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Abstract

Proper understanding and modeling of the bistatic scattering of sound from the ocean
bottom is vital for underwater acoustics. The problem of pulse scattering from rough
surfaces, Rayleigh parameter ' > 1, in the midfrequency range 200-250 Hz (A = 6m),
is considered. An analytical model for scattering strength is developed and found to
match with the ARSRP-93 experimental data. Mean value and higher order statistical
properties of the signals received during the experiment are analyzed independently.

Analysis of the higher order statistical properties shows that they are controlled by
the bistatic angle only. Further analysis suggests that the major contribution to the
scattering strength is generated by the O(A) scales on the bottom, thus supporting a
separation of scales hypothesis.

The mean value of the received signal (scattering strength) is controlled by the
large scale geomorphology and the experimental geometry. It is found that Lam-
bert's Law, which assumes infinitely small wavelength, does not explain experimental
data. Small perturbation theory accounts for the wave effects involved in the prob-
lem and hence performs better. However, it underpredicts the levels of scattering in
back directions by about 10 dB. The separation of scales hypothesis suggests that
small features, not accounted for by the first order small perturbation solution, are
responsible for enhanced scattering into back directions. A heuristic model based on
combination of small perturbation and boss theory is developed, within the separation
of scales framework to account for those features which, except in forward scattering,
matches experimental data to within 3 dB.

Thesis Supervisor: Professor Ira Dyer
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Chapter 1

Introduction

1.1 Motivation

The problem of scattering of acoustic waves from rough surfaces is still exten-

sively investigated. The reason for the continued attention it fairly simple.

Conventionally all issues in underwater acoustics are categorized either as

a direct or an inverse problem. Properties of sound scattering from rough

ocean surfaces and bottoms are vital for both direct and inverse problems,

i.e., in all underwater sound applications.

A direct problem usually arises in sonar engineering. The major question

asked is to find the sound field incident on the receiver due to given sources



in a certain environment. The practical implication of this question is clear.

Imagine for instance an arbitrary sonar system. Its performance is sought

about in terms of its detection ability. Detection ability in turn is governed

by the signal-to-noise ratio. It is customary to distinguish different sources

of noise in the ocean. First, there is ambient noise. Second, there is system

noise, i.e., noise created within the sonar system itself. At last, the ocean

environment contains inhomogeneities within the water column and on its

rough boundaries. The combined effect of sound scattering back from all

these inhomogeneities is conventionally called reverberation. Consequently,

the equivalent noise is called the reverberation noise.

As long as power radiated by the sonar is small enough, reverberation

will be indistinguishable in the received signal due to the first two noise

sources. This system is so-called noise-limited, i.e., noise contributing to

the signal-to-noise ratio is a sum of the system noise and the ambient noise

in the ocean. Neither one of those two noise sources is a function of the

radiated signal itself, so sonar performance can be enhanced by increasing

the power of its transmitter, thus increasing sound scattered from the target,

i.e., the received signal, while leaving noise unchanged. On the contrary,

power scattered from inhomogeneities will increase at the same rate as power



scattered from the targets we are trying to detect, eventually outrgrowing

ambient and system noise and becoming the most important of all three noise

sources. Thus powerful and capable sonar systems can become reverberation-

limited. Now, to achieve better performance it is necessary to somehow

control reverberation. And to make an assessment of sonar performance, a

good model of the reverberation must be developed.

This emphasizes the practical importance of studying the reverberation.

Also, the intrinsic property of reverberation noise as a sonar dependent prop-

erty is highlighted. In contrast ambient noise is independent of the sonar, i.e.,

independent of the way we observe it, while reverberation noise is a function

of both environment and the sonar system. Unlike any other type of noise,

reverberation can not be sought independently, without considering how we

observe it. Reverberation does not manifest its existence without external

intervention. We encounter it while operating a sonar, or otherwise interact-

ing with inhomogeneities. As in quantum mechanics, the way we observe the

phenomena may alter what we see.

The inverse problem is also frequently encountered in applications, espe-

cially in oceanography. In this scenario, properties of the environment are

deduced from the amount of reverberation noise generated due to the oper-



ation of a certain sound source. Usually a sound source is controlled by the

experimenter, however generally this does not have to be the case. Scattering

of sound generated by sources already present in the ocean can also indicate

the configuration of the environment.

In solving the direct problem, reverberation is usually considered as noise

we would like to get rid of. Conversely, while solving the inverse problem

reverberation is treated as a signal carrying information about environment.

The same techniques and models are commonly used for the direct and in-

verse problem solution, hence the difference between these two problems is

often confined to the attitude of the researcher. Qualitative and quantitative

understanding of the process of acoustic reverberation in the ocean, inher-

ently interconnected with the ability to properly model the phenomenon, is

vital for the solution of both the direct and inverse problems.

1.2 Objectives

To improve knowledge about rough ocean bottom scattering, a large scale

experiment was initiated by ONR. The first stage of the experiment was con-

ducted in 1991 employing two ships. Three ships were used in the second



stage in 1993. These stages are conventionally known as ARSRP-91 and

ARSRP-93, respectively. The later one is described in detail in subsequent

sections. A large volume of scattering data was acquired during the experi-

ment and made available for researchers. Cited from [1], important scientific

questions of the experiment were:

* What are the important mechanisms of rough, elastic, heterogeneous

seafloor scattering? What seafloor features cause scattering that ap-

pears event-like when high resolution signals are used? Is this scattering

associated with high slope surfaces such as faults on the seafloor or fea-

tures beneath a thin sediment cover? What role does propagation have

to play (caustics etc.) in the generation of highly-resolved signals?

* How important is elasticity of the seafloor for scattering? Are Neu-

mann, Dirichlet or impedance boundary conditions useful concepts?

Are compressional and shear speed profiles necessary for accurate pre-

diction? Might scattering be affected by volumetric inhomogeneities in

the basement?

* Is large scale seafloor geomorphology the dominant variable in control-

ling scattering? What description of seafloor geomorphology at near



wavelength scales is needed to predict scattering? Is a fractal self-

similar model adequate for this small scale? What is the sensitivity of

measured and model results to interface characteristics like fractal/non-

fractal of, if applicable, Gaussian/non-Gaussian statistics and within

divisions, what is the sensitivity to variation of parameters like the five

in the Goff-Jordan model?

* What is a good characterization of seafloor scattering? Can the prop-

erties of the reverberation be described using stochastic concepts, or is

a more deterministic approach necessary? If a stochastic approach can

be used, is the concept of scattering strength as used in the sonar equa-

tion useful for quantifying scattering with a high resolution system? Do

simple models like Lambert's Law have a useful role in describing the

scattering?

In the following I will analyze and model the midfrequency data (A = 6m),

in order to address some of these questions.



1.3 Major results

Analyzing the data I found that the received scattering signal is a highly

nonstationary function of time. I show that two goals are achieved by re-

moving local short-time average from the received signal. First, this proce-

dure allows one to separate the signal into its "slow" and "fast" components,

where the slow component (local mean) carries information about the first

order statistical properties of the signal, and higher order statistical prop-

erties are encapsulated in the fast component (signal with its local mean

removed). Second, the resulting fast component is a stationary stochastic

process, which simplifies its statistical analysis. Subsequently, I show that

different physical parameters control first and higher order statistical prop-

erties of the received signal, hence slow and fast components can be analyzed

and modeled independently.

Considering the higher order statistical properties of the received signal, I

find that discreteness of the scattering process results in a slight deviation of

the received signal probability density distribution away from the Gaussian

at high levels of the received signal. However, a substantial difference be-

tween signal and Gaussian noise is found considering temporal distribution

of individual features in the received signal (peaks). Therefore, I conclude
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that analysis of individual peaks in the received data is a better indicator of

statistical properties of the received signal, and hence a better reflection of

the physics of scattering. Additionally, I find that the major contribution to

scattering is generated by the O(A) scales on the bottom, which supports a

separation of scales hypothesis [2, 3], and emphasizes the importance of wave

effects. Later I show that the first order statistical properties of the received

signal (related to the scattering strength) are controlled by the experimental

geometry and large scale geomorphology, with essential roughness scales on

the order of the sonar footprint size L0 I 100 + 1000 m.

Then it becomes clear that the scattering observed during the ARSRP-

93 experiment is a multiscale process, and therefore a multiscale wave scat-

tering theory is required for its proper understanding and modeling. This

explains the apparent mismatch between the experimental data and the geo-

metric Lambert's Law [4] which assumes infinitely small incident wavelength.

Small perturbation theory [5, 6] accounts for the finiteness of the incident

wavelength and captures the correct functional dependence of the scattering

signal, however underpredicts its level by about 10 dB in the back directions.

Using the separation of scale hypothesis I suggest that small features not

accounted for by the first order small perturbation (SP) solution are responsi-



ble for the enhanced scattering in the back directions. To improve the model,

I propose a composite boss - SP theory. Within this model, the solution is

sought of as an incoherent superposition of contributions from small scales,

accounted via the boss theory, and the SP solution. Conceptually this model

is in line with the standard 2-scale theory [7], where the solution for a rela-

tively large scattering patch is sought as a combination of SP and Kirchhoff

solutions. Finally, I show that the model developed results in an improved

fit with the experimental data (to within 3 dB).

1.4 Notation

I use complex representation of the acoustic field parameters throughout,

harmonic time dependence is implied unless otherwise stated. Consequently

the physical value of a parameter is given by the real part of its complex

representation. So, for instance, if stands for the complex amplitude of the

parameter (, the value of the parameter observed in an experiment is

1
physical = Rc = + *), (1.1)

2

where superscript star as usual means complex conjugate.

Overbar is chosen to designate time average of a random function. Often
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a square value of the complex amplitude of a harmonic function averaged

over its period is of interest. In complex notation it becomes

2 (1.2)

hence, for a physical (observable) value

1hysical 2 2 . (1.3)

As a shortcut for the mean square value of a complex amplitude, the over-

bar is omitted, so for a harmonic function (2 stands for (2 unless otherwise

stated.

Angle brackets () are chosen to indicate an ensemble average of a random

function. An average over the period and the ensemble mean square value

of the complex amplitude can be expressed as M) or equivalently in the

shortcut notation as ( 2).

1.5 Thesis organization

First, in Chapter 2 I present a brief outline of the problem. I start the dis-

cussion with a review of the basics of sound propagation in the ocean. This

naturally leads to the recapitulation of classical scattering terminology. It



then becomes clear that an adequate model of rough surface scattering is

a cornerstone in understanding reverberation phenomena and, consequently,

reverberation noise. In Chapter 3 rough surfaces are described in terms useful

for the subsequent development of the scattering theory used in this thesis.

Chapter 4 briefly presents several classical rough surface scattering theories.

In Chapter 5 the ARSRP experiment is described. This experiment was de-

signed to refine our knowledge of low grazing angle reverberation. Analysis

of higher order statistics in the time series acquired during the ARSRP ex-

periment is presented in the Chapter 6. Subsequently in Chapter 7 I analyze

the bistatic scattering strength observed during the ARSRP experiment. Fi-

nally, in the Chapter 8 I present a summary of the thesis and suggestions for

future work.



Chapter 2

Problem Outline

A standard sonar experiment is designed as follows. A signal consisting of a

sound pulse is radiated from a source. The signal propagates to the receiver

in the inhomogeneous ocean environment. Knowing the source and the envi-

ronmental parameters, one would like to compute the signal registered by the

receiver. Several issues should be confronted in order to resolve the matter.

* First, a mixture of the signal with ambient noise is inevitably recorded.

Hence, proper understanding and adequate modeling of the noise in

the ocean is essential to detecting and studying scattering and rever-

beration.

* Second, a way must be found to determine the paths followed by the
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sound signals, and to decide how sound parameters might have been

changing along these paths. This means that a model of sound propa-

gation in the environment has to be established.

* Third, inhomogeneities are present in the path of the sound waves,

hence there will be an interaction between sound and inhomogeneities,

or in other words scattering of the incident sound wave from inhomo-

geneities. The properties of the sound wave can be dramatically altered

during this interaction, hence the importance of studying scattering.

Traditionally three classes of scattering are distinguished. The first class

consists of scattering from individual inhomogeneities that can be distin-

guished in the received signal. In turn, such an inhomogeneity is referred to

as a "target" or "scatterer". Often the observer attitude alone dictates the

choice between target and scatterer, so that any unwanted target might be

called a scatterer.

The second class may be described as follows. When scattering from

many inhomogeneities, somehow distributed in the entire volume of the wa-

ter, contribute to the received signal, the interaction of the acoustic field with

these inhomogeneities is usually designated as volumetric scattering. Usually

these inhomogeneities are considered small and abundant, so that individual
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scatterers are not seen, and the received signal is some sort of aggregation of

individual contributions.

The third class is scattering from a surface. This type of scattering is

encountered when the inhomogeneities are two-dimensional, or are a distri-

bution of three-dimensional inhomogeneities on the interface. Usually within

this class of scattering problems, scattering from rough surfaces is distinct

from scattering from smooth surfaces, thus forming a lower level of catego-

rization.

Sometimes, the combined effect of scattering from all inhomogeneities

presented in the environment is called reverberation [8]. However, often re-

verberation has a more restrictive meaning, so that only scattering from the

ocean surface, bottom and volume into one direction only (back to the source

of the signal) is termed reverberation [9]. Sometimes the subdivision between

different kinds of scattering, and between scattering and reverberation, ap-

pears artificial. For instance, reverberation clearly is not an independent

phenomenon and can be understood through its components: propagation

and scattering. However, the delineated classification often proves effective in

distinguishing between different natural phenomena, and so will be followed.



To develop a proper understanding of the sonar experiment, all three

problems outlined must be resolved. In this thesis I will mostly concentrate

on scattering issues. However, results of the sonar experiment (ARSRP) will

be used to enhance our knowledge about the rough bottom scattering. Hence,

to build a basis for the interpretation of experimental results, I start here with

a brief outline of how the first two problems (noise and propagation) can be

approached, followed by the essential scattering terminology.

2.1 Ambient noise in the ocean

More complete discussion of ambient noise can be found in [4, 10, 11, 12]. A

brief outline of the terminology follows.

Ambient noise is "the sound of the ocean" [10], i.e., that part of the

acoustic field that exists in the ocean without any intervention from the

researcher. Ambient noise constantly varies with time and location. Knowing

its exact level at each moment is hardly possible, so stochastic models of noise

in the ocean environment are pursued.

Mean square noise pressure p2 detected by an omnidirectional receiver is

a common measure of ambient noise energy. To indicate frequency depen-



dence and directivity of the noise power, the spectral power density of noise

Wn(w, k) is introduced, where a Fourier transform is performed over both

temporal and spatial variables, k is the wave vector associated with the noise

and w is the noise frequency. This quantity normally is used as a measure

of the noise field. Mean square pressure p2 is simply related to the power

spectral density:

P = J dw W (w, k)dk. (2.1)

The input power of the unwanted interference measured by the system

with transfer function TF(wk) is proportional to the actual mean square

pressure of noise p2, ,act

Pn,act = dw J , (w, k)TF 2 (w, F )dk. (2.2)
-OO -OO0

This number can serve as an indicator of the actual noise limiting the sonar

performance. However, in practice usually its base ten logarithm, called noise

level, is used instead:

Ln = 10 log(p2,act). (2.3)



2.2 Sound propagation in the inhomogeneous

environment

The science of sound propagation modeling is still growing nowadays. Several

wave theories have been recently developed in addition to existing ones [13,

14, 15, 16, 17, 18, 19, 20].

The reason for continuous attention to this topic is that the ocean is

an extremely complicated environment, where all parameters are constantly

changing with depth, range and time. Due to the presence of boundaries

(ocean surface and bottom, targets) several different paths connecting source

and receiver are generally possible. This multipathing adds complexity to an

already complicated problem.

Ray theory (which I will limit myself to) was the first to appear, as an

extension of classical geometrical optics. Although a tremendous amount has

been accomplished in pursuit of wave theories of sound propagation, rays are

still a powerful tool for understanding and modeling [21, 10, 22, 23, 24].

Rays carry an intuitive meaning, and often can provide useful physical

insights into the nature of sound propagation. Ray solutions require the least

mathematical investment, and frequently can be performed analytically. And



surprisingly enough, a properly executed ray solution often has the same level

of quantitative precision as more involved wave theories do. I use rays in the

analysis of the ARSRP experiment, hence a summary of the theory is briefly

outlined here.

A ray is an imaginary line drawn in the direction locally normal to the

wavefront. The computation of this line is referred to as ray tracing. Rays

outline the direction of the field propagation, i.e., they are a geometrical

property of the field. Additional considerations allow one to determine how

energy associated with the field changes along the ray. To derive ray equa-

tions one often starts with a linear sound wave equation [22, 9]:

1 a2(
2 = (2.4)c2 M t2'

where r is the coordinate vector in the three dimensional space, c(i) is the

sound speed in the ocean, t is time, and 1 is the scalar acoustic potential.

All physical parameters of sound can be expressed in terms of the potential.

For instance, particle displacement d, velocity ', sound pressure p and energy

flux F take the following form:

O 92 (D a2 4D I:
d= V( , = -V , P=-P- F - (25)

where p is the density. Then solution to the wave equation is sought in
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the form of a harmonic wave: o = (o( • e-iw(t-r(-)), where 7 is called the

eikonal. Ray approximations are valid when both Go(r) and VT(r) are slow

functions of F, so that the following is correct:

,0 2 7VT 0 U 2  U2
<< 2 2 2 « 2 (2.6)

Go c Io cc

Then the wave equation is reduced to the well known eikonal equation:

1
V2T 2.(2.7)

Approximating the solution as a locally plane wave, one ends up with

1
,7r = -, (2.8)

C

where n is the local normal to the wave front. Ray tracing equations subse-

quently obtained for the case of in-plane propagation in the (xz) plane take

the form:

d (I COS 0)= 1 8cI (cos) - Cox (2.9)
- sin 0) = 1 ac

dt c C az'

where 0 is the grazing angle measured from horizontal.

Finally, for the range independent environment (2.9) can be further re-

duced to the differential Snell's law:

cos 0C = a = const, (2.10)c(z)



where the horizontal slowness a acts as the ray label.

The ray solution gives only the direction of energy propagation. However

it exposes an important property of rays. Substituting the solution in the

form of the plane wave into (2.5) one can see that F = pWID2 kin, hence

energy flow is parallel to the ray direction.

Consider now a tube of rays. Conservation of energy requires that energy

flow through any tube cross section is constant. Then the equation for the

sound energy change along the ray is:

p2 = p p1c2A, (2.11)P2cjA2

where P ,2 are mean square pressure amplitudes, P1,2 are densities and c1 ,2 are

sound speeds observed in cross sections 1 and 2 with areas A 1,2 , respectively.

Generally, equations (2.10) and (2.11) are solved numerically for any given

sound speed profile c(z). However, for several profiles there are analytical

solutions. For instance, if the sound speed is a linear function of depth, i.e.,

c(z) = c(zo) + g(z - z0), then the ray path is a circle with radius of curvature

given by

r = -1/ag. (2.12)

Usually the sound speed profile is known through direct or indirect mea-

surement at several depths. Then these measurements can be approximated
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with a piecewise linear curve. Each piece with a constant gradient g of the

sound speed define a layer. In each layer ray calculations can be carried

out analytically resulting in the following expressions for sound propagation

forward from a point source [10]:

R1 2 = .(sin 01 - sin 82),

Z12= (cos 92 - cos 81), (2.13)
ug (2.13)

1 In (1+sin01)(1-sin02)

t12 2g (1-sin 01)(1+sin 02)

2 p2c1 W 1 dOl
P2 -47rR 12 tan 02 dR 12

where R 12 and Z 12 are horizontal and vertical distances traveled by the ray, 91

and 92 are grazing angles at the entrance and exit from the layer, respectively,

determined via Snell's law, t 12 is the travel time, and W is the power radiated

by the source. Using the forms of (2.13) in each layer results in an efficient

numerical solution for the sound pressure.

The first three equations in the (2.13) are an outcome of the ray tracing

equations (2.9), hence valid when (2.6) is true. For a plane wave propagating

in the layered medium with sound speed c(z) having gradient g(z) dependent

on the vertical coordinate z only it is equivalent to [9]:

ld1 d log kz << 1. (2.14)
kz dz

For steep rays with kz = O(k) it can be further reduced to gA/c << 1
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[9], which sometimes is said to be the ray theory applicability condition.

But in the vicinity of a turning point k, -+ 0 and condition (2.14) become

inapplicable for an arbitrary small g. However, it was shown to primarily

affect the phase accumulated along the ray path and the field amplitude

calculation, and to have less profound effect on the ray direction calculation

[9, 25]. The last equation in the (2.13) is a result of the energy conservation

consideration along the ray tube. Near the caustic the ray tube diameter

shrinks to zero. It results in an infinite value of the field amplitude, from use

of the last equation of (2.13). More precise WKB approximations [9, 25] or

more involved methods of the ray tube calculation [22] can in fact overcome

this difficulty. Then caustics can be safely included into the ray theory

applicability domain. Matched asymptotic expansion can be used to treat

turning points correctly [25]. However, all this results in somewhat different

and more complicated ray tracing equations. Using simplified forms (2.13)

specifically restricts one to the regions away from caustics and turning points.



2.3 Basic scattering terminology

A ray can be an adequate tool for sound propagation modeling when inho-

mogeneities are smooth, i.e., when medium parameters are changing only

slightly on the scale of the wavelength. Hence ray theory can not be used

near rough boundaries. Examination of wave propagation theories indicate

the same tendency: the presence of a boundary in the domain of the solu-

tion can not be handled. Approximations made to enhance performance of

the theory in application to propagation preclude its use in the vicinity of

boundaries. A specific tool is required to properly address the issue, i.e., a

scattering theory. Then propagation theory can be used to trace the sound to

and from the interface, and scattering theory then describes the interaction

with the boundary.

Boundaries in the ocean are represented by the bottom and surface, by

coast lines, and also by wanted and unwanted targets that may exist within

the water column. In the next subsections essential terminology is briefly

summarized.

Considering scattering it is advantageous to make use of the following

two assumptions. First, it is known that sound waves decay exponentially as

they propagate due to absorption. By no means can we neglect absorption in
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propagation. However only rarely does absorption affect scattering, hence it

will be ignored from now on. The other limitation reasonable to presuppose

is local homogeneity and isotropy of the medium in the vicinity of the target

or scatterer. These two restrictions allow one to effectively isolate scattering

effects from those imposed by propagation.

2.3.1 Scattering from targets: target strength

Consider a plane sound wave with pressure amplitude Pi, wave vector k and

wavelength Ai = 27r/ki incident upon a body. In scattering this body is

often referred to as a target. Incident acoustic pressure causes vibrations on

the surface of the target and within its volume, and a new system of waves

originates from these vibrations. This part of the acoustic field is called the

scattered field or equivalently the scattered wave.

