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Abstract

Many Signal Processing problems may be posed as statistical parameter estimation
probleins. A desired solution for the statistical problem is obtained by maximizing the
Likelihood (ML), the A - Posterion probability (MAP) or by optimizing other criterion,
depending on the a - priori knowledge. However, in many practical situations, the onginal
signal processing problem may generate a complicated optimization problem e.g when the
observed signals are noisy and “incomplete”.

A framework of iterative procedures for maximizing the likelihood, the EM algorithm, is
widely used in statistics. In the EM algorithm, the observations are considered “incomplete”
and the algorithm iterates between estimating the sufficient statistics of the “complete data”
given the observations and a current estimate of the parameters (the E step) and maximizing
the likelihood of the complete data, using the estimated sufficient statistics (the M step).
When this algorithm 1s applhed to signal processing problems it yield, in many cases, an
intuitively appealing processing scheme.

In the first part of the thesis we investigate and extend the EM framework. By changing
the “complete data” in each step of the algorithm we achieve algorithms with better con-
vergence properties. We suggest EM type algorithms to optimize other (non ML) criteria.
We also develop sequential and adaptive version of the EM algorithm.

In the second part of the thesis we discuss sorme applications of this extended framework
of algorithms. We consider,

o Parameter estimation of composite signals, 1.e signals that can be represented as a
decomposition of simpler signals. This problem appear i1n e g.

— Multiple source location (or bearing) estimation
— Multipath or multi-echo time delay estimation

¢ Noise canceling in multiple microphone environment, for a speech enhancement prob-
lera.
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Title: Professor of Electrical Engineering, MIT.
Thesis Supervisor: Ebhud Weinstein

Title: Adjunct Scientist, WHOL.
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Chapter 1

Introduction

1.1 Introductory remarks

Many signal processing problems may be posed as statistical estimation problems. A
celebrated example is the work of Wiener, who formulated the furdamental problem of fil-
tering a signal from an additive noise as a statistical problem, whose solution is known now
as the “Wiener filter”. Other common examples involve parameter estimation; e.g finding
the localization and the velocity of targets in radar/sonar environments, or synchronization
(i.e timing estimation) problems in communications systems. Many examples of the statis-
tical analysis of signals processing problems may be found in (1], especially in its second
and third parts.

In order to formulate the statistical problem, a model assumption is needed. A specific
mode! may generate a simple statistical préblem. However, it may not represent the original
signal processing problem well. On the other hand, another model that tries to consider too
many aspects of the original problem, may generate not only a difficult statistical problem,

bit also a non-robust, possibly ill-posed problem. The art of good modeling, which captures
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the important aspects of the real problem without complicating the resulting mathematical
or statistical problem, is prcbably the most important factor in a successfully implemented
statistical solution to the underlying real problem.

After the statistical problem is formulated, its desired solution often requires the op-
timization of some criterion, depending on the a-priori knowledge, and on the (possibly
subjective) “risk” criterion. Frequently used criteria are Maximum Likelihood (ML) and
Maximum A-Posteriori (MAP). Even with good modeling, these optimization problems may
be complicated, e.g when the observed signals are noisy and incomplete. These optimiza-
tion problems are rarely solved analytically. Instead, standard iterative search methods. e.g.
gradient methods, Newton-Raphson method, are often used. The standard methods have
some well known numerical problems. Furthermore, these methods may still be complicated
since they require the calculation of the gradient and sometimes the Hessian matrix. These
standard search methods rarely generate intuitive algorithms for the original real problem.

An interesting alternative to the straightforward gradient or Newton methods kas been
introduced in (2. This technique. known as the Estimate-Maximize (EM) algorithm, sug-
gests an iterative algorithm that exploits the properties of the stochastic system under
consideration. The EM algorithm is actually a framework of iterative algorithms. To im-
plement an EM algorithm, one has to consider the observations as incomplete with respect
to more convenient choice of complete data. The algorithm then iterates between estimating
the sufficient statistics of the complete data, given the observations and a current estimate
of the parameters (the E step), and maximizing the Lik2lihood of the complete data using

the estimated sufficient statistics (the M step).

As will becorne evident in the course of this thesis, the EM method may yield intuitive



processing schemes for the original signal processing problem, by innovatively choosing the
complete data. Therefore, it 1s not surprising that some previously proposed algorithms
for solving various signal processing problems can be interpreted in the EM algorithm
context. One example i1s the iterative speech enhancement method suggested by Lim and
Oppenheim 3]. We will return to this example later in the thesis. Other algorithms
that have been suggested intuitively to solve speciiic signal processing problems, e.g. the
iterative channel estimatiou algorithm of -4j, the iterative reconstruction algorithm of {5

ks

the iterative resolution technique of 6| and more, can also be interpreted as examples of
the EM algorithm.

It is particularly important to note, at this point, the work of Musicus [7] and [8]. In
this work, a general class of iterative algorithms has been suggested to minimize a special
form of the Relative Entropy. In some special cases, the minimum relative entropy criterion
reduces to the maximurn likelihood criterton, and in those cases, the suggested iterative
algorithms reduce to the EM algorithm. This work was an important inspiration for this
thesis. We will discuss this approach later in the thesis in conjunction with our work on
general information criteria and the EM algonithm.

Our exposure to a variety of estimation problems in oceanography, specifically in under-
water acoustics, also had a major impact on this thesis. We have found that many of these
problems were approached suboptimally, probably since the standard mathematical mocels
of these problem utsually generate statistical problems whose direct solution is complicated.
We have suggested the EM iterative algorithm as a better approach to solve these statistical
problems. Later in the thesis, we will describe how modeling considerations and EM algo-

rithms have applied to array processing and time delay estimation problems in underwater
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acoustics, and have generated interesting solution procedures. The important experience
with oceanographic signal processing problems established and confirmed our approach for
solving statistical signal processing problems in general, and the other problems, presented
later in the thesis. in particular.

In summary, this thesis presents a class of iterative and adaptive algorithms, based
on the ideas that led to the EM algorithm, to optimize various statistical criteria. In
addition, the thesis will address several signal processing problems and show that by using

a reasonable model. an appropriate statistical criterion and an EM algorithm, an insightful

solution procedure may be achieved and implemented successfulily.

1.2 Preview and organization of the thesis

The application of the EM algorithm to a real world problem first requires modeling the
problem statistically and then applying the EM algorithm to solve the resulting statistical
probiem. However, the EM algorithm is not uniquely defined; it depends on the choice of
complete data. An unfortunate choice may yield a completely useless algorithm.

In this thesis we will consider the following signal processing problems:

e Parameter estimation of superimposed signals, i.e signals that can be represented as
a sum of simpler signals. We will consider specifically the problems of multiple source

location (or bearing) estimation, multipath or multi-echo time delay estimation and

spectral estimation.

e Noise canceling in a multiple microphone environment. The real world application is

a speech enhancemnent problem.
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e Signal reconstruction from partial information. For this problem, we will present ideas

and propose further research.

We will suggest statistical models for these signal processing problems and solve the resuiting
statistical problems by the EM method. In all these problems we wiil use a natural choice
of complete data.

In the process of considering the applic tions mentioned above, we have modified and
extended the scope of the EM method and derived explicit forms for some important special
cases. Each of these results may be considered as a contribution to the EM algorithm at a
theoretical level. We have also developed and analyzed sequential and adaptive algorithms
based on the EM algorithm. '

As a result of these contributions a general and flexible class of iterative and adaptive
estimation algorithms is established. Beyond the theoretical contributions and the spe-

cific applications, we believe that this thesis suggests a way of thinking and a philosophy

which may be used in a large variety cf seemingly complex statist. .al inference and signal

processing problems.

This thesis i1s organized as follows. Chapter 2 and 3 provide the theoretical background
and contributions. In Chapter 2, we start with a review of the EM algorithm as developed
in 2!, and give its basic convergence properties following the considerations in ‘9l. We then
denive the EM algorithm for the linear Gaussian case, whose importance will be evident
later in the thesis. We also modify the basic EM algorithm and extend it, so that it may
be applied to general estimation criteria.

Any iterative algorithm implies an adaptive or sequential estimation procedure, in which

the new iteration takes into account new data points. A derivation of a class of sequential

12



algorithms based on the EM structure is presented in Chapter 3. This class of algorithms
may have the important tracking capabilities tvpical to an adaptive algorithms together
with desirable asymptotic convergence results, achieved from the EM theory.

The signal processing apphcations of this class of iterative and adaptive algorithms are
presented in Chapters 4 and 5. In Chapter 4 several problems that arise in radar/sonar
signal and array processing are presented. Those probiem involve multiple targets and
multipath signals. A more general problem is the estimation of parameters of superimposed
signals. We will describe an EM solution to the general superimposed signals problem, and
appiy it to multiple target bearing estimation and to multipath time delay estimation.
Sequeniial algorithms to solve this problem will also be suggested.

The problem of multiple microphone noise cancellation is presented in Chapter 5. Using
models of the speech and the noise, a statistical problem is formulated and then solved using
the EM algorithm. This solution generates an intuitive processing scheme, that provides a
novel solution to this well—iméestigat.ed problem. An adaptive scheme based on the above
algorithm, r-nay be an alternative to Widrow’s algorithm {10].

Chapter 6 1s entitled “Information, Relative Entropy and the EM algorithm”. It presents
several interesting resuits that give an alternate interpretation to the EM algorithm and to
information criteria mentioned in the EM algorithm context.

Chapter 7 will conclude and summarize the thesis. We will also suggest in this chapter
topics for further research. As one of these topics, we will present specific ideas for solving
problems of signal reconstruction from partial information. A statistical framework for these
problems 1s developed and EM algorithms for solving this statistical problem. by optimizing

the likelihood, the a-posteriori probability or other appropriate criteria are derived.

13



Chapter 2

The EM method: Review and new

developments

In this Chapter we review the Estimate-Maximize (EM) algorithm for solving maximum
likelihood (ML) and maximum-a-posteriori (MAP) estimation problems, and present new
developments that extend the scope of the algorithm, and make 1t more accessible for solving
signal processing problems.

The chapter 1s organized as follows. In section 2.1, the basic EM algorithm is presented,
following the counsiderations in {2]. In section 2.2, we analyze and discuss the convergence
properties of the EM algorithm. The results presented here clarify and simplify the conver-
gence analysis presented in |2| and [9].

In section 2.3, the EM algorithm is explicitly derived for the special but important
case where the observed (incomplete) data and complete data are jointly Gaussian. related
by a linear non-invertible transformation. In perspective, the linear-Gaussian case was an

important step towards the application of the EM algorithm to signal processing problems.

14




In sections 2.4 and 2.5, we present new ideas and results that extend the scope of the
EM method. The results in these sections generate a more general, yet more flexible, class

of 1terative algorithms.

Secuion 2.6 concludes this chapter, by discussing the possible signal processing applica-

tions of the EM framework.

2.1 Basic theory of the EM algorithm

Let Y denote a data vector with tie associated probability density fy(y;8), indexed
by the parameter vector # € 8, where 8 is a subset of the k-dimensional Euclidean space.

Given an observed y, the maximum likelihood (ML) estimate, 8,4y, is the value of # that

maximizes the log-likelihood, that is,

br1 = arg maxlog fy (y; ) - (21)

Finding the ML estimator 1s often desirable since 1t is, in most cases, asymptotically con-
sistent and efficient. However, in many cases, the maximization problem of (2.1) is compli-

cated.

Suppose that the data vector Y. can be viewed as being incomplete, and we can specify

some data X related to Y by

TX)=Y (2:2)
where T'(-) is a2 non-invertible (many to one) transformation. If an observation z of X is
given, an observation y of Y is available too, but not vice versa. X will be referred to as

the complete data. The probability density of the complete data, denoted fx(z;8), is also

indexed by the parameter vector §. Assume that H is specified so that if z 1s available,

15




finding the maximum likelihood estimate of § 1s easy, i.e. solving

g = 1 - 6 2.3
8 argrgsagngg(z 6) (2.3)

1s straightforward. The EM algorithm, presented below, will use the simple procedure for

ML estimation in the complete data model, as a part of an iterative algorithm for ML

estimation 1n the observations’ modei.

Given a sample of the incomplete data y, the complete data z must be a member of the

set X (y) where,
Xig) = {I%T(g) = g} (2.4)

Since Y 1s a many to one fuaction of the complete data X, the protability density

functions o1 the complete and incomplete data satisfy,

fy(y:8) = /IM fx(z;8)dz (2.5)

The conditional density of X, given Y = y, is defined over the set X (y). This probabiiity

density function is given by,

) fx(z: 8) _ Ix(z:8)

v=ylz;8) = = - , Yze X 2.6
Ix Y ?_(I fI(!) f&({!; Q)dl' fl (2, Q) zE (Q) ( )

=)

Taking the logarithm on both sides of (2.6) and rearranging, we obtain

log fy (y;0) = log fx(z:8) — log fix/y=y(z:8), Yz € X(y) (2.7)
We can now take the conditional expectation over X, of both sides of ( 2.7), givenY = y
and an arbitrary parameter value . The left hand side remains unchanged, and we get,
log fy (y:8) = E {log fx(:8) | Y. = y:¢ } - E{log fyy (z/%:8) | Y. =, ¢} (28)
Define, for convenience,

L(8) = log fy (y;9) (2.9)
16




Q(e.7) = E{log Ix(z:0)|Y = g;Q’} = /I(y)logbi(z; 8) - fxjy=y(z:8)dz  (2.10)

H(§,¢)=E {108 Ixpy=y(z:8) Y. = .!5@'} = /;M log fx/y=y(2:8) - fx/yy(2:0')dz

With these definitions, equation {2.8) reads

L(8) = Q(0,8) ~ H(e,¥) (2.12)

Equations (2.7) and (2.8) are interesting identities for L(d), the log-likelihood of the

observations. Equatior (2.7) is true for any z € X(y). Equation (2.8), or equivalently

equation (2.12) 1s irue for any pair 8,4 € 6.

Consider now Jensen’s inequality (see e.g. equations 1e.5.6 and 1e.6.6 in {11}) which

states that for any two p.d.f.’s f and g defined over the same sample space,

Ey{logg} < Ey{log f} (2.13)

where equality holds if and only if f = g almost everywhere. E; denotes the expectation,

using the p.df. f. Let f = fy/y(z;¢) and ¢ = fx,y(z;0), both defined over the sample

space X(y). Substituting in (2.13), and using the definition of H(-,-), we get,
H(0,8) < H(¢,9) (2.14)
Suppose we can find 8 such that,

Qg ¢) 2 Q(¢:¢) (2.15)

In this case, using (2.14) and (2.12), we conclude that,
L(8) > L(#) (2.16)

17



A procedure for iteratively increasing the likelihood may be suggested based on (2.15)
and (2.16) as follows. Given a value of the parameter 9™ we will find a new value §("*1)
that satisfies (2.15), and thus increases the likelihood, by maximizing Q(4; g™). This

procedure is the EM algorithm, which we now formally present.
e Start,n =0 : guess §'%
e Iterate (until some convergence criterion is achieved)

~ The E step: calculate

Q(8:6") = F{log fx(z:4) ¥ = y: 8} (2.17)
— The M step: solve

g;0™) (2.18)

-n=n-+1

The “E” s.ands for the conditional Expectation, or Estimation performed in the E step,
and the “M” stands for the Maximization performed in the M step.

An EM iteration may be summarized by the updating equation.

(n+1) _ i ... gn)
8 —a.rgréneaexE{logfi(g,Q)!g,e } (2.19)

This iteration 1s justified intuitively as follows. We would like to choose 8 that maximizes
log fx{(z;8), the log-likelihood of the complete data. However, since log fx (z;#) is not avail-
able to us (because the complete data is not available), we maximize instead its expectation,
given the observed data y, and the current value of the parameters Q(").

An iterative procedure that increases the likelihood is also achieved, if instead of max-

imizing Q(#;8™)), we just increase it. Thus, we may replace the M step by the following

18



step:
81 = M(g'™) (2.20)

vhere M(8) is any mapping that satisfies

Q(M(8):8) > Q(8:8) veco , (2.21)

This variation of the algorithm was named the Generalized EM algorithm (GEM) by Demp-
ster et. al [2]. A special case, of course, is the EM algorithm.

The motivation of the GEM algorithm, which also applies to the EM algorithm, is
summarized in the following theorem, (theorem 1 of {2}). This theorem carefully states the

basic monotonicity property of the GEM algorithm. The proof of this theorem will follow

immediately from the considerations above.

Theorem 2.1 For every GEM algorithm,

Lg") = L(g™) (2:22)
where equality holds if and only if both
Qe+ ™) = Q(at™); gt (2.23)
and
Txpy (@ 8™y = fx v (2/y: 8™ aein X(y) (2.24)

Proof: By the definition of the GEM algonthm
Q™1 6) 2 Qe 4™
Thus, since H(8*~1:; 8"y < H(g™; ™)),
L(Q(Ml)) > L(Q("))
Now by (2.12), equality holds if and only if

QA1 8™y = Q6™ ; 8™y and H("Y);8™) = H(g™; 8
19



The latter holds if and only if

fxy (8™ = fx v (2/50™), aein X(y)

1

This theorem leads to the following corollaries:

Corollary 2.1 If for some §" = 6, L(87) > L(8), V8 € B, then, for every GEM algorithm
M(8) =6

Corollary 2.2 Suppose for some 8" € ©, L(8") > L(8), V8 € ©. Then, for every GEM
algorithm

L(M(¢7)) = L(¢")
Q(M(87);87) = Q(87;9)
Ix;y(@mM(8)) = fx)x(z/:8) aein X(y)

In other words, if a unique global maximum of the likelihood exists, it is a fixed point
of any GEM algonthm. If we have a set of global maxima, the GEM algorithm may move
inside this set. However, each new value must satisfy the conditions of corollary 2.2.

We note that the EM algorithm is actually a class of algorithms. There are many
complete data specifications X, that will generate the observed data Y. The choice of
complete data may critically affect the complexity and the convergence properties of the
algonthm. An unfortunate choice of complete data will yield a completely useless algorithm.
Thus, 1t takes creativity to apply the EM algorithm te a given ‘problem. This will be
demonstrated later in the thesis when we solve specific signal processing problems.

To complete the basic theory of the FM algorithm, we will present in section 2.2 the
convergence properties of the algorithm. This presentation, which clarifies and simplifies

previous results, may be used as a future reference on these topics.
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The EM algorithm for exponential farnilies

Examining tne expressions for the EM algorithm, (2.17) and (2.18), we note that, in general,
the EM algorithm may be complicated. The calculation of Q(4, Q(”)) in the E step may
require multiple integration, and the maximization in the M step is, in general, a non-lincar
optimization problem. However, in the case of exponential families of distributions, which
is now described, the E step has an explicit simple form and the maximization performed
in the M step is as complicated as solving a maximum likelihood problem for the complete

data, which 1s assumed to be easy.

Suppose that the p.d.f. of the complete data, z, belongs to the exporential family of

probabilitres, i.e.

fx(z0) = o5 (L6, 071() (2.25)

The set of statistics {t;(z)} is the sufficient statistics. This set is denoted T(z). Note that
the exponential family of distributions inc'udes almost all common p.d.f.’s e.g. Gaussian,

binormmal, exponential etc.

The log-likelihood of the complete data for exponential families has the form

log fx(z;8) = —loga(8) + 3_4,(8) t:(z) = logb(z) (2.26)
T
independent of §
Due to this special form of the log-likelihood, we need only to calculate, in the E step,

the conditional expectation of the sufficient statistics. We then substitute the estimated
sufficient statistics in the likelihood of the complete data, and maximize the resulting ex-

pression in the M steo. The E and M of the EM algorithm steps, for exponential families,

reduce thus to
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o The E step: Calculate
T (2) = E{T(z)/y; 6"}
or, Y1, calculate

™ = E{t(z)/y: 8} (2.27)

e The M step: solve

8" = arg max {_ log a(g) + 3 g(e)’é"’(z)} (2.28)

The sufficient statistics are usually simple functions of the data, z, and therefore explicit
formulas usually exist for the E step above. The expression to be maximized in the M step
has the functional form (w.r.t ) of the log-likelihood of the complete data. Since maximizing
the likelihood of the complete data is assumed to be easy, the implementation of the M step -
above is easy too.

Gaussian distribution belongs to the exponential family of distributions. In section 2.3
we will derive a closed form analytical expression for Q(4,#'), i.e. the E step, for the case
where X and Y are jointly Gaussian related by linear transformation. The maximization

problem n the M step, for this linear-Gaussian case, will be as complicated as solving a

maximum likelihood problem in the complete data model.

2.2 Convergence results

The EM (or the GEM) algorithm generates a sequence of parameters, {#(™)}, and
an associated sequence of log-likelihoods, {L(")}, where L(®) = L(Q"‘)). We have shown

that each iteration increases the likelihood, i.e. the likelihood sequence is a monotonic
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nondecreasing sequence (L{"™1) > L{")) However, the EM theory should also answer the

following important questions:
e Do the likelihood and the parameter sequences converge?
e To where will they converge?

o How fast will they converge?

These convergence issues will be addressed as follows. The convergence of the likelihood
sequence will be considered first. The issue of its convergence to a global maximum, local
maximum or a stationary point will be discussed. Then, the convergence of the parameter
estimate sequence will be considered, noting thét even if the likelihood sequence converges
(say to L7}, the associated parameter sequence may not converge, i.e. it may have a set of
limit points, each of which corresponds to this likelihood value L™. For the cases in which
the sequences do converge, the rate of convergence in the neighborhood of the convergence
point will be calculated.

Our discussion in this section follows the considerations in Wu, 9], and the original
paper of Dempster et. al. [2|. Another important reference is {12]. The rate of convergence
and the computation of the Fisher information matrix associated with the EM parameter
estimate sequence are also discussed in {13], [14| and elsewhere.

The following notation and assumptions are used in this section. Let © be the set of
possible parameter values, which is assumed to be a subset of the k-dimensional Euclidean
space. 6 is the set

8 = {§ € BIL(0) > L(8'V)}

and it is assumed to be compact for any L(8!%)) > —cc.
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M will denote the set of local maxima of L(-) while § will denote the set of stationary

points of L(-), in the interior of 8.

An EM (GEM) iteraticn may be denoted by
pin) . gln+) 2 M(_g_(ﬂ))

where M(-) is a point to set mapping such that M (Q‘"}) is the set of maximizers of Q(46; Q(“))

over # € 8 for an EM algorithm, and such that

Q(8;0'™) > Q8™ 6™y, v e M(8™)

for a GEM algorithm.

2.2.1 Convergence of the likelihood sequence

As shown in theorem 2.1, the likelihood sequence, {L{™'}, is a monotonic nondecreasing
sequence. Thus, if this sequence is also bounded, it converges to some value L. Only in
rare and singular cases can we find a non bounded likelihood sequence. Furthermore, if
the likehihood function L(-) is continuous in 6, the compactness of 8¢ guarantees that the
likelihood sequence, {L{™}, is bounded for any starting point §(°) € 8. Thus, the likelihood
sequence can be expected to converge.in most cases to some L.

We want to know whether L™ is a global maximum, a local maximum or at least a sta-
tionary value of L(4) over ©. Unfortunately, as for any general “hill climbing” optimization
algorithm, there is no guarantee that the EM algonthm will converge to a global or even
a locai maximum. It has been reported, in {15] and {16] that, if the log-likelihood, L, has
several maxima and stationary points, then convergence of the EM algorithm to either type
of point depends on the choice of the starting point. Note that this phenomenon occurs

despite the fact that we may perform a global maximization {of Q) in the M step.
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In Appendix A we consider the convergence issue more precisely, where, as in many
numerical analysis algorithms, the convergence analysis is based on the Global Convergence
Theorem which may be found in [17) page 91, and [18] page 187. This theorem provides

sufficient conditions that guarantee the convergence of a general iterative procedure
gn+1) = M(gt™)
to a sclution set.

For the EM algorithm, where M(8(™) is the set of maximizers of Q(8;8'™), it is shown

in Appendix A, that the simple condition,
Q(8,;8,) 1is continuous in both 8, and 4, (2.29)

in addition to the compactness of 8¢, guarantees the convergence to the solution set S,
1.e. this condition implies that the likelihood sequence of the EM algorithm converges to a
stationary value.

A stronger sufficient condition 13 needed to guarantee convergence to a local maxima.
Again, in Appendix A, it is shown that, if in addition to the continuity condition (2.29) Q

satisfies

sup Q(€;8) > Q(6;8) V8 (S - M) (2:30)
9'co

where (§ — M) is the difference set {# € 5|0 ¢ M}, then the likelihood sequence converges
to a local maxima, 1.e. to the solution set M.

Since condition (2.30) is hard to verify, we may have to be satisfied with a proof of
convergence to a stationary point, even when the EM algorithm does converge to a local
maximum. Condition (2.30) is not met in general, and the EM algorithm converges to a
stationary value, local maximum or global maximum depending on the choice of starting

point.
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2.2.2 Convergence of the parameter estimate sequence

The convergence of the likelihood sequence does not imply the convergence of the pa-
rameter estimate sequence. Suppose that the likelihood sequence converges to L™ and that

the conditions. that guarantee the convergence to a stationary point, are satisfied. Define
S(L) = {8 S|L(8) = L'}

The se&;uence of estimates, {8{™}, may not converge, i.e. it may have a (possibly infinite)
set of limit points. We may only say that all limit points of {8{™} are in S(L).

The convergence of the parameter sequence may be guaranteed (trivially), if the solution
set,i.e. S(L")in the example above, has a single point. An important speciai case, in which
the solution set 1s a singleton, is when the likelihood function is umimodal in 8.

The requirement that the solution space has a sin.gle point may be relaxed, and it may

be shown, see Appendix A. that if the solution set is discrete and

lim 1gi"t) —gtrh = o (2.31)

n—oo
the parameter estimates sequence will converge.

Condition (2.31) may be easily verified in many applications. For the EM estimate

sequence, since L™ — L° and since

L1 - 1) > (et o) - Qe (2.32)
a sufficient condition for (2.31) is that there exist a forcing function ¢(-), such that
Qe 1 8™) - Qe 8™ 2 o(jig™Y — ), un (2.33)
where a forcing function is a function such that for any sequence, {z,},
,}ergo o(z,) = 0= '}Lngo z, =0 (2.34)
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Taking o(z) = Az?, A > 0 as the forcing function, we get the sufficient condition
Q(Q("“);Q(")) - Q(Q(");Q(“)) > )\HQ{"H) — 82, vn (2.35)

which may be verified easily in several applications.

One may argue, that the convergence of the parameter sequence is not as important
as the convergence of the likelihood sequence to the desired location on the log-hikelihood
surface. However, one should be aware of the possibility of a non-convergent estimate
sequence, e.g. if L(#) has a ridge of stationary points in which L(8) = L, then the set S{L)

1s not discrete and the EM algorithm may move indefinitely on that ridge.

2.2.3 Rate of convergence

When the EM (or GEM) algorithm converges, an interesting and important problem
is the determination of its rate of convergence. In this section, after defining the rate

of convergence and other terms, that are commonly used in association with it, we will

calculate the rate of convergence of the EM algorithm.
Let us denote the differentiation operator D. A differentiation operator with respect to
two variable will be denoted D"/ as

: i+ 8
DY f(a, b) - a f(glvr Z)I
86,08, '6,=a,6;=b

The following identities will be needed later when the rate of convergence of the EM algo-

rithm 1is explicitly developed,

DL(8) = D'°Q(8;9) (2.36)
D*L(8) = D*™°Q(9:8) - D*°H(8;8) = D*°Q(8;8) ~ D' H(8;9) (2.37)
DVQ(8;0) = D H(8;0) (238)
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These identities have already been recognized by Fisher {19], and are redeveloped in [2],[13]

and in Appendix A.

Definitions and background

Consider a sequence, {z,}, couverging to a limit, z-. Each element, z,, belongs to X,

which is a subset of some norm-space (say the k-dimensional Euclidean space). We define

the order of convergence as follows:

Definition 2.1 The order of convergence of a sequence, {z,}, that converges to z°, denoted
p, s the supremum of the nennegative numbers, p', for whick the following retio is fintte,
1.e. for which

——{|Znt1 — 27}
a= lim —/———= < oo
n—o jiz, — z7|P

Loosely speaking, the order of convergence describes the asymptotic behavior of the

error sequence, {e,}, where ¢, = ,, — 7, l.e. as n — oo we have
Jens1i] = alieall?

So, the larger p is, the faster the sequence, {z,}, converges.

Most iterative algorithm generate sequences, whose order of convergence is unity. In

this case, the important number is the convergence rate defined by,

Definition 2.2 The convergence rate of a sequence, {z,}, that converges to z°, denoted a,
18

- :ilxn-H _'I.H
a= hm ————
n—o iz, ~ 27|

where 0 < a < 1. The sequence ts said to converge linearly if 0 < a < 1, and superiineerly
ifa=0.
The convergence rate of any sequence, whose order is greater then unity, will be zero.

These sequences have superlinear convergence. We note, however, that a sequence with
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unity order of convergence may also have a superlinear convergence. Linear convergence
1s sometimes referred to as geometric convergence or exponential convergence, since in this
case the error sequence, {¢,}, is a geometric sequence.

In many iterative algorithms, the iteration' is defined via a mapping, that successively

approximates the solution, i.e.

In+l = M(xn)

In this case, we may find the rate of convergence by investigating the Jacobian matrix (or

the matrix of derivatives) of this mapping, defined by,

. a Jw ., i . ’A/f - M ") ‘i
DMz, = AMELL i, M) - M) (2.39)
Nzl; ey "7 f@a -z
where -}, denotes the i"* component of a vector.
Since
HZaer — 27 Y - M(z
o= lim B2t m Tl oy (M) 2 M (2.40)
n—o ||z, — x| n—oo (i — Z74]

the largest eigenvalue of the matrix DM(z"), will provide us with the convergence rate of

the iterative algorithm.

