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ABSTRACT

An extended Kalman filter for the integration of tracking data from a ground-based radar and from an
airborne GPS receiver is designed and tested. The filter utilizes the combined raw measurement data from
each sensor and provides a position estimate in an earth centered, earth fixed frame. State space models
are presented for the target dynamics and the GPS and radar measurements. The filter is tested with real
and simulated data. The results demonstrate distinct advantages to utilizing a combined filter as opposed
to employing separate position estimators based on each of the two sensors. The first is that the combined
filter is capable of converging to a position solution even with partial measurements, from either or both
sensors, which would result in divergence of estimators utilizing individual sensor data only. The second
advantage is that, since the error variance of position estimates is dependent upon the relative target,
sensor, and satellite geometry, inclusion of even partial measurements from one sensor into the filter can
significantly improve the performance of the filter over an estimator using a single sensor's measurements
only.
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Introduction

The tracking, or monitoring of position, of airborne targets from the ground has traditionally been
accomplished through the use of ground-based sensors, such as a microwave radar system. These systems
typically bounce microwave pulses off targets to determine their range and angle from the radar site. In
the last decade, a satellite based navigation system called the Global Positioning System (GPS) has
become fully operational. This system allows a user to determine their position accurately anywhere on or
above the earth, using a small, inexpensive receiver. In a cooperative scenario, where data from a GPS
receiver placed in an aircraft is transmitted down to a ground site, GPS may be used as a tracking system.
Currently there is much interest in the use of GPS based tracking systems for air traffic control and
military test range monitoring. In both of these applications, ground-based radar has been the primary
method of position determination for a considerable time, and large infrastructures are in place utilizing
radar only. In cooperative tracking scenarios such as these, it is expected that GPS may one day become
the primary or even sole method for position determination. Whether or not traditional radar tracking
methods continue to be used in cooperative scenarios, it would be likely that, during a transitional period,
systems would incorporate both sensors. Thus, the problem of how to optimally integrate these two
position sensors becomes a highly relevant issue. This thesis develops and examines one methodology for
this integration based on an extended Kalman filter.

An overview of the tracking scenario which this filter addresses is shown in Figure I.1. The aircraft has a
GPS receiver onboard that feeds raw satellite measurement data to a transmitter. This data is transmitted
to a ground site that simultaneously receives raw measurements from a radar sensor which is also tracking
the target aircraft. Both sets of measurements are input to a tracking computer which formulates a
position solution for the target. Typically, either sensor alone provides enough information to fix the three
dimensional position of the aircraft. However, if data from both sensors is available then we should be
able to utilize all the measurements to obtain a position solution that is, perhaps, more accurate, and at
least more robust to failures.
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Figure 1.1. Cooperative GPS and radar tracking scenario.



The data fusion method outlined above is often referred to as a "centralized" approach. In this approach,
sensor data is combined in a single estimator to get a composite position estimate. In an alternate
approach, each sensor derives a complete position solution separately, typically by means of a local
estimator, and these estimates are then combined, in some sense optimally. This decentralized approach
is, perhaps, more robust to certain types of hardware failures, if implemented properly, and has gained
favor with the advent of small powerful microprocessors. However, in this thesis it is shown that
combination of the raw measurement data in a centralized Kalman filter has a synergistic effect which has
advantages over the local estimator approach. In situations where we may be concerned with sensor
failures resulting in only partial measurement sets from any or all sensors, the local estimators would
typically not converge and any position data output from them would not be usable. In the central Kalman
filter estimator presented here, a position solution is possible with only partial measurements from both
sensors. That is, if both the GPS and the radar sensors experience conditions which prevent them from
individually obtaining a target position solution, we can often still utilize partial information from both to
get an unbiased position estimate from a centralized Kalman filter. In addition, in the case of this type of
partial failure in one sensor, we can also often utilize the partial measurements still available from that
sensor to increase the accuracy of the position estimate over that which we would get from the other
sensor only. In the case of local estimators, any partial sensor failure which would not allow convergence
would result in the discarding of any remaining partial but valid information from that sensor.