Generally the scattered pressure field in the vicinity of the target is quite

complicated. However, at large distances from the target with characteristic

size D defined by r >> D 2 /A , the scattered field can be represented as a

locally plane spherically spreading wave traveling out from the target to the

observer. Thus, a target at large distances behaves as an effective directive

source of the scattered wave. This is the so-called far field approximation.



The pressure p, generated by this source can be expressed as [26]:

p.( f = f I( ,, z) - , (2.15)
r

where the scattering amplitude f incorporates both the amplitude and phase

of the scattered wave in the far field in the direction k, when the target is

illuminated by a plane wave propagating in the direction ki. Therefore the

scattering amplitude f is a complete description of the scattering process

when distance from the region where scattering takes place is large enough.

Equation (2.15) is a definition of the scattering amplitude f. However in

practice scattering amplitude f often is an outcome of a scattering theory,

and the pressure field in the far zone is then determined via (2.15).

It is customary to introduce several more measures of scattering called

"cross sections" and "target strength". Even though descriptions in terms of

a cross section or a target strength is incomplete, it is often convenient and

traditionally used.

First, for targets of finite extent it is appropriate to define a geometric

cross section ag which is equal to the normal projection of the area of the

target on the direction of incident wave propagation.

Then the scattering cross section a, is introduced as a measure of the



equivalent source level of the scattered wave [26, 27]:

VV8(kj)
as(i) = lim (2.16)r- oo I

where 1i is the incident wave intensity, and W, is the total power scattered,

averaged in time, due to a plane wave incident from direction ki. Imagine the

scattering process as an energy transfer from the incident to the scattered

wave. Then the scattered power W, is equal to the power carried by the

incident wave in the absence of the target through its scattering cross section

area as. Hence, scattering cross section conveniently measures the effective

geometrical cross section of the target as seen by the incident wave.

With a, so defined, the scattered mean square pressure at large distances

from the target can be expressed as

2 a2 ki) B 2sk i)2 = p2 ( , (2.17)
PS 4irr 2  dt(k 2)

where Bt (ks, ki) is a squared beam pattern of the effective scattering source,

and directivity factor dt(ki) = 1/4w. f B (k, ki)dk, is a mean square beam

pattern averaged over the entire angular space. Clearly, both values of the

beam pattern and scattering cross section are required to describe the scat-

tering. A convenient way to merge these two terms into one is to introduce



the differential scattering cross section:

ad(ks, fi) = lim (2.18)
r-+oo I

where Is is the scattered wave intensity observed at range r in the direction

ks due to the plane wave propagating in the direction ki. Consequently, the

scattered pressure at large distances from the target is given by:

2 P2 ad (ks) k%)r)ps k2r, r2 (2.19)

Frequently in applications, bistatic scattering cross section and backscat-

tering cross section are used along with the differential scattering cross sec-

tion: In Ub (k, ki) = 47ro-d(ks, I ), (2.20)

9b(ki,) = 47rd(-k, ki).

Except for a scaling factor, bistatic and differential scattering cross sections

can be used interchangeably. Backscattering cross section has a much more

restricted meaning since only one direction is considered.

The other way of target description is found through its target strength

defined as follows:

-.. g r2  . p2(k -I'k i ,r )1

T(ks, ki) = 10 log lim 2 dB re rf, (2.21)
F[r0 tref P j



where usually the reference distance rref = lm. Sometimes the target

strength definition is restricted to backscattering only. Since I am gener-

ally interested in scattering into all directions, I shall use (2.21) as the target

strength definition. Target strength so defined can be easily related to scat-

tering cross sections, e.g.:

Ud(ks, ki)
T(k, i) = 10 log r2'f dB re rre. (2.22)

ref

Appropriate modification of (2.19) result in the following expression for

sound pressure level in the scattered signal:

-. -,p2 - r2

Lp(ks , r) = 10 log ' z+ T(ks, ki) - 10 log 2,f dB re rref&Pref, (2.23)
Pref ref

where the usual definition of the sound pressure level is used:

2

LP= 10log 2 , dBrepref, (2.24)
Pref

where in underwater acoustics prefy = 1pPa.

Historically notation of target strength is preferred in acoustics, and scat-

tering cross section is a conventional choice in electromagnetics. There is no

reason beyond tradition to favor target strength, differential or bistatic cross

section as a scattering descriptor.

Although all methods of target characterizations outlined here are fre-

quently used interchangeably, only scattering amplitude is a complete de-
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scriptor. Neither cross section nor target strength carry information about

the scattered wave phase. Frequently phase has no relevancy and can be

safely ignored. However, not always is this the case. Careful examination

of possible effects associated with phase change due to scattering is essential

prior to use of target strength and scattering cross sections as descriptors of

the scattering process.

2.4 Scattering from surfaces

The same approach used for targets can be used for characterizing scattering

from surfaces and volumes. However such a treatment has a clear disadvan-

tage. Within the boundaries of this approach, different segments of the same

surface represent different targets, and target strength must be determined

for each piece independently. This combines effects of the sonar system,

propagation and scattering into one quantity, hence target strength is not a

property of either the medium or of the surface only. A somewhat different

approach can give a simpler result, if applicable.

Historically in underwater acoustics target strength T, for scattering from

the ensonified patch A of the rough surface is approached in the following



way:

A

Ts(k, k, A) = Ss(ks, j) + 10 log -2 dB rerrefi, (2.25)
Tref

where scattering strength S, is given by

Is (k ki 4) * r
S,(k, i) = 10log lim  2f , dB. (2.26)

r-+ oo r re f

Equivalently, S. can be expressed in terms of cross sections, e.g.,

m8 (k8, ki)
S((k, k) = 10log 2 -i dB re rref, (2.27)27r

where m, is a bistatic scattering cross section.

The form (2.25) is only useful if S. does not depend on the ensonified

area. Then scattering from a unit ensonified area of the surface can serve as

a descriptor of surface scattering properties, which are now separated from

the effects imposed by the sonar system and propagation contributing to the

interrogated area A. In this case, assuming reference distance to be unity,

forms (2.25)-(2.27) allow one to choose scattering strength per unit area S.

or bistatic scattering cross section per unit area m, as a sole descriptor of the

scattering process. Determination of S. or m. then constitutes the essence

of the surface scattering theory.

However, the meaning of the resultant scattering strength is more re-

strictive then the meaning of the scattering cross sections (2.18, 2.20) and
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target strength (2.21). The simplifying assumption was made that the power

scattered from a surface is simply proportional to the area contributing to

the scattering. This in turn presupposes that scattering from different parts

of the ensonified area are contributing to the target strength incoherently.

Clearly, only random and very rough surfaces can posses such a property.

Hence, neither smooth nor slightly rough surfaces can be adequately de-

scribed by (2.25) unless S, depends on the area A, which would violate the

initial assumption and consequently make the form (2.25) useless.

Physically, describing scattering properties of the surface in terms of its

scattering strength per unit area one is restricted to cases when incoherent

scatter exceeds the coherent component. It is usually the case that incoher-

ent scatter is formed when several independent scatterers are contributing

to the received signal simultaneously. Then one can describe the combined

scattering using the scattering strength per unit area notion. However each

individual scatterer acts coherently, and there can be coherence between ad-

jacent scatterers if they are close enough. Therefore, there is a transition at

a specific scale. We can use Ss only if the scattering patch is large enough to

encompass several scattering zones, and these zones are large enough so that

adjacent zones contribute to the received signal incoherently. These coherent



zones are usually associated with Fresnel zones (appropriate correction for

roughness through the Rayleigh parameter implies, see Chapter 4). There-

fore, only when several Fresnel zones are covered by the sonar footprint can

we use S, as a descriptor of scattering. It shows that even when applicable,

S, does not reflect the physics of the scattering process. It simply is an in-

dicator of the fact that several major independent contributors can not be

resolved using the current resolution. Physical processes underlying the scat-

tering phenomena are coherent, and only low resolution of the experiment

permits use of the S, as the descriptor. Consequently, this means, that as

sonar engineering progresses, the usefulness of S, diminishes.

Such a limitation is not inherent when a description is made in terms of

scattering cross sections and target strength. Coherent scattering is described

in terms of a and T as well as incoherent scattering. Any dependence of the

scattered wave on the ensonified area can be described using a and T. That

makes scattering cross section and target strength more general (however,

less convenient) descriptors.



2.4.1 Reverberation in underwater acoustics

The significance of reverberation is normally measured by an equivalent plane

wave reverberation level RL defined as the level of the axially incident plane

wave which produces the same hydrophone output as that produced by the

received reverberation [4]. In order to compute RL, first the problem of sound

propagation from the source to the scattering surface is solved to determine

the interrogated area and the incident pressure level. Then S, is determined

from the properties of the surface using specific scattering models, and via

(2.25) target strength is found. Finally, sound propagation to the receiver is

calculated, leading to the value of the scattered sound pressure or intensity

at the receiver location. The presence of several possible paths connecting

source and receiver has to be accounted for in order to properly determine

reverberation level.

However, expression (2.25) is inadequate for the description of high reso-

lution surficial scattering. This in turn suggests that the classical treatment

of the surficial reverberation using scattering strength per unit area as a pa-

rameter is inadequate. It can be used only when the sonar footprint is large

enough, which is no longer true.



2.5 Summary

To conclude I would like to state some end results in a summarized format:

* Basic understanding of all aspects of sound under water (including

propagation, noise, etc.) is essential to properly address scattering

experiments.

* Ray acoustics is frequently an appropriate tool for modeling underwater

sound propagation, and certainly the easiest one. Simplified forms

(2.13) are an efficient way of modeling propagation away from caustics

and turning points, i.e., within the first convergence zone for not very

shallow grazing angles.

* Several measures of scattering are known. Of all, scattering amplitude

(magnitude and phase) is a complete descriptor of the process. Scat-

tering cross section and target strength can be used if phase of the

scattered wave can be ignored. Scattering strength can be used when

the experiment resolution is low enough, however it does not reflect the

complete physics of the scattering process.

* Underwater reverberation ought to be understood through its compo-

nents: propagation and scattering. The scattering part of the classical
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surficial reverberation theory is based on the use of scattering strength

S., thus it is suitable for analysis of the incoherent part of the scattered

field only.



Chapter 3

Rough Surfaces

3.1 General description of surfaces

Geometrically a surface in three dimensions is described by its distance q(, r)

from a coordinate surface given by 7(, r7) = const [28]. Accordingly, this

coordinate surface is referred to as a "mean" or "reference" surface. Then,

in the Cartesian coordinate system (x, y, z) a surface is specified by its heights

z(x, y, t) above the "mean plane".

All natural surfaces are quite complicated in shape due to diverse physical

reasons, or in other words rough. To a certain extent, the large scale surface

shape characteristics can be measured, so some deterministic knowledge is



available. Lacking precise knowledge about small scale features, however,

one resorts to a statistical description.

Hence, a real surface always can be decomposed into a sum of two com-

ponents (e.g., [29]):

z(x, y, t) = H(x, y, t) + h(x, y, t), (3.1)

where H stands for the deterministic part of the surface, and h is a random

statistical function of its arguments. The statistical part of the surface height

h can be expressed employing standard measures of a stochastic function.

Generally, the n-dimensional probability density

w(X,, yi, hi; ...; x, y, h) (3.2)

is a complete descriptor of a random function h as n approaches infinity.

So an adequate description of a rough surface consists of the value H and

n-dimensional probability density function for the h. In reality neither H

nor w can be determined exactly, so certain approximations to real surfaces

are accepted in order to proceed.

Other than specified by the (3.1) decomposition of the surface into its

components can be performed. Often a "separation of scales" approach [2,

3, 30] is used to break surface roughness into its "large scale" and "small
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scale" components (see Chapters 4 and 7). Initially this method of surface

decomposition was developed for cases when H consisted of scales too large

to be of any interest at all in scattering applications. Then h was decomposed

into its two components hlarge and hsmall to simplify the problem. However,

ones ability to discard H is not a validity criterion for use of the separation

of scales approach. These two methods of the surface decomposition can be

successfully applied independently.

Sometimes in applications it is advantageous to realize that even when

the surface in part is known deterministically, it is a deterministical knowl-

edge about a particular realization of a stochastic process. In this case it

is sometimes useful to extend the statistical description to scales normally

known deterministically. It is especially used when average properties of the

bottom are of interest (see Chapter 7 for more complete discussion on the

surface decomposition in application to ocean bottom scattering).

3.2 Statistical description of natural surfaces

Equivalently to its description in terms of the probability density, h can

be characterized through an infinite number of its moments. The first and



second moments frequently used in scattering are defined as follows:

/OO(h(fi)) (z(r-±)) = z - w(r)dz, (3.3)

h2( . 2(z(70))= Z2 w 1(r~)dz, (3.4)

where (h(f'1)) is the mean surface height above the reference plane, (h2 ( 1))

is the variance of heights relative to the reference plane, f' = (x, y, z) and

iL = (XIy).

Conventionally the reference plane is chosen so that mean height and

mean slope are both equal to zero, and the standard deviation of height

(often called "root mean square height" in underwater acoustics, abbreviated

as "rms height"), is used instead of variance as a descriptor of the surface:

hrms(i) = (h 2 ( _)). (3.5)

Some qualitative understanding of rough surface scattering is obtained

with the rms height alone. However, a better description is achieved if higher

moments are considered. The correlation function Bh and power spectral

density W h of surface heights play an extremely important role in surficial

scattering. By definition the correlation function of the surface heights is

Bh('1,l, ', 2 ) = zlz 2w2(Fl F2)dz 1 dz2. (3.6)
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Consider now a realization of a rough surface z = ;(r'). This realization

can be expanded into the Fourier integral:

(i) = J Z( ) . ei<r±dK, (3.7)

where 2(k) is the complex random amplitude of a plane wave component in

the expansion, having surface wave number K = (Kr, Ky). Then the spectral

power density is simply

Wh(K) = 2() -2*(). (3.8)

3.3 Spatially stationary stochastically rough

surfaces

An appreciable simplification is accomplished when spatial stationarity of

the surface statistics can be assumed. Generally, the spatial stationarity

assumption does not require temporal independence. A case of stationary in

space time-dependent surfaces can be considered (for example, see [31, 5]).

For instance, time dependence is important when scattering from the ocean

surface is considered. However, since I am interested in the ocean bottom,

the more restricted case of fixed in time can be considered.



In this case the correlation function depends only on the distance R be-

tween fr,1 and r, 2 . Thus

Bh(', r,i 2 ) = Bh(R), (3.9)

where R = r,l - rj,2, and the spectral power density becomes a Fourier

counterpart of the correlation function:

{ Bh(R) = f2o W(K) - eZR dK, (3.10)

Wh(K) = (2r)-2 fo Bh(R) eikdI.

Mean, mean square, and rms height become independent of coordinates

and can be easily expressed in terms of the correlation function or the spectral

power density. For example, the mean square height now is simply

looh2 = h (0) = W(K)dK = const. (3.11)

Clearly, the correlation function and the spectral power density can be

used interchangeably as equivalent descriptors of the surface statistics. How-

ever the validity of this statement is restricted to the particular case of sta-

tionary surfaces.

Unless an infinite number of moments is considered, the description of

a surface through its moments is incomplete. Characterizing a surface with



second order statistics alone (correlation function or power spectrum) yields

an approximation to real surfaces.

However, a large class of mathematical surfaces is fully defined by their

first and second moment. These surfaces are referred to as "Gaussian" or

"normal" and play an extremely important role in surface scattering theory.

By definition a surface is normal if its n-point probability density of devia-

tions of the surface from the mean plane is given by the normal law for any n.

The central limit theorem of statistics assures that physical surfaces formed

under influence of many independent additive factors are normal. Hence of-

ten a normal mathematical surface is an adequate approximation to a real

surface.

3.4 Nonstationary stochastically rough sur-

faces

With a few exceptions, a stationary surface can be modeled as normal so

that second order statistics is sufficient for its description, thus tremendously

simplifying development of a scattering theory. However the convenient as-

sumption of stationarity in reality is inadequate for natural phenomena. Of-



ten different parts of the surface were formed under very different conditions.

Hence only locally can the surface be considered stationary.

As a result, the roughness parameters of the ocean bottom, like rms

roughness and slope, correlation length etc., depend on the scale considered

and on the geographic location of the experiment. For instance, in [32]

measurements of the rms roughness on the bottom along a straight line path

of length Lo were analyzed for 10- 1 km Lo < 102 km. It was shown that

on these observation scales, the variance of the sea floor roughness is linearly

proportional to the length scale Lo involved:

(h2) = CL o , (3.12)

where C is an empirical constant possibly depending on the geographic loca-

tion and on the direction of the chosen path. It was also noted [33] that the

one-dimensional power spectral density of ocean bottom roughnesses follows

the so-called power law:

Wh(K) = 0  (3.13)
K2 + Kit '

where Fo and Kout are parameters of the model, K is surface wave number,

and the one dimensional power spectrum of the surface roughness ih (K) is

calculated along a straight line. It is worthwhile to mention here that both
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model parameters, F and Ko,,t, are generally dependent on the path length

L o , with Kot asymptotically decreasing to a particular value as Lo increases.

3.5 Fractal surfaces

Empirical observations summarized in the previous section are consistent

with the idea of modeling one-dimensional cuts through the ocean bottom as

a simple self-affine fractal stochastic process [34, 35, 36, 37]. However, "true

fractals" exhibit power law behavior on all scales, but natural surfaces never

do. First, there is a welll-known "cut-off" of roughness for large scales due to

non-vanishing Kot. Second, natural surfaces tend to have less roughness for

smaller scales [36]. This result in a change of the power law exponent at some

value K,, which usually happens at the mm scale (Fig. 3.1). Thus only for

K ranging between Kot and Kin can a rough surface be modeled as a simple

fractal. An analogy with turbulence [38, 39] suggests the designation of Ki,

and Kout as inner and outer limits of fractal behavior, respectively.



Power spectral density (PSD)

PSD 4,

Kout Kin K

Figure 3.1: Power spectral density (PSD) of a natural surface as a function

of the horisontal wavenumber. Cut-off at K,,t and change of the fractal

dimension at Kin are shown. Dashed line shows the simple self-affine fractal

PSD



3.5.1 Two-dimensional fractals

An appropriate generalization of (3.13) for two-dimensional anisotropic rough-

ness was developed by Goff and Jordan [29, 40]. Their model was applied

to the problem of sound scattering from a rough ocean floor [41, 42, 43]. In

this model, the rough surface is assumed to be a realization of a Gaussian

zero-mean two-dimensional stochastic process having a "Goff-Jordan" power

spectral density in the form

STh() = 4Fvh2m -1/2 [ + 1] (3.14)

where v = 3 - D is related to the fractal (Hausdorff) dimension D, and

il is a dimensionless norm of K: d(K) = [T' K] / Anisotropy enters

the model through the dimensionless ellipsoidal (Riemannian) norm R(r1() =

rTr 1/2 , where Q is a positive-definite, symmetric matrix whose elements

have the dimension of (length)-2 , which can be expressed in terms of its

eigenvalues K and Kf and normalized eigenvectors e and e,: Q = K ee +

For the case of isotropic roughness (3.14) can be reduced to an equivalent

of (3.13):

,h(K) = 41vh2ms Ko1. +1 (3.15)Wh(K) = 47rms -Ko W2 (3.15)



where Ko - K,,t is the outer scale of a fractal, and K is the absolute value of

surface wavenumber K = K. Clearly, a Goff-Jordan surface exhibits fractal

behavior on all scales between K equal to K and infinity.

3.5.2 Moments of the fractal stochastic process

By the choice of reference plane, the mean height and slope are both equal to

zero. The power spectrum density in the form (3.13), (3.14) and (3.15) allow

easy calculation of various moments observed in the ocean. For example,

square values of rms roughness hrms, rms slope srms, and correlation function

of heights Bh, are given by

h 2 , =f, Vh(K)dK,

2ms = f. K 2 .h(K)dK, (3.16)

Bh(R) = f Wh(K) . e' zdK,

respectively.

In (3.16) the finite nature of experimental data is accounted for by in-

troduction of scales Kmi, = 27r/Lo, corresponding to the maximum scale Lo

(size of inhomogeneous patch, size of sonar footprint on the bottom, etc.)

encountered in the experiment.

In the case of anisotropic roughness one expects to see an anisotropic cor-



relation function. However, an important feature of (3.16) is that anisotropic

behavior can be seen also in the case of purely isotropic roughness (3.15),

due to anisotropy in the footprint shape. Also it is clear that rms slope is un-

bounded, unless the power spectral density decays faster then K -4 for large

absolute values of surface wavenumber K -+ oo. Since the observed decay

rates fall in between K - 2 and K - 3 on the 10-2 - 102 km observation scale

[32, 33, 36, 37], the inner fractal scale must yield a physically meaningful

bounded value of rms slope, or discontinuous surfaces must be dealt with.

It highlights an interesting feature of natural surfaces. It is intuitively

clear that discontinuities are only important in scattering when they are

comparable to the wavelength. Scattering from discontinuous surfaces was

considered and it was found numerically that discontinuities can be rounded,

or, in other words, infinite Fourier series representation of the surface can be

truncated at a certain value of surface wave number large compared to the

incident wave number [44]. It also means that we can truncate integrals in

(3.15) at some value of >> ki and it must have no effect on parame-

ters relevant to the scattering, since the exact behavior of the surface wave

number spectrum lWh(K) at large values of K -+ oo does not affect surface

scattering properties. As one can see from (3.16), for observed decay rates



rms roughness is insensitive to such a truncation, hence it is a robust descrip-

tor of the surface roughness. The same can not be said about the rms slope.

Hence applicability of any scattering theory that makes use of the rms slope

is limited. In other words, a good scattering theory for rough ocean bottoms

must be able to deal with discontinuous surface slopes, either through use of

appropriate mathematics, or by employing physical considerations.



Chapter 4

Scattering from Spatially

Stationary Surfaces

Truly stationary surfaces hardly exist, yet often a local stationarity assump-

tion can suffice in practice, i.e., any fraction of the surface can be considered

as a stationary stochastic process having a locally constant mean, standard

deviation, etc. The fact that stationarity notably simplifies the problem

explains why so much attention has been devoted to scattering from such

surfaces.

Some approaches presented in this chapter do not make explicit use of

the surface statistics, instead they operate with integral measures of surface



shape like rms roughness. Still, applicability of these methods to scattering

from real (nonstationary) surfaces has to be carefully evaluated on a case-

by-case basis prior to use.

4.1 The general scattering problem

The boundary value problem

The idealized scattering problem for a bounded volume of fluid consists of

the wave equation for the scalar potential inside the volume, and the appro-

priate boundary conditions. Often a Fourier transform is applied to the wave

equation to simplify the problem. The result (the Helmholtz equation) takes

the form [15, 45, 25]:

V2( + k2(p = 0, (4.1)

where k = is the wave number and 4 is the complex amplitude of the

acoustic potential, respectively, and a time dependence term e-iWt is implied.

Appropriate boundary conditions should be defined in order to complete

(4.1).

If a fluid half space is considered instead of a closed volume, the radiation

boundary condition 4(Ir~r -+ oo) = 0 is necessary to uniquely determine the



solution.