Rate of convergence of the EM algorithm

The rate of convergence of the EM algornithm can be calculated by deriving the Jacobian

matrix of the mapping, 8{**!) = M(Q(")), associated with the EM algorithm. We recall

that this mapping i1s defined by
01 = M(@™) = arg max Q(2; ™) (2.42)

Using the fact that DIOQ(Q("’”; Q(")) = 0, this Jacobian matrix can be easily calculated as

follows. Since the vector D0Q(#{"*1).9(*)) = DOQ(M(8(™); #™) = 0, its derivative with
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respect to the vector Q("’ is the zero matrix, i.e.

o 556719“’@(1&4(@‘"’);2("’) = DM(8™) - D*Q(M(8'™); 6!™)) - DMQ(M(g™); 8™
(2.42)
Let 8" denote the limit of the estimate sequence. Since #{"*1 = !VI(Q(")) and " =
M(8°), in the limit as 8(™) — 8", equation (2.42) becomes
0= DM(8°)D*°Q(¢8";¢") + D' Q(07;8") (2.43)
Using (2.38) and then (2.37) will give us the Jacobian matrix,
o . -1
DM(0°) = D™ H(8":¢") [D*q(e";67)] (2.44)

This resalt appears in theorem 4 of (2], which is repeated in Appendix A.

The rate of convergence of the EM algorithm (2.44) has the following interesting in-
terpretation. The term D?°H(8;8) is the Fisher Information matrix Ix,y of X given Y
about 87, i.e. for exponential families it is the variance of the sufficient statistics t(z) given
yand §°. The term D?*Q(87;87) is, for regular exponential families, the Fisher Information
matrix Iy of X about 87, i.e. it is the variance of the sufficient statistics t(z) in the X

model without any measurements. From (2.37), the Fisher information Iy of Y about 47,

for regular exponential famihes, 1s given by,

IY = IX - ]X/Y (245)

Thus, in the scalar case, the rate of convergence is given by,

a= =~ =1 — (2.46)

If the complete data is such that it can be predicted well given the observations, i.e.

Ix;y is small, then a is small and the EM algorithm converges rapidly On the other hand,
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if we choose the complete data to be much larger than the observations, then the complete
data will carry much more (Fisher) information then tae observations: Iy /Ix will be close
to zero, a will be close to unity and the EM algorithm will converge slowly. Indeed, if the
complete data is identical to the observations, the EM algorithm converges in one step:
however this step is as complicated as solving the original ML problem in the Y model.
On the other hand, choosing a complete data that is much larger than the cbservations, in

order to get simple EM steps, will require performing more iterations because the algorithm

converges slower.

2.3 The Linear Gaussian case

This section has two objectives. The first objective is to provide an explicit example
of the application of the general EM theory developed above. The second and more im-

portant goal is to develop results that are referred to later in the thesis in a wide range of

applications.

Suppose that the complete data, X, and the observed (incomplete) data Y are related

by the linear transformation

Y=HX (2.47)

where H 1s a non invertible matrix. The complete data X possesses the following multi-

variate Gaussian probability density:

2x —A/2 A
x(zi0) = [ Za@)]  exp -3z - m(@)'A~ @)z - mie) (2.48)

where A = 1 if X is real valued, A = 2 if X is complex valued, and * denotes ihe conjugate

transpose operation. The observations Y, also possess a Gaussian distribution, and thus
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the likelihood is given by

o -x/2
ety = [aeeZa,@)] e [-30- m@)' O - m0)] (249

where m, and A, are respectively the mean and the covariance of the observations, given

by

<

m(8) = H-m(d) (2.50)

[
-
—

5]
—
I

H-A@8)-H! (2.51)
We note that our parametric model is such that the parameters define the mean and the
covariance of a Gaussian density in a possibly non-linear way. Thus, maximizing the like-
lihood in this linear Gaussian case may require solving a non-linear optimization probiem.
Nevertheless, we will be able to invoke results from linear estimation theory and explicitly
derive the EM algorithm for this case.
We start developing the EM algorithm for maximizing the likelihood of the observation,

Y, using the complete data, X, by examining the log-likelihood of X. By taking the

logarithm of (2.48), we get,

A 2x
log fx(z:8) = C — 3 logdet(-A(9)) -

>

(z - m(8))'A7}{(8)(z - m(9))

=C - %iogdet(g—;n\(ﬁ)) - %ﬂt(e)“_l(g)m(g)

- 2 O)m(e) + Sml (@A HO)z - Str(a” @zz) (2.52)

where C is a constant independent of § and ¢r{-) denotes the trace of a matrix. Maximizing
this expression with respect to § is assumed to be easy.
Taking the conditional expectation of (2.52), given Y = y, at a parameter value AN

we get,

Q(8; 8™y = E{Inggg(z;Q)/g;Q("}}
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= = Slogde( @) - Sm (A @m(®) + 5 (=7)A" @)m(e)
L m @A @2 - Jer(AT (@) (2.53)

where g(n) = E{_I.//.Y.. =y, Q(n)} and \I](") = E{x__zt//}_’ =y, Q["‘)}
Maximizing expression {2.53) with respect to 8 must be easy, since it has the same

functional form, with respect to 8, as (2.52).

Since X and Y are jo'itly Saussian, and related by a linear transformation, the condi-

tional expectations required for (2.53) can be computed by straight-forward modifications
of known results from linear estimation theory. We obtain,
2™ = m(@™) + 0(8") [y - H - m(e™)] (2.54)
¥ = [1-1(e™) - H] @) + (2)()! (2.55)
where [ is the identity matrix and I'(8) is the “Kalman gain” defined by
re) =A@ [HA@E"] (26)
Note that if we set §(") = ¢, equations (2.54) and (2.55) are the well known formulae for
the conditional expectation in the Gaussian case, e.g. [20].
The E and M steps of the EM algorithm for the linear Gaussian case may now be stated
explicitly as follows. Having a current estimate, 8™ the algorithm iterates between,
e The E step
Calculate z{") and ¥(") by (2.54) and (2.55). Note that the sufficient statistics of
Gaussian distribution are composed of inear and quadratic functions of the data.
e The M step

Update # by maximizing the expression in (2.33). The explicit solution is some func-
tional of the statistics calculated in the E step.
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2.4 The EM algorithm with varying complete data

In this section, we present a variation of the EM algorithm , where the complete data
may vary from iteration to iteration. This variation is referred to as the Extended EM
(EEM) algorithm.

As mentioned above, the choice of complete data 1s the critical factor in designing an
EM algorithm for a given problem. This choice determines the complexity of the algorithm
and 1ts convergence rate; it may also affect the convergence point, leading to a different
stationary point for a different choice of complete data. An alternative to choosing a fixed
complete data, is to let the complete data vary from iteration to iteration. The choice of
complete data may vary according to a fixed rule or may depend on the current value of

the estirnate. By allowing the complete data to vary, we can achieve the following useful .

properties:

*

Additional iterative algorithms are incorporated in the EM framework.

Simpler algorithms may emerge.

.

The algorithm may converge faster.

Varying the complete data may enable the algorithm to escape from unwanted sta-

tionary points.

We start by presenting the algorithm formally, and giving its properties. Then, we wiil

motivate the EEM algorithm and suggest strategies for varying the complete data.



2.4.1 General theory

Suppose we observe y € Y, where Y denotes the sample space of the observations, and
the probability of y is fy{(y: ) indexed by 8 € 8. The observed sequence may be viewed as
being incomplete with respect to a family of complete data Xp, indexed by 8 € 8, where 8
is an arbitrary index set. Each Xj is a sample space with an associated pdf., fx,(zs:9),
also indexed by § € 6. For any £, a sample of the complete data, zg, is related to the
observations by,

vy = Tp(zg) (2.57)
where y denote the observations and Ty is a non-invertible transformation.

In complete analogy to {2.8), we may write for all g,

3

log fy(y:8) = E{ios fxa(zg:8) i Q;Q'} - E{logfx,,/y(za/g; Q)‘ v;

R
—

or, using the notation in secticn 2.1,

L(8) = Qp(8,8') ~ Hp(8,7) (2.59)

Using this relation and invoking Jensen’s inequality we may prove the following lemma.

Lemma 2.1 For a given parameter value 8,, if for any B, another value 8, satisfies
Qﬁ(Q:,Ql) > Qﬂ(glvel)
then,
L(8;) > L(8,)
Note that this lemma states that we have a procedure for strictly increasing the likeli-

hood, if we can find any complete data, for which the function Q3 may be strictly increased.




The Extended EM algorithm is now presented formally. Wé note that the choice of

complete data in each iteration may depend on the current and previous estimates and on

the iteration index.
e Start, n = 0: guess Q(O‘
e Until some convergence criterion is met,

—~ Choose a complete data Xgin), where,

g™ = f(n, 8, ..., ") (2.60)
— The E step: calculate
Qg (8;81) = E {log fx ., (zgwi8) | y: 8 } (2.61)
— The M step: solve
8+l = arg max Qgum (8; o)) (2.62)

~-n=n+1

The proposed EEM algorithm preserves the basic monotonicity property of the EM algo-
rithm. Since the convergence properties of the EM algorithkm were proved using the Global
Convergence theorem, they will follow through to the EEM algorithm, if the conditions
developed in section 2.2 holds for every 8 € 8. These properties of the EEM algorithm hold
regardless of the rule f we use for changing the complete data. A carefully designed rule

may provide an algorithm with better properties, however. Such rules will be suggested in

the following section.
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2.4.2 Motivation and rules for changing the complete data

The fo.lowing simple situation may motivate the usage of the EEM algorithm. Suppose
that, in a specific problem, two complete data definitions may be considered. Each choice
of complete data generates a different algorithm for maximizing the likelthood of the ob-
servations with different convergence properties. Following the EEM idea, we may switch
between these algorithms. If one specification of complete data generates a simplgr but
slower algorithm, we will start using the simpler algorithm and then, near the convergence
point, switch to the other algorithm to converge to the solution faster. If one algorithm
converges to an unwanted stationary point of the likelihood, which is not a fixed point of
the other algorithm, we will switch to the other algorithm to avoid it.

In general, the family of complete data specifications is indexed by 8 € B, where B
1s an arbitrary 'xr_ldex set, say, a subset of the k-dimensional Euclidean space. The choice
of complete data may depend on the current estimate of the parameters. In the general

case, the following strategies may be used to obtain algorithms with better convergence

properties.

Accelerating the convergence rate

Loosely speaking, the rate of convergence is faster, when the complete data can be better
predicted from the observations. Thus, changing the complete data in each iteration, de-

pending on the current parameter model, 8™ in such a way that it may be better predicted

from the cbservations, will improve the rate of convergence.

More specifically, an EEM iteration is given by 8("*1) = My(8(™)). It satisfies

DIOQB(Q(R+1);Q(YI)) =0
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Since the vector DloQg(Q‘"*”;Q(")) = DloQg(‘Mg(Q("j);Q(")) = 0, its derivative with re-

{ - . .
spect to the vector ") is the zero matrix, i.e.

5509 D Qa(M5(87):8™) = DM5(8")- D*Qs(Mp(8™)); 8+ DY Q5 (M (e™); 6))

(2.63)

Now, in the limit as n — oo, 8(®) — 9("*1) . 9~ and we get

DMs(8™) = - DM Qy(8V; 6%) [D® Qa8 0] ™" = - D1IQ (0™ ) [DPQ5(0: 0)) "
(2.64)
The largest eigenvalue of DM4(¢!™) will define the rate of convergence. To accelerate
the convergence, we want to choose a complete data (i.e. 8), that will minimize this largest
eigenvalue.
Depending on the set B, it may be possible to find 3 € 3, in terms of _é’("), that solves
the following equation

DYQp(e™):0) = j(,8™) =0 (2.65)

In this case, the convergence rate of the EEM algorithm will be superfinear.

Avoiding unwanted convergence points

We wish to find a global maximizer of the likelihood function. However, under the conditions
of section 2.2, an EM algorithm with a fixed complete data specification is only guaranteed
to convergence to a stationary point of the likelihood. Nevertheless, not every stationary
point of the likelihood is a fixed point of an EM algorithm. If a family of complete data
1s given and a specific stationary point is not a fixed point of all the EM iterations that
correspond to the members of this family, then following lemma 2.1, we may find a complete

data specification, that will take us away from this unwanted stationary point. Once we
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have avoided a stationary point and we find a parameter value, for which the likelithood 1s
higher, then due to the monotonicity property, we will never return to this stationary point.
When the given set of possible complete data is indexed by 3, the following rules for

choosing 3 in each iteration, in order to avoid unwanted convergence points are suggested:

e Choose a random £ in its domain.

e Search for A that give the largest increase in the likelihood. If searching the entire

domain of 3 is complicated, search in a sub-domain, which may be picked randomly.

One may argue that these rules are heuristic and ad-hoc. However, the whole area of
global optimization of non-convex functions is heuristic, and depends on the specific goal
function. Our approach potentially provides an improvement, within the framework of the

EM algorithm, in the sense that, even when it fails to find the global maximizer, it finds a

better local maximizer.

2.5 The EM algorithm for general estimation criteria

The EM idea may be applied to general inference problems, other than parameter
estimation problems, and a variety of estimmation methods, other than the ML method.
We will start by suggesting a formal structure of the EM algorithm for general estimation
methods. Then, using the general Minimum Information criterion, we will show that a wide
class of estimation methods reduce to optimizing a criterion composed of the log-likelihood

and an additive penalty term. An EM method for optimizing these criteria, analogous to

the EM method for ML, will be suggested.



2.5.1 Forwmal structure

As before, let Y be the sample space of the observations, and X the sample space of the
complete data.

Suppose we observe £ € X. We want to find a model or a structure, r, that will “ex-
plain” z. Since we consider statistical inference methods, a model will deiine a probability
distribution or a p.d.f., fx(z; x), over the set X. The model may be as simple as a paran.-
eter specification or as complicated as a full, unconstrained description of the underlying
probability measure.

The a-pnion knowledge, the model complexity and a cost function for measuring goodness-
of-fit of the model to the observation, will determine the procedure for estimating this model.
There are many ways to incorporate knowledge, complexity and goodness-of-fit measures,
which explains the vanety of criteria for statistical inference. However, in any inference

procedure we may find the following two characteristics:

e Extraction of sufficient statistics: Not all the observed data is relevant to the model

estimation goal. Extracting only T (z) from the data, where T (-} is many to one

function, is sufficient.

e Optimization: The possible models are compared and a model estimate * is generated

by a procedure 7{T(z)} = %, which is usually a result of solving an optimization

problem:

* = argmin F(7 (z); x)

We assumne that given z € X, 1.e. given the complete data, we have a satisfactory solution

for the model estimation problem. In other words, there exists a way to incorporate the
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a-priori knowledge, to measure the complexity and goodness-of-fit of a candidate model,
to calculate the required statistics and to solve any optimization problem, that is implied
from the above. A satisfactory solution consists of a set of formulas, a detailed aigorithm
or a program. Thus, we may imagine the existence of a “black box”, whose input is a
measurement z € X and whose output 1s a model estimation, 7.

Suppose now that we observe the incomplete data, y € Y, where y = T(z) and T'(:)

1s non-invertible (many to one) transformation. Any candidate model will define a p.d.f.,

fy(y; %), over the set Y where

fr (g x) = /IM fx(z;w)dz (2.66)

and the set X (y) is given by (2.4).

We assume that we do not have a satisfactory direct way to determine the model or the
structure, given the incomplete observations, either because we cannot specify the procedure
for determining the model, or, when the procedure is specified, simply because implementing
that procedure (e.g. solving the implied optimization problem) is difficult.

The EM algorithm, which we now formally present, is a possible method for determining
the model, given the incomplete observations, by making an essential use of the availability

of a satisfactory estimation procedure for complete data observations.
e Start, n = 0, initial model x(®)
o Iterate (until some convergence criterion is met)

— The E step: calculate

T = E{T@ | =y} = [ L T@ Iy @)
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— The M step: solve
w7t = 7 {7z | = argmin F(T: 7) (2.68)

2.5.2 The EM algorithm for the Minimum Information criterion

Minimum Information (MI) is a general method for solving inference problems, suggested
originally by Solomonoff [21] and recently by Hart {22]. This method generalizes the ML
and MAP methods. This method may be applied to situations, where a general structure

or model 7 should be estimated. This method also enables to incorporate a more general

a-prior1 information.

Given data, y € Y, the MI method est.imauﬁ the model » by,
* = arg rnrin I(y,x) (2.69)
where /() denotes the (self) information. The joint information i(y, x) may be written as,
Iy, %) = I(y/) + I{x) (2.70)

where [(y;x) is the conditional (self) information.

The MI criterion implies many estimation procedures, since there are many notions and

definitions of information. We will usually use the more quantitative ones:
e Combinatorial information, due to Hartley {23].
e Probabilistic (Sharnonr) information, due to Shannon {24] and Wiener {25].
o Algorithmic (Kolmogorov) information, due to Solomonoff (21], Kolmogorov {26] and

Chaitin (27].
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These three notions of information are summarized in [26].
Shannon information is the most adequate for I(y/x), since a given model provides a
probabilistic description of the observations. Thus, /(y;x) = —log fy{y; x), and the Ml

criterion reduces to the minimization of hkelthood-like criterion,

G(x) = - log fy(y;x) + I(x) (2.71)

Shannon information may be adequate to describe the information, given by specifying
a model x, if we know that all possible models belong to a well defined set I1, and an a-priori
p.d.f., fu{(x), defined over I1, is given. In this case I{x) = - log fn(x) and the MI criterion

reduces to the MAP criterion, 1.e. we estimate the model by,

# = argmax log fy (y; x) + log Jn ()] (2.72)

&

Other examples will involve the algorithmic notion of information, which measures the
information of an observed data by the number of bits needed to describe it. As shown, e.g.
128], the algorithmic (Kolmogorov) information cannot be computed when no constraints
on the “language” used to describe the data are specified. However, given a constrained
framework, this information ‘nay be specified quantitatively.

A special case, that uses the algorithmic information, in a constrained framework, as a
criterion to weight a given model, is known as the Minimum Description Length (MDL).
This criterion was suggested by Rissanen {29,30,31]. The description length needed to
describe the model was given explicitly by Rissanen for the problem of determining the
parameters 8y, ---, 8, together wit. their number n. The conditional information of the
data, given the model, is interpreted as the code length needed to describe the observation,
given the model. This term is, as above, the log-likelthood, or the Shannon information, of
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the data, given the model. Thus, in this case the MDL criterion requires solving,
. L 1 :
n,f0 = a.rgmxgx[— log fy (y;8) + nlog V| (2.73)
n.6 - P4
where N is the length of the observation sequence.

For all these cases, where the conditional information of the data with respect to the

model is the probabilistic {Shannon) information, the MI criterion has the form of (2.71),

and the EM algorithm of {2.67),(2.68) becomes,
o Start, n = 0, initial model x®)
e lterate (until some convergence criterion is met)
— The E step: calculate
Q(rix™) = E {log fx(z;7) | y, ™ } (2.74)°
Note that this step corresponds to the E step of the regular EM algorithm, (2.17).
— The M step: minimize
x*V = arg min [~Q(x: 2 (™) ~ I(x)] (2.75)
- n=n+1

This algorithm was suggested in 2] for the MAP criterion.

It is easy to show that each iteration improves (decreases) the likelihood-like goal func-

tion of the observation (2.71). The goal function may be written as
G(x)= ~L{x)+ I{x) = - [Q(x;x") — H(x;7")} + I(x) - (2.76)

where Q(-;-) and H{(:.-) are defined in (2.11). Thus by a simple extension of theorem 2.1,

we conclude that

G(x"*V) < G(x™) (2.77)
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where equality holds if and only if both

— Qx4 [z = —Q(x™ 2 M) 4 I(x™) (2.78)
and
fxy(@a™™) = fx v (z/y:7'™), aein X(y) (2.79)

Due to the monotonicity property, if the goal function is bounded, the sequence, {G{"},
where G = G(x{™)), must converge to a limit G*. Also, a global optimizer of the goal
function must be a fixed point of the algorithm.

For proving other convergence properties, such as convergence to a stationary point,
convergence of the model estimate sequence and the rate of convergence, we need that the
set of models [l will be a subset of a metrnic space. Otherwise, the notions of distance,
convergence, continuity etc. are undefined. When Il is a subset of a metric space, those
convergence properties are readily available. We will use the results developed in section 2.2,
where Q(8;8) is is replaced by —Q(x;x') - I(x). Thus, convergence to a stationary point
1s guaranteed if

- Q(x,x") + I(x) is continuous in both x and »' (2.80)

The rate of convergence near the convergence poiht 1s the largest eigenvalue of
-1
- D*H(x";%7) [-D®Q(x7x°) + D*I(x") (2.81)

where D*°Q(8";6") in equation (2.44) is replaced by — D*Q(x";x") + D*[(x).

2.6 Possible signal processing applications

The EM algorithm and its extensions developed in this chapter, will be applied later in

this thesis to solve a vanety of signal piocessing problems. We will conclude this chapter

45



by trying to characterize the problems that are naturally solved using the EM method.

In many cases, we will describe the possible applications of the EM algorithm, as having
noisy and incomplete observations. As an example, we became interested in the EM algo-
rithm, while considering the problem of power spectrum estimation from a short record of
observations. The modern spectral estimation techniques, e.g. Burg’s Maximum Entropy
technique {32], achieve high resolution by artificially extending the observation period or
the autocorrelation support. This solution requires the exact knowledge of the autocorre-
lation values. However, the sample autocorrelation values are only noisy estimates of the
real correlation values. In our opinion, a better approach for high resolution spectrum esti-
mation is to consider the short observations record as noisy and incomplete and to model
the spectrum estimation problem as a statistical ML problem. Following these considera-
tions, we have presented in [33|, a parametric spectrum estimation method based on the
EM algorithm. This method, suggested originally in {33], was later investigated by various
authors 34, 35].

In general we can define two classes of possible signal processing applications. The
first class contains signal processing problems having partial or distorted observations. The
problems of this class are characterized as follows: We may be interested in estimating

unknown parameters or even reconstructing a whole waveform, For this task, it is desired

to measure some signals. However, we observe ornly a mapping of the desired signals, such

as,
e the magnitude of the signal(s) or

o the sign or the hard limited version of the signal(s) or

» the quantized signal(s) or



e the aliased signal(s)

or any other partial information. Since the observations are distorted and incomplete the
statistical problem associated with the signal processing problem is complicated. The EM
algorithm provides a natural solution to these problems, where the complete data is defined
as the undistorted signals. The algorithm iterates between estimating these undistorted
signals and updating the desired parameters.

The second class of applications contains signal processing problems for which the ob-
servations are described as a combination of simpler signals. We are interested in estimating

signal parameters or reconstructing a signal waveform; however, instead of observing the

desired signals, we observe a combination such as,
¢ sum of signals or
« multiphication of signals or

e convolution of signals

or any other combination. We use a probabilistic modeling of the various signals. With
the observations above, the signal processing problem is modeled as doubly (or multiply)
stochastic phenomena. The statistical problems generated by doubly stochastic models are
usually complicated. The EM algorithm provides a natural solution to these problems,
where the complete data is the set consisting of all the separate signal components. In the
doubly stochastic case this complete data is equivalent to the set consisting of nne of the
“hidden™ signal components and the combined observations.

Many applications that belong to this class may be considered, since combined signals
are common in many practical situations. In chapters 4 and 5, we will consider examples
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that belong to this class of applications gnd solve tl;em via tl;e EM algorithm.

We conclude this chapter by briefly presenting two previously suggested applications,
which fall naturally within of the EM framework. The first application is the problem of
estimating the parameters of a stationary signal in a stationary noise. The EM solution
to this problem is referred to as the iterative Wiener filter. The second application is the
estimation of the parameters of a Hidden Markov Model (HMM). The EM solution to this
problem is widely known as Baum'’s algorithm. We point out that both these previous
applications belong to the class presented above and are thus analogous. We believe that

an additional insight to the HMM analysis can be gained by presenting it in terms of an

iterative filtering technique.

The iterative Wiener filter

Let s{t;8) be a stationary (discrete) random process, and suppose that this process is

observed in additive noise, i.e. we observe

y(t) = s(t; ) + n(t) (2.82)

where n(t) is also a stationary process. We are interested in estimating the signal parame-
ters. and, in some cases, in filtering the signal.

This model was suggested in (3] to represent a speech enhancement problem arising
from single microphone measurements. In this case, the speech signal is modeled as a
stationary autoregressive (AR) process with unknown coefficients, referred to in the speech
context as Linear Prediction Coefficients (LPC). Speech signals are frequently modeled as
AR processes, since this model captures the important features of the speech signal, at least
for a short enough observation window. We may be interesied in finding the speech LPC
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parameters, say for vocoding or for use in a speech recognition system, or in enhancing the
speech signal. If the speech signal is observed without the noise, the LPC parameters are
easily estimated by solving the appropriate normal linear equations. However, estimating
the parameters {rom noisy observations is complicated.

The iterative Wiener filter suggested in (3] can be interpreted as an EM algorithm as
follows. Let the complete data be defined as the speech signal, s(t; 8}, and the noise signal,
n(t), separately. An equivalent definition 1s to let the complete data be the speech signal,
s(t;8) in addition to the observed signal, y(t). From the discussion above, if we observe the
signal without the noise, the task of estimating the parameters will be easy. In addition,
having the signal parameters, we may estimate the signal, i.e. filter it from the noise, using
a Wiener filter. This suggests an EM algorithm, that iterates between Wiener filtering,
applied to the observed signal, using the current spectral (or LPC) parameters of the signal
(the E step) and updating the spectral parameters using the filtered signal (the M step).

We note that the filtered speech signal, 5(t), is achieved as a by-product, while 1mple-

menting the E step of the algorithm.

Hidden Markov Models and Baum’s algorithm

Hidden Markov Models (HMM) are interesting and rich statistical models, that have been
used frequently to model complex real problems. The iterative Baum’s algorithm, suggested
in ‘36|, which 1s now recognized as an instance of the EM algorithm, was suggested for the
statistical analysis of HMM. These models are extensively used for modeling the mechanism
that generates the speech signal, and are applied in speech recognition systems. A review of
HMM may be found in :37{, and a review of their application to automatic speech recognition

may be found in [38]. We will now briefly present the Hidden Markov Models and Baum'’s
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algorithm, from a different perspective.

Suppose we observe the sequence yg,y;, - ,yn-1. A hidden Markov model assumes
that the observations are probabilistic functions of a finite alphabet Markov chain. in other
words, there exists a hidden Markov sequence, sg,s;,---,sn-1, such that the observed
sequence is a result of combining the Markov sequence with another stochastic contribution,

i.e. the model assumes that for each 1, there is a conditional probability distribution

Py/si=ax) k=1,---.M (2.83)

where {ay,---,ap} is the alphabet of the Markov chain.

Using this point of view, the observations, {y}, in a hidden Markov model are the result
of a “signal” - the markov chain {s;}, combined with “noise”.

The unknown “signal” pararneters in ihis case are the transition probabilities repre-
sented by the matrix ¥, and in a non-stationary case, the initial probability vector =.
Sometimes, the “noise” parameters, i.e. the parameters that define the conditional proba-
bilities of (2.83), are also unavailable. The ML problem for estimating these parameters is
usually too complicated to solve directly.

The complete data will be the hidden “signal” in addition to the observations, which
is equivalent to observing the “signal” and the “noise” separately. This complete data is
analogous to the complete data used in the iterative Wiener algorithm. Suppose we observe
the hidden Markov chain. If the unknown parameters are all entries of the tramsition
matrix, the ML estimate of say ¥, , is achieved by counting the number of transitions from
the symbol a; to the symbol a;, divided by the number of occurrences of the symbol a,.

The “noise” parameters may also be estimated easily, given the “noise” realization, which is

determined, when the observations and the underlying hidden Markov chain are available.
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The specific procedure is defined depending on the specific parameterization.

In the iterative Wiener algorithm where a stationary signal in a stationary noise have
been considered, the E step was implemented in the frequency domain using a Wiener
Filter. In the HMM case, where the signal is a Markov chain, Bellman’s sequential dynamic
programming algorithm 39|, can be used. Bellman’s algorithm is sometimes referred to as
the Viterbi algorithm. The E step, which estimates the required statistics of the hidden
Markov chain, needed for updating the parameters, is thus implemented by an efficient
sequential algorithm.

The detailed Baum’s algorithm is presented explicitly in 137}, page 11 and elsewhere.
The 1nterpretation of this algorithm as an iterative filtering algorithm gives an additional

insight, that may help suggest enhancements to this algorithm.



Chapter 3

Sequential and Adaptive

algorithms

In this chapter, we will suggest and investigate sequential and adaptive algonthms,
that are based on the EM concept. Sequential and adaptive algorithms correspond to the
case where the data is processed sequentially and an output is expected, whenever each new

block of data is processed. We denote the n - 1°* data block by y

Zn+1’

and suppose that

the desired output is an estimate of a parameter vector, §. The general structure of any

sequential (or adaptive} algorithm is,

o) = G (Q("‘;g,m) (3.1)

The desired output of a sequential algorithm is either identical to or at least asymptoti-
cally identical to the result achieved by processing the whole dzta at once. The advantage of
the sequential algorithm over the batch algorithm is not in the final result, but in computa-
tional and storage efficiency and in the fact that an output may be provided without having

to wait for all data to be processed. Adaptive algorithms correspond to the case where the
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underlying system features are time varying, and the algorithm is expected to track the
varying parameters. In this case, processing all the available data jointly is not desired,
even if we can accommodate the computational and storage load of the batch algorithm
and can afford to wait to the end of the data, since different data segments correspond to
different parameters values.

Sequential and adaptive algorithms may be suggested based on an iterative algorithm
in the following way. Given the current estimate, Q("), the next iteration takes into ac-
count the new data block, y ,, for generating the updated value, 9"+ A well known
example is the stochastic gradient algorithm, which i1s an adaptive version of the itera-
tive gradient algorithm. As another example, the recursive least-squares (RLS) algorithm
and the (extended) Kalman algorithm are sequential algorithms based on the iterative
Newton-Raphson method. Similarly, the iterative EM algorithm may suggest sequential
and adaptive algorithms. These algorithms will be developed in this chapter.

