics on

Ali as Riemannian symmetric spaces. This shows we have proved theorem 2.1.1 for the

compact rank one Riemannian symmetric spaces. O

The Cayley projective plane is not treated explicitly by Wong in [25]. In particular

he does not construct a Monge-Ampere exhaustion for 9'6. The proof of theorem 2.1.1

for this case follows from our treatment of compact Riemannian symmetric spaces as

quotients of Lie groups in section 4.3. In fact we will prove theorem 2.1.1 for compact

Riemannian symmetric spaces of arbitrary rank.

4.3 Compact Riemannian Symmetric Spaces

We now consider the case where M is a Riemannian locally symmetric space of the

compact type. By this we mean that M = G/K where G is a compact, connected,

semisimple Lie group, K is a closed subgroup of G, and there exists an involutive auto-
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morphism 0 of the Lie algebra g of G such that the Lie algebra k of K is the +1 eigenspace

of 0. The -1 eigenspace of 0 is denoted by p, and g = k + p is a direct decomposition of g.

The eigenspaces are orthogonal with respect to the Ad(G)-invariant nondegenerate inner

product on g, since in this case the invariant inner product is the Killing form, and any

automorphism of g leaves the Killing form invariant. If 7rG/K denotes the projection of

G onto G/K, then (dlrG/K)Ip is a bijection of p onto TeKG/K. This identification gives

TKG/K a nondegenerate, positive definite inner product corresponding to minus one

times the Killing form on g. G acts on GIK as a transitive group of diffeomorphisms,

so we get a metric on GIK which is well-defined due to the Ad(G)-invariance of the

Killing form. This metric turns G/K into a Riemannian locally symmetric space. See

Helgason [10] for details, for example proposition 1.1 of chapter VII. We show that there

is a global identification of T*G/K with a complex homogeneous manifold, and that this

identification induces a complex structure on T*G/K with the properties described in

theorem 2.1.1.

4.3.1 Complexification of G/K

In this section we will embed GI/K as a totally real submanifold of a canonically de-

termined non-compact complex homogeneous space. It is important to note that this

construction does not require any assumptions on G and K other than that both are

compact. We will refer to this section when we prove theorem 2.1.1 for other homoge-

neous examples (see also theorems 4.1.1 and 4.1.2).

Since every compact Lie group has a faithful unitary representation, we may assume

that G is a subgroup of the unitary group U(no) for some no. Then we have the following

result concerning the existence of complexifications of G and K.

Theorem 4.3.1 i) There exists an algebraic variety A(G) C GL(no, C) such that A(G)

is a Lie group, G = A(G) nU(no), and A(G) is a regular complexification of G (i.e., A(G)

is a complezification of G and each component of A(G) contains only one component of

G).
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ii) If K C G is a compact subgroup, then we can find an algebraic variety A(K) C

A(G) such that A(K) is a Lie group, K = A(K) n U(no), and A(K) is a regular com-

plezification of K.

Proof. i) See Zelobenko [26], §106, lemmas 3-5. ii) Clear from the construction of A(G)

in [26], §106. O

Let Gc = A(G), Kc = A(K). Then Go, Kc are the complexifications of G, K

respectively as Lie groups. Since Gc and K, are algebraic varieties in Gl(no, C), Kc is

a closed subgroup of G,. We can now form the homogeneous manifold Gc/Kc. The

following standard result gives the basic information about Gc/Kc that will be needed.

Theorem 4.3.2 G,/Kc is a complex manifold. The Gc action on Gc/Kc consists of

holomorphic maps, and the projection of G onto Gc/K, is a holomorphic map.

Proof. See [19], page 227 (3), or [17], chapter X, §6. O

The complex manifold Gc/Kc is an obvious candidate for the complexification of M.

We will now show that Al is naturally embedded as a totally real submanifold of Gc/K,.

Lemma 4.3.3 The map z: Al - G /Kc given by z(gK) = gKc is well-defined and

embeds M as a totally real submanifold of G,/Kc.

Proof. To see that z is well-defined, suppose gK = -FK. Then gy- 1 E K C Kc, so

gKc = -rKc. To see that z is globally one-to-one, suppose gKc = g K. Then gr-' E

G n K,. But by theorem 4.3.1, G = G, n U(no) so G n Kc = U(no) n Kc = K. Thus

gK = yK.

To show that z is an embedding we go to local coordinates on G/K. Let g be the Lie

algebra of G, let k be the Lie algebra of K, and let k' be the orthogonal complement of

k with respect to the Ad(G)-invariant inner product on g. In the symmetric case k- is

usually denoted as p, and

g=k+p
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is a decomposition of g into eigenspaces of an involutive automorphism of g. In any case,

local coordinates near gK in G/K are given by, for a suitable neighborhood u of zero in

k', the map

u 3 X c rG/K o Lg O expX E G/K

where 7rG/K is the projection of G onto GIK. In these coordinates z is given by the map

u E X 0 TrGc/Kc o Lg O exp X

(here rGc/Kc is the projection of G, onto GC/KC, and we are considering G as a subset

of G,; the exponential map is the same for G and Ge). From this expression it is clear

that the kernel of (dz)gK is zero and that z is an open map into ,(G/K) with the relative

topology, so that z is an embedding.

To show that z embeds G/K as a totally real submanifold of Ge/Kc we use complex

local coordinates on GC/Kc. These are given near gKc by, for a suitable neighborhood

uc of zero in k', the map

uc E X + v Y i rG,/Kc o Lg o exp (X + /-_ Y).

Clearly G/K is defined near gKc by Y = 0. O

This construction produces essentially the same complex manifolds as the ones de-

scribed in section 4.2, as the following examples show.

1. M = Sn is the homogeneous space SO(n + 1,R)/SO(n, R). SO(n, R) is embedded

in SO(n + 1, R) as matrices of the form

1 0 ... 0

0

0
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The natural complexification of M is SO(n + 1, C)/SO(n, C). SO(n + 1, C) consists

of those complex matrices of determinant one which preserve the standard quadratic

form on C",

z + z2 + + Z 2
1 n. . . + z, +

1 .

We will show that SO(n + 1, C)/SO(n, C) is biholomorphically equivalent to the

standard hyperquadric in C", '". It's clear that SO(n + 1, C) acts holomorhpically

on Cn+1 and preserves the hyperquadric U". An arbitrary non-zero vector in C" + 1

can be made, by the ordinary Gram-Schmidt orthogonalization process, to be the

first column in an orthogonal matrix with determinant one, so SO(n + 1, C) acts

transitively. This shows that n is biholomorphically equivalent to SO(n + 1, C)

modulo the stabilizer of the point

zo = (1,0,...,0) E 1.

A matrix Ao fixing zo must have the form

1

0
Ao =

0

It follows from the identity AoAo = I that Ao E SO(n, R). This shows that 0f is

biholomorphically equivalent to SO(n + 1, C)/SO(n, C).

2. M = RP n is the homogeneous space SO(n + 1, R)/O(n, R). We consider O(n, R) to
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be the closed subgroup of SO(n + 1, R) consisting of matrices of the form

1/det A .. 0

0

SA

0

with A E O(n, R). The natural complexification of M is SO(n + 1, C)/O(n, C). The

action of SO(n + 1, C) on Qn descends to a transitive holomorphic action on 0Q,

by the map / sending a point z in fn to the complex line [z] in CP" determined

by z. If Ao fixes the point

[zo] = [(1,0,...,0)] E fn

then Ao must have the form

±1 0 ... 0

0

0

The stabilizer of [zo] is 0(7, C). This shows that f" is biholomorphically equivalent

to SO(n + 1, C)/0(n, C).

3. M = CP n is the homogeneous space SU(n + 1)/U(n) (here U(n) is embedded in

SU(n + 1) in the same way that O(n) is in SO(n + 1, R)). The natural complexi-

fication of M is SL(n + 1, C)/GL(n, C). We will show that SL(n + 1, C)/GL(n, C)

is biholomorphically equivalent to "2n = CPn x CP"\Poo(CN-1), N = (n + 1)2 - 1.

Recall that CP" x CP" is embedded in CPN by the Segre embedding

([Z, [W]) 4 [K43] = [ZaWO].

_ __i__i~PlsL _ _~P~ ~



Notice that Q 2" is the projective image of the complex n + 1 by n + 1 matrices with

complex rank one and non-zero trace. Consider the action of SL(n + 1,C) on CPN

by matrix conjugation:

[(] - [ACA-1].

This is clearly a holomorphic action of SL(n+ 1, C) on f ", since matrix conjugation

preserves the rank and the trace. If ( is a rank one matrix with nonzero trace, then

the Jordan canonical form of C is diagonal'. Thus there is an A in SL(n + 1, C)

such that

ACA- 1 = tr C

This shows that SL(n + 1, C) acts transitively on

fixes the projective image of the point

Q 2" . It is easy to see that if A

0

then A must be in GL(n, C). This shows that 3-"

to SL(n + 1, C)/GL(n, C).

is biholomorphically equivalent

4.3.2 Identification of Gc/Kc and T*G/K.

Let G be a compact Lie group, and K a closed subgroup of G. Let k be the Lie algebra

of K, and let k' be the orthogonal complement of k with respect to the Ad(G)-invariant

inner product on g. Define the vector bundle G XK k' to be G x k-n modulo the proper,

'See Strang [20], p. 81-82.

_ 1 -&rrnr_ y~l34 L~h. ---------~---~--~-----~rsF"~



free action of K given by

(g, X) - (gk, Ad(k- 1 )X).

This makes sense since Ad(K) preserves the orthogonal complement of k. In the case of

a Riemannian symmetric space, this inner product is (minus one times) the Killing form,

and k-, denoted by p, is the -1 eigenspace of an involutive automorphism of g.

Identify TG/K with T*G/K by a Riemannian metric on GIK. We will show that

TG/K is diffeomorphic to G xK k- as a real analytic manifold. If G is a compact,

connected, semisimple Lie group and Go, Kc are the complexifications of G and K

described above, then we will show that GC/Kc is diffeomorphic to G XK ki as a real

analytic manifold. We are very grateful to Professor David Vogan for his help with this

problem.

Proposition 4.3.4 Let G be a compact Lie group, K a closed subgroup. Then TG/K

is diffeomorphic to G x K kJ as a real analytic manifold.

Proof. Let r(g) denote the natural action of G on GIK. Consider the following diagram:

b

G x kl GXKk

a.

TG/K

where b is the natural projection sending (g,X) onto its equivalence class in G XK k-,

and a is the equally natural map

(g,X) -+ dr(g)d7rG/K(V).

We want to show that there is a real analytic map c,

c: G xK k' - TG/K,
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which makes the diagram above commute. To see this it suffices to show that a and

b are surjective submersions, and a is constant on the fibers of b (this follows from

the implicit function theorem; see Loos [13], lemma 1.5, chapter I). The differentiable

structure on G x K k- is defined so that b is a submersion, and b is clearly surjective. If

b(g, X) = b(g', X'), then there exists a k E K such that (g, X) = (g'k, Ad(k-')X'). Then

a(g, X) = dr(g')dr(k)drG/K(Ad(k-1)X').

It is easy to verify that dr(k)drcG/K(Ad(k-)X') = dGI/K(X'), since for all X E k± ,

r(k)7G/K(exp Ad(k - ')X) = r(k)Gr/K(k-1 exp Xk) = ,rG/K(exp X).