On the scattering interface Dirichlet, Neumann or more inclusive impedance

boundary conditions are often used, mainly due to their relative simplicity.

The generalized impedance boundary condition is written in the form

-+ P = 0) (4.2)

where A is the scattering interface, and the parameter ( is related to the

acoustic impedance of the surface. Generally ( is a frequency dependent

complex quantity.

The major limitation associated with the use of the impedance boundary

condition is its local nature [15, 21, 13]. Using (4.2) implies that the acoustic

motion at each point on the surface is independent of motion of surrounding

points. Unfortunately, this is not generally true for the ocean bottom. For

instance, consider the case of a scattering interface that supports acoustic

waves (e.g., fluid-elastic interface). Then motion of different surface points

will be related through these wave motions, thus making the boundary con-

dition (whatever it is) non-local. The applicability of Dirichlet or Neumann

boundary conditions is even more limited.

Other kinds of boundary conditions are also occasionally used (e.g., smoothed

boundary condition [46, 47, 48, 49, 50])
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Since there is only one equation, solving it with appropriate boundary

conditions seems mathematically appealing. However the applicability of this

approach is limited by ones ability to determine the appropriate boundary

condition, which in the general case is difficult to do.

An alternative approach is to consider the entire space. Then the problem

of scattering from the surface considered consists of two half spaces of differ-

ent media, and the scattering surface is represented by an interface between

these half spaces [15]. Usually boundary condition relating acoustic motion

across the interface can be determined from physical considerations.

In the simplest case where each half space is filled with a fluid, two linear

homogeneous wave equations for scalar acoustic potential (1,2 (or for pres-

sure P1,2) at opposite sides of the interface are to be determined. Physical

considerations on pressure and normal velocity continuity across the interface

[P1 = P2]A, I[ln = V2n]A , (4.3)

are applied to solve for 141,2. That is, the wave equations for the scalar

potential are coupled through the condition (4.3).

The scattering problem becomes much more complicated if the more gen-

eral case of a fluid-elastic interface is considered [13]. Then in addition to the

scalar potential (4 the vector potential T has to be introduced, resulting in
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three additional coupled scalar wave equations for its three components. In

turn boundary conditions (4.3) are replaced by the more general requirement

of continuity of the stress components across the interface, as well as normal

velocity.

4.1.1 The integral equation formulation

Sometimes it is more convenient to confront an integral equation instead

of solving the differential equation plus boundary conditions. Equivalently,

when the entire space has to be considered in order to define applicable

boundary conditions, two coupled integral equations are defined on opposite

sides of the interface.

The acoustic field everywhere can be expressed in terms of the Helmholtz

integral equation [15, 13]:

fA )1 &G(i?-7) ± G
I(- = +i(r) + 4(bo) •G , o + G(r, 'o) - dA, (4.4)

where 4i is the incident acoustic potential, 4 is the total (incident plus

scattered) acoustic potential, A is a surface of integration, no is the local

normal to that surface, f'o represents position on the surface, and G(, r'o) is



the Green's function for an unbounded medium given by

1 eirlroI
G(F7, o) e= 4 (4.5)

47 I - oI"

Integral (4.4) can be evaluated over any surface A. If a surface can be

found on which the acoustic potential and its normal derivative are known

simultaneously, (4.4) allows one to find the acoustic field everywhere in

three-dimensional space. However, simultaneous determination of OP and

4)(')/an'o is seldom possible. The usual way to find the solution is to eval-

uate (4.4) over the scattering interface and to apply appropriate boundary

condition.

4.2 Rayleigh parameter

The integral equation sets up the mathematically precise scattering problem.

However, only in the simplest cases is an analytical solution possible. Instead,

approximate or numerical solutions of (4.4) are normally considered to solve

the scattering problem. A simple qualitative consideration helps one to enter

the realm of approximate solutions.

All surfaces are complicated in shape, i.e., in some sense rough. However,

usually the distinction is made between rough and smooth surfaces. The ba-



sis for the differentiation is purely qualitative. When most scattered energy

is directed into the specular direction, the surface is referred to as "smooth",

and scattering is termed "coherent". Conversely, if a significant part of the

scattered energy is directed away from the specular direction, the surface is

rendered "rough", and the scattering is denoted as "diffuse", or "incoher-

ent". This clearly indicates that surface can be considered neither rough nor

smooth. The demarcation between rough and smooth is a function of surface

properties and characteristics of the incident field, taken together.

Conventionally the surface is considered smooth, or at most slightly rough,

if its rms roughness satisfies

hrms < < s (4.6)8 sin 0'

where A and 0 are the wavelength and grazing angle, respectively. This

inequality is known as the Rayleigh criterion, and the value

8 sin 0 hrms(4.7)
-= (4.7)

is called the Rayleigh parameter [10, 15]. Thus if the Rayleigh parameter

is y = 0, the interface is flat, if y << 1 the interface is slightly rough, and

-y 0(1) characterizes rough surfaces.

It is interesting to point out the meaning of the phenomenological coeffi-
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cient 8 in the (4.7). It is well known that in the perturbation solution of the

scattering problem (see following sections on small perturbation) the expan-

sion parameter is kh, where k, is the vertical component of the incidence

wavenumber. Since k = 2w/A, the expansion parameter becomes

2x sin0 -h. 
(4.8)

A

This shows the relation between smallness of the Rayleigh parameter and

ones ability to use the low order perturbation solutions, and highlights the

physical meaning of the Rayleigh parameter as an expansion parameter in

the small perturbation solution technique.

Knowledge of the Rayleigh parameter alone rarely allows a satisfactory

description of the scattering, however it helps to choose an approach and

gives some qualitative prediction of the scattering.



4.3 Approximate solution of the scattering

problem

4.3.1 Scattering from surfaces having a small Rayleigh

parameter value: perturbation approach

Scattering from a flat interface

Even though there are no flat interfaces in the real ocean, due to its simplicity

and analytical tractability this case plays an important role in developing

understanding. It also can be considered as a limiting case of a very smooth

surface when the Rayleigh parameter approaches zero. For example, in the

easiest case of two half spaces of fluid with densities P1,2 and sound speeds

c1,2 separated by a smooth plane interface, solution for the total acoustic

field consists of three waves: an incident wave with complex amplitude of

pressure Pi, a scattered wave p, and a transmitted wave pt. Incident and

scattered waves exist in one half space, and transmitted in the other. By

definition, reflection and transmission coefficients are given by R = ps/pi

and T = pt/Pi, respectively. In this case scattering is completely defined by

the two complex coefficients R and T, and the total field in both fluids can



be found as a superposition of incident, scattered and transmitted waves:

p p( = Pi + Ps = (1 + ) pi, fluid 1,

p(2) = Pt = T -pi, fluid 2,

where bracketed superscripts (1) and (2) refer to upper and lower fluids,

respectively, and the incident wave is coming from the upward direction.

Scattering from slightly rough surfaces

Naturally, the next case to consider is a slightly rough surface 7 << 1.

The small parameter in roughness allows a variety of perturbation solutions.

Normally all parameters are expanded into a series where successive terms

are of the same order of magnitude multiplied by a small parameter 6:

= ± + E< + E2'2 +..., O = O(1) = 0(2) = ... , <<1. (4.10)

Then a succession of equations, or a successive order of approximation, is

formed collecting terms with the same power of E. When the perturbation

parameter E is very small, only the few first orders contribute to the solution,

thus making possible an analytically tractable perturbation solution.



Classical small perturbation technique

The usual way to use expansion (4.10) is to insert it into the wave equa-

tion and boundary conditions. Consequently, the solution for the pressure

potential in fluids (1) and (2) takes in the form [31, 51, 52]:

(I(1),(2) = () 1),(2 ) + r( 1),(2) + 0(6 2 ) + ... , (4.11)

where e = kzh. Boundary conditions defined on the rough interface in the

form (4.3) are subsequently expanded into the Taylor series near h = 0. The

next step is to substitute solution (4.11) into the boundary conditions and

collect terms of the same order of magnitude [31, 5, 13]. In each successive

step of the solution, the wave equation with specified boundary conditions is

solved. However, via the Taylor expansion, boundary conditions are mapped

on a flat plane, so the initial problem of scattering from the irregular surface

is substituted with the succession of flat surface scattering problems, each

having an analytical solution.

Since the zero order solution satisfies boundary conditions on the flat sur-

face, it is given by (4.9). After collecting first order terms one ends up with

an equation where the value of the first order field on the flat plane is related

to the shape of the rough surface and the value of the zero order field on the



surface. Again, since the value of the first order field is known on the plane, a

full space solution can be derived via the integral equation (4.4) using formu-

las (4.9). This situation may be thought of as flat interface scattering which

generates the zero order solution plus additional sources located on the flat

interface, generating the first order solution. Conventionally these sources

are referred to as "virtual" or "equivalent" sources. Knowing these sources,

one can construct the solution via an integral equation as a summation of

individual source contributions.

Clearly, applicability of the first order perturbation solution is limited to

slightly rough surfaces with small rms slope and rms heights. Additionally,

it does not account for multiple scattering effects. However, the first order

perturbation is robust and does not make explicit use of the smallness of

slopes criterion.

Higher order perturbation (e.g., by Howe [53, 54, 55] or Thorsos [56, 6])

takes into account multiple scattering effects and stresses their significance

at small grazing angles. However, these solutions are still limited to moder-

ate heights and small slopes. For larger values of surface slopes, convergence

of the perturbation series may become non-uniform. For instance, a second

order solution by Howe diverges, and in the solution by Thorsos [56] when



the four first terms were considered two higher order terms in the expan-

sion have greater absolute value then the first term, but an opposite sign,

so that they cancel each other. Since a good match with a numerical so-

lution of the integral equation was achieved using the first four terms, it

was further concluded that "sixth- and higher-order terms essentially cancel,

since they are not needed to give agreement with exact result". Yet there

is no analytical basis for this conclusion. This indicates a potential problem

one can encounter with a higher order perturbation expansion. Generally,

higher order perturbation terms contain higher order derivatives of the sur-

face roughness. And even the first derivative of the surface roughness can

be discontinuous. Since surface slopes are brought into the consideration,

only particular behavior of the roughness at high surface wave numbers is

allowed. So for instance, a22 of [56] computed for a one-dimensional surface

has a bounded value only if the roughness spectrum decays faster then K -15.

For comparison, in [44] the power spectra with decay rates proportional to

K -1 were successfully considered using the integral equation formulation.



Boundary operator expansion technique

This recently introduced technique [57, 58] is closely related to the boundary

integral method ([59]. An analytical solution for the first order perturbation

field is considered that incorporates effects of elasticity. As usual, the flat

surface solution is a zero order approximation. However, now an elastic

surface, or in the more general case, a succession of flat elastic layers, is

considered. Virtual sources on each interface are computed to account for

the elastic properties of the medium, and the solution is obtained via the

integral equation as a summation of individual source solutions.

This technique is still restricted to surfaces with not too large rms heights.

If other than horizontal interfaces are encountered, the solution domain has

to be divided into a sequence of segments, each segment having a locally

flat interface [60, 61]. Then the solution is obtained in each segment, and

matched through a global inversion technique, which increases the required

computation time. But since elasticity is accounted for, this technique is

powerful for modeling of high resolution rough elastic ocean bottom scatter-

ing experiments.



4.3.2 Scattering from gently undulating surfaces (Kirch-

hoff approximation)

An other way to introduce a small parameter into the governing equation

comes about if the surface slopes are gentle. It results in the so called

"Kirchhoff" or "tangent plane" approximation [5, 62, 63, 64], by far one

of the most used techniques in solution of scattering problems when not very

shallow grazing angles are considered. In this method it is assumed that

the scattering surface is so smooth that at each point the entire field can be

accurately represented as a sum of the incident field and the field reflected

from the local tangent to the surface plane according to the plane interface

solution formulas. Since now both the acoustic field and its derivative are

defined on the scattering surface, a solution for the entire space can be ob-

tained via the integral equation (4.4). The general applicability condition for

the Kirchhoff approximation can be stated as

kasin >> 1, (4.12)

where k is the absolute value of the incident wave wavenumber, a is a char-

acteristic radius of curvature, of the surface, and 9 is the grazing angle. This

clearly limits the approximate technique to gently sloping surfaces and to
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steep incidence and scattering angles 8.

Since the Kirchhoff approximation is valid for gently sloped surfaces only,

scattering from small scales can not be accounted for. If additionally to

slopes, surface heights are also small, both Kirchhoff and perturbation the-

ories may be valid. When both are valid, numerically better performance is

usually achieved using the Kirchhoff approximation [65, 56] than the first or-

der perturbation expansion. With the introduction of an appropriate shadow-

ing function, a second order Kirchhoff approximation can account for multiple

scattering, hence for such effects as enhanced backscattering [62, 66, 67, 68].

Unfortunately, as incidence or scattering grazing angle decreases, Kirchhoff

theory quickly become inapplicable and quantitative performance of the so-

lution degrades.

4.3.3 Scattering from rough surfaces

Scattering from surfaces that are in some way smooth (e.g., small slopes,

small heights from the reference plane compared to the incident wavelength,

or both) represent the most developed part of scattering theory. However,

experiments on scattering from natural surfaces often do not comply with

applicability limits of smooth surface scattering theories. Thus one needs a



scattering theory applicable to large roughness.

Boss scattering theory

Within this approach, the scattering surface is first modeled as a collection

of simply shaped three-dimensional objects on a flat base plane [46, 69, 48,

49, 70, 71, 72]. Then a precise solution for the scattering can be derived in

closed form.

Boss theory entails no small parameter, hence in theory large roughness

can be described with the same degree of success as small roughness. How-

ever, the boss approximation is seriously limited by the ability to model a

real surface as a collection of bosses. Any chosen expansion of a real surface

as a collection of bosses is often inadequate. It results in shrinking the ap-

plicability domain of the boss theory. A certain degree of success has been

reached in cases where the actual roughness appears as a collection of well

defined deterministic shapes, or is small enough and appears in clusters. For

example, in under ice scattering large well defined ice ridges with smaller

keels superimposed were modeled as a collection of two boss types, one being

an infinite cylinder, and the other a hemisphere or semiellipsoid [47, 73, 74].

However, surface expansions of this type are hardly possible for the ocean



bottom and in this case boss theory will be difficult to apply.

Lambert's Law

Lambert's Law was an early method used to describe scattering in underwater

acoustics [4], and it remains by far the one that is most used for this purpose.

It has its origin in optics [75]. The idea underlying this scattering theory is

fairly simple. The surface is assumed to be very rough, so that the local

grazing angle between the incident field and scattering surface is uniformly

distributed over all values. Then it is intuitively clear that each small piece of

the surface scatters incident energy into all directions with equal probability.

The total energy scattered by a piece of the surface is then proportional to

the amount of energy incident on it, and to the apparent area of the piece

as seen by the observer. Since part of the energy can be lost during the

interaction, conservation considerations then result in the simple form for

the scattering strength:

S, = p sin Oisin s, (4.13)

where as usual 90, Oi are scattered and incidence grazing angles, and g is a

constant dependent on the amount of energy lost in the interaction. If no

losses are presented, p = 1/7r.



When Lambert's Law is used in optics, the quantity 7r/ is usually called

the albedo of the surface. In underwater acoustics the coefficient Ip has its

own name: it is usually referred to as the Mackenzie coefficient. The value

of the Mackenzie coefficient for Lambert's Law is related to the amount of

energy lost from the interaction between the incident wave and the surface,

and can be predicted knowing scattering surface properties.

Lambert's Law is rigorously applicable to cases where the scattering sur-

face is extremely rough. With modifications [76, 77, 78, 79, 80, 81], it demon-

strates excellent performance in optics, including the appearance of the moon

disk. The only visible discrepancy exists between theory and experiment in

the exact backscattering direction, since a coherently enhanced backscatter-

ing effect is not accounted for [78].

Initially good performance of Lambert's Law was reported in underwater

acoustics [4, 9, 82]. However, in these experiments the ensonified patch on

the bottom was large and the rms roughness measured in the sonar footprint

exceeded by many times the incident wavelength. Also, most early work was

restricted to backscatter, so that the full bistatic angle dependence in Lam-

bert's Law was not tested; at best data were matched with the adjustable

Mackenzie coefficient to test the theory. In particular, a Mackenzie coeffi-



cient in the range from 0.1 to 0.001 was often used. With the increasing

resolution of contemporary experiments, the sizes of the scattering patches

decrease. Since the real ocean bottom exhibits fractal properties on scales

encountered currently in underwater acoustics, smaller patch size results in

smaller roughness within the footprint, hence degradation of Lambert's Law

performance is expected. Yet because of its simplicity it is still widely used to

predict scattering in underwater acoustics. However, when Lambert's Law is

inapplicable, it tends to greatly overpredict scattering away from the specular

direction, and underpredict the specularly scattered field. To compensate for

it, a phenomenological coefficient is introduced (which traditionally is still

called Mackenzie coefficient, but has nothing to do with amount of energy

lost in the interaction). This coefficient in general depends on the incidence

grazing angle, scattering grazing angle and the bistatic angle. Because of

this, all scattering properties are effectively incorporated into it. Within this

approach there is no known way to deduce the values of this coefficient for

different angles from fundamental physical principles. It has to be measured

experimentally. For instance, for backscattering Mackenzie coefficient from

0.001 to 0.1 is used. This result in the improved fit to backscattering data,

however, model performance in the forward direction degrades even further.



Two-scale models

This method was first introduced by Kuryanov and, with certain modifica-

tions, is widely used since then [7, 83, 84, 85, 51, 2, 3, 30]. The irregular rough

surface is assumed to be in the form of a superposition of small disturbances

h on a gently undulating surface H. Plane wave incidence is usually con-

sidered. The perturbation expansion solution in the form (4.10) is inserted

into appropriate boundary conditions. Then, as in the standard perturbation

approach, boundary conditions are expanded into a Taylor series. However,

now the expansion is made around the smooth surface H instead of doing

it around the flat reference plane. Collecting terms of the same order in E,

successive solution orders can be derived. In this way the initial problem

is reduced to solving the wave equation with certain boundary conditions

defined on the smooth but undulating surface H.

For a general surface H the scattering problem with general boundary

conditions can not be solved. However, since the surface is assumed to be

gently undulating, at each step the Kirchhoff approximation can be invoked.

To make the problem analytically tractable, the expansion is usually made

to first order only.

If the initial surface is stochastic in nature, then averaging over realiza-
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tions of h has to be performed. It is usually safe to assume that height

variations on the small scale h are independent of those on the large scale H.

Then averaging can be performed independently, and the resultant scattering

cross section a can be represented as a sum of two terms

a = a1 + a2, (4.14)

where al and a2 are outcomes of zero and first order solution, respectively.

The zero order solution is found by solving the scattering problem for the

smooth surface H with the original boundary conditions. The first order

solution can then be shown to be an average of the small perturbation solution

over all slopes present in the smooth surface H.

Two-scale theories were built to broaden the domain of the small per-

turbation solution. They are a mixture of the Kirchhoff solution and the

small perturbation solution, and hence have inherent limitations [86, 87].

Generally, four conditions have to be satisfied. First, the surface must be

"separable" into two scales. Second, slopes of large scale irregularities con-

tributing to the composition of the rough surface must be "gentle enough" so

that Kirchhoff theory is applicable. Third, slopes and heights of small scale

irregularities must be small enough to allow a perturbation solution. And

finally, there must be an overlap between applicability domains of solutions
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for large and small scales. Mathematically for stochastically rough surfaces

with power spectrum of irregularities Wh, the restrictions are [88]:

(kh,ms) 2 <<1, hrms = fKsma,, 1 h()dK;

2 2 1 (4.15)
srms << 1, ms m= 2 fK"mal,,, 2h() d

l
;  (4.15)

(ka)'/ 3 > > 1, 1 fKlarge K4 Wh(K.)dK;

where hrms and Srms are rms height and slope, k and K are incident and

surface wave number, a is the characteristic (rms) radius of curvature, and

the entire surface wavenumber domain can be constructed by addition of

overlapping small and large scale roughness domains Ksmau and Klarge, re-

spectively.

A somewhat different modification of this method was proposed in [89].

Instead of using the small perturbation solution for the surface h, modifica-

tion of Lambert's Law is used. The solution is thus a superposition of the

Kirchhoff solution for the gentle surface H and Lambert's Law solution for

small scale roughness h, averaged over large scale surface slopes.

But Lambert's Law can be applied to large roughness surfaces only, and

rapidly becomes inapplicable as the Rayleigh parameter decreases. To ac-

count for it, the Mackenzie coefficient is chosen as a free parameter to adjust

the "theory" to the experiment. This highlights an essential weakness of this
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approach.

4.4 Applicability of scattering theories to un-

derwater scattering and reverberation: sum-

mary comments

The integral equation formulation is a precise method for solving the scatter-

ing problem. However, it is too numerically extensive if complexities of real

ocean bottoms are to be taken into account. Such a solution is often limited

to the simple case of two-dimensional scattering from a rigid or free surface

(e.g., [90, 91, 92, 93, 94]). Often periodicity of the surface is assumed to sim-

plify the solution [95, 96, 44]. Attempts have been made to extend the use

of this solution to three-dimensional scattering from an elastic surface [97].

However, computational time remains a limiting factor, and the practical use

of the "exact" solutions is often limited to comparison and benchmarking of

different approximation techniques.

Lambert's Law is rigorously applicable to surfaces with an "infinite rough-

ness", or, in other words, for sonars having an "infinitely small" wavelength.
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For such surfaces modified Lambert's Law demonstrates excellent perfor-

mance. When low experiment resolution results in large roughness accumu-

lated within the sonar footprint, and only one scattering direction is consid-

ered, an approximate description of the experiment can be achieved through

Lambert's Law with just one value of the Mackenzie coefficient for a broad

range of grazing angles, even when Lambert's Law is not rigorously applica-

ble.

However, the contemporary trend in sonar design is toward higher resolu-

tion and bistatic configurations, hence lower roughness accumulated within

the sonar footprint and more complex angular dependences to match. As a

result, the use of other approaches is expected to broaden.

The second order Kirchhoff approximation was shown to give excellent

results for steep incidence and scattering grazing angles [62, 66, 67, 68]. How-

ever, it is not applicable to small grazing angles.

Boundary operator expansion technique accounts for elastic properties of

the scattering interface, hence ought to be used when elastic properties are

expected to be important and roughness is small.

Two-scale theory is a combination of the Kirchhoff approximation and

small perturbation technique. As such, it allows one to consider rigorously

104



surfaces with large (yet not infinite) roughness without inherent Kirchhoff

approximation failure to incorporate scattering from small scale roughness.

Hence, the two-scale approach ought to be used when large roughness pre-

cludes using the small perturbation expansion. However, several major draw-

backs of the two-scale theory can be noted in application to rough ocean

bottom scattering.