It is assumed in this work that the reader is familiar with the concepts of Kalman filtering and the focus
here has been to formulate the specifics required for this application. A model is presented for the process
being estimated, in this case the dynamics of an airborne target, drawing primarily from the established
literature. A model is developed for the GPS measurements and tested with raw data collected from
several receivers. A radar measurement model is also developed, based on experience with tracking radar
systems used in experimental work at Lincoln Laboratory. The filter was implemented and tested
extensively in several steps. The first step involved a two dimensional theoretical formulation of the filter
that used simulated measurement data. These simulations allowed significant manipulation of the target
dynamics and relative sensor/target geometry and revealed the basic behavior and synergistic properties of
the filter. Next, realistic full three dimensional versions of single sensor and combined sensor filters were
implemented and tested. These tests were restricted to static targets since at the time of writing no actual
flight tests were conducted. However, it was still possible to verify the advantageous properties of the
combined filter conjectured from the two dimensional work. In summary, this is that a combined extended
Kalman filter utilizing raw measurement data from both a GPS receiver and a tracking radar can provide,
under many situations, more accurate and more robust position estimates than would be available from the
two sensors utilized separately and simultaneously.



1. PLANT MODEL

The plant model employed in this filter can be subdivided into two parts. Primarily, we require a model
for the dynamics of the aircraft or target we are trying to track, but in addition, we need a dynamic model
for the behavior of the GPS receiver clock. The reason for this is explained in the Section 2.1 describing
the GPS navigation solution. Both models, which are developed below, are derived from fairly standard
continuous time system representations that have been proven in tracking "1 and GPS ™' applications.

1.1 Target Dynamics Model
1.1.1 Continuous Time Target Dynamics Model

In this application we are concerned with tracking an airborne target whose motion is unknown in
advance, but can be considered predictable in the sense that it adheres to some simple physical equations
of motion. We start the development with the state space representation for motion of a rigid body with a
constant velocity. In a single coordinate this represention is:

0] [0 1Tx@)
= . 1

X(t) 0 0| x(2) M
This kinematic model is noiscless, and with known initial conditions we can exactly determine the state,
i.e. position, of the target at any future time. In the general target tracking problem it is unlikely that we
will encounter a non-accelerating target for all time. That is, it is unlikely the target will remain in a
constant velocity, straight line trajectory during the entire tracking period. We therefore wish to extend
the zero-acceleration model given in (1) to allow for possible changes in target velocity. A common

approach to handling unknown accelerations is to model them as an input noise process. Our state space
model, in one coordinate, then becomes:

@] [0 1Tx@)] [o

" = . +| . ja(? 2

w0y "lo o]z |T|1 Y @
where a(t) is the acceleration noise process. In this model we assume that motion in each coordinate axis

is decoupled and that the acceleration noise processes are mutually independent. Thus in two dimensions
the model would look like:
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A first approach, which limits the filter state vector to two states per coordinate, would be to model the
acceleration noise as white. A simulation of the kind of dynamics modeled by (3), with a;(#) as white noise
processes, is shown in Figure 1.1, which displays a typical target trajectory in two dimensions. This
simulation used two independent, equal variance acceleration noise processes as inputs. Although the
noise variance may be lowered to somewhat reduce the jaggedness of the trajectories, this plot serves to
demonstrate that the white noise acceleration model is not, in general, a good representation for typical
aircraft motion, It is, perhaps, a reasonable approximation for accelerations due to wind turbulence,
however.
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Figure 1.1 Simulation of white noise acceleration model for target dynamics.

It turns out, as might be expected, that the kinds of accelerations a typical maneuvering aircraft might
undergo are mostly time correlated. For example, a pilot induced turn would correspond to a time
correlated acceleration for the duration of the turn. Thus a more reasonable approach is to model the
acceleration noise as being a first order Gauss-Markov process. The acceleration process would then be

given by:
a(t)=—-a-a(t)+w(t) C))

where w(?) is a white gaussian noise process. The notation used here follows that of ref. [1]. Taking the
Laplace transform of (4) (ignoring initial conditions) we have:

As) 1
W(s) s+a

H(s)= Q)

which implies we can view (4) as the equivalent of putting white noise through a stable causal shaping
filter with transfer function H(s) to get our acceleration noise process A(s). The power spectral density of
this output process is given by:

S ()= H(s)H(=5)Sy(s) ©)



If we define our input white noise process to have variance 2ao,’, then S,(s) becomes:

-2a0,’

- (s—a)s+a) @

S.(s)
Taking the inverse transform of (7) gives the autocorrelation function of our acceleration process:
R.(7)=Ela()a(t+7)]=0,’e ™" fora>0 ®)

This acceleration process model, therefore, represents the time correlation of acceleration inputs as
positively correlated with an exponential decay.
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Figure 1.2. Acceleration process auto-correlation function.