This shows that

a(g, X) = dr(g')d7rG/K(X')= a(g', X'),

so a is constant on the fibers of b. It is clear that a is surjective, since G acts transitively

on GIK and TKG/K is identified with k- via d7rG/K. The map

a: G x g -- TG/K

given by a(g, X) = dr(g)dlrG/K(X) is clearly a submersion, and a is just a restriced

to G x k-. To show a is a submersion we need to show that for all (g, V) E G x k± ,

da(g,v)(T(g,v)(G x k-)) is all of T a(,v)(TG/K). This is clear since T(g,v)(G x g) = TG x g,

and da(g,v)(O, k) = 0. Hence there is a unique map

c: G X K k -+ TG/K

such that a = c o b. This map is a surjective submersion, and is real analytic by the

implicit function theorem for real analytic functions.

To show that c is in fact a real analytic diffeomorphism we will construct an inverse
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by reversing the roles of a and b above. We need only check that b is constant on the

fibers of a. If a(g,X) = a(g',X'), then

dlrG/K(X) = dr(g-lg')d7rG/K(X').

Then there is a k E K such that g-1g' = k, and

drG/K(X) = drGc/K(Ad(k)X').

This shows that g' = gk and X' = Ad(k-1)X, so b(g, X) = b(g', X'). Then there is a

unique real analytic map c',

c':TG/K - G XK k ,

such that b = c' o a. Then b = c' o co b and a = co c' o a, which shows that c is invertible

and c' = c- 1. O

Remark. Note that the action of G on G x k' which is the standard action on G and

the trivial action on k± preserves the fibers of b, inducing a G action on G xK k-. It is

easy to see that the map c is equivariant with respect to this action and the dr(G) action

on TG/K.

We will need the following results to show that if G is a compact, connected, semisim-

ple Lie group, then Gc/Kc is diffeomorphic to G xK k± as a real analytic manifold.

Theorem 4.3.5 (Mostow, 1955) Let G be a connected, semisimple Lie group and let

G = K + E be a Cartan decomposition of its Lie algebra with K compact. Let E' be a linear

subspace of E such that [X, [X, Y]] E E' for all X, Y E E'. Let F = {X E E: B(X, E') = 0},

where B is the Killing form of G. Then G' decomposes topologically into I -. F -E', where

fK is the analytic subgroup determined by K, F = exp F, E' = exp E'.

Proof. See Mostow [16], or Helgason [10], theorem 1.4, §1, chapter VI. In Helgason the

order of the factors is reversed, but that is easily remedied by taking inverses. Ol



To apply this we take G to be G,. Gc is semisimple and connected if G is, and

gc = g+ V-g is a Cartan decomposition with g compact. Take for E' the linear subspace

V--k of V"Z-g. It is clear that for X,Y E k, [v'--X, [V-TX, /ZTY]] E v/--k.

Note that the orthogonal complement of /- k in X/- g with respect to the Killing

form Bc of G, is the same as VZ- times the orthogonal complement of k in g, since

Bc(v --' X, V/Z'Y) = -B(X, Y) and the bi-invariant metric at the identity is just (minus

one times) the Killing form of G. Thus we take for F the subspace VZ kJ of / g. The

analytic subgroup determined by g is just G, since G is connected. Then Gc decomposes

topologically as

GC = G -exp x/Z- kJ -exp v/-i k.

We will need the following sharpening of theorem 4.3.5.

Theorem 4.3.6 Let G be a compact, connected, semisimple Lie group, and let k, k' be

as above. Then the map r: Vi k x k' x G - Gc given by

r(v-X, -iV, g) = exp /-- X exp v---Vg

is a real analytic diffeomorphism.

Proof. We follow the proof in Loos [13], page 160-161. The first step is to prove that

Ge/G is diffeomorphic to VZTk x v/--k- by the map 7,

: v/Tk x v-l k - G /G,

given by

7(vrZTIX, v-l-Y) = r(exp V/-- X)Exp VE'Y Y

where Exp is the Riemannian exponential map from g to Gc/G. Since Gc/G is a

Riemannian globally symmetric space of the noncompact type, the map Exp is a diffeo-
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morphism2 . Explicitly, Exp is given by 3

Exp VZX = 7rGc/G(exp V'ZX)

where XrG,/G is the coset projection of Gc onto G,/G. Let S = Exp R/Z]k. The normal

bundle of S is naturally identified with GV/-T k x V/-T kJ, and the map -y is the exponential

map from the normal bundle of S to GC/G. It is clearly smooth, in fact it is real analytic.

To see that it is a bijection, note that Gc/G is a complete, simply connected Riemannian

manifold of negative sectional curvature4 . S is a closed, totally geodesic submanifold of

G,/G, since V--Tk is a "Lie triple system"5 , i.e., [/Z'k, [vc]k, [/--lk]]] C /'k.

This implies' that at each point ( E S, the geodesics perpendicular to S through C are

a submanifold S(C)- of G,/G, and GC/G is the disjoint union of the geodesics through

S perpendicular to S,

Gc/G = U s(()'.
CES

This shows that the exponential map from the normal bundle of S, 7, is a real analytic

bijection. Since Gc/G is a complete Riemannian manifold of negative curvature, the

exponential map is everywhere regular'. Hence y is a real analytic diffeomorphism.

Now consider the map F,

r: /--k x v--i-k x G - G ,

given by

r(v/-iX, v-i V,g) = expVX/'-lXexp "lVg.

This is a real analytic bijection, by theorem 4.3.5. We need to see that the inverse

2See Helgason [10], theorem 1.1, Chapter VI.
3Ibid, §3 and §4 of chapter IV.
4Ibid, theorem 3.1, chapter V.
5Ibid, theorem 7.2, chapter IV .
eIbid, theorem 14.6, chapter I
7Ibid, theorem 13.3(i), chapter I.
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is real analytic. The map 7 - 1 o 7rGc/G is real analytic by the above discussion. Let

-1 0 rGc/G(() = (V/-ZX((), -ZTY(()). By theorem 4.3.5,

(exp - -i X() exp - V Y(())

is an element of G, and the map

C -- g(C) = (exp -/-i X(C) exp - -- Y())

is analytic. Then the map F- 1 is given by

-+ X( V( g(),

so r is a real analytic diffeomorphism. EO

Corollary 4.3.7 The map T: G x k- x k --+ Gc given by

T(g, V, X) = g exp /V V exp V/ X

is a real analytic diffeomorphism.

Proof. T can be expressed as the composition of real analytic diffeomorphisms

T(g, V, X) = (exp v-ZlX exp - Vg-) - '.

We are now ready to prove the main result of this section.

Proposition 4.3.8 Let G be a compact, connected, semisimple Lie group, let K be a

closed subgroup of G, and let Gc, Kc bc the complexifications of G and K described in

section 4.3.1. Then Gc/Kc is diffeomorphic to G x K k' as a real analytic manifold.

_~ ~ s



Proof. As in proposition 4.3.4 we consider the following natural maps:

b

G x kJ -f G xK kk

ac t

G / IKc

where b is the coset projection and ac is the map

ac(g,V) = vrGc/K(g exp T V)

(7rGc/Kc is the natural projection of Gc onto Gc/Kc). As in proposition 4.3.4, we want

to construct a real analytic map cc,

CC: GK x k' -- Gc/Kc,

such that ac = cc o b. All the maps involved are real analytic, and b is a submer-

sion. It is easy to see that ac is constant on the fibers of b, since g exp lV - Kc =

gk exp V-- Ad(k-1)V - Kc. This shows that there is a unique real analytic map cc such

that ac = cc o b.

To show that cc is a real analytic diffeomorphism we need to be able to reverse the

role of ac and b above. Suppose we can show that

1. b is constant on the fibers of ac

2. ac is a submersion.

Then there exists a unique real analytic map c',

cc: Gc/Kc --+ G XK k' ,

such that b = c' o ac. By the same reasoning as before we can conclude that c' = c- 1
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and c, is a real analytic diffeomorphism.

Proof of 1. Suppose 7rGc/Kc(gexp V-iV) = rGc/K,(g' exp V 1 V'). Then there is a

kc E Kc such that

g exp J-_ZT V = g' exp v/Z- V'kc.

By theorem 4.1.2 and the remarks following we have the polar decomposition

kc = k exp V-Z- X

with k E K and X E k. Thus

gexp /--V = g'exp /-i V'kexp -i- X

= g'kexp vi Ad(k-')V'expX.

Note that V, Ad(k-1)V' e kJ, X E k, and g, g' E G. By the uniqueness of the

decomposition

Gc = G - exp V k' exp / - k

in corollary 4.3.7, we conclude that X = 0, g = g'k, and V = Ad(k-1)V'. This shows

that b(g, V) - b(g', V'), and proves 1.

Proof of 2. Let T be as in corollary 4.3.7. To show that ac is a submersion, note that

ac oprGxkI = lrGc/Kc o T. Since T is a diffeomorphism, Grcc/Kc o T is a submersion. This

shows that a. is a submersion, and completes the proof of 2 (and the proposition). O

Remark. Note that G acts on Gc/Kc in the obvious way, as a subgroup of Gc. It's

easy to see that the map cc is equivariant with respect to this action on Gc/Kc and the

G action on G xK k- described above.

Combining propositions 4.3.4 and 4.3.8 we have proved that, under suitable hypothe-

ses on G, there is a real analytic diffeomorphism of TG/K and Gc/Kc,

cc oc-l: TG/K - Gc/K,.
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We can easily write down this map for the record. If VgK E TG/K can be written as

VgK = dr(g)dlrc/K(V)

for some (g, V) E G x k', then

c o0 C-6(VgK) = g exp /--lV - Kc.

It may be instructive to check directly that this procedure for computing cc o c- 1 is well-

defined. If VgK = dr(g')drG/K(V') for another (g', V') E G x k', then g-lg' E K and

V = Ad(g-lg')V. Then

g exp V/-V - Kc = g exp v/- Ad(g-'g') V' - Kc = g' exp v--i V' - K.

It's also a trivial matter to check directly that cc o c- 1 is equivariant with respect to the

dr(G) action on TG/K and the obvious G action on G/K.

It may be useful to keep in mind the following picture.

Gx k'

TG/K Gc/Kc

G XK k'

We summarize the results of this section in the following theorem.

Theorem 4.3.9 Let G be a compact, connected, semisimple Lie group and let K be a

closed subgroup of G. Then the tangent bundle of G/K is canonically identified with a

complex homogeneous manifold. A real analytic Riemannian metric on G/K induces a

complex structure on the cotangent bundle of G/K by the metric identification of TG/K

and T*G/K.
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4.3.3 The Complex Structure on G XK P

We now have global identifications of T*G/K, TG/K, G XK k', and GC/Kc as real

analytic manifolds. Each of these inherits a symplectic structure from T*G/K, and a

complex structure from Gc/Kc. In this section we will study the complex structure so

obtained. In order to write down the complex structure operator explicitly, we need to

know how to compute the projection onto k' of ad(V)(X) for V E k' and X E g. In

the non-symmetric case there is no reason to expect to know how to do this, so it is not

possible in general to write down the complex structure operator on G XK k' explicitly.

In the symmetric case the situation is more satisfactory. We have a decomposition of g

into eigenspaces of an involutory automorphism 0 of g:

g = k + p.

