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Abstract

The purpose of this thesis is to develop an efficient scheme for the design of controllers that
guarantee 72 performance in view of linear or nonlinear real parametric uncertainties. To
begin, dissipation techniques are used to design parameter-dependent Lyapunov functions
that impose constraints on the magnitude and the time-variation of the uncertainties. This
approach reduces the conservatism of the robustness criteria. The robust stability problem
is formulated in terms of a linear matrix inequality problem that constitutes a convex con-
straint and can be solved in polynomial time. The robust performance problem is obtained
by the introduction of a performance metric that bounds the W-2 cost of the closed-loop
system and is shown to be equivalent to the robust performance problem obtained by the
Q-bound framework and the use of Popov multipliers. Although the resulting robust perfor-
mance criteria are in matrix inequality form, they are not linear in the scaling matrices and
the compensator dynamics. Therefore, the robust performance problem is used to optimize
the performance metric with respect to the Popov scaling matrices and the controller dy-
namics separately. Both of these optimizations are formulated in terms of standard linear
matrix inequality problems which can be solved in polynomial time. The iterative robust
controller synthesis procedure obtained by interleaving the two optimizations yields a robust
controller that obtains a locally optimal bound on the l 2 cost of the closed-loop system.
Since the robust performance criteria used in the iteration are equivalent to those obtained
by the Popov multiplier approach, the robust controller obtained by this iterative scheme
is denoted the optimal 7 2 /Popov controller.

Benchmark robust control problems are used to evaluate the effectiveness of the itera-
tive controller synthesis scheme. Several controller designs indicate that this LMI-based ap-
proach to robust controller synthesis overcomes the numerical and computational problems
of other equivalent robust control techniques and therefore constitutes a viable synthesis
scheme for real-life systems.
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Chapter 1

Introduction

The performance of many systems is obtained through the use of high authority controllers.

Many controller design techniques rely on models that are assumed to accurately represent

the dynamics of the system at hand. Often, however, the models do not comprise a com-

plete description of the system dynamics. The discrepancy between the real life system and

the model is usually because of real parametric uncertainties, either inherent in the identifi-

cation of the system dynamics, or due to neglected high frequency dynamics. In fact, slight

perturbations in the system dynamics may degrade the performance of a closed-loop sys-

tem involving a nominal controller, or even cause instability. Such effects have introduced

the challenge of robustifying the stability and performance characteristics of a closed-loop

system. More specifically, the robust stability problem involves the design of a controller

that guarantees asymptotic stability for a system whose perturbations are assumed to lie

in a specific range. Similarly, the problem of robust performance involves the design of

a controller that guarantees a certain level of closed-loop system performance, again, for

a specified set of allowable perturbations. The design of techniques that yield controllers

which guarantee robust stability or performance has been the focus of much recent research

in control theory.

The development of schemes for the design of robust controllers involves certain trade-

offs. The sacrifice of nominal performance for robustness guarantees is common, and in fact

inevitable in robust control design. Furthermore, the exact description of the uncertainty

in a system usually results in stability or performance criteria that are computationally

intractable. Subsequently, the construction of effective design criteria involves the trade-
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Figure 1-1: Robustness analysis system configuration involving a system M, a con-
troller K and an uncertainty block A which is assumed to represent
real parametric and sector bounded system uncertainties.

off between the accuracy of the robustness criteria and the computational efficiency of

the controller synthesis scheme. In fact, computational considerations force the use of ap-

proximations to the robustness criteria. Such approximations involve the design of robust

controllers with respect to bounds on the actual performance objective or with respect to

simplified uncertainty sets. However, the use of performance bounds that are too conserva-

tive, or the use of oversimplified uncertainty descriptions, result in robustness criteria that

are too conservative for practical use.

A common approach when dealing with system uncertainties is to assume the uncer-

tainties are complex. This assumption leads to much simpler robustness criteria because

the phase of the uncertainty is ignored. In the case where the system uncertainty is due

to the neglected high frequency dynamics whose phase is arbitrary, such an approach is

actually very effective. On the other hand, in the case of real parametric uncertainties, the

additional freedom in the phase of the uncertainty results in robustness criteria that are

overly conservative.

The main objective of this thesis is to develop a robust controller synthesis procedure

that involves less conservative robustness criteria. The standard system configuration for

robust controller synthesis, as shown in Fig. 1-1, is adopted. The uncertainty is assumed

to be real parametric and sector bounded. Performance robustness tests are developed as

state space performance criteria and are expressed in the form of linear matrix inequalities

(LMIs). The LMI representation allows the use of efficient optimization algorithms in the



controller design. Although recent research on real parametric uncertainty has focused on

systems involving linear perturbations, the approach adopted in this thesis, following the

development in Refs. 24,25 and 27, assumes the uncertainties are nonlinear and considers

linear uncertainties as a special case of this broader uncertainty class.

1.1 Background and Previous Research

Many analysis and synthesis techniques have been developed to deal with uncertain systems.

This section introduces several that are comparable to the design technique developed in

this thesis. Emphasis is given to the type of uncertainties considered, the computational

requirements and the qualitative evaluation of the controllers obtained from each of the

approaches.

The use of a complex model to represent the uncertainty of a system is shared by various

robustness analysis and synthesis techniques. W,, theory comprises a framework that guar-

antees robust stability for a system involving unstructured, complex uncertainties [14, 16].

The uncertainties, however, may constitute a specification of the plant uncertainty, or the

7W, performance [13]. The W72/7lim problem involves the robust approach to the 72 prob-

lem or LQG controller design. The performance metric is the W-2 norm of the closed-loop

system and the uncertainty is assumed to be 7-, norm bounded. If the W12 performance

specification is represented as an additional uncertainty block in the 7 framework, the

resulting robust stability problem involves structured uncertainty which is examined using

p-analysis techniques [11]. Braatz et al. [7] have shown that the calculation of the structured

singular value p is computationally intractable. Consequently, upper and lower bounds for

p are used as an approximation [49]. In fact, these bounds may be refined by the intro-

duction of scaling matrices, referred to as D-scales [11]. Unfortunately, the D-scales must

be evaluated at each frequency point, and then be approximated by curve fitting [31]. The

combination of p analysis with 7-1( synthesis results in a D-K iteration which is denoted

as p-synthesis [3, 31]. Robust control design using p-synthesis has been proven to be very

effective for low order systems involving complex uncertainties. However, in the case of real

parametric uncertainties the p-synthesis approach and similarly all other robust control

schemes involving a complex representation of the system uncertainty have been shown to

be arbitrarily conservative.



The p-synthesis approach has recently been extended to provide less conservative ro-

bustness criteria when considering real parametric uncertainties [12,15, 30, 50]. Once again,

bounds on the performance are introduced because the computation of the singular value

p is intractable. Even though the calculation of the upper bound for p has been shown to

involve a convex optimization, the difficulty in using the scaling matrices to continue the

synthesis iteration is still present. The multivariable stability margin Km introduced by

Safonov et al. [10, 37-40, 44] is equivalent to p-synthesis and is based on the use of Gen-

eralized Popov Multipliers. The advantage of this approach lies in the replacement of the

curve fit required for the D-scales by a convex optimization. The Km approach is related

to the robust control techniques developed in this thesis.

The use of Lyapunov functions to examine the problems of robust stability and perfor-

mance comprises an appealing robustness analysis technique because it entails state space

criteria. The challenge of using this approach for systems with real parametric uncertainty

involves the design of nonconservative Lyapunov functions [5, 28, 29, 33, 34]. The use of

traditional quadratic Lyapunov functions employ a complex model of the system uncer-

tainty. Haddad and Bernstein [20] have shown that such an approach ignores the phase of

the uncertainty and in the case of real parametric uncertainty results in over-conservative

robustness criteria. Moreover, in Ref. 22, Haddad and Bernstein developed less conservative

criteria through the use of parameter-dependent Lyapunov functions which explicitly impose

restrictions on the time variation of the system uncertainty. For a system involving sector

bounded nonlinear uncertainties represented by the function A(z), the parameter-dependent

Lyapunov functions are of the form

V(x, A) = xTpx + 2 A(o ) d , (1.1)

where x denotes the state of the system, and z = Cx. This form is actually based on the

Lur'e-Postnikov Lyapunov function developed in absolute stability theory [1,32,36].

The construction of parameter-dependent Lyapunov functions which adequately restrict

the time variation of the uncertainties is simplified through the use of system dissipation

theory. In fact, the nonlinearity dependent Lur'e-Postnikov Lyapunov function of the clas-

sical Popov criterion can be generalized to a parameter-dependent Lyapunov function for

linear real parameter uncertainty [20, 24].



The robust control development of this thesis is based on the developments in Refs. 20

and 24. Nonconservative parameter-dependent Lyapunov functions are developed using

dissipation theory and Popov robustness criteria equivalent to those of Ref. 24 are presented

in the form of linear matrix inequalities.

1.2 Thesis Overview

The goal of this thesis is to develop an efficient technique for designing robust performance

controllers for systems involving real parametric uncertainty. The stability and perfor-

mance criteria are developed using Lyapunov theory. Dissipation arguments are used to

obtain parameter-dependent Lyapunov functions that restrict the time variation of the un-

certainties. The resulting robustness criteria are expressed in the form of linear matrix

inequalities, and are subsequently incorporated in a 72 design problem. The robust sta-

bility and performance criteria developed are shown to be equivalent to the ones obtained

through the Popov multiplier approach of Refs. 24, 25 and 27. The robust performance cri-

teria are then used to develop an iterative scheme tackling the problem of robust controller

synthesis. Since the performance involves an 7-2 performance metric and the robustness cri-

teria are equivalent to the ones obtained through the use of Popov multipliers, the resulting

controller is denoted as the optimal 7- 2/Popov controller.

Chapter 2 provides some background that is used extensively throughout the thesis.

First, the chapter introduces the aspects of dissipation theory which are used to develop

the parameter-dependent Lyapunov functions. The notions of supply rates, storage functions

and dissipation are presented and the implications of system dissipation to system stability

and performance are explained. Subsequently, the chapter introduces the notion of linear

matrix inequalities and presents some useful techniques pertaining to their analysis and

solution.

Chapter 3 develops robust stability and performance analysis criteria using parameter-

dependent Lyapunov functions obtained through dissipation principles. These criteria are

expressed in the form of linear matrix inequalities and their equivalence to those developed

in Refs. 24, 25 and 27 is portrayed. Subsequently, the robustness analysis criteria are used

to develop an iterative scheme for the design of optimal 7 2/Popov controllers denoted the

W-K iteration.



The effectiveness of this iterative controller design scheme is evaluated in Chapter 4.

In this chapter, several optimal -W2/Popov controllers are designed for two standard robust

control design problems. Finally, Chapter 5 presents the conclusions of the thesis and claims

the practicality of the W-K iteration for the design of optimal W7-2/Popov controllers.



Chapter 2

Background

2.1 Dissipation Theory Overview

Dissipation theory comprises a powerful method of obtaining parameter-dependent Lya-

punov functions for systems involving parametric uncertainty. Consider a dynamic system

M with the time domain characteristics

0(t) = g(x(t),w(t))
z(t) = h(x(t),w(t)) (2.1)

In the case where the system M is linear time-invariant (LTI), the simplified system dy-

namics are

i(t) = Ax(t) + Bw(t)

z(t) = Cx(t) + Dw(t) .

According to Refs. 35,47 and 48, a supply rate comprises a function in w, z and possibly

their derivatives, which is locally integrable, i.e.,

r(w(T), z(T))I dT < 00 , (2.3)

and

r(w(T), Z(T)) d > . (2.4)



The supply rate is chosen based on the system characteristics and properties. In fact, it

usually comprises a quadratic function, because such a form leads to Riccati type stability

conditions.

Definition (Willems [47, 48]) A system M of the form in Eqn. (2.1) or Eqn. (2.2),

with states denoted by x E R , is said to be passive with respect to the supply rate r(w, z)

if there exists a positive definite function VM : R -+ R, called a storage function, that

satisfies the dissipation inequality

VM(x(t2)) <_ VM(X(tl)) + r(w(r), z(T)) dT , (2.5)

for all ti, t2 and all x, z, and w satisfying Eqn. (2.1) or Eqn. (2.2).

Assuming VM is differentiable, the derivative form of Eqn. (2.5) is

VM(x(t)) _ r(w(t),z(t)) , t > 0 , (2.6)

where 1VM denotes the total derivative of VM(X) along the state trajectory x(t) (see Refs. 47

and 48). For a conservative system, Eqns. (2.5) and (2.6) are equalities. Moreover, a

system is strongly dissipative if the strict form of Eqn. (2.6) is satisfied, i.e., VM((t)) <

r(w(t), z(t)), (x 4 0). Usually, storage functions are assumed differentiable, and therefore

Eqn. (2.6) is applicable.

For many mechanical systems, it is helpful to think of the supply rate as a function

representing the power supplied to the system and of the storage function as a function

representing the energy contained within the system. Even when such a physical interpre-

tation is often not valid, the implication of system stability from dissipation arguments in

still valid.

In the case of two or more interconnected dissipative systems, the storage functions may

be combined to form a Lyapunov function for the interconnected system. The stability

of interconnected systems is based on the fact that the interconnection of two dissipative

systems is stable.

Lemma (Willems [47, 48]) Consider two dynamic systems M and M2 with state

space representation as in Eqn. (2.1) or Eqn. (2.2), and input output pairs (wl, zi) and

(w2 , z2) respectively. For the system interconnection illustrated in Fig. 2-1, with wi = z2



Figure 2-1: Neutral interconnection of two systems M1 and M 2 .

d e

Figure 2-2: Robust stability and performance analysis configuration for a system
with a single uncertainty block A.

and w2 = zl, assume that the individual systems are associated with states, supply rates and

storage functions of the form Xl, ri(wl,zi), VMI(xl) > 0 and x2, r2(w 2 ,z 2 ), VM2 (X2) > 0

respectively. Supposing that the supply rates satisfy ri(wl, zl) + r2(w 2, z 2) = 0, for all

W, = z2 and w2 = z1, the solution (x 1, 2) = 0 of the feedback interconnection of M and

M2 is Lyapunov stable with Lyapunov function V = VM1 + VM2 .

In the framework of robust control, the uncertain system is commonly represented by

the uncertainty feedback loop of Fig. 2-2. The equivalence of this configuration with the

neutral interconnection of Fig. 2-1 implies that the stability of uncertain systems can be

analyzed using a dissipation framework. Indeed, if the uncertainty block A and the plant

M are dissipative with respect to the supply rates ra and rM = -r, respectively, then the

closed-loop system is dissipative and, in fact, stable.

In the case where multiple uncertainty blocks are considered, shown in Fig. 2-3, stabil-

ity conditions are obtained in a similar fashion. Given that each uncertainty block Ai is

dissipative with respect to some supply rate rAt, the interconnected system is stable if the

system M is shown to be dissipative with respect to the supply rate

rM = -ZrA . (2.7)
i



d e

Figure 2-3: Robust stability and performance analysis configuration for a system
with multiple uncertainty blocks Ai.

Furthermore, robust performance may also be tackled in this framework. Suppose the

performance metric is chosen to be

J(t) = rp(r) dT = e(T)Te(T) d , (2.8)

and the uncertainty block A is dissipative with respect to the supply rate ra. If the

system M is dissipative with respect to the supply rate rM = -rA - rp, the performance

metric J is bounded by the storage function of the interconnected system, i.e., J < V =

VM + VA. In the case of multiple uncertainty blocks, the performance J is similarly bounded

if M is dissipative with respect to the supply rate rM = - >E raj - rp, where the rA

correspond to supply rates with respect to which each of the uncertainty blocks Ai are

dissipative. Moreover, the introduction of D scales simply involves scaling the supply rates

of the uncertainty blocks A by d? and requiring that the block M is dissipative with respect

to rM = - Ei dTrAi - rp.

2.2 Introduction to Linear Matrix Inequalities

A linear matrix inequality (LMI) entails a sign definiteness constraint on a matrix that

depends linearly on its variable space. An LMI of size n with variable space of size m may



be expressed in the form

m

F(x) A Fo + xiFi > 0 , (2.9)
i=1

where Fi e R7E Xn and are symmetric, i.e., F = F T.

Requiring the matrix F(x) to be positive definite is a convex constraint on the variable

space x. In fact, in the case where the individual matrices Fi are diagonal, F(x) > 0

constitutes a set of n linear inequalities.

The nonstrict form of the LMI in Eqn. (2.9) is expressed as F(x) > 0. Often, the solu-

tion to a nonstrict LMI is assumed to be the closure of the solution of the corresponding

strict LMI. However, caution must be taken because the nonstrict LMI includes an implicit

equality constraint, and moreover allows the matrix F(x) to be singular. These two char-

acteristics are absent in the corresponding strict LMI. Therefore, infeasibility of the strict

LMI may incorrectly suggest that the nonstrict LMI is infeasible.