First, it uses too simplistic boundary conditions. A heuristic two-scale

model for fluid-fluid interface was presented in [83], but so far no extension

has been made to the fluid-elastic interface. Second, shadowing and inter-

reflection effects are not yet incorporated into the theory. Success of the

second order Kirchhoff approximation [62, 66, 67, 68] and modified Lam-

bert's Law [78, 79, 80, 81] stresses the importance of these effects. Finally,

since a perturbation approach is used in the solution, discontinuities of the

surface can not be handled correctly.

In effect, in far too many cases one is left without an adequate scattering

theory. For instance, I will show later (Chapter 7) that bistatic scattering

data collected during the ARSRP experiment are not described in all detail

by any one of the existing scattering theories.
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Chapter

Acoustic Reverberation Special

Research Program ARSRP)

Experiment

5.1 Description of the experiment

To refine knowledge about low grazing angle reverberation, an Acoustic Re-

verberation Special Research Program (ARSRP) experiment was conducted

[98, 1, 99]. This experiment took place in the Atlantic ocean, first in 1991

(ARSRP-91), and later in 1993 (ARSRP-93). In the following, data acquired
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only during ARSRP-93 are analyzed.

During ARSRP-93 three ships were operating in the Midatlantic Ridge

area, also known as the Atlantic Natural Laboratory. Geographically the area

of operations was centered at about 260 North latitude and 470 West longi-

tude. Research Vessel (R/V) Knorr deployed deep moored arrays and per-

formed several near-bottom scattering, coring and dredging measurements.

R/V Cory Chouest and R/V Alliance performed monostatic scattering ex-

periments and, operating simultaneously, performed bistatic scattering ex-

periments. The scattering data were acquired with different temporal reso-

lution, using frequencies ranging from 200 to 1000 Hz. The basic two-ship

experiment using the Cory Chouest source is shown in Fig. 5.1. The acous-

tic signal radiated from the source can be received and recorded by both

Cory Chouest and Alliance receivers, thus making possible both monostatic

(backscattering) and bistatic measurements.
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Figure 5.1: Basic bistatic scattering experiment using two ships. Either ship

can receive and transmit signals, but only one is shown. The actual size and

shape of the ensonified patch on the bottom depends on the bistatic geometry,

local bathymetry and source and receiver beampatterns. The incident wave

vector ki, scattered wave vectors into two receiver direction ks,mono and ks,bi,

and incidence grazing angle Ei are shown.
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5.2 ARSRP signals and systems

5.2.1 ARSRP-93 source

Each of Cory Chouest and Alliance carried an acoustic source. I used only

Cory Chouest transmissions, hence I will limit myself to the Cory Chouest

source description. For the same reason, the Cory Chouest source will be

referred to as the ARSRP-93 source.

The Cory Chouest source was a vertical line array (VLA) of ten piezo-

electric flextensional projectors. It was towed in an almost vertical string

with 2.29 m separation between element centers. The depth of the array

center was 181 m during the entire duration of the experiment. Uniform

spatial array element weighting was used. The resultant source level at 240

Hz was 232 dB re 1 pPa & 1 m. The frequency band covered by the VLA

was 200 to 280 Hz. The maximum source level in the band was observed at

200 Hz with no more then 3 dB down at any other point within the band.

Array steering was possible in the angular range 00 - 450 down from horizon-

tal. However, all data processed in this thesis were collected with no source

steering (horizontal beam).
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5.2.2 ARSRP-93 wavetrains (pings)

During the ARSRP-93 experiment five different acoustic wavetrains, also

called entries or pings, were transmitted by the Cory Chouest [1]. Since

I am primarily interested in experiments with the highest possible spatial

resolution, I concentrated on the frequency modulated signal designated as

WT93RP019 transmitted by the Cory Chouest. This waveform is a linearly

frequency modulated (LFM) slide up from 200 to 250 Hz, 5 s in duration.

Its expected temporal resolution 6t is given by [98, 100]

1 1
t = (5.1)

where P is the transmitted power, T is the duration of pulse, S, is the noise

level at the carrier frequency, and Wrms is the rms bandwidth of the signal.

Alliance wavetrains are listed in [99]. Most of the Alliance pings are

outside of the Cory Chouest Middle Frequency Array (MFA) receiving band,

and none of them was used in this study.

5.2.3 ARSRP transmissions schedule

During the experiment both ships performed transmissions according to the

ARSRP Pinging Schedule, which was rigidly kept. Five wavetrains were
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transmitted by the Cory Chouest, and six somewhat different wavetrains

were transmitted by the Alliance. Pings were transmitted during a 12 min

interval named "segment". Each three segment groups in turn was organized

into 36 min "tables". The waveforms from the Cory Chouest did not change

during its transmission times, however, those from Alliance cycled through

five tables [1]. Five tables were organized into a "segment". The repetition of

alternating tables was synchronized to start at every third hour, i.e., at 00:00,

03:00, 06:00, etc. A summary of the transmission scheduling terminology is

given in Table 5.1 (compiled from [1]).

Each individual segment recorded during ARSRP-93 had its own number

assigned ranging from 0001 to 1090. During each segment only one ship

transmitted its series of waveforms (pings). Each wavetrain was repeated

only once during the segment. Only scattering data due to Cory Chouest

LFM pings WT93RP019 are processed for this study, so I will be interested

in this particular waveform. This waveform was always transmitted first in

the segment, with its beginning coinciding with the segment beginning. It is

also convenient to start the time axis at the moment when the transmission

began. Therefore, I will refer to the data starting at the beginning of the

segment N either as "segment N" or as "ping N". However, depending
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Label Duration Description

Ping <10 s The individual signals (LFM, CW, depth ping).

Five different waveforms were used.

Segment 12 min A series of five wavetrains transmitted over a

twelve minute interval. This was the fundamental

period for synchronizing with Alliance and DTAGS.

Table 36 min Three segments. If both Cory Chouest and Alliance

were operating, the Cory Chouest transmitted for

the first two segments and then the Alliance. If

just the Cory Chouest was operating, it transmitted

during all three segments.

Sequence 3 hours Five tables. The Alliance changed wavetrains during

each with a periodicity of five. The sequences were

synchronized to start every three hours of Zulu time,

i.e., at 00:00, 03:00, 06:00, etc.

Table 5.1: Transmission schedules terminology.
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on the goal pursued and the scattering geometry, I will use different data

lengths.

5.2.4 ARSRP-93 data acquisition and storage

On the receiving side, both ships carried horizontal line arrays (HLA) of

approximately 50 wavelength aperture. Depending on the steering direction,

typical angular resolution for both HLAs employed in the experiment ranged

from about 150 for endfire beams to about 1.50 at broadside. The Cory

Chouest beamformer always generated 128 overlapping beams. The Alliance

beamformer generated either 128 or 64 beams, however, all Alliance data

processed so far have 128 beams. Thus, in all processed Alliance data, the

beams are also overlapping. Typical overlap for both Cory Chouest and

Alliance beams is about 30 %.

The Cory Chouest data

Two horizontal line arrays were towed by R/V Cory Chouest. LFM chirps

were received by the Middle Frequency Array (MFA) consisting of 128 hy-

drophone groups separated by 2.5 m with four hydrophones in each (Fig.

5.2).
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Figure 5.2: Some details of the Cory Chouest towed array design. VIM is the

vibration isolation module. Eleven VIMs were used in front of the array and

5 VIMs were connected after the tailer. A rope drogue was attached to the

end of the array to stabilize its shape. 1 and 3 are the depth sensors opera-

tional during the experiment. 2 and 4 are the forward and aft desensitized

hydrophones. They had low gain so that the direct signal could be received

without overloading. HFA is the high frequency array. MFA is the middle

frequency array.
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The array was towed at about 150 m depth. The acoustic center of the

The MFA was calculated to be 1174 m behind the center of the ship. Analog

signals from hydrophone groups were transmitted along individual twisted

wire pairs. These reached the processing junction box, where the signals

were filtered and digitized to 16 bit (14 bit + sign) at 1024 Hz sampling

rate. Two forward hydrophone groups were not used during the experiment,

to provide channels for a desensitized phone and a time zero (T-ZERO)

signal. Consequently, digitized data from the Cory Chouest MFA were split

and directed in parallel to the Metrum VLDS recorder (raw data on VLDS

tapes) and to the Signal Processor of the Acoustic Receive Subsystem (ARS)

[1]. The Signal Processor performed beamforming of the acoustic time series

data, followed by matchfiltering. The beamformer had 128 beams and 128

Hz bandwidth (from 176 to 304 Hz), and provided full azimuthal coverage in

the 200 to 280 Hz frequency band with no more then 0.01 dB ripple across the

band [1]. Application of rectangular, hanning or hamming weighting across

the array sensors was available. During the experiment hamming array taper

with a 15 % pedestal was used. Complex envelope demodulation (downshift

of the frequency band) and decimation was performed within the beamformer

section of the Signal Processor. Beamformed but not matchfiltered data were
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recorded on the certified 8-mm tapes from high-density 8500 tape drives

(Cory Chouest beam data, beam tapes).

In addition to 128 channels of data, four pass-through channels were

recorded on beam tapes: forward Desensitized Phone, T-ZERO channel,

forward Acoustic channel and aft Acoustic channel. Later these data, along

with other information collected and recorded during the experiment, were

stored on the ARSRP archive.

Complex bandshifted decimated data have approximately 60 Hz band-

width and are sampled at 128 Hz. The center frequency for the frequency

band shift was calculated to be 214 Hz.

The Alliance data

The Alliance towed array consists of three nested apertures of 128 hydrophones

each [99] spaced at 0.5, 1.0 and 2.0 m, respectively, 256 hydrophones alto-

gether. The acoustic center of array for the ARSRP experiment was located

1692 m behind the center of R/V Alliance. Prior to being transmitted to

the dry end processing center on board the ship, raw data were digitized

to 12 bits at a 6000 Hz sampling rate. These time series data from all

256 hydrophones were stored on the VLDS tapes. Additionally the low fre-
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quency aperture data collected in the frequency band 200 to 375 Hz were

sent through a time domain beamformer. The beamformer applied hanning

weighting across the array elements and generated 128 output beams cover-

ing the entire azimuthal space. Some of these beamformed data were then

bandshifted to the "center frequency" 222.5 Hz, decimated to 128 Hz or

150 Hz sampling frequency, and stored on tapes (Alliance beam data, beam

tapes).

The ARSRP Archive

All beam data can be found on the ARSRP archive at ftp : //arch.ucsd.edu.

Beam data are beamformed but not matchfiltered time series recorded on

magnetic tape specific to the experiment format.

Monostatic data are stored on the archive in the "dsr format". Con-

version to the geophysical industry data exchange format SEGY is done by

the dsr2segy routine. Retrieved SEGY formatted data records consist of

132 channels (128 beams and 4 pass-through channels). The exact time

when data starts and other important information is contained in the SEGY

header.

Bistatic data are found on the archive in the "cbs format". Conversion
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to the SEGY is made by the cbs2segy routine. Retrieved SEGY formatted

data may consist of either 64 or 128 beams, and can be decimated at 128

or 150 Hz. However, all data processed in this study consist of 128 beams

decimated at 150 Hz.

Files stored on the Archive have file names corresponding to the day

and time of the recording. A Julian calendar was used during the ARSRP

experiment. Julian day 182 (beginning of the experiment) corresponds to

July 1, 1993. All processed data were collected during Julian day 197, which

corresponds to July 16, 1993. A complete conversion table from Julian to

calendar dates can be found in [1]. Local Zulu time was used for the ARSRP

clock synchronization.

5.3 Preparation of the ARSRP data

In this section I discuss in more detail issues relevant to the preparation of

data. First, retrieved raw data must be matchfiltered to increase its temporal

resolution. Then I ensure that all possible delays in the data recording scheme

are accounted for, so that I have a correct time reference. The final issue to

address is the receiver performance.
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Here I will mostly concentrate on the monostatic data (Cory Chouest

transmissions received by its own receiver) collected during pings 411 and

412. I believe that matchfiltering of the bistatic data follow the same pattern

as monostatic, so that I will choose the same replica for both monostatic and

bistatic data.

Cory Chouest and Alliance receivers are quite close in their design. For

this reason I expect similar performance from the Cory Chouest and Alliance

receivers, hence I will assign the same sidelobe level to the Alliance receiver

as I measured for the Cory Chouest receiver.

The major difference between the monostatic and bistatic data is that

often distance between source and receiver is larger for the bistatic geome-

try, hence higher transmission loss and lower signal-to-noise ratio may result.

Following the same procedure, I will compute signal-to-noise ratio indepen-

dently for a chunk of monostatically received data and a chunk of bistaticly

received data.

5.3.1 The matchfiltering of the beamformed signals

Prior to use, data retrieved from the archive were matchfiltered. Several

choices of a replica were possible. First is the T-ZERO signal, i.e., the record-
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ing of what was sent to the power amplifiers, and then transmitted into the

water by the source array. Second is the signal recorded by a desensitized

hydrophone (forward or aft acoustic hydrophones) during the direct arrival,

i.e., what was injected into the water column close to the source. The de-

sensitized hydrophones and their channels had different gains and somewhat

different positions within the receiving array, hence one would expect to see

like signals recorded by these hydrophones, except for the absolute level and

exact time of arrival. This replica choice was not available for the Alliance

transmissions because the Alliance receiver did not provide individual hy-

drophones close enough to its source to see the direct arrival, and neither did

it provide for the T-ZERO signal recording. The third choice was to generate

a replica according to what must have been transmitted electrically to the

source system. Since this is somehow imposed instead of being measured, I

designate it as a "computer generated" replica.

At first glance, using the desensitized hydrophone channels when available

seems the best choice, however I tried all choices. A brief comparison of

matchfiltering results with the different replicas follows.

Consider the monostatic experiment with geometry sketched in Figures

5.1 and 5.2, in which Cory Chouest transmissions were received by its own
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MFA. Clearly, for a typical depth ranging between 4 to 5 km and typical

sound speed of about 1500 m/s, the direct arrival is expected to be sepa-

rated from the first bottom return by more then the LFM chirp duration of

5 s. Additionally, the path difference between direct and surface reflected

arrivals results in the about 30 ms separation between them, which is larger

then the spatial resolution of the LFM signal (high signal-to-nose ratio im-

plied). Therefore, after convolving the signal received in the forward endfire

beam with the desensitized hydrophone output, one would expect to see two

resolved arrivals separated by 30 ms, or three points in the decimated data.

However, this was not the case (Figure 5.3).

First, only one arrival is seen (I explain this later in the section on timing

of the received signal).

Additionally, when the desensitized hydrophone signal was used as a

replica generator (red line in the figure), high sidelobes with relative am-

plitudes up to -20 dB were found approximately 300 ms ahead of the direct

arrival. This effect was not observed using the T-ZERO signal (blue line in

the figure). However, higher overall sidelobe levels are seen, especially at

further distances from the direct arrival (1 to 2 and 4 to 5 s in the figure).

I finally concluded that matchfiltering with the computer generated replica,
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Beam 1 (forward endfire), J197, start time = 05:23:58 Z
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Figure 5.3: Signal received by the forward endfire beam of the Cory Chouest

receiver matchfiltered with different replicas. The recording was made on

J197 at 05:23:58 Z. Matchfiltering results with the computer generated

replica, desensitized hydrophone and T-ZERO channel are plotted with the

black, red and blue lines, respectively.



plotted as a black line in Figure 5.3, gives the lowest temporal sidelobes.

Therefore, the computer generated replica was chosen for matchfiltering in

both the monostatic and bistatic experiments.

Still sidelobe contamination is noticeably high with the first sidelobe at

about -13 dB, as seen in Figure 5.4, and it must be accounted for when

interpreting data.

5.3.2 The signal-to-noise ratio (SNR)

The definition of what is noise varies somewhat depending on researcher

attitude. For example, when studying reverberation one might consider it

as a signal, while for the purpose of whale search reverberation clearly is

an unwanted sound. I am mainly interested in scattering from the rough

bottom, hence for my purposes sound scattered from the bottom is a signal.

This definition sets the noise to be a summation of ambient noise and system

noise.

Gaussian noise

Ambient and system noise are both a result of addition of many independent

noise processes. By virtue of the central limit theorem they both can be con-
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Beam 1 (forvard), Julian day 197 (07/16/93), start time = 5:23:58
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Figure 5.4: An expanded view of the direct signal received by the Cory

Chouest array. The recording was made on the J197 starting at 5:23:58 Z.

The received signal was matchfiltered with the computer generated replica

and then normalized on its maximum value. High temporal sidelobes with

up to -13 dB relative level are seen on the plot.
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sidered stationary (on a time scale of > 1 hour), and the received noise must

be a Gaussian random function, possibly slowly varying in time as environ-

mental conditions change. Then as output of the matchfilter one expects to

see a stochastic process with Rayleigh probability density of its amplitude.

To simplify terminology, I designate the sum of system and ambient noise as

a "Gaussian noise" and I will not distinguish between these two components,

treating the sum as a unified noise source of a certain level.

For assessment of the Gaussian noise level I consider data recorded by

the Cory Chouest at the beginning of the segment 413, i.e., monostatic ping

413 in my terminology. This segment was recorded on the J197 starting at

approximately 05:50 Z. During this segment Alliance transmitted its wave-

form, which started with a high frequency signal RPLOO9. Presumably, at

the time of the measurement, this signal had not yet arrived at the Cory

Chouest receiver. Additionally, its frequency is outside of the Cory Chouest

MFA reception band. The last signal detectable by the Cory Chouest re-

ceiver was transmitted at 05:36 Z, i.e., 12 minutes prior to the beginning of

the ping. I therefore assume that the reverberation due to it has decayed,

and the received signal is the ambient plus system noise. In Figure 5.5 the

power received in beam number 64 steered almost to broadside is plotted.
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Figure 5.5: The recording of received noise level made on J197 starting at

05:48 Z. Noise level measured in the broadside beam (beam 64) of the Cory

Chouest receiver is plotted.
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The first thing to notice is that the signal appears stationary in time for

the entire duration of the plotted data. The other thing is that the received

noise level highly varies from sample to sample. The standard deviation of

the noise level is 6 dB, or in linear space, the ratio of the mean received

power computed for the plotted chunk of data to the standard deviation is

1.8, i.e., the standard deviation is almost the same as the mean value, as in

the Rayleigh distribution. However, neither the mean value nor the standard

deviation change noticeably with time.

Finally, to check validity of the Gaussian assumption I compute a his-

togram of received noise absolute value and compare it with the best fit

Rayleigh distribution. I choose for processing 10 s of noise recorded starting

7 s after the beginning of segment 413. First I compute a histogram of the

average across beams and normalize it by its maximum value. Then using

the least square estimator I find the best fit Rayleigh distribution in the form

p(x) = (A/B) exp(-x 2 /B 2 ) approximating the data. Results are shown in

Figure 5.6.

A good fit is seen visually. The mean square error was found to be 0.005

units. For reference, parameters of the Rayleigh distribution were found to

be A = 1.32 and B = 0.81.
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Rayleigh distribution fitted to normalized averaged over beams hist. of noise
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Figure 5.6: Histogram of amplitudes observed in the recording of noise (plot-

ted with stars). Computed histogram is normalized by its maximum value.

The best fit (in the mean square sense) Rayleigh distribution is plotted with

a solid line.
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The signal

The signal received at the beginning of segment 412 in the broadside beam

64 is plotted in Figure 5.7.

Pings 412 and 413, beam 64 (broadside)
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Figure 5.7: Signal measured during ping 412 in broadside (beam 64) of the

Cory Chouest receiver is plotted with a solid line. The recording of the signal

was made on J197 starting at 5:36 Z. The signal received in the same beam

12 min earlier (noise) is plotted for comparison with a dotted line.
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During this segment, an LFM pulse was transmitted and subsequently

received by the Cory Chouest. The dotted line on the plot represents the

same "noise" recording as in Figure 5.5, however it is shifted backward in

time 12 min to make its beginning coincide with the signal.

The levels of the data received in ping 412 differ noticeably from the Gaus-

sian noise. Clearly, the signal observed during ping 412 is a nonstationary

function, with its mean value changing noticeably with time. However, ex-

cept for the mean level, it resembles in appearance the Gaussian noise, having

about 6 dB standard deviation. To start with, I will consider qualitatively

its short time average.

First, before the transmitted pulse of ping 412 arrives in beam 64 of the

receiver, relatively low pressure levels are detected. However, these levels are

much higher then the ambient noise observed in ping 413. Then the direct

signal arrives in beam 64 and generates a high pressure peak at approximately

1 s from the beginning of the data record. Through temporal sidelobes of the

matchfilter, this high level spreads and increases the observed level compared

to the ambient noise, so that at time t = 0, when the pulse has not yet reached

the array, and during time interval from t = 1 s to t = 5 s when the direct

signal is already over and the bottom reflected signal has not yet arrived, the
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level detected is about 40 dB higher then the ambient noise.

Next, the maximum level of the bottom scattered signal is observed when

the acoustic field is injected into the water through the source sidelobes, scat-

tered from the bottom at almost the normal angle, and arrives at the receiver.

A gradual decrease in the received level due to the increase of transmission

losses, and the decrease in the incidence and scattering grazing angle follows

during 7 to 25 s. Estimation of the absolute value of the scattering cross sec-

tion of the bottom is quite complicated because the incident field amplitude

is entirely determined by source sidelobes, which are hard to measure or to

estimate robustly. However, relative measurements are possible, and certain

second order statistics can be inferred.

A noticeable increase of the received signal can be seen at 25 to 40 s,

when sound in the main lobe of the source reaches the bottom. The best

estimate of the incident field amplitude, and consequently the most reliable

measurement of the scattering cross section, can be made within this part of

the data.
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The signal-to-noise ratio against the Gaussian noise

Based on the foregoing, it appears reasonable to compute the "signal-to-

noise" ratio (SNR). Since noise is a stationary function of time, its average

value can be computed in each beam. Unlike the Gaussian noise, the mean

value of the signal is not stationary, hence SNR is also a function of time.

Averaging signal over too long time is meaningless, since it is clear that

there is no signal at all after a long time after the transmission. To capture

dynamics of the SNR as a function of time, one must use the local short time

average of the received signal over a time short compared to the characteristic

time of the signal nonstationarity, which is estimated to be about 10 s. On

the other hand, the signal is a highly variable function of time, and not

averaging at all would end up "hunting" individual target strengths of the

scattering events, which is not yet my goal. I chose to average over a 1

s time interval, which is small enough to capture the SNR dynamics and

large enough to make things "smooth". The resultant SNR shows the ratio

of the entire reverberation signal to the Gaussian noise. It is plotted in

Figure 5.8 as a function of the beam number and time elapsed after the

pulse transmission. It is seen in the figure that the reverberation signal

noticeably exceeds the ambient noise level, with the exception of the forward
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Figure 5.8: The SNR ratio against the Gaussian noise observed during ping

412. The recording of the scattering signal was made on J197 starting at

05:24 Z. Noise was recorded during ping 413 on J197 starting at 05:48 Z.

Y-axis on the plot is the beam number, beam 1 is steered to the forward

endfire, beam 128 is steered to the aft endfire.
endfire, beam 128 is steered to the aft endfire.



beam, which is relatively noisy, no doubt due to ship noise. Another way

to see that the first beam differs from others is to plot the average observed

noise level as a function of the beam number (Figure 5.9).