The chapter is organized as follows. In section 3.1 we will develop sequential aigorithms
based on the EM method, that may be applied only when the underlying estimation problem
has a special structure. In section 3.2 we will use approximations and develop sequential
and adaptive algorithms, based on the EM method, that may be applied in general. The

sequential algorithms, presented in this chapter, will be analyzed in section 3.3.

3.1 Sequential EM algorithms based on problem structure

In this section, we will identify the cases where the underlying estimation problem has a
special structure, and suggest sequential EM algorithms that exploit this special structure.

The next section will demonstrate that, in general, a sequential algorithm cannot be derived
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as a direct consequence of the EM method. Only using approximations will we be able to

suggest sequential and adaptive algorithms for the general case.

3.1.1 Sequential EM with exact EM mapping

Throughout this chapter, we will consider the observed data as blocks, Y Ypro Y

to be processed sequentially. The complete data is denoted z,,z,,...,2Z,,- .., and is chosen

so that each block of observed data y_, corresponds to a block of complete data, z,, by

¥, = Tnlza) (3.2)
where T,(-) 1s a non-invertible transformation.

In this environment the log-likelihood of the observations, after n — 1 data blocks have

been observed, is given by,

Ln-1(8) =108 fyay v, (Y, 79,0 0) (3.3)

Using the complete data, z,,- - -, z,, ;, and following the identity (2.12}, the log-likelihood

of the observations may be written as,

Ln+1(8) = Qas1(8;€) - Har(8:6) (3-4)

where
Qner(8,8) = E{log fxoy, X, (Znetr - 218)  ypyo o 9y | (3.3)
Hn(8,8) = E{logfx.,“---x,/gw. i, (Zners s 0) f g,,ﬂrwgl;ﬁ'} (3-6)

An EM algonthm for solving the maximum likelihood problem, given these n+ 1 blocks

of data. using the above definition of complete data, is given by the following iteration,

(k+1) _ . gli)y Ry (¥)
Q .-arg]gleaO}Q"+l(Q’Q )—“argx?ea.}E{logfx.+1X1(;_nTla 7!17&);2“*11 ?21)9

(3.7)




where k denotes the iteration index and n the data index.

A sequential EM algorithm with exact EM mapping is a method that recalculates in each
iteration. as more data 1s processed, the exact steps of the EM algorithm for maximizing
the new likelihood function. For convenience, suppose we perform a single EM iteration for
each new observed data block, i.e. the iteration and the data indices are equivalent. This
mapping is given by (3.7) where k is replaced by n. This EM mapping is, in general, a

function of all given observed data blocks; thus, it may written abstractly as,

Q(n+l) - Mn+l(g(n);_y‘"+l’,..’g,) (38)

The exact EM iteration may be implemented recursively, when the effect of the past

data blocks, y_,---.y,, can be summarized into a small number of simple quantities. We

may algebraically manipulate the given expression for the EM iteration and achieve an

equivalent expression, that may be written abstractly as the mapping,

Q(ﬂ?l) = ‘M:t+1 (Q(n);gnél’g.(grﬁ o .’yl)) (3‘9)

where g indicates easily stored and updated functions of the past observations.

We will assume that the structure of (3.9) may be achieved for all n. In this case, we

suggest the following sequential EM algorithm:
e Start, n = 0 : Guess 8!°. Initialize g(-,---) =0
e For each new data block. y ..

— Exact EM mapping: Update parameters,

0 = Moy (67 y, 000y, ) (3.10)

— Update and record g(y, ., -*,y,) for the next step

55




- n=n-1

In each step, this algorithm implements the exact EM mapping for maximzing the new
likelihood Ln+1{(8), and thus, L, 1(8"*1) > L., (6"™)).
This algorithm has been presented abstractly so far. To fix ideas, we now present a

simple example, in which a linear least squares problem is solved recursively using this

algorithm.

Example: Sequential Least Squares EM algorithm

It is well known that the linear least-squares problem may be posed as a statistical maximum

likelihood problem, in the following way. Suppose we observe a vector, y = (y1,- )T

y

given by,
y=A-8+n (3.11)

where § = (8;,---.6,)7 is the unknown parameter vector, n = (n1,---,n.)7 is the noise
vector, where {n,} are i.i.d random variables distributed normally with zero mean and
variance o2, and A is a given (n x k) matrix, which may be written by columns as A =
{a1,---,a,] or by rows as AT = {a,,---,a,]. In this casc maxiiLuzing the likelihood of the

observation yield a least-squares problem as,

| S o
) = arg min iy~ A-8i°

= é 20°"

frL = arg max log fy (y;

We start to aevelop an EM algorithm to this problem by choosing the complete data.

Suppose that the vectors {z,}., are defined as,

L; = &y 9] -n, (3-13)

where n; is (n x 1) noise vector, whose components nj; are zero mean Gaussian i.i.d random
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variables with variance 3,07 Assuming that {n;} are uncorrelated and that }:;:1 B; =1,

we have
k
y= 1z, (3.14)
1=1
The complete data is defined as the set {z;}*_,. Writing the complete data as a long vector,
7 =(,---, ;{), the relation between complete and incomplete datais given by y = H -z,

where H is the non-invertible (n x n - k) matrix

H =111
s, et
k times

‘This is a (simple) Linear-Gaussian case situation; using the results of section 2.3, the E

and M steps of an EM algorithm for solving the least-squares problem of (3.12) are given

by,
» E step:
Egm) = Egn) -8 (2 - A'Q‘"’) , J=1-k (3.15)
e M step
A a’g“gf“ ™ - g, 61 = T:rfgln: J=1,-,k (3.16)

Combining these two steps we get the iteration,

9‘n+l)=o(n)+diag('51r yT T -ﬂk“’).AT‘ y_A.Q(") 3-17
= = iayll? )i (“ ) 10

where diag(-,---,-) is a diagonal matrix.
A sequential algorithm, based on the iteration (3.17), according to the exact EM map-
picg method, may now be easily developed. Define a “correlation matrix”, A,, and a

“cross-correlation vector”, P for the least squares problem of order n in the following way,
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1 7 1<
2,=-Aly = -3 ow (3.18)
Given a new measurement. yn., we can update 4, and p_recursively, as,

n . 1

_ T
-4n+1 = a1 An + n+1 1941
n 1
P = p_ + Qnyr1 " Yntl (3'19)
En+l n+l1 =" n+1

The exact EM iteration (3.17) may be written as,

v . B 3 :
(nr1) = gln) 4 g ( LS. ) A -0 3.2
Q - T dag .‘1n+l(l, 1)’ ’ jn-ﬁ-l(k, k) (B!H-l An«’—l - ) ( 0)

which can be calculated recursively, since all required gnantities are calculated recursively.
The sequential least squares EM algorithm (SLSEM) is completely specified by (3.19) and
{3.20).

As a final comment, we may compare this SLSEM algonithm to the well known LMS
and RLS algorithms, which also solve this linear least squares problem recursively. The

LMS algorithm 1s specified by the following recursion,

Q(n+l) = Q(n) - Bany (wa-l - Q:+lﬂ(n)) (3'21)

where 8, is the ' component of the vector 8.

The RLS algorithm, which exactly solves in any step the n*® order least-squares problem
1s specified by,

pntl) = glntl) 4 g=1 o (\y“+1 _ Q.Lxﬁ(n)) ' (3.22)

where A, ,11 may be calculated recursively as,

_ o AZla, jal (A1
Al =47t - Rpmlonslon (3.23)
’ l.‘;'gnq.]'q” .q_vr'rl




We notice immediately that the complexity of the LMS algorithm 1n each iteration is
linear in the number of unknowns k, while the complexity of the SLSEM algorithm and the
RLS algorithm is quadratic. of order k2. The SLSEM algorithm requires less computation,
however.

A few experiments with these algorithms indicate that the convergence of the SLSEM
is faster than that of the LMS algorithm. The convergence of the SLSEM algorithm 1s,
of course, slower than that of the RLS algorithm since the RLS algorithm exactly solves
the least-squares problem in each step. However, the convergence rates of the RLS and

SLSEM algorithms to the true value of the parameters, as a function of the data index, are

comparable.

3.1.2 Sequential EM algorithm based on recursive E and M steps

The sequential EM algorithm presented now is applicable to the following situation.
Suppose that, given the complete data, there is a sequential {or adaptive) algorithm for
estimating the parameters. Also, suppose that the required statistics of the complete data
may be estimated recursively from the observations. In this case, as each new block is
observed, the necessary new complete data statistics are estimated recursively, given the
current value of the parameters - the E step. Then, the parameters values are updated
sequentially, given the new estimated block of complete data statistics - the M step.

To be more speciic, suppose that, if the complete data, z,,2., -+, Z,, - -, 1 observed,

there is a sequential (or adaptive) algorithm for estimating the parameters, i.e.

Q(nﬂ) =G (§(£n+1)» r{Zn, - ,zx),é’(”)) (3.24)

where t(z,.1) are the statistics to be extracted from the new data z,,;. The statistics
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r{Z,, --,Z;) are extracted from the past data. Since (3.254) represents a sequential proce-
dure, these statistics are easily stored and updated.

Unfortunately, the complete data is not available. We only observe the incomplete data,
Yy Yo oY, o> SO We cannot esimate the parameters via (3.24). Following the EM idea,
we should estimate the complete data statistics, needed for the sequential algorithm of
(3.24), by taking their conditional expectation, given Yoot "W and tne current value,
8™ of the parameters. These conditional expectations may be calculated sequentially too.
Consider, for example, the case where the complete data is composed of two Gaussian
signals, say s(n) and w(n), and the observed data is the sum of these signal, i.e. y(n) =
s(n) + w(n). The conditional expectation of the complete data, given the observation, in a
non-sequential EM algorithm requires a Wiener filter. However, this conditional expectation

may be achieved sequentially, using a causal Wiener filter or a Kalman filter.

A sequential procedure for estimating the required complete data statistics may be
described abstractly, e.g.,
E {l(;"“) | Yniro ™ ’gl;g(n)} = E(Qr.ﬁ’-ﬂ(y.n""’21);Q(n)) (325)

where the functions g, summarizing the contribution of past observations, are easily stored
and calculated.

A sequential (adaptive) EM algorithm, based on recursive E and M steps is presented
formally as follows.

o Start, n = 0: Guess (%) Initial g (,---} =0

o For each new data block y

n+1?’



— Sequential E-step: calculate

t=E{t(zae1) | /Yy 08V} = FBoly,, 09,05, 0y,):8)

i: E [(En:“'7§l)§ gn’.“’yl;e_(n)} = f—t(gr(y_n"”’y_l);g(ﬂ)) (3'26)

i

Sequential M-step: Update parameters

8" = G(¢,1,6™) : (3.27)

!

Update and record &(gn+l,- . "21)‘3r(§'.n+1’ - ~,g1) for the next step

-~ n=n-+1

Suppose that the recursive procedure (3.24), suggested when the complete data is given,

increases the likelihood of the complete data L (8), i.e. it satisfies,

Lir (877Y) > L5, (8™) (3.28)

In this case, it is easy to show that the recursive algorithm suggested by (3.26) and (3.27)
increases the current likelihood of the observations, as follows. This is true because the
function Q.1 (6; Q‘"’) has the same functional form as L{_ ,(8), where the estimated statis-

tics, t and 7, are substituted in place of the statistics, t and r. Thus, if (3.28) is true, then

(3.27) implies
Qrer (81 00) > @y (8 97y (3.29)

Using (3.4), (3.29) and Jensen’s inequality we get,

Laca(87Y) 2 Lo (87) (3.30)
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3.2 Sequential EM based on stochastic approximation

The sequential algorithms presented so far were suggested by assuming that the under-
lying problem had a special structure. In this section, we will address the general situation.
Unfortunately, sequential algorithms may not be derived directly from the EM algorithm in
the gzneral case. We will therefore suggest algorithms, that approximate the EM iteration,
in order to get a recursive implementation. We will be able to show that these algorithms

belong to the class of stochastic approximation algorithms, for which a general theory is
readily available.

3.2.1 The EM algorithm: General sequential considerations

The log-likelihood of the observations, given n + 1 data blocks, is given by (3.3). Define,

Looyjn(8) =108 fy,.,iva v (Y, /¥ 540 8) (3.31)

The io0g-likelihood of the observations may be written recursiveiy as.

Ln-rl(Q) = Lﬂ.(Q) - Lw'—l/n(g) (332)
or as,
Los1(8) = Li(8) = D Liw1u(8) (3.33)
3=1

In order to develop a recursive algorithm, we refer to the recursive formula for the

log-likelihood (3.32). Analogous to (3.4), the term L, may be written as,

Ln(8) = Qnl8:¢') — Ha(6:¢') (3.34)

where the complete data is defined to be z,,---,z,,. For the term L,,,,,, the complete

data 1s z,,., and following the same considerations which lead to (3.34), we may write,

Ln+1/n(§.) = Qn-v-l/n(Q; Q’) - Hn+1/n(e.§ Q') (335)
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where

Therefore,

Las1(0) = La(®) + Las1/n(@) = Qn(8:€) + Quia/n(8:8) = [Ha(8:8) + Hory/n(8:9)]

(3.38)
and we have,
Ha(8;8) < Ho(€;8) and Hpyy/nl88) < Hosyn(8: 8) (3-39)
One could try to achieve a recursive algorithm by maximizing either,
Qn(8:8™) + Qurr/al(8:6) (3.40)
or,
Q18 8)) + Q21 (8; ™) + - -+ = Quayn(8; 8™) (3.41)

since maximizing either (3.40) or (3.41) will generate a new value 8(™*?) that increases the
likelihood L,..;(8). However, despite their seemingly recursive structure, these maximiza-

tions cannot be performed sequentially in general, because:
e Calculating @,/ Involves the past data y_,---,y,

e For each new parameter value, the conditional expectations needed for the term Q,,,

or the terms Q;,Q2/1,- -+, Q@n/n-1, should be recalculated. This requires using the

past data samples.



An approximate sequential algorithm

From the discussion above we conclude that a general sequential algorithm, that will imple-
ment the desired maximizations of (3.40) or (3.41), cannot be specified. However, consider

the following sequential algorithm,
e Start, n = 0 : Initialize ¥o(@) = 0. Guess §(®)

e For each new data Ypir

~ E-step: calculate

Q24 1/a(8,8™) = E {108 fx(2n01:8) | Yoy YooY

*n—m

Tl (3.42)

— M-step: solve

{n+1) __ s (n)y _ R
0" = argmax [Q%.,n(0,0) = B - ¥a(0)] (3.43)

— Record for next step

Vor1(0) = Qiry/nll,8™) + B - ¥a(f)
- n=n-+1

This algorithm approximates the desired procedures as follows. First, the term Q.. /a(8; o)
is approximated by Q7 _, /R(Q; 9(™)), given by (3.42). We will use in this approximation sn:ne

past data values, y ,---,y

n

_ o as long as Qrsi/n is calculated recursively. We note that, if

the different observation blocks are independent, Q,..1/n = Q5 /n- In general, the weaker

the successive observations blocks are correlated, the better this approximation becomes.
Second, the previous terms are not recalculated. We calculate each Q7 , /., using the cor-

responding parameter value, 8(*), and we simply accumulate these functions and generate
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¥, (8) recursively. Also using this algorithm, the previous terms may be weighted, according
to the choice of B,. By an appropriate choice, we may reduce the contribution of the past
data and track varying parameters in the adaptive situation. or we may weight the past
data more heavily, to guarantee convergence and consistency, for a sequential algorithm.
Although it seems that this algorithm is based on ad-hoc approximations, we will be
able to show that this algorithm belongs to the class of stochastic apprcximation algorithms.
Later in the chapter, we wiil use results developed for stochastic approximation algorithms
to calculate the asymptotic distribution of the estimator and prove its consistency. However,

before that, we will briefly present the stochastic approximation idea.

3.2.2 Stochastic approximation

In a typical problem for stochastic approximation, a sequence of random variables (vectors),
{y,}. is opserved. We assume that the sequence is stationary, in the sense that each y_has
the same marginal distribution, and that 1t is ergodic. At each instance, a function of the
observed data and the desired parameters, L(f;y ), is given. We want either to optimize

the unavailable ensemble averzge of L, 1.e. to find

max E, {L(Q; gn)} = max L(8) (3.44)

(8

or to solve an equation, that involves this unavailable expected value, e.g.

E, {L(By,)}=0 orL(e)=0 (3.45)

The first problem is sometimes referred to as the Kiefer- Wolfowitz (K- W) problem {40}.

The second problem is referred to as the Robbins-Monro (R-M) problem {41]. By defining

L(By,) = 5Ly, (3.46)



a K-W problem for L may be reduced to a R-M problem for L'.
Suppose we have an iterative algorithm for optimizing L(8) of (3.44) or for solving the

(non-linear) equation (3.45). For example, the gradient iterative algorithm for maximizing

(3.44) will be,

E F)
(nt1) — glm 4 5. 9 fgniy = p(m) 4 5. g [ o } 347
g o™+ g agL(é! y=6"+3 E!{BQL(‘ ) (3.47)

We cannot implement this iterative algorithm, since the expected value of L and its
derivatives are not available. The stochastic approximation idea is to approximate the
expected value by the sample value. Since we have an ergodic sequence of realizations,
{y,}, the pext iteration is performed using the next realization. This achieves time-average
that approximates the unavailable ensemble average values.

Specifically, the stochastic approximation of the gradient algorithm, referred to as the

stochastic gradient algorithm, is given by,

Q(ﬁ‘?‘l) - Q(ﬂ) + ’gn(;_séL(Q(")’y_n) (348)

In (42] and {43] it is shown that, if the observations sequence is ergodic and if {3,} is a

sequence of positive numbers such that lim, .., 3, = 0 and it satisfies,

S Bn =00 and mﬁ§<oo (3.49)
2 2

n=0 n=0
e.g. An = B/n, then the stochastic gradient algorithm converges, in probability 1 and in
the mean-square sense, to the right solution of (3.44).

We note that, if the observed data is not stationary and we are looking for an adaptive
algorithm, then we usually choose constant gain 8 in some range, instead of {8,} as in
(3.49). This way, we reduce the weight of past observations and use the ne~ input to track

varying parameter values.




3.2.3 The EM stochastic approximation algorithm

The best statistical parameter estimation method, which we can hope to find, is a method

that solves the following optimization problem:

0 =argmax By _ {log fr,.(y,.,:0)} = argmax J(¢) (3.50)

This is because the solution to this problem is the true parameter value. To prove this

claim, we note that using Jensen’s inequality, we get
g €q y g

J(9) = fﬂog [y s O Y (5 trie)AY < T (Oire) (3.51)

1e. 8, maximizes J(8). We note that the equality in (3.50) is achieved, if and cnly if
e (¥02180) = fYasi (¥, irue) almost everywhere.

The maximization of J(8) can be accomplished using Newton-Raphson method or any
other optimization method. Instead, we will use an iterative algorithm for maximizing J(8),

based on the considerations leading to the EM algorithm, as follows.

Using znp.; as the complete data with respect to yn4; and following the method used

for deriving (2.12), we may write J(8) as,

J(0) = Q(8;¢') ~ H(8:8') (3.52)
where

Qe = E,  {E{log fxeri(2acri8) |y, }] (3:53)

In+1'~

H(6:%)

]l

__.,‘ {E {log fx~+|/Yn+1( -"‘*‘“grﬁ-l’ )

At (3.54)

Considering the function H(8;8™), it is easy to show, using Jensen’s inequality for the

expression inside the expectations, that,

H(6;¢') < H(¢':9) (3.55)



Analogous to the EM algorithm, an iterative algorithm for maximizing J(8) is given by,
oY) = argmax Q(8, ') = argmax E, _ {E{log Jx,...(znr1:0) | 5,18 || (3.56)

where from (3.54) and (3.35), each iteration of (3.56) increases J(8).
Unfortunately, it is impossible to implement (3.56), since the expected value with respect
toy ., is not available. Using the stochastic approximation idea, a stochastic realization

of (3.56) is performed as the (n — 1)* data block is observed. Thus, we get the foilowing

stochastic approximation algorithm:

8071 = argmax E {log fx...,(zne1:0)  ¥,,,,:8" } (3.57)

n+1'>

Following the notation used in the beginning of this section we will define

Qiayjn(8:87) = E {log fx,..,(2n-150) |y, 181 ] (3.58)

In a sequential algorithm, the new data block together with the past data blocks should
provide a time-average approximation to the ensemble average of (3.56). This may require

weighting the past data more heavily. Thus, we define recursively a function ¥,,,(8) as,

¥ne1(8) = Qa8 0) — Ba- ¥a(0) (3.59)

and the general stochastic EM step will be

Q(n+l) = arg maax ‘l’nf-l(ﬂ) (360

which is the algornithm suggested 1n {3.43).

We note that this algorithm was also suggested in {44], during the investigation of

approximations to the stochastic Newton algonithm.




3.3 Some properties of the sequential EM algorithms

Analysis of sequential and adaptive procedures, especially in a statistical or stochastic
context, has been the subject of extensive research efforts. The properties of the stochas-
tic approximation method, being the simplest, may be found in various references, e.g.
{43,45,46,47] and elsewhere. This topic is probably one of the most difficult subjects in math-
ematical statistics; investigating convergence of complicated stochastic structures, proving
convergence in probability, in probability 1 or in the mean-squares sense and finding the
rate of convergence requires using advanced probabilistic tools from Martingale theory and
stochastic calculus theory. Thus, a typical assumption made in most of the references above,
in order to simplify the analysis, is that the observed data blocks are independent.

The analysis of the sequential EM algorithms for the stationary case, presented below,

is far from complete. Nevertheless, the following results were achieved:

o General asymptotic consistency: We will show that the estimator, generated by a
sequential EM algorithm. is asymptotically consistent, when the ML estimator is

consistent and the sequential EM iteration converges to a stationary point.

e Limit distribution: The limit distribution of the estimator will be given for some

sequential EM algorithms. These results are for independent observations, however.

The properties of the sequential EM algorithms should be investigated further. Detailed
analysis may require the use of more advanced mathematical tools. It 1s an interesting
research topic in mathematical statistics. The book by Kushner {47}, together with the

EM ideas and the preliminary analysis of the sequential EM algorithms, presented in this

chapter, should provide the starting point for this research.
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3.3.1 General asymptotic consistency

The analysis of sequential algorithms when the observations are not independent may, in
general, be quite complicated. However, some sequential EM algorithms have the property
that in the limit the convergence point is a stationary point of the corresponding likelihood
limit. Using this property we will prove the asymptotic consistency of these algorithms
as follows. The sequence of normahized log-likelihood functions at each instance, %L,,(Q),
are shown to converge in probability 1 to a limat, {(#), whose unique maximum is the true
parameter value, 4,.,.. Under regularity conditions, the derivative of the likelihood also
converges. Since the sequence of sequential EM estimates converges to a stationary point
of the likelihood, 1.e. 10 zero derivative point, 1t converges to a zero derivative point of /(8)
which is its maximum, 1.e. the true parameter value.

Specifically, as discussed in Appendix B, for a class of ergodic sources. which include,
for example, all finite Markov sources, the sequence 1L,(8) where L,(8) is given in (3.3),

converges uniformly n probabihity 1 to,

o) = j JYnYuoy (s Yna1 5 0ue) 08 fy. v U/ Yn1s - 8)dYndyn 1 - - diy
(3.61)
Intuitively. the sources that belong to this class are ergodic sources, whose memory fades
fast enough. This result is also discussed in 48]
The function {(4) achieves its maximum at § = 4,,,,. Under regularity conditions and
the convexity of (3.61), 8,,,,. is the unique solution to the equation DI(8) = 0. Now, using

this fact and some well known results from analysis, the following theorem may be proved,

Theorem 3.1 Let the observations Yy 1Y, be generated by an ergodic sowrce for whick
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(3.61) holds. Let {§\™} be an instance of a sequential EM algorithm such that for any
realization of the observations,

(1) the sequence of estimates {§"))} converges to a limit 6"
(#)  lMn—co D0Qns1(8F1; M) =0
Then, in probability 1, as n — oo, gin) g

“lrue-

The proof of this theorem is also given in appendix B.

The conditions of theorem 3.1 may be verified for many specific sequential EM algo-
rithms. For example the sequential EM algorithm with exact EM mapping satisfy i’.e
condition (11) above, for all n; thus, if the observation sequence is ergodic and satisiles

(3.61), whenever the algorithm converges, it generates a consistent estimator.

3.3.2 Limit distribution

The asymptotic distribution of several sequential EM algorithms can be calculated using
the following technique. The recursion defined by these algorithms will be approximated by
a recursion that resembles stochastic approximation algorithms, especially the stochastic
Newton method. Having this similarity, we will be able to invoke results developed in the
stochastic approximation context and show, in some cases, that in the limit the estimator
is distributed Normally around the true parameters value and has \/n consistency, i.e. its
variance tends to zero as 1/,/n. We note that the possible connection between the sequential
EM algorithm and the stochastic Newton method was pointed out in {44].
Consider, for example, the stochastic EM algorithm defined by the recursion (3.60),

repeated here,

plntl) = arg max ¥,..1(8)
where ¥, is defined recursively by
*"'*l(e) = Q:+l/n(gi g(n)) + Bn N *u(g)
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and

Qar/n(8,87) = E {108 fx(z0r1:8)/4,,,): 67} = Q0.6 y, )

YT+l

Note that by the construction of the stochastic EM algorithm, (™ maximizes v,.(0).

We will assume regularity conditions, that allow certain operations, e.g. differentiation

under the integral sign.

An approximation to the stochastic EM recursion may be achieved if, instead of solving

the maximization problem of (3.60), a Newton-Raphson step, starting in (") is performed.
The resulting recursion is
i) = g™ — 1 D2, (8] - D¥ Ly (8Y) (3.62)

The gradient vector, D¥,.,, and the Hessian matrix, D?¥,,.,, are also given recursively,

D¥y (807) = DOQ(E™ 8™y )+ B DEA(E) (3.63)

+1
D™,y (81) = DOQAM; 87y | )+ Ba- DPHL(8) (364)

However, D¥,.(8™)) = 0 since 8"} maximizes ¥,. Also, from (2.36)
DQ(e"; 81y )= Dlog fr(y,.,;¢™) = S(y,_,;8™)

For exponential families, the second derivative of Q is such that —D*Q is the Fisher

information matrix of the complete data, Ix, calculated at 6™ Thus,

D* ¥,y (87) = ~ Ix(8)+ 8- D W (8) = = Ix(8™)+ 8 (- Ix (™) + By - Wy (™))

(3.65)
and so on. If 3, = 1 then D:\Iﬂn,l(Q(“)) = —-(n~ I)IX(Q(")). In this case, from (3.62), the

stochastic EM iteration is approximated by,

n n 1 - n n
Q( +1) _ Q( ) 4 mlxl(g( )) . S(g’hl;g( )) (3.66)
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Recursions like (3.66) are typical in stochastic approximation algorithms. For example,
replacing Ix(8{™) by Iy (8(™) = D2L(6'™)) in (3.66), yields the stochastic Newton method.
It has been shown, e.g. in {49] and 46| that the recursion (3.66) generates an estimator,

(") which satisfies, under reguiarity conditions and provided that 2/y (8u.) > Ix{(8irue ),
Va0 = 8y) — N (0, Iz Iy (2hy Iz - 1)) (3.67)
in distribution, as n — oo. The Fisher information matrices Ix, Iy in (3.67) are evaluated

at eruc'

When 21y (8;rye) < Ix(8trye), (3.67) above does not hoid, (although the stochastic EM
algorithm may still yield a consistent estimator). However, if we choose the coeffic.ents 8,

in such a way that the stochastic EM algorithm is approximated by

l - n
~maalx (@) S(y,,,:8") (3.68)

Q(“*’U —_ Q(n) +
and 0 < & < 21y (84, ) /3" (81rse) < 1, then according to {46,

/(0" - 8,) — N (0. IF Iy (2hy Iz - @) ™) (3.69)

in distribution, as n — oo, and the asymptotic Normality and /n consistency hold.

A similar derivation using a Newton-Raphson approximation can be performed for the
sequential EM algorithm with exact EM mapping. This algorithm generates estimates

according to the mapping {3.7), that is
gt = argmgaxQnﬂ(Q,Q(");gnH,“',gl)
which may be approximated, using a step of Newton-Raphson algorithm by,

'In+1’

87D = 91— D*Qua (81,8 y )T DQara (8,8 y L) (3.70)
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Using the fact that DQ,,(Q("),Q("); Yy, --} = 0 we may write
DQur1 (8, 8y o) = DLavyyn(6™) = S(y,., /v, :6") (371
For exponential families, the second derivative of @ will provide the Fisher information, i.e.
D*Qur (8,075 y v ) = ~Ixy i xax, (87) (3.72)
Thus the approximation (3.70) may be written as

Q(""""l) = Q(") * Iz;rlu-an’“Xl(Q(n)) ’ s(y..n'i»l/gn R Q(")) (373)

For the case where the observations are coming from a finite markov source, the Fisher
information is written recursively as a sum of identical conditional information matrices. We
may again use the results of Sacks {49] and Fabian {46] to get Normality and \/n consistency -
of the estimator, as in (3.67), where the conditional information matrices Iy, /x,. and

Iy, .., v. . replace the matrices Ix and Iy.
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Chapter 4

Parameter Estimation of

Superimposed Signals

In this chapter, we will consider the proolem of estimating parameters of supenimposed
signals observed in noise, which occurs in a wide range of signal processicg applications.
This problem will be approached in this chapter using the iterative EM method, presented
in the previous chapters. In the next chapter, we will apply the proposed iterativ> method
to another important signal processing problem, namely, the multiple microphone noise
cancellation problem.

A specific example of the applications, that are considered in this chapter, is the multiple
source location estimation problem, using an ar-ay of sensors. In this problem, we have K
sources radiating signals towards an array of M sensors, as illustrated in Figure 4.1. The
location of the sensors is known, and we want to use the relative time delay between the
observed signals from the different sensors to estimate the location of the scurces. The

signals, received by the array sensors due to the k** source, may be represented as the
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Figure 4.1: Array-Source Geometry

vector signal, si(t), where the m** component of this vecior is the signal received by the
m!* sensor. The vector signal, s.(t), is dependent upon a vector of unknown parameters, .
8, associated with the k** source and is denoted si(t;8;). In our problem, 8, is the vector
of unknown source location parameters. We will denote by the vector y(t) the total signals
observed by the array sensors. This observed signal vector is a result of superimposing the
various §;(t;8;) and an additive noise vector, i.e.
K
y(t) = D silti ) + n(t) (4.1)

k=1
Our problem is to estimate the location parameters, given the observations, y(t).