Multiple LMIs, Fl(x) > 0, F2 (x) > 0, ... , Fk(x) > 0 may be combined using a block

diagonal LMI whose diagonal blocks are the individual LMIs at hand, so that

F2 F()
F 2 ( X) > . ( 2 .1 0 )

Nonlinear matrix inequalities in Schur complement form specify convex constraints and

can easily be converted to LMI format. In particular, the set of nonlinear inequalities

R(x) > 0, and Q(x) - S(x)TR(x)-1 S(x) > 0 , (2.11)

where Q(x) and R(x) are symmetric, i.e., Q(x) = Q(x)T, R(x) = R(x)T, and S(x) depends

affinely on x are equivalent to the LMI

Q(X) S> 0 . (2.12)
SOften, slack variables are introduced in(x) Rder to express certain problems in terms of

Often, slack variables are introduced in order to express certain problems in terms of



LMIs. Suppose, for instance, that the constraint to be enforced is of the form

Tr [S(x)Tp(x)-IS(x)] < 1, P(x) > 0 , (2.13)

where P(x) is symmetric, i.e., P(x) = P(x)T, and S(x) depends affinely on x. Introducing

a slack matrix variable X = XT, the constraints of Eqn. (2.13) may be expressed as

X S(x)T
Tr X < 11, > 0 . (2.14)S(X) P(x)

For a detailed presentation of linear matrix inequalities, see Ref. 6.

2.2.1 Variable Space Elimination

A useful tool when using matrix inequalities involves the elimination of part of the variable

space. Denoting the part of the variable space to be eliminated by 8 and assuming that

the matrix inequality may be expressed in the form

F(x, 0) = XI(x) + U(x)TEOV() + V(x)TOTU(x) > 0 , (2.15)

where TI(x) = Wj(x)T and all matrices are of compatible dimensions, the matrix inequality

of Eqn. (2.15) is satisfiable with respect to O if and only if

Nv(x)T (x)Nu(x) > 0 ,(2.16)
(2.16)

Nv ()T (x) Nv (x) > 0,

where Nu and Nv are matrices whose columns form bases for the null spaces of the matrices

U and V respectively. Although the matrix inequalities in Eqn. (2.16) do not depend on O,

they comprise necessary and sufficient conditions for the matrix inequality of Eqn. (2.15)

to be feasible.

The elimination of part of the variable space is often useful when the matrix inequality

F > 0 is bilinear in the variable space. The necessary and sufficient conditions of Eqn. (2.16)

are often LMIs that can be solved for the variable space not eliminated, i.e., x. Supposing

the matrix inequalities of Eqn. (2.16) are satisfied for some x = xo, Eqn. (2.15) becomes an

LMI constraint on O, i.e., F(xo, O) > 0.



2.2.2 Feasibility and Optimization using LMIs

Linear matrix inequalities are widely used in optimization problems. This is due to the fact

that constraints may easily be expressed in an LMI formulation. Most of the problems may

be identified as either LMI problems (LMIPs), eigenvalue problems (EVPs) or generalized

eigenvalue problems (GEVPs).

LMIPs involve problems in which the feasibility of an LMI is investigated. In control

theory, such problems usually involve stability conditions.

EVPs focus on minimizing the maximum eigenvalue of a matrix which depends affinely

on a variable, subject to an LMI constraint. More explicitly, an EVP involves the mini-

mization of a scalar A subject to the inequalities

AI - A(x) > 0, and B(x) > 0 , (2.17)

where A(x) and B(x) are symmetric, i.e., A(x) = A(x)T, B(x) = B(x)T, and depend

affinely on the optimization variable x.

An equivalent formulation of the EVP involves the minimization of a linear function

y(x) = cTx subject to an LMI constraint F(x) > 0 where F(x) is an affine function of

the variable space x. Moreover, in the case where the individual LMI matrices Fi are

diagonal, the EVP reduces to the standard linear programming problem of optimizing a

linear function subject to a set of linear inequality constraints on the variable space x.

GEVPs are actually quasiconvex problems. They involve minimizing the generalized

eigenvalue of a pair of matrices, which depend affinely on the variable space, subject to an

LMI constraint. More explicitly, GEVPs involve the minimization of a scalar A subject to

AB(x) - A(x) > O0, B(x) > 0, and C(x) > 0 , (2.18)

where A(x), B(x) and C(x) are symmetric, i.e., A(x) = A(x)T, B(x) = B(x)T and C(x) =

C(x)T, and depend affinely on the optimization variable x.

An equivalent formulation of the GEVP involves the minimization of a scalar variable A

subject to an LMI constraint A(x, A) > 0 where A(x, A) is affine in x for fixed A and affine

in A for fixed x and A(x, A) is monotonic in A, i.e., A > p = A(x, A) > A(x, p).

These standard problems involving LMIs may easily be solved using the LMILAB Matlab



Toolbox [6, 17, 18].

2.2.3 Solution Methods

The advantage in formulating optimization problems in terms of LMIs lies in the fact that

such problems may be solved in polynomial time. Although multiple ellipsoid algorithms

and interior point methods may be used to solve the standard LMI problems of Section 2.2.2,

only the simplest form of the ellipsoid algorithm will be outlined here. The goal of such

a presentation is to provide the reader with a general overview of the way in which such

algorithms are structured.

The simplest ellipsoid algorithm assumes that the problem at hand has at least one

optimal point, i.e., the constraints are feasible for at least one point in the variable space.

In the case of a LMIP, any feasible point is considered optimal. The approach to finding an

optimal point is based on determining, at each iteration step, a half-ellipsoid which contains

an optimal point. Suppose the initial variable space is contained in an ellipsoid So and is

guaranteed to contain an optimal point. A cutting plane through the center, xo, of the

ellipsoid o0, can be computed which guarantees that an optimal point lies in a half-space.

Since the ellipsoid is guaranteed to contain an optimal point, an optimal point must lie in

the half-ellipsoid, i.e., the intersection of the ellipsoid Eo and the half-space containing the

optimal point. The next step involves determining the ellipsoid Si of minimum volume which

contains the half-ellipsoid of So that contains an optimal point. 81 is then guaranteed to

contain an optimal point. This process is repeated until the center point of some ellipsoid 8 k

satisfies the LMI constraints and exceeds the global minimum by less than some prespecified

accuracy, i.e., is optimal. The sequence of ellipsoids generated are guaranteed to contain

an optimal point and moreover, their volume decreases geometrically implying polynomial

time convergence (see Ref. 6).

In actuality, LMI problems are solved using more sophisticated algorithms that converge

faster. The polynomial time convergence of such algorithms make the LMI problem formu-

lation a computationally attractive optimization tool that is widely used in recent control

theory applications.



Chapter 3

Robust Control Design

In engineering applications, systems are analyzed using models that are approximations of

the actual system dynamics. The discrepancy between a real-life system and its model is

usually due to uncertainty in the identification of the system's parameters, or unmodeled

high frequency dynamics. These uncertainties may degrade performance or cause system

instability. Robust control design strives to guarantee stability or performance for an un-

certain system.

Even though system uncertainties correspond to perturbations in real quantities, such

as the stiffness in structural analysis problems, most robust techniques, such as complex

p-synthesis, allow the uncertainty to be complex. This assumption introduces conservatism

into the stability or the performance criteria. In an effort to reduce this conservatism, recent

research, such as real p-synthesis, has concentrated on constraining the system uncertainty

to be real.

In the case of robust performance, the goal is to guarantee a certain level of closed-loop

performance, despite the uncertainty in the system. The performance objective adopted

in this thesis involves the a root-mean-square (RMS) metric on the output. In the case of

linear systems, this is simply the worst-case 7-2 norm of the uncertain system.

Section 3.1 introduces the system configuration, the class of uncertainties to be consid-

ered, and the performance objective. Sections 3.2 and 3.3 present a dissipation approach to

Popov robust stability and performance analysis. Finally, Section 3.4 develops an iterative

scheme for robust performance synthesis which yields the optimal - 2/Popov controller.
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Figure 3-1: Representation of uncertain system using an uncertainty feedback loop.
The nominal system and the uncertainty block are denoted by M and
A respectively.

3.1 Introduction

Robust control involves the stability and performance analysis of uncertain systems. In

the case of linear systems, the uncertainty of a system may be represented in the form

of perturbations of its state space characteristics. An uncertain system may therefore be

represented as

= (A + AA)x + (Bd + ABd)d (31)
e = (Ce+ ACe)X.

Using a technique presented in Ref. 43, the uncertainty may be isolated solely to the A

matrix of a system equivalent to the one in Eqn. (3.1). The state space characteristics of

the resulting system are expressed as

= (A + AA)x + Bdd (3.2)
e = Cex

The uncertainty, characterized by a perturbation AA from the nominal A matrix, may also

be represented using an uncertainty feedback loop, as shown in Fig. 3-1. The state space

characteristics for this configuration are given by

- = Ax + Bw + Bdd

z = Czx (3.3)

e = CeX

where the uncertainty in the A matrix, for a linear A block, is given by AA = BwAC.

In the formulation that follows, the uncertainty of the system is assumed to be real



wi = Ai(zi) M2ii

Admissible
Region

Mlzi

Figure 3-2: Sector bound for each uncertainty input-output map. The output wi
of the uncertainty block A is required to lie within the region bounded
by the lines M 2izi and M1lzi from above and below respectively.

parametric, i.e., real perturbations of the system parameters. In other robust control tech-

niques, such as complex p-synthesis, the uncertainty is allowed to be complex. However,

this additional freedom in the uncertainty introduces conservatism in the stability and per-

formance criteria. In fact, in many mechanical systems, allowing the uncertainty to be

complex results in nonphysical characteristics, such as negative damping.

In this thesis, the uncertainty is assumed to be sector bounded, as shown in Fig. 3-2,

and, moreover, is allowed to be nonlinear. The sector bound constraint for each of the

uncertainty input-output maps may be expressed by the inequality

(wi - Ml zi)T(M 2 i - Mli)-1(M2izi - wi) > 0, and wi(O) = 0 , (3.4)

where Mi and M2i are the slopes of the sector boundaries and M2j > M11 . For multiple

uncertainties, i.e., an uncertainty block A of size na, the individual inequalities of the

form in Eqn. (3.4) for each uncertainty input-output map may be combined in the vector

expression

(A(z) - Mlz)TMd(M 2 z - A(z)) 2 0, and A(0) = 0 , (3.5)

where M1 = diag(Mli, i = 1,... , nA), M 2 = diag(M 2 , i = 1,... , nA), M2 > M 1 , and

Md = (M2 - MI)-I . (3.6)



The set of such sector bounded uncertainty blocks is represented by

? A {A(z) I (A(z) - Mlz)TMd(M 2 z - A(z)) > 0, and A(0) = 0} , (3.7)

and in the case when the A block is assumed to be linear,

U {A AA = B,FCz, where MI F <M 2} . (3.8)

Another point of differentiation among robust control techniques lies in the choice of

the performance metric. In this thesis an 12 or root-mean-square (RMS) performance

metric is adopted. In the case of a linear time-invariant (LTI) systems, this performance

metric is characterized by the worst-case W2 norm. In Ref. 42, the -12 norm of a system

is interpreted in terms of impulsive-input responses. Let {dl,... , dn} denote a basis for

the input space and let ei represent the response of the system to an impulsive input of

the form di6. The -12 norm of the system is the sum of the squares of the L2 norms of the

impulsive-input responses ei. In fact, because the system is uncertain, the highest -12 norm

over all allowable system perturbations, AA, must be chosen. Denoting the closed loop

system by E, the worst-case -2 norm is defined as

I sup E e(t) (3.9)
AEU i=1

A sup ei(t)Tei(t) dt . (3.10)

An equivalent definition of the -2 norm for an LTI system involves the system response to

zero-mean and unit covariance white noise input. Once again, since the system is uncertain,

the worst-case -12 norm must be considered, and therefore

E A sup limE [Ile(t)] , (3.11)

A su lim e()T e (T) drT (3.12)
AEU too 0 t o

Furthermore, for a linear A block, assuming the uncertain system is stable and supposing

there are no feedthrough terms, the -2 norm is usually calculated using the observability



or controllability Gramians. More precisely,

||| 2 sup Tr [QAACeTCe] = sup Tr [PAABdB T] , (3.13)
AEU AEU

where QAA > 0 and PAA > 0 are the controllability and observability Gramians respectively,

i.e., the nonnegative definite solutions to

0 = (A + AA)QAA + QAA(A + AA)T + BdB , (3.14)

0 = (A + AA)TPAA + PAA(A + AA) + CTCe . (3.15)

In the case of nonlinear and time varying systems, the notion of an 'H2 norm is not

valid. However, in Ref. 42 it is shown that the expressions of Eqns. (3.10) and (3.12) may

be adopted as the performance objective of nonlinear systems. Some caution must be taken

because, in the nonlinear case, the two definitions are not equivalent. In fact, Eqn. (3.10)

involves the transient response of the system, where as Eqn. (3.12) represents the steady

state response.

Unfortunately, the worst case W-2 norm of a system can only be calculated by an ex-

haustive search over all allowable perturbations of the uncertain system. Obviously, a ro-

bust control technique involving this brute-force calculation is computationally intractable.

Subsequently, robust control techniques have been designed to minimize bounds on the

worst-case W-2 norms of the uncertain systems considered. The approach presented in this

thesis, which is based on the system dissipation framework introduced in Refs. 47 and 48,

adopts the straight-forward extension of the l12 cost of Eqn. (3.10) to nonlinear systems.

The performance metric is therefore defined as

J(U) & sup I ei(t)I 2 (3.16)
A(z)EU i=1

In robustness analysis, a sufficient condition for robust stability of the system in

Fig. 3-1 may be obtained by showing that the neutral interconnection of the blocks M

and A is dissipative. Assuming the uncertainty block A is dissipative with respect to a sup-

ply rate rA, the closed loop system is dissipative, i.e., stable, if the system M is dissipative

with respect to the supply rate rM = -rA.

Hall and How [23] tackle robust performance by introducing a performance supply rate



of the form rp eTe. If the interconnection of A and M is dissipative with respect to the

supply rates rAand rM = -rA - rp, the closed loop performance

J(t) = eTe dT = rp dr , (3.17)

is bounded by the closed loop storage function, V(x(t)), i.e.,

J(t) V(x(t)) = VM(t) + VA(t) . (3.18)

Using Eqn. (3.17) it can easily be seen that the worst-case closed loop 7 2 norm can be

written as

nd nd 0oo

J(U) = sup Ji(t) = sup e ei dt , (3.19)
A(z)EU i1 A(z)EU -i0

where the Ji(t) are assumed to be the cost-to-go accumulated by the system responses to

impulsive inputs of the form d = diS(T - t) spanning the input space. However, using the

inequality of Eqn. (3.18), and since the Lyapunov functions hold for all allowable uncertainty

blocks A, the worst-case closed loop cost-to-go is bounded by

J(U) = sup ZJi(t) < Vi(x(t)) , (3.20)
A(z) E U i=1 i=1

where Vi(x(t)) corresponds to the storage function for an input of the form d = di6(T - t).

Moreover, using the state space dynamics of Eqn. (3.3) the bound becomes

J(U) < Vi(Bddi) () . (3.21)
i=1

3.2 Popov Robust Stability Analysis

An uncertain system is considered to be robustly stable whenever stability is assured for

all allowable system perturbations. This section develops sufficient conditions for robust

stability for the uncertain system configuration shown in Fig. 3-1. The state space charac-

teristics of Eqn. (3.3) are adopted and the uncertainties are assumed to be nonlinear and

sector bounded as shown in Fig. 3-2. The importance of this section lies in the fact that the



robust stability conditions are expressed in terms or LMIs. Thus, the question of robust

stability is reduced to a convex feasibility problem that can be solved in polynomial time.

The development of many robust stability criteria ignore the phase information of the

uncertainties. In general, most real-life systems involve uncertainties that are either constant

or slowly time varying. Therefore, the freedom introduced by neglecting the phase of the

uncertainty is artificial and adds conservatism to the stability criteria.

In the dissipation framework, the time variation of the uncertainties may be restricted

by choosing the supply rates and the storage functions to describe the time domain char-

acteristics of the uncertainty block A.

Recall that the sector bound constraints for the individual input-output maps of the

uncertainty block A are described by the inequalities in Eqn. (3.4). Weighing each of these

inequalities by a scale Hi > 0 results in a weighted form of the sector bound constraint of

Eqn. (3.5), given by

(w - Miz)T(M 2 - Mi)- 1H(M 2 z - w) > 0 , (3.22)

where H = diag(Hi, i = 1,... , n) > 0.

Moreover, the sector bound constraints of the uncertainty input-output maps shown

in Fig. 3-2 constrain the integral of the difference of the curve wi and the line Mlizi to

be positive. Again, a diagonal scaling matrix N = diag(Ni,i = 1,... ,na) _ 0 may be

introduced to weight the contribution of each of the input-output map integrals. In vector

notation, the resulting constraint is

(t)(w- Mh ( )TN d( > 0 , (3.23)

or

ft( - Miz)TN d . (3.24)

Eqns. (3.22), (3.23) and (3.24) involve inequalities that describe the uncertainties considered

in Fig. 3-2. Their inclusion in the robust stability criteria is thus crucial. Recall, however,

that in order to ensure stability in the dissipation framework, the uncertainty block A

must be dissipative with respect to its supply rate. Defining the supply rate and the



storage function of the uncertainty block A in terms of the positive definite quantities in

Eqns. (3.22) and (3.24) as

rA = 2 [(w - MIz)TNz + (w - Miz)T(M 2 - M1)-1 H(M 2z - w)] , (3.25)

VA = 2 (w - Mz)TNz dr , (3.26)

the dissipation condition for the uncertainty block A, i.e., VA _ rA, is trivially satisfied.