Here k is the +1 eigenspace of 0 (since k is a subalgebra), and p is the -1 eigenspace.

The eigenspaces are orthogonal with respect to the Ad(G)-invariant inner product on

g. Since this is an eigenspace decomposition, it is easy to see how the action of ad(g)

permutes the subspaces k and p.

Lemma 4.3.10 [p,k] C p, [p,p] C k, and [k, k] C k.

Proof. Since 0 is an automorphism of g, we have

S[x, Y] = [OX, oY].

If X E p and Y E k, then O[X,Y] = -[X,Y], so [X,Y] E p. The others follow simi-

larly. O

Since sin x/x and cos x are entire functions, it makes sense to speak of the operators

sinad(V)/ad(V) = (-1)"ad(V)2'/(2n + 1)!
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00

cosad(V) = 1(-1)"ad(V)2"n/(2n)!
0

with V E g. We interpret ad(V)o as the identity operator on g.

Lemma 4.3.11 The operators sin ad(V)/ad(V) and cos ad(V) are symmetric, invertible

linear operators on g. If V E p or V E k, then these operators preserve the subspaces k

and p.

Proof. If <,> is any Ad(G)-invariant nondegenerate inner product on g, then ad(g)

consists of skew-symmetric endomorphisms. Furthermore, -ad(V) 2 is a non-negative

operator, since

- < ad(V) 2X,X >=< ad(V)X,ad(V)X >> 0.

Since ad(V)o is a strictly positive operator, it follows that sin ad(V)/ad(V) and cos ad(V)

are strictly positive, symmetric operators. This proves the invertibility. It's clear from

lemma 4.3.10 that if V E p then ad(V)2 preserves k and p. If V E k then ad(V) preserves

the subspaces k and p. O

To describe the complex structure on TG/K we will need a convenient method of

representing the tangent bundles of these manifolds. We will do so in terms of the image

of vector fields on G x p under the differentials of the maps a and ac. Note that p,

being a vector space, is an Abelian Lie group and G x p has the product group structure.

If (W, Y) C g x p, we denote the corresponding left invariant vector field on G x p by

(W, Y)~. Using the natural identification of T(g,v)(G x p) with TgG x p, the vector field

(W, Y)~ is simply

(g, V) + (dL, W, Y).

Such vector fields form a basis for the tangent space of G x p at each point. Since ac is

a surjective submersion, every vector in TGc/Kc can be represented as dac(W, Y),v)

for some (not necessarily unique) (g, V) c G x p and (W, Y) E g x p. Similarly, each

vector in T(TG/K) can be represented as da(W, Y)(,v), and each vector in TG xK p can
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be represented as db(W, Y)(,v). Then the following gives an explicit description of the

complex structure on TG/K, G xK p, and GC/KC in terms of these vector fields.

Proposition 4.3.12 Let JGc/Kc denote the operator "multiplication by V/--" on the

tangent bundle of GC/Kc, and let JGXKp, JTG/K denote the corresponding operators on

the tangent bundles of G X Kp and TG/K under the identifications given in section 4.3.2.

Let (g, V) E G x p and let T(V) denote the operator

(sin ad(V)/ad(V)) - o cos ad(V),

which preserves the subspaces k and p by lemma 4.3.11. Then for all (W, Y) E g x p,

Jc/Kcdac(W, Y),v)

JTG/Kda(W, Y) (,v)

JGxKdb(W, Y)-,)

= dac(-T(V)-'Y + tan ad(V)Wk, T(V)Wp)(,v)

= da(-T(V)-'Y + tan ad(V)Wk, T(V)Wp)-,v)

= db(-T(V)-'Y + tanad(V)Wk, T(V)Wp)g,v)

Here tan ad(V) means (cos ad(V)) - 1 o sin ad(V), and the subscripts k and p denote pro-

jection onto those spaces relative to the decomposition g = k + p.

Proof. Recall that ac: G x p G Gc/Kc is the map

ac(g, V) = rGc/Kc(g ep 0V V).

We need to compute the differential of ac. Let MJ-1 denote multiplication by /-1 in

g,, and let M: Gc x G -+ Gc denote the group multiplication. Then we can write as as

ac = rGc/Kc o M o (IdG x (exp oM -i))

and so for (W,Y) C g x p,

dac(W, Y)(,v) =
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d(rGc/Kc )gxp VJ-v o d(M)(g,exp -iv) o d(IdG x (exp oM-))(W, Y)v).

To compute this we write (W, Y),) = (dL, W, Y). Then

d(Ida x (exp oM4,--T))(W, Y)-,v) = (dLgW, d(exp),- v( Y)).

The differential of the exponential map is given by, for U E go,

1 - e- ad(U)
d(exp)u = dLexpU o

ad(U)

(see lemma 4.1.3). Then

d(IdG x (exp oMj- ))(W, Y)<,v) =
1 - e- ad(R v )

(dLgW, dLexp-jTv ad( V) ( Y))

The differential of the group multiplication is given by, for C, y E Gc and U E TGc,

V C T, Gc,

d(MA)(c,,)(U, V,) = d(Lc)(V,) + d(R)c(Uc). (4.6)

Then

d(M)(g,exp-g ) o d(IdG x (exp oM ~-))(W, Y) =
1 - e - a d ( ' V )

d(Lg exp -ad(v/-V) ( TY)) + d(Rexpj-v o Lg)(W).

Using the fact that left and right multiplication commutes we can write this as

d(M)(g,expV/-- ) o d(IdG x (exp oMJ- ))(W, Y)(,)
1 - e-"ad(JTv)

= d(Lgexp---V)(V) (--'Y) + Ad(exp - -i V)(W))

1- e - ad(V - i V)
= d(Lgexp--v)( ad(V/-V) 1Y) + e-ad(v-iV)(W)).

ald( A V)
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Note that Grc/Kc o L( = r(C) 0 rGc/Kc. Thus we have computed

dac (W, Y)-v) -=

1 - e - ad( J - v)
dr(g exp /-1 V) o dGc/K( d1

ad(J-i- V)
+ e-ad( v' v)(W)).

Recall that the kernel of d"rGc/K c is kc, and

(dTrGc/K)IPC: Pc 4 TeKc Gc/Kc

is a bijection. So it will be useful to find the projection onto Pc of the expression

1 - e-aa(J- v)1- (/ ) - Y) + e-ad(V- V)(W).
ad( V)Ig i )

Since ad(gc) consists of complex linear maps, it is easy to see that

1- e - ad(Tr
- v )

ad(v--T V)
1- ead(vJ 'V)

ad(V)
1 - cos ad(V) sin ad(V)

ad(V) ad(V)

and

e-a" d(VV)(W) = cos ad(V)(W) - v-i sin ad(V)(W).

Examining the power series for (1 - cos ad(V))/ad(V), sin ad(V)/ad(V) and using lem-

ma 4.3.10, we see that since V,Y E p,

1 - cos ad(V) (
ad(V)

sin ad(V)
ad(V)

Ill _



Given W E g, write Wk and Wp to denote its projections onto k and p respectively. Then

recalling that V C p we can see that

cos ad(V)(W)

sin ad(V)(W)

= cos ad(V)(Wk)

Ek

= sin ad(V)(Wk)

EP

+ cos ad(V)(Wp)

Ep

+ sin ad(V)(Wp).
%. Y W

Combining these we see that

prP( - e - ( J' ) e-ad(V)
prp( ad(J-- V) + ed())

/- s in ad(V)
= cos ad(V)(Wp) + ad( ) (Y) - sin ad(V)(Wk)).

ad(V)

Thus we have shown that

dac(W, Y)gv) =

dr(g exp v/- V) o (drGc/Kc ) pc(COS osad(V)(Wp)

(4.7)
+ / (sin ad(V)

ad(V) Y) - sin ad(V)(Wk))).

Conversely, suppose we are given a vector U + V/'ZTX with U, X E p. Then this

expression shows that

dr(g exp /- V)o(drGc/Kc)IP,(U+± X) = dac((cos ad(V))-(U),

Now it is easy to see that

V'1 Tdac(W, Y)-,v)

= dr(gexp V--V) o (dirGc/Kc)pc(sin ad(V)(Wk) sin ad(V)(Y) + v cos ad(V)(Wp))
ad(V)

= dac((cos ad(V))-'(sin ad(V)(Wk) - sin ad(V) sin )- cos ad(V)(W))
ad(V) ad(V)
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= dac(-T(V)-1(Y) + tan ad(V)(Wk), T(V)(Wp)).

This proves the first equality in the proposition. The other equalities follow more or less

functorially. Recall

JTG/K = d(c o c.') o JGc/Kc o d(c, o c-').

Since b = c- 1 o a, we have

JTGIK o da - d(c o cl')JGC/Kcd(cc o b)

= d(c o c.l1)JGc/KCdac.

Now using the expression for JGc/K odac we get the corresponding expression for JTG/KO

da. Since

JGXKP = dcc'1 JGc/Kc o dcc,

the expression for JGXKP O db follows similarly. OE

Corollary 4.3.13 At each point (g, V) E G x p, da maps (p, P)(,v) bijectively onto the

tangent space Ta(g,v)(TG/K). If (W, Y) E p x p, then

JGc/Kcdac(W, Y)(lv)

JTG/Kda(W, Y), V)

JG Kpdb(W, Y)(,v)

= da(-T(V)-'Y, T(V)W),V)

= da(-T(V)-Y, T(V)W),v)

= db(-T(V)-'Y, T(V)W),v).

Proof. If (W, Y) E p x p and dac(W, Y),vj) = 0, then from equation 4.7 we must have

sin ad(V)(y)cos ad()(W) = ad (Y) = 0
ad(V/)
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which implies that W = Y = 0. Now bijectivity follows from dimensional arguments.

The expressions for the complex structure are obvious, since W E p. O

4.3.4 Proof of the Result

In this section we will complete the proof of theorem 2.1.1 for the compact locally sym-

metric space G/K. Let Q denote the metric on GIK corresponding to the bi-invariant

metric on G as described in the beginning of this section, and let v: TG/K -+ T*G/K

be the metric identification,

V(VgK)(WgK) = Q(VgK, WgK).

Let 0o be the quadratic function on T*G/K associated with the metric Q on GIK,

and let 0 = v*'o be the corresponding function on TG/K under the metric identifica-

tion. Similarly let (a, be the canonical one form on T*G/K, and let a = v*a0c be the

corresponding one form on TG/K.

We have turned TG/K into a complex manifold by identifying it with GC/Kc, and

we give T*G/K the complex structure induced by the metric identification v. To show

that Im 50 o = ao it suffices to show that Im 40 = a, since ao = (v- 1)*a and

Im oo(U) = -do(JT.G/KU)

= do(dv o JTG/K o dv-1(U))

= (V-)*Im q(U).

To show that Imn 0 = a it suffices to show that a*Im 9 = a*a, since a is a surjective

submersion. This is the course we will take to prove theorem 2.1.1 in this case. The

following lemma shows how to compute these. Since we don't need to assume that G/K

is locally symmetric for this lemma, we will use the notation k' instead of p. In fact we

don't even need to assume that G is semisimple, only that G is compact.