The general problem of interest in this chapter is characterized by the model (4.1).
The basic structure of (4.1) applies to a wide range of signal signal processing problems,
in addition to the multiple source location estimation problem. Consider, for example,
the problem of multi-echo time delay estimation. In this case each signal component is

the scalar s¢(t;8;), representing the k** echo signal, and the parameters §, are the time
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delay and attenuation of the k** echo. Another example is frequency estimation of multiple
sinusoids in noise, where the unknown parameters, 8, , are the amplitude and the frequency
of the k** sinusoid.

Using the mathematical model of (4.1) together with a stochastic model for the various
signals, one can formulate a statistical maximum likelihood problem for the underlying real
problem. In many cases, the direct solution of this ML problem is complicated. Using the
EM algorithm, we will develop in this chapter computationally efficient schemes for the
Joint estimation of 8;,08,,---,8x. The idea is to decompose the observed signal, y(t), icto
its components, and then to estimate the parameters of each signal component separately.
Stating this idea in the terminology of the EM algorithm, we choose the complete data
to be the contribution of each signal component separately. Thus the algorithm iterates
between decomposing the observed data, i.e. estimating the complete data using the cur-
rent parameter estimates, (the E step), and updating the parameter estimates, having the
decomposed signals, (the M step).

So far the superimposed signals problem has been stated in its most general form.
In different applications, additional specific modeling assumptions are needed. In a large
variety of problems, we may assume that the noise signals, n(t), are sample functions
from a stationary Gaussian process with a given spectrum. However, the modeling of the
signal components in (4.1) varies according to our a-priori knowledge and the nature of the
underlying real problem. Generally, these signals may be determimistic or stochastic, and
various constraints may be apphed on their waveforms or on their power spectra.

The problem of parameter estimation of superimposed signals in noise and its solution

via the EM algorithm is presented in this chapter, in a variety of situations, as follows. In
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section 4.1, we will present the statistical ML problem and its EM solution procedures in the
deterministic signals case. In section 4.2, a similar presentation is given for the stochastic
(Gaussian) signals case. These procedures are then used, in sections 4.3 and 4.4, to solve the
multipath time delay estimation problem and the passive multiple source location estimation
problem. We will conclude this chapter, in section 4.5, by presenting sequential and adaptive

algorithms, and applying these algorithms to the problem of estimating the fraquencies of

multiple sinusoids in noise.

4.1 Parameter estimation of superimposed signals: The de-

terministic case

The signal components, s,(t;6,), are naturally modeled as deterministic signals in a
variety of applications. Consider for example an active radar or sonar environment, where
a known waveform pulse is transmitted. We observe the echoes of this pulse returning
from several targets. Assuming perfect propagation conditions, the observed signal is a
result of superimposing deterministic signals (the pulse echoes), which are known up to
some parameters (e.g. the time delay). A statistical problem for estimating the unknown
parameters of the superimposed signals is achieved in this case, when a stochastic model
for the noise components of (4.1) is assumed.

In this section, we will present this statistical maximum likelihood problem and show
that its direct solution 1s complicated, even in the simplest case, when we assumne that the

noise 15 white. Thus. we will develop methods based on the EM aigorithm to solve this

probiem.




4.1.1 The ML problem

Consider the model of (4.1) under the following assumptions:

e The signal vectors, 5,(t;8;) k= 1,---, K , are conditionally known up to a vector

of parameters, §,.

e The n(t) are vector zero-mean white Gaussian processes whose covariance matrix is
E{n(t)n(e)} = Q- 6(t - o)
where Q 1s a positive definite constant matrix and 6(-) is the impulse function.
e The signals are observed over a finite duration, say T; < t < Ty.

Under these assumptions, the log-likelihood function is given by,

K

t K
log fy(y:8) =C - —j [y(t Z } Q! [g(t) - Z-S..k(‘;gk)] dt  (42)
k=1

where 1 denotes the conjugate transpose operator. A = 1, if n(t) is real valued, A = 2, if
n(t) is complex valued. C is a normalization constant independent of §. This result is just a
straightfe_ward multi-channel extension of the known (deterministic) signal in white noise
problem ([1f, chap. 4). If the observed signal is discrete i.e. we observe y(t), i =1,--- N
the log-likelihood 1s still given by (4.2), where the integral over t is replaced by the sum

over the t;’s.

Thus, the joint ML estimation of the 8,’s is obtained by solving

T, K t K
, min fr {z(t) - Z§&(t§gk)] Q™! [y(t) - ng(t;ﬁk)] dt (4.3)
et

A JT, k=1

Or for discrete observations,

! P K
,mia Z [y(A) - Z.k (t; 8 ] lg(t‘) - Zu(ts;&)] (4.49)

£k =1 k=1
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In either case, we have a complicated multi-parameter optimization problem. Of course,
standard techniques, such as Gauss-Newton or some other iterative gradient search algo-
rithm, can always be used to solve the problem. However, when applied to the problem at
hand, these methods tend to be computationally complex and time consuming.

We note that the more general problem, where the noise vector, n{t), has an arbitrarily
given power spectrum matrix, N(w), may be reduced to the problem presented above,
where the noise vector is white, by using an appropriate whitening flter. Let £.{t;6;) be
the output of the whitening filter to the input si(¢;8;). In this case the likelihood of the

observations is still given by (4.2), where we use 3, (t;8;) instead of 5,{(t;9;).

4.1.2 Solution using the EM method

Having in mind the EM algorithm and the class of iterative algorithms, developed in
the first part of the thesis, we want to simplify the optimization problem associated with
the direct ML approach.

In order to apply an EM algorithm 1o the problem at hand, we aneed to specify the

complete data. A natural choice of a complete data, z(t), is obtained by decomposing y{t)

into its signal components, that is

z,(t)
z,(t)

()= | . (4.3)

zi (1)

- e

where

(1) = si(t; 0) = malt) i4.6)




and the n,(t) are obtained by arbitrarily decomposing the total noise signal, n(t), into K

components, so that

K
Z ni(t) = n(t)
k=1

(4.7)

From (4.1), (4.6) and (4.7), the relation between the complete data z(t) and the incom-

plete data y(t) is given by

where
K terms

r———-—/\—q
H =111

(4.8)

We will find it most convenient to choose the n.(t) to be statistically indeperdent zero-

mean and Gaussian with a covariance matrix

E {mi(t)ma(o)} = Qi - 6(t - o)

where @, = 53.Q and the 5;’s are arbitrary real valued scalars satisfying

K
S Bl A&20
k=1

We will discuss methods for choosing specific 8,’s later.

In this case the log-likelthood of the ccmiplete data z{t) is given by

A I i . .
L.(8) =log fx(z:6) =C ~ = f (Z(t) - s(t: )T A7 z(t) - s{t: 9)lat
-« 4T,

(4.9)

(4.10)

where C contains all the terms tl'a® arv ‘ndependent of §. The vector s(t; 8} is given by,

P

s:{t:6y) ‘

s2(t; 62)

] si(tify) ]
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and it is the mean of z(t). The matrix A is the covariance matrix of z(t),

o8

A= , (4.12)

@k |

L
The notation in (4.12) indicates that A is a block-diagonal matrix. Thus, the log-likelihood

of the complete data may be written as

A K o1y i
L) =€ - 3 Y [ im0 - s 01 Qr a0 - st ) (4.13)
“ k=11

From this expression, we notice that, if the complete data was available, then maximizing .
its likelihood with respect to § is equivalent 1o the minimization of each of the terms in the
sum above separately, which is simpler than solving a multi-variable optimization problem
with respect to all 8,’s at once. We also notice that the sufficient statistics of the complete
data contain only linear terms, since the quadratic terms in {4.10) are independent of the
unknown parameters.

Of course. we do not observe the complete data. However, we take advantage of the
special structure of the likelihood of the complete data by using an EM algorithm with this
specification of complete data. This EM algorithm will iterate between estimating z(t) and
using the estimated value in (4.13) to updating the parameters -by a separate optimization
with respect to each §,.

More specifically, from (2.18), an EM iteration is surnmarized by

81 = argmax Q(8; 6) = argmax E {log fx(z;9) [y, 8" } (4.14)
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However, in this case

A (T .
argmax Q(8; #")) = arg max [C— 3 [ TE() - s(:0)]'A () - s(68)]d | (4.15)

where
z(“’(t)=E{.:e(t)/y_,Q‘"’}=§(z;2<"")+AH’ [HAHNy(t) - H - s(t;8™)]  (4.18)

Substituting (4.11) and (4.12) in (4.15) and following straight forward matrix manip-

ulations, we see that the maximization of (4.15) i1s equivalent to the mimmization cf the

sum,

iy 3 [0 - sea)] o [P0 - sa]d @
LIPS 'St
L(n) .

where ;" is the k'* component of ™. This minimization of the sum is equivalent to the
minimization of each of its components separately, with respect to 8,.

Also, substituting (4.12) in (4.15), the gain matrix becomes

AH'HAH"™! = diag(Br, B2, -, Bk) (4.18)

where diag(---) indicates a diagonal matrix.

Summarizing all these relations, we may now write the E and M steps of the EM

algorithm for this problem as follows:
s The E step: For k =1,2,---, K compute

27 (1) = st 60™) - B { ) - Z selts 9""] (4.19)

where the 3,’s are any real-valued positive scalars satisfying

K
25k=
=1
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Figure 4.2: The EM algorithm for Deterministic {known) signals

e The M step: Fork =1,2,---, K

- A Ty ‘n 1t n
o0 = argmin | 7 [ - s 0] Q5! [ - sl 0] dt (4.20)
9% T,

We observe that Q&"‘” 1s 1a fact the ML estimate of §, based on _':gi"). This algonthm
is illustrated schematically in Figure 4.2. We note that in the case of discrete observations,

the integral of (4.20) is replaced by the sum over the points {t,}.

The most striking feature of this algonthm 1s that it decoupies the complicated muiti-
parameter optimization into k separate ML optimizaticns. Hence, the complexity of the
algorithm is essentially unaffected by the assumed number of signal components. As K
increases, we have to increase the number of ML processors in parallei: however, each ML

processor 1s maximized separately. Since the algorithm is based on the EM method, each

iteration cycle increases the likelihood until convergence is accomplished.
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Unknown signal waveforms

The algorithm developed above assumes that the signal waveforms, s,(t), are known a-
priori. In practice. one is unlikely to have a detailed prior knowledge of these waveforms,
in which case they must be estimated jointly with the parameters, 8,. We will consider
the samples of the unknown waveiorms as additional parameters; using the same statistical
formulation as above, we will get an ML problem for estimating the waveforms. Following

the same considerations as above, we can specify the E and M steps of an EM algorithm

for estimating the waveforms and the parameters, as,

e The E step: For k=1,2,---, K compute

K
(1) = o7 (:47) - 3 [g(t) -X éi"’u;e‘,."’)} (4.21)
=1

"o The M step: Mimimze

K (Tre t ,
> /;_ [Zi ' °k(t;Qk)] Q;t [zl - §k(t;Qk)} dt (4.22)
k=1

with respect to 8,,--+,8x and s;(t), -+, sx(t).

The E step is identical to (4.19), where instead of using the a-priori given waveforms, we
use the current estimated waveforms, gﬁn)(t). The M step requires a more complicated
maximization. However, we will ve able to give an explicit example for this M step iate. in
the chapter.

We note that the ML problem for estimating the waveforms in addition to the unknown
parameters is ill-posed, since there may be too many unknowns. To make the problemn well-
posed, we have Lo incorporate some constraints on the possible signal waveforms. However,
we have 10 make sure that these constraints will correspond to the real, physical situation.

3
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4.1.3 The extended EM algorithm and the choice of the §;'s

The EM algorithm presented above corresponds to a family of complete data definitions.
Each choice of the 8;'s implies a diferent choice of complete data, z{t); the probability
sample space and the corresponding p.d.l. of z(t) depend on the choice of the 3,’s. The
convenient feature of this family of complete data definitions 1s that each member of the
family satisfies the same relation between complete and incomplete data given by (4.8).
This feature allowed the presentation of the EM algorithm for the entire family at once.

This family of complete data definitions may be further extended, while keeping the
simple structure of the algorithm steps (4.19} and (4.20), in the following way. We could

model the complete data, z(t), as a Gaussian process, whose mean is s(t;8) as in (4.11),

but whose variance is time dependent and given by,

a0 1 T awe 7
Q:(1) 32(1)Q
A(t) = = . (4.23)
[ . Qx(t) | | Bx(1)Q |
where 3;(t) are arbitrary real values, satisfying for all t
K
Yo&(t)=1, B(t)20 HT,<t<Ty (4.24)
pun

Any member of this extended family of complete data definitions corresponds to decom-

posing the observation noise, n(t), into statistically independent zero-mean Gaussian aon-

stationary components, ni{t), whose covariance matnx is
y \*/s

E{ni(t)ne(o)} = Qu(t) - 6(t - 0) = Bu(t)@5(t ~ 0)
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The E step of the EM algorithm for each member of this extended family is similar to
{4.19), except that 8i(t)’s replace the time invaniant 8¢’s. The M step is sumilar to (4.20),
where again the time varying Q:(t)’s replace the time invaniant matrices Q’s

From the discussion above, we see that the suggested class of EM algointhms has many
degrees of freedom. We may look for a choice of i(t)’s that give the simplest and fastest
algorithm. Furthermore, tollowing the discussion in section 2.4, instead of fixing this choice,
the 3:(t)’s may vary from iteratior to iteration, according to some a-priori rule or depending
on the current parameter values, 9"} The EM algorithm, where the complete data defi-
nition varies from iteration to iteration, has been referred to as the extended EM (EEM)
algorithm. Examples for applying extended EM algorithms to our problem are now given.

Suppose that in some iteration one of the 8;’s, say 3¢, 1s chosen to be unity; the remaining
B¢’s must be zero. In the next iteration, we will choose 3¢.; to be unity and so on (in a
cyclic way so that after 3k is unity, 3; will be unity). Substituting these 3i’s in (4.19)
and (4.20), we notice that the resulting algorithm is equivalent to a coordinate search or
alternate maximization algorithm of (4.2). In each iteration, Qi’”” = Qi") for all k's that

correspond to a zero 3y, and 8, is updated by,

1

y(t) - 3 se(t:80) - st 8| Q7' |wit) - se(604) - s,(1:8)

k7t L k

- T
8" = arg m_'m]
T,

4]

de

-
-

(4.25)

where £ corresponds to the unity 8,.
While in the previous example, we have shown how, by varying the complete data,
the EM algorithm has been reduced to a simple (but not recessarily efficient) algorithm,
we will now show how an algorithm with a superlinear convergence rate may be achieved.

To simplify the exposition, we will discuss a degenerate scalar case, where the unknown



parameters are given by the scalar 4.

From (2.65), in order to achieve a superlinear convergence rate, we have to choose. in
each iteration, 3;’s (or complete data) that are the solution to the equation,

2

Ho(pln) ginly =
bt ) 08,39,

Q(al;oz)i =0 (4.26)

16, =617 jazgin)

Following (4.15),(4.16) and (4.17), the expression for Q(#);8-) in this case is given by,

Q81;8:) = C - Z / 270682 - sl 00)] Q71 (1) [0 (1:82) - si(e:00)at] (4.27)

f . .
where i_‘,‘c")(t; f-) is given by,

K
2,7 (6:82) = (83 82) ~ Bu(t) [s_/(t) -3 selt; 0:)] (4.28)
=1
Thus. a possible solution of {4.26) is to choose
3
‘“Sk(t‘0)‘1 .
Belt) = Ka" e (4.29)
L= gaselt;6)

If this choice of 3i(t) 1s allowed, the convergence rate of the resulting EM algorithm will be
superlinear.

Another desired feature of an EN algorithm with varying complete data is that it may
avoid convergence io unwanted statiouary points. Following the discussion in section 2.4,
the simplest procedure 1s to randomly choose 8i(t} in each iteration. These randomly chosen

e{t) have to satisfy the constraints of (4.24), however. A more complicated procedure is
to search for the choice of Ji(t) in the domain, defined by the constraints of (4.24}. that
wil} give the largest increase in the likelihood. Since searching the entire domain of possible

3¢(t) may be too complicated, we will search only in a sub-domain, which is randomly

chosen, in each iteration.
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4.2 Parameter estimation of superimposed signals: The stochas-

tic Gaussian case

In the previous section. the signal components, s,(t:§;), were deterministic. In this
section, we will present the statistical maximum likelihood problem and its solutions using
the EM algorithm for the case where the signal components, s;(t:8;), of the observed
composite signal are modeled as sample functions from a Gaussian stochastic processes.
This modeling is natural in a variety of applications. Consider, for example, a passive
sonar environment, where the targets generate nose-like acoustic signals. The signals from
several targets are superimposed and measured by cur array sensors with an additional
background noise. We may or may not know the spectral characteristics of the targets’
signals. However, we are usually interested in finding the geometrical parameters, 1.e. the
location or the bearing of the targets.

By assuming that the signal components and the background noise are Gaussian pro-
cesses, we get a statistical maximum likelthood problem for estimating the unknown pa-
rameters (which are the geometrical parameters and maybe some spectral parameters of
the signals in the example above). 1t is difficult to solve this statistical problem directly;
indeed, in many applications, suboptimal procedures were suggested. We, however, will
present in this section procedures, based on the EM algorithm and its extensions, whose

goal 1s to be optimal, 1.e. to solve this maximum hkelihood problem.

4.2.1 The ML problem

Consider the model of (4.1) under the following assumptions:
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e The signals s5,(t;8,) k= 1,---, K are mutually uncorrelated, wide sense station-

ary (WSS), zero-mean, vector Gaussian stochastic processes, whose power spectrum

matrices are Se(w:8;). k=1,2,--- K.

The noise, n(t), is a WSS, zero-mean. vector Gaussian processes with a given power

spectrum matrix, N(w).

¢ The observation interval, T = Ty — T, is long compared with the correlation time

(inverse bandwidth) of the signals and the noise. 1.e. WT /22 >> 1.

Under the above assumptions, the observed signals, y(t}, are zlso WSS, zero-mean and
Gaussian. WSS processes with a long observation time are conveniently analyzed in the
frequency domain. Fourier transforming y(t) we obtain

T

1
Y(we) = —= [ y()e ™ dt,  wp =
VT /T,

3

x
—-¢ 4.30
- (4.30)
For WT,/2x >> 1. the Y(w,)’s are asymptotically uncorrelated, zero-mean and Gaussian
with the covariance matrix P(wy;8), where P(w;8) is the spectral density matrix of y(t)

given by,

K
P(w:8) =Y Se(w;8:) ~ N(w) (4.31)
k=1

The log-likelihood function observing the Y (w¢)’s is therefore given by.

L(8) = - 3" [log det x P(we; 8) = ¥ (we) - P (w5 8) - ¥ (wi)] (4.32)

¢
where the summation in (4.32) is carried over all w in the signal frequency band. In the
case of discrete observations, the log-likelihood is still given by (4.32), where the Y (w,)’s

are the discrete Fourier transform (DFT) of the observed signals.



In either case, to obtain the ML estimate of the various §,’s we must solve the following

Joint optimization problem

min_ S [iog det P(we; 8) ~ Y (we) - P (we 8) - x(u,)} (4.33)

B xS N
This 1s usually a complicated joint optimization problem. Standard search techniques,
such as gradient or Newton-Raphson methods, tend to be complex, when applied to this

problem. Thus. we will propose using the EM method to by-pass this complicated multi-

parameter optimization.

4.2.2 Solution using the EM method

Following the same considerations as in the deterministic signal case, a natural choice
of complete data, z(t), will be obtained by decomposing the observed signal, y(t), into its_

signal components. Thus, repeating equations (4.5) and (4.3), the complete data. z(t), is

given by, ) )
El(t)
z,(t)
z(t) = . (4.34)
| zx (1) |
where
2.(t) = s,(t;85) + ng(t) (4.35)

-

Again. the n;(t) are chosen to be mutually uncorrelated, zero-mean and Gaussian, whose
spectral density matrices are Ny(w) = B; - N(w), where the 8;’s are arbitrary real-valued
constants subject to (4.9). Thus the relation between complete and incomplete data is given

again by y(t) = H - z(t) as in (4.8).
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The log-likelihood of the complete data z({t) 1s given by

L.(8) = log fx(z;8) = ——Z[logdetxA(wg;Q)-z-z_‘(wc)-A'l(we;Q)':&(ug)} (4.36)
[4

= - Z {log det ®A(we: 8) + tr {A'l(wc;Q) : K(WC)—KW“‘")} ]
¢

where X (w/) 1s obtained by Fourier transforming z(t), i.e. any of its components, X, (we),
1s given by,

1 T,

2x
Xilwe) = —= e “dt,  we= = -f 4.37
Xe(we) 77 I zi(t)e we = % (4.37)
The matrix A{ws;8) 1s the power spectrum density matrix of the complete data. It is a
block diagonal matrix given by
Ay(we 8,)
Az{we; 82)
AMwe: 8) = (4.38)
| Ak (we 8k) ]
where
Ap(w; 8;) = Si(w; 8) + Bk - N{(w) (4.39)

Exploiting the block diagonal form of A(w;8), the likelihood of the complete data may

be written as,

K
= - 33" [logdet xAu(wi 8a) ~ tr {A7 (wer ) Xe(w)XLwn)} | (440)
1]

k=1
From this expression, we notice that, if the complete data was available, maximizing its
likelihood with respect to 8 is equivalent to minmimizing each of the terms in the sum above

with respect to §; separately. This is much simpler than solving a multi-variable optimiza-
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tion probiemn with respect to all §,’s at once. The sufficient statistics of the ccmplete data
1s composed of the quadratic terms {_& (ut)gg}c(m)}.

In the suggested EM algorithm, we take advantage of this simpie form of the likelihcod
of the complete data. The E step will estimate the required quadratic statistics and the M

step will use the estimated statistics in (4.40) and update the parameters via the simple
maximization, associated with the likelihood of the complete data.

The required statistics are the diagonal blocks §f the matrix X (we) X' (we). The relation
between complete and incomplete data is linear (i.e. Y{w;) = H - X(w¢)) and the data is
Gaussian. Thus, using the resuilts developed for the linear Gaussian case {see (2.55)), the

conditional expectation of the matrix X(w¢)X'(we), given the observations, Y (we), and an

assignment, #', to the parameters, is given by
Y(wr) = E{X(we)X'(we)/Y (w8}
= J-T(w:f) H Awg; 8)+ Tw; )Y (we) - Y (we)THw; 8) {4.41)
where ['(w;§') is the “Kalman gain®
T(w;8') = Awe; 8)H! [H‘\(’-‘t;Q’)Ht]-l
Using straight forward algebraic manipulations the (k, k) block of ¥(w;) is given by
Ve(we) = Ar(we65) — Ax(we; )P Hwe; 8) Ar(we: 8:) +
~Arfwe, )P Hwe €)Y (we) - YHwe) P we; ) Arlwe: 8))  (4.42)

where P(w,; 8) is defined by (4.31).
These estimated statistics are used instead of the unavailable statistics of the complete
data. The maximization in the M step will be equivalent to K separate minimizations with
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respect to each §;. The E and M steps of the EM algorithm for the Gaussian superimposed

signal problem may be sumimarized as follows:

e The E step: For k=1.2.---, K compute

‘p(kn)(w) = Ak(‘ﬂ't%g_y‘)) - Ak(w;Qiﬂ)Pal(w;Q("))Ak(wz;ﬂy)) - (4.43)

+Ai(we; B8 P we: 8 (we) - Y (we) P (wis 08) Ak(we: 07)
e The M step: Fork=1,2,--- K
QS:H) arg rrﬂxin Z [Iogdet A(we; 8) = tr {A;l (we; 8) - \IIL"'(uJe)} ] (4.44)
~k ¢

We observe that Qi’“‘) 1s the ML estimate of §,, where ,L,(wg)xz (we) is replaced by its
current estimate, 'I»'L")(w,). The algorithm is illustrated in Figure 4.3. The most attractive
feature of the algorithm is that it decouples the full multi-dimensional optimization of
equation (4.33) into optimizations in smaller dimensional parameter subspaces. As in the
deterministic signal case, the complexity of the algorithm is essentially unaffected by the
assumed number of signal components. As K increases, we have to increase the number
of parallel ML processors; however, each ML processor operates independently. Since the

algorithm 1s based on the EM method, each iteration cycle increases the likelihood until

convergence is accomplished.

As in the deterministic case, this EM algorithm corresponds to a family of complete
data definitions. A specific member of the family is associated with a specific choice of
the 3;’s. This family of complete data definitions can be extended by allowing a different
choice of 3;’s in each frequency. The EM algorithm for any member of this extended famuly

will keep the structure of the algorithm steps (4.43) and (4.44), where Sx(w¢) is used in the

definition of Ag(-), (4.39).
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Figure 4.3: The EM algorithm for scochastic Gaussian signals

We may choose a fixed complete data defirition throughout the algorithm iterations, or
we may vary the complete data definition from itsration to iteration. Varying the compiete
data within this family of compiete data definitions will correspond tc choosing different
3kl{we)’s 1n each iteration, but otherwise the algorithm steps remain the same Possible
strategies for choosing the ccmplete data and varying it from 1teration to iteration were

discussed in Chapter 2 and previousiy in this chapter, for the deterministic signal case.

These discussicas are relevant in this case too.

4.3 Application to multipath time-delay estimation

Time delay estimation is a comrmun problem in underwater acoustics as well as in rada:.

Geometrical parameters (such as range and location of targets) and physical parameters
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(such as velocity and temperature proﬁles of the ocean) are typically found via time delay
analysis. Consider, for example, the ocean romography experiment. described in 30 and
:51i. An acoustic transducer, located at a given point in the ocean. transmits a signal which
1s received time-delayed by known location sensors. The estimated delay times between the
transmitted signal and the received signals are used as an input to an inverse problem that
finds the ocean profile in the experiment area.

Muitipath may occur due to reflections and propagation modes. The received signal in

this case contains several echoes of the transmitted signal having different time-delays and

attenuations. i.e. it may be written as

K
y(t) = ) aws(t ~ ) = n(t) (4.45)

The existence of more than one path 1s undesired in some cases; in the ocean tomography
experiument, the additional echoes interfere with and corrupt the interesting direct path
sigral. However. in other cases. additional important infcrmation may be obtained from
finding the time delay of the other paths. A single sensor may determine the range and the
depth of a target. if we can find the delay times of the direct path and of the paths that
result from a single bottom or surface reflection.

We will be interested 1n this section in estimating the delay tumes of the multipath signal
{4.45). In a variety of applications, we may model the components of the muitipath signal as
deterministic or stochastic. In applications such as ocean tomography. active sonar/radar
and many more. a deterministic known waveform signal (pulse) is transmitted. In a passive
determination of range and depth of a target by a single sensor, the target may generate a
noise-like acoustic signal, naturally modeled as a sample signal from a stochastic Gaussian

process. In both cases, we will be able to apply the results of the previous sections to obtain
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an estimate of the delay times via the EM algorithm.
We will present in this section, the detailed algorithm and experimental results for the

deterministic signal case. In 52|, we have presented the EM algorithm for multipath time

deiay estirmation in the Gaussian signal case.

4.3.1 The deterministic case

Suppose that the observed signal is given by (4.45), where s(t) 1s a known signal wave-
form, the noise n(t) is Gaussian with a flat spectrum over the receiver {requency band,

and the observaticrn time is T, < ¢ < T;. The problem is to esimate the pairs {ag,7%) for

In this case, the direct ML approach given by (4.3), reduces to,

Ty | K i2
min [yl = 3 aws(t - )| dt (4.46)
T, | - i
Ty, T2, L TK ' k=1
ayp.an, ey

This opt:mization problem is addressed in {53!, where it is shown that the optimal a;’s
may be expressed explicitly in terms of the optimal 7¢'s. Thus, the 2K -dimensional search
can be reduced into a K-dimensional search. However, as pointed out in 53|, for K > 3 the
required computations become too intensive. Consequently, ad-hoc approaches and sub-
optimal solutions have been proposed. The most common solution consists of correlating
y(t) with a replica of s(t) and searching for the K highest peaks of the correlation function.
If the various paths are resolvable, i.e. the difference between 7 and 7, is long compared with
the temporal correlation of the signal for all combinations of k and £, this approach yields

near optimal estimates. However, in situations where the signal paths are unresolvable. this

approach is distinctly sub-optimal.

S
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We identify *he model in (4.45) as a special case of (4.1). Therefore, in correspondence

with equations (4.19) and (4.20), we obtain the following algorithm:

0)

io) and ri ,

e Start, n = 0 , imtialize k=1--- K.

e lterate (until some convergence criterion is met)

— The E step: For k =1,2,---, K compute

K
:r(:)(t) = ain)s(t - ri")) + Be |y(t) — Z agn)s(t - r}"))]
=1

where the 5,’s are any real-valued positive scalars satisfving

K
Y Be=1
k=1
— The M step: Fork=1,2.---,K
T -
(n+1) {(n+1) _ . !i (n) 2
a T -argr2‘!p/_r EN -as(t-71)| dt

K

-n=n+1

(4.47)

(4.48)

Assuming that the observation interval, T, is long compared to the duration of the signal

and to the maximum expected delay, the two parameter maximization required in (4.48)

may be simplified. and can be carried out explicitly as follows:

rﬁ"“) = argmax }g,(t"}(r)i
(n}g, (r+1)
a(krwx) - 9: (Tk )

E

where E = f;’ is(t)i1%dt is the signal energy, and
” T, n -
() = [T ws (- e

98

(4.49)

(4.50)

(4.51)



Aln} MATCHED PEAK A (net) Anel)

Xy (1) FILTER [~ SELECTOR|[™ % M
y (1) SIGNAL . .
DECOMPOSITION “ : .
X ” ne
MATCHED——L___‘__ PEAK v]-wa;ﬂiu' ?Kl 1)
f I FILTER | SELECTOR |
R
A'(D)'I%]‘ﬂ’ a;nl‘/%x(a)

Figure 4.4: The EM algorithm for multipath time delay estimation

Note that gi")(r) can be generated by passing :ts:‘)(t) through a filter matched to s(t). The
algorithm is illustrated in Figure 4.4. This computationally attractive algorithm iteratively
decreases the cbjective function in {4.46) without ever going through the indicated muiti-
parameter optimization. The complexity of the algorithm is essentially unaffected by the
assumed number of signal paths. As .. increases we increase the number of matched filters
in parallel; however, each matched filter output is maximized separately.