Since the uncertainty block A has been defined to be dissipative with respect to the

supply rate ra presented in Eqn. (3.25), a sufficient closed loop stability criterion is the

dissipativity of the block M with respect to the supply rate rM = -ra. Choosing the

storage function for the block M as VM = xTPx, where P > 0, the closed loop stability

criterion is VIM < rm =- -ra, or, more explicitly,

V/M + ra = xTPzX + xTPx

+ 2 [(w - MIz)TNi + (w - Miz)T(M 2 - M1)- 1H(M 2 z - w)] < 0 . (3.27)

Expanding all the terms in Eqn. (3.27) using the system's state space characteristics from

Eqn. (3.3), and recalling that Md = (M2 - M1 )- 1 > 0, Eqn. (3.27) may be written as the

linear matrix inequality in P, H and N

AT (P - CTNMICz) + (P - CTMiNCz) A
-CTMMdHM 2 Cz - CTM 2HMdMCz ( (3.28)< 0 . (3.28)

B T (P - CzNM1 Cz) + NCzA -HMd - MdH

+MdHM2Cz + HMdMCz +BC[N + NCB,

The existence of P, H and N that satisfy the LMI in Eqn. (3.28) implies the robust stability

of the closed loop system E, and therefore the LMI in Eqn. (3.28) comprises a sufficient

condition for robust stability. As mentioned above, expressing the robust stability criterion

as an LMI is important, because the feasibility of an LMI constitutes a convex problem that

can be solved in polynomial time.

Refs. 24 and 27 address this robust stability problem using stability multipliers. The

stability multipliers are used in an effort to include uncertainty phase information into the



stability criteria. Adopting the stability multipliers, or Popov multipliers,

W = H + Ns , (3.29)

proposed by Refs. 8,36 and 51, the uncertain system is guaranteed to be stable with respect

to the sector bounded uncertainties of Fig. 3-2, if there exist P, H, and N that satisfy the

LMI

(AT + CMB) P + P (A + BMCz) (...)T

-HMd - MdH < 0 . (3.30)
HCz + BwP + NCz (A + BwMC,) +BC TN + CzBw

+B, CTN + NCzB,

The two seemingly independent robust stability criteria of Eqns. (3.28) and (3.30) are

in fact equivalent. Let T denote the congruence transformation

T = [ 1 ]. (3.31)
M1Cz I

Multiplying Eqn. (3.28) on the right and left by the congruence transformation T and its

transpose TT, respectively, Eqn. (3.30) is recovered.

The equivalence between the two results indicates that the two arbitrary scalings H and

N introduced in Eqns. (3.22), (3.23) and (3.24) are actually the scaling matrices for the

stability multipliers in Eqn. (3.29). Because of this equivalence, the scaling matrices H and

N may be referred to in the following sections as the Popov multiplier weighting matrices.

3.3 1i 2 /Popov Robustness Analysis

The previous section addressed the problem of guaranteeing stability for a system subject

to a set of allowable perturbations. Often, however, stability alone does not fulfill the per-

formance requirements of a system. This section addresses the problem of determining the

optimal performance that can be attained by an uncertain system subject to the allowable

system perturbations. The system considered is represented by the state space characteris-

tics in Eqn. (3.3) and the uncertainty input-output maps are assumed to be sector bounded

as shown in Fig. 3-2 and moreover allowed to be nonlinear.

From dissipation theory, the cost function defined as J = f0 eTe dr is overbounded by



the closed loop storage function, provided that the closed loop system is dissipative with the

supply rate r = -rp -- -eTe. Therefore, since the closed loop storage function is defined

to be V = VM + VA, the robust performance condition is the dissipation condition for the

closed loop, or

= VM + VA < rM + rA = -rp . (3.32)

The supply rates and the storage functions for the blocks A and M are chosen as in the

robust stability analysis of the previous section, i.e.,

VA = 2 (w - Mlz)TNz dTr (3.33)

r. = 2 [(w - Miz)TNi + (w - Mlz)T(M 2 - M 1)-H(M 2 z - w)] (3.34)

VM = xTPx, where P > 0 (3.35)

TM = -rA - rp , (3.36)

where H > 0, N > 0, M 2 > MI and H, N, M1 and M 2 are diagonal.

Recalling that the A block is dissipative with respect to the supply rate rA of Eqn. (3.34),

the robust performance criterion of Eqn. (3.32) is implied whenever the dissipation condition

VM 5 -rA - rp is satisfied. More explicitly,

VM + rA + rp = iTPx + XT P j + XTCe Cez

+ 2 [(w - Mz)Tz + (w - Mz)T(M 2 - Mi)-1 H(M 2 z - w)] < 0 . (3.37)

Using the state space system dynamics in Eqn. (3.3), the sufficient robust performance

criterion of Eqn. (3.37) may be transformed into the LMI constraint in P, N and H of the

form

AT (P - CTNMICz) + (P - CTMINCz) A T

-CTMIMdHM2Cz - CTM 2 HMdMCz + CTCe < 0<0
BT (P - CzNM1 Cz) + NCzA -HMd - MdH

+MdHM 2 Cz + HMdMICz +BwCT N + NCzB, (3.38)

The LMI of Eqn. (3.38) comprises a sufficient condition for robust performance.

The goal of this section, however, is to determine the optimal performance that can be



guaranteed for the closed loop system in view of the allowable system perturbations. More

precisely, it is desired to minimize the 712 norm of the closed loop system subject to the

robust performance constraint of Eqn. (3.38). Recall that the cost J(t) of the system in

bounded by the closed loop storage function V(t), so that

J(t) 5 V(t) = VM(t) + VA(t) = xTpX + 2 (w - M()T N d

= XTp + 2 (w - M Cz)T NCz d . (3.39)

From the uncertainty sector bound constraint of Fig. 3-2, it can easily be seen that

wi - Mlizi < (M 2< - Mli)zi . (3.40)

Therefore, the bound on the closed loop cost from Eqn. (3.39) may be further bounded by

J(t) _ V(t) = VM(t) + VA(t) = xTP +2 (w - MICgz)T NCz d~

< xTPX + 2 [(M2 - MI) Cz]T NCz d~ . (3.41)

This bound on the 72 norm of the system may be calculated using the impulse response

argument introduced in the evaluation of the actual 7-2 norm in Eqn. (3.21). Letting

{dl,... ,dnd} be a basis for the space spanned by the input d, the bound on the cost-to-go

of the uncertain system is given by the the sum of the responses to impulses of the form

di 6(Tr - t), i.e.,

J(U) < J(U) = dT [B T (P + CzT (M2 - M)NCz) Bddi
(3.42)

= Tr [BT (P + CT (M2 - M)NCz) Bd]

This is precisely the bound obtained in Refs. 20, 24 and 25 using the a-bound framework.

As in the robust stability case, the robust performance condition obtained in Refs. 24 and 25

may be recovered by applying the congruence transformation of Eqn. (3.31) to Eqn. (3.38).

In summary, this section has reduced the robust performance problem to an EVP. The

cost function to be minimized is the bound on the cost-to-go of the system as defined in

Eqn. (3.42), and the LMI constraint is presented in Eqn. (3.38).
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Figure 3-3: Uncertain system with controller feedback loop.

3.4 Optimal W?2 /Popov Controller Synthesis

In the 7-2/Popov controller synthesis problem, we consider a nominal system M with un-

certainty A and controller K, as shown in Fig. 3-3. The nominal closed-loop system is given

by

= F(M, K) , (3.43)

where F(. , -) denotes a linear-fractional transformation. For a given controller K, M is

fixed, and the performance of the closed-loop system can be analyzed using the methods of

the previous section. Our goal is to determine the optimal controller K, i.e., the stabilizing

controller that minimizes the 'H2/Popov performance bound. In this section, a procedure

for determining the optimal controller is developed, using linear matrix inequalities.

To begin, we need to form the closed-loop system M from the dynamics of the plant M

and the controller K. The state space representation of the system M is given by

x = Ax + Bu + B,,w + Bdd

z = Czx

e - CeX [ ] U (3.44)
0 Deu

y = Cyx + Dydd .

The compensator is assumed to be dynamic, with no feedthrough terms since a direct

feedthrough would cause the -2 cost of the closed-loop system to be infinite. The state



space description is

c = A + By (345)
(3.45)

U = CcX

The closed-loop system M may therefore be described by an augmented state space de-

scription of the form

x = A x+BwW+Bdd

z = Cz (3.46)

e = Cei

where the augmented state is

I: = (3.47)

and the augmented system matrices are

A A BuCc ,w[ A Bw ]d A Bd

A K, ol , C eBcCy Ac 0 BcDyd

0 DeuC (3.48)

Note that the augmented system 1M in Eqn. (3.46) has the same form as the system in

Eqn. (3.3). Furthermore, the input-output map of the uncertainty block A is assumed to

be sector bounded as shown in Fig. 3-2 and allowed to be nonlinear. The sector bound con-

straint for the uncertainty block A may also be represented by the inequality in Eqn. (3.5).

Therefore, the cost-to-go for the uncertain system may be bounded by Eqn. (3.42), so that

h(U) = Tr [B (P + Cz (M 2 - M)N ) d] , (3.49)

where the Lyapunov matrix P and the multiplier matrices H and N satisfy the matrix



inequalities

A T (P5 - CTNMCz) + - OTMINCz) A

-_TMIMdHM2z _ TM2HMdMMIz (...)T

+C TC <0o, (3.50)

Bw (P - CzNMICz) + NCzA -HMd - MdH

+MdHM2 z + HMdM Cz +BCTN + NCzB,

P>0, H>O, andN>0 . (3.51)

The closed-loop system is guaranteed to have 72 performance that is lower than the bound

of Eqn. (3.49) when the matrix inequalities in Eqns. (3.50) and (3.51) are satisfied. Note,

however, that Eqn. (3.50) is not a linear matrix inequality, because it involves nonlinear

terms in P, H, N and the compensator dynamics, i.e., Ac, Bc, and Cc. Likewise, the

72 bound of Eqn. (3.49) is nonlinear in the unknown matrix variables.

Therefore, the problem, as described so far, is not an EVP. In the case of the 72 bound

of Eqn. (3.49), the complication of the nonlinear term involving P and Bc may be eliminated

by fixing Bc to be some prespecified full column-rank matrix. This arbitrary choice of B,

does not restrict the dynamics of the compensator, because the compensator is unique only

to within a similarity transformation. So long as B, is chosen to be full column-rank, the

set of possible controllers is not reduced. In this thesis, B, is chosen to equal CT , although

other choices are certainly possible. The 72 bound of Eqn. (3.49) is then linear in P and

N.

On the other hand, dealing with the nonlinear terms in the matrix inequality Eqn. (3.50)

is more involved. In fact, the transformation of the robust performance matrix inequality

constraint of Eqn. (3.50) to an equivalent LMI appears to be impossible. The next two

sections describe how the matrix inequality of Eqn. (3.50) may be used as an LMI constraint

when optimizing the -12 bound of Eqn. (3.49) with respect to the partial variable spaces of

either the scalings H and N or the compensator dynamics. An iterative Popov controller

design scheme may be adopted by repeating the partial optimizations until the 72 bound has

converged and the optimal scalings H and N and compensator dynamics have been obtained.

Since LMI optimizations are convex and of polynomial time complexity, this iterative scheme



constitutes a computationally efficient 7 2/Popov controller synthesis procedure.

Since the scalings H and N may be interpreted as the Popov multiplier weighting

matrices, the optimization of the 7-12 norm bound with respect to these scales is referred to

as the Popov multiplier, or W, optimization. Similarly, the optimization of the 7-2 norm

bound with respect to the compensator dynamics is referred to as the Popov controller,

or K, optimization. Collectively, the iterative scheme involving both optimization steps is

denoted the W-K iteration.

3.4.1 Popov Multiplier Optimization

This section presents the optimization of the 72 norm bound with respect to the Popov

multiplier matrices, i.e., the dissipation scalings H and N. Since the compensator dynamics

are assumed fixed, this problem reduces to the robust performance analysis problem of

Section 3.3. Indeed, this optimization is an EVP involving the minimization of the 7-2 norm

bound defined in Eqn. (3.49) subject to the linear matrix inequality constraint in Eqn. (3.50)

and the sign definiteness constraints P > 0, H > 0 and N > 0.

In fact, decomposing P and assuming that DydB T = 0, the bound on the 7-2 norm may

be expressed as

J(U) = Tr [B P11Bd + B CT (M 2 - M) NCBd + Dd cTP22BcDd] (3.52)

Similarly, decomposing of P and expanding the state space matrices of M as defined in

Eqn. (3.48), the robust stability constraint of Eqn. (3.50) becomes

AT(P 11 - CTNMCz)

+(Pl - CTMNCz)A

C TP21 + P 1 2 BcCy . )T)T

-CTMIMdHM 2C

-CTM 2HMdMICz + CTCe
C TB P12 + P2 1Bu C

CT TP - Cz N M, Cz)
S- C+ATP 22 + P22 Ac (. .)T

+A TP21 + P 21A + P22 BcCy T Deu
+CD DeuCc

Bw(PN - CTNMICz)
-HMa - MaH+MdHM2Cz + HMdMiCz BTP1 2 + NCzBuCc

+NCzA +BwCz N + NCzB,

<0 ,

(3.53)



which is a linear matrix inequality in P11, 12 P 2' P22, H and N.

This optimization determines the optimal scalings H and N that result in the minimum

W2 performance bound for the assumed controller dynamics. Since the optimization is

specified as an EVP, it can be solved in polynomial time.

3.4.2 Popov Controller Optimization

This section develops a method for optimizing the W2 bound for the robust performance

synthesis problem for fixed multiplier matrices H and N. The optimization once again must

minimize the 7-2 norm bound in Eqn. (3.49), or more explicitly Eqn. (3.52), subject to the

matrix inequality constraint in Eqn. (3.50). Unfortunately, Eqn. (3.50) is nonlinear in P

and the compensator dynamics. The quadratic terms in the compensator dynamics may

be eliminated by using Schur complements. Furthermore, bilinear terms in P, N and the

compensator dynamics may be eliminated using the approach presented in Section 2.2.

More specifically, letting

S= Ac, (3.54)

the augmented system matrices A and Ce may be expressed as

A = A + A 2 EA3 ,
(3.55)

Ce = + C2C3 ,

where

A 0 B r iA 0 A2  [ A3  [0 1](
BcCy 0 I 0

(3.56)
1i_ e 0 2 A  0 0 3 ]0 0 00 Deu 3



For A and Ce as in Eqn. (3.55) the matrix inequality of Eqn. (3.50) is

(A
1 

+ A2EA3)T (P - OTNM1Cz)

+ (P - OTMiNz) (A1 + A2EA3)
-OTMMdHM2 z - GTM 2 HMdMz

C + C2e) 3)T (1 +2E)3

[ (P - zNMiz) +N~z (A1+ A2 A3)
+MdHM2oz + HMdMz z

The quadratic E term in the upper left block of Eqn.

complements. The resulting matrix inequality is

(A1 + A2EA 3)T ( - 0TNM1 z)

+(P - OTM 1NO)( ( 1 + A2EA 3)
-OT MlMdHM2 0z
-CTM 2 HMdM

(... )T

-HMd - MdH

+Bi TON + NCzB

< 0 . (3.57)

(3.57), may be eliminated using Schur

(...)T (...)T

BE (P - CzNMCz)S ) -HMd - MdH
+NCz(A, + AA3)O+) 0

+BT TN + NCzB
+MdHM2Cz + HMdMICz

(C1 + 0203) 0 -I

Note that Eqn. (3.58) may be expressed as

[AT(P - CTNMI z)

+(P - TM N) 1

-OT MjMdHM2 z - Oz'TM 2HMdMlC
(... )T

< 0 . (3.58)

(... )T

BT(P CzNMCz) + NCz 1  -HMd - MdH

+MdHM2Cz + HMdMICz +BCT TN + NCzB,

+ [(P - OTMINz)A2

NCzA 2

02

-AT
E 0

0o

O0T
+ 0 E8

0 _
L. j

-I

CTM 1Nz )A2NCzA 2

C2

which is of the form

S+ UTOV + VTTU ~ 0 ,

<0,

(3.59)

I _ _ r

(3.60)



with

T =

1AT(P- CTNMICz)

+(P - OCTMINCz)At

-CT MMdHM2 z

-CTM2HMdMIC z

(...)T

BH(P - CNMIO) + NM zl -HM - MH

+MdHM2Cz + HMdM Cz+BC T TN + NCzB,

L 01
U= [AT (P - NMCz) A N C j

v= [A 3 0 0 1

, (3.61)

(3.62)

(3.63)

From the elimination method of Section 2.2.1, Eqn. (3.59) is satisfiable if and only if

N TINu < 0 (3.64)

and

NvTNv < 0 ,

where Nu and Nv are matrices whose columns form basis for the

respectively. It is easily verified that N and Nv can be chosen to

(3.65)

nullspaces of U and V

be

I 0 0 0
0 0 0 0

MiCz R I 0 0

-(DT)tB T

L 00
Nv = I 0

0 0 -

0

- (Deu ) t BTCTN

0

N(D)

where R = P-1, (DT)t is the pseudo-inverse of D ,, and NDT is the null space of D .