Lemma 4.3.14 Let (m, E) E G x k- and (A, B) E g x k-. Let <, > denote the Ad(G)-

invariant inner product on g. Then

1. a*a((A,B)(m,E)) =< E,A >

2. a*q((m, E)) =< E, E >

3. d(a*q)((A, B)(m,E)) = 2 < E,B >.

Proof. Let (gK E T*G/K, U E T4 g(T*G/K) . Then the canonical one form on T*G/K

is given by

Co( gK)(U) = ,gK(d7rT.G/KU)

where 7rT*G/K is the cotangent projection. For VgK E TG/K, X E Tv,K(TG/K), a is

given by

a(VgK)(X) = ao((VgK))(dv(X))

= v(VgK)(d(rT.G/K o v)(X))

= Q(VgK, d( rT*G/K o v)(X))

where Q is the Riemannian metric on GIK. Now let (m, E) E G x k and (A, B) E g x k.

Then

= ao*a(m, E)((dLmA, B))

= a(a(m, E))((da)(m,E)(dLmA, B))

= Q(a(m, E), d(rT.G/K o v o a)(m,E)(dLmA, B)).

It's clear that v is a fiber preserving map, so xT*G/K o V = IrTG/K, where 7rTG/K: TG/K --

G/K is the tangent projection. Recall that

a(m, E) = dr(m)d7rG/K(E)

(a c* a)((A, B)'m,E))



where irG/K: G -+ G/K is the coset projection. Then xTG/K o a is just rG/K 0 pr l , where

pr1 denotes projection onto the first factor in G x k-. Then

(a*a)((A, B)',E)) = Q(dr(m)dlrG/K(E), drG/K o dLm(A))

= Q(drG/K(E), d7rC/K(A))

since 7rG/KoLm = r(m)orG/K, and the metric Q is invariant under the action of G. Recall

that the metric Q at the identity coset is given by the Ad(G)-invariant inner product

<, > on g (minus one times the Killing form if G is semisimple) under the identification

of TeKG/K and k- by dlrG/K restricted to k'. This means that

(a*a)((A, B)(m,E)) =< prki(E),prki(A) >

But we assumed that A C k-, and so

< prkr(E),prk (A ) >=< prk (E), A >=< E, A >

This proves 1. To prove 2, just compute

a*¢(m, E) = q(dr(m) o drG/K(E))

= Q(dr(m) o dlrG/K(E), dr(m) o drGIK(E))

= Q(drGI/K(E), dlrG/K(E))

= < prkl(E),prk±(E) >=< E,E >

since E E k' by assumption. Now 3 follows immediately. O

Remark. When G is semisimple we have a global identification of TG/K and GC/K,.

If we let 0c, ac be the objects on GC/Kc corresponding to € and a on TG/K, then it's

easy to see that a*0 = a* c and a*a = a* a c .

Returning to the symmetric case, we are now ready to show that a*Im = a*a. Let



(g,V) E G x p, (W,Y) E g x p. Then

1
a*Im 50((W, Y),v)) = -2d(JTG/Kda(W, Y)-,v)).

By proposition 4.3.12 this is

a*Im3 ((W, Y)(,v)) = 2d(a*O)((-T(V)- Y + tan ad(V)Wk, T(V)Wp),v))

which by lemma 4.3.14 becomes

a*Im O((W, Y)(, v)) =< V,T(V)Wp >.

Note that T(V) = (cos ad(V)) - 1 o (sin ad(V)/ad(V)) is a symmetric operator by lem-

ma 4.3.11, so

a'Im 4#((W, Y)(g,)) =< T(V)V, Wp >

Now note that V is an eigenvector of cos ad(V) and sin ad(V)/ad(V), with eigenvalue 1.

Hence T(V)V = V, and

a*Im O((W, Y)(,v)) = < V, Wp >

= < V, W >

since V E p. On the other hand, by lemma 4.3.14,

* a((W, Y)(,v)) = < V, W >

This proves that Im 8 = a.

To complete the proof of theorem 2.1.1 in the symmetric case, we need to show that

the standard involution o of T*G/K is an antiholomorphic map. Equivalently, we must

show that the involution a of TG/K that takes a tangent vector to its negative is an
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antiholomorphic map. Let U E T(g,,v)(TG/K), and write

U = da(W, Y)(g,V)

for some (g, V) E G x p, (W, Y) E g x p. Note that o o a is equal to a composed with

multiplication by -1 on the second factor. Thus

do, o da(W, Y)(,v) = da(W, -Y),_v).

Then

JTG/K o d(U) = JTG/Kda(W, -Y)(,_ V)

da(-T(-V)-'(-Y) + tan ad(-V)Wk, T(-V)Wp)(g,_y ).

Note that T(-V) = T(V) and tan ad(-V) = - tan ad(V). Then

JTG/K o da(U) = da(T(V)-'Y - tan ad(V)Wk, T(V)Wp)(g,_y)

= -do o da(-T(V)-'Y + tan ad(V)Wk, T(V)Wp)(g ,)

-de o JTG/Kda(W, Y) ,v)

-d. o JTG/K(U).

This completes the proof of theorem 2.1.1 in the symmetric case. Moreover, we have

shown that the complex structure described in theorem 2.1.1 exists globally on T*G/K

in this case.

4.4 Homogeneous Spaces of Compact Lie Groups

We now consider the case of a homogeneous space of an arbitrary compact Lie group

G. Let M = G/H with G a compact Lie group and H a closed subgroup. We will use H

instead of K to distinguish this case from the symmetric case. The bi-invariant metric on
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G induces an Ad(G)-invariant inner product <, > on g, and an orthogonal decomposition

of the Lie algebra g of G,

g = h + h.

Let 7rG/K:G -+ G/H be the coset projection. Then dlrG/K restricted to h' gives an

identification of h- and TeHG/H, and hence a positive definite inner product on TeHG/H.

Due to the Ad(G)-invariance of the inner product, this gives rise to a metric Q on G/H.

In this section we will prove theorem 2.1.1 for (M, g) = (G/H, Q).

If G is a compact, connected, semisimple Lie group, then TG/H is globally diffeomor-

phic to Gc/Hc. If G is not semisimple, we have only been able to obtain an identification

of a tubular neighborhood of G/H in TG/H with a neighborhood of G/H in Ge/He.

All of our results become local in this situation, and the proofs consist mainly of compu-

tations in local coordinate systems.

4.4.1 Complexification of T*G/H

Using the results of section 4.3.1, we can embed G/H as a totally real submanifold of

GI/H. We want to construct a real analytic identification of a neighborhood of G/H

in T*G/H with a neighborhood of G/H in Gc/Hc. As before we will identify T*G/H

with TG/H by the Riemannian metric on G/H, and then complexify TG/H in a tubular

neighborhood of G/H. Let rGc/Hc: G, -+ Ge/He denote the coset projection, and let r

denote the natural action of G on G/H.

Proposition 4.4.1 Let 4: TG/H - Gc/Hc be the map

4 (VgH) = 7rGc/H(g exp V--1(d7rG/Hh )-ldr(g-')VgH).

This map is well defined, and is a diffeomorphism of a neighborhood of G/H in TG/H

with a neighborhood of G/H in Gc/Hc.
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Before proving the proposition we will explain what the map 4 is doing. If VgH E

TgHG/H, then dr(g-1)VH is in the tangent space to the identity coset. We are using

(drG/H)h. to identify THG/H with h'. Then x/Y(drG/H hl)-1dr(g-1)VgH is in go,

and we can exponentiate onto Gc and project onto G,/H,.

Proof. First we show that 4 is well-defined. If VH = V'"H then there is an h E H such

that g' = gh-1. Then

4 (VgH) = (g'hexp -- (drG/Hh )-'dr((g'h)-')V,') H

= (g'exp v/- Ad(h)(dlrG/HIhl )-ldr(h-1)dr(g'-)V',H) . Hc.

We know that for X E h-, h e H,

dr(h)dlrG/H(X) = dr/GIH o Ad(h)(X).

Since Ad(h) preserves h- , it follows that

(drG/Hh)-ldr(h) = Ad(h)(drc/H h)- .

This shows that (IVgH)= - (VH).

Next we show that 4 is real analytic. This may seem obvious, but we will give a proof

using real analytic local coordinates because we will need these later. Let rKg be the real

analytic local coordinate near gH E G/H given by, for X in a neighborhood of zero in

h1,

Kg(X) = KG/IH o Lg O exp X.

Then coordinates on a neighborhood of 0gH in TG/H are given by

1 - e-ad(X)
K(X, V) = d(rC/H o Lg O exp)x(V) = dr(g exp X)(drG/H)( - (V))

ad(X)



(here X is as above and V E h'; see Helgason [10], theorem 1.7, chapter II for the

differential of the exponential map). Thus it's easy to see that

1 - e-ad(
X )

o K (X, V) = (g exp X) exp v-l1 prh±(ad(X) (V)) . Hc (4.8)
g ad(X)

where prh± denotes projection onto the subspace h' with respect to the orthogonal

decomposition g = h + h'. From the expression 4.8 it is clear that 4 is real'analytic.

To show that 4 is a local diffeomorphism near the zero section it suffices to show that

d(4 o nr)(o,o) is nonsingular for every g E G. Note for W, Y E h',

d(4, o a)(o,o)(W,0) = dIt=o g exp tW . H- = dr(g) o drGc/Hc(W),

d(4 o )(o,o)(0, Y) = It=o g exp v/Z'(tY) • H = dr(g) o drGc/,H(-IY)

This shows that

d(4 o r)(o,o)(W, Y) = dr(g) o d7rGc/Hc(W + /'iY).

Since W + v/T-Y E h and (d7rGc/Hc)I h is an isomorphism, it follows that d( o )(,)

is nonsingular.

To show that 4 is a diffeomorphism of a tubular neighborhood of G/H in TG/H to

a neighborhood of G/H in Ge/He, note that 4 restricted to G/H is globally one-to-one,

since it is just the embedding of G/H into Ge/He given in lemma 4.3.3. Then by a

standard argument (see for example Lang [17], page 97-98), 4 is a diffeomorphism when

restricted to a sufficiently small neighborhood of the zero section in TG/H. O

From now on we will give a neighborhood of GIH in TG/H the complex structure

induced by this identification.
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4.4.2 Proof of the Result

In this section we will prove theorem 2.1.1 for homogeneous spaces of compact Lie groups,

with the Riemannian metric Q described above. If o is the quadratic function on T*G/H

associated with the Riemannian metric Q and a, is the canonical one form on T*M, we

must show that Im &0 = ao, and that the standard involution 0ao of T*G/H is an

antiholomorphic map with respect to the complex structure given by proposition 4.4.1.

Let a, 0 be the objects on TG/H corresponding to a, and ,o under the metric

identification v: TG/H - T*G/H. Then it suffices to show that. Imn d = a, and that

the corresponding involution of TG/H is an antiholomorphic map with respect to the

complex structure on TG/H.

We first show tha.t it suffices to verify that the equation

Im 0d = a (4.9)

holds on a neighborhood of zero in the fiber over the identity coset, THG/H. The group

G permutes the fibers transitively, and it's easy to see that 0 and a are invariant under

the action of G on TG/H. The identification of TG/H with G/He is equivariant with

respect to the natural G actions on TG/H and Gc/He. It follows that the complex

structure on TG/H induced by this identification is G-invariant, so equation 4.9 is G-

invariant. If we can verify that equation 4.9 holds on a neighborhood of eH in THG/H,

we will have shown it holds locally near each point of the zero section GIH in TG/H,

and hence on a neighborhood of G/H in TG/H.