We note that the algorithm can be extended to the case where the signal waveform, s(t),
is unknown. The general EM algorithm steps for the case where the signal waveforms are
unknown, are given by equations (4.21) and (4.22). For our probiem, the E step is similar
to (1.47) where we use the current estimated waveform, s*)(t), instead of the a-priori given

s(t). The M step requires a more comphicated maximization with respect to the unknown
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signal waveform values and the unknown parameters. Using an alternate maximization
procedure for the M step, the M step of (4.22) will reduce to,

- Ty 2
O‘LMI)’TI(:" 0. arg rgirn f %z(k") - cs("’(t -7) dt, k=1,--- K (4.52)
B T' H

S-\K_ _La(n-vl)z(n-‘-l) P '_(n+l)
S‘n-fl)(t) - k=1 3, “k k ( k ) (453)
_L(a("“"l))2
Be\ Tk

We have discussed the unknown signal waveform case in [54], following the considerations
above.

For the case in which the number of signals, K, is unknown, several critena for its deter-
mination have been developed in {55 and elsewhere. Usually, these criteria are composed
of the likelihood function above and an additional penalty term. Thus, as discussed in sec-

tion 2.5. these critena can be incorporated into an EM algorithm, similar to the algorithm

above.

4.3.2 Simulation results

To demonstrate the performance of the algorithm, we have considered the [ollowing

example: The observed signal, y(t), consists of three signal paths in additive noise,

3
y(t) = 3 aus(t - ) ~ n(t)
k=1

where s(t) is a trapezoidal pulse

35 0<t<5
s(t) = 1 5<t<15

t—-10

e 15<t <20

The observed data consists of 100 time samples, indexed —~40 < t < 60. The additive noise

is spectrally flat with a spectral level of 6 = 0.025, so that the post-integration signal to

noise ratio (SNR) is approximately 16 dB.
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Figure 4.5: The observed data
The actual delays are
=0 72=5 71=10
and the amplitude scales are
a=1 k=122
In Figure 4.3, we have plotted the observad data. In Figure 4.6, we have plotted the

matched filter output as a function of the delay. As we can see, the conventional method

cannot resolve the various signal paths and estimate their parameters.

First, as a reference, we computed the ML estimates by a direct mtnimization of the

objective function (4.46), using exhaustive search. We obtained,
7 = 00117 7 =50031 7 = 9.9884
é&; = 1.1511 &q = 0.7799 Gz = 0.9471
The value of the objective frnction at the minimum (corresponding to the value of the
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Figure 4.6: The conventional matched filter response

log-likelihood function at the maximum) is,
J = 0.45879

We also computed lower bounds on the root mean square (r.m.s) error of each parameter,

using the Cramer-Rao inequality. We obtained,

o(f) = 0.028 a(fz) = 0.030 o(73) = 0.028
(7 o{a) = 0.076 o(az) = 0.079 o(a3) = 0.07908
&) denotes the attainable r.m.s error in the estimate of 7, and o(a:) denotes the
attainable r.m.s error in the estimate of a;.

We have applied our algorithm. In Figure 4.7, we have plotted the matched filter
response to the varicus signal paths, as they evolve during the iterations. In addition
to this experiment, we have tried this algorithm using several arbitranly selected starting
points; the algorithm has converge, within the Cramer-Rao lower bound, to the ML estimate

of all the unknown parameters, after 10 to 15 iterations, regardless of the initial guess.
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Figure 4.7: The matched filter response to each signal path
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Using the asymptotic efficiency and lack of bias of the ML estimates, we can claim
with some confidence that the r.m.s error performance of the algorithm is the minimum
attainable, characterized by the Cramer-Rao lower bound.

Additional simulation results, which present additional examples of the deterministic

multipath time delay estimation, may be found in {52.

4.4 Applicatioﬁ to multiple source Direction Of Arrival (DOA)

estimation

Passive direction of arrival estimation {DOA) using an array of sensors is a common
problem in underwater acoustics. radar and geophysical seismic environments. Using an
array of M spatially distributed sensors, the bearing of a source, radiating toward the
array, can be determined by estimating the phase differences or the time delays among the
signals received in the array sensors.

The standard technique for DOA analysis is known as beamforming. Fm: any given
direction, the array signals are delayed and added accordingly, and an output signal is
generated. The energy of the output signal is recorded as a function of the direction, and
the DOA’s estimates correspond to “peaks” of this function. This is an intuitively appealing
approach, and indeed, when only a single source exists, the maximum likelihood method, in
a variety of modeling assumptioas, reduces to maximzing the beamformer output. When
several sources exist, this approach is neariy optimal, if the various signal sources are widely
separated. However, if the sources are closely spaced this approach is distinctly suboptimal.

The radiating sources generate signals, that may be modeled as deterministic or stochas-
tic. In some radar environments, the targets transrmt known waveform pulses which are
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received by the antenna array of the receiver. Similarly, a seismic pulse received by a sensor
array 1s naturally modeled as a deterministic signal. On the other hand, the acoustic signal,
generated by a target and received by a passive sonar array, is a noise-like signal, which is
typically modeled as a WSS Gaussian stochastic process.

We will concentrate in this section on the stochastic signa! case. We note, however, that
methods for multiple source DOA estimation of deterministic signals via the EM algorithm
were presented in :56},(57\. We will start by presenting the general mathematical model
of the multiple source DOA estimation problem. We will then assume that the signals are
Gaussian processes and present the resulting statistical maximum likelihood problem. The
solution of this ML problem, using the EM algorithm, will then be presented in detail, and

we will describe the simulation results of a specific example.

4.4.1 The passive multiple source DOA estimation problem

We will assume that K spatially distributed sources are radiating signals towards an
array of M spatially distributed sensors. Assuming perfect propagation conditions in the

medium and ignoring amplitude attenuations of the signal wavefront across the array, the

actual waveform observed at the m'® sensor output is

K
Ym(t) = O sklt = Tkm) + nm(t) m=1,2,-- M (4.54)
k=1

where s;(t) is the kK** source signal, n,(t) is the additive noise at the m'* sensor output,
and Tim is the travel time of the signal wavefront from the k** source to the m** seasor.

Information concerning the vanous source location parameters can be extracted by

measuring the various ri,. In the passive case, one can only measure the travel time

differences. Let the M** sensor be the reference sensor, and set 7,5y = 0, then 7im measures
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the travel time difference of the k** signal wavefront between the (m, M) sensor pair.

We assume that the various signal sources are relatively far-field. so that the observed
signal wavefronts are essentially planar across the array. In this case, the unknown source
location parameters are their bearings or directions of arrival. To simplify the exposition,

we suppose further that the array sensors are co-linear. Then,

Tem = — sin @ (4.55)
¢

where d,, is the spacing between the sensor m and the reference sensor M, c i1s the velocity

of propagation in the medium, and 8; is the angle of arrival of the k'* signal wavefront

relative to the boresight.

Substituting (4.55) into (4.54) and concatenating the various equations, we obtain

X
y(t) = Y _ s(t:6;) + n(t) (4.56)
k=1
where ]
si(t — v1sin6;)
se{t — ~v2sin6y)
se(t:8y) = (4.57)
skt ~ Ym-1510 84)
Sk(t)
and v, = d/c. We note that this is a special case of the superimposed signal problem of
(4.1).

A statistical ML problem for estimating the unknown directions of arrival is achieved

by a further statistical modeling of the various signals in (4.56). We will now present the
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ML problem and its solution using the EM algorithm, where we model the signals, {s(t)},

and the noise as Gaussian processes.

4.4.2 The Gaussian case

Suppose that the various sx(t) and the various n,,(t) are mutually independent, WSS,
zero-mean Gaussian processes with spectral densities Si{w) and Ny, (w) respectively. We will
also assume that the observation time, T = T, ~ T, is long compared with the correlation
time (inverse bandwidth) of the signals and the noises. Under these assumptions we may

write the likelihood of the observations, u(t), in the frequency domain; the ML estimates of

03,84, ---, 8 will be achieved by, (see Eq. (4.33)),

. gnina Z [log det P(wy; 8) + Y (we) - P Hwy 8) - X_(w()] (4.58) -
L2, K t

where Y (w,) are the Fourier transform coefficients (or the DFT coefficients in the discrete

case) of y(t) and
P(w;8) = Zs,‘(w (w; 0x)V{w; 0k) + N(w) (4.59)

where

e~ IwTysin &y

e~ Jwr2sin 1%

V(w; ) = ' (4.60)

e~ JWIM - 8l 8y
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and N{w) is the diagonal matrix
Ni{w)
Na(w)

(4.61)

| Na(w) |

Aga’n as in the previous exampies, the resulting ML problem requires the solution of
a complicated multi-parameter optimization problem in several unknowns. Consequently,
numerous ad-hoc solutions and sub-optimal approaches have been proposed in the recent
literature, e.g. [58,59,60,61,62], to by-pass this ML problem. Still, ‘t.he most common
approach consists of beamforming and searching for the K highest peaks. As noted above,
if the various sources are widely separated, this approach is nearly optimal. However, when
the sources are closely spaced we are likely to obtain poor estimates of the various DOA’s.

Identifying the model in (4.56) as a special case of the superimposed signal in noise case,

the algorithm specified by (4.43) and (4.44) is directly applicable, where

Ae(w; 0x) = Si(w)V(w; 00)V. (w; 0x) + Be N (w) (4.62)

This special form of the matrix A, allows the following simplifications. We may write

det Ap(w; 8,) = {1 + B{;Sg(w)zt(w;Ok)N"l(w)K(w;Ok)] - B det N{w) (4.63)
and
~1¢ . - in-1 _ Se(w) - . Y -
Apiwity) = 5 {N ) S TS o (o ) N w0 ) BV e )N T )

(4.64)
Substituting (4.63) and (4.64) into (4.44) and ignoring the terms that are independent of

8+, the M step of the algorithm will be simplified. The resuiting EM algorithm is:
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e Start, n = 0, initialize 05‘0), k=1,--- K.
o jterate (until some convergence criterion is met)
-~ The E step: For k=1,2,--. K compute
V() = Anwe8) = Aulwn 00) PN wi 0 Ak(we 07+ (4.65)
~Adlwe; 00V P™H s 0NY (we) - Y1 (we) P (wes 0 Al 017)
— The M step: Fork=1,2,--- K
oY = argmax 3 Filwe) -V (wes 0) N 7 w) - ${ (we) - N H(w)Y (we;8) (4.66)
S
where Fy{w) 1s a shaping filter, given by,

o Sk(w)
Fi(w) = Be + Si(w) TM_ 1/Nn(w)

-n=n~+1

We note that the objective function in (4.66) is the array beamformer, where the product
_X__k(m)él(we) is substituted by its current estimate, '&ﬁ")(w). The algorithm is illustrated
in Figure 4.8. This computationally attractive algorithm iteratively decreases the objective
function in (4.58) without ever going through the indicated muiti-parameter optimization.
Again, the complexity of the algorithm is essentially unaffected by the assumed number of

signals sources. As K increases, we have to increase the number of beamformers in parallel;

however, each beamformer output is maximized separately.

4.4.3 Simulation results

To demonstrate the perforrnance of the algonthm, we have considered the following

example. Our array of sensors consists of five, co-linear, evenly-spaced sensors. There are
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Figure 4.8: The EM algorithm for multi?le source DOA estimation

two far-field signal sources at the bearings
91 = 00 02 = 100

relative to the boresight. The array-source geometry is shown in Figure 4.9. The signals
and the noises are spectrally flat with Si(w) = S and N, (w) = N, over the irequency
band {-W/2, W /2!, We assume that S/N = 1, and that WT /2x = 20 (so that the post

integration SNR per channel is approximately 23dB). The array length 1s taken to be L = 6
where A is the wavelength associated with the highest frequency in the signal band.

In Figure 4.10, we have plotted the array beamformer response as a function of the
bearing angle. As we may see, the conventional beamformer cannot resolve the signal

sources and thus cannot estirnate their bearings.

The ML estimates, obtained by direct minimization using exhaustive search of the ob-
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Figure 4.9: Array-Source geometry
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Figure 4.10: The conventional Beamformer
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jective function in (4.58), are

6, = —0.0563 6, = 10.4556

The value of the objective function at the minimum (corresponding to the value of the

log-likelinood function at the maximum) is

J = 159.0137

We have also computed the Cramer-Rao bound on the r.m.s error of each parameter

estirnate. We obtain
o(6y) =02680  (f;)=02722

We now apply our algorithm. In Figure 4.11, we have plotted the beamformer response
to the various signal sources as they evolve with iterations. In Figure 4.12, we have tabulated
the results using several arbitrarily selected initial guesses. We see that in all cases, after 5
10 10 iterations, the algorithm essentially converges, within the Cramer-Rao lower bound, to

the ML estimates of all unknown bearing parameters simultaneously; therefore the various

signal sources are correctly resolved.

4.5 Sequential and adaptive algorithms

Sequential and adaptive algorithms for estimating the parameters of superimposed
signals in noise, based on the EM algorithm, may be suggested following the consideration of
chapter 3. As discussed in chapter 3, in general, any given iterative batch EM algnrithm may
be transformed into a sequential algorithm v.ing the stochastic approximationidea. The EM
algorithms suggested in this chapter for botii the determunistic case and the stochastic case

bave a structure that may support recursive E and M steps. However, we will concentrate
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Figure 4.11: The Beamformer response to each signal source
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7 /DOA1 DOAZ| J | n DOA1|/DOA2 J |
01 2000 | 8000 | 26066 0 | -5.000 | 13.000 | 520.29 |
1 s 8465 | 24112 | 1 | -2.460 11949 | 29471 |
‘ 2| 1122 | 8974 21030 | 2 | -1.263 | 11.145 196.55i
‘ 3| 0693 9457 i5184.13 3 | -0674 | 10.716 167.77%
4| 0372 | 9859 16836 4 | -0.379 | 10.520 | 161.05 !
5 oust 10127 (16074 5| -0.245 | 10420 | 15961
6| 0050 10288 113072 | 6 0164 | 10421 15921 |
7, -0.003 | 10.368 15819 | 7 | 0111 | 10421 | 15907
8| -0.030 10421 {15904 || 8 | 0084 | 10421 | 159.04
n|poa1DOA2! J | nlDOA1|DOAZ] J
. 0| 4000 | 7000 37857l O | 7.000 | 13.000 | 497.05 |
1 3841 | 7259 35124 1| 6052 | 12699 | 148.01 |
2| 3203 | 7527 32851 2 | 4954 | 12378 | 385.83 |
32018 722 0601 3 | 3820 | 12083 | 21825 |
4| 2489 8144 281830 4 | 2783 | 11.842 256.09
51 2033 | 8519 25493 5 | 1953 | 11627 | 21414 |
6 1524 | 8948 22428 6 | 1.363 | 11413 | 189.18 |
7 1015 | 9403 | 19446 T | 0934 | 11225 | 17502
8 | 0.8 | 9805 17351 8 | 0639 | 11038 | 167.40
E ' 0.201 : 10.100 16352 || 9 ‘ 0.452 E 10.904 I 163.66
110} 0131 | 10.261 1160.36 | 10, 0.318 | 10797 | 161.58 -
B¥ 1 0.050 | 10.368 | 15036 || 11 0211 | 10716 | 16039
12,0003 10421 | 150.07 | 12 | 0.130 . 10.637 | 159.66
13 -0.030 : 10.449 | 150.02 | 13 | 0.077 | 10.582 | 159.33 |

i

Figure 4.12: Tables of results for multiple source DOA
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in this section on the deterministic superimposed signals problem, for which we were able
to develop sequential EM algorithms based on exact EM mapping. These algorithms will

be presented explicitly, and their application to solving the problem of multiple sinusoids

in noise will be described.

4.5.1 Sequential algorithms based on exact EM mapping for the Deter-

ministic case

Sequential EM algorithms, based on exact EM mapping, are achieved by examining the
expression of the EM iteration, which depends, in general, on the entire past observations,
and recogmzing the terms that depend on the current data and the terms that depend only
on past data. Hopefully, the terms that depend on past data may be summarized into a
compact form, that will be subsequently updated and recorded. Based on these recorded |
quantities and the new measurements, the parameters will be updated using an exact EM
iteration.

Thus, let us consider the EM iteration for the deterministic signal case, given by equa-
tions (4.19) and (4.20). We will assume that the signals are discrete so that the integral in
(4.20) is replaced by a sum. Assume that we observe y(1),---,y(n) . l.e. the observation

mndex 1s t = 1,--- ,n. The E and M steps of this EM algorithm are given by,

e The E step: Fork=1,2,--- K andt=1,---,n compute

K
(1) = s, (1:00") + B [g(t) -3 a(t;ﬂﬁ"’)] (4.68)

=1

o The M step: Fork=1,2,.-- K

+1
o
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We will assume that Q; = 4;/. Combining the E and M steps, and ignoring the terms that
are independent of §, we may write the EM iteration as follows. For k = 1,2,--- | K
n n

K
=argmin > isi(ti8e)* + By 2Re S so(t: 0 s (t58,) -

-k t=1 t=1 t=1

~Zsk(t 8y sy (t:8,) - Z Yeu(t; 00)]  (4.70)

+1)
6"

We notice that the term that depends on the observations, y_(t), 1s the cross-correlation
between y(t) and the various signals, s,(t;8;). We will denote this term by,
n
prl8i) = D y(eVsi(t;04) (4.71)
t=1

Suppose we record pn(f,). At time n + 1, when a new measurement, y(n + 1), arrives, this

term may be updated recursively as,

Prsc1(8e) = palls) + y(n + 1)1 si(n+ 1:0;) (4.72)

The other terms depend only on the a-priori given waveforms, {s,(¢;8;)}. In many cases

the expressions

Z Sk t 9&) . (473)

t=1

may be given for each n by an a-priori analytic formula. However, even if the algorithm needs
to calculate these terms explicitly, they may be calculated recursively using the following
formula,

Rot1(8e,85) = Rn(8,0:) = so(n + 1:8¢) s(n + 1;8,) (4.74)

The term

n

Enl8e) = Z TGN G (4.73)

t=1
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which represent the total energy of the signals s,(t) may also be calculated recursively or

may be  iven by an analytic formula. In many cases this energy term takes the form of
Eal8)) = n- oy} (4.76)

1.e. 1t depends only on the amplitude parameter ai, and it is independent of the other

parameters,

Thus, the sequential EM algorithm for superimposed, deterministic signals is given by:
e Start, n = 0 Guess 8! Initial py = Ry = Eo = 0.

o While data is observed

f

Update the pn.1’s by (4.72), the R,.;’s by {4.74) and the E,.,’s by (4.75).

f

Update the parameters: For k =1.2,--- K,

K
0™ = argmin | Eay (&) + Be - 2Re Y Rua (87 .02) = Rusr (07,84) = Bi - P ()
=k =1

(4.77)

f

Store Pr-+1, R,.1, Ena.

- n=n-+1.

We note that, as in any exact mapping sequential EM algorithm, we can perform few
iterations for each observed data point. The advantage is that we have to update the
quantities p,, R, and E, only once for each new measurement. Sometimes it will be more
efficient to perform few more iterations before moving to the new data. However, in other

cases, exhausting the previous data cannot improve the parameters; it is more efficient to

proceed and add the new data points.
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4.5.2 Application to sum of sinusoids in noise

The sequential EM algorithm above has been applied to the following problem. Let the

observed signal be the sum of :omplex exponential in noise, i.e.

K
y(t) = Z are? ' + n(t) (4.78)
k=1

where n(t) is a white Gaussian noise with variance ¢?. The unknown parameters are the
frequencies of the complex exponentials, {w;}, and the complex amplitudes, {ax}. We note
that this problem 1s essentially the problem of sinusoids in noise, and in this case, we write

ag = rge?®  where the {¢,}’s are the unknown phases of the sinusoids. We will assume

that the observations are given at time points t = 0,1,--+ n,---.

The complete data for this deterministic superimposed signal example is the set of

signals, {zx(t)}X_,, where
zi(t) = are?™' + ni{t) (4.79)

and {ni(t)}X | are independent white noise signals whose sum is n(t). Each ni(t) has a

variance Gio?.

In this application the sequential EM algorithm presented above is further simplified.

We first note that the M step of an EM itrration in this case requires solving the following

maximization problems, for k =1,--- K
(n+1) g"* (n) gy~ wty2 _ | pln) )2
we O o=argmax| )z, (e =1 X,V (W) (4.80)
t=0

{n})

where X,"'(w) is the Fourier Transform of the signal, z&")(t), estimated in the E step. The

amplitude coefficients may be found either as implied by the EM iteration,

(n1) 1 &N m =,
o V= =% (1)
t=0

118

(4.81)



or by solving a linear least squares problem, noticing that, given {w;}, determining {a;} is

the solution to:

n T K tn) :
a(1n+l)‘ Tt 1a(kn+l) = arg a;rfl»il}lk Z ly(t) - Z ake*ka ‘ (482)

t=0 k=1

Another simplification comes from the fact that R,(0,,8,) may be written analytically

as,
n
R,,(ahwl,az,wg) = Za;e"“’“age""“ = a;azsinc;+1(w1 - w:) (4.83)
t=0
where
o sin(w) N
sinc,, ,(w) = ———fﬁ-——e I (4.84)
sin(3)

Thus, a step of the sequential EM algorithm for this problem, observing a new measure-

ment, y(n), is given as follows:

e Update the Fourier Transform of the observations, i.e.
Yos1(w) = Yalw) + y(n)e 7" (4.85)

e Update the estimates of the frequencies: For k =1, --- K

| 1 K i
wi’”l) = argmax ]a&"}sinc;,_,(ui") ~w) =~ G- Z aﬁ")sinc;+1(ugn) - w)+ Yo (w)
o =1 !
' (n) !2
arg max | X" (w))| (4-86)

i

e Update the amplitudes

~ either by an EM iteration,

1 12
a(kn-rl) - Ixiﬂ)(wi""’”)l k=1,-- K (487)

n+1i
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- or by a solving the least squares problem of {4.82), i.e.

o =s7ly (4.88)

where a 1s the vector of the amplitudes, S i1s the matrix whose (k. £) element is
given by

{n+1) w(n+l))
(4

See = sinc,,, (w,

(4.89)

: . . +1
and Y, ., is a vector whose x** component is x’n,,;(wﬁn h.

Numerical simulation example

This algorithm has been tested using the following example. The sequentially arriving

observed signal, y(t), is complex and discrete; it consists of three complex exponentials in

additive white noise, 1.e.

3
y(t) = Z ape’* +n(t), t=01, -- (4.90)
k=1

The additive noise is spectrally flat with spectral level 0 = 0.1. The normalized fre-

quencies of the complex exponentials were chosen to be,
wy =0.025, ws =003, w3=004
The magnitude of the complex amplitudes were chosen to be uniformly 1, and their
phases chosen as,
b6y =0, ¢a=x/6, ¢3=1x/4
We have tested the algorithm given by (4.86) and (4.88), sequentially using 300 data

points. A single EM iteration has been performed for each new data point. In Figure 4.13

we have tabulated the esvimates of the frequencies as a function of time. We notice that
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ource 2 { Source 3

- Time | Source 1 ' Source 2 | Source 3 | Time | Source 1 !
‘ ] . |

[72]

0.046

10 | 0016 | 0047 | 0048 | 70 | 0023 | 0043

!
! i H ' ‘{ }
.20 | 0023 | 0047 | 0048 | 80 0024 | 0042 | 0.045

| 30 . 0.023 0.046 0.048 90 | 0.024 ;0042 0.045 |
i 40 ‘* 0.022 | 0.047 | 0.048 { 100 | 0.024 | 0.042 | 0.044 J!
50 ~ 0.022 0.046 5 0.048 ‘ 110 | 0.024 | 0.041 0.030 }
‘ 60 ‘ 0.023 ' 0.043 0.04 | 120 : 0.025 0.040 | 0.030 1{

Figure 4.13: Frequency estin ites as a function of time

this efficient sequential algorithm correctly estimates the various frequencies after observing
120 data points. This data record is shorter than the record needed to correctly resolve

these sinusoids, using the standard spectral estimation methods.




Chapter 5

Maximum likelihood noise

cancellation

The problem of noise cancellation in single aﬁd multiple microphone environments has
been extensively studied [63|. The performance of the various techniques in the single
microphone case seems to be limited. However, enhancement systems with two or more
microphones have been more successful due to the availability of reference signals.

In this chapter, noise cancellation, based on a two sensor scenario as indicated in Fig-
ure 5.1, is considered. Cne sensor (the primary microphone) measures a signal that consists
of speech with noise. The second sensor (the reference microphone), located away from the
speaker, measures a signal that consists mainly of the noise. The signal measured in the
reference microphone is used to cancel the noise in the primary microphone. A reasonably

general model for this scenario is shown in Figure 5.2

The most widely used approach to noise cancellation, based on two microphones, was

suggested by Widrow et al. {10]. ln this approach, it is assumed that the system B is
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zero and that C and D are identity, so that the output of the reference microphone is
due only to the noise, and that the noise component in the primary microphone is the
output of an unknown linear system with transfer function A{z), whose input is the signal
measured 1n the reference microphone. The coefficients of the impulse response of this
system are estimated by a least-squares fitting of the reference microphone signal to the
primary microphone signal. This method will be referred to later in this chapter as the
least-squares method.

Widrow et. al proposed an adaptive solution to this least-squares problem, based on
the LMS algorithm. This approach, illustrated in Figure 5.3, has been applied in a speech
enhancement context, e.g. ‘64| and {65]. Adaptive algorithms based on the RLS algorithm
also exist, e.g. 66| and 67.

A major limitation of the least-squares method, especially when the reference signal is
correlated with the desired (speech) signal, is that a portion of the desired signal may be

canceled together with the noise. Sicce the desired signal may be canceled with some time
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delay, the resulting effect is to introduce a reverberant distortion in vne output.

Qur approach consists of formulating the problem as a statistical maximum likelihood
problem. This approach will allow us to consider a more general model, that includes the
effect of “cross talk”, i.e. the coupling of the desired signal into the reference microphone.
As in many examples throughout this thests, solving the resulting ML problem directly
1s difficult, and so it is solved using the EM method. The proposed algorithm iterates
between estimating the speech and the noise source signals (E step) and scvlving a set of
linear equations for the coefficients of the acoustic impulse response (M step).

It 1s interesting to note that the proposed algorithm is similar to the iterative speech
enhancement method for single microphone suggested in {3}. As already noted, the iterative
Wiener filter used in ‘3] is an instance of the EM algorithm. In that respect, the procedures
developed in this chapter, may be considered as extensions of the method in 3] to two
microphones.

The methods presented in this chapter. can be used as an alternative to the least-
squares method of ;10| and its derivatives, e.g. ‘68 and 691. Simulation results indicate
that the propesed schemes tend to eliminate the reverberant distortion encountered in the
least-squares method. Adaptive versions of the proposed algorithms are also possible. We
finally note that the proposed scheme can easily be extended to the more general. multiple
microphone case.

This chapter is organized as follows. In section 5.1, we develop the general maximum
likelihood formulation of the noise cancellation problem. In section 5.2. we apply an EM
algorithm to solve the ML problem in a simplified scenario, that basically makes the same

assumptions as in {10]. We then describe, in section 5.3, the EM algonthm fer a more




general scenario that includes “cross talk”. We conclude this chapter, in section 5.4, by

presenting several simulation results including some that use a simulated realistic room

impulse response.

5.1 Maximum likelihood formulation of the two-sensor noise

cancellation problem

The mathematical ML formulation, encountered in a two-microphone noise cancellation
problem, i1s based on the following scenario. A desired (speech) signal source and a noise
source both exist in some acoustic environment, say a living room or an office. We have
two microphones used in such a way that one microphone is intended to measure mainly
the speech source, while the other is intended to measure mainly the noise source.

The desired signal and the noise are both coupled into each microphone by the acoustic

field in this environment. This situation is illustrated in Figure 5.2, and is represented by

the equations 1.

nit) = C{s(t)) + A{w(t)} + ar(t) (5.1)

y2(t)

i

B{s(t)} + D{w(t)} + e2(?) (5-2)

where s(t) denotes the desired (speech) signal and w(t) denotes the noise source signal. The
systems A, B, C and D are assumed to be linear systems, representing the acoustic transfer
functions between the sources and the microphones. We will assume that these systems
are time invariant in our analysis window. The additional noise sources e;(t) and ey(t) are

included to represent modeling errors, microphone and measurements noise etc.

!The mathematics and the algorithms will be formulated in terms of discrete time signals with the

independent variable t representing normalized sampie time
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Under these assumptions we may write the observed signals in the frequency domain as,

Yiw) = Cw)S(w)+ A(w)W(w) + Er(w) (

wn
<3
~—

-
£
It

B(w)S(w) + D(w)W (w) + Ez(w) | (5.4)

where Y;{w) and Y;(w) are the Fourier transforms of the the observed signals y;(t) and
ya(t), i.e

N-
Yi(w) = §; e It (5.5)

In the more general case of M microphones and K noise sources, the observed signal

<!l -

may be written (in the frequency domain) as,

Y(w) = A(w)§(w) + Bw)W(w) + E(w) (5.6)

where Y (w), A(w) and E(w) are 1 x M vectors, W{w) is 1 x K vector :;nd Blw)is K x M-
matrix.