Therefore, the matrix inequality constraint of Eqn. (3.59) is equivalent to the two matrix

(3.66)

(3.67)



inequalities

and

A

NUT Nu =

,R + ALj I
-B T (DeuDeu) Bu

(...)T (...

NBT -HMd - MdH
HCzRill + NCzARll + B0T wd-rTN + N0,w

-NCzBu (DTDe) - 1 Bu -NCBu (D Deu) 1BCTN

CeRil 0 -I 0

0 0 0 -I

TT Nv =

ATAi+ P1A + cBTP21 P 2Bcy ) T .) T

T -HMd - MdH
HCz + NCzA + BP11 +BTN + N

[ Ce -I J

< 0,

(3.68)

<0,(3.69)

(3.69)

where A = A + BwMCz, and

P11 P12  and R 11  12P - and RL1 R
P21 P22 I [ 21 R 22

(3.70)

The fourth row and column of the matrix in Eqn. (3.68) trivially satisfy the sign definiteness

constraint and are thus redundant. Also, since the third row and column of the matrix in

Eqn. (3.69) involve constants, they may be folded inward to form the Schur complement.

Therefore, the matrix inequality constraints in Eqns. (3.68) and (3.69) are respectively

equivalent to

i11 A T + AR11 - BT (DeuDeu) Bu (...)T 1

<0 ,

(3.71)

CT +-HMd - MdH
HCzRI1 + NCzAR11 + B T

T -1+B(C, N + NCzB, O
-NCz B, (DTuDn)-1 Bu _ 1-NCzBu (Deu)-NCzB (DDeu) -1B CTNT -1- I

Ce 11

1

-I



+ BTP- P12c Cy e CTH + A T C N + PlB0[+CBP2 i +Pi 2BcCy + CTC <0
HCz + NCzA + B P11  -HMd - MdH + BCN + NCBW (3.72)

Note that the matrix inequalities in Eqns. (3.71) and (3.72) are linear in P11, P2 1 =

and fR11, and therefore comprise LMI constraints.

Note that the above formulation has assumed that P = R-1, and therefore this equality

constraint must be enforced. Because the 7 2/Popov performance bound of Eqn. (3.52) will

tend to minimize P, enforcing the inequality constraint P > R-1 suffices. In fact, as will

be explained shortly, the freedom in the Lyapunov matrix P may be used a posteriori to

transform the active inequality constraint P > R-1 to an equality.

In order to be able to use LMI optimization routines, the additional constraint P> f)-1

must be expressed as a linear matrix inequality. Indeed, note that the constraint P> R- 1

comprises the Schur complement of the equivalent linear matrix inequality constraint

S I O 0 . (3.73)

In fact, since the W2 bound of Eqn. (3.52) and the LMI constraints Eqns. (3.71) and (3.72)

only depend on P1 1, P21 = T2, P22 , and R11 , the part of the LMI constraint of Eqn. (3.73)

pertaining to the optimization is

El 1  P 12

P2 1  P22  0 > 0 . (3.74)
I 0 R 1

The optimization of the 7-2/Popov performance bound of Eqn. (3.52) with respect to

the compensator dynamics has been reduced to an EVP involving the cost of Eqn. (3.52)

subject to the LMI constraints of Eqns. (3.71), (3.72) and (3.74). The solution of this EVP

yields the values of P11, P 12  P1, P22 , and R 11 that optimize the -t2/Popov performance

bound.

After completion of the performance objective optimization, the freedom in the Lya-

punov matrix P can be used to enforce the constraint P = R-1. Examining the LMI

constraints in Eqns. (3.71), (3.72) and (3.74), it can easily be verified that only the part of

P1 2 that is spanned by Bc affects the inequalities, and therefore only this part is set by the



optimization. Conversely, the part of the P12 block in the null space of Bc is free. These

partitions of the P 12 will be denoted by il =_ 1 )T and I = respectively.

The Schur complement of the LMI in Eqn. (3.74) is

p 11- p h P-pI (3.75)

1 - R- - 1222 21

Augmenting the P 12 = AST block to include the space perpendicular to Bc, the inequality

of Eqn. (3.75) is transformed to the equality

P11 - R-= P1 . (3.76)

After introducing a similarity transformation U, Eqn. (3.76) may be written in the sym-

metric form

f 12
(A1 - (A1 - A-)= +21 +P T  (I 1 + .21 (3.77)

Equating the factors of Eqn. (3.77) and performing some manipulations,

1 1 1 1

U P2 21 o11 + -A 1 2 2 11 - 1UT = PPi 11 2gl ( 21 l 1) . (3.78)

Since U is a similarity transformation, it must be full rank, i.e., span the complete space.

Therefore, the part of U not spanned by the term involving P211 must be spanned by the

term involving Pf. More explicitly,

1 1  P ( - 1 P21 P1 1  , (3.79)

where the left hand side of Eqn. (3.79) denotes the part of the similarity transformation U

which is perpendicular to the term in the brackets, i.e., the part of U generated by Pl 1.

Indeed, solving for P~,

P21 2 P 2 1 (P 11 (11- 11 1  
, (3.80)

and letting P 21 = P1 1 + P2 guarantees that the equality P = R- 1 is satisfied. Moreover,

because PA does not affect the LMI constraints in Eqns. (3.71) and (3.72), the robust



performance guarantees are not compromised.

The unknown compensator dynamics Ac and C, may now be obtained by the feasibility

solution of the matrix inequality of Eqn. (3.57). With P and R fixed, the matrix inequality

in Eqn. (3.57) comprises an LMIP in the compensator dynamics.

3.4.3 Summary

The preceding sections have developed a W-K iteration that solves the robust performance

controller synthesis problem. In fact, it was shown that the robust performance criteria are

equivalent to the ones obtained in Refs. 24 and 25. Each iteration step comprises of two

optimizations, the first optimizes the l12 norm bound with respect to the scaling matrices

H and N, or W optimization, and the second with respect to the compensator dynamics,

or K optimization. Both optimizations however, have been formulated in terms of standard

LMI problems and are therefore convex and solvable in polynomial time. In order to calcu-

late the optimal controller, this set of optimizations must be repeated iteratively until the

W-2/Popov performance bound has converged. Even though the W and K optimizations are

individually convex, one cannot infer convexity for the combined problem. Consequently,

the final controller may only be interpreted as being locally optimal.



Chapter 4

Implementation of Optimal

1 2 /Popov Controller Synthesis

and Example Controller Designs

In the previous chapter, an LMI-based iterative scheme was developed for designing per-

formance robust controllers for systems involving nonlinear, sector-bounded uncertainties.

The goals of this chapter are, first, to evaluate the accuracy of the W-K iteration and

second, to demonstrate its computational practicality and claim its potential use in the

design of controllers for real-life, high-order systems. The study of the W-K iteration is ac-

complished through the design of optimal - 2/Popov controllers for two benchmark robust

control problems introduced in Refs. 9 and 46.

Section 4.1 presents some important implementation issues pertaining to the W-K itera-

tion. The section introduces iteration parameters such as initial conditions or accuracy that

may affect the performance of the W-K iterative design scheme. In Section 4.2 the perfor-

mance of the robust controller design scheme is evaluated by designing Popov controllers for

example systems. First, the example designs are used to obtain the optimal W-K iteration

configuration with respect to the iteration parameters. This is done by determining the

effects of the iteration parameters on the numerical characteristics and the computational

time of the W-K iterative control design scheme. Next, the W-K iteration is compared to

the gradient search method introduced in Refs. 24 and 25. Apart from validating the cor-

rectness of the W-K iterative scheme, this comparison illustrates its numerical robustness



and practicality.

4.1 Implementation Issues of the W-K Iteration

This section presents the implementation issues that arose while developing the W-K itera-

tion scheme. These issues are crucial to the numerical stability and computational efficiency

of the LMI based W-K iteration scheme.

4.1.1 Initial Conditions

One of the difficulties that arises when using optimization schemes is the lack of initial

conditions from which to initiate the optimization. Even though initial conditions are merely

required to satisfy the optimization constraints, they are often hard to obtain. In fact, it

is common practice to choose initial conditions that are educated guesses. Fortunately,

the optimizations involved in the W-K iteration are formulated in terms of standard LMI

problems whose solution methods (LMILAB [6, 17, 18]) do not require initial conditions.

Conversely however, each of the optimizations within the iteration step requires partial

knowledge of the variable space. In particular, the W and K optimizations require prior

knowledge of the compensator dynamics and the Popov multiplier scalings, respectively.

Since a performance-robust controller is not available a priori , the only viable approach is

to choose initial values for the Popov multiplier matrices and to initiate the iteration with a

K optimization. There is no methodology for choosing the Popov multipliers that ensures

the feasibility of the LMI constraints of the K optimization.

Experimental analysis based on the two example systems presented in the following

section has resulted in the feasibility characteristics shown in Table 4.1. In this table the

the x and V/ entries indicate that the K optimization for both systems were found infeasible

and feasible respectively. Although no feasibility guarantees may be provided, the choice

of H = I and N = I (or N = 10-6 I) seem to constitute good initial guesses for the Popov

multiplier scaling matrices. In this thesis, the W-K iteration schemes are initialized with

H=N=I.

Another pertinent issue is the effect of the initial conditions on the convergence charac-

teristics of the W-K iteration. It is often the case that a lucky choice of initial conditions

can result in fewer iteration steps.



Table 4.1: Analysis of the feasibility of the initial K optimization with respect to
the initialization of the Popov multiplier scaling matrices H and N.

N

10- 6 1 I 106 I

10- 6 1 x x x

H I _ V x

106 1 x x x

An outline of the control flow of the complete W-K iteration as prescribed by the above

discussion is shown in Fig. 4-1.

4.1.2 Numerical Stability

Often, due to numerical imprecision, naive implementations of optimizations lead to ill-

defined solutions. In particular, when constraints are formulated in terms of inequalities,

the numerical imprecision may introduce additional degrees of freedom into the optimization

problem that should be absent. In the case of the K optimization, such problems arise with

the variable P22 . When the P22 block is assumed to be arbitrary, the part that theoretically

does not affect the cost or the LMI constraints actually participates in the optimization due

to numerical roundoff. More precisely, this part of P22 tends to infinity, and therefore leads

to solutions that are ill-defined.

This numerical problem is solved by a priori specifying the part of P 22 not affecting the

optimization. It is easily seen that the i12 norm bound of Eqn. (3.52) in only affected by the

part of P22 that is aligned with Bc, denoted by P2. Therefore, the part of P22 that does not

affect the optimization, namely the part that is perpendicular to Bc, may be prespecified

by letting

P22 = P22 + P2 2

= [(BT)PBt] + [I - (B!)BT] , (4.1)

where (BfT) denotes the pseudo-inverse of B T . Constraining P22 to have this form elimi-

nates the numerical problems encountered otherwise. A fortunate side-effect of letting P22
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Initialize Popov multiplier scaling
matrices H and N, for example, H = N = I.

K Optimization
Eliminate controller dynamics and

solve for Lyapunov matrix P5.

Solve for controller dynamics Ac and Cc.

W Optimization
Solve for the Lyapunov matrix P and the

Popov multiplier scaling matrices H and N.

Has the bound J(U) on the closed-loop
cost-to-go J(U) converged?

Y

STOP

Figure 4-1: Flow diagram for the W-K iteration.

have the form specified in Eqn. (4.1) is the reduction of the variable space of the optimization

and consequently of the overall computational time.

4.1.3 Convergence Criterion

Another important consideration is the convergence criterion. In this thesis, a pragmatic

approach to convergence is taken. The algorithm is assumed to have converged when an

iteration fails to optimize the cost by more than some prespecified percentage. More pre-

cisely, the stopping criterion for the W-K iteration involves the fractional reduction of the

7-2 norm bound during a complete W-K iteration step. Ideally, the error in the 7-2 bound

at each iteration would be used as the stopping criterion, i.e., the iteration would stop when

J(U)k - J(U)* < , (4.2)



where J(U)k is the 72 bound at iteration k, J(U)* is the optimal 72 bound, and e > 0

is the stopping accuracy. Unfortunately, the optimal 72 bound is not known a priori and

therefore the stopping criterion of Eqn. (4.2) is not feasible. Instead, the stopping criterion

used depends on the fractional reduction in the 7-2 bound with respect to the 72 bound of

the current iteration step. This stopping criterion may be written as

S- () < , (4.3)
J(U)k

where J(U)k and J(U)k- are the 72 norm bounds of iteration k and k-1 respectively, and

e > 0 is the stopping accuracy. An unfortunate consequence of the use of such a stopping

criterion is that if the cost function does not decrease significantly during a particular

iteration step, the W-K iteration will terminate prematurely and a suboptimal controller

will result.

Although the stopping accuracy must be selected keeping in mind the accuracy required

and the time limitations for the application at hand, it is important to note that the con-

trollers obtained by intermediate iteration steps satisfy the robustness requirements. That

is, although the performance may not be optimal, the performance obtained at each iteration

step is guaranteed throughout the allowable uncertainty region defined by the specifications

of the application. This is convenient, because it enables the use of intermediate controllers

as substitutes for the optimal 7W2/Popov controller while the W-K iteration is in progress.

This may be of use in the rare occasions when the design of optimal 7 2/Popov controllers

is done in real-time and a performance-robust controller is needed prior to the termination

of the W-K iteration.

Another important point is that the accuracy of the complete W-K iteration is lower

than the accuracy of the individual W or K optimizations. In fact, the complete W-

K iteration is only as accurate as the less accurate optimization it uses.

Throughout this thesis, the W-K iteration was considered to have converged when the

bound on the 72 norm had changed, fractionally, by less than 10-6 during a complete

W-K optimization pair.



4.1.4 Possible Iteration Optimizations

The fact that the constraints in both W and K optimizations are identical suggests that the

efficiency of the W-K iteration may be improved by taking advantage of initial conditions.

Since the solution of one optimization satisfies the constraints of its succeeding optimization,

it may be used as an initial value for this optimization. The use of initial conditions should

eliminate any optimization effort used to match the optimal cost attained by the preceding

optimization. Conversely, since the solution to each optimization is bound to be against the

active EVP constraints, the use of such solutions may force the optimization to be performed

along the constraint boundary and may therefore degrade computational efficiency. The

following section uses a benchmark problem to shed some light onto this dilemma.

4.1.5 Compensator Dynamics Solution in the K Optimization

Recall from Chapter 3 that in the K optimization the cost function, as well as the robust-

ness constraints were nonlinear. This obstacle was overcome by eliminating part of the

variable space from the optimization. The resulting EVP could be used to optimize the

7-12 norm bound with respect to the Lyapunov matrix P and its inverse R. Its solution

could subsequently be used to solve for the compensator dynamics Ac and Cc using an

LMIP.

In practice however, the LMIP used to solve for the compensator dynamics is often

infeasible. Its infeasibility seems to stem from the solution of the EVP. Apparently, the

numerical solution of the EVP is numerically too tight against its constraints and the

subsequent LMIP becomes infeasible due to numerical imprecision. This problem is dealt

with by introducing progressively stricter constraints in the corresponding EVP. In effect,

when the resulting LMIP is infeasible, the previously solved EVP is resolved using stricter

constraints, i.e., supposing the initial EVP involved the LMI constraint X < 0 for some

matrix X, the stricter form of the EVP would involve the LMI X < -t I with the tolerance

t > 0. Although this approach may lead to a reduction in the accuracy of the solution, it is

believed to be the only viable solution.



X1 X2 = Y

Figure 4-2: Mass-spring system.

4.1.6 Computer Resources

The computer platform used in all the designs present in this thesis was a SUN SPARC 20.

Since the computational times are platform dependent, they should not be interpreted in an

absolute but in a relative scale, i.e., the ratio of the computational times of two particular

controller designs should remain the same across all platforms.

4.2 Benchmark Problems

This section evaluates the iterative approach to Popov controller synthesis developed in the

previous chapter. The evaluation is based on the use of the W-K iteration to design Popov

controllers for two robust control benchmark problems introduced in Refs. 9 and 46. Both

benchmark problems involve real parametric uncertainties, and thus comprise valuable tests

for the evaluation of Popov controller design schemes.

The first test example involves the noncollocated mass-spring system, presented in

Ref. 46. The uncertainty in the system lies in the spring stiffness. The second bench-

mark problem involves the four disk system introduced in Ref. 9. This system involves

multivariable uncertainty, namely, perturbations in two spring stiffnesses. This is an im-

portant benchmark problem, because slight stiffness perturbations result in large variations

in the flexible modes of the system.

4.2.1 Mass-Spring System

The mass-spring system considered in this section is shown in Fig. 4-2. The importance

of studying this system lies in the fact that it constitutes a generic model for an uncertain

dynamical system that has one rigid-body and one vibrational mode.



The robust control problem, as introduced in Ref. 46, involves designing a controller

that optimizes the guaranteed 7-2 performance at the output y, subject to uncertainty in

the spring stiffness k. This control problem is noncollocated, because the input u and the

output y are not at the same point. In fact, the control u acts on mi, and the output y is

measured at x2. The nominal dynamics may be expressed as in Eqn. (3.44), with

0 0 1 0 0 00

A 0 0 0 1 Bu= 0 Bd = 00

-knom knom 0 0 1 0 0
knom -knom 0 0 0 1 0

Cz [1 -1 0 0, Bw = -4
-1 (4.4)

1

Ce = 01001 De

0 [o 0 0], Dyd = P2 ,

and knom = 1, and p = 0.001. For an actual spring stiffness of k = knom + Ak, the system

dynamics involve the perturbed dynamics A+BwAkCz. The goal of the synthesis procedure

is to generate a controller that achieves good nominal performance, and guarantees robust

stability and performance for perturbed spring stiffness values in the range 0.5 < k < 2,

i.e., -0.5 < Ak < 1.