A complete state space description of our target dynamics can now be obtained by augmenting the state
description given in (2) with the acceleration process given in Equation (4). In one coordinate this yields:

x(1) 01 0 |x(» |0
¥)|=]0 0 1 |x(6)|+|0w.(?) 9)
a(r) 0 0 —ala(®) 1

where wy(?) is the white noise input process driving that coordinate. As we have defined it, this white noise
process will have an autocorrelation function given by:

R, (7)=2a0,’5(7) (10)

A simulation of the dynamics modeled, in two coordinates, by (9) is shown in Figure 1.3. This simulation
used the exact same noise inputs that drove the white noise acceleration model simulation shown in
Figure 1.1. Now, however, they were run through the shaping filter which essentially time correlates the
acceleration of the target. Figure 1.3 displays target dynamics which we would believe to be much more
realistic. The final target dynamics model in one coordinate is shown in Figure 1.4,
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Figure 1.3. Simulation of colored noise acceleration model for target dynamics.
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Figure 1.4. Target dynamics model in single coordinate.

10



Extending the final continuous time target dynamics model to three spatial dimensions gives us the state
space system:;

‘%) [01 0o 00 0 00 O [x@] [0 0 0]

| 0o 1 00 0 00 O x| |000O0

a(| 00 ¢, 00 0 00 0 fa()| |1 0O

yo)y| o0 0 01 0 00 0 |yt |00 0fw(
pHyl=[o 0o 0 00 1 00 0 |u)|+/0 0 Ofw ()| an
a(| (00 0 00 -a 00 0 |a()| [0 1 0fw()
100 0 00 0 01 0 |z(x)| |0 0 0
100 0 00 0 00 1 21| |0 00

a,(t)] (00 0 00 0 00 -ea fa()] [0 0 1

Note that in (11) the state vector consists of target position, velocity, and acceleration in each coordinate.
The driving functions, w;(?), are mutually independent, gaussian white noise processes that may have
different variances. Expressing (11) in more compact matrix notation we have:

X, ()= A, ()X, (1)+B,W, (1) (12)

where the p subscript is used to denote that this is the portion of the plant model that deals with the target
position.

11



1.1.2 Acceleration Model Parameters

The correlated acceleration model presented in Section 1.1.1 introduces two parameters which determine
its behavior: «, the reciprocal of the correlation time constant, and b , the variance of the target
acceleration (sometimes referred to as the maneuver variance). In designing the tracking filter we desire to
choose these parameters such that our modeled dynamics will match the actual target behavior as closely
as possible. This selection process can be considered the tuning of the filter, and its impact on the
performance of the filter is discussed in Section 5.2. Here we suggest a basic guideline for parameter
selection and give a qualitative discussion of how these parameters affect model behavior.

Recall that our acceleration process, a(t), which we derived from filtering a (zero mean, wide sense
stationary) white noise process, had the autocorrelation function given by (8). Thus the variance of this
process is given by:

o =R (0)=0 (13)

where the subscript 7 is used to be consistent with the literature. Presumably in our application we have
we some statistical characterization available for the class of targets we wish to track. This may be
available by observation or physical modeling of the targets. In either case, a first attempt at matching the
actual target dynamics to the filter's model is achieved through some knowledge of the amplitude
distribution of the target accelerations. i.e. from a probability density function of target acceleration
amplitudes in each coordinate. Ref.[2] presents the rough guideline that the equivalent discrete process
noise variance (derived in Section 1.1.3) should be of the order of the maximum acceleration expected
from the target. For example:

a
% <2a0,’ <a,, (14)

A model for a typical target acceleration distribution, shown in Figure 1.5, is given in Ref [1]. In this
model, the target is assumed to undergo no accelerations, or accelerations at a maximum value, with some
discrete probability. All other values of acceleration are assumed to occur with some uniform distribution.
The variance of this distribution is given by:

0, =(a,,) ————(HM;" —fo) (15)

where Py and P,, are the probabilities of the target undergoing zero acceleration or a maximum
acceleration, respectively, at any given time.