To formulate a statistical maximum likelihood problem, we make the following assump-
tions. The noise source signal, w(t), is assumed to be a sample from a Gaussian random
process. The desired speech signal, s(t), is modeled in mary cases as an AR Gaussian
random process, whose parameters (the LPC parameters) are slowly time varying. For our
purposes, in a short analysis windovj, we assume that those parameters are constant, and
thus, in the mathematical formulation, the desired signal is also assumed to be a sample
from a stationary AR Gaussian process. The error signals el(tA) and ez(t), are modeled as
white Gaussian noise processes. The signals s{t), w(t),ey(t) and es(t) are assumed to be

uncorrelated.

The unknown parameters are the coefficients of the various sysiems and some spectral

parameters of the signals. We denote the power spectra of s(t) and w(t) by P,(w) and
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P,(w) respectively. o7 and o?, will denote the error signals variances. A{w), B(w), C(w)
and D(w) are the frequency responses of the four linear systems in Figure 5.2.

We formulate the problem in terms of short-time processing so that the signals and the
systern parameters can be slowly time varying; consequently, a shding window is applied.
As already noted, the window length, T, must be short enough so that the parameters
are constant over its duration. However, we will also assume that it is long enough so
that the short-time DFT coefficients of s(t), w(t), e;(t) and e,(t) at different frequencies are
uncorrelated. Under this assumption, the likelihood of the observations (y1(t) and yo(t))

with respect to the parameters above is easily expressed in the frequency domain, and is

written as, (see e.g. i1j, chapter 4),

-4
e

log p(w1 (), w2(1):0) = — 3 (log det Alwe; 8) + Y(we)' A7 (wis @)Y (we))  we = 3;‘- £ (5.7)

where Y (w) is a vector whose components are Yy(w) and Y2(w). The matrix A(w;8) is the

power spectrum matrix, i.e.
Mwi0) = E{Y(«)Y(«)'} =

C(w)Py(w)C™ (w) + Alw) Py(w) A (w) + 0F, C(w)Py(w) B (w) ~ A(w) Py (w)D"(w)

B{w)Py(w)C ™ (w) + D(w)Py(w)A™ (w) B{w)P,(w)B (w) + Ow)Pu(w)D (w) + 032
(5.8)

For the M microphone case, the likelihood function is again {5.7) where the matrix A
is now the M x M power spectrum matrix E{Y (w)Y (w)}.

The general maximum likelihood problem. represented by egs. (5.7) and (5.8), is not
only complicated but may also be ill-posed. The likelthood function depends on the pa-
rameters only through the matrix A(w;8), and all possible solutions that generate the same

A{w; 8) have the same likelihood. If indecd ail the associated systems and the power spectra
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are unknown and their structure is allowed to be arbitrary, then we expect a non-unique
solution, since any value of A(w;8) may correspond to many different values for the param-
eters. Therefore, some constraints must be imposed on the paramewrs. For example, we
may assume that some of the parameters are known, or that there is a simple structure
to the systems. Of course, the more constraints there are, the more this ML ‘problem be-~
comes well-posed mathematically. However, we must limit ourselves to constraints *hat are
concistent with the notse cancellation problem under consideration.

We will constrain the systems that represent the room acoustics to be causal, and to

have a finite impuise response. Thus, for example, A(w) is a frequency response of an FIR

filter, 1.e.

q
Alw) =) are " (5.9)
k=0

As mentioned earlier, we will usually assume that s{t), the desired signal, is a sample

from an AR process of order p, so that its power spectrum, P,(w), is of the form

G
TR (5.10)

by

P, (w) =

In the next two sections, more specific situations will be considered, and additional con-
straints and assumptions, based on the additional knowledge about the underlying scenario,
will be made. In both sections, the resulting ML problem 1s constrained enough so that 1t
1s not ill-posed.

We note that even with these assumptions and constraints, the required maximization
of the likelihood function (5.5) with respect to the signal and system parameters is still
complicated. Therefore the EM algorithm will be proposed for its solution. In the cases
considered in the next sections, the unavailable desired signal, s(t}, wili be a component

of the chosen complete data. Thus, as a by product of the use of the EM algorithm, an
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estimate of the desired signal will become explicitly available while implementing the E

step.

Relation to array processing and the previous chapter

The system model, presented above and illustrated in Figure 5.2, may also model the
array processing situatior an< the DOA estimation problem considered in the previous
chapter. In the array processing case, the various systems A, B, C and D are simple
delays, e.g. A(w) = e ™. The additional noise sources, ¢;{t}), will represent in this
case the background noise. Maximizing the likelibood function (5.7) will be equivalent to
maximizing the likelihood function developed for the Gaussian DOA estimation problem,
i.e. solving (4.58).

The EM algorithms suggested in this chapter are different and do not reduce to ther
algorithms presented in the previous chapter. We simply choose a different complete data
for solving the same ML problem. The choice of complete data in this chapter is adequate
for the noise cancellation problem, since the resulting EM algonthm generates an estimate
of the desired signal in the E step and since in the case where an estimate of a complete
impulse response and not just time delay is desired, updating the parameters using this
choice of complete data is easier. On the other hand, for the DOA estimation probiem,
where the systems are simple delays, the choice of complete data used in the previous

chapter has generated an EM algorithm with attractive properties, such as the simple

parallel structure.
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Figure 5.4: The observations; simplified scenario

5.2 A simplified scenario

In this section, a simplified version of the problem is assumed, corresponding to the
restriction of B(z) to be zero and both C(z) and D(:z) to be unity in Figure 5.2, so that
Figure 5.2 reduces to Figure 5.4. This scenario is assumed (at least implicitly) by Widrow
et al. in i10}. In this scenari;>, one microphone measures the desired (speech) signal with
additive noise, while the second microphone measures a reference noise signal, which is

correlated with the noise component of the signal measured in the first microphone, but

has no signal component present.

We will start by presenting the ML problem for this scenario. This ML problem is a
special case of (5.7). However, as we shall see, the availability of a reference signal, which
contains only noise, makes this likelihood function particularly simple. We will then present
an EM algorithm for maximizing this likelihood. The complete data will be composed of

the signal part and the noise part of the primary microphone signal separated in addition
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to the reference microphone signal.

5.2.1 The ML problem

As indicated in Figure 5.4, the observed signals are y;(t) and ys(t), A(z) is an FIR filter,
e(t) 1s Gaussian white noise, and s(t) is the desired signal.

Specifically, then
ui(t) = s(t) + n(t) (5.11)
where the noise component 1n the primary microphone is
q
n(t) = Z ary2(t — k) + e(t) (5.12)
£=0

Equivalently, equations (5.11) and {5.12) may be written as,

q
nlt) = s(t) + > apw(t — k) + e(t) (5.13)
k=0
v2(t) = w(?t) (5.14)

and the connection to the general scenano is now clear.

As before, we assume that the desired signal, s(t), can be represented as a sample func-
tion from a stationary Gaussian process, whose spectrum is known up to some parameters.
The unknown parameters, 8, are the system coefficients, {a;}, the spectral parameters of
s(t) (which will be denoted ¢), and ¢, the variance of e(t).

The likelihood of the observation 1s again expressed in the frequency domain. This case

is simpler than the general case, discussed in the previous section. The likelihood may be

obtained without referring to the general formula of (5.7).

Specifically, under the assumptions made in the previous chapter, the likelihood of the
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observations may be written in the frequency domain as,

L(9) = 108 fy, 4 (11(1), 12(2); 8) = ) 10€ fy, v, (Yi(we), Ya(we): 8) (5.13)

4

Now, at each frequency wye

log fy, v, (Yi(we), Ya(we): 8) = log fy, /v, (Y1i(we)/ Y2(we); 8) + log fr,(Ya(we))  (5.16)

where log fy,(Y2(w,)) is independent of 8. The conditional density of Y;{we) given Ya(we) is

given by

log fy, /v, (Ys(we)/ Ya(we): 8) = — [logx (P,(ug) - 0:) 4 Yy (we) — Awe) - Yz(wz)E}

P,(wg) +0?
(5.17)
Thus maximizing the likelihood (5.15) in this case is equivalent to minimizing,
2y, Wilwe) = Alwe) - Ya(we) P
g {log (P,(UJ() +0 ) + Pilwe) + o (5.18)

with respect to g% and the coefficients of P,(w) and A(w).

We will assume that A(w) is the frequency response of an FIR filter of a given order gq,
1.e. it is of the form of (5.9). Also, we will assume that s(t) is an AR process of order p
with coefficients {h,}’_, and gain G. so that its power spectrum P,(w) is given by (5.10).

In some applications, like LPC vocoding and speech recognition of noisy data, we will
be interested mainly in the spectral parameters of the speech signal. In this case, solving
this ML problem explicitly provides these desired parameters. In other applications, we will
be interested in the speech signal itself. So, using the estimated signal parameters, {a;},
we will cancel the noise in the p?imary microphone and obtain an enhanced speech signal.
As mention above, this speech signal estimate will be available as a by product of the EM

algonthm suggested below, while implementing the E step.
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5.2.2 Sdclution via the EM algorithm

Direct minimization of {5.18) is complicated; therefore we consider the use of the
EM algorithm. In this approach, the complete data is chosen to be the set of signals
{s(t), n(t), y2(t)}. This choice of complete data is motivated by the simple maximum like-
lihood solution available if indeed s(t), n(t) and y2(t) are observed separately.

Loosely speaking, if this complete data is available, the maximum likelihood estimate of
{a)} and o? is achieved by least squares fitting of y2(t) to n(t). The spectral parameters of

s(t) are also easily estimated by solving, for example, the normal equation using the sample

correlation of s(t), for LPC parameters.

More specifically, the likelihood of the complete data, L.(8), satisfy

i

L.(9) 108 Js.ny: (s(t), n(t), 12(t); )

H

108 fo n/y. (s(t), n(t)/v2(t); 8) + log fy. (v2(t)) (5.19)

where log f,.(y2(t)) is independent of 8. Also, given y2(t). the signals 5(t) and n(t) are

statistically independent, and thus

log fa.n/y; (s(t), "(t)/yi(t); Q) = log fs/yz(s(t):/y's‘(t); Q) + log fn/yz (n(t)/yz(t)' 9) (5'20)

1.

Now, 10g f,/y,(n(t)/¥2(t); 8) depends only on {ax} and o7, and it is defined by the p.d.f

of e(t), 1.e.
N-1 1 q 2
10g fr/y. (n(t)/12(t);8) = = > lloga® - p: (n(i) =Y awya(t - k)) (5.21)
t=0 k=0
In general, the signal y2{t) may be related to s{t). However, this relation is arbitrary
and unknown. Therefore, we will assume that the probability distribution of s(t) given

y2(1) is the a-prion distribution of s(t). This probability distribution is the distribution of a
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stationary random process with power spectrum P,{w) and it depends only on the spectral

parameters, ¢, of s(t), thus,

Sw 2
108 Jo1ya(5(0)/32(0):8) = log £,(s(0):¢) = Y |log Pu(we; 8) + %] (5.22)

where S(w) is the Fourier transform of s(t), 1.e.

1 N-~1
S(w) = T > s(t)em
t=0

Thus, estimating # by maximizing the likelibood of the complete data is equivalent to

estimating o and {a,} by minimizing

N-1 E] \ 2
1
-3 (n(t) =Y @t - k)) + N-loga? (5.23)
g t=0 k=0
and estimating the spectral parameters ¢ by minimizing
'S (we)|?
1 o {wy; U b 7 AL )
; {ogP_(uz ?) Pr(we-0) (5.24)

Note that when s(t) is assumed to be an AR process, minimizing (5.24) is equivalent to
solving the Yule-Walker equation, using the sample autocorrelation of s(t).

From eqgs. (5.23) and (5.24) we note that the sufficient statistics of the complete data s
n(t) and :S(wy)i?. The sufficient statistics is linear for the noise part and quadratic for the

signal part. Thus, the E step of the algorithm requires the following expectations:

alt) = E {n(t)/n(0). wa(t); 6™} (5.25)
and
Ms(we) = E {1S(we)|*/ Ya(we), Ya(we); 8 | (5.26)

where Q(") denotes the parameters {a;},0° and ¢ in the n*? iteration. These conditional
p @

expectations are immediately available using the results developed for the linear Gaussian
case.
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The E and the M steps of the EM algorithm for minimizing (5.18) may now be stated
explicitly. We will denote by 8™ (or by {ai")}, {(2)®) and P,(")(u)) the current estimate

of the parameters.

o The E step, the n‘* iteration:

~ Generate a signal z(t)
~
() = u(t) - 30y velt ~ k) (5.27)
k=0
Note, that if the true coefficients {a,} were known, then z(t) = s(t} + e(t)
-~ Apply a Wiener filter to z{t) to obtain the conditional expectation or the min-
imum mean square error estimate of s(t) (or S(we)) and |S(w¢)|®. Specifically,

for all wy, generate an estimate of S{wy), E(we) and {S(w¢)|? as

(n)
5 - s (we) - X{w
S = g« @ (5.28)
Elw) = X{(we) - S(wi) (5.29)
— e i2 P}n)(w() i (02)(n)
Ms(we) = |S{we)l*+ P () + (07 (5.30)

where X(w) is the Fourier transform of z(t) and E{w) is the Fourier transform

of the signal é(t).

- The conditional expectation (estimate) of n(t) is

a(t) = Xq: al™yp(t - k) + é(t) (5.31)
k=0

e The M step, the n** iteration
Substitute the conditional expectations of (5.30) and (5.31) into equations {5.23) and
(5.24). Specifically,
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Figure 5.3: The EM algorithm: simplified scenario
- Update {akx} by solving the least-squares problem of (5.23) with (5.31) substi-

tuted for n(t), 1e.

g 2
(Z(ai") ~ ap)y(t — k) + é(t)) (5.32)

N-1
{ai"“’} = arg min Z
{ar} k=0 /

n=0

~ Update the spectral parameters by solving (5.24) with Mg(w¢) substituted for

{S(wy)|*. For LPC parameters, solve the Yule-Walker equation using the esti-

mated correlation values, obtained by inverse Fourier transforming Ms(w).

The EM algorithm above 1terates, until some convergence criterion s met. This algo-

rithm is summarized in Figure 5.5.
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5.3 A more general scenario

The modeling of the two-microphone noise cancellation situation in the previous section
ignores the possible coupling of the desired signal, s(t), into the reference microphone. In
the classical least-squares approach, this coupling results in a reverberant quality to the
output, because the desired signal is partially canceled together with the noise. Since
the ML problem of the previous section also ignores this coupling, the resulting EM noise
canceling algorithm has a similar problem.

In the ML approach considered in this section, this coupling is taken into account.
Specifically, we now include the presence of the system B in Figure 5.2, but still assume
that C = 1 and D = 1, corresponding to the assumption that the first sensor is close to the
signal source and that the second sensor 1s close to the noise source. The resulting model
is shown in Figure 5.6. We also assume that Az} and B(z) are both FIR systems. These
assumptions are important, because without them the problem is ill-posed. For example, if
A, B,C and D are arbitrary, intuitively one can see that there is a symmetry to the problem,
that precludes the algorithm distinguishing between the signal and the noise components

in each sensor. With the stated assumptions this symmetry is removed.
We will start by explicitly oresenting the ML problem for this scenario. We will then
present an EM algorithm for maximizing this likelihood, where the complete data will be

composed of the desired speech signal, s(t}, and the noise source signal, w(t), in addition

to the observed signals y;(t) and ya(¢).
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Figure 5.6: The observations; more general scenario

5.3.1 The ML problem

The situation assumed in this section is indicated in Figure 5.6. The mathematical

model that corresponds to this situation is given by,

y(t)

It

s(t) + A{w(t)} ~ exft) (5.33)

ft

w(t) Bis(t)} + w(t) + ea(r) (5.34)

where, as before, s(t) is the desired signal, w(t) is the noise source signal, and ¢,(t) and
e2(t) are the measurement and modeling error signals in the two microphones. As in the
general problem, s(t) and w(t) are assumed to be sample signals from Gaussian random
processes. The error signals €)(t) and e;(t) are white Gaussian noise processes. The un-
known parameters, 0, are the impulse response coefficients {a;} and {b;} of the systems A
and B, the spectral parameters of the signals s(2) and w(t) denoted @ and @ _ respectively,
and the variances 0., and o., of the noises ¢;(t) and eq(t).

With these assumptions, the likelihood of the observations is given again by (5.7). How-
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ever, with C{w) = D(w) = 1, the power spectrum matrix, A{w), is simplified to
Awi8) = E{Y(«)Y(o)'} =

Puw) + AW)Pu0) 4 (@) + 6%, Pufw) B (0) + Alw) Po(w)
(5.35)

B(w)Py(w) = Pu(w)A (w)  B(w)Pi(w)B () + Pulw) + 0%,

We will assume again that A(w) and B(w) are frequency responses of FIR filters, i.e.
their structure is given by (5.9). The orders of those FIR filters are assumed to be known,
and are denoted ¢, and g, respectively. The desired signal is assumed to be a sample
from an AR process of a given order p. so that P,(w) will have the structure of (5.10).
We further assume that w(t) is a white noise signal, i.e. Py{w) is constant. Even with
these assumptions, the underlying ML problem is complicated, so again we will use the EM
algonithm for its solution.

For applications, such as LPC vocoding, where only the spectral parameters of the
speech signals are required, solving this ML problem will explicitly provide these desired
parameters. For applications where the speech signal is required, the MMSE estimate
of the speech signal using the ML estimate of the parameters will be suggesied. This
MMSE estimate wili be available for each current parameter value, as a by product, while

implementing the E step of the suggested EM algorithm.

5.3.2 Solution via the EM algorithm

The complete data suggested frr defining the EM algorithm in the current context is the
set of signals {s(t), w(t), vni(t), y2(t)}. The complete data is chosen this way, since, if indeed
the signals s(t) and w(t), the input to the two channel system of Figure 5.6, are observed,

in addition to the signals y;(t) and yz(t), the output of this system, then there will be a
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simple procedure for ML estimation of the parameters of this two channel system.

Specifically, suppose that this complete data 1s available. To estimate the parameters

we will maximize its likelihood given by

L(8) = logfy, goom(y1(t), va2lt), s(t), wit); )

= log fy, yosew(¥n(t), y2{t)/s(t), w(t); 8) + log fsw(s(t), w(t);8) (5.36)

The signals y;(t) and y;(t) are uncorrelated, given s(t) and w(t). The signals s(t) and w(t)

are uncorrelated by assumption, thus.

L(8) = logfy,/sw(yi(2)/s(t), w(t);8) +log [y, /s wlva(t)/s(t), w(t): )

—

b 11
log f,(s(t); 8) + log fu(w(t); 8) (5.37)
11 v ‘

Term [ depends only on {ax} and orf‘ and is the log probability of the sequence el('t")..
Similarly, term I depends only on {b;} and o7, and is the log probability of the sequence
e2(t). Term II1 is the log probability of the stationary signal s(t) and depends only on its
spectral parameters ¢ . Similarly term IV is the log probability of the stationary signal w(t)
and depends only on its spectral parameters ¢ . Maximizing the likelihood of the complete
data with respect to # is equivalent to maximizing each of the terms I — IV separately with
respect to the parameters they depend on.

Thus, given the complete data, ¢_ are estimated by,

-~ Wy

- . : . 'S (we))?
¢, = argmaxlog fo(st); ¢,) = argu;mz [log Pwe o) + Pior o) 9;,)] (5.38)

and ¢_ are estimated by,

W (we)?

6, = arg max log fu(w(t); ¢, ) = argfgillz [log Pylwe o) + m] (5.39)

-~ Wy
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where S(w) and W{w) are the Fourier transforms of s(t) and w(t) respectively, i.e.
1 M-l
w) = —= s(t)e "
vN ?;6

W(w) = ,... Z w(t)e
The maximization in (5.38) is sometimes simpler, e.g. when s(t) is assumed to be an AR
process, in which case maximizing (5.38) is equivalent to solving the Yule-Walker equation,
using the sample autocorrelation of s(t). Similarly, solving (5.39) 1s sometimes simpler. If

w(t). the noise source signal. is a white noise signal, then solving (5.39) is equivalent to

finding the (constant) spectrum level, Py, by,

N~

Pz 3 wil) = LW ()P (5.40)
=0 Wy

-

~

Estimating the impulse response coefficients, {a;}, and the variance, afl, given the

complete data, requires solving a least-squares problem, since

ep{ak} = a'rg o}n?‘f&}log f’l/-’ W(yl(t) ),W(t);a(), aq-’ el) (5’41)
2
= min — s(t a;wit - + N -loge®
0" {a‘}ogl 12;:‘) (yl ?‘;0 kw( ) £9,,

Similarly, estimating {bi} and o7, given the complete data requires solving the following

least squares problem,

oh (b} = arg_max 108 fy, . uls2(0)/5(0) w(0):bo, by %) (5.42)

il

;?,‘}az Z( ——w(t)-—wat-k)) *N-logaf:

€2 t=0 k=0
The explicit solution of the least-squares problems, implied by equations (5.41) and

(5.42), is achieved by solving the following “normal” linear equations:

2‘, "8 = Ly, 7 Lus (543)
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where R, is the correlation matrix of w(t) of order ¢, 1.e.

-

74{0)

Tw(?a)

L

rw(1)

rw(2)

rw(2)

-

rw(9a)

R, is the order g, correlation matrix of s(t)

r,(0)

rs(1)

L 7s(q)

ra(1)

r.(0)

rs{2)

rs(2)

rs(qb)

r,(1)

r,(1) r,(0) ]

(5.44)
1 N-1
where 7y (k) = & > w(t)w(t—k)
t=0
(5.45)

1 N-1
where r (k) = N z s(t)s(t — k)
© =0

(5.46)

The vectors r,, ,Ty,, Iy, and r,, represent the appropriate cross correlation between the

signals, e.g.

Ty =

~Ws

Tws(0)

L Tos(a) j

N-1

where 1,,{k) = }%— Z s(t)w(t — k) (5.47)

i
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and the vectors a and b are the unknown impulse response coefficients of the systems 4 and
B.

By observing the required procedures for maximizing the likelihood of the complete
data, 1.e. equations (5.38),(5.39) and (5.43),(5.44), we see that the sufficient statistics
of the complete data contains quadratic terms, which are the sample autocorrelation (or
the sample spectrum) and the sarmnple cross correlation (or cross spectrum) of the various
signals, in addition to the linear terms (i.e. the signals themselves). Thus, the E step of

the algorithm (with the above choice of complete data) requires the expectations:

i) = E{st)/nlt), va(t); 0™ (5.48)
o(1) = E{w(t)/n), vl); 8™} (5.49)
and the quadratic terms:
i(k) = E{r(k)/n(),n);e"} (5.50)
folk) = Ef{ra(k)/n(t), wit): 0™} (5:51)
fw(k) = E{re(k)/n(t), wa(); 8} = ieu(-k) (5:52)

We will immplement the E step in the frequency domain, since for stationary processes
with large observation time, the DFT coefficients at each frequency are statistically inde-

pendent and can be processed separately. In each frequency w, the observation may be
written as

Y1 (we) I Afwe) S(we)
= : (5.53)
Yz (we) Bw) 1 W (we)

The E step requires the conditional expectation of S(we), W{we), 1S(we)i?, W (we)i? and

S(we)W ™ (we)-
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At each step of the algorithm, the current values of the parameters are used. We
will denote by A(™(w) and B{")(w) the current estimate of the frequency responses of the
unknown systems A and B, and by P,(")(w) and P (w) the current estimate of the power

spectra of s(t) and w(t). Let H{w,) denote the matrix

1 A (w,)
H(we) = (5.54)
B(n) (wg) 1

and let ®(w,) and T denote the power spectra matrices

P (we) 0 o2 O
P(w,) = , = (5.53)
0 PMw) 0 o2
The required conditional expectations are readily available, since again this is a linear

Gaussian case. These conditional estimates may be interpreted as performing a two-channel

Wiener filter (see {20!) and calculating its error covariance matrix. Thus, the estimate of

the linear terms is given by

$(we) Yi(we)
= K(we) - (5.56)
W (we) Ya(we)
where K (w¢) is the matrix
K (we) = ®{uwe) - H(we)! (H(we) - @) - H(we)' ) (5.57)

For the quadratic terms, we have to calculate the error covariance matrix of this Wiener

filter, 1.e.

Blw) = (®7'(we) + Hlwe) T H(we)!)

it

®(we) ~ Plwe) H{we)! (H(wt) - (we) - H{we)' + ) T H{we)®(we) (5.58)
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and the quadratic terms are obtained by,

Ms(we) = E {35(wz)!2/Yx(w2),Yz(wz)} = 1§(we)® + Pralwe) (5.59)
My (we) = E{IW (we)|*/ ¥alwe), Yalwr) | = W (wo)l* + Pralwe) (5.60)
Msw (we) = E{S{w)W ™ (we)/ Yi(we), Yo(we)} = S(w)W ™ (we) + Prawe) (5.61)

The E and M steps of the EM algorithm for maximizing the likelihood of the observations

(given by (5.7) and {5.35)) for this more general case may now be stated explicitly.

e The E step, the n** iteration:

~ Calculate the conditional expectations $(w) and W (w) by (5.56).
~ Calculate Mg(we), Mw(we) and Msw (w¢) by (5.59)-(5.61).
~ The signal estimates §(t) and w(t), and the correlation estimates 7,(k}, 7,,{k) and-

7. (k) are achieved by inverse Fourier transforming S(w), W(w), Ms(w), Mw (w)

and Msw (w) respectively.

e The M step, the n'* iteration:

~ Solve the linear equations of (5.43) and (5.44) for a and b, using the estimates

7.(k), Fu(k) and 7,, (k) from the E step, and with

1 N-1
Fu (K) = 3 3 @lt)ui(t - K)
Sot=0
N-1
s (K) = 5 Y $(0)unle - K) (5.62)
* t=0

The result is the updated coefficients ¢\®*1) and b{"*1) of the systems A and B.

-~ Update the spectral parameter estimate, by solving (5.38) and (5.39), using
Ms(wg) and Mw (wg) instead of iS(wg)iz and §W(w¢)12. For LPC parameters of

the speech signal s(t), solve the Yule-Walker equations, using 7,(k).
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Figure 5.7: The EM algorithm; more general scenano

The EM algorithm above iterates, until some convergence criterion i1s met. This algo-

rithm 1s summarized 1n Figure 5.7.

The procedures, suggested in this section and also in the previous section, are imple-
mented in each iteration on the entire data. Adaptive and sequential procedures, based
on the discussion in chapter 3, are also possible. These algorithms may process new data

in each new iteration. The parameters will be updated according to one of the suggested

strategies in chapter 3, and a new segment of enhanced signal will be produced.
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Examining the suggested procedure illustrated in Figure 5.7, a sequential EM algorithm
based on recursive E and M steps, comes in mind. The Wiener filter of the E step will
be replaced by the sequential Kalman filter, and the hnear least-squares problems of the
M step will be solved via a sequential RLS type algorithm. The detalls, the analysis and

experiments with this adaptive version are now under investigation and are the subject of

further research.

5.4 Experimental results

The algorithms developed in this chapter for both the simplified scenario and the
more general scenaric have been applied and tested in a simulated environment. A realistic
acoustic environment has been created by generating the impulse response coefficients of the
systems, representing the room acoustics, using a well tested acoustic simnulation program

‘70l. In this section we will discuss the results of our simulation experiments.

5.4.1 The simplified scenario

The simplified scenario of Figure 5.4 has been implemented with s(t), a speech signal,
and y2(t), a band limited noise signal with a flat spectrum from zero tc 3 KHz. The FIR
filter. A(z), was of order 10. y;(t) was generated according to Figure 5.4. The SNR in
y1{t) was approximately -20 db. The results were compared with a “batch” version of the

least-squares algorithm, corresponding to estimating the {ax}’s via the least-square problem

7 2
'{T;ISZ (Sh(f) ~ > aey(t - k))
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Figure 5.8: Correlation between the reference and desired signals. C(z) = 0.1z7°

and then canceling the noise and estimating the signal as

s(t) = yi(t) - D arye(t - k)
k=1

Both algorithms produced good enhancement of the speech signal, and although there
were perceptible differences, the overall quality of both was similar.

The direct least-square approach assumes that y;(t) and s(t) are uncorrelated. This
assumption is critical. Our algorithm, on the other hand, does not require this assumption.
In a second experiment, y:{t) included a delayed version of the speech signal, as illustrated
in Figure 5.8. (Note, that this scheme is different then the scheme considered in the more

general scenario. since we have a direct measurement of the input to the system A(z)).

In this experiment, the SNR in y;(t) was again -20 db. The direct least squares approach
canceled part of the signal together with the noise, resulting in poor quality. In comparison,

the performance of our algorithm was still guod.
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Figure 5.9: The living room acoustic environment

5.4.2 The more general scenario

The more general scenario assumed in Figure 5.6 was simulated, where again s(t) was a
speech signal and w(t) was a white noise signal. In order to simulate a realistic scenario, we
assumed a living room environment with the signal and noise sources located as illustrated
in Figure 5.9. We used a simulation program developed by Peterson ([70i), and we generated
FIR impulse responses having 2000 coefficients for each of the systems A and B. The first
500 coefficients of these impulse responses are plotted in Figure 5.10. By monitoring the
level of the noise source, we have generated examples in which the SNR of y;(t) was +20dB,
0dB and -20dB.

We implemented the EM algorithm described in Figure 5.7 and compared the results

to the least-squares method, by informal listening. Both algorithms estimated up to 500
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coefficients of the impulse response. In all SNR levels our algorithm performed better, and
its output, unlike the least square output, was reverberation free.

At high SNR (+20dB), the output of the least squares method output sounded worse
than the unprocessed measurement signal, due to the signal canceling effect. The output of
our method sounded better than the original measurement signal.

At 0dB, the least squares output sounded better than the measurcment signal. However,
it sounded much worse than the output of our algornithm, which at this SNR level generated
an almost clean signal.