Let JTG/H denote the complex structure operator on TG/H near the zero section

given by the identification in proposition 4.4.1. Let o denote the identity coset eH. We

must show that for all Vo in a neighborhood of zero in ToG/H and all Uo E Tvo(TG/H),

1
S(d)vo(Uo) = -a(Vo)(JTG/HUo).

2

The proof is a detailed computation in local coordinates, which will be broken up into



several steps. Throughout we will use the following local coordinates. Let u be a neighbor-

hood of zero in h'. Then local coordinates on G/H near zero are given by n: u -+ GIH,

where

K(X) = rG/H(exp X).

Vector bundle coordinates on TG/H near 0o are given by n: u x h -  TG/H, where

'(X, V) = (d)x(V).

It is easily seen, using the formula for dexp in Helgason [10], theorem 1.7, chapter II,

that
1 - e -ad(X)

hn(X, V) = dr(exp X) o dirG/H o ( d )(V).
ad(X)

The fiber over the identity coset is the image of the set {0} x h' under the map 0I.

Let € , 00, JTG/H denote the objects on u x hi corresponding to q, a, JTG/H on TG/H

under the identification n. Then it suffices to show that for all (0, V) in the domain of

JTG/H and all (W, Y) E T(o,v)(u x h') h- x h l ,

(d)(o(WY)= -a (0, V)((J/H)(ov(W,Y)). (4.10)

To prove theorem 2.1.1 we must get reasonably good expressions for the complex structure

operator JG/H and the forms dOO, al over {0} x h'. The difficult part is obtaining an

expression for JG/IH, so we will tackle that problem first. By definition,

(JTG/H)(O,V) = d(4 o KO)-1Mr d(I o K)(o,v)

where MJ-y is multiplication by V7_ on the tangent space T,,o(o,v)Gc/Hc. The first

step is to compute d(l o Kd)(o,v).

Lemma 4.4.2 Let (0, V) E {0} x h', and let (W, Y) E h± x h', which we identify with



the tangent space T(o,v)(u x h- ). Then

d(4 o 0~)(o,v)(W, Y) =

dr(exp V-1 V)dirGc
1 - e- ad(v v )  1

/H(( ad(V) - prh 'ad(W )V )) + e-'d(-'v)(W)).

Proof. We first compute d(b o Kd)(o,v)(W, 0). From equation 4.8 we have

d(4 o Ki)(o,v)(W, 0) Sd -t=0 ( o K)(tW, V)

d 1 - e-ad(t) (V)))

dt =o 7Gc/H, (exp tW exp 'pqI( ad(tW) (V)))

d 1 - e-ad(tw)
SdrGc/Hc(-I t=o exptWexp /'i-prh±( ad(tW ) ))dt ad(tW)

Let M: Gc x G, -- G, denote the group multiplication. We can write this as

d(4 o 0n)(o,v)(W, 0) =

drGc/HC o0
d (Ex, _ dd 1 - e-ad(tw)

dM(e,1xpJV)(W, d(exp),r-rV It=o V-1prh - (V))).dt ad(tW)

By examining the power series for (1 - e-ad(tW))/ad(tW) we see that

d t=o prh( - (V)) -1 prhad(W)V.
dt ad(tW) 2

Recalling the formula for the differential of group multiplication given in equation 4.6,

we see that

d(M)(e,expFJIV)(W, d(exp),-y( 2 )prhad(W)V)=

d(ex- 
prhad(W)V)

d(exp),/Tv( 2 P- h-ad (W) V) + dRexpJ-V-, (W).
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Using Helgason's formula for d exp in lemma 4.1.3, we have

d(.M)(e,expJ;--v)(W, d(exp )ri-v( 2 )prh±ad(W)V) =

1 - ead( v 1) p_
dLexp r-- v( V( (-prh ad(W)

ad( VZTiV) 2

Putting all this together we find that

d(4 o )(o,v)(W, 0) =
1 V '_ v -1

dr(exp V7 ) o dXrG/H, ( ( e -prh ad(W)
ad(vAi V) 2

Next we compute d(4 o K)(o,v)(0, Y); this is somewhat easier.

have

d(4 o A))(o,v)(0, Y)

This shows that

d(4 o d)(o,v)(W, Y) =

dr(exp x/Z V) o dWGc/Hc(

V)) + e-ad(VV)(W)).

V)) + e-d" (V )).

Using equation 4.8 we

= It= (( o n')(0, V + tY)
dt

- t=o rGc/Hc(exp -(V + tY))

= drGc/HC o d(exp ) 1:Tv(J -- Y)

1 - e- ad(v i V)
= dr(exp v/ V) o drcc/HC(/-( ( (Y)))

ad(vi V)

- lprhLad(W)V)) + e-ad(r-V)(W))
1 - e - a d(ZTV)

d-( (yad(J-- V)

This proves the lemma, since

v/-T(1 - e-ad(V'/'))/ad(v/-V) = (1 - e-ad(v ))/ad(V).
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The next step is to understand how to invert d((4 o 0)(o,v). Our strategy will be to

write d(4 o a)(o,v) as a composition of maps which are invertible for small enough V.

Note that for any W, X E hi ,

1 - e--iad(V)
-ad(V) (X) + e-ad(VTV)() =

ad(V)
1 - cos ad(V)-cosad(V)(X) + cos ad(V)(W) +

ad(V)

We are thus led to define the following maps:

1. Pv: h x h -- h x hi given by

sin ad(V)
ad(V)

X) - sin ad(V)(W)).

Pv(W,X) = (W,X +

2. Rv: h x h --- h x hi given by

1 - cos ad(V)()+cos
= prh xhi( ad(V)

sin ad(V)ad(V)(W)sin ad(V)(X)- sin ad(V)(W))
ad(V)

3. S: h' x h -+ h- is the standard identification, S(W, X) = W + X/ZTX.

Then it is clear that we can write

d(4 o KI)(o,v)(W, Y) = dr(exp x V) o (drGc/Hc)Ih O So Rv o Pv(W, Y). (4.11)

Obviously S, Pv, and (drG/He)Ihi are bijections. For Rv we have the following lemma.

Lemma 4.4.3 For small enough V, Rv is a bijection.

Proof. We can write Rv as

Rv( W,X) = (W, X)+
1 - cos ad(V)

prhizxhi( ad(V) (X) + (cos ad(V) -
sin ad(V)

ad(V) 1)(X) - sin ad(V)(W)).
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Define the linear operator Hv: h' x h' h x hi by

Hv (W,X) =

prhix h( cos ad(V) (X) + (cos ad(V) - 1)(W)
ad(V)

sin ad(V)
ad(V)

- sin ad(V)(W)).

Then Rv can be written as

Rv = Idh.xhi + Hv.

Suppose we put a norm I 1 on h" x h" (all norms on a finite dimensional vector space

are equivalent). Then it suffices to show that for all V sufficiently small,

IIHv < 1.

If this is true, then we can invert Rv by a Neumann series and conclude that Rv is a

bijection. The most convenient norm to use on hi x h' is the "box" norm:

II(W, X)11 = IlW1| + IIXII

where II I is the norm on h- induced by the Ad(G)-invariant inner product. Then we

have

<1 - cos ad(V)Sprh(- cos ad(V) )(X)l| + Ilprh.(cos ad(V) - 1)(W)II
ad(V)

sin ad(V)
ad(V) )11 + lprh • (sin ad(V))(W) I.

It's clear that Ilprhl II < 1, so this becomes

IIHv(W,X) I < I1 - cos ad(V)
ad(V)

+ sin ad(V)
ad(V)

+(11(cos ad(V) - 1)11 + 1I sin ad(V)ll)llWll.
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The adjoint representation

ad: g -- End(g)

by V --+ ad(V) is a linear map between finite dimensional vector spaces, hence bounded.

So there exists a constant C, independent of V, such that

I ad(W)II V_ CIIvI .

The power series for the analytic functions appearing in the estimate 4.12 have no con-

stant term. By examining these power series one sees that

max(1 - cos ad(V) sin ad(V) - )11, (cos ad() - 1)11, sin ad(V))
ad(V) ad(V)

oo

< c C"l in".
n=l

So by taking V sufficiently small we can arrange that I Hv | < 1. OE

We can now write down an expression for the complex structure JTG/H Recall that

by definition,

JTG/H = d( o 0)-' o M,- o d(4 o ).

Since 7rGc/He and the Gc action are holomorphic maps, we can write using equation 4.11

(JTG/H)(,V) = PV1 o Rv0 o Jhixh o Rv o P (4.13)

where Jhj-,h is the standard complex structure on h± x h- , Jhxh-(W, Y) = (-Y, W).

Using the Neumann series to invert Rv, for small V, we have

Rv 1 = Idhxh" - Hv + H ...

= Idhxh - Hv o RI.

Substituting this into 4.13 gives us the expression that will be useful for proving theo-
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rein 2.1.1:

(JTG/H)(,V) = PV1 Jhixh- o Pv + Pv 1 0 Jh-xhi- o Hv o Pv (4.14)

-P,7 1 o Hv o Rv' o JhI xh o Rv o Pv.

To see why this is useful we must compute the other things that enter into the expression

for Im 0 = a in these coordinates, which is given by equation 4.10.

Lemma 4.4.4 Let (X, V) E u x hl , let (W, Y) C T(o,v)(u x h') (which we identify with

h . x h-), and let <,> denote the Ad(G)-invariant inner product on g. Then

1. ao(0, V)(W, Y) =< V, W >

2. 01(X, V) =< 1-e-.d(X) (V), prh( _- - d ( xx ) (V)) >

3. (dl)(o,v)(W, Y) = 2 < V, Y >.

Proof. Since al = (v o a~)*ao where v: TG/H -* T*G/H is the metric identification, we

have

a(0, V)(W, Y) = v o K (0, V)(d(rT.c/H O V 0 a ,)(,y)(W, Y)).

It's easy to see that rT.G/H o v = 7rTG/H, and 7rTG/H o K 1 = K o pr, where pr I is projection

onto the first component. By the definitions we see that

d(a o prl)(o,v)(W, Y) = K.(0, W) = drG/H(W).

Thus ao(O, V)(W, Y) = Qo(d7r/H(V), drG/H(W)) =< V, W > since V,W E h', which

proves 1.

To prove 2, we just unravel the definitions:

A(X, V) = oo,o 0 vO (X, V)

= Q('(X, V), K'(X, V))
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1 - e-ad(x) 1 - e - ad(X)
= Q(dG/H( ad(X) (V)), drG/H( ad(X) (V)))

1 - e - a d(X) 1 - e - a d(X)
= < Prh( d(X) (V)),prh±( (V)) >

ad(X) ad(X)

This proves 2 since the projection onto h' is a symmetric operator.

It's clear that (dq$)(o,y)(0, Y) = 2 < V, Y >. To find (d¢l)(o,v)(W, 0), we note that

1 - e - ad(tw) t
ad(tW) = I- ad(W) + O(t2 ).

ad(tW) 2

Then

d t t
(dfl)(o,v)(W,O) = It=o < V - [W, V],prh-(V - [W, V]) >dt 2 2

1
1 (< V, prh±[W, V] > + < [W, V], V >).