Configuration of the W-K Iteration

In the previous section, the question of whether the results of each optimization should be

used to initialize the succeeding optimization was raised. This question can be answered by

designing optimal 7- 2/Popov controllers for the same perturbation ranges using the possible

initial condition configurations. The results of such an approach are shown in Fig. 4-3. The

figure presents plots of the performance objective (the bound on the W-2 norm), first with

respect to iteration step, and second with respect to the actual computation time. The

difference between these two plots is that the computational effort of the iteration steps is

not uniform. The computational time of each optimization is split between searching for

the feasible region, and subsequently optimizing the 7-2 norm bound within the feasible



region. The motivation behind the use of initial conditions is the attempt to eliminate the

former part of the optimization, namely the search for the feasible region. It is important to

note that all iteration schemes terminate with identical controller designs, and are therefore

indistinguishable in that respect.

The convergence plots in Fig. 4-3 show that in certain configurations the optimizations

are actually being hindered by the use of initial conditions. This is indicated by the relative

roughness of the plots corresponding to runs using initial conditions. Although this may not

seem crucial, the smoothness of the plot of the cost function with respect to iteration step

is very important. This is because the W-K iteration scheme uses an accuracy stopping

criterion. Fig. 4-3 shows that the scheme where each iteration is started with random initial

conditions results in a smooth optimization curve, and is therefore better behaved.

Apart from smoothness, however, total computational time is of great importance. The

efficient use of the W-K iteration scheme for large real life systems dictates the minimization

of the computational time. To this extent, Fig. 4-3 indicates that the fastest configuration

is the one where the optimal solution to the K optimization is used to initialize the W

optimization. The second most efficient configuration is the one where no initial conditions

are used.

The two considerations discussed above, namely smoothness of the optimization cost

and the computational time, indicate that the scheme that does not use initial conditions

combines smooth and well behaved optimization characteristics with low computational

cost. This configuration is therefore used as the benchmark W-K iteration scheme for the

following sections.

Because of the obvious tradeoff between accuracy of solution and computational time,

it is very important to select a desirable stopping accuracy. The stopping criterion for

the W-K iteration scheme involves the fractional change in the W2 bound with respect to

the bound at the respective iteration step. Fig. 4-4 counterposes this fractional change to

the error in the W'-2 norm bound at each iteration step. The iteration considered in this

plot corresponds to the one of figure Fig. 4-3 in which no initial conditions are used. It

seems that the error in the -12 norm bound is less that one order of magnitude higher

than the fractional change at each iteration step. That is to say that if an accuracy of

10- 4 is required, the iteration could be performed with an accuracy of 10- 5 . However, it is

important to note that this rule is specific to this system and cannot be used as a general
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Figure 4-4: Fractional change in the 7W2 norm bound during the design of the
optimal 7W2/Popov controller for the two mass-spring system with un-
certainty lying in the range -0.4 < Ak < 0.6. The dashed curve rep-
resents the fractional error with respect to the final WL2 bound, which
is considered to be locally optimal, and the solid curve represents the
fractional change with respect to the bound at each iteration step.

rule of thumb. In fact, the convergence plots of the example considered in the next section

do not share these well-behaved convergence characteristics.

Optimal - 2 /Popov Controller Designs obtained by the W-K Iteration

In this section, several optimal I 2/Popov controllers are designed for the mass-spring sys-

tem. Since the W-K iteration scheme is claimed to be equivalent to the gradient search

approach introduced by How [24] and How et al. [25], it is only natural that their perfor-

mance be compared. Therefore, controller designs are performed with perturbation bounds

identical to the ones used for the designs by How. Two sets of controllers are constructed

for the same perturbation bounds. The first set involves controllers using Popov multipliers
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of the form used by How, namely W = I + Ns. These designs are used in order to validate

the correctness of the W-K iteration, and in particular the Matlab routines developed. The

second set of controllers involves the use of Popov multipliers of the form W = H + Ns.

This set is used in order to determine how much the performance may be improved by

using more general Popov multipliers, and furthermore to see how the computational time

is affected when the variable space is increased.

As stated above, first the Popov multipliers are assumed to have the form W = I + Ns.

For these cases, the performance of the optimal 7-2/Popov controllers is presented in Fig. 4-

5 using so-called "performance buckets." Two curves correspond to each controller design.

The "boxes" correspond to the performance guaranteed by the optimal 1-n2/Popov con-

trollers. Their widths represent the uncertainty ranges for which performance is guaranteed.

The "buckets" comprise the actual performance obtained by the respective closed loop sys-

tems as a function of the perturbation of the stiffness k from its nominal value knom. Note

that the curves in Fig. 4-5 are normalized with respect to the nominal LQG - 2 cost.

Even though the LQG design is guaranteed to obtain the minimum cost for the nominal

plant, it is not very robust, as seen in Fig. 4-5. On the other hand, the 7 2/Popov controller

designs sacrifice nominal performance in order to guarantee robust performance within

the allowable perturbation ranges prescribed in each design. In fact, robust performance

is actually ensured for a much larger perturbation range. This is an indication of the

conservative nature of the design criteria. An interesting observation regarding this system

is that the stability or performance guarantees for negative uncertainty are harder to attain.

This can be inferred by the sharpness of the performance buckets, and by their distance to

the respective robustness constraints.

Another interesting characteristic of the performance buckets of Fig. 4-5 is the discrep-

ancy between the bound on the - 2 norm of the system and the actual 37 2 norm. This

discrepancy is another measure of the conservatism in the design criteria. In fact, the goal

of most design techniques, such as real p-synthesis as opposed to complex P-synthesis, is

to determine a bound that is less conservative, i.e., to reduce the gap between the bound

and the actual W2 norm. The stability robustness ranges and the corresponding W2 perfor-

mance bounds are presented in Table 4.2 and Table 4.3 respectively. The actual W2 bounds

obtained through the gradient search of Refs. 24 and 25 are not available.

Moreover, the optimal H2/Popov controllers yielded by the W-K iteration are prac-
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Figure 4-5: Performance of two optimal W72/Popov controllers. Each design is rep-
resented by two curves. The box corresponds to the guaranteed closed

loop 7t2 performance and the bucket to the actual closed loop 72 per-
formance attained by the respective controller. Recall that all curves
are normalized by the nominal LQG 72 cost.

Table 4.2: Actual and guaranteed stability robustness bounds for optimal

7 2/Popov controller designs with stability multipliers of the form
W = I+Ns.

Controller Actual Negative Guaranteed Stab. Margins Actual Positive
Design Stability Margin (Negative) (Positive) Stability Margin

LQG -0.0378 - 0.4032
Popov # 1 -0.1974 -0.1000 0.3000 0.8521
Popov # 2 -0.5269 -0.4000 0.6000 0.9962

Popov # 2 (Ref. 24) -0.55 -0.4 0.6 1.05
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Table 4.3: 7-2 norms and guaranteed 7-2 norm bounds for optimal 7 2/Popov con-
troller designs with stability multipliers of the form W = I + Ns.

Controller Nominal 72 Norm Bound on 712 Norm Optimal Multiplier
Design Actual Normalized Actual Normalized W = I + Ns

LQG 0.6018 1.0000
Popov # 1 0.8515 1.4149 1.5313 2.5445 1 + 0.1720 s
Popov # 2 2.0106 3.3409 4.6050 7.6520 1 + 0.3305 s

Popov # 2 (Ref. 24) - 3.34 - 1 + 0.33 s

Table 4.4: Pole-zero characteristics of optimal W72/Popov
stability multipliers of the form W = I + Ns.

controller designs with

ControllerController Gain Poles ZerosDesign

LQG 1.2840 -1.7635 ± 4.2636j -0.6481
-4.9827 ± 3.4291j 0.1534 ± 1.2282j

Popov # 1 -0.7384 -5.8251 ± 3.3421j -0.4452
-2.2898 + 5.2190j 0.1027 + 1.1828 j

Popov #z 2 -0.3622 -7.1671 ± 0.8233 j -0.2905
-3.6357 ± 6.2257j 0.0419 ± 0.9320j

Popov # 2 (Ref. 24) -0.36 -7.16 ± 0.88 j -0.29
Popov # 2 (Ref. 24) -0.36 -3.63 + 6.23j 0.04 ± 0.93 j

Table 4.5: Computational time required for the design of optimal 7 2/Popov con-
trollers with stability multipliers of the form W = I + Ns.

Controller Number of Comp. Time Comp. Time/Iteration
Design Iterations (hr:min:sec) (sec)

Popov # 1 9 00:03:00 21
Popov # 2 31 00:11:35 23

tically identical to those obtained in Ref. 24. This equivalence may easily be seen by

comparing the pole-zero representations of the controllers in Table 4.4. The computational

times for the iterations resulting in the respective controllers are shown in Table 4.5. Un-

fortunately, Refs. 24 and 25 do not specify the computational time requirements, so that a

comparison of computational efficiency cannot be conducted.

In the case where the Popov multipliers are assumed to have the form W = H + Ns, the

controllers are actually very different. This should be expected, because the use of a more
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Figure 4-6: Performance of two optimal -2/Popov controllers. Each design is rep-
resented by two curves. The box corresponds to the guaranteed closed
loop W2 performance and the bucket comprises the actual closed loop

72 performance attained by the respective controller. Recall that all
curves are normalized by the nominal LQG 712 cost.

general form of Popov multipliers results in a less conservative performance bound. The

performance buckets corresponding to the resulting Popov controller designs are shown in

Fig. 4-6. The actual and guaranteed stability robustness bounds for these designs are shown

in Table 4.6. The performance bounds are shown in Table 4.7. It is easily seen that even if

the bound on the N2 norm has been improved in comparison with the previous controllers

(Tables 4.2 and 4.3), the actual robustness ranges have shrunk. As would be expected,

the reduction in the 72 bound, i.e., the optimization cost, forces the performance of the

controller closer to the robustness constraints.

The computational times for these W-K iterations are shown in Table 4.9. A comparison

to the computational times of the previous case where W = I+Ns, i.e., Table 4.5, indicates

that the computational time is very sensitive to variable space size. This dependence is very



Table 4.6: Actual and guaranteed stability robustness bounds for optimal
7-2/Popov controller designs with stability multipliers of the form
W = H+Ns.

Controller Actual Negative Guaranteed Stability Margin Actual Positive
Design Stability Margin (Negative) (Positive) Stability Margin
LQG -0.0378 0.4032

Popov # 1 -0.2357 -0.1000 0.3000 0.5957
Popov # 2 -0.5280 -0.4000 0.6000 0.8905

Table 4.7: -2 norms and guaranteed 7-12 norm bounds for optimal 7- 2/Popov con-
troller designs with stability multipliers of the form W = H + Ns.

Controller Nominal R 2 Norm Bound on W2 Norm Optimal Multiplier
Design Actual Normalized Actual Normalized W = H + Ns

LQG 0.6018 1.0000 - -
Popov # 1 0.8731 1.4508 1.3684 2.2738 0. 4 067 + 0.1034 s
Popov # 2 2.0923 3.4765 4.4016 7.3141 0.6274 + 0.2348 s

Table 4.8: Pole-zero characteristics of optimal 7-2/Popov
stability multipliers of the form W = H + Ns.

controller designs with

important, since the ultimate goal is to use the W-K iterative scheme to design optimal

N 2/Popov controllers for real-life systems, which are usually of high order.

It is interesting to note what the characteristics of the robustifying controller are in

the case of the mass-spring system. Fig. 4-7 presents the frequency characteristics of the

open loop system, the LQG controller, and an optimal 7-2/Popov controller guaranteeing

robustness for uncertainties in the range -0.4 < Ak < 0.6.

ControllerController Gain Poles ZerosDesign

-1.7635 ± 4.2636j -0.6481
-4.9827 ± 3.4291j 0.1534 ± 1.2282j
-5.7758 ± 3.2147j -0.4415

Popov # 1 -0.7574 -2.2456 ± 5.2575 j 0.0144 ± 1.1398j

-7.5389
Popov # 2 -0.3573 -6.4451 0.

-3.6762 + 6.5511j -0.0100
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Table 4.9: Computational time required for the design of optimal $- 2/Popov con-
trollers with stability multipliers of the form W = H + Ns.

Controller Number of Comp. Time Comp. Time/Iteration
Design Iterations (hr:min:sec) (sec)

Popov # 1 28 00:09:59 22
Popov # 2 41 00:16:22 24

4.2.2 Coupled Rotating Disk System

This section considers the coupled rotating disk system introduced by Cannon and Rosen-

thal [9]. The system is comprised of four disks connected by a flexible shaft, as shown in

Fig. 4-8, and is representative of lightly damped structures. This system is of twice the

order of the mass-spring system considered in the previous section. More importantly, it

involves multivariable uncertainty, namely uncertainty in the spring stiffnesses k, and k 3 .

The system dynamics are given by the state space representation of Eqn. (3.44), with
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Moreover, m = k = 1, the damping factor is d = 0.01, and p = 0.005.

stiffnesses, k 1 and k 3 , are assumed to be independent.

The two spring

where

(4.5)

J=m

0

0

-1

1i (4.6)
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Figure 4-8: Coupled rotating four disk system. The control input u is used to
counteract the disturbance input d. The system is assumed to be
uncertain in the spring stiffnesses ki and k3.

The importance of considering this system lies in the fact that slight perturbations in

the uncertain stiffnesses cause large phase variations in the system dynamics. In the case

of lightly damped systems, such variations may lead to system instability. Fig. 4-9 presents

the variation in the frequency characteristics of the four disk problem for 5% perturbations

in the spring stiffnesses. These slight perturbations introduce 100 deg phase variations in

the plant.

For comparison, the Popov controller designs were performed with perturbation bounds

identical to the ones used for the designs in Refs. 24 and 25. The presentation of the results is

similar to that of the previous section, with the exception that optimal 7'N2 /Popov controllers

were generated only for Popov multipliers of the form W = H + Ns. Tables 4.10 and

4.11 present the robustness ranges and the performance bounds obtained for the different

optimal WN2/Popov controller designs. Table 4.12 includes the pole-zero representations

of the optimal 3' 2/Popov controller designs and Table 4.13 presents the optimal Popov

multipliers obtained. A comparison between the transfer functions of the LQG compensator

and one of the optimal W-2/Popov designs is presented in Fig. 4-10.

The performance buckets for two controller designs are present in Fig. 4-11. As in case

of the mass-spring system, the disk system is harder to robustify for negative perturbations.

Once again, this may be inferred from the fact that the -2 norm buckets are closest to the

curves of guaranteed performance in the negative perturbation region.

The computational time requirements for the various designs, present in Table 4.14,

indicate that larger systems will require lengthy iterations. However, since the controller
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Table 4.10: Actual and guaranteed stability robustness bounds for optimal
-2/Popov controller designs with stability multipliers of the form
W = H +Ns.

Controller Actual Negative Guaranteed Stab. Margins Actual Positive
Design Stability Margin (Negative) (Positive) Stability Margin

Popov # 1 -0.0256 -0.0190 0.0190 0.0581
Popov # 2 -0.0311 -0.0240 0.0240 0.0719
Popov # 3 -0.0432 -0.0350 0.0350 0.0987
Popov # 4 -0.0609 -0.0510 0.0510 0.1400

Popov # 1 (Ref. 24) -0.025 -0.019 0.019 0.060
Popov # 2 (Ref. 24) -0.033 -0.024 0.024 0.075
Popov # 3 (Ref. 24) -0.045 -0.035 0.035 0.100
Popov # 4 (Ref. 24) -0.063 -0.051 0.051 0.140

Table 4.11: R2 norms and guaranteed 7-12 norm bounds for optimal 7- 2/Popov
controller designs with stability multipliers of the form W = H + Ns.

designs at each iteration step satisfy the robustness requirement, it is possible to continu-

ously update the optimal controller characteristics as the W-K iteration progresses.

Fig. 4-12 presents the fractional change of the bound on the 72 norm with respect to

iteration step. As a measure of the optimality of the intermediate controllers, the error in

the bound to the 7-2 norm is also plotted. In particular, the plot indicates that the error

in the 7-12 bound is below 1% after half of the iteration steps.

The sharp jumps that are present in Fig. 4-12 indicate that some of the intermediate

iterations do not optimize the cost nearly as much as their neighboring iterations. This

should be taken under consideration when choosing the stopping accuracy. What should be

avoided is the premature termination of the iteration and subsequently the generation of a

Controller Nominal - 2 Norm Bound on 12 Norm
Design Actual Normalized Actual Normalized

LQG 2.2062 1
Popov # 1 2.4878 1.1277 2.8363 1.2856
Popov # 2 2.5697 1.1648 2.9925 1.3564
Popov # 3 2.7488 1.2460 3.3372 1.5126
Popov # 4 3.0150 1.3666 3.8555 1.7476

Popov # 1 (Ref. 24) - 1.12
Popov # 2 (Ref. 24) 1.17
Popov # 3 (Ref. 24) 1.25 -
Popov # 4 (Ref. 24) 1.38



Table 4.12: Pole-zero characteristics of optimal 7-2/Popov controller designs with
stability multipliers of the form W = H + Ns.