P 0 P,
A A
a 1-(2P,+F,)
24,
=Amax 0 Amax

Figure 1.5. Sample target acceleration probability distribution.
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Whatever method is used to select o;,”, the effect of this parameter can be qualitatively understood by
examining Figure 1.6. This figure shows a set of trajectories generated by a discretized version of the
model given in (11), limited to two dimensions. (The maneuver variance and time constants were assumed
to be equal in each axis.) Independent, unit variance, white noise driving sequences were generated for the
x and y coordinates, and scaled with several different values of ;.. The effect of increasing the maneuver
variance, while holding all other factors equal, is essentially to increase the magnitude of the maneuver.
i.e. for the same acceleration noise, the shape of the maneuver remains the same, but the target undergoes
a larger acceleration and moves over a longer trajectory, thus traveling faster. We can see that selecting
o, for the class of targets we want to track involves matching the range of accelerations that are
possible or reasonable for those targets.

100

_m 1 1 1 1 1 1 1
6] 50 10001850 200 20 30 B 400
X coordinate

Figure 1.6. Sample trajectories showing dependence on maneuver variance.
[0t =1/25, T=0.1,1024 points, c,,°= 0.1(@), 0.5(®), 2.5(®), 12.5(0) |

The second adjustable parameter in the acceleration model is the maneuver correlation time constant, 1/o.
As mentioned, it would not be reasonable to expect that target accelerations are time uncorrelated. That is,
if a target is undergoing a positive acceleration, in a particular coordinate, at time ¢, it is likely that for
some range of Az, we would expect that the target is still accelerating in the same direction at 1+A4r. We
are modeling this affect as being exponentially tapered, and thus the range of effect of this correlation is
determined by the decay time constant. Referring to Equation (8) and Figure 1.2 we see that a larger value
of 1/ means that the decay rate is slower and maneuvers are correlated longer. Here again a set of
trajectories was generated for a range of values of a and the results are shown in Figure 1.7. The same
white noise driving functions were used here as were used to generate Figure 1.6. The effect of a longer
time constant is essentially to result in smoother, wider turns. A shorter time constant (larger o) results in
sharper (more jagged) turns. Once again, the objective here would be to match the model to the type of
dynamics expected from the target behavior. For example, if we expect a lot of evasive maneuvers we
would expect to choose a shorter time constant (larger o).

13
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Figure 1.7. Sample trajectories showing dependence on correlation time constant.
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1.1.3 Discrete Time Target Dynamics Model
Since our ultimate objective is to design a discrete time Kalman filter, the continuous time plant model

given in (12) must be converted to a discrete time version. This is accomplished as follows. Start with the
continuous time (CT) plant given by (12) and repeated here for convenience:

X, ()= A,(a)X,(1)+B,W,(1) (12)

This is a linear time invariant system with dynamic coefficient matrix, 4,, and input coupling matrix, B,.
From (12) we want to get a discrete system of the form:

X, [k+1]=® X [k]+G W [k] (16)

Using standard techniques ) the solution to (12) is given by:
t
(t-to)A4 (t-1)4,
X, ()= X, (t,)+ [ " B, (r)de 17
]

If we choose our sampling time to be 7, let #p=k7, and t=(k+1)T, then by substituting into (17) we get:

(k+D)T
X, (k+D)T)= e X,(kT)+ [e* B W, (1)dr (18)

kT

By suppressing the 7 in the time index of (18) and comparing to (16) we can see, by inspection, that our
discrete time state transition matrix is given by:

ApT
® (a,T)=e (19
17 L@* +al-1 0 0 0 00 0
ax
01 La-e=y 00 0 00 0
ax
00 e 00 0 00 0
00 0 17 L@ +aqr-1 0 0 0
a
¥
~lo 0 0 01 La-e®) o0 o0 0
ay
00 0 0 0 e 0 0 0
0 0 00 0 17T —17(e‘”’T+azT—1)
aZ
0 0 0 00 0 0 1 i(l—e‘“zT)
az
0 0 0 00 0 00 d |
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To be precise in the derivation of the discrete process input noise covariance we treat I¥,(t) as a true
continuous time white noise process that must be integrated over the sampling interval. We thus define
the input sequence to be:

(k+1)T
u k1= e VOB, (r)de 20)

kT

Thus for the purposes of our filter design we have the discrete time model:
Xp[k+1]:(Dp(a,T)Xp[k]+up[k] 2D

Note that in our discrete time model the state transition matrix, and, as will be shown in Section 1.1.4, the
process noise covariance matrix, are functions of the sampling time, 7, and the acceleration model
parameters, « and o,,”. Thus, if the data sampling interval changes at any time during the filter operation,
these matrices must be recalculated. Likewise, if we wish to revise our estimate of either maneuver
parameter, we must also update the filter system matrices. Throughout most of this work the two
maneuver model parameters are assumed to be equal in all three axis. Also note that in (21) the discrete
time input coupling matrix, G,, is / (identity).