At -20dB SNR, the output of the ML method sounded better then the least-squares
method. However, the distinction between the two was not as significant as in the case of
0dB SNR. This is perhaps a result of the fact that, in order to generate a low SNR, we
increased the level of the noise source. This resulted in a high Noise to Signal Ratio in the
reference microphone, which in turn resulted in lower signal cancellation, since the situation

became closer to that assumed by the least squares method.
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Chapter 6

Information, Relative Entropy

and the EM algorithm

At this point in the thesis, we have already presented the main results and contributions.
The class of iterative and sequential algorithms has been presented and motivated. We have
also demonstrated several applications of these algorithm to rzal world signal processing
problems. In the course of the thesis, several subjects, related '~ information and the
philosophical essence of the inference process, have been mentioned briefly. We want to
use the opportunity of this chapter to discuss these issues further. We will consider in this
chapter some interesting topics, in the context of information theory, that are related to
the EM method and to the notion of complete and incomplete data relations.

Information measures and statistical inference criteria are closely related. The books by
Kullback {71} and Pinsker {72} are devoted to information theory and statistics. The Mini-
mum Description Length (MDL) and the Minimum Information (M) criteria, mentioned in

Chapter 2, provide examples of the application of information measures to inference prob-
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lems. Another criterion, based on information theory, the Maximum Entropy (ME) or its
generalization the Minimum Relative Entropy (MRE), is the main tool used in |71] to relate
information theory to statistics. It will be interesting to show that the ME/MRE criterion
is a special case of the MDL criterion in a special complete-incomplete data context.

Another topic, discussed in this chapter, 1s the alternative derivation of the EM algo-
rithm using the MRE criterion, which has been suggested by Musicus in (7] and {8, and by
Csiszar et. al. {73]. This derivation is presented with our interpretation and comments. In
the context of this chapter, where general information criteria are analyzed, this derivation
may be viewed in the right perspective.

This chapter is not orgamized as coherent theory, rather as “variations on the themes”
above. The common “motive” 1s the relation to the EM method. We start our presentation
with the ME or the MRE criterion, point out that its philosophy is distinct from the phi-
losophy of the ML and other statistical criteria and give its common justifications. We then
show that the MRE criterion sometimes reduces to the ML criterion, and, in these cases,
its minimization using the alternate minimization algorithm, reduces to the EM algorithm.
However, we will raise some doubt concerning the rationale behind using the Minimum Rel-
ative Entropy in some contexts. including the context that led to the alternative derivation
of the EM algo-thm. The chapter ends with an important result; we prove that the ME or
MRE critenion can be viewed as an interesting implementation of the MI/MDL ideas in a

special complete/incomplete data situation.
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6.1 Maximum Entropy and Minimum Relative Entropy

So far in the thesis we have presented several methods and criteria for statistical in-
ference. Maximum Entropy and Minimum Relative Entropy methods flow from a different

philosophy, however. This philosophy will be presented and compared to the philosophy of

other statistical inference criteria.

6.1.1 ME and MRE in comparison to other statistical criteria

The “output” of every statistical inference method is a choice of probability function,
which we believe, according to the specific criterion we use, represents best the behavior of
the phenomena that we observe. However, ME or MRE methods consider the observations
in a unique manner and accept only certain forms of data.

To be more specitic, let us describe the common situation that leads to the application
of ME or MRE methods. As mentioned above, the goal of any inference process is to find
a p.d.f., p(z), defined -over the sample space, X, of the observed phenomena. Suppose we
know that p(-) belong to a set P, where this set is usually defined by the knowledge of some
averages,

P = {p(z) i Eylg(x)] = g} (6.1)

The given averages are the only information observed from the underlying phenomena in

the ME framework. The choice of probability function is then made by,

P = argmax £(p) = arg max [w /, p(z) losp(r)d-‘r] (6.2)

In the MRE framework, an a-priori probability, ¢(-), for the observed phenomena is also




given, and thus the choice of probability function 1s made by,

p = arg rg;,l ¥(p;q) = arg I’}’g}l} UZ p(z)log sg—%dx] (6.2)

We immediately note that the MRE criterion reduces to the ME criterion if ¢(-) is the
uniform prior. Therefore, in the rest of the chapter, we will discuss only the MRE method;
all the results will also apply to the ME method.

The basic limitation of the MRE method is that one caanot incorporate the information
provided by a specific observation sequence. The only information that can be incorporated
1s in the form of given averages or other constraints on the probability function. Neverthe-
less, the MRE method is sometimes used when a specific observation sequence is given. In
this case, one usually calculates some sample averages and uses them as constraints on the
relative entropy minimization. This approach is certainly not an optimal one, since not all
available information about the phenomena is incorporated and since errors are introduced
in the inference process, because the sample averages differ from the statistical averages.

The other statistical inference methods consider the observed data directly. For example,
in the Maximum Likelihood framework, we have an observation z € X and we assume that
the probability distribution that describes z is characterized by some unknown parameter

vector, § € ©. The ML criterion will choose p by choosing 66 according to,

8 = arg r&aéx log p(z:9) (6.4)

The basic limitation of the ML is the need for modeling assumptions. Without those re-
strictions the method will break down; for example, if we allow the any probability function,
maximizing the likelihood will lead to the trivial (but unacceptable) result p(a) = §(a - z),
where §(-) is the Dirac d‘elta function. On the other hand, 1n the ME/MRE framework, we
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do not assume any model; the method will work even if the set P in (6.2) and (6.3) contains
all possible probability functions. The constraints on the probability functions are derived
from the data.

To summarize, the weakness of the MRE method is the unique and restricted manner
in which 1t can accept input. The MRE method can consider the data only in the form of
averages. Its strength, on the other hand, lies in the facts that no modeling assumptions
are needed and that a full probability function is estimated. There are situations in which
giving the mput in form of averages is natural; for example, in statistical mechanics, the
observations at the macroscopic level are indeed some averages of a stochastic phenomena,
that occurs at the microscopic level. In these cases, following the rationale of the MRE

method given below, the usage of the MRE method is justified.

6.1.2 The rationale of the MRE method

The commonly used rationale for justifying the Maximum Entropy method is advocated
mainly by Jaynes {74| and [75]. Here, we briefly repeat this rationale.

Suppose that the sample space of the underlying phenomena is discrete and finite,
1e. the random variable, X, whese instances, , we may observe, takes its values over
the finite set {1,---,m}. This random variable has an a-priori probability assignment,
{91.- -, 9m}- Suppose we observe an infinite i.i.d. sequence, {zy --- z, ---}, of realizations
of X. A question we might ask is what will the sample frequencies (or histogram) of this
sequence typically be ? Naturally, by the strong law of large numbers, the answer is the
a-priori probability, {q,}:f__1 However, suppose we have additional information in the form

of constraints on the possible histograms, maybe a knowledge of some averages, that rules

out the a-priori assignment. In this case, we will compare the probabilities of all possible
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histograms; the typical histogram will be the one with the highest probability.
Specifically, consider first the case of a finite sequence, z = {z; --- zn}, of i.id.

realization of X. With the given probability assignment, {¢;}[2,, on X, the probability of

getting a specific sequence, whose sample frequencies are {p;}%,, where p; = k;/N and k,

is the number of times the outcome 1 appeared in z, is

p(z) =

Tt:js

[I (6.5)

There are, however, -;f'—*';;— sequences with these sample frequencies. Thus, the probability

of the event “the sample frequencies of z are {p;}*,”, denoted Prob{p/q}, is given by,

Prob{p/a} = km, Hq‘ lc,..' H e (6.6)

It 1s easy to prove, using Stirling’s formula for factonal, that

S= V' _  Neprol 5

Kyt k! (6.7)

where £(p) = — 3T, p;logps is the entropy associated with the frequencies p; = k;/N.

Thus, as N — 20 equation (6.6) becomes

= NS™ plog it
Prob{p/q} = ™ €D T g7 = ¢ oms P 108 (6.8)
=1

or equivalently.

log Prob{p/q} = - N Zp‘ log -; =-N-¥(pq) (6.9)

=1

where ¥(p;q) is the relative entropy between {p;}2, and {¢;}2,

From equation (6.9) w= see that the relative entropy is directly proportional to - log Prob{p/q}.

Thus the histogram with the highest probability is the one that minimizes the relative en-
tropy. This histogram is also the typical histogram in the following sense. Consider the

histogram p that minimizes the relative entropy and any other histogram p’ with higner
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relative entropy. We claim that the probability of p is overwhelmingly larger than the prob-

ability of p', since, as N — oo, the ratio between these probabilities goes exponentially fast

to infinity,

Probip/g) _ _wing

B2 pig)-H(p'g)] N a 0
Prob{p'/q}

=" a>

(6.10)

This concludes the justification of the minimum relative entropy criterion.
(The argument above, the probability calculations and the term “typical sequence” are

frequently used in Shannon’s development of information theory (24|, especially for his

source coding theorem.) ' a

6.2 MRE by alternate minimization and the EM algorithm

In this section, an interesting interpretation of the EM algonthm is provided, using the
MRE criterion. This interpretation is based on the fact that the MRE criterion, used in
a special way, reduces to the ML or the MAP criterion. Minimizing the MRE criterion 1s
usually difficult; thus, the iterative alternate minimization {or coordinate search) algorithm
may be suggested. In the special case where the MRE criterion reduces to the ML criterion,
this alternate minimization algorithm reduces to the EM algonthm, where minimizing with
respect to one density is equivalent to the E step, and minimizing with respect to the other
density is equivalent to the M step.

As already mentioned, the minimization of the relative entropy by alternate minimiza-
tion and its relation to the maximum likelihood criterion were originally suggested in (7]
and ;8]. The alternative minimization method and its properties were also developed in

{73], where an explicit relation to the EM algorithm was established.
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6.2.1 MRE by alternate minimization

As discussed above, the goal of any statistical inference process is to find a probability
distribution. that explains the observed phenomenon under some a-priori knowledge and
constraints. Suppose that the observations and the a-priori knowiedge may be summarized

~

into constraints on the desired probability density functions, l.e. that p(z) € P and ¢(z) € Q

where £, Q are sets of p.d.f. A version of the MRE criterion will solve our inference problem

via the following functional minimization:

oy . . : plz)
z),9(z) = ar min ¥{p(z);q(z)) = ar min / z)log —=dz (6.11
Pz).4(z) B ie)er alz)e 2 (plz): ola)) B otz)er alz)e2 xp( ) ® 4(z) (6.11)

The minimization of the relative entropy in (6.11) is complicated in general. It is also a
functional optimization problem; thus, numerical methods cannot be easily applied either.
To solve this problem. an alternate minimization method (or coordinaie search algorithm) is

suggested. In this method, we generate a sequence of solutions {p{™)(z), ¢(")(z)} as follows:

e Start: guess p(o)(I),q(D)(I)

e lterate, until some convergence criterion is achieved,

p" () = arg mip ¥ (pl2);4™(=)) (6.12)
(V@) = argmin ¥ (Y (2)i0(2)) (6.13)

Any alternate mimimization algorithm has the desired monotonicity property. Thus,

each iteration improves (in our case decreases) the goal function. Specifically,
¥ (P (2); g V(z)) < ¥ (p(2)5 9t (=) < ¥ [pM(z); 4 (2)) (6.14)

The monotonicity property implies that, if the goal function is bounded, then it also

converges to some value H~. A continuous function, like the minimum relative entropy, will

160



be bounded when it i1s defined over a compact set. For our iterztive algorithm, in order to

show that ¥ (p{"); q(")) — %7 1t is sufficient to show that the set %, x @, where

Pox Qo={(pe P9 Q| X(pg) < ¥(pV; ¢} (6.15)

1S compact.

Differentiability of the goal function will imply that H" is a stationary value. If the sets
F and Q are convex, then the convergence point H" is a global minimizer. Unfortunately,
in the special case where the desired density functions are defined parameterically, these
sels are rarely convex, even when the possible set in the parameter space is convex.

A comprehensive discussion on the properties of this algorithm, especially the conver-

gence issues, may be found in {8] pp. 107-133 and in {73].

6.2.2 ML as a special case of the MRE criterion

Let X be a sample space, referred to as the complete data sample space, and suppose
that a parametric family of probability distributions is defined over it. This parametric
famly is indexed by the vector # € ©, where O is a subset of the k-dimensional Euclidean

space. Thus, the set of possible complete data densities is

Qe ={q(z:0) 1 8O} (6.16)

Suppose that we do not observe £ € X, but instead we observe an incomplete data y =
T(z), where T(-) is a many-to~one mapping. The new sample space, given the incomplete

data observations, is X (y) as in (2.4). The possible p.d.f., given y, are therefore constrained

to the set

Py = {p(~) i p(z) =0Vz & X(y), [r(y) plz)dz = l} (6.17)
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Note that a sample space, Y, for the observation alsc exists, and each @ defines a p.df. over

this space, given by

Jy(y;9) =/ q(z: 8)dz (6.18)
Ly)
The probability densities, g(-) € Qg and p(-) € 7, are estimated via the minimum

relative entropy criterion. Thus, we have to solve

plz)

p(z), 4(z) = ar min z)lo
padile) =arg  min [X plz)log 25

(6.19)

Note that estimating ¢(-) € Qe is equivalent to estimating § € ©, i.e. we have to solve

p(z),OmrE = arg pz) (6.20)

plz)log q9(z:8) ~

p(z)*guf;ll.]eee f X
where 8y rg denotes the minimum relative entropy estimator of the parameters.

The ML criterion determines the estimate § € © by maximizing the likelihood of the
observation, i.e.

By = arg max fr(y; 8) = arg max [z(g) ¢(z; 0)dz (6.21)

We will now show that estimating ¢ by the minimum relative entropy (i.e. by 6.20) is
equivalent to estimating § by maximum likelihood (i.e. by 6.21).

For any fixed § we will minimize (6.20) with respect to p{z). This minimization problem
may be solved explicitly using the following lemma, which 1s a direct result of the convexity

of the relative entropy function.

Lemma 6.1 For any measurable set A

p(z) P(4)
[ r@ e > Py 1o i3 (6.22)
where P(A) = [, p(z)dz and Q{A) = [, q(z)dz. Equality holds if and only if
Pz) _9lz) . .
P(a) oy *T™ A (622)
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The proof of this lemma may be found in 8! page 373.
Let A be the set X{y). In this case, P(X(y)) = 1 and Q(X(y)) = fr(y;8). By the
lemma above, a probability density function that, will satisfy (6.23), will minimize the

relative entropy. Thus the p(z) that minimizes (6.20) for any fixed 8 1s

e = PG N E = gy = Fele/id) (624)

which is the conditional probability of z given y. The value of the relative entropy at this

point is given again by the lemma above (6.22), i.e.

)]
P{X (y))log g‘((-:rf%;‘; = ~log fy(y; 8) (6.25)

The relations above and the equivalence of the minimum relative entropy estimator,

frrE, and the maximum likelihood estimator, 85, , are summarized in the following equa-

tion:

. B : . p(z) _ . ol =3
Omre = argmin L‘rglenpz fz(!) plz)log - =g dz| = argmun |- log fr(w:9)] = by (6.26)

=1 =

6.2.3 The EM as an alternate minimization algorithm

Since the MRE criterion reduces to the ML criterion in the special case summarized
above, applying the alternate minimization algorithm of (6.12) and (6.13), will provide an
iterative algorithm for maximum likelihood. This iterative algorithm 1s the EM algorithm,
as shown below.

In each step of the alternate minimization algorithm, we have the current estimates,

p'")(z) and ¢(™(z) = ¢(z;8™), of the p.d.f.’s. Applying first (6.12), we get

PN =arg min ¥ (pl(z); o(z:0™)) = fyv(z/y;6™) (6:27)
p(z)€Py)
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where this explicit solution is based, again, on lemma 6.1. Now applying the second step,

e (6.13), we get

ne . e :  in fxv(z/y; o)
8"V = argmin ¥ (p")(2): ¢(z:9)) = argmm/ Fxov(z/y:8™) 108“‘/“‘"","‘“‘“—)

6€® 86 J1(y) q(z; 8)
(6.28)
Using the notations of (2.11), we may write
(n+1) _ ™ oY _ O(g- 8y = gn)
g ars;gggH(Q ,8) - Q(8;6') argrgsagQ(Q,_ ) (6.29)

Equation (6.29) is exactly an iteration of the EM algonithm !

6.2.4 Remark: how not to use the MRE criterion

The relative entropy is sometimes interpreted as a distance measure between two prob-
ability distributions: the “Kullback-Leiber” measure. However, 1t lacks cne of the desired

features of a distance measure, namely, it is not symmetric,

H(p;q) # *(g;p) (6.30)

Furthermore, following the common rationale of the MRE method, the relative entropy has
meaning only for comparing possible probability measures, p, given an a-prioni assignment,
¢. Thus, we prefer to interpret the relative entropy as representing the conditional likelihood

of an assignment p, given the assignment g, as summarized in equation (6.9), i.e.
1
X(pig) =~ log Prob{p/q} (6.31)

Having this interpretation, it makes sense to minimize the relative entropy with respect
to the first argument, p, only. Unfortunately, the alternative derivation of the EM algorithm
is based on minimizing the relative entropy with respect to both p and ¢q. Thus, with
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respect to this derivation, we agree that for any given probability assignment, fx(z), for
the complete data X, the best assignment over the set X{y) is the conditional density,
fx;v(z/y). However, mimimizing then the relative entropy with respect to fx(z), in this
case. is not Justified.

This remark does not detract from the mathematical elegance and the additional insight
that may be gained by the alternative derivation of the EM algorithm, but it does suggest

that justifying the maximum likelihood criterion via this relation is a poor use of the MRE

critenon.

6.3 Minimum Description Length interpretation of the MRE

criterion

Despite the criticism, the MRE criterion 1s used and justified in several statistical prob-
lems. It can estimate an entire probability distribution function. It is also the basis of the
alternative derivation of the EM algorithm. Thus an additional interpretation of the MRE
method 1s desirable.

After a brief review of the philosophical idea of the Minimum Description Length (MDL)
and the Minimum Information (MI) criteria, we will prove the main result of this chapter,
namely, that the MRE criterion is a special case of the MDL criterion, in a certain context.
On one hand, this result clarifies the appropriate context in which the MRE should be used.
On the other hand it motivates and supports the MDL criterion by showing that, in the
appropriate special case, it reduces to :nother proven criterion.

The idea of complete and incomplete data specifications that is so important in the
development of the EM algorithm, also plays an important role in the definition and the
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proof of this relationship between the MDL and MRE critenia. For showing the relation
between the MDL and the MRE criteria, the MDL criterion is used in a mode where it
considers a set of possible observation. An immediate example for such situation is the

set I (y) of the possible complete data, given an observation y, which is used in the EM

algorithm context.

6.3.1 The Minimum Description Length idea

We have already mentioned, in Chapter 2, the Minimum Description Length criterion,
suggested by Rissanen {29,30,31] and the more general Minimum Information criterion, sug-
gested originally by Solomonoff {21]| and recently by Hart {22]. The philosophical foundation
of the MDL,/MI methods is the claim that the most compact description of the observa-
tion provides the best explanation of the phenomena we observe. In other words, if we
have the best method to encode or compress the observation, we have actually estimated
the probability distribution that “explains” the data best. This philosophy is intuitively
reasonable and 1s consistent with universal philosophical principles, such as the Ockham
Razor principle. We strongly believe in these “principles of parsimony”, and, since these
principles can be made precise by the quantitative measures of information and complexity,
we strongly advocate their use.

Using these criteria, we may overcome some of the limitations of the ML method and
generate methods that can accept less restrictive modeling assumptions. For example, the
ML method fails, when the number of parameters is unknown, since the more parameters
we choose, the larger the likelihood can be. In this case, a specific application of the MDL

criterion tries to estimate the parameters together with their number by, (see also (2.73)
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and |31})
- ) 1
7,8 = arg mi&nh log p(z;8) + inlog N| (6.32)
ny
where N is the length of the observation sequence.

In the MDL method, the abstract principle of shortest description is translated into
a mathematical criterion in the following way. The description (or code) length above
is influenced by two factors. If we knew the probability distribution, the “ideal” code
length (76|, that is required to represent the specific observation, is the {self) infcrmation
of the observation, 1.e. —logp(z). The second factor, %n log N, is the code length needed
to represent the model or the parameters, considering the precision required for encoding
continuous parameters.

To show that the ME and MRE methods are special cases of the MDL criterion, we have
to extend the MDL method somewhat. Suppose that the information given about the un-
derlying phenomena is not a single observation sequence, but rather a set of such sequences.
This type of information is available either by having several independent observation se-
quences or by having constraints, that define a possible set of observation sequences. The
MDL critenon for this type of information will suggest that we choose the probability dis-
tribution that munirmzes the weighted combination of all code lengths, by some a-priorni
weight ¢(z), where all members of this set of possible observation sequences are encoded
using the proposed distribution.

We can now adapt the MDL criterion to the MRE framework, in which the given
information about the underlying phenomena is in terms of constraints on the probability
distribution. We claim that if we try to represent all possible observation sequences, whose

“histogram” or sample frequencies satisfy those constraints, the minimum weighted code
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length is achieved by the MRE probability distribution.

6.3.2 Minimum Relative Entropy as Minimumn Description Length

In the MRE framework, the given information is the knowledge of some averages. Now

recall that the strong law of large numbers implies,

Elg(s)j=§ e lim =

n—o00 N

do9(z) =g as, (6.33)

where r, are 1.1.d. observations, distributed as z. So, this MRE-type information is
equivalent to the information that the observations lie in the set of all infinitely long se-
quences whose sample averages equals the given averages.

Considering the above argument, we will show that mimmizing the relative entropy,
subject to some constraints on the probability distribution, is asymptotically equivalent t,o.
minimizing the weighted combined code length needed to represent all the sequences, whose
“histogram” or sample frequencies satisfy the given constraints.

To clarify our argument, let us start with a simple example. Suppose we want to estimate
the probability of “1” (success) in a simple binary (Bernoulli) triai. We denote p(“1”) = 4
and p(“0”) = 1 — 6. Suppose we do not have any observations, so we only know that for
any N trials, that we will perform, we may observe any of the 2V possible sequences of “1”s
and “07s.

Equipped with the Minimum Description Length philosophy, and applying a uniform
weight to all code lengths, we will choose 8 so that all 27V sequences can be represented by

the shortest possible code. Now, for each sequence z we need about
- log p(z; 8) = — logi#* (1 — )V ) (6.24)
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hits, where k in the number of “1”s in . We will denote by I the set of ali such sequences

and by L(X) the combined code length required to represent all members of the set. Now

N
for any k& we have sequences with k£ “1”s, so that
k
NI N
L(Xy=3_ (—log6%(1 - )N %1 =
k=0 k
N N N N
= - Z k| logt - Z (N - k)| log(1 - 8) (6.35)
k=o k k=0 k
Noting that
N N NI N
> k=Y (N-k) = N2N1 = o
k=0 k k=0 k
We see that
L(X)= —alogh — alog(l — 9) (6.36)

which is minimized, as expected, by 8 = 1/2. Observe that this probability function is the
same as that given by the Maximum Entropy principle (or the MRE principle with uniform

prior) with no constraints, on the binary random vanable.

Notice that here we have ignored the term 1,/2log N, required to represent the code

length for describing the single parameter #, because it has no effect on the minimizing

value.

We are ready now to prove the general claim, stated as the following theorem.

Theorem 6.1 Let X be a random variable that takes its values over the finste set {1,--- m}.

Let z = 2yz5---xxn be a sample of N independent trials of X. Let fi{z) = ki(x)/N be the

jrequencies of eack outcome in this semple. The vector f(z) = (fi(z), -+, fm(Z)]T will be

called the histogram of the semple. Let 7 be any fized set of histograms. Let Xy be the set
In={z=z---zn | f(z) €7}
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Let the weighted code length, with the weights ¢ = (1, - -, qm], that results when the whole set

Xn is encoded by a code book designed according to p = ipy,- -, pm|, be denoted L(Xn,p,q)
where

L(Xn.p.g) = > q(z)|-logp(z)]

2E€EIN

Then the probability assignment p = py, -+, pm| that mintmizes L(Xn,p,q) 1s,

l qkm N!
2!67 K1l k! I/ -
Py = = £, km g (6'3‘)
1 e I N

ca fE€F Tky k!

Furthermore, as N — o
p= b}im Py = argggg H(p:q) = argmmz log —q— (6.38)

Proof: The code length required to represent a sample, z = z;---zy, in a code book

designed by p (within the term m/2log N required to encode the probabilities p;) is,

m ™m .
L(z) = ~logp(z) = — log (H pf') =~ kilogpi (6-39)
i=1 =1 )
where k, is the number of occurrences of the 1** outcome in . The weighted code length is
given by
L(Xn,p.g)= 2 a1 ---qin (~Zhlosm) (6.40)
z€Xly =1

Now, there are ;;,-Q’—;:-, possible sequences having the same frequencies or the same

number of occurrences, k = [ky,- -, k,.l}T. Since the constraints are only on the frequencies

(or on k), we can wnte the weighted code length as,

adwmissible k =1 i=1 \fe7 kyles k!

b k= NV O™ e o Gm o N
L(.rN,E,g) — Z W (~Zk‘logpx) = ""Z (Z Q1 m k‘) logp'l

(6.41)

We will denote

qu : m N k‘ (642)

€7

170




The weighted code length 1s thus

L(Xn,p,q) = Zﬁ. log p;
which is minimized (using Jensen’s inequality) by

BN = -
' T B

Substituting (6.42) in (6.44) and recalling that k;/ 3_%, ki = f;, yields (6.37).

(6.43)

(6.44)

In general, we will get the MRE distribution only in the limit as N — oo as follows.

Following the dertvation of (6.7) and (6.8), we get

& gm N NN re( s
A = ) (6.45)
where ¥(f;q) = Lo /i logé is the relative entropy between the frequencies f, = k,/N~
and g¢,. Substituting (6.45) in (6.37) and taking the limit as N — oo yields
. I Zyer _f,e‘N'N(I“l) (6.46)
p= lim —= _ .
T ON-® Tes e N¥La)
Let us assume that the function ¥(f;gq) has in ¥ a single global minima, at f__ . Now
as N — o0
] 0 :
lim e NXUID-XUL_ 9] o L7 L (6.47)
N-~00 R ’
1 «f [=7 ..
so, we can write {6.46)
~N-ALF: ~NIN(f:q)-¥ )
1 Trer fe ¥(f9) . Tierfe (Lq)-NL_, 9] ; 6.45)
im = - = .
Neco S, e~ N¥f@) N Zie?e-w’ly([;g)u(i_“;g)] man

1e. pis the MRE distribution. O
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Note that in general, if ¥ (-; ¢) has several global minima, [ » /> then the result in

(6.46) will be

P=2

=1

S =

However, since H{-; q) is convex, whenever the constraint set is convex, there is only a single
minimum.

We claim that the above theorem can be extended, following the same lines of proof,
to the case where the random variable takes its values over an infinite set. The relation

between the MDL and the MRE criteria is thus fully established.
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Chapter 7

Conclusions and further research

In this final chapter, we will summarize and discuss the results and the contributions of
the thesis and try to convey a general philosophy for solving signal processing problems that
may be established from this thesis. Before that, we will suggest further research directions.
A particularly interesting suggestion for further research, for which we have specific ideas, is

the apphication of the EM method to the the problem of signal reconstruction from partial

information.

7.1 Further research

Many research directions may be suggested to complete and extend the work presented
in this thesis. Interesting theoretical problems as well as interesting signal processing ap-
plications may be explored further. In this section, we will indicate a few of these research
projects. We will start by discussing an important subject, that has not been explored

enough in the thesis, namely, the analysis and the applications of the sequential and adap-

tive EM algorithms.
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We have developed specific ideas and mathematical formulations for solving problems
of signal reconstruction from partial information, in the EM context. These ideas should be
investigated further and should be applied to real reconstruction problems. We will present

these 1deas and the further proposed research in the next section.

7.1.1 The sequential and adaptive algorithms

Considering the theory of the sequential EM algorithm, we suggest the following research

directions:

e Nonr asymptotic statistical analysis

We have considered only limit distribution and consistency. However, interesting

questions anse in the non-asymptotic case. A complete analysis of, say, the variance

of the estimator as the iteration proceeds is desirable.

e Rate of convergence and tracking

A topic that is close, but not identical, to the previous topic, is the convergence rate of
the sequential and adaptive algorithms. For the adaptive algorithms we are interested

in the tracking capabilities, whic;,h improve if the algorithm converge faster.
e Limit distribution for non i.i.d. case

This research topic will complete the results presented in Chapter 3.
s Other approximations

We have suggested, in Chapter 3, sequential EM algonithms, based on a specific
approximation of the batch EM algorithm. However, there may also be other possible

approximations that should be investigated.
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The sequential and adaptive algorithms developed in the thesis have not been applied
yet, in a serious way, to signal processing probleins. As a first step, we suggest that these
" algorithms be applied extensively to the problems that have been solved in Chapters 4 and 5
of the thesis, via the batch EM algorithm. However, other signal processing problems also
call for adaptive solutions.

We may want to start with a simpler example. Consider the problem of a stationary
signal in a stationary noise, where the suggested batch EM algorithm is the iterative Wiener
filter algorithm. Assume that, given the signal without the noise, the parameters may be
estimated sequentially, say, by the RLS algorithm. It will be interesting to try a recursive
algorithm that uses a Kalman filter (instead of a Wiener filter) to get the signal, and then
use this signal recursively, to estimate the parameters.

Other examples, that come to mind, are parameter estimation of dynamic systems, the

problem of tracking the trajectories of multiple targets using tracking radar, analysis of

sequences of images and so on.

7.1.2 Other research directions

Here, we will briefly present other research directions that come to mind, both at the

theoretical level and the signal processing application level. We will start with the theoret-
ical research directions:

+ Global Optimization:

The EM algorithm can guarantee convergence only to a stationary point of the like-
lihood. One might investigate the combination of the EM algorithm with standard

methods, summanized in the book [77]. Recently, a new technique, the simulated
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annealing |78}, has become increasingly popular. The EM algorithm ideas may be

combined with this technique to achieve an algorithm for global optimization.
e The EEM algorithm:

The idea of changing the complete data, presented in Chapter 2, should be investigated
further. The rules suggested for varying the complete data could be stated more
concisely and their properties should be analyzed. This research direction may be
combined with the previous one, since one of the motivations for varying the complete

data is to escape from unwanted stationary points.