ControllerController Gain Poles Zeros
Design

-0.0110 + 1.4138j -0.0283 ± 1.9588j

LQG -0.4544 -0.0781 + 2.2860j 0.0465 + 1.6231 j
-2.0071 ± 1.4774j 0.1626 + 0.7677j
-2.4419 ± 2.7548 j -0.3062

-2.4145 + 2.7874j -0.0296 ± 1.9679 j
-0.2487 + 2.3472 j 0.0778 + 1.6010 j

Popov # 1 -0.3787 -0.0203 ± 1.4065 j 0.1674 ± 0.7892j
-2.1756 ± 1.5202j -0.2710

-2.4122 ± 2.7938j -0.0285 ± 1.9719j

Popov # 2 -0.3648 -0.2939 ± 2.3556 j 0.0833 ± 1.5980j
-0.0230 ± 1.4042j 0.1686 + 0.7940 j
-2.2136 + 1.5293 j -0.2645

-2.4040 - 2.8247j -0.0261 ± 1.9807j

Popov # 3 -0.3385 -0.3968 ± 2.3614j 0.0949 ± 1.5932 j
-0.0288 ± 1.3988j 0.1709 ± 0.8042 j
-2.2958 ± 1.5405j -0.2521

-2.4138 ± 2.8774j -0.0252 ± 1.9936j
-2.4445 ± 1.5455j 0.1112 ± 1.5899j

Popov # 4 -0.3065 -0.5541 ± 2.3227j 0.1742 ± 0.8198j
-0.0382 ± 1.3904j -0.2370

-0.02 ± 1.40j 0.17 ± 0.80j

Popov # 2 (Ref. 24) -0.36 -0.31 ± 2.35j 0.08 ± 1.60j-2.18 ± 1.51 j -0.03 ± 1.97j
-2.41 ± 2.85j -0.26

Table 4.13: Optimal multipliers of the form W = H+Ns for the optimal 1-2/Popov
controller designs.

Controller Optimal Multiplier
Design W = H + Ns

r P -J-O1F 1g fl 1
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Performance of two optimal 7-2/Popov controllers. Each design is
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Controller Number of Comp. Time Comp. Time/Iteration
Design Iterations (hr:min:sec) (sec)

Popov # 1 41 01:45:11 154
Popov # 2 62 03:06:59 181
Popov # 3 79 02:57:17 135
Popov # 4 73 02:36:01 129
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4.3 Summary

The comparison of the LMI based Popov controller synthesis procedure with its gradient

search counterpart introduced in Refs. 24 and 25 shows that the two techniques generate

practically identical controllers. However, the W-K iteration scheme overcomes the nu-

merical sensitivity that apparently haunted the gradient search approach. Moreover, even

though the compensators at each iteration step are not optimal with respect to the multi-

plier weights or the compensator dynamics, they satisfy the robustness requirements. This

is very important because intermediate suboptimal controllers may be used prior to the

determination of the local optimal at the end of the W-K iteration. On the other hand, the

gradient search method of Refs. 24 and 25 requires the use of a loop to iteratively increase

the robustness bounds until the required stability bounds are achieved, and therefore the

robustness requirements are satisfied solely upon termination of the design process. The

capability of using intermediate compensators in the W-K iteration scheme favors its use

in designing Popov controllers for considerably larger systems.



Chapter 5

Conclusion

The contribution of this thesis was to formulate robustness criteria for systems involving

linear or nonlinear real parametric uncertainties in terms of standard LMI problems. In

addition, the LMI-based robust performance criteria were used to develop an iterative ap-

proach to robust controller synthesis that was shown to be computationally attractive.

5.1 Summary

Dissipation considerations involving supply rates and storage functions were used to obtain

parameter-dependent Lyapunov functions that restrict the magnitude and the time varia-

tion of the uncertainties and reduce the conservatism of the robustness criteria. The robust

stability criteria were formulated as standard LMI problems, i.e., convex constraints, in-

volving the state space matrices of the system and the Lyapunov function matrices. The

robust performance problem was subsequently formulated by introducing a bound on the

closed-loop 372 cost of the system. Due to the coupling of the scaling matrices and the

compensator dynamics in both the robustness constraints and the performance metric, the

resulting optimization problem, although in matrix inequality form, was nonlinear. This

problem was overcome by splitting the robust performance problem into two distinct opti-

mizations each of which comprised a standard LMI problem. The performance metric was

optimized with respect to the scaling matrices and the compensator dynamics separately.

These two optimizations were denoted the W and K optimizations respectively. The iter-

ation involving the W and K optimizations resulted in the W-K iterative design scheme.

The final controller guarantees a locally optimal bound on the W2 cost of the closed-loop



system. Since each of the optimizations involve standard LMI problems, they can be solved

in polynomial time. The W-K iterative design approach was shown to be equivalent to the

gradient search approach presented in Refs. 24 and 25. More importantly, it seems that

the W-K iterative scheme overcomes the numerical problems haunting its gradient search

counterpart.

The effectiveness of the W-K iterative scheme was evaluated through the design of op-

timal -2/Popov controllers for a couple of benchmark robust control systems. The compu-

tational efficiency of the W-K iteration indicates that expressing the performance criteria

in terms of standard LMI problems is computationally advantageous. The intermediate

controllers, although suboptimal, fulfill the robustness requirements and the bound on the

W2 norm of the closed-loop system practically converges within a few iteration steps.

5.2 Future Work

The iterative approach for designing optimal 7H2/Popov controllers that was developed in

this thesis was shown to be very effective for some benchmark test systems. However,

the benchmark systems that were considered were of low order and may not represent the

true performance characteristics of the robust control design technique for real-life systems.

However, the inherent advantages of numerical stability and simplicity of the actual design

procedure are sufficient reasons for further research on the W-K iteration scheme. More

specifically it appears that a closed form solution may be obtained that will eliminate the

LMIP used to solve for the compensator dynamics in the K optimization. In addition, there

are indications that one of the two LMI constraints again in the K optimization may be

replaced by a Riccati type equality. It is hoped that this thesis will form a basis for future

developments in this LMI-based approach to robust - 2 controller synthesis for systems

involving real parametric uncertainties.



Appendix A

Matlab Routines

This appendix contains the Matlab routines that comprise the W-K iteration scheme for the

design of optimal W72/Popov controllers. Each of the Matlab routines contains comments on

its usage and effects. The top level routine, popov.m, must be called with the appropriate

values and requires the existence of a Matlab routine named after the specific system at

hand, for example spring.m, that may be executed. This routine must result in the definition

of the state space matrices A, B,, Bd, Cy, Dyd, Ce, Deu, Cz, Bw, sys is the name of the

system at hand, Rx = CTCe, Ruu = D uDeu, Vxx = BdBLT and Vyy = DydDT.

The Matlab routines used to generate the above matrices for the mass-spring system

and the disk system considered in Chapter 4 are also included.



popov.m

function [P,Ac,Bc,Cc,H,N,M1,M2,bound,valid,delta_t] = popov(sys,stop_accuracy,se
t_H,set_N,M1,M2,P,Ac,Bc,Cc,H,N)

[P,Ac,Bc,Cc,H,N,M1,M2,bound,valid,delta_t]
= popov(sys,stop_accuracy,set_H,set_N,M1,M2,P,Ac,Bc,Cc,H,N)

Function:

Inputs:

(optional)
(optional)
(optional)
(optional)
(optional)

Outputs:

Files
Generated:

popov

sys
stop_accuracy
setH
set_N
M1
M2
P
Ac,Bc,Cc
H,N

P
Ac, Bc, Cc
H, N
M1,M2
bound
valid
delta_t

sys_popov.diary
sys.mat

sys_lqg.mat

sys_popov.mat

This function uses a W-K iterative scheme
for the design of the optimal H2/popov
controller for the system defined by
the matlab script sys.m

System name.
Accuracy of H2 performance objective bound.
Boolean for setting multiplier scaling H.
Boolean for setting multiplier scaling N.
Low uncertainty sector bound.
High uncertainty sector bound.
Inintial Lyapunov matrix value.
Initial controller state space matrices.
Initial multiplier scaling matrices.

Optimal Lyapunov matrix.
Optimal H2/Popov controller dynamics.
Optimal Popov multiplier scaling matrices.
Uncertainty sector bound.
Minimum upper bound to H2 performance metric.
Boolean specifying validity of the iteration.
CPU time required for the W-K iteration.

Optimization diary file.
System dynamics for system sys.
LQG compensator dynamics for system sys.
Optimal H2/Popov controller dynamics.

Comments

% Author

This matlab routine is part of the W-K irterative scheme
used for the design of optimal H2/Popov controllers.

Carl Livadas
September 1995

% Copyright (c) Massachusetts Institute of Technology 1995

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Saving the output in the diary file: sys_popov.diary

format short e
diary_file = concat(sys,'_popov.diary');
delete(diary_file)
diary(diary_file)
clc



disp('==================================');

disp('================= POPOV CONTROLLER DESIGN ');disp('----------------

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

global A Bd Bw Bwtil Bu Bd Ce Cz Cztil Cp Cy Deu Dyd
global Rtil Ruu Rxx Vxx Vyy Vtil
global n nc nd ne nu nw ny nz
global accuracy hide_trace cutoff
global M1 M2 Md Ahat

III%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%//II//%%I//I/IXI/I/I//IXX%%%%S%%%%%9

% Loading or generating the system called 'sys'

if ~exist(sys)==2
error('Incorrect file name!');

else
sm = abs(sys);

sl = length(sm);

m_file = concat(sys,'.m');
mat_file = concat(sys,'.mat');
if exist(mat_file)==2
disp(concat('Loading the state-space characteristics for the system: ',sys))

load(sys);
else

disp(concat('Generating the state-space characteristics for the system:',sys

eval(sys);
end;

end;

% Loading or generating the LQG compensator for 'sys'

lqg_file = concat(sys,'_lqg');
if exist(concat(lqg_file,'.mat'))==2

disp(concat('Loading the LQG compensator for the system: ',sys));
load(lqg_file);

else
disp(concat('Generating the LQG compensator for the system: ',sys));
[Plqg,Ac_lqg,Bclqg,Ccqg, costlqg] = lqg(A,Bu,Bd,Cy,Dyd,Ce,Deu,sys);

end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% XXXX
% Setting some of the iteration parameters

accuracy = stop_accuracy;
accuracy_K = accuracy/10; % K-iteration accuracy
accuracy_D = accuracy/10; % D-iteration accuracy

%%%%%%X%%%%%%%%%%%XXXXXXXXXXX%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%XX%%%%XXXXXXXXXX
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%X%%%%%%



% Choosing which iteration to compute. If only one of the two is
A chosen the loop only gets executed once

perf_K = 1;
perf_D = 1;

% Perform the K optimization
% Perform the D optimization

% Note: that the iteration will only take place if we perform both
X K and D optimizations.

% Choosing some other iteration parameters

hide_trace = 1;

cutoff = 0;

debug

% Hiding the LMI solver traces
% Allowing some positive definiteness
% in the LMIs
% Using debug mode=0;

% CALCULATING SOME USEFUL MATRICES THAT DO NOT DEPEND ON THE DYNAMIC
% COMPENSATOR SYNTHESIS PROCEDURE

% System Dimensions:

n = length(A);

nu = cols(Bu);
ny = rows(Cy);

ne = rows(Ce);
nw = cols(Bw);
nz = rows(Cz);
nc = n;
nd = rows(Cz);

% System size

% Measurement size
% Output error size

% Controller size
% Uncertainty block size

% CL uncertainty matrices

Cztil = [Cz zeros(nd,nc)];

Bwtil = [Bw; zeros(nc,nd)];

% Useful pseudo inverses

Cp = pinv(Cy');

% If not already defined, prompt the
% uncertainty block

if ~exist('M1') I ~exist('M2')
M1 = input('Enter the perturbation
M2 = input('Enter the perturbation

end;

% Printing the sector bound matrices

M1

M2

user to define the sector bound of the

bound Mi: ');
bound M2: ');



Md = inv(M2-M1);
Ahat = A+Bw*Mi*Cz;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%XXXXXXXXXXXXXXXXXXXXXXX

% Initializing the compensator dynamics, the multipliers and the
% Lyapunov matrix P

if ~exist('P') I ~exist('Ac') I ~exist('Bc') I ~exist('Cc') I exist('H') I exi
st('N')
P = Plqg;
Ac = Ac_lqg;
Bc = Bclqg;
Cc = Cclqg;

if set_H
H = input('Enter the popov multiplier matrix H: ');

else
H = eye(nd);

end;
if setN
N = input('Enter the popov multiplier matrix N: ');

else
N = eye(nd);

end;

end;

% Retaining the initial Popov multiplier scaling matrices.

H_init = H
N_init = N

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%X%%XX%%%%%%%%%%%%%%%%%

% Some useful CL matrices

Cetil_lqg = [Ce Deu*Cc_lqg;
Bdtil_lqg = [Bd;Bclqg*Dyd];
Rtillqg = blkdiag(Rxx,Cc_lqg'*Ruu*Cc_lqg); % Cetillqg' * Cetillqg
Vtillqg = blkdiag(Vxx,Bclqg*Vyy*Bc_lqg'); 7 Bdtil_lqg * Bdtil_lqg'

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%XXXXXXXXXXXXXXXXX%%XXXXXXXXXX

% INITIALIZING SOME OF THE ITERATION PARAMETERS

bound = 1e20;
validK = 0; valid_D = 0; converged = 0;
stop = 0;
index = 0;
bnds_K = []; bnds_D = []; bnds = []; bnds_i = 0;
time = []; time_K = []; dt_K = []; timeD = []; dt_D = [];
Ac_iter = []; Cciter = []; Ac_iterK = []; Cciter_K = [];
H_iter = H;



N_iter = N;

Ti = cputime; % Initial Time

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%/,'/.%'/%%%%

% STARTING THE D-K ITERATION

stop_accuracy

while -stop

Ti_iter = cputime; % Starting the iteration timer

index = index + 1;

temp_bound = bound;

if perf_K

disp('= = = = = ==......= ,) ;disp( '--------------------------------
disp('================= K-ITERATION! ================ )
disp(sprintf('=================\t\t %d \t\t================',index));
disp('-------------==========------ -- )

Ti_K = cputime;

accuracy = accuracy_K;

[P_K,Ac_K,Bc_K,Cc_K,cost_K,bound_K,validK] = k_iter(P,Ac,Bc,Cc,H,N,M1,M2);

if valid_K & (bound_K < temp_bound)
P = P_K;

Ac = Ac_K;

Bc = Bc_K;

Cc = Cc_K;

bound_K

cost_K

% Setting the current loop bound

delta_bound = bound_K-temp_bound
temp_bound = bound_K;

if debug

save k_iter P Ac Bc Cc cost_K bound_K

% The actual cost is given by:

Bdtil = [Bd;Bc*Dyd];
Cetil = [Ce Deu*Cc];

Rtil = blkdiag(Rxx,Cc'*Ruu*Cc);
Vtil = blkdiag(Vxx,Bc*Vyy*Bc');

% Cetil' * Cetil
% Bdtil * Bdtil'



Ptil = P;

JK = trace((Ptil+Cztil'*(M2-Ml)*N*Cztil)*Vtil)

end

else

if ~validK
disp('This K-iteration is not valid! [omitted]');

else
disp('This K-iteration step has not optimized the cost function! [omitte

d]');
end;

if index>1
cost_K = cost_iter(index-1);

else
cost_K = bound;

end;

end;

% Adjusting the cost

cost_iter(index) = costK;

% Adjusting the bounds

bnds_K(:,index) = [tempbound; bound_K] ;
bndsi = bndsi+1;
bnds(bnds_i) = temp_bound;

% Adjusting the times

curr_time = cputime-Ti
dur_K = cputime-Ti_K

time(bnds_i) = currtime; % Ti
time_K(index) = curr_time; X Ti
dtK(index) = dur_K; % Du:

if n<5

% Saving the compensator dynamics:

Ac_iter = [Aciter; Ac];
Cc_iter = [Cc_iter; Cc] ;

me of K iteration end
me of K iteration end
ration of K iteration

end;

else

valid_K = 0;
bound_K = temp_bound;



end;

if perf_D

disp('== == = == = == = == = == = == = == == = == = == = == = == = ==disp( '........;--------------------
disp(================= D-ITERATION! ================ )
disp(sprintf('=================\t\t %d \t\t================',index));
disp('==========)------------------ --

Ti_D = cputime;

accuracy = accuracy_D;

[P_D,HD,N_D,bound_D,valid_D] = d_iter(P,Ac,Bc,Cc,H,N,M1,M2,set_H,set_N);

% Saving the old bound

if validD & (bound_D < temp_bound)
P = PD;
H=HD

N=ND
boundD

% Setting the current loop bound

delta_bound = bound_D-temp_bound
temp_bound = bound_D;

if debug

save d_iter PD H_D N_D bound_D

% The actual cost is given by:

Bdtil
Cetil

Rtil

Vtil

Ptil

JD

= [Bd;Bc*Dyd];

= [Ce Deu*Cc];
= blkdiag(Rxx,Cc'*Ruu*Cc); % Cetil' * Cetil
= blkdiag(Vxx,Bc*Vyy*Bc'); % Bdtil * Bdtil'

= P;
= trace((Ptil+Cztil'*(M2-M1)*N*Cztil)*Vtil)

end;

elseif ~valid_D

disp('This D-iteration is not valid! [omitted]');
else

disp('This D-iteration step has not optimized the cost function! [omitted]

end;

% Adjusting the bounds

bnds_D(index) = temp_bound;

bnds_i = bnds_i+l;

bnds(bnds_i) = temp_bound;



% Adjusting the times

currtime = cputime-Ti

durD = cputime-TiD

time(bndsi) = curr time; % Time of D iteration end
time_D(index) = currtime; % Time of D iteration end
dt_D(index) = durD; % Duration of D iteration

if n<5

% Saving the multiplier matrices

H_iter = [H_iter H];

N_iter = [N_iter N];

end;

else
valid_D = 0;

bound_D = temp_bound;
end;

% Determining whether the iteration must continue or not

stop = 1;

if validK I validD
if (abs((bound - tempbound)/temp_bound) < stop_accuracy)
disp('This iteration has CONVERGED !!!');

else
bound = temp_bound;

stop = -(perfD & perf_K);
end;

else
disp('This iteration can NOT be further optimized!');

end;

X Calculating the time required for this iteration step.