16



1.1.4 Process Noise Covariance for Target Dynamics Model

To find the process noise covariance matrix for the target dynamics model as defined in (21), we proceed
as follows:

K, [k, j1=Elu, [k, '[1} 22)
where E denotes the expectation operator and ' denotes the matrix transpose. Substituting (20) into (22)

for u/ #], and noting that, for a constant sample time, we can sct the interval of integration to 0<t<T, we
get:

T T
K, [k, j]1=E{ j eA”(TT)BpWP(r)d{ j e“’p(“’Bpr(s)ds}}
0 0

(23)
T T
A (T -7 , v AT-s
=E{[e™" "B,W,(x)dz[W, (s)B,'e™" ds)
0 0
TT )
=E{[[e™" "B W, (W, (5)B,'e™ " " duis)
00
Interchanging the expectation and integration operations we get:
TT
Kk 1= [[ e B EW, (oW, (s)}B,' e " dris 24)
00

The inner expectation in (24) is the covariance matrix of the continuous time input noise process that
drives the acceleration model. We mentioned that in each coordinate these were zero mean, white noise
processes with autocorrelation functions given by:

R_(7,5)=20a0.5(t—s) 25)

These processes are assumed to be mutually independent, and thus the continuous time covariance matrix
has a diagonal form:

206! 0
K, (,9=| 0 2a,0, 0 |8(r-5)=C(r-5) (26)
0 0 2a,0!
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Note that in (26) we have allowed for different noise intensities in each coordinate axis, which may be
realistic and desirable. For instance, if we expect the target to mostly remain at a constant altitude, then
the maneuver variance in the z-axis would likely be lower than in the x and y axis. In this case,
accelerations in the z direction may, for example, be primarily due to wind turbulence. It would also
therefore be reasonable to expect the correlation decay time to be different for the z-axis. Substituting (26)
into (24) and then integrating over 7, we get:

TT
Kk 1= [[e*" 7B,C8(z—5)B, e duis
00

T

= fe’w B CB,'e” " ds Q7
0
Now, let M= eA"(T_S)Bp 28)
Thus (27) becomes:
T
K, Ik, j1= [ MCM ds 61 j,k] 29)
0

since C is diagonal and not dependent upon s.

The matrix M is given by:
i 1 —a, (T—-s) |
g;@ P ra (T-5)-1) 0 0
T
_(1 _e—ax(Tﬂ)) 0 0
: e*ax(T —s) 0
1 -~ (T-s)
0 ?.E(e +a,(T'-s)-1) 0
= 1 —a,(T-s
M 0 (e Ty 0
a,
efay(T—s) O
1
0 ?(e’“’(T 2+ (T-5)-1)
T
0 0 —(1-e =)
0 0 Z e =)

18
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Multiplying out the matrices and then performing the integration in (31) results in the following
covariance matrix:

define:
1
4, (a,;,T)= o B+6a,T+2a'T° —6a}T" -3¢ " —12a,Te ") (31)
ai
1
q,(a,,T)= e (I+e ™ +2a,Te™ +a’T’ -2a,T—2e ") (32)
ai
qls(ai’T) = 2;3 (1 _ ZaiTe*“fT _ e—ZaiT) (33)
4,(a,,T)= 21 ~(4e™" +2a,T—e?" =3) (34)
q23(ai>T) = 2;2 (1 _}_e—laiT _zeftliT) (35)
1 —2a,T
qsa(ai,T):‘Z;(l_e “) (36)
and

q,,(a,,T) g, (e, T) qy(e,,T)
. T)=| (2,1 qy(a,,T) q,(a,T) | 2e,0; (37)
9s(a,, T) qu(e,T) q5(a;,T)

then the noise covariance matrix for target dynamics process is given by:

Hea,,T) 0 0
K, [k, j1=0,= 0 Ua,,T) 0 |0lk, j] (38)
0 0 a,,T)
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1.2 GPS Receiver Clock Model
1.2.1 Continuous Time GPS Receiver Clock Model

As mentioned, in addition to the target position, our filter state vector must include a state for the GPS
receiver clock bias. As a result, we require a model for the clock's behavior to include in our filter plant
dynamics. One that is fairly commonly employed in GPS receivers®®! is a two-state model which says
that we expect both the phase and frequency of the receiver clock oscillator to randomly walk. Thus we
start with the continuous time model shown in Figure 1.8. Here the two states are the clock phase (bias),
x,, and the clock frequency, x;, and the input noise is provided by two independent white noise processes,
wi(t) and wy(1).

wiy) — jc& J'az — x,0

xqt)

+

Wp(t)

Figure 1.8. Continuous time GPS receiver clock dynamics model.

The continuous time state space model for the clock is thus given by:
£,(0)] [0 1Tx,0] 1 ofw,®
. = + 39)
x (1) 0 0] x,(7) 0 1w, ()

Or in matrix notation:
X, (t)=A.X,(t)+BW,(1) (40)

where the subscript “c” denotes that this is the portion of the plant model that deals with the GPS receiver
clock dynamics. The input vector, (1), consists of two mutually independent, zero mean, white noise
processes with variances, of and o,”. The tuning of the model to match the actual receiver's clock
behavior is accomplished by adjusting these spectral densities appropriately. This may be accomplished by
direct observation of the oscillator drift or by deriving the quantities from the Allan variance
specifications of the oscillator, if available. A treatment of this second approach is given in ref. [5].

20



1.2.2 Discrete Time GPS Receiver Clock Model

The discrete time clock model is obtained using the same procedure as in Section 1.1.3. Again, we wish to
find our discrete time state transition matrix and input sequence such that we have a model of the form:

X [k+1]=® X [k]+ul[k] V)

From (18) we can, once again, deduce that the state transition matrix is:

1 7
O, =e'" = [O J 42)

and our input sequence is given by:

(k+1)T
u [k]= Ie””“"“’T DB W (t)dr 43)

kT
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1.2.3 Process Noise Covariance for Receiver Clock Model
In a manner similar to the derivation of the target dynamics process noise covariance calculation, the
covariance matrix for the GPS receiver clock process noise is derived. We start with the input sequence

given by Equation (43), and note that the interval of integration can taken from 7=0—7, and also that the
input coupling matrix, B.., is defined as the 2x2 identity matrix. Thus we can write (43) as:

T
u,[k]= [e*TOW,(r)dr (44)
0

Since, once again, we have assumed () is zero mean, the covariance is calculated by:

K, [k, j1=E{u [k} . [1}
- E{j‘eAf(T’)Wc(r)dz'DeAf (T’S’Wc(s)ds}}

TT
=E{[ [e*T oW (W', (s)e " dls} 5)

00

T
[e T OBW (W', (s))e " Vds
0

© oy ™y

In the last line of (45) the inner expectation is the covariance of the continuous time noise process. Recall
that this vector process was defined to consist of two mutually independent zero mean white noise
processes. The covariance matrix for this process is thus given by:

. ' o.8(t—5) 0
(W' (s)} = 0 o28(r—5) (46)
f

Thus substituting (42) and (46) into (45) we get:

. rfll T-7]olb(r—s) 0 1 0
K““[k’J]:-!-([ 0 1 0 0;5(7—5) T'-s 1 dads “7)
—_ﬁ o28(t— )+ (T = s T -1)o;8(z~5) (I'-7)0;8(7~5) .
) 00 (T_S)G;&T—S) o;6(7— ) 5
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Integrating over 7 results in:

T
K.k j1= ] 48)

0

o (T-5) o;

{a; +o (T -s) G;(T—S):|d
s

Finally, integrating over s results in the following covariance matrix for the clock model process noise:

2 ’ 2 T2

2

' O'pT+O'f—3— Oy 5 .