+ EM algorithms for general estimation criteria:

We have presented in the thesis the EM method for a class of estimation criteria.

Further research may extend this class. The properties of this method for general

estimation criteria, should be further explored.

e Other iterative algorithms for ML:

Recently, other iterative algorithms for ML estimation, given incomplete data, have
been suggested by statisticians, based on some ideas from the EM theory, e.g. [14].
These algorithms should be explored further; their sequential versions could be devel-

oped and applied to signal processing problems.

Applications

Mauny further signal processing applicaticns of the EM method can be considered. We will

briefly present here some examples.

¢ Separating a narrow band signal from a wide band signal
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This problem occurs in many practical situations, such as the problem of enhancing
the periodic acoustical signal of an helicopter in a wide band noise of a jet plane. This
problem 1s analogous to the problem of filtering a stationary sigral from a stationary
noise, solved using the iterative Wiener filter. However, in this problem, we cannot
model the narrow band signal as a stationary Gaussian signal. Modeling this problem
correctly, maybe with the EM algorithm in mind, and solving the resulting statistical

problem, is an interesting topic for further research.

Separating two speakers: The “Cocktail Party”™ preblem:

This problem is analogous to the previous problem:. However, we do not expect to
gain much by modeling the speech signal as a Gaussian stationary signal, since the
spectral distribution of both speakers s identical. We suggest that by modeiing the
speech signals using their periodic nature, we may be able to distinguish the speakers
based on their different periodicities and phases. The resulting statistical problem

may be complicated. However, it might be solved using the EM method.

Joint estimation of pitch and spectral parameters of speech:

Usually the pitch and the LPC parameters of the speech signal are estimated indepen-
dently. Furthermore the LPC parameters are estimated by modeling the speech signal
as a stationary AR process, a model that is clearly not adequate for voiced speech.
We suggest using the pulse excitation model. We will choose the complete data to
be the pulse train, modeled as a stochastic point process, in addition to the observed
speech signal. An EM algorithm for estimating the piich and LPC parameters might

be suggested, using this complete data.
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Following the guidelines presented in section 2.6 and these examples, many more signal

processing application could be suggested.

7.2 Signal reconstruction from partial information: Ideas

and proposed research

In this section, we will present specific ideas and the mathematical formulation for

solving problems of signal 1econstruction from partial information, using statistical modeling

and the EM algorithm.

-~

7.2.1 General discussion

The problem of signal reconstruction from partial information has been investigated'
by many researchers, e.g. 79,8G.81,82 to mention a few. Traditionally, a deterministic
formulation of this problem has been adcptc? where the given partial information provided
(non-linear) deterministic equaticns and constraints for the unknown signal samples. A
major research affort was allocated to answer the questions of exisience and umiqueness
of a solution, and, as a result, statements such as “Phase retrieval 1s impossible for one
dimensional signai however it is possible for a two dimensional signal”. were declared. Other
research efforts led to algonthms whih r.etform the reconstruction task by finding soiutions
that satisfy the constraints and the equations, either direcily, e.g. 83, or via iterative
srocedures, e.g. '5i,i84], i85].

This deterministic approach assumes, at least implicitly, noiseless measurements. The

effects of the noise, whick may result from measurement and computation errors, were

considered only by investigating the robustness of the algonthms designed for the noiseless
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case. It has been observed that some reconstruction problems, for which a solution exist,.
have shown poor noise immunity, and thus are probably ill-posed and practically unsolvable
in this deterministic framework. For example, the reconstruction of a two dimensional
signal from its Fourier transform magnitude is an open problem, despite the fact that a
unique solution !:.o this problem exists. In general, one can calculate condition numbers
for determunistic reconstruction algorithms and predict his chances of solving a specific
reconstruction problem in a real situation.

We will suggest a statistical formulation of the reconstruction problem. In this for-
mulation, we model the noise, measurement or computation noise, naturally. The signal
reconstruction problem becomes a statistical estimation problem, for which well known pes-
formance bounds, like the Cramer-Rao bound, exist. These performance bounds play the
role of the condition numbers in the deterministic formulation. However, the statistical
performance bounds provide more ‘nformation and insight.

The performance of a reconstruction problem can be improved by incorporating a-prion
information about the signal. An important advantage of the statistical formulation is that
a wide class of a-prior information may be easily incorporated. We note that in the deter-
ministic formulation, regularization methods were suggested in ap attempt to improve the
performance. Some of the methods to regularize ill-posed deterministic problems are equiv-
alent to assigning simple a-priori probabilities to the signal in the stochastic formulation.

The statistical problems, in the proposed formulation, require maximizing the hkeli-
hood, the a-posteriori probability or other statistical criterion depending on the a-prion
information. These problems are naturally solved using the EM method. Since the obser-

vations are partial and distorted, the complete data is the undistorted signals. For some ML
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problems, where no special a-priori information is incorporated, the resulting EM algorithm
is equivalent to standard iterative algorithms such as Gerchberg-Saxton algorithm 5|, and
thus, unfortunately. has a similar poor performance 1in ill-posed reconstruction problems.
However, we believe that open reconstruction problems may become well behaved by us-
ing statistical models that incorporate enough realistic information. The EM method will

suggest a practical solution to the resuiting statistical problems.

7.2.2 Statistical formulation of signal reconstruction problems

The first element in the suggested statistical formulation, is a definition of the quantities
that should be estimated and inferred. These quantities may be the signal samples, the
samples of some underlying “hidden” process or some unknown parameters. We will denote

these quantities by the vector s.

The next element in the suggested framework is the definition of a stochastic process,

denoted z, that depends on the desired quaatities in a simple way, 1.e.

z=F(s) (1.1)

where 7 is a stochastic function, which defines a (simple) conditional probability, fy/s{(z/s).
If z is observed, s may be estimated easily. We admit that the statistical formulation is
defined having the EM idea in mind; this stochastic process will be used as the complete
data or as part of the complete data in the suggested EM algorithm.

Another element is the measurement procedure. In defining this element, we will model

the partial information aspect and the measurement noise aspect of the real reconstruction

problem. Denote the observation by y. We may write,

y=H(z)+v (7.2)



where H(-) i1s a non-invertible transformation representing the fact that only partial infor-
mation is available. The vector, u, represents the measurements errors. With a probabilistic
description of v, we achieve a stochastic description of the observations in terms of the de-
sired quantities, via the conditional probability, fy s(y/s)-

Using the stochastic description of the observations and an appropriate statistical cri-
terion, determining the desired quantities reduces to solving a mathematical optimization
problem. If this problem isill-posed, then additional information or assumptions and maybe
a different stutistical criterion should be considered. In the statistical framework, the a-
priont knowledge about the desired quantities can be easily incorporated, in a quantitative
manner. The a-priori knowledge will also define the statistical criterion which will be used.
This element of the statistical formulation is important, since, by incorporating addit.ional_
information, it 1s possible to solve real reconstruction problems, which are ill-posed other-
wise.

We will now present three examples of different statistical models, that follow the de-
scriptions above. All three models may be used for solving reconsiruction problems. In the
first example, the desired quantities, s, are the samples of the signal or the pixels of the
image to be reconstructed. Assuming a simple stochastic model, z is distributed normally

with mean F - s and variance o], where F is an invertible linear transformation, say the

Fourter ‘ransform. Thus, we may write

L
il
s>
1]
+
13

(1.3)

where n i1s a discrete white noise signal. Suppose, for example, that we want to reconstruct

the signal from the magnitude of its Fourier transformn. The measurements in this case will
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be modeled as,
i = |zl (7.4)
where |-, denotes the i** component of a vector.

The second modeling example comes from Radioactive and Positron Emission Tomogra-
phy medical imaging problems. At each point ¢ in (the discrete) space, there is a radiating
Pcisson source, with parameter A,. The desired quantities in this model, denoted A, will be
these parameters. With a perfect imaging system, we may observe the vector z, where 1ts

it" compcnent is the number of photons or particles emitted by the source in the i** point,

l.e. we may Wwrite,

z!

f(z/A) = He‘*‘% (1.5)

: v
Our imaging system is not perfect, howesver. In tomography, for example, we measure noisy

projections of z, which may be modeled as,

y=H-z+y (7.€)

[N

where H | the projection operator, is a non-invertible linear transformation. We note that, in
this case, the relation between complete and incomplete data is linear. However, we cannot
use the result of the Linear Gaussian case here, since z has Poisson distribution. Statistical
models similar to the model above were suggested in medical tomography context in 86|,
135] and elsewhere.

The third example is as follows. Modeling images using Markov Random Fields (MRF)
has recently become increasingly popular. Using interesting simulation algorithms (e.g.
{871,1881,{89]),.90'), realizations of MRF with various parameters were generated. These
samples resembled realistic images surprisingly well. We strongly suggest reading (88| to

see how realistic images with different characteristics can emerge by the innovative choice
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of the parameters of the MRF. Consider now the following statistical framework of the
signal reconstruction problem. Let the desired quantities be the parameters of the MRF.

denoted §. The process z will be the image, i.e. it depends stochastically on 8, via the

Gibbs distribution, see e.g. 89:,

1 -tv(zeyr .
Z(Q)e (7.7)

fg_(EQ) =

where Z is the normalization factor. and U is called the “energy function”, where the
neighborhood structure and the characteristic of the image i1s defined. The observations, y,
will be a noisy and incomplete function of z, as in (7.2). The EM algorithm suggested in

this fermulation is directed at finding . However, as a possible by-product in the E step,

an estirate of z, the image itself, will be available.

7.2.2 Solution using the EM method

Solving the mathematical problems, generated by the statistical formulation, directly
is generally complicated. However, since the statistical framework was suggested with the
EM ideas in mind, EM iterative algorithms can be naturally applied. The complete data
will be the set of signals {z.y}, 1.e. it will include the undistorted signal z in addition to the
observations y. For the cases where the measurement noise v does not exist. the complete
data will be the undistorted signal z.

tn the E step of the suggested algorithms, the conditional expectaiion of the sufficient
statistics of z is calculated, given y and the current value of 5. For example, in the first
statistical formulaticn abqve, if £ 1s Gaussian with mean s, the sufficient statistics 15 linear;
thus, this conditional expectation may be easily derived. For problems such as reconstruc-
tion from Short Time Fourier Transforms, band limited extrapolation, reconstruction from
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projection and others, the observations, y, are related to z by a non-invertible linear trans-
formation, so we may use the results developed for the Linear Gaussian case.

The M step will be simple, since the process x depends on the unknown quantities in
a direct way. For example. in the second statistical formulation of (7.5 and (7.6). we may

estimate the desired quantities A,, having the complete data {z.}, as

A, = argmax —A, ~ 1, log A, = 14 (7.8)

To fix ideas, we will present explicitly the EM iterative algorithm for maxiraum likelihood
signal reconstruztion from the magnitude of its Fourier transform, in the first statistical
framework of (7.3) and (7.4). We note that a similar algorithm may be found in (8], pp 344-
346.

We assume that the signal is real and has a given finite support. This a-priori knowledge
is incorporated in the form of deterministic constraints. We will denote the signal to te
reconstructed by s(n) and its Fourier transform by S(w). The complete data is given in the
frequency domain by,

X(w) = S(w)~ N(w) (7.9)
where N(w) is complex Gaussian random variable with variance 0. The observations are
Y(w) = X(w).

The E and M steps of the EM algorithm in the k'* iteration are given by,

« The E step: Given st¥)(n) or S8 (w) = S*)(w)e?® 1) find,

H

X¥() E{X(0)/ X(w)i = Y (w), M ()}

otk )fr,eJ(Y(W)ES“'(w)?/az)ms“cosGdO
= Y(w)e?t @iz
= Y{w)e [T e Y (@)isEw)i/o?)cose dg

*w) 11(Y(w)15‘*’(w)f/"0f) (7.10)
Io(Y (w)iS¥Ww)i;0%)
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where [o(-} is the zero order modified Bessel function and /,(-) is the first order

modified Bessel function.

e The M step: Let z{*)(n) be the inverse Fourier tiansform of X(*)(w), the updated

estimates s(¥*1)(n) are,

Relz!*)(n)] if n is in the signal support
s+ ¥(n) = ’ ’ (7.11)

0 otherwise

We note that since

. Ly{z2)
|
=200 Io(z)

=1
as the variance ¢° tends to zero, the E step becomes

(k)

X®(w) = Y (w)e? ) (7.

-1
ot
[ 3]
~—

il.e. the complete data is estimated by combining the given magnitude with the current
estimate of the phase. This algorithm was suggested in {79 and {82!

From this discussion, we gain a new interpretation of previously suggested algorithms.
However, we also conclude that rec »nstructing the signal from the magnitude of its Founer
transform cannot be solved by maximizing the likelihood in this framework. since this leads
us back to previous algonithms, which perform poorly.

As we repeatedly mentioned, for ill-posed problems more information should be incorpo-
rated. In the statistical framework, the information can be easily incorporated. Depending
on this information, the adequate statistical criterion will be used. The resulting statistical
problem for, say the reconstruction from magnitude probiem, will be similar o {7.10) and

{7.11), where the E step will be the same; however, in the M step, a different criterion will
be invoked.
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7.3 Summary and discussion

The thesis may be summarized as follows. We have solved signal processing problems
using a class of iterative estimation algorithms. This class of algorithm 1s based on the
EM method suggested in 2. We. however. have extended this class and developed several
general theoretical results. We will discuss the contributions made in this thesis in these

two levels, the signal processing applications level and the theoretical contributions level.

7.3.1 The signal processing applications

When we discuss the application of the EM algorithm to a real world problem, we
first have to model the problem statistically and then apply the EM algorithm to solve
the resulting statistical problem. However, the EM algorithm is not uniquely defined: it
depends on the choice of complete data, and, as we have seen, an unfortunate choice yields
a completely useless algorithm. The choice of complete data or equivalently the choice of a
specific EM algorithm requires creativity, in order to get a practically useful algorithm.

As a general philosophy, we will have the EM algorithm in mind. while suggesting
a statistical model to the real signal processing problem. Using this philosophy, we will
identify what the desired measuretnents are, model them statistically, and find their relation
to the given observations. The statistical problem, generated this way, can then be solved
using the EM algorithm: the desired measurements will be chosen, naturally, to be the
complete data.

The main contribution of this thesis is the explicit solution of the important signal

processing problems presented in Chapters 4 and 5. As we recall, these real problems are:

e Parameter estimation of superimposed signals. Applications of this model, that have
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been addressed, are,

~ Multiple source location (or bearing) estimation

-~ Multipath or multi-echo time delay estimation

o Nosse cancellation in a multiple microphone environment. T  application considered

is a speech enhancement problem.

In both cases, we have suggested solutions that improve upon the existing state of the
art. In the superimposed signals application, the ML approach has been formulated before.
Bowever, since its solution 1s complicated, others have avoided it and suggested suboptimal
or ad-hoc solutions. We have tackled this ML problem and succeeded in presenting a practi-
cal solution to it. In the noise canceling problem. our contributions include the formulation
of the statistical ML problem to model different physical situations. Using the EM method,
we were able to suggest practical solutions to the underlying real problem.

We may consider Chapters 4 and 5 as a demonstration of our suggested philosophy for
solving signal processing problems. In these chapters. we have demonstrated this philosophy
through all stages of the solution, from modeling, through the suggestion of an algorithm, to

the numerical solution. Thus, these chapters will serve as a reference for further applications.

7.3.2 The theoretical contributions

The basic EM method has been suggested in '2.. However, in the process of considering
the applications mentioned above, we have extended and modified the original EM algo-
rithm. We have also derived explicit forms for some special cases. These extensions and
derivations made the method more suitable for signal processing applications. We will now

present and discuss these contributions.
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e The Linear Gaussian case

We derived closed form analytical expressions for the EM algorithm for the case
where the complete and incomplete data are jointly Gaussian, related by a linear
transformation. We note that. in general, a closed form analytical expression cannot
be obtained and that the EM algorithm may require complex operations like multiple

integration. In retrospect. this derivation appears to be a significant contribution,

since 1t covers a wide range of applications

e EM algorithms for general estimations criteria

Orniginally, the EM algorithm was developed and suggested as a technique for maximiz-
ing the likelihood. However, other criteria are more appropriate for some problems.
We have developed EM algorithms for optimizing other criteria. specifically the Mini-
mum Information criterion. We note that, in Chapters 2 and 6 of the thesis. a general
discussion on the Minimum Information criterion. 1ts properties and 1its relations to

other statistical methods, 1s presented.

¢ Extended EM: varying the complete data in each iteration

As mentioned above, the choice of the complete data may critically affect the comgplex-
1tv and the rate of convergence of the algorithm. It may also affect the convergence
point, leading to a different stationary point for different choices of complete data. We
have suggested. in the thesis, an interesting alternative 1o a fixed choice of complete
data: we suggest varying the definition éf the complete data in each step of the algo-
rithm. This way, we may get simpler schemes, we may get algorithms that converge

faster or algorithms that may escape from unwanted stationary points.
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+ Sequential and Adaptive versions

Sequential and adaptive versions of the EM algorithm have been developed in Chap-
ter 3 and some of their properties have been derived. We have identified sequential
algonthms, that are based on problem structures and we have used tae stochastic
approximation idea to derive sequential EM algorithms in the general case. We have
apphed these sequential algorithms in few exampies. However, important topics for
further research are the applications of these sequential algorithms to a varnety of

signal processing problems and a further theoretical analysis of these algorithms.

As a result of these contrnibutions, a general and flexible class of iterative estimation
algorithms has been established. Bevond the theoretical contributions and the specific ap-
phcations, we believe that this thesis suggests a way of thinking and a philosophy, which may

be used in a large variety of seemingly complex statistical inference and signal processing

problems.
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Appendix A

Convergence theovems of the EM

algbrithm

The convergence theorem of the EM algorithm are given in this Appendix. The theorems
will be presented in parallel to the discussion of Chapter 2, i.e. we will start with the
convergence properties of the likelihood sequence, then the convergence properties of the

parameter estimates sequence and we will end by discussing the rate of convergence.

A.1 Convergence of the likelihood sequence

We start by quoting the Global Convergence Theorem from ;17| and {18]. This theorem
1s frequently used to prove convergence of iterative algorithms in numerical analysis. Recall

that a point to set map M(z), where z € X, is called closed at z if
zp — 2,2, € X and yr — y,ya € M(zx) = y< M(z2)

For a point to point map, continuity imphies closedness.
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Theorem A.1 (Global Convergence Theorem) Let the sequence {zi} be generated by

Iy — Tiy1 € M{zi), where M 13 a pomnt to set map. Let a solution set I' be grven, and
suppose that:

(1) all points =i are contained in a compac: set C
(11) M 1s closed over the complement of T
(131) there is a continuous function L such that
(a) fz2 T, L(y) > L(z) vy M(z)
() f €T, L{y) 2 L(z) Yy € M(z)
Then, oll the limst points of {zi} are in the solution set T and L{z;) converges mono-

tonically to L{z) for somez e T

The proof may be found in {17 page 91 and 18] page 187.

i

We are interested in applying the theorem above to the case where L(:) is the log-
likelihood function defined over 8. the solution set is either the set of local maxima M
or the set of stationary points §, and M(:) is the point to set map implied by the EM
(GEM) algorithm. In this case, condition (1) is met by the assumption that B¢ is compact,
condition (111)(b) is true by theorem 2.1, see eq. (2.22); thus, we have the following corollary

of theorem A.1:

Corollary A.1 Let {8™} be a GEM sequence generated by
plm) —, ginsl) o NI(Q("})
and suppose that

(1) M 1s a closed point to set map over the complement of § (M)

(11) L(-) s continmows and L(9'""V) > L(8™) for all 9™ g § (M)

Then all limit points of {8'™)} are stationary points (local mazima) of L, and L™
converges monotonically to L = L(87) for some 8~ € § (M).

For the EM algorithm, where M(8{™) is the set of maximizers of Q(8; 8™, the following

continuity condition

Q(8,;8.) is continuous in both ¢, and 8, (A1)
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implies the closedness of M. i.e. it implies condition (¢) in the corollary above. Now, if
we are interested only in convergence to a staticnary point, where the solution set is §,

then the continuity condition also implies condition (11) above; thus we have the {oliowing

theorem:

Theorem A.2 Suppose Q satisfy the continuity condition (A.1). Then all the limit points
of any instance {8'™} of an EM algorithm are stationary potnts of L and L{8")) converges
monotonically to L = L(8") for same stationary point §°.

Proof: Suppose that for some §{™) ¢ § conditica (i1) above is not met, i.e.

L(8"1) = L(g™) (A.2)

4

where 9°71) = M(8(")) ie. it is a global maximizer of 2(-;8™}). Since 8(") is the global

maximizer of H(-:4™) (by Jensen's inequality, eq. (2.14)). the equality in {A.2) implies
Q™6 = Q8™ M) and E (@™ 87) = H (80 (A.3)
or in particular. that §") is also a globai maximizer of Q(-:4"!). Now
L(@™) = Q8" ™M) ~ H(8!M:4™) = o(8™)} - h(8™) (A9)

and 8" is a global maximizer of ¢(-) and h(-), thus, 8"} must be a stationary point of L{)

The convergence to the set of local maxima, M, is not guaranteed by conditicus above.
since we may find '™ outside M, but inside $. for which inaeed condition (it} of corollary

A.1 is not met. The following theorei,; imposes an additional condition, and thus provides

sufficient conditions for convergence to the set of local maxima M.
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Theorem A.3 Suppose that in addition to the continuity condition (A.1), Q satisfies

sup Q(8'9) > Q{¢;9)

Y82 (S - M) (A.5)
#'ce

where (3 ~ M) 13 the difference set {8 = S8 ¢ M}

Then all the limit points of any instance {81} of an EM algorithm are iocal marima of
L and L(Q(")) converges monotonacally to L™ = L(8") for some local mezimum 8.

Proof: Condition {A.5) excludes the possibility that condition (1t} of corollary A.1 is
not met by some (") € § - M. Theorem A.2 proved that this condition is met for all

8™ 2§ and thus it is met for all 8! 2 M. Thus, using corollary A.1, this theorem follows

immediately. T

A.2 Convergence of the parameter estimate sequence

The convergence of the likelihood sequence does not imply the convergence of the pa-
rameter estimate sequence. However, if the iikeithocod sequence converges to a solution

set that contains a single point, the convergence of the parameter sequence is guaranteed

(trivially), as stated in the foilowing theorem:

Theorem A.4 Let {8} be an instance of @ GEM algorithm. with a corresponding likeli-
hood sequence {L'™} that converges to some L° and satisjy conditions (i), {ii) of corollary
A.1. Let the solv*ion set (S{L") or M(L") ) be the singleton {8°}. Then, ' — 4~

An important special ca2se of this theorem is when the likelihood function i1s unimodal

mm 9. This case 1s stated in the following corollary of the theorem above:

Corollary A.2 Suppose that L(B) is unimodal i1n © unth §° being the only stationary point

and thet Q{8';8) is continuous 1n both ¢’ and §. Then any EM sequence {§™} comverges
to the unigue mazimazer §° of L(8).
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The requirement that the solution space is singleton may be relaxed, if the sequence of
estnates is such that 18"~V — 9{")'. . 0 as n — oo. In this case, {#(™} will converge, if

the solution set 1s discrete, as shown in the following theoremn. We note that a discrete set

1s 3 set whose only connected components are singietons.

Theorem A.5 Let {8(™)} be an instance of a GEM algorithm, with a corresponding likeli-
hood sequence { L'™} that converges to some L™ and satisfies conditions (1), (i3) of corollary
ALl ,iQ("*‘” - 8" 0 as n — oo, then all the limit points of {Q(")} are tn @ connected
and compact subset of S(L") {or M(L}). In particular, if S{L") (or M(L"}) is discrete,
then '™ converges to some 8™ in S(L°) {or M(L")}).

Proof: The sequence {6'"} is bounded (by our assumptions). The set of limit points
of a bounded sequence with ;i8{"*1) — 9{®):{ . 0 as n — oo is connected and compact (see,
e.g. theorem 28.1 of '911). Since all the limit points of {#{™} are in S{L") (or M(L")), the
theorem follows. =

A.3 Rate of convergence

We start by presenting identities for the derivatives of the log-likelihood function, i.e.
DL(8) and D?L(8). which are needed for calculating the expression for the rate of con-
vergence of the EM algorithm. To prove those identities, the following well known results
concerning the score function are needed.

Let 2 be a sample space and f(w; ®) be a p.d.f. defined over this space, parameterized

by ¢. Let the score function be defined as,

v ., _ Olog f(w:0)
S(wio) = ..,,_é_é.__
Then,
3l ;O
Eo{Stwia) = [ ——°—g§f£-“1—9-)f(u; é)dw = 0 (A6)
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and

W z 2log flw;
Vary(Slw;o) = [ [LRELli0)] f(w;¢)dw=—53o{amwl efwal g

do 89?

Suppose now that the sample space is X (y) and that fx,y(z/y;8) 1s defined over it.

Equations {A.6) and (A.7) become

o :
B {55 lo8 fxrlaiyid) / w8} = D H(@:8) =0 (A8)

a
ver {55 log fx;v (z/y:9) ‘sz,é} = D' H(8;8) = - D™ H(8;0) (A.2)

Differentiating both sides of (2.12) ard using (A.8) and (A.9) above. we get the following

identities
DL(8) = D'°Q{8;8) = S(y: 9) (A.10)
D*i(8) = D*Q(8;0) - D*H(8;8) = D**Q(9;8) ~ D' H(9; ) (A.11)
D''Q(8:8) = D' H(8;9) (A12)

The rate of convergence of a class of GEM algorithms is now given 1n the following

theorem.

Theorem A.6 Let {8™)} be a sequence of a GEM algorithm such that

(1) 8™ — &

(11) DlOQ(Q(u*I):Q(n)) =0

(111) DPQ(pm+ 1), Qt"}) s negative definite with eigenvalues bougded away from zero

ie. 9%V s q loral mazimizer of Q(8;4\™). Then, DL(8") = 0. D¥Q(8",8") is negative
definite, and

DM(9) = D®H(:0) [DPQ(e70)] (A.13)

Proof: Differentiating (2.12) we get

DL(Q(H+1)) - DIOQ(Q(W#I)_‘ Q(n)) _ DIDH(Q('H.I); Q('\)) (:\14)
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where the first term of (A.14) is zero by the assumptions, the second term is zero in the
limit as n — oc by (A.8) and DL(8") = O. Similarly, D*®Q(4";8") is negative definite, since
it is the limit of D¥®Q(8{"Y): 9{")) whose eigenvalues are bounded away from zero.

The last part of the theorem, i.e. showing (A.13), was proved in Chapter 2 using the

identities above, see (2.42)-(2.44). T
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Appendix B

Consistency of sequential EM

algorithms

We will start by presenting the following theorem, which is also used for showing con-

sistency of the ML estimator:

Theorem B.1 Let Yoo

1Y, be the output of a stationary Markov source with a finite
memory p, t.e.

qu/iYnnx. ,Yl(gn/y_n.,',)"'v_'.!l) = ]Y../Y -1 ~,Y....,(2,‘/2n~1>"'y )

“n-p

Let Ln(8) be the log-likelithood function given Yo Y, asn (3.3). The sequence of func-

tions [,(8) = LL.(8) converges uniformly in probability 1 to a limit [(§) where under regular-
ity conditions, the global mazimum of [(8) and the unique solution to the equation DI(8) = 0
1s the true parameter value §,,,,.

Proof: The likelihood Ln(8) may be written as,

Ln(8)

it

log fy., v.(y, " 9,:9) (B.1)

li

08 fya/Yaor, (/8 v o8 fyyvas vy, (i gy 8)
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For n >> p,

1 R
.(8) = *L ;Z Yog fy. vioe v (¥/¥_ > '-',L*?,Q) (B.2)
Using the sirong law of large numbers, we get
Jim 1,(8) = E{log fy.rvi_., ~.,y,_,(g¥-/g,-1v~w_y;_,,;2)} = i(6) (B.3)
in provability 1
The function {(8) may be written explicitly as,
[9) = j log Sy, ¥ ¥ W/ Y B v, v (Y g e}y oy,
(B.4)
or,
/dyi—l‘.~dyt-—p [fywu'wY-*,(g‘,]‘”"y ~p’ -truc) (BS}

‘/108 Fyg¥o v 0 i O v v (80 Y Gere )y,

Invoking Jensen's inequality on the irner integral, we conclude that

H8) < 1B {B.6)

where equality is achieved if and only if,

FYave v /8 %8 = frgve v Y Y i) 3 (BT)

Under the identifiability condition, the equality in (B.7) i1s achieved only if § = 8,,.,,
1e. 8.,,. is the unique global maximum of {(8). Using the differentiability condition, and
the convexity of {(#) we also conclude that 4,,,. 15 the unique solution to the equation

DI{§) =0. =

—
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This theorem may be extended to more general ergodic sources, whose memory is fading
fast enough. The more general conditions may be found in [48], appendix A.
Using this theorem, we may now state the main consistency result:

Theorem B.2 Let the observations Yy Y, e generated by an ergodic source for

which theorem B.1 holds. Let {8{™} be an instance of a sequential EM algorithm such that
for any realization of the observations,

(1) the sequence of estimates {8} converges to a limit 9
(1) limpeno D0Qns (1" 0M) = 0

Then, in probability 1, as n — o, 8™ — s ree -

Proof: From the assumption (¢), and using the identity (A.8), we may write,
lim DY H, . (8"Y.8") = lim DH,.,(87:8°)=0 (B.8)

n—-00 n—oo

From theorem (B.1) the sequence [,(8) = 1 L,(f) converges uniformly in probability 1

to some /{8). The sequence of derivatives Dl,,,,(gl"*”) may be written as,
Dlpca(87Y) = = [D1Qu 1 (671: 609) - DK,y (g Vg™ (B9)
Thus, from the assumption (i1}, and from (B.8) above.
Jim Dloy (81 =0 (B.10)
Since l,.1(8) converges uniformly to {(8), and using (B.10) we conclude that
lim DI~y =0 (B.11)
From theorem B.1 and from (B.11). our desired result follows. i.e.
lim 0™ =4,

in probability 1. =3
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