Tf_iter = cputime;

dt_iter = Tf_iter-Ti_iter;

% Displaying the actual time used for a complete W-K iteration step and
% also the elapsed time from the beginning of the W-K iteration

disp(sprintf('\nThe iteration took %d sec. \n',ceil(dt_iter)));
disp(concat('Elapsed time: ',pptime(cputime-Ti), ' [hr:min:sec]'))

% Saves the intermediate results in the file: 'sys'_popov.mat

save(concat(sys,'_popov'))



disp(concat('Results saved in the file: ',sys,'_popov.mat'))

end;

% Displaying the final bound:

disp(sprintf('The final bound is: \t %f',bound))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculating the nominal cost:

Cetil = [Ce Deu*Cc];

Bdtil = [Bd;Bc*Dyd];

Rtil = blkdiag(Rxx,Cc'*Ruu*Cc);

Vtil = blkdiag(Vxx,Bc*Vyy*Bc');

Atil = [A Bu*Cc;Bc*Cy Ac];

% Cetil' * Cetil
% Bdtil * Bdtil'

Atil_nom = Atil;

Ptil_nom = lyap(Atil_nom',Rtil);

cost_nom = trace(Ptil_nom*Vtil)

cost_lqg

factor_nom = cost_nom/cost_lqg

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Setting a boolean so that I know that the output has converged:

converged = 1;

% Calculating the duration of the whole iteration

Tf = cputime;

delta_t = Tf-Ti

% Final Time

% Duration of iteration in seconds

% Pretty printing the duration of the iteration.

disp(concat('The K-D iteration had a duration of: ',pptime(deltat), ' [hr:min:s
ec]'))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%

% Saving the final results in 'sys'_popov.mat

save(concat(sys,'_popov'))

disp(concat('Results saved in the file: ',sys,'_popov.mat'))
diary off

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%% END OF CODE %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%XXXX%%%%%%%%%%%%%%%%%%%%% %%



k_iter.m

function [P,Ac,Bc,Cc,cost,bound,valid] = kiter(P,Ac,Bc,Cc,H,N,M1,M2)

% [P,Ac,Bc,Cc,cost,bound,valid] = kiter(P,Ac,Bc,Cc,H,N,M1,M2)

% Overview
X
z

Inputs

% Outputs

% Comments

% Author
z

Given some Popov multiplier scalings H and N, optimizes

the H2 norm bound of the closed loop system with respect to

the compensator dynamics.

P
Ac, Bc, Cc

H, N

M1,M2

P

Ac, Bc, Cc

cost

bound

valid

Current Lyapunov matrix.
Current H2/Popov controller dynamics.

Current Popov multiplier scaling matrices.

Uncertainty sector bound.

Optimal Lyapunov matrix.

Optimal H2/Popov controller dynamics.

Nominal closed loop H2 norm.

Bound on worst-case closed loop H2 norm.

boolean specifying whether this optimization

was well behaved and the results satisfied

the constraints.

This matlab routine is part of the W-K irterative scheme

used for the design of optimal H2/Popov controllers.

Carl Livadas

September 1995

% Copyright (c) Massachusetts Institute of Technology 1995

% Setting some useful constants and initial values:

global A Ahat Bd Bw Bwtil Bu Bd Ce Cz Cztil Cy Cz Deu Dyd Dyd Dzu Md Ro

global Rtil Ruu Rxx Vxx Vyy Vtil

global cost_lqg

global n nc nd ne nu nw ny nz

global accuracy hidetrace cutoff

% Defining some useful quantities

Ahat = A+Bw*M1*Cz;

Md = inv(M2-M1);

temp = H*Md-N*Cz*Bw;

Ro = temp + temp';

% The solution parameters are:

mintol = le-10;

tol = 0;
valid = 0;

while -valid



[P,R,bound,valid] = elim_theta(P,Ac,Bc,Cc,H,N,M1,M2,Ro,tol);
if valid

valid = 0;

% Splitting up the matrices

P11 = P(1:n,l:n);
P21 = P(n+l:n+nc,l:n);

P12 = P21';
P22 = P(n+l:n+nc,n+l:n+nc);

R11 = R(l:n,l:n);
R21 = R(n+l:n+nc,l:n);

R12 = R21';

R22 = R(n+l:n+nc,n+l:n+nc);

% Setting the Bc matrix to be Cy'

Bc = Cy';

% Defining some useful matrices:

Al = [A+Bw*Mi*Cz zeros(n);

Bc*Cy zeros(n)];

A2 = [zeros(n) Bu;
eye(n) zeros(n,nu)];

A3 = [zeros(nc) eye(nc)];

C1 = [Ce zeros(ne,nc);

zeros(ne,n) zeros(ne,nc)];

C2 = [zeros(ne,n) zeros(ne,nu);

zeros(ne,n) Deu];

C3 = A3;

Psi = [A1'*P+(A1'*P)' (H*Cztil+N*Cztil*Al+Bwtil'*P)' Cl';
H*Cztil+N*Cztil*Al+Bwtil'*P -Ro zeros(nd

,ne+ne)

C1 zeros(ne+ne,nd) -eye(ne+
ne,ne+ne)];

U = [A2'*P A2'*Cztil'*N C2'];

V = [A3 zeros(nc,nd) zeros(nc,ne+ne)];

% Calculating the closed form solution if Cz * Bu = 0

if (find((Cz*Bu)~=O) == [])
disp('K-iteration solving for the controller dynamics using');
disp('the closed-form solution.');



Cc = -inv(Deu'*Deu)*Bu'*R21'*inv(R21*R21');
Ac = -inv(P12'*P12)*P12'*(e'*C*Ce*R11+Ahat'+P1*Ahat*R11+P12*Bc*Cy*R11+P1*

Bu*Cc*R21+(H*Cz+N*Cz*Ahat+Bw'*P1)' *inv(Ro)*(H*Cz*R11+N*Cz*Ahat*R11+N*Cz*Bu*Cc*R
21+Bw'))*R21'*inv(R21*R21');

theta = [Ac;Cc];

M = Psi+V'*theta'*U+U'*theta*V;
maxeigofM = max(real(eig(M)))
valid = (maxeigofM < 0);

end;

% If the closed form solution was not used or if its result violates the
% negative definiteness constraint, use the basiclmi.m function built in
% LMILAB.

if -valid
disp('K-iteration solving for the controller dynamics algebraically...');
theta = basiclmi(Psi,U,V);
M = Psi+V'*theta'*U+U'*theta*V;
maxeigofM = max(real(eig(M)))
valid = (theta-=[]);

% the alternative form would be
% [theta,valid]=calctheta(Psi,U,V);

end;
end;

if -valid
tol = 10*tol+(tol==0)*mintol;
disp(sprintf('The tolerance for the k_iteration is set to: %f',tol));

end;
end;

% Performing the nominal CL calculations...

if valid

Ac = theta(1:nc,1:nc);
Cc = theta(nc+l:nc+nu,l:nc);
K = [Ac Bc;Cc zeros(cols(Bu),rows(Cy))];

Atil = [A Bu*Cc;Bc*Cy Ac];
Btil = [Bd;Bc*Dyd] ;
Ctil = [Ce Deu*Cc] ;
G = [Atil Btil; Ctil zeros(rows(Ce),cols(Bd))];

% The actual Htwo cost is:

Qpost = lyap(Atil,Btil*Btil');
cost = trace(Ctil*Qpost*Ctil');

else

% The LMIs were found infeasible and one must set the
% return variables



Ac = [];
Bc = [];

Cc = [];
cost = [];
bound = [] ;

end;

save afterK



d_iter.m

function [P,H,N,bound,valid] = d_iter(P,Ac,Bc,Cc,H,N,M1,M2,set_H,setN)

% [P,H,N,bound,valid] = d_iter(P,Ac,Bc,Cc,H,N,M1,M2,set_H,setN)

Given some H2/Popov controller dynamics, optimizes the H2

norm bound of the closed loop system with respect to the

Popov multiplier scalings.

P

Ac, Bc, Cc

H, N

MI,M2

set_H

% Overview

% Inputs

set_N

P

H, N
bound
valid

This matlab routine is part of the W-K irterative scheme

used for the design of optimal H2/Popov controllers.

Carl Livadas

September 1995

% Copyright (c) Massachusetts Institute of Technology 1995

% Setting some useful constants and initial values:

global A Bd Bw Bwtil Bu Bd Ce Cz Cztil Cy Deu Dyd
global Rtil Ruu Rxx Vxx Vyy Vtil
global costlqg
global n nc nd ne nu nw ny nz
global accuracy hidetrace cutoff

num_iters = 100;

rad_soln = 1e9;

end_iters = 5;

tol = 0;
eq_tol = le-1O;

usetol = (tol~=O);

Current Lyapunov matrix.
Current H2/Popov controller dynamics.

Current Popov multiplier scaling matrices.

Uncertainty sector bound.

Boolean specifying whether the H scale of

the Popov multiplier must be kept constant.

The H scale is kept constant at its current

value.

Boolean specifying whether the N scale of

the Popov multiplier must be kept constant.

The N scale is kept constant at its current

value.

Optimal Lyapunov matrix.

Optimal Popov multiplier scaling matrices.

Bound on worst-case closed loop H2 norm.

Boolean specifying whether this optimization

was well behaved and the results satisfied

the constraints.

% Outputs

% Comments

7 Author



use_init = 0;
disp(sprintf('USEVARS \t Tol \t Init'));
disp(sprintf('\t \t %d \t %d \n',use_tol,use_init));

options = [accuracy num_iters rad_soln enditers hide_trace];

% Set some useful matrices:

P11 = P(l:n,l:n);
P21 = P(n+l:n+nc,l:n);
P22 = P(n+l:n+nc,n+l:n+nc);

Md = inv(M2-M1);
Ahat = A+Bw*Ml*Cz;

% Initializing the LMI

imi = [1;

% Initializing the counter variables

Imi_num = 0;

imi_size = 0;

% LMI number
% LMI size

% Declaring the LMI variables...
% The notation is the following:
% n_VARNAME = Variable size

n_P11

n_P22
n_P21

nP

=n;

= nc;
= [n_P22 n_P11];
= n_P11 + n_P22;

n_H = length(Md);
n_N = n_H;

[lmi,tagP 11]
[lmi,tagP21]

[lmi,tagP22]
[lmi,tagH]

[lmi,tagN]

= addvar(lmi,l,[n_P11 1]); % P11
= addvar(lmi,2,[n_P22 n_P11]); % P21
= addvar(lmi,l,[n_P22 1]); % P22

= addvar(lmi,l,[ones(n_H,l) zeros(n_H,1)]); % H
= addvar(lmi,l,[ones(n_N,1) zeros(n_N,1)]); % N

% LMI #1: CL Stability LMI

imi_num = iminum+1;
[lmi,lmil] = addlmi(lmi);
Imi_size = imi_size + n_P11 + n_P21(1) + n_H;

% Block (1,1)

lmi=addterm(lmi, [lmi_num 1 1 tagPl11],1,Ahat,'s');

lmi=addterm(lmi,[lmi_num 1 1 tagP21],Cy'*Bc',l,'s');

Cy

lmi=addterm(lmi,[lminum 1 1 01,Ce'*Ce);

% P11*Ahat + Ahat'*P11

% Cy'*Bc'*P21 + P12*Bc*

% Ce'*Ce



% Block (2,1)
imi=addterm(lmi,[lmi_num 2
imi=addterm(lmi,[lminum 2
lmi=addterm(lmi,[lmi_num 2
lmi=addterm(lmi, [lmi_num 2

% Block (2,2)
imi=addterm(lmi, [lmi_num 2
12
imi=addterm(lmi, [lmi_num 2
lmi=addterm(lmi, [lmi-num 2

% Block (3,1)
Imi=addterm(lmi, [lmi_num 3
imi=addterm(lmi, [lminum 3
Imi=addterm(lmi,[lmi_num 3

% Block (3,2)
Imi=addterm(lmi, [lmi_num 3
Imi=addterm(lmi, [lmi_num 3

% Block (3,3)
imi=addterm(lmi, [lmi_num 3
imi=addterm(lmi, [lmi_num 3

if usetol
imi=addterm(lmi,[-lminum
lmi=addterm(lmi,[-lmi_nu
Imi=addterm(lmi,[-lmi_nu

end;

1 tagP11] ,Cc'*Bu',1);
1 tagP21],Ac',1);
1 tagP21] ,1,Ahat);

1 tagP22] ,1,Bc*Cy);

2 tagP21],1,Bu*Cc,'s');

2 tagP22],Ac',1,'s');

2 0] ,Cc'*Deu'*Deu*Cc);

1 tagH],1,Cz);
1 tagN] ,1,Cz*Ahat);
1 tagPll],Bw',1);

2 tagN],1,Cz*Bu*Cc);
2 -tagP21] ,Bw',1);

3 tagH],-1,Md,'s');

3 tagN],1,Cz*Bw,'s');

a 1 1 0],-tol);

a2 2 0],-tol);

a3 3 0],-tol);

% Cc'*Bu'*P11
% Ac'*P21

% P21*Ahat

% P22*Bc*Cy

% P21*Bu*Cc + Cc'*Bu'*P

% Ac'*P22 + P22*Ac

% Cc'*Deu'*Deu*Cc

% LMI #2: P > 0, H > 0, N > 0

iminum = lminum+1;
[lmi,lmi2] = addlmi(lmi);
imisize = imisize + nP + n

% P > 0
Imi=addterm(lmi,[-lmi_num 1 1
Imi=addterm(lmi,[-lminum 2 1
lmi=addterm(lmi,[-lminum 2 2

% H> 0
imi=addterm(lmi,[-lmi_num 3 3

% N >0
imi=addterm(lmi,[-lmi_num 4 4
Imi=addterm(lmi,[-lminum 4 4

_H + nN;

tagP11],1,1);
tagP21],1,1);
tagP22],1,1);

tagH] ,1,1);

tagN],1,1);

0],eqtol);

% Ro_til > 0 (this imi is given by the (3,3) block of the first Imi above

if use_tol

Imi=addterm(lmi,[-lmi_num 1 1 0],-tol);
imi=addterm(lmi,[-lmi_num 2 2 0],-tol);



Imi=addterm(lmi,[-lminum 3 3 0],-tol);
% imi=addterm(lmi, [-lmi_num 4 4 0],-tol);
end;

% Now lets calculate the bound to the actual cost. The bound is
% given by:

% J = Trace( Bd' * P11 * Bd + Dyd' * Bc' * P22 * Bc * Dyd + Bd' * Cz' * (M2-M1
) * N * Cz * Bd)

if set_H

disp('Letting');

H

Imi = setvar(lmi,tagH,H);

end;

if set N
disp('Letting');

N

imi = setvar(lmi,tagN,N);

end;

% Calculating the LMI solver weights for the variables P and R.

imi_name = 'lmi';
c_name = 'cvar';

if ~set N
cformula = 'sum(diag(Bd'' * #tagPll# * Bd)) + sum(diag(Dyd'' * Bc'' * #tagP22

# * Bc * Dyd)) + sum(diag(Bd'' * Cz" * (M2-Mi) * #tagN# * Cz * Bd))';
else

c_formula = 'sum(diag(Bd" * #tagP11# * Bd)) + sum(diag(Dyd'' * Bc'' * #tagP22
# * Bc * Dyd))';

end;

makeobj

disp('Calculating P, H and N...')
disp(sprintf('The lmi size is %d.',lmi size));
disp(sprintf('The variable size is %d.',length(cvar)));

if use init

if set_H

xinit = mat2dec(lmi,P11,P21,P22,N);
elseif set N
xinit = mat2dec(lmi,P11,P21,P22,H);

else

xinit = mat2dec(lmi,P11,P21,P22,H,N);

end;

[bound, xopt] = linobj(lmi, cvar, options, xinit);
else

[bound, xopt] = linobj(lmi, cvar, options);
end;

if xopt == []



disp('The LMI for the D-iteration is INFEASIBLE!');

H= [];
N= [];
bound = [] ;
valid =0;

else
Imis = evallmi(lmi,xopt);
[lhsl rhsl] = showlmi(lmis,l);
[lhs2 rhs2] = showlmi(lmis,2);

P11 = dec2mat(lmi,xopt,tagP11);
P21 = dec2mat(lmi,xopt,tagP21);
Pi2 = P21';

P22 = dec2mat(lmi,xopt,tagP22);

if -setH
H = dec2mat(lmi,xopt,tagH);

end;
if -setN

N = dec2mat(lmi,xopt,tagN);
end;

% The final P matrix is:

P = [P11 P21';P21 P22];

% Now lets check the results...

eig_lmil = real(eig(lhsl-rhsl));
eigimi2 = real(eig(lhs2-rhs2));

valid = all([eig_lmil; eig_1mi2]<cutoff);

M = lhsl;
S = M(1:8,1:8)-M(1:8,9)*inv(M(9,9))*M(9,1:8);

% If LMIs solved incorrectly, print an error message

if -valid
disp('The LMI for the D-iteration is INFEASIBLE!');

else
if all([eig_lmil; eiglmi2]<0)
disp('The LMI for the D-iteration is FEASIBLE!');

else
disp(sprintf('The LMI for the D-iteration is not well behaved, i.e. INFEAS

IBLE! [%1.4f] ',max(real([eig(lhsl-rhsl); eig(lhs2-rhs2)]))));
end

end;
end;

save afterD



elimtheta.m

function [P,R,bound,valid] = elim_theta(P,Ac,Bc,Cc,H,N,M1,M2,Ro,tol)

% [P,R,bound,valid] = elim_theta(P,Ac,Bc,Cc,H,N,M1,M2,Ro,tol)

0 Overview

P

Ac, Bc, Cc

H, N

M1,M2
Ro

tol

P

R

bound

valid

Current Lyapunov matrix.