Since prhi is a symmetric operator, V is in h', and ad(V) is a skew symmetric operator,

this quantity is zero. This proves 3. O

We are now ready to verify the equation

1
2(d~')(o,y)(W, Y) = -a'(0, V)((J G/H)(,V)(W, Y)). (4.15)

By the lemma above, we must show that

< V, Y >= - < V, prl((JTG/H)(o,v)(W, Y))>

where pr1 means projection onto the first factor in h' x h'. First we note that since

Pv is only a translation in the second factor, pr I o Pv1 = pr1 . So we may forget about

the P7'1 factors in the expression for (JG/H)(O,V) in equation 4.14. Then recalling the
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definition of Pv we can write

- < V,prl(J TG/H )(o,v)(W, Y) > = < V, Y + 1prhzad(V)W>

- < V,pr (Jhoxh- o Hv o Pv(W, Y)) >

+ < V,pr,(Hv o R v ' oJhixhi Rvo Pv(W,Y)) >.

We now come to the crucial point that makes this whole thing work: the range of

ad(V) is orthogonal to V. This means in particular that

1
< V,Y + -prhlad(V)W >=< V,Y >.

2

Since (sin ad(V)/ad(V))- 1, sin ad(V), (1- cos ad(V))/ad(V), and cos ad(V) -1 are ana-

lytic functions of ad(V) without constant term, the range of these operators is orthogonal

to V also. This means that

o = < V,pr,(J hixh o Hv o Pv(W, Y)) >

- < V,pr(H v o Rv o Jhxh- o Rv oPv(W,Y)) >.

So we have shown that

- < 7, pr((JTG/H)(,V)(W, Y)) >=< V,'Y >,

verifying equation 4.15.

To complete the proof of theorem 2.1.1 we need to show that the standard involution

co of T*G/H is an antiholomorphic map. We need only show that the corresponding

map on TG/H, 0: Vg H -- -VgH, is an antiholomorphic map. Since o commutes with the

G action on TG/H, it suffices to show that for all V E h' sufficiently small,

(JTG/H)(,-V) o da = -do o (JTG/H)(0,V).
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To prove this we use the coordinates introduced above and consider the corresponding

map on u x hi, lA: (X, V) -- (X, -V). We need to show that

(JG/H)(o,-V) o da = -doo,v) o (JG/H)(o,V)

We will use the decomposition of (JOG/H)(0,V) given by equation 4.13, and the following

trivial observations.

Lemma 4.4.5 Pv o dao,v) = (Id x -Id) o Pv.

Proof. Just compute from the definitions:

P-v o da(o,v)(W, Y) - P_(W, -Y) = (W, -Y - lad(V)W)
2

= (Id x -Id) o Pv(W, Y).

Lemma 4.4.6 R_v o (Id x -Id) = (Id x -Id) o Rv.

Proof. Recall we can write Rv = Idh.xh± + Hv, where Hv is given by

Hv(W, X) =

1 - cos ad(V)
prhixhi( ad(V) + (cos ad(V)

sin ad(V)
- 1)(W),( si( ad(V ) 1)(X) - sin ad(V)(W)).

Note that (1 -cos x)/x, sin x are odd functions, and cos x, (sin z/x)- 1 are even functions.

Then it's easy to see that

H_v o (Id x -Id)(W, X) = (Id x -Id) o Hv(W, X).
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To complete the proof of theorem 2.1.1, we simply observe that

(JG/H)(0,-V) o d(Ov) - P o Rjl o Jh xh o Ro _v o P_v o dao,. )

SP- o RI Jh xh o (Id x -Id)o Rv o Pv

-P_ o R-j, o (Id x -Id) o Jh±xh. o Rv o Pv

-dao,V) o P' 1 o Rv' o Jhhxhi o Rv o Pv

= -d,, ) o (J G/H)(O,V)"

This shows that the standard involution a, of T*G/H is antiholomorphic. The uniqueness

of this complex structure now follows from the formal power series construction in sec-

tion 3.1 (see the remark on page 43). Thus we have completed the proof of theorem 2.1.1

in the homogeneous case.

4.5 Homogeneous Spaces of Compact Semisimple

Lie Groups

Suppose G is a. compact, connected, semisimple Lie group, and H is a closed subgroup.

Then the map 4 in proposition 4.4.1 is the same as the map c 0o c - 1 in the proof of

proposition 4.3.8. So by theorem 4.3.9, P extends to a global diffeomorphism of TG/H

and Gc/Hc. The identification of T*G/H and TG/HII by the Riemannian metric is also

global, so we get a globally defined complex structure on T*G/H. We can hope for a

global version of theorem 2.1.1 in this case. The following theorem shows that in fact we

do have such a global theorem.

Theorem 4.5.1 Let G be a compact, connected, semisimple Lie group and let H be a

closed subgroup. Give G/H the Riemannian metric corresponding to the bi-invariant

metric on G. Then there is a globally defined complex structure on T*G/H having the

properties described in theorem 2.1.1.
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Proof. The one form Imo,, -a o exists globally, and when paired with an analytic vector

field gives an analytic function. By the results of section 4.4.2, this analytic function

vanishes on a neighborhood of G/H, so by the uniqueness of analytic continuation it

must be identically zero. We conclude that Im 0o = ao on all of T*G/H. Similarly, the

analytic (1, 1)-tensor o*Jo + Jo vanishes in a neighborhood of G/H in T*G/H, so it must

be identically zero. O
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Chapter 5

Toeplitz Operators

In this final chapter we will apply the ideas we have worked out in the preceding

sections to a problem in analysis. We will construct a pseudodifferential operator on M,

a totally real submanifold of a complex manifold, that models the process of analytic

continuation of Hardy functions from the boundary of a tubular neighborhood of M in

Q. We will find that this process is very much like solving a certain "heat type" equation

on M, and make explicit computations in the case of spheres and tori.

5.1 Analytic Continuation as Heat Flow

Suppose M is embedded as a totally real submanifold of a complex manifold Q, and

let p be a strictly plurisubharmonic exhaustion of a neighborhood of M in Q such that

p _ 0 and p = dp = 0 on M only. Let

1t = {e : p( ) < e-t}.

Note that as t goes to infinity, 1t shrinks to M. Due to the strict plurisubharmonicity of

p, 2t is a strictly pseudoconvex domain for t sufficiently large. The two form -d Imp will

be nondegenerate for t sufficiently large, so by the Kostant-Sternberg-Weinstein theorem

we have a symplectic identification of a neighborhood of Al in Q and a neighborhood
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of M in T*M. By scaling p we may assume that Qo is compactly contained in such a

neighborhood, still denoted by Q.

In this way the boundary of Qt (t > 0) inherits the cosphere fibration, which we will

denote by

Pt: flt -+ M.

The fibration of course depends on the choice of a symplectic structure on Q, and therefore

the choice of exhaustion function p. This fibration is important because it allows us to

associate functions on 0 2t with functions on M by "fiber integration". Let m E AlM.

The fibers pt'(m) C O0ft are submanifolds of Q, and so inherit a measure tt,m from the

Riemannian structure of 0, which varies smoothly with mn. If h is a smooth function on

9t, we can transform h into a smooth function pt.h on M by integrating over the fibers

of Pt:

(pt.h)(m) = J h dpm) dm

This makes sense since the fibers ptl1(m) are compact. We could also use some other

measure besides the Riemannian measure on the fibers; we will suppress from the notation

the dependence of pt. on the choice of measure. The notation pt. is used because pth is

in a sense the push-forward of h by the map pt. See Guillemin [8], §5 for more details.

Let 7H" denote the smooth Hardy space,

~H"(2,t) = {h E CO"(Oft,): 3 a holomorphic function h on f2t such that h = hlan,}.

We could also characterize this space as the kernel of a certain differential operator

on fSt, the -b operator, and define Hardy spaces of L 2 functions or distributions. For

simplicity, we will consider only smooth functions. L. Boutet de Monvel and V. Guillemin

have obtained the following remarkable result.

Theorem 5.1.1 The map pt. when restricted to CO" has finite dimensional kernel and

cokernel.
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Proof. See V. Guillemin [8], theorem 5.1. O

Recently Melrose and Epstein [14] have proven that this correspondence is actually

bijective, for all t sufficiently large (as t becomes large, 9t becomes small). By scaling the

exhaustion p we may assume this is true for all t > 0. This allows us to identify C"(M)

with t"(Ot), (t > 0), and operators on "'(Oflt,) with operators on C"(M).

One of the most natural operators on Hardy functions is analytic continuation to

the interior of OQt, since these are precisely the functions on the boundary which have

such extensions. There is a natural map from "(O0if 0) to "O(OQf), given by analytic

continuation followed by restriction: if h E l?"(f0f0) and h is the holomorphic function

on to whose boundary value is h, then we send

?0(09f0) 3 h -f hi 0, dM h- W0(0£t).

This gives us an operator St on M, which is the bottom arrow of the following diagram:

(po* I(ano)) 1 1 Pt*i(anO.,)

C"(M) Cs (M)

It is easy to see that microlocally this operator is not very exciting; it can be extended

to a map which sends distributions into smooth functions. Its interest is in that it is the

solution operator to a certain type of heat equation, which we will study in the rest of

this chapter.

5.1.1 Heat Flow From the Boundary of a Complex Tube

The ideas we will describe can be formulated in terms of a Bruhat-Whitney embedding

of M into a complex manifold and any strictly plurisubharmonic exhaustion p. In what

follows we will use the complex structure on T*M near the zero section described in
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theorem 2.1.1, and the quadratic exhaustion function o, induced by a Riemannian metric

g on M. Then the fibration pt is just the cotangent fibration restricted to the cosphere

bundle (measured with respect to the dual metric on the fibers of T*M), and the vector

field E in theorem 2.1.1 is the radial vector field E,, = ' V /0/0.

We can use the flow of E, to identify Go\M with [0, oo) x 0lo0 by

F: [0, oc) x a0o 3 (t, m) -- e-t/2 m, E Qt\M.

We have chosen to use the flow of - o so that Fe F(t, ) identifies 810 with Oft.

Let H, be the Hamiltonian vector field associated with 0o, defined by

wo(Ho, X) = dqo(X).

Then HO is tangent to 0o, since

HOo(0o) = dqo(Ho) = wo(Ho, Ho) = 0.

We can consider HO, as a differential operator on [0, oo) x 00. This allows us to formulate

a simple yet elegant result relating the analytic continuation of Hardy functions on 00

to a Cauchy initial value problem on [0, oo) x Ro0.

Proposition 5.1.2 Let h C 7V'"(0fo). Then the unique solution to the Cauchy problem

au-- - ---  u
at 4

ult=o = h

is given by u(t, m) = h(e-t/ 2 m), where h is the holomorphic extension of h to fo.