Average noise received in the ping 413
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Beam number, first beam is forward endfire

Figure 5.9: Average pressure level measured during 56 s observation in the

ping 413 (noise). The recording was made on J197 starting at 05:23:58 Z.

High noise level in the first (forward endfire) beam is seen.

The conclusion is simple: except for the forward beam, reverberation far

exceeds Gaussian noise (a sum of the ambient noise, ship noise, system noise
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etc.). The forward beam is pointed toward the ship and receives ship noise,

hence data in this beam often will be excluded from the data processing.

Following the same procedure, I compute the signal-to-noise ratio against

the Gaussian noise for bistatic data. I choose bistatic ping 430 recorded

by the Alliance receiver on J197 starting at 09:12 Z. Because of the large

ship separation, it takes longer for the acoustic field transmitted by the Cory

Chouest source to reach the receiver. Therefore I can choose data recorded

at the beginning of the segment as a good estimate of the Gaussian noise.

I choose 15 s of data recorded between 09:12:00 and 09:12:15 to compute

the average noise level. I then choose data recorded between 09:12:20 and

09:13:16 as the signal. As for the monostatic data, I plot in Figure 5.10

the signal and noise received in the beam steered almost to the broadside

direction.

Then I run a sliding 1 s average to smooth the received data and plot

in Figure 5.11 the short-time averaged data level, relative to the noise level

computed previously. It is seen from Figures 5.8 and 5.11 that the same

conclusion can be made for both monostatic and bistatic data: reverbera-

tion noticeably exceeds the combination of ambient, ship and system noise

together.
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Bistatic data, ping 430, beam 64 (broadside)
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Figure 5.10: Signal measured during ping 430 in broadside beam 64 of the

Alliance receiver plotted with a solid line. The recording of the signal was

made on J197 starting at 09:12:20 Z. Signal received in the same beam 20 s

earlier (noise) is plotted with a dotted line for comparison.

136

.. J1 ,'W"Of" I j



Power received in ping 430 rel. to noise, dB
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Figure 5.11: The bistatic SNR ratio against the Gaussian noise observed

during ping 430. The recording of the scattering signal was made on J197

starting at 09:12 Z. Noise was recorded prior to the signal arrival. Y-axis on

the plot is the beam number, beam 1 being steered to the forward endfire,

beam 128 steered to the aft endfire.



5.3.3 Timing of the received signal

Given the source and receiver positions and the sound speed profile one can

infer the expected time delay between beginning of the transmission and

reception of the signal. For instance, I consider the monostatic geometry

shown in Figures 5.1 and 5.2. Horizontal distance from the source to the

desensitized hydrophone and to the center of the MFA array was 864 m

and 1174 m, respectively. Source depth was 181 m, and receiver depth as

measured by two depth sensors is 151 and 155 m, i.e., about the same.

Sound speed was constantly monitored during the ARSRP experiment.

For the 200 m depth during the experiment, values of the sound speed were

in the range from 1521 m/s to 1532 m/s [1]. The measurement of sound

speed profile closest in time to the pings considered was made by the Cory

Chouest on J197 at 04:40 Z, about one hour prior to the transmissions. The

corresponding sound speed profile is shown in the left portion of Figure 5.12.

In the right portion of the figure rays connecting source and receivers are

shown. Raytracing was performed from the VLA source (horizontal range

0 m) to the desensitized phone (horizontal range 864 m) and to the center

of the MFA (horizontal range 1174 m). Sound speed profile measured on

J197 at 04:40 Z, source depth 181 m, and receiver depth 153 m for both
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Figure 5.12: Direct and surface reflected paths connecting source (shown

with a star) and center of the MFA (shown with a circle). Sound speed

profile used for ray calculation is shown in the left portion of the figure.
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desensitized phone and MFA were assumed.

Then from the ray tracing I expect to see arrivals at the MFA at times

770 ms (direct arrival) and 800 ms (surface reflected arrival). Corresponding

transmission losses due to geometrical spreading of the acoustic field are

estimated as 48 dB for direct and 56 dB for the surface reflected paths.

Considering forward scattering losses at the surface for the typical sea state,

the amplitude difference between direct and surface reflected arrivals becomes

about 10 dB, i.e., close to the level of the matchfilter temporal sidelobes. This

means that the dominant feature in the received signal is the direct arrival

at 770 ms.

Arrivals at the desensitized phone are calculated at 570 ms and 600 ms for

the direct and surface reflected paths, respectively. However, corresponding

transmission losses are 30 and 50 dB, so that the surface reflected arrival will

not be seen in the received signal.

Power received during the beginning of ping 411 is shown in Figure 5.13.

As expected, only one distinct arrival is seen in the forward endfire beam

(lower plot in the figure) and in the desensitized phone recording (upper plot).

However, arrivals are observed at 850 ms (desensitized phone) and at 1040

ms (MFA). Therefore, a delay of signal arrival to the forward desensitized
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Figure 5.13: Direct arrival recorded in the forward looking beam of the Cory

Chouest MFA (upper plot) and in the desensitized hydrophone (lower plot)

on the J197. Solid line: ping 411, data starts at 05:24 Z. Dashed line: ping

412, data starts at 05:36 Z, shifted backward 12 min. Dash-dotted line: ping

414, data starts at 06:00 Z, shifted backward 36 min.
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hydrophone and to the forward endfire beam of about 280 ms and 270 ms,

respectively, is observed, which corresponds to the spatial error of about 400

m. To check consistency of the delay, pings 412 and 414 were also considered

in Fig. 5.13. It is clearly seen in the figure that within experimental resolution

the delay is consistent.

Clearly, observed delays can not be explained by the sound speed varia-

tion. Since observed delays translate into about 400 m spatial error, it is also

unlikely that an error in time of arrival is due to the uncertainty in the dis-

tance between the source and receiver. It was assumed that the arrival delay

is due to a time delay of the signal accumulated somewhere between the re-

ception and recording, or is due to the slight mismatch between transmitted

waveform and replica used for matchfiltering. Disregarding the mechanism

of the delay, I will shift the monostatic data by 280 ms prior to analysis to

account for the delay when it seems important.

5.3.4 The Cory Chouest receiver array degradation

Hydrodynamically, the array used in the ARSRP experiment is a soft slender

body suspended in the water column. It is subject to two-dimensional bend-

ing under the influence of hydrodynamic forces. It is assumed straight by
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the beamformer, however reality clearly is not that simple. Generally, actual

positions of each hydrophone at each moment of time is unknown. Distortion

of the array shape results in array degradation. At first, degradation of side-

lobes is expected, resulting in higher then expected sidelobe levels. Then,

for large enough shape distortions the main lobe degrades, i.e., splits into

several "sublobes" of comparable level (e.g., [101]).

It was also noted [1] during calibration procedures that some hydrophones

in the array did not perform adequately. Several hydrophone groups had

lower than expected gain, and some were dead. The presence of bad hy-

drophone groups in the array results in increased sidelobe levels. To un-

derstand these issues, the beam pattern was computed for a straight line

array containing bad hydrophones. For steering in the broadside direction, it

resulted in a uniform sidelobe level of -30 dB over the entire angular space.

From the above, sidelobes are expected to be higher than for an ideal

array. One way to estimate actual array performance is to consider scattering

from localized scatterers on the bottom observed by the array.

For the purpose of the array performance estimation I will consider only

the strongest scattering events, since they are relatively easy to isolate. I will

limit myself to the investigation of monostatic pings 411 and 412. To select

143



only the strongest returns, I first consider data in the upper 20 dB dynamic

range, clipping everything with amplitudes smaller than that.

Also, I observed that the time duration of any peak in any beam is about

30 ms, corresponding to 4 points of data at the 128 Hz decimation rate (see,

for instance, Fig 5.4 for the direct signal duration, or the following figures

with data). To account for it, I will average data over 4 points prior to

analysis.

The splitting of the main lobe: analysis of the early arrivals

First I consider scattering at early times. Data for ping 411 and 412 are

shown in the upper plots of Figures 5.14 and 5.15, respectively. The Y-axis

is the beam number, where the first beam is the forward endfire beam, beams

63 and 64 are almost broadside beams, and the last beam plotted is beam

number 128, which is the aft endfire beam. The temporal duration of each

resolution bin in the figures is constant equal to 7.8 ms, and the angular

resolution is one beam (expressed in degrees, which varies with the beam

number). It is clearly seen in the figures that scattering at early times

appears as a number of discrete events with somewhat different amplitudes.

It is also seen that events observed in particular space resolution bins oc-
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Figure 5.14: Upper plot: signal received at the Cory Chouest during ping

411. Lower plot: detected strong peaks in the received signal. Color shows

received pressure level, dB re 1 pPa. X-axis is time. Early times, 5.9 to 6.6

s after the transmission, were considered. Y-axis is the beam number, where

beam 1 is the forward endfire beam.
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Ping 412, received pressure level, dB re 1 micropascal
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Figure 5.15: Upper plot: signal received at the Cory Chouest during ping

412. Lower plot: detected strong peaks in the received signal. Color shows

received pressure level, dB re 1 pPa. X-axis is time. Early times, 5.9 to 6.6

s after the transmission, were considered. Y-axis is the beam number, where

beam 1 is the forward endfire beam.
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cupy several time-resolution bins. The discreteness and duration of observed

events suggest that discrete scatterers or discrete areas with strong scatter-

ing properties are observed. If splitting of the main lobe actually occurred, I

would expect to see "doubling" of the event, i.e., to observe at one particular

time several events of comparable amplitudes in several beams most likely

close in angular space, instead of one isolated event.

The other possible scenario for the main lobe degradation is to see broad-

ening of the main lobe. This can happen if splitting of the lobe does take

place, but not strongly enough to generate well separated individual sublobes.

This would result in the "broadening" of the event, i.e., in the emerging of

"wide" events occupying several adjacent beams of the receiving array.

However, neither doubling nor broadening of the received scattering events

is seen in Figures 5.14 and 5.15. But generally I do see a high level of returns

around strong events. Consider, for instance, beams 1 to 40 and 100 to 128

at 5.8 to 6 s. Via propagation considerations I know for sure that there must

be no signal in these beams, and whatever is observed is most likely a leakage

through sidelobes. However, the most important conclusion is that I do not

see splitting of the main lobe.

Another way to approach this problem is to consider the statistical prop-
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erties of strong events. First, I can measure the width of strong events.

Because of beam overlap, I expect individual events to be seen in two adja-

cent beams, but not in three, unless main lobe broadening is observed. Then

I can compute distances between separate events observed simultaneously in

several beams.

To avoid accidental inclusion of Gaussian noise into the statistics, I will

first clip data that are outside the upper 20 dB dynamic range. Next, at

each sampled point in time I make a "cut" through all beams. In each cut

I select the two strongest maxima. Then for each detected "strong" event

I compute its 3-dB width using linear interpolation if necessary, and the

separation between two peaks in the cut. Strong peaks detected in pings 411

and 412 are shown in Figures 5.14 and 5.15, lower plots. On these plots unit

value is assigned to time-space resolution bins where the strong peak was

detected, and a zero value is plotted if there was no detection.

Raw data for the angular width of individual strong peaks are shown in

Figure 5.16. Zero values on the plot correspond to time resolution bins where

less then two peaks in the cut were detected. The average spatial width at

the 3 dB down level of all detected strong peaks shown in the figure was

computed to be 2.4 beams, with a standard deviation 0.6 beams, where only
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Strong peaks detected in the beginning of ping 411 and 412

3- Ping411 Ping4124
r, I I
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_ I I

5 10 15 20 25 30 35 40 45 50 55
Cut number with at list 2 peaks detected

Figure 5.16: Angular width of individual peaks measured at the beginning

of pings 411 and 412. Only strong peaks were considered. Zero values on the

plot correspond to the case in which no strong peaks were detected in the

time bin. Only the two strongest peaks in each cut were considered, if more

then two peaks were detected. Width is in number of beams in which peaks

can be seen at the -3 dB level. Linear interpolation of width was used when

necessary, allowing for noninteger values of width.
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cuts with at least two peaks were considered. It corresponds well to my

expectation of seeing any event in two beams simultaneously.

Separations between the two strongest peaks in the cut, for each cut, as

a function of cut number, are plotted in Figure 5.17. In the plot, negative

Strong peaks detected at the beginning of pings 411 and 412

5 10 15 20 25 30 35 40 45 50 55
Cut number with at least 2 peaks detected

Figure 5.17: Separation (in number of beams) measured between the two

strongest peaks found in the time bin. Zero values are plotted for cases in

which less then two strong peaks were detected.

separation means that the strongest peak is detected in the beam with a
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lower number then the second strongest peak. It appears that separations

are about uniformly distributed in the -30 to +30 range. Again, zero values

correspond to time resolution bins with less then two strong peaks detected.

To estimate the characteristic time scale of separation between the two

strongest peaks in a cut as it changes with time, I computed the autocorre-

lation function (see Figure 5.18). It is seen in the figure that the correlation

function has a narrow maximum at zero.

An expanded view of the autocorrelation function near zero correlation

lag is shown in Figure 5.19. It is seen that at one lag time shift, the corre-

lation function value drops from 1.0 to 0.2. This shift corresponds to cross-

correlating of separations seen in a certain time bin with those seen in the

next time bin, hence there is little correlation between separation observed

in one time bin and the one observed in the next.

The splitting of the main lobe: analysis of the main lobe arrivals

An increase in the level of the received signal is seen in Figure 5.7 during the

time interval from 25 to 40 s after the beginning of the transmission. This

increase is due to the fact that the incident acoustic field during this time is

within the main lobe of the source. In this time interval the most reliable
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Normalized correlation function of detected strong peaks

0.5- Beginning of ping 412

0

-100 -80 -60 -40 -20 0 20 40 60 80 100
Lag number, 7.8 ms. time step per lag

Figure 5.18: Autocorrelation function of separations between two strongest

peaks detected at the time bin of data collected in the beginning of ping 411

(upper plot) and 412 (lower plot). Arrivals seen in the data 7 to 17 s after

the transmission are considered (early arrivals).
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Normalized correlation function of detected strong peaks
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Lag number, 7.8 ms. time step per lag

Figure 5.19: An expanded view of the autocorrelation function of separations

for early arrivals seen in ping 411 (upper plot) and 412 (lower plot)
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estimate of the incident field amplitude can be made, hence a good estimate

of the scattering cross section can be achieved. Therefore, this part of the

data will be useful in subsequent discussion. I will repeat the procedure

outlined above, and investigate if the splitting or broadening of the main

lobe occurs in data recorded in this time interval. Monostatic pings 411 and

412 will be considered again.

I first select a small data interval of 780 ms in length, starting at 31.25

s after the beginning of the transmission (Figures 5.20 and 5.21). It is

seen in the figures that scattering again is discrete, i.e., I see isolated peaks.

The same statistical procedure used for the early arrivals now gives, for the

ping 411 data, a mean width for strong peaks of 2.1 beams, with a standard

deviation of 0.4 beams. Corresponding numbers in the ping 412 data are:

width of 2.0 beams, with a standard deviation 0.5 beams.

As for separation, I again compute the autocorrelation function (Figure

5.22). To make the width of the autocorrelation function more visible, an

expanded view is shown in Figure 5.23. Again, no correlation between sepa-

ration is seen in adjacent time bins.
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Ping 411, received pressure level, dB re 1 micropascal dB
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Figure 5.20: Upper plot: signal received at the Cory Chouest during ping

411. Lower plot: detected strong peaks in the received signal. Color shows

received pressure level, dB re 1 pPa. X-axis is time. Times from 31.3 to 32

s after the transmission were considered. Y-axis is the beam number, where

beam 1 is the forward endfire beam.
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Ping 412, received pressure level, dB re 1 micropascal
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Figure 5.21: Upper plot: signal received at the Cory Chouest during ping

412. Lower plot: detected strong peaks in the received signal. Color shows

received pressure level, dB re 1 MPa. X-axis is time. Times from 31.3 to 32

s after the transmission were considered. Y-axis is the beam number, where

beam 1 is the forward endfire beam.
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Normalized correlation function of detected strong peaks
1

0.5 - Main lobe, ping 411

0

1

0.5 Main lobe, ping 412
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-100 -80 -60 -40 -20 0 20 40 60 80 100

Lag number, 7.8 ms. time step per lag

Figure 5.22: Autocorrelation function of separation between the two

strongest peaks detected in the time bin of data collected at the beginning

of ping 411 (upper plot) and 412 (lower plot). Arrivals seen in the data 35

to 45 s after the transmission are considered (main lobe arrivals).
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Normalized correlation function of detected strong peaks
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Figure 5.23: An expanded view of the autocorrelation function of separation

for main lobe arrivals seen in ping 411 (upper plot) and 412 (lower plot)
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Discussion

I found that an average event is seen at the -3 dB level in two beams only.

This is consistent with the array main lobe width, and the beam overlap. For

instance, consider broadside beams 63 and 64. These beams are expected to

occupy the angular space from 88.830 to 90.260 and from 89.740 to 91.170,

respectively. Correspondingly, an event located in the broadside direction

will be detected in both beams with almost the same amplitude.

The separation between strong peaks detected at any given time in dif-

ferent beams was found to be about uniformly distributed in a range of ±30

beams. I also found that the separation detected in one time bin is uncorre-

lated with the separation detected in an adjacent time bin.

If there was splitting of the main lobe due to the complexity of the array

shape, I would expect the array beam pattern to change with the charac-

teristic time scale of the array shape change. Therefore, I expect to see the

unchanged beam pattern during a time interval shorter then the characteris-

tic time of the array. The fact that I see no correlation between separations

observed in one time bin with an adjacent time bin means that either there

is no beam splitting, or that the array shape changes in a time scale smaller

than the size of my time bin, which is set to 8 ms.

159



The characteristic time of the array shape can be related to its spatial

translation (with the time scale T,1) and to the propagation of smaller dis-

turbances along the array (with the time scale T, 2). For a characteristic

width of the array main lobe a, the corresponding interrogated length at

distance R on the bottom is L 1 = R sin a. The corresponding translational

characteristic time can be estimated as T,1 = L 1/U, where U is the speed of

towing U 2 knots. Using a = 1.50 and R = 5 km results in a lower bound

estimate of the characteristic translational time T,,1 > 3s. The characteristic

time due to propagation of disturbances along the array can be estimated if

their speed and wavelength A are known. However, it was shown [102] that

disturbances of interest propagate along the array with the speed approxi-

mately equal to U, and A = U -Tf, where Tf is the characteristic time scale

of the forcing applied to the array [102]. Then T, 2 is simply equal to the Tf.

It is believed that ocean surface motion (swells with typical periods of about

10 s) is a primary source of the array disturbances [102]. This results in an

estimate T, 2 f 10 s. Therefore, the minimal time scale associated with the

array motion is 3 s, which is much larger then the time bin size of 8 ms.

Hence I conclude that splitting of the array main lobe is not seen in the

analyzed data.
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The angular sidelobes of the receiving array

It seems difficult to generate a good estimate for the sidelobe level with my

data. This difficulty is mainly due to the fact that in each beam, at each

moment of time, I have a valid scattering signal. The pressure level received

in the beam is a sum of the scattered signal and leakage of signals received

in other beams through sidelobes of the beamformer. At no time and in

no beam can I say for sure which part of the received signal in the beam

is due to the scattering, and which part of the signal is sidelobe leakage,

with only one exception. Because the source sidelobe ensonification of the

bottom (depth is approximately 4000 m) starts about 6 s after the begin-

ning of the transmission, let's consider again data recorded about 6 s after

the transmission. Scattering is registered first from elevated areas in nearly

broadside beams, since the round trip to the bottom takes longer for hori-

zontally started rays then for vertical ones. Consider the very beginning of

the record in Figure 5.15. For the ping 412 geometry, scattering is seen to

appear first close to beams 40 and 50. On the lower plot I clearly see these

two peaks detected in beams 38 and 54. However, on the upper plot one can

notice that the recorded signal is nonzero in all beams, including for instance

the aft beam which was generated by initially horizontal rays and could not
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possibly complete the round trip. Clearly, data in beams not close enough

to those containing scattering events are generated by sidelobes of the two

beams containing events. Then a cut through all beams made at an appro-

priate time may reveal the beam pattern of the receiver. In Figure 5.24 the

signal recorded by the receiver at time t = 5.859 s after the beginning of the

transmission (first data points shown in Figure 5.15) is plotted together with

the summation of the idealized beam patterns of the array steered to the di-

rection of beams 38 and 54, i.e., 65.330 and 80.480 from forward, respectively.

The idealized beam pattern was computed assuming an ideally straight

line array, and a broadband signal occupying frequencies from 200 to 255 Hz.

It is seen in the figure that the sidelobe level is almost constant throughout

the entire angular range, and equal to about -25 dB, instead of the expected

lower values.

Conclusions

It is therefore my conclusion that observation of early arrivals, and arrivals

due to scattering within the source main lobe in pings 411 and 412, shows

no significant broadening of the main lobe, and no noticeable splitting of the
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Comparison of the received signal with idealized array beam patterns
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Figure 5.24: Comparison between signal recorded by the receiving array and

idealized beam patterns of the receiver steered into the direction where strong

events were detected. The recording was made 5.859 s after the beginning

of the transmission. Data were collected during ping 412 on the J197, start-

ing at 5:36 Z. High sidelobe levels compared to the idealized case are seen

throughout the entire angular range.
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main lobe. Since later I will analyze the statistical properties of individual

peaks observed in the received signal, this conclusion is particularly impor-

tant. Any strong peak observed in the received data is likely to be due to

scattering from certain features within the beam, and not due to the leakage

from another beam, or a split main lobe.

I do however see a relatively high sidelobe level, both in temporal and

in angular space. Therefore, as far as weak features in the received signal

are concerned, I can not be sure whether they are scattering data generated

within the beam or leakage through high array sidelobes.

I estimate the actual angular sidelobes to occupy the entire angular space

at about the -25 dB level for broadside steering of the array. It is 5 dB higher

than estimated for the ideally straight array, when inadequately performing

hydrophone groups were considered. Sidelobes higher than the -25 dB level

were not found in the data analyzed.

Temporal sidelobes (Figure 5.5) are seen to decay with the increase of

the separation from the event. Sidelobes are seen to drop to the -25 dB

level at a temporal separation of about 70 ms from the event. However the

first temporal sidelobe of the event with -13 dB level is seen at about 30 ms

separation from the event.
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Chapter 6

The Higher Order Statistical

Properties of the ARSRP Data

6.1 Higher order statistics vs. first order statis-

tics

It was clearly shown in Chapter 5 that the pressure level received in any of

the receiver beams changes notably in time, and at least two time scales can

be detected in the received signal.

The first time scale observed is associated with the frequency band of the

transmitted signal, or, in other words, with the duration of the autocorrela-
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tion function of the transmitted signal (for instance, see Figure 5.4). If one

considers the -3 dB width of the autocorrelation function, this scale would

be approximately 25 ms. I will refer to this scale as a "transmitted pulse

length scale", or simply "pulse length scale".