Current H2/Popov controller dynamics.

Current Popov multiplier scaling matrices.

Uncertainty sector bound.

Current value for Ro.

Tolerance introduced in order to get a

conservative solution so that the

subsequent calculation of the compensator

dynamics using the basic LMI is feasible.

Optimal Lyapunov matrix.

Inverse of the optimal Lyapunov matrix P.

Bound on worst-case closed loop H2 norm.

Boolean specifying whether this optimization

was well behaved and the results satisfied

the constraints.

This matlab routine is part of the W-K irterative scheme

used for the design of optimal H2/Popov controllers.

Carl Livadas

September 1995

% Copyright (c) Massachusetts Institute of Technology 1995

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

X Setting some useful constants and initial values:

global A Ahat Bd Bw Bwtil Bu Bd Ce Cztil Cy Cz Deu Dyd

global Rtil Ruu Rxx Vxx Vyy Vtil

global cost_lqg

global n nc nd ne nu nw ny nz

global accuracy hide_trace cutoff

if -exist('tol') tol = 0; end;

use_tol = (tol~=O);

use_init = 0;

disp(sprintf('USE_VARS \t Tol \t Init'));

disp(sprintf('\t \t %d \t /d \n',use_tol,use_init));

options = [accuracy 0 0 0 hidetrace];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Inputs

Outputs

X Comments

% Author



% Set some useful matrices:

Cp = pinv(Cy');
Bc = Cy';
Md = inv(M2-M1);
Ahat = A+Bw*Mi*Cz;

Ro = H*Md+Md*H-N*Cz*Bw-Bw'*Cz'*N;

% Retrieving the old values for the lmi variables:

P11 = P(l:n,l:n);

P21 = P(n+1:n+nc,l:n);
P22 = P(n+1:n+nc,n+l:n+nc);
Pbar = Bc'*(P22-(eye(nc)-Cy'*Cp))*Bc;
R = inv(P);
R11 = R(l:n,l:n);

% Generating the new P21 and P22 matrices:

P22 = Cp'*Pbar*Cp+eye(nc)-Cy'*Cp;
P21 = diag(Bc)./(diag(Bc)+(diag(Bc)==O))*P21;
R11 = R11+Rll*le-10;

% Initializing the LMI P and R solution

imi = [];

% Initializing the counter variables

lminum = 0; % LMI number
imi_size = 0; % LMI size

% Declaring the LMI variables...
% The notation is the following:
% n_VARNAME = Variable size

n_P11 = n;

n_P22 = nc;

nPbar = rows(Cp);
n_P21 = [nP22 n_P11];
nP = n_P11 + n_P22;

nR11 = n;
nR22 = nc;

n_R21 = [n_R22 n_R11];
nR = n_R11 + nR22;

[lmi,tagP11 = addvar(lmi,l,[n_Pll 1]); % P11
[lmi,tagP21] = addvar(lmi,2,[n_P22 nP11]); % P21
[lmi,tagPbar] = addvar(lmi,1,[n_Pbar 1]); % Pbar
[lmi,tagR11] = addvar(lmi,l,[n_Rll 1]); % R11



% LMI #1: Wu'*Psi*Wu < 0

imi_num = Imi_num+1;

[lmi,lmil] = addlmi(lmi);
imi_size = Imi_size + n + length(H) + ne;

% Row 1

imi=addterm(lmi, [lmi_num 1 1 tagR1 ,1,Ahat','s');
imi=addterm(lmi, [lmi_num 1 1 0] ,-Bu*inv(Deu'*Deu)*Bu');

% Row 2

lmi=addterm(lmi, [lmi_num 2 1 tagR1l],H*Cz, );
lmi=addterm(lmi,[lmi_num 2 1 tagR1l],N*Cz*Ahat, );

lmi=addterm(lmi,[lmi_num 2 1 0],Bw'-N*Cz*Bu*inv(Deu'*Deu)*Bu');

lmi=addterm(lmi, [lmi_num 2 2 0] ,-Ro-N*Cz*Bu*inv(Deu'*Deu)*Bu'*Cz'*N);

% Row 3

lmi=addterm(lmi,[lmi_num 3 1 tagR11],Ce,1);

lmi=addterm(lmi,[lminum 3 3 01 ,-1);

if use_tol

lmi=addterm(lmi,[-lminum 1 1 0],-tol);

lmi=addterm(lmi,[-lmi_num 2 2 0] ,-tol);

lmi=addterm(lmi,[-lminum 3 3 01,-tol);

end;

% LMI #2: Wv'*Psi*Wv < 0

imi_num = imi_num+1;
[lmi,lmi2] = addlmi(lmi);
Imi_size = imi_size + n + length(H);

% Block (1,1)

lmi=addterm(lmi,[lminum 1 1 tagP11,1,Ahat,'s');

lmi=addterm(lmi,[lminum 1 1 tagP21] ,Cy'*Cy,1,'s');

lmi=addterm(lmi,[lminum 1 1 0],Ce'*Ce);

% Block (2,1)
lmi=addterm(lmi, [lmi_num 2 1 tagP11] ,Bw',1);

lmi=addterm(lmi,[lmi_num 2 1 0] ,H*Cz+N*Cz*Ahat);

% Block (2,2)
lmi=addterm(lmi,[lminum 2 2 01,-Ro);

if use_tol

lmi=addterm(lmi,[-lmi_num 1 1 0],-tol);
lmi=addterm(lmi,[-lmi_num 2 2 0],-tol);

end;

% LMI #3: P > inv(R)



imi_num = imi_num+1;
[lmi,posdef_1mi] = addlmi(lmi);
imisize = imisize + n + nc + n;

imi=addterm(lmi,[-lminum 1 1 tagPll],1,1);
imi=addterm(lmi,[-lmi_num 2 1 tagP21],1,1);
imi=addterm(lmi,[-lminum 2 2 tagPbar] ,Cp',Cp);
Imi=addterm(lmi,[-lmi_num 2 2 O],eye(nP22)-Cy'*Cp);
Imi=addterm(lmi,[-lmi_num 3 1 0],1);
Imi=addterm(lmi, [-lmi_num 3 3 tagR11],1,1);

% Now lets calculate the bound to the actual cost. The bound is
% given by:

% J = Trace( Bd' * P11 * Bd + Dyd' * Pbar * Dyd + Bd' * Cz' * (M2-M1) * N * Cz
* Bd)

% Calculating the LMI solver weights for the variables P and R.

Imi_name = 'lmi';
c_name = 'cvar';
c_formula = 'sum(diag(Bd" * #tagP11# * Bd)) + sum(diag(Dyd" * #tagPbar# * Dyd)
) + sum(diag(Bd" * Cz'' * (M2-M1) * N * Cz * Bd))';
makeobj

disp('Calculating P and R...')
disp(sprintf('The imi size is Yd.',lmi_size));
disp(sprintf('The variable size is %d.',length(cvar)));

if use_init

xinit = mat2dec(lmi,P11,P21,Pbar,R11);
Imis = evallmi(lmi,xinit);
[lhsl rhsl] = showlmi(lmis,1);
[lhs2 rhs2] = showlmi(lmis,2);
[lhs3 rhs3] = showlmi(lmis,3);

save before_K

[bound, xopt] = linobj(lmi, cvar, options, xinit);
else

[bound, xopt] = linobj(lmi, cvar, options);
% [tmin, xfeas] = feasp(lmi, options);
end;

if xopt == []
disp('The LMI for the K-iteration is INFEASIBLE!');
valid =0;

else
imis = evallmi(lmi,xopt);
[lhsl rhsl] = showlmi(lmis,l);



[lhs2 rhs2] = showlmi(lmis,2);

[lhs3 rhs3] = showlmi(lmis,3);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1dto%%%%%%%%%%%%%%%%%%%ttal)%%%%%%%%%;

P1i = dec2mat(lmi,xopt,tagP11);

P21 = dec2mat(imi,xopt,tagP21);

P12 = P21';

Pbar = dec2mat(lmi,xopt,tagPbar);

P22 = Cp' * Pbar * Cp + eye(n_P22)-Cy'*Cp;

R11 = dec2mat(lmi,xopt,tagRll);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%XXXXX%%%%X%%%%%%%%%%%%%%%XXXXXXXXXXXXXXXXXX%%

% Now lets calculate the full P21 block:

M = sqrtm(P11-inv(R11));
Upartial = (sqrtm(inv(P22)) * P21 * inv(M))';

[u,s,v] = svd(Upartial);
U = u*v';

P21old = P21;

P21 = sqrtm(P22)*U'*M;

P12 = P21';

%%%%%%%%%%%%X%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%XXXXXXXXXXXXXXX%%%%%%%%%%%%

% The final P and R matrix values are:

P = [P11 P21';P21 P22];

Rllold = R11;
R = inv(P);

R11 = R(1:n,l:n);

R21 = R(n+l:n+nc,l:n);

R12 = R21';
R22 = R(n+l:n+nc,n+l:n+nc);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Now lets check the results...

eig_lmil = real(eig(lhsl-rhsl));

eig_lmi2 = real(eig(lhs2-rhs2));

eig_lmi3 = real(eig(lhs3-rhs3));

valid = all([eig_1mil; eig_lmi2; eig_1mi3] < cutoff);

% If LMIs solved incorrectly, print an error message

if ~valid

disp('The LMI for the K-iteration is INFEASIBLE!');

else

if (max(real([eig(lhsl-rhsl); eig(lhs2-rhs2); eig(lhs3-rhs3)])) < 0)

disp('The LMI for the K-iteration is FEASIBLE!');

else



disp(sprintf('The LMI for the K-iteration is not well behaved, i.e. INFEAS
IBLE! [%1.4f] ',max(real([eig(lhsl-rhsl); eig(lhs2-rhs2); eig(lhs3-rhs3)]))));

end;
end;

end;



calc_theta.m

function [theta,valid] = calc_theta(Psi,U,V)

% [theta,valid] = calc_theta(Psi,U,V)

/ Overview Solves the basic LMI problem of the form

% Psi + U' theta V + V' theta' U < = 0

% Inputs Psi, U and V

% Outputs theta

% valid boolean specifying whether this optimization

% was well behaved and the results satisfied

% the constraints.

%/ Comments This matlab routine is part of the W-K irterative scheme

% used for the design of optimal H2/Popov controllers.

% Author Carl Livadas

% September 1995

% Copyright (c) Massachusetts Institute of Technology 1995

global accuracy hide_trace cutoff

accuracy = le-6;

options = [accuracy 0 0 0 1];

theta_lmi = [];

% Initializing the counter variables

imi_num = 0; % LMI number

imi_size = 0; % Size of the LMI to be solved

% Declaring the LMI variable Theta

size_theta = [cols(U') rows(V)];

[theta_1mi,tagtheta] = addvar(theta_1mi,2,size_theta); % Theta

% Recall this is a feasibility problem:

Imi_num = imi_num+1;
[theta_mi, lmil] = addlmi(theta_1mi);

Imi_size = lmi_size + length(Psi);

theta_lmi=addterm(theta_1mi,[lmi_num 1 1 0],Psi);

theta_lmi=addterm(theta_lmi, [mi_num 1 1 tagtheta],U',V, 's');

disp('Calculating the controller parameters Theta')

disp(sprintf('The Imi size is %d.',lmi_size));



[tmin, xopt] = feasp(theta_lmi, options);

tmin

if xopt == [] I tmin > 0
theta = [];
valid = 0;
disp('The controller parameter LMI is INFEASIBLE!');

else

Imis = evallmi(thetalmi,xopt);

[lhs rhs] = showlmi(lmis,1);

theta = dec2mat(theta_lmi,xopt,tagtheta);

% Now lets check the results...

valid = all(real(eig(lhs-rhs))<cutoff);

if -valid

disp('The controller parameter LMI is INFEASIBLE!');
else

if all(real(eig(lhs-rhs)) <0)
disp('The controller parameter LMI is FEASIBLE!');

else

disp(sprintf('The controller parameter LMI solution is not well behaved, i
.e. INFEASIBLE! [%1.4f]',max(real(eig(lhs-rhs)))));

end;

% max(real(eig(lhs-rhs)))

end;

end;



spring.m

%' Comments This matlab routine is part of the W-K irterative scheme

% used for the design of optimal H2/Popov controllers.

% Author Carl Livadas

% September 1995

. Copyright (c) Massachusetts Institute of Technology 1995

clear all;

format short e

accuracy = le-6;

% This is a matlab script that generates the state space matrices for
A the first example of Jon How's thesis:

k = 1;

A = [0 0 1 0; 0 0 0 1; -k k 0 0; k -k 0 0];

Bu = [0 0 1 0]';
Bd = [0 O; 0 0; 0 0; 1 0];

% Measurements:

Cy = [0 1 0 0];
Dyd = [0 sqrt(O.001)]; % This is what is used in Jon's thesis

% Performance Outputs:

Ce = [0 1 0 0; 0 0 0 0];
Deu = [0; sqrt(0.001)];

% Perturbation matrices:

Cz = [1 -1 0 0];
Bw = [0 0 -1 1]';

% Some weighting matrices

Rxx = Ce'*Ce;

Ruu = Deu'*Deu;

Vxx = Bd*Bd';

Vyy = Dyd*Dyd';

' Setting the plot axes

x_min = -1;
x_max = 1.5;
y_min = 10 ^ ( - 1) ;

y_max = 10^ (2);

% Defining the system name and saving the info



sys = 'spring';
save(sys);
disp(concat('Results saved in the file: ',sys,'.mat'));

% Calculating the lqg controller

lqg(A,Bu,Bd,Cy,Dyd,Ce,Deu,sys);



disk2.m

% Comments

% Author

This matlab routine is part of the W-K irterative scheme

used for the design of optimal H2/Popov controllers.

Carl Livadas

September 1995

% Copyright (c) Massachusetts Institute of Technology 1995

clear all;

format short e

accuracy = le-6;

% This is a matlab script that generates the state space matrices for
% the second example of Jon How's thesis:

k
m
d
rho

= 1;

= 1;

= 0.01;
= 0.005;

J = m*diag([0.5,1,1,1]);

T = [1 -1 0 0;-1 2 -1 0;0 -1 2 -1;0 0 -1 1];
K = k*T;
D = d*T;

A = [zeros(4) eye(4);-inv(J)*K -inv(J)*D];
Bu = [0 0 0 0 0 1/m 0 0]';
Bd = [0 0; 0 0; 0 0; 0 0; 0 0; 0 0; 0 0; 1/m 0];

' Measurements:

Cy = [0 0 0 1 0 0 0 0];

Dyd = [0 sqrt(rho)];

, Performance Outputs:

Ce = [0 0 0 1 0 0 0 0.1

0 0 0 0 0 0 0 0];

Deu = [0;sqrt(rho)];

% Perturbation matrices:

Cz = [1 -1 0 0 0 0 0 0;0 0 1 -1 0 0 0 0];

Bw = [0 0 0 0 -2 1 0 0;0 0 0 0 0 0 -1 1]';

% The perturbation bounds are

p = input('Enter the uncertainty magnitude ');

if p ==[]
disp('Using the default uncertainty magnitude.');



p = 0.024;
end;

M1 = -p*eye(2)

M2 = p*eye(2)

% Some weighting matrices

Rxx = Ce'*Ce;

Ruu = Deu'*Deu;

Vxx = Bd*Bd';

Vyy = Dyd*Dyd';

% Setting the plot axes

x_min = -0.15;

x_max = 0.2;

ymin = 0.5;

ymax = 2;

% Defining the system name and saving the info

sys = 'disk2';

save(sys);
disp(concat('Results saved in the file: ',sys,'.mat'));

% Calculating the lqg controller

lqg(A,Bu,Bd,Cy,Dyd,Ce,Deu,sys);
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