Proof. By proposition 2.5.4 we know that HeO = -2JoEo. Since this is a real analytic

differential operator, by classical Cauchy-Kovalevsky theory we know that there exists

a unique solution u to the initial value problem above (see for example Courant and
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Hilbert [5]). Let h be the holomorphic extension of h to 10. If Z is any type (0, 1) vector

field (i.e., Z can be written locally as 7 = aa(x, y) ), then TZ = 0 on o. Now let

Z = Eo + V-/ZJEo. The identification of lo\M with [0, oo) x 8 0 has been constructed

so that if we set u(t,,m) = h(e-t/2m), then

Sh = -2 u
Ot"

The equation TZh = 0 becomes

at 2

which proves the proposition. EO

The analytic continuation of Hardy functions is analogous to a sort of heat flow on

[0, oo) x 0f0, governed by the equation

- -= -- H u. (5.1)
at 4

Under the Boutet de Monvel-Guillemin identification of 7O"(0flt) with C"(M), the

differential operator Ho corresponds to a pseuododifferential operator on M, and the

partial differential equation 5.1 corresponds to a pseudodifferential equation on M. In

the remainder of this chapter we will study this operator, and work out some examples.

5.1.2 Analytic Continuation as a Pseudodifferential Equation

on M

In order to convert equation 5.1 into a pseudodifferential equation on M by fiber integra-

tion, we will need to specify the measures p't,m to be used in computing the fiber integral

more precisely. We want to choose these measure so that "/lat" commutes with pt.. If

i is a smooth function on fo and ht denotes its restriction to 8Ot, then we would like to
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have
d 1

Ito(pt*h) = Pto*((--oh)to).

The simplest way to arrange this is to fix a smooth measure po,m on the fibers po'(m)

and set

It,m = (Ft)*/ ,m

where Ft: O8 o -- 89t is the map Ft( m) = e-t/2m. Then

d
It (pt*ht)(m)

d

d

= dt Jp 1 (m)
h(e-t/2 m) diLO,m( m)

= o )(e-t/ 4m) dio,m(,m)JP r(m) 2
1-

= ptO.((--Eoh),o)(m).2

Using the measures pLt,m we

ifferential heat equation on M.

can translate the differential equation 5.1 into a pseudod-

Proposition 5.1.3 There exists a first order pseudodifferential operator Pt on M such

that St is the solution operator for the associated heat equation,

tg
-- = Ptg.at (5.2)

Proof. Let f E C1"(M), and let h

to mean the inverse of pt, restricted

Cauchy problem

be the Hardy function (po.)-'f (we write (pt.)-'

to W7O"(0ft)). Let u(t, ,m) be the solution to the

Ou VT-
Ot 4

uIt=O = h

(5.3)

which by proposition 5.1.2 is given by u(t,(m,) = h(e-t/2~,), where h is the analytic

continuation of h to flo. Now transfer this equation to M by integrating over the fibers
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of Pt. This gives for the left hand side of 5.3

au 1 dPt*( pt,(- oh) = -(ptht),
at 2 dt

where ht is the restriction of h to &0t. Recalling the construction of the operator St on

page 113, we see that after integrating over the fibers of pt,, the left hand side of 5.3

becomes
du d

pt*( ) = d(Stf).at dt

For the right hand side of 5.3, note that

u(t,4m) = h(e-t/2m)= ((Pt*)-stf)(e-t m).

So after integrating over the fibers, equation 5.3 becomes

(Stf) = - pt*H.(pt)-'(Stf).

Here we are considering Hko as an operator on 02t. Thus we are led to the operator

e def V--1
Pt pt, Ho(pt,) -

The operators pt, and (pt*)-' are Fourier integral operators, which always compose well

with differential operators. So Pt is also a Fourier integral operator. In fact it is a

pseudodifferential operator, since the canonical relation associated with the vector field

Ho, is the identity canonical relation, so the canonical relation associated with Pt is also

the identity relation (i.e., the conormal bundle of the diagonal in T*(M x M)). It's clear

that Pt is a first order pseudodifferential operator. EO

In fact Pt is an elliptic pseudodifferential operator. Rather than prove this, we will

refer to the examples to follow. These examples will show that Pt looks very much like

the Laplace operator on M. From these examples we make the following conjecture.
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Conjecture. Pt = ci(t)VAg + c2 (t)Id modulo a compact operator.

5.2 The Torus

Let T" be the standard n torus, Rn/27rZ", with the metric induced by the standard

metric on R". This is exactly the bi-invariant metric on T" as a Lie group. The tangent

bundle of T" is naturally identified with T" x R", which is then identified with T*T"

by the metric. The complex structure on T"n  R' described by theorem 2.1.1 is given

in lemma 4.1.5. Since T" is commutative, ad(V) is identically zero and so the complex

structure is the one obtained by identifying the tangent space T(x,v)(T" x Rn) with C"

in the usual way. It is easy to see that C"/27rZ" is the universal complexification of T"

given in theorem 4.1.1. Here Cn/2rZ" is C" modulo the 27rZ" action

x + y---y (-x + 2rq) + r y.

It is easy to check that the obvious global identification of T*T" with C"/2rZn is the

complex structure described in theorem 2.1.1. The exhaustion function 0 is O(x, () = |2 .

The functions ek(x) = eJ - k' , k E Z", form a Hilbert space basis for L(Tn), and

every smooth function on Tn can be expanded in a Fourier series in this basis. It can be

shown that the functions

ek,t(Xz, ) e 1k'J+ nt,

form a Hilbert space basis for the L closure of the smooth Hardy space on 8t3 C T*T".

Due to the invariance under the obvious group actions of our operators, it will be enough

to compute with these elementary functions.

Lemma 5.2.1 (pt*ek,t)(x) = Jn(e-t/2kl)ek(x), where Jn is the zeroth order Bessel func-

tion

J(.V) = n_2 e-"(1 - 2) ds.1
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Here F_-2 is the volume of the n - 2 sphere (n > 3).

Proof. Let e = e- t /2. Then

(p*ek,t)(X) = 12 =1 e .(+' d

= Ck(X) fs.-, e-ek- dw

where dw is the standard measure on Sn- 1. The integral is rotationally invariant in k,

so it is a function J of k . To compute it we set ek = v(O,... ,0, 1). Then

J.((V) = S, e - L dw.

Using cylindrical polar coordinates on Sn - l ,

W = (W1 ,.,. ,_7 )

r = I'I = cos

W, = sin 0

dw = F,_n(cos O)"-2 d

(rn_2 = volume of Sn-2),

we see that

J(v) = r _n-2 e-vsinOe(cos ) n - 2 dO.

Setting s = sin 0 this becomes

J(v) = rn-2 e-3(1 - 2) ds
1-

which proves the lemma. O

Remark. Note that Jn(v) > 0, so in this case we have a direct proof that pt. is bijective

when restricted to the Hardy space.
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Corollary 5.2.2 The operator St is given by

J(e-t/2kl)Stek = ek.

We can now describe the operator Pt on T".

Proposition 5.2.3 The operator Pt is given by

(e-t /2 k) 2 rf-2 Jn+2(e-t/ 2 kl)e
Ptek = ek2(1 - n) F, Jn(e-t/ 2 1kl)

where r, is the volume of the n sphere.

Proof. The Hamiltonian vector field Ho, is

Ho, = 2
0
zi 

"

a8
Then

Ho.(pt)-'ek(X, = J-t/21k) v-- (k .- )ek,t(, ).

The operator Pt is then

1
Ptek(z)= 2Jt((k - )ek,t)*

2SettinJ,g =(e-t/2 e) we have

Setting e = e-1/2 we have

pt.((k - ()ek,t) = (k -e )e-sk d ek(X).

As before the integral depends only on IkI. We can write it as

SEik ij- wLneEk dw

- Elk,,- 2 1 e- lkl s(1 - s2)3 ds.
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After integrating by parts this becomes

(khis )shows tha d

This shows that

pt*((k -.)ek

= (ek|) 2 rn 2  1 eelkl( -s 2)i 2 . ds

1 - r. Jn+2( lk l)ek

1 - n rn

which proves the proposition. O

To understand this operator we need the following asymptotic expansion of Jn.

Lemma 5.2.4 There exist constants ai, depending only on the dimension n, such that

00e-V Jn(1 )Y aiv-'
i=0

with ao > 0.

Proof. See appendix A.2 Ol

Let A be the Laplacian on T", A = - (-) 2 . Then it follows immediately from the

lemma that there exist constants ai, depending only on the dimension n, such that

Pt ~ ale-t/2 + a. + a-i(e-t/2) - i
i=1

with al < 0. The meaning of the symbol "-" is that the difference between Pt and the

first k terms on the right maps L2(T) into the Sobolov space Wk-1(Tn).

This verifies conjecture given at the end of section 5.1.2 for the n torus with its

standard metric. It also provides further justification for thinking of analytic continuation

as a sort of heat flow.

When n = 3 it is easy to compute the integrals defining Jn(v). The result of this
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computation (which we will omit) is that for n = 3,

1
J.(V) = r1(1)(ev - e-")

V
2 1

J+2(V) = r3( Z )(e-v + e + (e- - ev)).

Then if we set E = e-t/2 we have

Peek l e-2lk + 1 + l(e-2 lk 
- 1)

2 1 - e-2ek )e.

This shows that in the ring of pseudodifferential operators we have for n = 3,

Pt = (-e-t/2 V + Id).
2

5.3 The Sphere

In this section we will study the operator Pt on the n sphere, for n odd, and write

down an exact expression for Pt as a pseudodifferential operator when n = 3. The results

will be very similar to the case of the torus.

To do the computations it will be most convenient to work in the context of theo-

rein 3.1.1, thinking of S" as the "center" of a complex Monge-Ampere manifold. We

have given a very explicit realization of this in the case of the sphere in section 4.2, due

to P. M. Wong [25]. Let

=Z + =1}= {z = z + -y E Cn+1: z2 + . + z2+l

= (cosh-1 p) 2

where p(z) = Iz12. We have shown that 4 is the solution to the "Monge-Ampere type"

problem posed in theorem 3.1.1 for Sn with its standard metric (see proposition 4.2.2).

This identifies Q with T*Sn, and we have shown in theorem 4.5.1 that this identification
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is global. We need to describe the cotangent foliation on 1, the radial vector field and

its integral curves. P. M. Wong shows in [25] that the Monge-Amp're distribution, as a

complex one dimensional subbundle of the holomorphic tangent bundle of D, is spanned

by the vector field
n+l a

V = E(pz - i) .
i=1

Recalling the discussion in section 2.4, we see that the vector field E must be a multiple

of the real part of V. Using the condition that -. = 2q we can determine E. The result

is that
cosh-1p ' n+1

J= E oX-y + y | (5.4)21x |yj i=1 iBi ay

Let

n = n {(z) < e-t}.

Since Q is defined by i112 - ly12 = 1 and x - y = 0, we see that this can be written as

1 -
S= fn {Iy| < 2(-1 + cosh e-t/2)}.

One can check that if x + v-Ty is in 0f 2 0, then the integral curve of -1E through

x + v/-Ty is given by

1 X V-T y
F(t, x, y) = (1 + cosh et/2)-l + - (-1 + cosh e'2) Y.

72j 1x1 /2 IYI

The cotangent fibration is given by following the integral curves of - j through x+V1T y

to where they intersect the center S". This shows that the cotangent fibration of 0e2t

over S" is just the obvious one,

X

The map F: 010o -+ f\M above gives the identification of 80 fo x [0, oo) with S2\M needed

to construct the one parameter family of operators Pt.
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To compute the "averaging" operator pt. we will have to rely heavily on the group

invariance present. The orthogonal group O(n + 1) acts on Sn by rotations. Under this

action L 2(S) decomposes into a Hilbert space direct sum of inequivalent, irreducible

representations of O(n + 1),
00

L2 (S") = V
k=O

where the finite dimensional subspaces Vk are the "spherical harmonics of degree k",

Vk = span of fa,k() = (aim.1 + . an+1mn+ )k: a + . + =0, ai E C1.