The other scale can be revealed by averaging data on an interval large

compared to the pulse length. Running a 1 s sliding average of the data,

I generate a "mean" received pressure level, which is seen to be a function

of time (Figure 5.7 and 5.10, upper curves, Figure 6.1, upper plot). I refer

to this averaged signal as the "mean signal" or "average signal". Its level is

determined by both propagation effects (geometrical transmission losses suf-

fered by the acoustic field, absorption), by source and receiver beam patterns,

and by scattering properties of the patch on the bottom (where scattering is

coming from).

Clearly, knowing how to predict the mean value of the observed signal

for a given experiment geometry is of great importance for studying the

reverberation. However, another question seems equally important: except

for the mean level, which statistical measures (if any) are also relevant for

understanding reverberation. For instance, it can be observed (see Figure

5.7 and 5.10, lower curves, Figure 6.1, lower plot) that removing from the
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Ping 411, power received in the beam 64

0- =Received signal with its sliding mean remoaverag
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Figure 6.1: Signal received at the Cory Chouest. The recording was made

on the J197 starting at 05:24 Z. The dotted line on the upper plot is the

received signal. The solid line on the upper plot is the 1 s sliding average of

the received signal (in logarithmic domain). The lower plot is the received

signal with its 1 s sliding average subtracted.
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received signal its sliding mean effectively "stationarises" the process. It

could be called the equivalent of an automatic gain control (AGC). Consider

in the figure the time interval from 7 to 50 s, i.e., away from the direct arrival.

It appears that the AGC signal does not exhibit different behavior at the

time of high reverberation (25 to 40 s in the plot) or when the reverberation

signal is low (15 to 20 s in the plot), and in fact it does not differ much from

recording of the noise.

I will first address this question, namely, except for the mean level, is

there a difference between the recorded reverberation signal and a simple

Gaussian stochastic process. This issue will be approached via accessing the

statistics of the received signal normalized by its sliding mean. The "first

order statistics" of the received signal, i.e., its mean value, is now excluded

from consideration. Hence, I call investigation of the normalized or AGC

signal (with zero mean) "the investigation of the higher order statistics".

Later in a separate section we shall return to the mean value and consider

the "first order statistics" of the received signal.

To measure the higher order statistics I normalize the data acquired in

each receiver beam during pings 411 and 412 on their 1 s sliding mean value.

It has to be understood that after normalization has been done there is no way
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to derive target strength from the normalized target strength, or measured

noise level from the normalized noise level. In this sense normalized values

have little physical meaning. Yet it is convenient to use these normalizations

when higher order statistics are analyzed and the mean value is not an issue.

6.2 The higher order statistics in monostatic

ARSRP data

6.2.1 Histogram of the received signal

One way to address higher order statistics is to compute histograms of ampli-

tudes observed in the received signals. First I consider "main lobe returns",

i.e., the reverberation signal received between 30 and 40 s after the beginning

of the transmission, when the incident field reaches the bottom through the

main lobe of the source (Figure 6.2 and 6.3 for pings 411 and 412, respec-

tively). Then I compute histograms for the early returns recorded 7 to 17

s after the beginning of the transmission (Figures 6.4 and 6.5 for pings 411

and 412, respectively). During this time the incident field is source sidelobe

dominated. Even though this makes it difficult to determine the exact am-
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plitude of the incident field during these times, I know that the signal due to

the reverberation exceeds the underlying Gaussian noise level significantly. I

also know that the acoustic field is incident upon the surfaces at generally

steeper grazing angles, and ensonifies a smaller patch, compared to values

during main lobe returns. Last I consider the Gaussian noise, i.e., receptions

during ping 413 (Figure 6.6). To be consistent, for analysis I chose 10 s of

noise recorded starting 7 s after the beginning of the segment.

Several things can be noted from the comparison of Figures 6.2 - 6.6.

First, it is seen that there is not much difference among histograms computed

for different beams within one figure. Second, there is not much difference

among figures either, i.e., the signal recorded early (steeper incidence grazing

angles and smaller scattering area on the surface) has almost the same sta-

tistical properties as the signal recorded later (small incidence grazing angle,

large ensonified area). It is seen that histograms for early and main lobe ar-

rivals for both pings looks like each other and like the recording made during

ping 413 (noise), i.e., they are "noise-like".

To check this statement I average over all beams and compute estimates

of the probability distribution function (PDF) of the AGC signal and of the

noise. Computed PDFs are plotted in Figures 6.7 and 6.8 for early and
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Ping 411, histogram of AGC pressure level, t = 30-40 s
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Figure 6.2: Histogram of the AGC scattering signal. 1 s sliding mean was

removed for normalization. The recording was made during ping 411 (J197,

starting at 05:24 Z), 30 to 40 s after the beginning of the transmission. The

value of the normalized signal is plotted along the X-axis. Beam number is

plotted along the Y-axis. Color shows the number of occurrences of the AGC

signal value in each 2 dB resolution bin per 10 s of data considered.



Ping 412, histogram of AGC pressure level, t = 30-40 s
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Figure 6.3: Histogram of the AGC scattering signal. 1 s sliding mean was

removed for normalization. The recording was made during ping 412 (J197,

starting at 05:36 Z), 30 to 40 s after the beginning of the transmission. The

value of the normalized signal is plotted along the X-axis. Beam number is

plotted along the Y-axis. Color shows the number of occurrences of the AGC

signal value in each 2 dB resolution bin per 10 s of data considered.



Ping 411, histogram of AGC pressure level, t = 7-17 s
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Figure 6.4: Histogram of the AGC scattering signal. 1 s sliding mean was

removed for normalization. The recording was made during ping 411 (J197,

starting at 05:24 Z), 7 to 17 s after the beginning of the transmission. The

value of the normalized signal is plotted along the X-axis. Beam number is

plotted along the Y-axis. Color shows the number of occurrences of the AGC

signal value in each 2 dB resolution bin per 10 s of data considered.



Ping 412, histogram of AGC pressure level, t = 7-17 s
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Figure 6.5: Histogram of the AGC scattering signal. 1 s sliding mean was

removed for normalization. The recording was made during ping 412 (J197,

starting at 05:36 Z), 7 to 17 s after the beginning of the transmission. The

value of the normalized signal is plotted along the X-axis. Beam number is

plotted along the Y-axis. Color shows the number of occurrences of the AGC

signal value in each 2 dB resolution bin per 10 s of data considered.



Ping 413 (noise), histogram of AGC pressure level
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Figure 6.6: Histogram of the AGC noise. 1 s sliding mean was removed for

normalization. The recording was made during ping 413 (J197, starting at

05:48 Z), 7 to 17 s after the beginning of the transmission. During this time

no waveform receivable by the Cory Chouest was transmitted, therefore the

reception is noise. The value of the normalized signal is plotted along the

X-axis. Beam number is plotted along the Y-axis. Color shows the number

of occurrences of the AGC signal value in each 2 dB resolution bin per 10 .s

of data considered.



Average over all beams, 7 to 17 s after the transmission
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Figure 6.7: Histogram of the average over all beams, normalized signal, mea-

sured by the Cory Chouest receiver. Solid line: Ping 411 data. Dashed line:

ping 412 data. Dotted line: ping 413 (noise recording). Value of the normal-

ized signal is plotted on the X-axis, number of occurrences in the 2 dB bin

is plotted on the Y-axis. Data were collected 7 to 17 s after the beginning of

the corresponding segments.
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Average over all beams, 30 to 40 s after the transmission
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Figure 6.8: Histogram of the average over all beams, normalized signal, mea-

sured by the Cory Chouest receiver. Solid line: Ping 411 data. Dashed line:

ping 412 data. Dotted line: ping 413 (noise recording). Value of the normal-

ized signal is plotted on the X-axis, number of occurrences in the 2 dB bin

is plotted on the Y-axis. Data were collected 30 to 40 s after the beginning

of the corresponding segments.
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main lobe arrivals, respectively. Data for ping 411 are plotted with a solid

line, data for ping 412 are plotted with a dashed line, and data for noise are

plotted with a dotted line in each figure for comparison.

Overall, recorded reverberation data and noise have almost similar his-

tograms, and consequently, almost alike probability density distributions.

However, there is some difference between data and noise. Histograms for

data show a slightly lower most probable value and a slightly higher density

for higher values. This means that the reverberation signal spends relatively

more time at its extreme values (either high or low) then the Gaussian noise.

As for the comparison among reverberation data from different pings, or

at different times, there is negligible difference.

6.2.2 Peak statistics in the received signal

The observed slight difference between noise and signal data prompts a con-

cern that the data reduction and interpretation thus far may be inadequate.

The reverberation data have slightly higher probability density at its extreme

value than does the noise. Thus the data are more "peak-like" in nature. In

fact that is what one would expect from a high resolution scattering experi-

ment [103, 104, 105]. One way to highlight this kind of behavior is to trace
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the statistics of individual peaks in the data record. To do so, I set an arbi-

trary threshold and count the number of peaks exceeding the threshold per

unit time.

I consider again the early returns found in the data 7 to 17 s after the

transmission, and the main lobe returns in the recording 30 to 40 s after

the transmission. I choose a threshold value equal to 2 dB. This value is

"high enough" to select strong peaks only. The peak detector performance is

demonstrated in Figure 6.9, where I plot the original data with a solid line,

and the detected peaks are highlighted with stars. It is seen that only peaks

stronger than the threshold are selected.

Next I peak detect the AGC signals in each receiver beam recorded during

segments 411, 412 and 413, the latter one being noise. Results for the early

returns, in terms of the average measured separation between two adjacent

peaks, and their standard deviation, are presented in Figures 6.10 and 6.11,

respectively. Corresponding results for the main lobe arrivals are plotted in

Figures 6.12 and 6.13, respectively.

For both early and main lobe arrivals it is seen that on average con-

sistently larger separations are detected in pings 411 and 412 (when the

reverberation signal is present) than in ping 413. The other feature seen on
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Demonstration of peak detection algorithm. Peaks above 2 dB are highlighted
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Figure 6.9: Demonstration of the peak detection algorithm.

exceeding the threshold (dashed line) are selected.
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Average separation betw. adjacent peaks exceedeing threshold, time 7-17 s.
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Figure 6.10: Average separation between two adjacent peaks as a function of

the beam number. Data were recorded 7 to 17 s after the beginning of the

corresponding segment (early arrivals). Solid line: ping 411. Dashed line:

ping 412. Dotted line: ping 413 (noise)
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Standard deviation of separation, time 7-17 sec.
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Figure 6.11: Standard deviation of separation between two adjacent peaks

as a function of the beam number. Data were recorded 7 to 17 s after the

beginning of the corresponding segment early arrivals). Solid line: ping 411.

Dashed line: ping 412. Dotted line: ping 413 (noise)
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Figure 6.12: Average separation between two adjacent peaks as a function of

the beam number. Data were recorded 30 to 40 s after the beginning of the

corresponding segment (main lobe arrivals). Solid line: ping 411. Dashed

line: ping 412. Dotted line: ping 413 (noise)
line: ping 412. Dotted line: ping 413 (noise)
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Standard deviation of separation, time 30-40 s.
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Figure 6.13: Standard deviation of separation between two adjacent peaks

as a function of the beam number. Data were recorded 30 to 40 s after the

beginning of the corresponding segment (main lobe arrivals). Solid line: ping

411. Dashed line: ping 412. Dotted line: ping 413 (noise)
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the figures is that same average separation between adjacent peaks was mea-

sured for different beams and for different times. To summarize this point,

I compute the average across all beams for each plot. Results are in Table

6.1. It is clearly seen in the table that separation observed between peaks is

Table 6.1: Average

main lobe arrivals

pings 411, 412 and

pings 411 and 412.

ping 413.

separation between adjacent peaks detected in early and

of normalized (1 s sliding mean) data recorded during

413. Strong reverberation signals were received during

No appreciable reverberation signal was present during

consistently larger when the reverberation signal is present.
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Realization processed Average separation, ms,

between adjacent peaks

Ping 411, early arrivals 74.2

Ping 412, early arrivals 74.3

Ping 411, main lobe arrivals 73.9

Ping 412, main lobe arrivals 75.2

Ping 413, early arrivals 61.2

Ping 413, main lobe arrivals 62.3



One possibility for the larger interpeak separation is that the statistical

properties of reverberation and noise are different. The other possibility is

that normalizing the reverberation signal by its sliding mean did not remove

all large scale components in the signal. To address this issue, I compare the

mean value of the normalized signal when reverberation is present with the

mean value of normalized noise. Results are plotted in Figure 6.14. In the

figure I plot two curves. The dashed curve shows the average value of the

AGC signal observed in each beam of the received signal during ping 411

main lobe arrivals, relative to the AGC noise (ping 413), measured at the

same time and and in the same beam, expressed in percents. The solid curve

shows average separation between adjacent peaks found in each beam in the

ping 411 AGC signal during main lobe arrivals, relative to the corresponding

interpeak separation of the ping 413, also expressed in percent.

It is seen that presence of the reverberation signal causes about 20%

increase in the separation measured between adjacent picks, even though no

significant difference is seen between mean levels of the AGC signal and AGC

noise (amplitude of the AGC signal is about 100% of the amplitude of the

AGC noise). I therefore conclude that peak detection reveals a real statistical

difference between reverberation and noise.
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Coparison of reverb. data of ping 411 with noise of ping 413. Time 30-40 s.
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Figure 6.14: Dashed line: ratio of the average AGC signal (ping 411) to

the AGC noise (ping 413). Solid line: average separation measured between

adjacent strong peaks in the AGC signal (ping 411) relative to the average

interpeak separation found in the AGC noise (ping 413). Signals in pings

were recorded 30 to 40 s after the beginning of the transmission.
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Finally, I conclude that there is no apparent difference for reverberation

received early and late in time, and in different receiver beams. Signals

received early in time are generally due to scattering at relatively steeper

grazing angles than the signal received later in time. Signals received in the

broadside beam are due to scattering from smaller patch sizes than signals

received at the same time in the forward or aft beam. Therefore, since there

is no difference in peak statistics observed at different times and in different

beams, then there is no dependence of the separation between two adjacent

peaks on both incidence grazing angle and ensonified area. To check for a

possible time dependence, I compute an average separation between peaks

during a relatively short time window of 1.4 s, as a function of time and

beam number (Figure 6.15). It is seen in the figure that there is neither a

well defined time dependence, nor a well defined dependence on the beam

number, of the average separation observed between adjacent peaks. I also

compute the standard deviation of individual separations contributing to

the average value (Figure 6.16). It is seen in the figure that the standard

deviation also appears uniform in time and across beams.

Therefore my conclusion is that there is no difference in the statistical

properties of signals scattered from patches of different size on ocean bottom
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Figure 6.15: The average separation between adjacent strong peaks in the

AGC signal as a function of time (X-axis) and beam number (Y-axis), in

1.4 s time window. The recording was made during ping 411. A relatively

smaller number of peaks in each time/beam resolution bin results in higher

variability of measured average separation from bin to bin. Color shows

separation time in rrs.



Standard dev., ms., of separation betw. adjacent peaks exceeding thresh.
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Figure 6.16: Standard deviation of separations between strong adjacent peaks

observed in a 1.4 s window in the AGC signal as a function of time (X-axis)

and beam number (Y-axis). The recording was made during ping 411. A

relatively smaller number of peaks in each resolution bin results in higher

variability from bin to bin. Color shows separation time in ms.



and at different incidence angles.

6.3 The higher order statistics in bistatic AR-

SRP data

So far I analyzed backscattering data generated due to patches of different

size on the bottom and for different incidence grazing angles, and found

no significant difference. I shall now proceed to bistatic data. Considering

bistatic data I can investigate dependence of the received signal statistical

properties not only for backscattering, but for different bistatic angles as

well.

6.3.1 Partitioning of the bistatic data

The experimental geometry for the monostatic experiment was relatively

easy. For this, a generally smaller area is ensonified at any given time in

the broadside beam of the receiver than in forward or aft beams. Also,

as time evolves, the incidence angle changes from almost normal to almost

grazing. So if there was a dependence of reverberation on area or grazing

angle, I would readily detect its presence, although I would not know the
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exact functional form of the dependence.

It is not so simple with bistatic data. For any particular point in the

received time series there is no general simple rule to attribute scattering

from specific areas on the bottom, and to connect them with specific grazing

angles. From raytracing it can also be shown that even close points in the

time series can correspond to different values of the bistatic angle. Therefore

bistatic data must be approached differently. First, through sound propa-

gation considerations, I establish a relation between time and beam number

in the received signal recording, and patch on the bottom, responsible for

scattering. Then data must be grouped, and uniform data subsets have to

be analyzed independently.

To make the subsets uniform, first I must guess which parameters are

important, and then partition the data in such a way that all relevant pa-

rameters stay unchanged within the subset. I chose to partition data in

incidence, scattering and bistatic angles only. Since analysis of the monos-

tatic data showed no dependence of received signal statistics on the bottom

patch area, I do not partition data in area, even though raytracing establishes

the relation between ensonified area and reception time. For the same reason

I do not partition data in transmission loss and source/receiver parameters
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found by the raytracing.

Since points close in time in the time series can now correspond to very

different scattering conditions encountered on the bottom, I may have to

remove short scales of the process before performing peak detection. I shall

approach this issue in a slightly different manner. Instead of guessing the

appropriate length of the sliding average, I shall try several possible lengths

and explore the difference.

Additionally, partitioning of the data record into several subsets means

that each individual subset may be small. Therefore, I have to use data ac-

quired during several pings. I choose segments 430, 436, 469, 480, 486, 490,

492. These are consecutive segments in which beamformed signals recorded

by the Alliance are available. Cory Chouest transmitted its LFM signal

WT93RP019 at the beginning of each segment. A strong deterministic fea-

ture (known as B') is seen by the receiver in each segment. Even though

it was useless during processing of partitioned data, it was helpful for the

partitioning.

To perform partitioning I first need to solve a propagation problem, i.e.,

to relate levels measured at each time and in the each beam to bistatic and

grazing angles. For all analyzed bistatic data I used raytracing to a flat
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horizontal plane located at 4500 m depth. Details on the raytracing together

with some justification of the approach are in Appendix A.

After the propagation problem is solved, each particular point in the time

series is assigned its unique values of angles. To group points, I select "bins",

and group points with angles belonging to the bin. I choose 10 degree bins in

grazing angle, and 20 degree bins in bistatic angle. For peak statistics I chose

to analyze only "long range data", i.e., data collected 30 s and more after

the beginning of transmission. The main reason for this choice is that due

to large ship separation there is usually no scattering signal earlier in time.

It also happens that when the propagation distance is large compared to the

depth, a small error in depth results in even smaller error in the computed

values of angles (Appendix A). Therefore, it is relatively safer to use angle

values obtained from the flat bottom solution for sound signals propagated

to long ranges.

6.3.2 The peak statistics in the received signal

Since analysis of individual peaks in the received data is a better indicator of

statistical properties of the received signal, and hence a better reflection of

the physics of scattering, I proceed by applying the peak detection algorithm
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to the bistatic data, so as to analyze the statistical properties of individual

peaks.

Since no dependence of received signal statistics on bottom ensonification

area and on incidence grazing angle was found for the monostatic data, I first

try to uncover a possible dependence on bistatic angle. After partitioning the

data in incidence, scattering and bistatic angle, I process low grazing angle

data found in 100 bins of incidence and scattering angle. From the selected

data records I remove a 500 ms, 213 ms or 107 ms sliding average mean. A

value of 2.5 dB is chosen as a peak detection threshold.

As before, I compute the interpeak separation as a function of bistatic

angle. Together with the standard deviation, it is plotted in Figure 6.17 for

different values of length of the sliding mean. Additionally I compute the

average normalized signal value observed in the peak and standard deviation

(Figure 6.18) and, to indicate the statistical validity, the number of peaks

detected (Figure 6.19). On all figures zero bistatic angle corresponds to the

backscattering case, and 1800 means forward scattering.

It is clearly seen that for any length of the sliding mean considered, both

the average interpeak separation and the average peak value remains ap-

proximately the same, until a bistatic angle of about 1000 is reached. Then
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Figure 6.17: Solid line: average separation measured between strong adjacent

peaks as a function of bistatic angle. Dashed line: standard deviation of

separations. Bistatic angle 00 corresponds to the case of backscattering,

1800 is forward scattering. Upper left plot: 500 ms sliding average removed.

Upper right plot: 213 ms sliding average removed. Lower plot: 107 ms

sliding average removed. Separation is measured in "pts", 1 pt = 6.67 ms.
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Figure 6.18: Solid line: average value measured in strong peaks as a function

of bistatic angle. Dashed line: standard deviation of contributing values.

Bistatic angle 00 corresponds to the case of backscattering, 1800 is forward

scattering. Upper left plot: 500 ms sliding average removed. Upper right

plot: 213 ms sliding average removed. Lower plot: 107 ms sliding average

removed. 197
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Figure 6.19: Number of processed peaks as a function of bistatic angle.

Bistatic angle 00 corresponds to the case of backscattering, 1800 is forward

scattering. Upper left plot: 500 ms sliding average removed. Upper right

plot: 213 ms sliding average removed. Lower plot: 107 ms sliding average

removed.
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the separation rapidly decreases and reaches its minimum value at forward

scattering.

A different statement can be made on the observed normalized value. For

longer averaging (500 and 213 ms), the average individual peak value increase

with angle for bistatic angles larger than 1000. However, smaller interpeak

separations and higher peak values are observed simultaneously, and suggest

that the average signal level is too high, i.e., that the normalization was

not properly selected, and the averaged data do not have a stationary mean

value. However, at the shorter value of the sliding mean (107 ms), the

peak value remains approximately constant, while the interpeak separation

still decreases at bistatic angles from 1000 to 1800. Thus I conclude that

averaging over 107 ms results in a signal having an almost stationary mean

value. And since there are notably smaller values of the interpeak separation

for higher bistatic angles, I conclude that it is a statistical property of the

data rather than the effect of improper normalization.

As for the number of detected maxima, it is fairly large for averaging,

but becomes considerably smaller for the 107 ms case, especially for large

bistatic angles. This precludes use of a sliding mean shorter than 107 ms,

and explains the larger statistical fluctuations seen.
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6.4 Discussion

6.4.1 Summary of observations

It was found that removing a 1 s sliding average from backscattering rever-

beration data effectively "stationarises" the mean value of the process and

thus makes it more suitable for statistical analysis. Shorter scales were seen

in the bistatic data, therefore shorter sliding averages were used.

Comparison of the statistical properties of normalized reverberation data

for monostatic pings 411 and 412 with normalized Gaussian noise recorded

during segment 413 yielded some differences. First, from computed his-

tograms I discovered that the reverberation signal consistently spent more

time at its extreme values (either high or low) than the noise. Second, the

separations between two adjacent strong peaks (exceeding a 2 dB threshold)

are consistently larger in reverberation data. These two findings are con-

sistent. Since via normalization the mean value is set to be same for both

reverberation and noise, fewer peaks observed means higher individual peak

values.