See for example Helgason [11], theorem 3.1, introduction. The orthogonal group O(n + 1)

acts on Q as well by

A. (x + v-- y)= Ax + Z-1Ay.

This action preserves the complex structure, so it induces an action on the L 2 closure of

the smooth Hardy space, 7?2(q0ft). We will show that we get a similar decomposition of

-H2 (Cqtt).

Lemma 5.3.1 Under this O(n + 1) action, H2(1 t) breaks up into a Hilbert space direct

sum of inequivalent, irreducible representations of O(n + 1),

7H2(aqt) =S kt

0

where

Vk = {polynomials h(z)Ian, : h(z)isn E Vk}.

Proof. The Vk# are clearly inequivalent, irreducible representations of O(n + 1), since

the Vk are. Since polynomials in z restricted to M92t are dense in W72(a0t), we need only

show that if P(z) is a polynomial in z homogeneous of degree k, then P restricted to

8Oft is in the algebraic direct sum of the V. Since P restricted to R" is a homogeneous

polynomial on R" of degree k, there exist harmonic polynomials hk, hk-2,... , hk-2 (p =
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integer part of k/2) such that

PIRn = hk(X) + x12hk-2(X) +... + IX12P hk- 2p(X)

(see for example Helgason [11], proof of theorem 3.1, introduction). This shows that P(z)

can be written as

2 + + Z2p

P(z) = hk(z) + (z+ ,+ 1 hk 2  + + z+l) hk-2p(z).

Then when restricted to 9flt we have, since z2 + ... + z+ = 1 on

Plan, = hklan, + ... + hk- 2p a,.

This proves the lemma, since the hk-2j restricted to S" are in Vk-2j.

The fibers pt1 are n - 1 spheres, so if ht E 7~"(SQt) we see that

1 1/)M + -/)
(pt*ht)(m) = JyES:.m=O} h( v(1 + cosh e-t/ 2)m + (-1 + cosh e-t/') y) do,m.

We take for the measures yLO,m the standard measure on Sn-1.It is clear from this expres-

sion that pt. commutes with the O(n+ 1) actions. It follows that pt*(Vk,) is an irreducible

representation of O(n + 1). Schur's lemma says that either pt*(Vk ) is inequivalent as a

representation to 1Vk and pt,.(Ik) is zero, or it is an equivalent representation, in which

case there is a unique map from Vkt to pt.(Vk/ ) commuting with the O(n + 1) actions,

up to a constant multiple. See Zelobenko [25], §20. We conclude that there is a function

At(k) such that for each hk,t G VkCt,

Pt*(hk,t= At(k)hk,t S-

To compute At(k) we set hk,t(z) = (Z 1 + V/Tz 2)k and evaluate both sides of the above

equation at m = (1,0,...,0). Set a = (1 + cosh e-t/2)i, b = 1(-1+ cosh e-t/2), and
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let w = (Y2, ... , Yn+i). Then

Awhere(k) = is the standard S -

where dw is the standard measure on Sn-i.

(a - bwl)k dw

Using cylindrical polar coordinates as in

section 5.2, we can write this as

1 ± )k( n-3d
A,(k) = r,_2 (a + bs)k(1 s2) ds.

-1

This is clearly nonzero for all t E [0, oo), k = 0,1,.... Thus we have shown the following.

Proposition 5.3.2 The map pt, is a bijection from 72(fl t) to L 2(S"), and is given by,

for hk,t E Vk t

pt*(hk,t) = r n1-1(a + bs)k(1 - s2) 2 ds hk,tl S.

where rn-2 is the volume of the n - 2 sphere.

We can now write down an expression for Pt. Using the expression for E in equation 5.4

we have
cosh - 1 pHO = -2JE =

Ix|y|
y Iz2  - 12 0I

i=1 By

A quick computation shows that H6 commutes with the O(n + 1) action on &Oft, so Pt

commutes with the O(n + 1) action on S". By Schur's lemma there is a function Pt(k)

such that

Pt Iv, = P,(k)Id. (5.5)

Set fk(m) = (n1l + x-/1m 2)k and evaluate both sides of the above equation at m =

(1,0,...,0). Then

t(k) = pt,(Hf0t)(1, O..., 0)4 At (k ) f "' "
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where fkt is the function (z1 + VT z 2)k restricted to Of1t. We need to evaluate

fyESn:yY=o} Hf , t(am +

-kvl- cosh-'(1 + 2b2 )

v-C by) dy

fWES-1
(b - aw)(a - bwl)k - 1 dw

where a(t), b(t) are as above. We are assuming that

Using cylindrical polar coordinates, this becomes

k > 0; if k = 0, then Ptfk = 0.

pt*(H) fkj (1, 0, .. .,0) =

-k/r cosh-'(1 - 2b')r- 2  1 (b + as)(a + bs)k-1(1 - 2)ni ds
-- 1

where Fn-2 is the volume of the n - 2 sphere. Recalling the expression for At(k) above

and the definition of b, we have proved the following.

Proposition 5.3.3 The operator Pt on S n is given by, for fk E Vk,

-k - t/12 f'1 (b + as)(a + bs)k-l(1 - 2) -i ds
4 fS1(a + bs)k(1 - S2)-3 ds

fk*

To understand this operator we need to get asymptotic expansions for these integrals

as k c .We will assume that ,-3 defas k -+ oo. We will assume that 2- q is an integer, i.e. that n is odd.

Lemma 5.3.4 Let It(k) denote the integral in the denominator in proposition 5.33.

Then
00

hl(k) - -(q+1)(a + b)k E k - 'C,t,
1=0

where if r(s) = In (a!), 7 = (1 - s2)q then

(-1)'+ Q d 1
Cn,t,l )1+dS=1r

r'(1) ds r'
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Proof. We can write the integral as

I ,(k ) = (a + b )k e kr(s)i (s d s .
-1

Integrating by parts N times gives

)k( N )'
It(k) = k-'(a + b)( k- '(-  dsr 1

1=0 r'(1) ds r

-(-k)N ekr(s)( d N+1 (s) ds) + O(k- 0 ).
1 ds r

t

Since r(s) < 0 for s E [-1, 1), the remainder term is of order k- N. Since b vanishes to

q th order at s = 1, this proves the lemma. O

Lemma 5.3.5 Let it(k) denote the integral in the denominator in proposition 5.3.3.

Then
OO

l(k) = k-(q+')(a + b)k E k-'dn,t,l
l=0

where if r(s) is as above and , = (-)(1 - s2)23, then

dn,r,t ( - 1 )1+q d 1
r'(1) ds r'

Proof. Note that for s e [-1, 1], a + bs > a - b = 1/(a + b) > 0, since a2 - b2 = 1. This

shows that j is a smooth function. The proof of the asymptotic expansion is exactly the

same as in the previous lemma. Oi

We can now obtain an asymptotic expansion for the Fourier coefficients fi(k) in

equation 5.5. Using the asymptotic expansion of It(k) and it(k) above and the expression

for Ptfk in proposition 5.3.3, we obtain

-e-t/2 d't0+ 1 dto
it(k) = - (k n - (dn,t,1 - Cn,to , 1 )) + 0(k-).

4 Cn,t,O Cn,t,O Cn,t,O
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One can easily compute the first term in this expansion:

a+b
cn,t,o = dn,t,o = + b )(q+')q!2 q.= ~ b

Then
_e-t/2

,3(k) = 4 k + at,, + O(k-1)4

where
e- t/2 b 1

4 a + b q!27

We want to compare this with x/, where A is the (positive) Laplace operator on S"

associated with the standard metric. The Fourier coefficients of v/A are

VA fk = k( k + n -1) f

(k + 2 + O(k-))fk

This shows that
-e- t/2 2

P, = - /--~ _ + at,nId + K
4 n-i

where K is a compact operator on L 2(S").

When n = 3 it is possible to evaluate the integrals directly. The result is

a+6
It(k) = b(k ((a + b)k - (a + b)-k)

b(k + 1)
a(t) + b( a

kbk (a + b)k -(a + b)-k  b( + 1)((a + b)k - (a + b)-k)).

Note that (a + b) - k is rapidly decreasing' as k - oo, since a + b > 1 for t E [0, oo). Then

we see that when n = 3, the Fourier coefficients of Pt are

-e -t/2 a
t (k) = _ (k + 1 -t- ) + O(k-).

1By this we mean that kN(a + b)- k - 0 as k -- OO for all N.
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Then
e-t/2

4

where K is a compact operator.
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Appendix A

Appendix

A.1 A Covering Lemma

We will show in this appendix that given any open cover Vj of M by open sets

in Q we can cover M by holomorphic coordinate patches Oi with coordinate functions

= (z,..., z!) such that

1. Each Oi is contained in some Vj

2. M n O is given by {C( Oi: Im z() = ... = Im z!'(() = 0}

3. Each O contains ony one component of M

4. If Oi n Oj is not empty, then Oi n Oj n Al is not empty.

It is clear that we can arrange for conditions 1 through 3 above to be satisfied, and that

if 0i is a covering of M with open sets with 0i C Oi, then conditions 1 through 3 above

continue to hold for the coordinate system (0,, 4iQ).
To arrange for condition 4 to be satisfied we use a standard tubular neighborhood

theorem. We may assume that there is a neighborhood M of M in Qf, a neighborhood

MN of M in the normal bundle of M, and a diffeomorphism F from MN to M (see for

example [1], theorem 2.7.5). We may assume that Oi C M, and that N-'(Oi) contains a
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set diffeomorphic to O n M x B,(O) for some e sufficiently small, where B,(O) is a ball of

radius E about 0 in R". So we may assume by shrinking the 0O that Oi is diffeomorphic

to Oi n M x B,(O). Then if Oi n O is not empty, neither is

(Oi n M x B,,(0)) n (Oj N M x BE,(0))

= Oi n Oj N M x Bmin(E,,,)(0).

This shows that O n Oj nM is not empty.

A.2 Asymptotic Expansion of J,

The results in this appendix are from a course on hyperfunctions given by Prof. V.

Guillemin. Write

J(v) = F,_ 2  e"8 (1 - s 2) ds + 0(v 0 )

Set r = 1 - s. Then

Jn(V) = rF 2 evj e-vr rn2(2 - r) dr + 0(v).

Now let u = yr. Then

J(v) = rn- 2evv2 e-uu 2 (2 - U du + O(vo
0 V

We can write for some constants aj, depending only on the dimension n,

S j=O

Then

j=
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Note that

je-u-un3 + j dv = e-"un +j du + O(v - )

n-3
= r( + j) + O(v-").

2

This shows that

n-I 01 n - 3
e-V V"V 2 J() - r,_2 Ear(- + j) + O(v - " )

j=0

which proves lemma 5.2.4.

A.3 Notational Conventions

We will denote the interior product of a vector V with a form w by t(V)w. The Lie

derivative of w by the vector field V will be denoted by Lyvw.

The subscript o will usually refer to objects on the cotangent bundle of a manifold

M. For example, ao denotes the canonical one form, w, denotes the symplectic form on

T*M.

Lie algebras will be written with sans serif letters. For example, if G is a Lie group,

then the Lie algebra of G is written as g.
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