I found no difference in backscattering for different incidence angles and

areas of ensonified patches. Hence the physics of backscattering remains the
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same for the range of incidence angles and areas encountered, but different

from those of the noise.

Analyzing low grazing angle bistatic data, I found that on average the

separation between adjacent strong peaks remains constant for bistatic an-

gles ranging from 00 (backscattering) to approximately 1000. Then it rapidly

decreases and reaches its minimum value at a bistatic angle equal to 1800 (for-

ward scattering). This behavior persists for different sliding means removed

from data. Thus there is an important difference in the physics of scattering

between forward scattering and scattering into all other directions.

6.4.2 The monostatic data

It has long been thought that scattering may be a discrete process, where

geometrical features on the bottom contribute to the received signal more

or less independently [2, 3]. However, with a sonar footprint large enough

one would necessarily observe a combination of several discrete scatterers in

each resolution bin. If scatterers are independent, by virtue of the central

limit theorem of statistics the process should become Gaussian, and the am-

plitude and intensity of the observed signal are bound to have Rayleigh and

X2 probability density distribution, respectively. Since noise is known to be
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Gaussian, one would expect to see a "noise-like" appearance of the normal-

ized signal. That explains why Rayleigh statistics of the received signal was

inferred analytically and seen in the received signal [106, 107, 108, 109].

However, as resolution of the experiment increases, the observed statistics

of the received signal deviates from Gaussian, and consequently the ampli-

tude distribution deviates from Rayleigh [105, 110, 104, 111, 103]. It is usu-

ally observed that the probability of a strong return is higher than predicted

by the Rayleigh distribution, i.e., the probability distribution function has a

larger "tail" for the high resolution AGC signal than for the Gaussian noise.

Both these statements are consistent with observations. The difference

between signal and Gaussian noise was found when strong returns were con-

sidered, with more high level returns than expected for the Gaussian dis-

tributed stochastic process.

I propose the following qualitative explanation of my observations. Strong

features can be found both in noise and signal. However, since noise is

truly a Gaussian stochastic process, strong features in it are generated when

"pathologically many" infinitely small noise sources happen to contribute at

the time of measurement. Hence for noise the probability of exceeding a large

threshold is very small, and exponentially decays as the threshold increases.
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For the signal, and continuing to appeal to the process of discrete scatter-

ers, one concludes that, as for noise, one can see anomalously strong signals

due to addition of scattering from "pathologically many small scatterers"

that happen at the time of the experiment in the sonar footprint. Statistics

of these is clearly Gaussian. However, each discrete scatterer size results in

its own characteristic target strength. Hence, another way to have a strong

feature in the signal is the presence of a "pathologically strong scatterer".

And the statistics of these is not necessarily Gaussian. Instead, it likely

reflects the statistical distribution of scatterer sizes on the bottom and the

target strength dependence on scatterer size.

The distribution of heights seen on the ocean bottom is known to be

fractal. Even though larger scatterers are less likely, there is a power law

relation between scatterer size and probability of a given scatterer size. And

since the power law gives a decay slower than the exponential, one would

expect to see in the reverberation data more "highs" than in the Gaussian

noise.
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6.4.3 The bistatic data

Assuming that the previous section supports the discrete nature of scattering,

I shall attempt to address peculiarities observed in the bistatic data from the

discrete scattering point of view. Ideologically, I follow [2].

Consider several scatterers on the base plane. As long as they are small

compared to the wavelength, they generate only weak scattering, uniformly

distributed in angle. But scatterers of size comparable to the wavelength, and

larger, are capable of generating strong returns. However, the bistatic cross

section associated with these larger scatterers is not uniform. Instead, it has

a strong maximum in the specular direction. Therefore, all strong scatterers

present in the footprint will scatter into the specular direction. Considering

finiteness of the scatterer size L relative to the wavelength A, one can expect

a strong contribution of those scatterers within their forward lobe, i.e., within

a A/L angular spread from the specular reflection direction. On the contrary,

only those sitting on properly oriented local slopes will scatter away from the

forward specular direction. As a result, for any given area, more overlapping

strong scatterers will contribute in the forward direction than anywhere away

from forward. And more overlap results in less separation between strong

adjacent events.
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It was assumed earlier that through a self-selection mechanism certain

scales contribute most to the backscattering [2]. Scattering from larger scat-

terers is constrained to the specular direction, and the number of those from

within a given footprint is bound to be relatively small. Small scatterers,

even though present in greater abundance, are not capable of generating ap-

preciable scattering. It was shown that if there is a self-selection process

favoring certain scales on the bottom, then scatterers with sizes comparable

to the wavelength would dominate the backscattering.

I believe that the same approach can be successfully used to explain

bistatic scattering. Its statistical properties were observed to change for

bistatic angles 1000 and larger. This supports the conclusion that the in-

plane total width of the forward lobe of scatterers contributing effectively to

forward scattering is about 1600. And this corresponds to a scatterer size of

about one wavelength, i.e., a size consistent with the idea that wavelength

size scales are responsible for the observed strength of scattering.

This conclusion emphasizes that in trying to address higher order statis-

tical properties deterministically, one has to provide better than wavelength

resolution in solution of the propagation problem, particularly in knowledge

of the rough bottom. Given A = 6 m in the ARSRP experiment, a charac-
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teristic depth of 5 km and propagation distances > 10 kinm, this seems hardly

possible. Strong scattering events seen once are very unlikely to be seen

again at the same place, if the experiment is repeated, but of course would

be repeated in a statistical sense.

6.5 Conclusions

In summary, I conclude

* That scattering is discrete in the monostatic reverberation data. It

manifests itself in the variation away from Gaussian of the received

time series statistics. The reverberation signal appears more peak-like

than the Gaussian stochastic process, a result best seen when only

strong peaks are analyzed.

* The scattering process is discrete in the bistatic data as well, at least

with use of indirect arguments. Analysis of the bistatic data leads one

to the conclusion that wavelength size scatterers are those contributing

the most to the scattering process.
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Chapter 7

First Order Statistics: the

Reverberation Strength

7.1 The theory

Given that scattering can be dominated by wavelength-scale details of the

rough surface, how should I now approach the scattering problem? Clearly,

not completely deterministically.

7.1.1 Facets

Imagine a sound wave incident upon a rough surface (see Figure 7.1).
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Figure 7.1: Representation of the surface in terms of facets.
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In the figure some points are shown with crosses. These can be deter-

ministically known points on the surface, i.e., a pointwise representation of

the measured deterministic part H of the surface. Then one way to build

an estimate of H is to connect them with straight lines. Deviations of the

true surface from the resultant piecewise continuous estimate of H forms

a stochastic part of the bathymetry h. To establish terminology, the part

of real surface located between two crosses is what I call the "deterministic

facet". (Clearly, in three dimensions three points define a three-dimensional

facet. Only two dimensions are shown in the figure to simplify the reasoning,

and a line connecting two crosses represents a projection of the facet onto

the plane.) If both the size of a deterministic facet Ld and deviations of the

real surface from it are small compared to the wavelength, then I can say

that the surface consists of deterministic facets only, and scattering from it

can be approached deterministically.

However, a deterministic approach is unlikely to be useful for the rough

ocean bottom. For instance, even for a frequency of 10 Hz, which is too

low to be used in most underwater applications, the wavelength is about 150

m, and for a deterministic solution bathymetry must be known with roughly

10 m resolution. In the typical ARSRP scenario A = 6 m meters, and the
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bathymetry is mostly known only on a 200 m grid. Clearly, a deterministic

approach will be useless. Not knowing the exact rough shape, I have to resort

to a statistical description of the surface.

Consider a realization of the surface. To define the right approach to the

scattering problem the Rayleigh criterion can be invoked. If the average rms

roughness accumulated in the sonar footprint is small compared to the wave-

length, and the grazing angle is small, I can use a perturbation approach to

solve the problem. On the contrary, if the rms roughness is large, Lambert's

Law is supposed to become useful. However how does one approach the in-

termediate case, where rms roughness is too large to allow a perturbation

solution and yet too small for the Lambert's Law to be applicable?

I find it convenient to use a somewhat different approach. For surfaces

not known well enough to allow a deterministic solution of the scattering

problem, I define a scale L (or area S in three dimensions) on which the rms

roughness is comparable to the wavelength. Then I put crosses separated

by the distance L from each other. Connecting crosses with straight lines

I create again a piecewise representation of the surface. Following [85], I

designate the resultant straight pieces of the surface as rough facets ("rough

line" in two dimensions).
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Clearly, idealization as in the foregoing via facets is relevant when knowl-

edge about the true surface is incomplete. However, usefulness of the rough

facet notion can be easily extended further into the deterministic domain.

Let us assume that the precise surface shape is miraculously known. Even

knowing the ocean bottom with that much precision, we may be unable to

establish precise source and receiver locations, sound speed profile etc., not

to mention that the ocean bottom may be changing its shape and small size

features via microtectonic or weathering processes. Equivalently, one may be

interested in the scattering averaged over different realizations of bottom. In

both cases deterministic knowledge is insufficient for the solution, the sim-

plifying statistical approach can provide the solution, and the notion of the

rough facet is useful. In either case, the mean local slope is derived from

local slopes of the deterministic surface, and scattering properties corrected

by this slope are derived from the rough facet properties.

7.1.2 Qualitative considerations

With this view of facets, a succession of scales is defined. The smallest scale

relevant to the problem is the wavelength scale. The largest relevant scale

is the sonar footprint size. Relation of these to the deterministic and rough
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facet lengths determines the scattering behavior of the surface. In this sense,

facets are major building blocks in the assessment of scattering from the

surfaces.

A major simplification can be achieved by use of the rough facet for the

case of its size large compared to the wavelength. Then in the succession of

scales it takes an intermediate position. Two cases are now possible.

First, consider the case where many rough facets can be placed within

the sonar footprint. Then, at each instant of time, combined contributions

from all rough facets will be received by the sonar. Since the rms roughness

is comparable to the wavelength, it is suggested by the Rayleigh criterion

that the contribution of individual facets can be added incoherently. This

means that each scattering event registered by the sonar is a mixture of many

independent individual events, arriving at random phase. By virtue of the

central limit theorem, the resultant stochastic process is Gaussian, and only

its first order statistic, i.e., the mean value, is of interest. To find the mean,

in turn, I need to solve the scattering problem for one individual facet, and to

average it over rough facet slopes. Compare it to the initial problem: initially

I had a nonstationary surface, depending on the sonar footprint geometry,

with a possibly large value of the Rayleigh parameter. Now the Rayleigh
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parameter for the individual facet is fixed at the unity level. It was shown by

numerical modeling [56, 6] that in this case, even a first order perturbation

solution gives a reasonable result. Therefore, a simple analytical solution is

possible for an individual facet. The only remaining problem is averaging over

rough facet slopes. Clearly, a notable simplification is achieved compared to

the initial problem.

Another case to consider is where only a few facets are in the sonar

footprint. In this case there is no averaging over local slopes. If an average

over realizations of the surface scattering is of interest, then again it can be

computed using averaging over local slopes, and the central limit theorem

guarantees that its distribution will be Gaussian. However, it can not be

said to be valid for an individual scattering event. At each instant of time

we see scattering from a particular local slope, and the distribution of these

slopes together with the shape of the bistatic scattering cross section of the

individual facet will dictate the received signal statistical distribution.
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7.2 Scales involved in the ARSRP experiment

Since footprint and rough facet sizes are important for understanding the

scattering process, I estimate both for the experimental environment, starting

from the footprint.

7.2.1 Interrogated patch on the bottom

The size of the interrogated patch on the bottom is determined by two scales:

L 1, which is determined by the pulse temporal resolution, and L 2 , which is

determined by the receiving array beamwidth.

Under an assumed generic sound speed c =1500 m/s, the pulse temporal

characteristic length Lt can be determined to be about 20 ms. The corre-

sponding interrogated length in the ensonified direction on the bottom can

be calculated from geometrical considerations:

L 1 = Lt/ sin Oi (7.1)

where Oi is a local incidence grazing angle between incident wave vector k

and a local reference plane on the bottom.

The interrogated length perpendicular to the L 1 direction is determined
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by receiver array beam width a, and distance R traveled by the sound:

L 2 = R sin a (7.2)

These two length scales can be quite different. For instance, for a 5000 m

depth, and for a typical sound speed profile, it can be found that a grazing

incidence angle Oi = 100 on the horizontal bottom corresponds to R of about

20 km. Then L 1 for Lt = 20 ms is approximately 100 m, and L2 for the

broadside and endfire beams is equal to approximately 500 and 5000 m,

respectively, which are an order of magnitude larger.

7.2.2 The ARSRP geology

The ARSRP experiment was conducted in the Midatlantic ridge area North-

East of the Kane fracture zone. It is well known that the power spectral

density in the collected bathymetry data comply very well with the Goff-

Jordan spectrum. Therefore, at any scale, the statistical properties of the

bottom can be found if parameters of the Goff-Jordan distribution are known.

I start with a direct estimate of the rough facet size. The highest resolu-

tion data (2 m sell size) are available in a rectangular area which extended

550 m along the X coordinate and 1050 m along Y, with the origin of the

patch located at (191150; 2944100) UTM coordinates, or approximately at
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26.58400 North and 48.10100 West. The size and resolution of these data

allows one to compute roughness statistical characteristics of the bottom for

surface wavenumbers ranging from 3 m - 1 to 0.01 m - 1. A contour plot of

the patch is shown in Figure 7.2. It is seen that only part of the patch con-

tains valid data. What appears in the left upper and right lower corners will

be excluded from the processing. "Valid" high resolution bathymetry data

chosen for processing are highlighted with gray color.

Within the valid data region I choose 20 patches of size 80 by 80 m. In

each patch I first remove the best fit plane. The slope of the removed plane

can be considered a local slope, and the remaining is a rough facet of size

80 by 80 m. Raw data for roughness observed in each individual patch are

shown in Figure 7.3.

Averaging over facets, one ends up with a mean rms roughness equal to

6.4 m with standard deviation 2.5 m. The former is about equal to the

acoustic wavelength, therefore the rough facet size can be estimated as 80 m.

The next thing to estimate is the correlation length measured within the

rough facet. It can be estimated independently in X and Y directions. If

there is anisotropy on the scale of the rough facet size, different correlation

lengths would be expected in the two different directions. Raw data for
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Bathymetry data, 2m resolution

50 100 150 200 250 300 350 400 450 500 550
X, meters

Figure 7.2: High resolution bathymetry data. "Valid" data selected for pro-

cessing are highlighted with gray color.
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RMS in patch 80x80 m, 20 good patches. <RMS> = 6.4 m

01 I I I I
0 2 4 6 8 10 12 14 16 18 20

Patch number

Figure 7.3

80 m as a

roughness

Rms roughness measured in the individual patch of size 80 by

function of the patch number. The average over all patches rms

is 6.4 m.
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correlation lengths seen along X axis and Y axis are shown in Figures 7.4

and 7.5, respectively.

"Trace" = detrended line, 80 m, good data, 20 patches, <LC>=7.3 m

E
x
o 15

c
0-CO
C

10

0
0

0 2 4 6 8 10 12 14 16 18 20
"Trace number in the patch"

Figure 7.4: Correlation length measured in individual cuts of 80

along the X axis. Average correlation length was found to be

meters length

7.3 m.

Average values of the correlation lengths computed along X and Y axis

are 7.2 and 7.3 m, respectively, with standard deviations of 2.1 m, i.e., no

anisotropy was seen in the high resolution bathymetry data on the 80 m

length scale. It supports an observation [112, 32] that anisotropy is a large
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"Trace" = detrended line, 80 m, good data, 20 patches, <LC>=7.2 m

8 10 12
"Trace number in the patch"

Figure 7.5: Correlation length measured in individual cuts of 80 meters length

along the Y axis. Average correlation length was found to be 7.2 m.
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scale property, not seen on small enough scales in deep ocean.

Finally, I estimate individual power spectra in the X and Y directions,

and compare them with the Goff-Jordan spectrum using the appropriate rms

roughness and correlation length (Figures 7.6 and 7.7, respectively). Good

match of the measured spectra and those predicted using the Goff-Jordan

model is obvious.

7.3 The experiment

7.3.1 The selected data

I use the same partitioned data that were used for second order statistics.

However, now I consider the behavior of the "sliding mean" itself. First,

the data must be partitioned by the incidence, scattering and bistatic angle.

Again, the grazing angle bin is set to 100, and the bistatic angle bin is chosen

to be 200.

Since strength of scattering is now of interest, propagation effects must

be excluded from consideration. First, source level and transmission losses

(calculated by the raytracing method) must be subtracted from the received

pressure level. Next, I assume that the square of the scattering amplitude is
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One-sided PSD along X-axis: estimate, Goff-Jordan

10 2 . .

10' "

_ PSD, realizations::ii

10 - PSD, average

- Goff-Jordan

10 10 10-1 10
10, 10

Surface wavenumber, m-'

Figure 7.6: Estimate of power spectral density (PSD) in 80 m cuts along the

X axis. PSDs for individual patches are plotted with a dotted line. The PSD

average over all patches is plotted with a solid line. The Goff-Jordan PSD is

plotted as a dashed line. All PSDs are one-sided.
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One-sided PSD along Y-axis: estimate, Goff-Jordan
....................
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Figure 7.7: Estimate of power spectral density (PSD) in 80 m cuts along Y

axis. PSDs for individual patches are plotted with a dotted line. The PSD

average over all patches is plotted with a solid line. The Goff-Jordan PSD is

plotted as a dashed line. All PSDs are one-sided.
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proportional to the ensonified area, which is true when several rough facets

are found within the sonar footprint, and subtract 10 log(area) from the mea-

sured received pressure level. If my assumptions and the propagation model

are correct, the resultant pressure level is the bistatic scattering strength.

7.3.2 The scattering strength

To analyze the behavior of the scattering strength, I plot it for given incidence

angle as a function of the scattering and bistatic angles. The coordinate

system is shown in Figure 7.8.

For the time being, I consider low grazing angles. In Figure 7.9, the

scattering strength as a function of bistatic and scattering angle, for incidence

grazing angles ranging from 10 to 150, is plotted. The discussion follows.

7.4 Modeling of the scattering strength

Understanding the scattering process means being able to model it correctly.

I will consider several models, starting with the simplest (which is not ne-

sesserely correct).
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-- 'F,

X

Figure 7.8: Coordinate system for the scattering strength measurements and

modeling. The incident wave vector is in the XZ plane. The XY plane is

the scattering interface. In the XY plane, the polar angle is the bistatic

angle 0 bi, and radius is the scattering angle measured from normal (from the

Z-axis).
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All data at 1 - 15 degrees grazing incidence angle range
Polar angle is bistatic angle, radius is depression angle of scattering
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Figure 7.9: The bistatic scattering strength as a function of scattering and

bistatic angle, for data in the 10 to 150 incidence grazing angle range. The

polar angle is the bistatic angle, and radius is the scattering angle measured

from normal (depression/elevation angle), in degrees, from 00 (at the origin)

to ± 900.



7.4.1 Lambert's Law

Lambert's Law in the form (4.13) has long been used in rough surface scat-

tering. Because of its simplicity, it is conventionally applied even when its

applicability conditions are violated. To improve the fit to data, the Macken-

zie coefficient p is normally adjusted, where p = 1/7r (10 log I - -5 dB) is

the strict Lambert's Law result. One disadvantage of the procedure was al-

ready noted: the value of Mackenzie coefficient is empirical, hence can not be

predicted by theory. However, this is not the only drawback. Lambert's Law

with any constant value of the Mackenzie coefficient fails to predict bistatic

scattering adequately. A plot of the Lambert's Law prediction for an inci-

dence angle 80, with Mackenzie coefficient 10 log p = -15 dB is shown in

Figure 7.10. Differences between data and the Lambert's Law prediction are

obvious. First, Lambert's Law is overall "flatter" than data. Second, highest

values are seen in the data near the specular direction. On the contrary,

Lambert's Law is isotropic in bistatic angle, hence no bistatic "highs" are

predicted. Clearly, this model is inapplicable to the data collected.
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Lambert Law, 10 log L = -15 dB, Incidence grazing angle 80

Polar angle is bistatic angle, radius is depression angle of scattering
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Figure 7.10: The Lambert's Law prediction of the scattering strength.

Mackenzie coefficient is chosen 10log p = -15 dB. The polar angle is the

bistatic angle, and radius is the scattering angle measured from normal (de-

pression/elevation angle), in degrees, from 00 (at the origin) to ± 900.



7.4.2 The small perturbation solution

Beyond Lambert's Law, one has has two classical analytical solutions: the

Kirchhoff approximation, and a small perturbation (SP) solution. The first

is favored if steep enough grazing angles are considered. Clearly, since low

grazing angles are involved in the data, the small perturbation approach (or

the more general 2-scale solution) is chosen.

The characteristic footprint size is about 100 by 1000m. This means that

it consists of a few rough facets each about 100 by 100 m in size, elongated in

one direction. The natural approach consists of computing scattering from

one rough facet and averaging over local slopes. However, since the few facets

are seen simultaneously, the local incidence angle varies only slightly from

facet to facet. Therefore, the SP solution, which I consider next, is expected

to perform reasonably.

The analytical SP solution for a fluid-fluid interface is known for a long

while. It can be found, for instance, in [5] (the analytical result is summarized

in the Appendix C). The plot of the scattering strength for incidence angle 80

is shown in Figure 7.11. It is seen that the scattering is not modeled exactly

by this small perturbation approximation. Overall lower levels and steeper

decay rates at smaller grazing angles are seen (see also Figures 7.15, 7.17).
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SP, TI-8 LC=7.00, RMS-6.40, N-1.5

Polar angle is bistatic angle, radius is depression angle of scattering
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Figure 7.11: Small perturbation solution for the scattering strength. Inci-

dence grazing angle is 80. The polar angle is the bistatic angle, and radius is

the scattering angle measured from normal (depression/elevation angle), in

degrees, from 00 (at the origin) to ± 900.



First, I try to explain the mismatch between the theory and the data

using a 2-scale theory. Data intrinsically involve averaging over several rough

facets, i.e., over different local slopes. If the facet is inclined towards the

source, the local incidence angle is steeper, hence higher scattering is seen

from this facet. To account for this, averaging over local slopes must be

considered. Hence, I consider next a 2-scale model (see Figures 7.12, 7.15

and 7.17), where averaging over slopes is performed. To provide a better

match with the data in the backscattering direction, the rough facet was

rotated around the K, axis with 00 mean and 50 rms angle of rotation. A

better match between model and data in the back direction is seen. However

I do not match the high values observed in the forward direction, and an rms

slope of 50 chosen to fit data in the back sector is too high for the ARSRP

scenario. Therefore, model improvement is still desirable.
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SP, TI-8 LC-7.00, RMS-6.40, N-1.5

Polar angle is bistatic angle, radius is depression angle of scattering
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Figure 7.12: 2-scale solution for the scattering cross section. The small

perturbation solution is used for the individual rough facet, followed by av-

eraging over local slopes. It is assumed that the mean local slope is zero,

and the standard deviation of the local slopes is 50. The polar angle is

the bistatic angle, and radius is the scattering angle measured from normal

(depression/elevation angle), in degrees, from 00 (at the origin) to ± 900.



7.4.3 Contribution from the small scales (boss-SP so-

lution)

Theoretical considerations

Features too small compared to the wavelength A do not contribute to the

solution. The only effect of features larger then the sonar footprint is intro-

duction of larger values of the mean height and mean slope, which can be

easily removed. The scales of interest Linterest are confined between a certain

large scale Llarge depending on the interrogated patch size and some small

scale Lsm,,, depending on A: Llarge > Linterest > Lsmali. As a practical limit,

A/4, A/8 or A/16 is often used as the smallest scale of interest, when an

integral equation solution or another "exact" solution is sought.

However, within these scales, the ocean bottom is irregular with power

spectral density Wh(K) decaying between K - 2 to K -3 as K -+ o00. There-

fore, the surface slopes observed within the rough facet at a small resolution

scale are discontinuous, i.e., the smaller Lsm,,u is chosen, the larger the rms

slope is within the rough facet.

The first order perturbation solution considers scales up to >r A/2 only.

On the one hand, this makes the solution robust, since discontinuities of slope
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are excluded by effectively truncating the power law spectrum of surface

irregularities. On the other hand, smaller scales normally considered via

the integral equation solution are ignored. Since the probability of finding

a feature with the characteristic size a increases as a decreases, the number

of features with a < A/2 within the sonar footprint may be enormously

large, hence the contribution of these features to the scattering strength may

not be small. Additionally, these features, acting as point scatterers with

scattered power depending on their size, will have a uniform scattering cross

section, therefore, they will generate equal energy flux into the forward and

back direction. Then it may happen that the contribution to the surface

scattering cross section in the forward direction is dominated by the high

values generated by the first order perturbation solution. However, those

point scatterers may dominate the back sector.

I propose the following semi-analytic treatment of small scales. Since by

definition features of interest are small, scattering from an individual feature

is independent of its shape. Then I approximate the distribution of irregular

features by the distribution of hemispherical bosses with radius a.

The power spectral density of the surface irregularities determines the

distribution of feature sizes found on the surface. Therefore I assume that
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the distribution of features in size is given by the power law:

N(a) = B/a", O < a < amax,
(7.3)

N(a) = 0, a > amax,

where n is a positive power exponent, and the maximum allowed feature size

amax will be discussed later.

Then, the corresponding rms roughness hb,,oss generated by all small fea-

tures modeled as hemispherical bosses can be computed as a function of amax,

B and n:

h 2 s = j N(a)h2(a)da (7.4)

where N(a)da is the number of hemispherical bosses with radius (a - da/2) <

a < (a + da/2) found in a unit area of the surface. For hemispherical bosses

h2(a) = 2rz(a2 - z 2)dz = 7ra 4/2. (7.5)

Integrating, I end up with

h irB 5-n (7.6)
boss = 2(5 - n) amaxz

where a bounded value of hboss for nontrivial B can be achieved only if n < 5.

On the other hand, the rms roughness generated by small scales not

accounted for by the first order small perturbation theory can be computed
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00
hsmaiu = J t Wj(K)dK (7.7)

The isotropic Goff-Jordan power spectrum with correlation length 1, rms

roughness hrms and spectral exponent n = 3 is given by

12 2

W(K) = rm (7.8)
21r(K2/2 + 1)1. 5

Here as usual, K stands for the surface wavenumber, and k is reserved for

the acoustic wave number. Substitution of 7.8 into 7.7 yields

hsmall = h~1 (7.9)
/Kmn +12

which for the case Kminl >> 1 can be further reduced to

h2
h m = rm- (7.10)

small Kminl

Since the smallest scale contributing to the first order small perturbation

solution (the shortest Bragg resonant grating) for incidence grazing angle Oi

is given by k + kin,., = k(1 + cos Oi), it seems reasonable to choose

Kmin = k(1 + cos 0i). (7.11)

Now, a connection can be found between amax and Kmin. Corresponding

to Kmin, the surface wavelength is given by Amax = 27r/Kmin. Then the
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corresponding feature size equals the wavelength, and its characteristic radius

is half of its size:

1 27r _ r
amax - 2 (7.12)2 Kmin Kmin

Equating hb,,oss and hsmaul,sp one can find B:
2

2h~ms(5 -n)K4-
B = 2h (5 - n)K (7.13)

Then using (7.13) and the scattering solution for a distribution of bosses, I

can add the contribution of small scales to the SP solution, which results in

the composite "boss-SP" scattering theory.

Several analytical solutions exist for the distribution of bosses on the base

plane. For instance, I can use the cross section solution given by Twersky

[113]

S k4a 6(6sinOisin0,cos$) 2

bos N(a) 9 da, (7.14)

where 9i and 0, are incidence and scattering grazing angle, the scattering

interface is in the (XY) plane, the incidence wave vector is in the (XZ)

plane, and € is the angle between the scattering wave vector and the Z axis.

Then from (7.3) and (7.13) the scattering cross section for the distribution

of bosses per unit scattering area is given by:

2h2 srk4 (5 - n)
aboss - r (7 - (sin Oi sin, coscS )2. (7.15)

lKm 23(7 - n)
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Robustness of the solution

A few more words must be written on the choice of the power spectral ex-

ponent n in the distribution of bosses. The value n = 0 corresponds to a

boss size equally distributed between a = 0 and a = amax. Larger values of

n result in lesser number of larger bosses, and larger number of smaller ones.

Since the power spectral density of the surface irregularities is related to the

distribution of feature sizes found on the bottom, it seems natural to assume

n = 3. However, since this choice can not be rigorously justified, sensitivity

of the solution to the choice of n becomes an issue.

To check the sensitivity of the solution to the value of n, the boss scat-

tering cross section was computed for values of n from n = 0 to n = 5. In

Figure 7.13, the difference between solutions for 0 < n < 5 and for n = 0

is shown. It is seen that for a broad range of n (from n = 0 to n = 4) the

solution only slightly depends on the exact value of n, i.e., is robust with

respect to the choice of n.

Properties of the solution

First, for a broad range of power exponent 0 < n < 4 the boss contribution

shows only a gentle dependence on the exact value of n. As n -+ 5, contri-
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Dependence of the scattering cross section on the value of N
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Figure 7.13: Sensitivity

exponent n. Solution for

of the boss solution to the value

n = 0 is chosen as the reference.

of the spectral
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bution of small scales diminishes, so that there is no contribution at all for

n = 5. For n > 5 the value of B in (7.6) becomes infinite, which means that

the contribution of the boss solution becomes zero. An interesting property

of the boss solution is emphasized here. Larger values of n correspond to

steeper decaying power spectrum densities (PSD) of the surface irregulari-

ties. On the other hand, since the boss solution contribution diminishes as n

increases, a lesser correction to the SP solution results from the surface with

steeper decaying PSD of the surface irregularities. For instance, for surfaces

characterized by a steep PSD (n > 5) there is no correction at all. There-

fore, I conclude that a correction to the SP solution is needed only when the

PSD of surface irregularities decay slowly as a function of the surface wave

number.

Application to the modeling of ARSRP scattering data

The resultant combined scattering strength for an individual rough facet is

plotted in Figure 7.14, for incidence angle 80. For the small scales, a value

of the spectral exponent n = 0 was used, i.e., a uniform distribution of boss

sizes was considered.

From the comparison of Figures 7.9, 7.12 and 7.14 it is seen that reason-
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SP, TI-8 LC-7.00, RMS-6.40, N-1.5

Polar angle is bistatic angle, radius is depression angle of scattering
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Figure 7.14: Boss-SP solution for the scattering strength of an individual

rough facet. Scales smaller then those accounted for by the SP theory were

considered using a boss solution by Twersky. The polar angle is the bistatic

angle, and radius is the scattering angle measured from normal (depres-

sion/elevation angle), in degrees, from 00 (at the origin) to ± 900.



able match with data at low scattering angles can be achieved using Lam-

bert's Law (via an adjustable Mackenzie coefficient), a 2-scale solution (via

adjustable local slopes) and boss-SP solution. However, a mismatch between

data and model solutions at scattering angles above 400 is still clearly visible.

To understand the reason for the discrepancy and to choose the right

model, more in-depth investigations of scattering in the plane of incidence

was performed.

7.4.4 Scattering in the plane of incidence

Line plots of the scattering strength are shown in Figure 7.15. The incidence

grazing angle for all "model plots" is chosen as 80, and data are collected

in the incidence angle range from 10 to 150. In the figure scattering only in

the plane of incidence is considered. The abscissa shows the scattering angle

counted clockwise from back to forward, so that for the chosen incidence

grazing angle a scattering angle of 80 corresponds to backscattering, and

1720 is the specular direction.

Again, a mismatch between models and the experimental data is seen.

However, data for all incidence angles ranging from 10 to 150 are plotted

in figure 7.9. It is therefore possible that the data are not uniform. The
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Matching model to data (white curve), actual inc. agle is used
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Scattering grazing angle, deg., 0 is back

Figure 7.15: Scattering strength for scattering in the plane of incidence. The

black line is the measured scattering strength. An incidence angle 80 was

used for modeling. The blue line is Lambert's Law with 10 logp = -- 15 dB.

The green line is the first order small perturbation solution for a fluid-fluid

interface (zero shear modulus in the bottom). The red line is the 2-scale

solution, where averaging over local slopes (rms angle 50) was performed.

The dashed magenta line is the boss-SP solution for an individual rough

facet.



scattering strength for different scattering angles could have been measured

at different times within one ping, or during different pings, hence the angle

between the incident wave and the bottom may take different values (of

course, in the 10 - 150 range) for different scattering angle bins. To account

for this, I calculate the average incidence angle in the selected data as a

function of scattering angle bin (Figure 7.16). It is seen in the figure that

Average in bin incident angle, inplane scattering

0 I I I I
0 20 40 60 80 100 120

Scattering grazing angle, deg., 0 is back
140 160 180

Figure 7.16: Average incidence grazing angle in the data as a function of

scattering grazing angle bin for the case of scattering in the plane of incidence.
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indeed, very different incidence angles contribute to the scattering at different

scattering angles. To account for this, model results were recomputed using

actual values of the incidence grazing angle. The results are plotted in Figure

7.17. The discussion of the individual curves follows.

Lambert's Law

To provide for a good fit between Lambert's Law (blue line) and data (black

line) for low grazing scattering angles, the Mackenzie coefficient was set to

-15 dB. It is seen that Lambert's Law matches reasonably the scattering

data up to a scattering angle of 500. However, it is also seen that Lambert's

curve is "flatter" then the data curve. Made to match at a scattering angle

of 500, it slightly overpredicts at lower values of the scattering angle. Hence,

when the incidence angle suddenly jumps from 100 down to about 20 at

about a 400 scattering angle, Lambert's Law fails to "catch up" and starts

to overpredict. With use of lower value of the Mackenzie coefficient one

can "force" agreement between Lambert's Law and data in the 500 - 800

scattering angle range, but then its performance at low grazing angles will

be compromised. This means that it is impossible to use one value of the

Mackenzie coefficient to explain scattering for a broad range of incidence and
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Matching model to data (white curve), actual inc. agle is used
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Scattering grazing angle, deg., 0 is back

Figure 7.17: Scattering strength for scattering in the plane of incidence. The

black line is measured scattering strength. The actual incidence angle was

used for modeling. The blue line is Lambert's Law with 10 log p = -15 dB.

The green line is the first order small perturbation solution for the fluid-fluid

interface (zero shear). The red line is the 2-scale solution, where averaging

over local slopes (rms angle 50) was performed. The dashed magenta line is

the boss-SP solution for the individual rough facet.



scattering angles.

Small perturbation theory

"Simple" SP theory (green line) agrees with the data for large values of

the scattering angle, however it underpredicts at low scattering angles. With

addition of contributions from small scales (bosses) it agrees well in the entire

scattering angle range (see dashed magenta line in the figure). When 2-scale

theory (SP plus averaging over local slopes) is used, a 50 rms slope of the

rough facet is needed to ensure a match between theory and data at low

grazing scattering angles. However, the value of 50 rms slope is too high.

Also, it is seen that using such a value for the rms angle I ended up having

too much predicted scattering at high scattering angles 0, > 500 (see red line

in the figure).

Conclusion

* Lambert's Law can be made to fit the data via an adjustable Mackenzie

coefficient, however, one value of the Mackenzie coefficient can be used

only locally, for a small enough range of angles.

* For the ARSRP scenario a 2-scale model does not explain the scattering
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physics. Forced to match data for 100 incidence and 100 -400 scattering

grazing angle, it gives a wrong prediction when the incidence angle

decreases to 20.

* Addition of point scatterers results in an improved match between the-

ory and data. Using the combination of bosses and small perturbation

theory, I was able to model the data using only the knowledge of the

surface statistics, without introduction of adjustable coefficients.

* Precise knowledge of the average incidence angle is important for mod-

eling the low grazing angle scattering. Errors of ±20 can not be toler-

ated.
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Chapter 8

Conclusions and Suggestions

for Future Work

8.1 Conclusions

The important scientific questions which motivated the ARSRP experiment

can be found in Chapter 1 and in Ref. [1]. Answering some of these questions

was my objective.

The major scientific question of the ARSRP program was to decide what

is the physics of rough ocean bottom scattering, and what are the physical

parameters controlling the properties of the scattered signal.
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From the analysis of the statistical properties of data, I conclude that

scattering from rough bottoms has a discrete nature in its high amplitude

returns. At lower levels a mixture of several scattering events with compa-

rable amplitudes is mostly observed in the data, hence the statistics of the

received signal, with the exception of the nonstationary mean value, becomes

Gaussian.

This in turn answers the major ARSRP question. Except for the mean

value, received signal statistics depend on the bistatic angle only. Properties

of the event-like features observed in the signal ("clutter") are dominated by

the wavelength scale scattering. On the other hand, for the mean value of

the reverberation signal, large scale bathymetry and propagation effects are

the controlling parameters.

Analyzing the received signal I found that it is a complicated nonstation-

ary function of time, hence it is not well suited for reduction, processing and

modeling. I found that the AGC processing widely used in radar technology

effectively separates the received signal into its slow and fast components.

The slow component (short-term mean value, related to the local scatter-

ing strength) is non-stationary function of time. However, it depends on

the large-scale geomorphology, and should be approached deterministically.

250



The fast component carries all higher order statistical information about the

scattering. It is a stationary function of time, which simplifies its analysis.

However, it depends on wavelength scale roughness on the bottom, hence

ought to be approached as a stochastic process. In turn, this suggests a

deterministic approach to the modeling of the local mean value (i.e., ex-

pectation to measure the specific pressure level), but clearly precludes any

further application of the deterministic approach. Only stochastic modeling

of individual peaks is feasible. This means that a proper mixture of stochastic

and deterministic approaches is needed for proper modeling of the scattering

process.

This naturally leads to answering the last ARSRP scientific question

(what is a good characterization of seafloor scattering and what is an ad-

equate model for it). I found that the often used Lambert Law is inappli-

cable for modeling bistatic scattering. The small perturbation (SP) solution

results in a reasonable estimate of the scattering within the forward sector

(bistatic angle from 900 to 1800), but generally underestimates scattering in

the back sector (bistatic angle from 00 to 900). I showed that the reason for

this mismatch may be found using the separation of scales hypothesis. First,

the SP does not account for averaging over local rough facet slopes, which is
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important when larger sonar footprints are involved. The traditional 2-scale

theory ought to be used to account for this effect. Second, and more im-

portant for the ARSRP scenario, scales smaller then A/2 are not accounted

for by the SP theory. I showed that inclusion of the contribution from these

scales via the boss-SP theory results in an adequate model for the scattering

observed during the ARSRP experiment, which matches experimental data

in the back direction to within 3 dB.

An additional remark can be made on the notion of scattering strength.

Use of the SP solution suggests that it suffices only away from the specular

scattering direction. Scattering into the forward lobe (coherent reflection) is

dominated by the zero order perturbation solution. It exhibits strong depen-

dence on the patch size (generally, it is proportional to the area squared).

The use of the scattering strength implies that scattering is proportional to

the area, and therefore, it is inappropriate within the forward lobe.

8.2 Suggestions for future work

All real ocean bottoms possess elastic properties. I suggest expansion of the

boss-SP theory into the elastic domain. Keeping the solution analytically
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tractable requires an analytical form of the perturbation solution for the

fluid-elastic interface.

On the experimental side, I believe that controlled experiments in the lab-

oratory environment can be helpful. I see two reasons for it. First, scattering

can be effectively isolated from propagation and other effects. Secondly, hav-

ing control of the surface, one is in a position to vary some of its parameters

leaving others unchanged. This is unlikely to happen in an ocean environ-

ment, where one has no control over the rough surface and often insufficient

knowledge about it.

Another possibility is a numerical experiment. In this case, an "exact"

solution of the scattering problem (like for instance integral equation formu-

lation) can be used for certain simplified scattering scenarios. Even though

they are more restrictive then a real scattering experiment, numerical exper-

iments can be significantly cheaper to perform.
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Appendix A

Partitioning of the bistatic

reverberation data

A.1 The sound propagation problem

Several ways to solve the propagation problem are known. Out of all I choose

raytracing technique as the easiest and the least computationally demand-

ing (implemented as a computer code "Artist" by V. H. Lupien, [114]). In

general, ones ability to solve the propagation problem is limited by the in-

sufficient knowledge about the environment (exact bathymetry, sound speed

profile and experiment geometry). For the analysis of the ARSRP experiment
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uncertainty in the receiver array heading and precise bathymetry proved to

be the major obstacles.

Analyzing the experiment, several methods to determine the array head-

ing can be used. First, there are heading sensors within the receiver array,

and readings of these sensors (which can be found in the experiment "log-

files") can be used as an array heading. Second, since the ship heading is

known (and logged), one can assume that towed array is moving in the same

direction. Third, there are GPS sensors monitoring source and receiver posi-

tion. Then one can assume that array heading coincide with the imaginary

line drawn from source to receiver GPS positions. Finally, via raytracing

modeling one can predict received signal using a simple scattering model.

For instance, it is well known that strong large scale features in the received

signal (so called "lineations") are related to transmission losses and large

scale bathymetry. So if there is a large hill on the bottom, one can predict

its appearance in the data. Then correlating the model prediction with the

received data a one can make a judgment on the array heading (and also on

the time delay if there were any, see Chapter 5, section on timing). Clearly,

the last method gives the best results for array heading estimation. It also

incorporates corrections of timing. Therefore, cross correlation of the model
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prediction with received data makes an important step in data partitioning.

Availability of this correction technique is subject to presence of the strong

deterministic feature in the ensonified region, hence it is not always available.

In this thesis pings 430, 436, 469, 480, 486, 490 and 492 were chosen for pro-

cessing. A strong deterministic feature known as a B' was visible during these

pings, thus making the heading correction via correlation with model predic-

tion possible. It was found that average correction to heading (compared to

the heading value written in the log-file) is -4o, and its standard deviation

is 50, which is much larger than the receiver angular resolution (1.50 in the

broadside beam). These emphasize the importance of an improved procedure

for monitoring the receiver heading.

Additional uncertainty is related to the lack of knowledge about the actual

bottom shape and position. Errors in the actual depth estimate inevitably

arise due to uncertainty in the bathymetry map, and because exact array

heading, ship position etc. are not known (i.e., at each moment of time

scattering can be attributed to the wrong point on the bathymetry map).

Using long range scattering data and large enough ship separations, one can

somewhat reduce the impact of these uncertainties on the data quality (see

next section).
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Since neither exact location nor shape of the bottom was known during

the ARSRP experiment, I decided to perform ray tracing to an artificial

flat horizontal bottom located at 4500 m depth, which is about right for the

ARSRP conditions. Then, for long ranges (later times in the received signal)

I assume that I have a good estimate of the bistatic angle and grazing angle

relative to the flat reference plane. Real precise values of local grazing angles

between sound wave and true bottom at each moment in the time series are

unknown.

It makes sense to write a few more words on the choice of the reference

plane. It absolutely does not have to be horizontal. For instance, consider

large scale features of > km scale. There is enough knowledge to consider

these features deterministically. Clearly it is possible to distinguish between

scattering from a steep slope of a large hill and scattering from a flat sediment

pool. Then one can estimate the mean large scale slope by fitting a plane

into the deterministic bathymetry.

There are two instances in which zero mean slope can be encountered.

First, given enough knowledge of the deterministic bathymetry features, one

can choose areas with low large scale mean slopes (this is what was done dur-

ing data selection for this thesis). Second, when there is insufficient knowl-
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edge about the large scale bathymetry, zero mean slope again is a reasonable

assumption. It is known that the rms roughness measured along the line of

length L on the bottom is roughly proportional to vI. Then the angle made

by the best fit line to the bathymetry is inversely proportional to \I. There-

fore if large enough scales are considered, the mean slope tends to be small,

hence the flat reference plane assumption becomes the most reasonable to

make.

A.2 Relation between uncertainty in the depth

estimate and uncertainty in the grazing

and bistatic angles

To estimate the uncertainty, I consider a simple model. I first assume that

sound wave propagates in the channel with the uniform sound speed and

depth z (Figure A.1). At time to scattering signal is generated by sound

traveled along a path 1 = cto (c is the sound speed), which correspond to the

horizontal traveled distance R and grazing incident angle on the flat hori-

zontal bottom a. Next I consider a depth variation dz in the channel. Then
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Figure A.1: Geometrical considerations for evaluating errors in estimation

of the local incident grazing angle a and bistatic angle 0 attributed to the

point in the time series.
point in the time series.
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scattering is generated by another point on the bottom, and true incident

and bistatic angles are a+da and 0+ dO, respectively. From easy geometrical

considerations I can estimate the resultant change in angles da and dO:

da = (z/12 )dz, (A.1)

H-z
dO = (A.2)

(12 + z2) 1.2 . (1 + 0.25H 2/ 2 )' (A.2)

where H is the horizontal distance between two ships. Clearly, if R >> z

and H >> z, errors in estimation of angles are by z/R or z/H smaller then

the variation of depth.
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Appendix B

Analytical form for the small

perturbation solution

Consider a plane wave incident from the upper halfspace upon a rough fluid-

fluid interface. In the following, subscripts "1" and "2" refer to the upper and

lower medium, respectively. Solution for the scattering strength S, observed

in the halfspace of incidence due to the acoustic wave k = 27r/A is given by

[31, 5]

S, = 10 log (k4 IF2 .lh(4 -K )) , dB (B.1)
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where

2k2F(k,k 2 ) =

In formulas (B.1 - B.2) p is the density, k is the acoustic wave number, and

V is the plane wave reflection coefficient for the flat interface (i.e., coefficient

of the incident wave reflection from the reference plane); k1 = k -Il and k2 =

k. k 2 are the incident and scattered wave vectors; il and '2 are projections

of k1 and k2 on the reference plane, respectively.
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