Qc :Kuu[k>.]]: T2 5[k7.]] (49)
o;— o,T
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1.3 Composite Plant Model

The complete plant model for this filter is the combination of the target dynamics model, developed in
Section 1.1, and the GPS receiver clock model, presented in Section 1.2. Combining these two models
gives a discrete time system with the state vector:

x[k] |
xX[£]
X[k]
yik]
Vik]
X[k]1=| ylk] where b.=x, and f.=x; from (39). (50)
z[k]
z[k]
Z[k]
b.[k]
WAL

Here we have position, velocity, and acceleration in each spatial coordinate, and the receiver clock bias
and frequency. The composite discrete time state transition matrix is:

CI):[(D"((Z’T) 0 }

0 D) oD

where (Dp is9x9 and D, is2x2.

We have the 11x1 combined process noise vector :

u,lk ]}

u [k] ©2)

ulk]= [
which is time uncorrelated (white) with covariance matrix:

0- {Qp(a,ofz,T) 0 }

(53)
0 0.(0,,07,T)

where 0, is9x9 and Q. is2x2.
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2. GPS Measurement Model

In this section we develop the measurement model for the GPS receiver observables. In order to
understand the relationship between the GPS observables and the navigation state vector, the general
position solution methodology for GPS is first presented.

2.1 GPS Navigation Solution

The basic principle used by a GPS receiver to determine its position involves the measurement of range to
several satellites. Presumably if one can make a range measurement to three different satellites, it should
be possible to fix a position in three dimensional space. However, for reasons that will be explained, a
minimum of four range measurements are required to fix the receiver's position. Modern GPS receivers
utilize a number of techniques to make these range measurements, including C/A (course/acquisition) or P
(precise) code phase observations, carrier phase measurements, and differential techniques. Ref. [6]
provides further background information on various GPS navigation techniques. The solution method
desired in this integration was for a non-military receiver, and thus the measurements that are used are the
C/A code phase observables. In this technique, the receiver uses a code correlator to determine the time of
arrival of the C/A code signal transmitted by the satellite (SV). The receiver knows that the SV should
begin transmission of this signal at a particular GPS system time. If both the satellite and receiver had
internal clocks that were perfectly synchronized with system time, all that would be required to measure
the range to the SV would be to measure the transit time of the signal and to scale it by the propagation
velocity. However, since it is not practical for either the SV or receiver clock to be precisely synchronized
to GPS system time, the solution method becomes slightly more complex and is explained below.

All GPS calculations are carried out in an earth-centered, earth fixed (FCEF) coordinate frame utilizing
the WGS-84 ellipsoid Ul Denote the user's position in this frame by the vector:

U=(u,u,u,) (54)

and the position of the i satellite by:

S =(x,y,,2,) where i=1..n for n measurements. (55)
Zere
SV
S

R

. user
equator >y
U +90

x  0° (Greenwich Meridian)

Figure 2.1 GPS carth centered earth fixed coordinate frame.
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Then the true range from the receiver to the SV is given by:
R =[S, ~Ul=(x,~u,) +(y,—u, ) +(z, ) i=1.m (56)

Now, if we knew the signal transit time precisely and assumed the propagation velocity was known and
constant, then:

R =crt, where ¢ = propagation velocity 57

and 7; = actual transit time

As mentioned, since the receiver and SV clocks are not synchronized, the measurement of signal transit
time (scaled by c) is called a pseudo-range measurement. The time that the receiver makes this
measurement, as measured by the receiver's clock, is called the "receive epoch” and is denoted by 7.
Since the receiver clock varies from GPS system time we have:

T, =t, + A, where 1z= receive epoch in GPS system time (58)
At, = receiver clock bias

The time that the SV transmits the signal, as measured by the SV clock, is denoted by 7. The SV clock
also has a bias from GPS system time, and thus:

I, =t,+At, where ;= transmit time in GPS system time 59)
Af,, = SV clock bias

The pseudo-range measurement is thus given by:

p=(T,~T)e
= [(tR + Atu) - (tT + Atsv )]C
=ct1, +c(At, - AL,) from (57) tr-tr =7 (60)

We expect errors to be introduced in the measurement process as well as from a variety of factors like
imprecise knowledge of ¢, multipath, residual clock and SV position errors, and selective availability,
which will be discussed in a subsequent section. To account for this, we add the term & to (60), which
lumps together all these errors. We thus have:

p =ct,+c(At, — At )+ ¢

1

=R +cAt, —cAi, +¢g

:IS,. —U|+cAtu —cAt, + ¢ (61)
In Equation (61) p is measured at the receiver and S and Az, are calculated by the receiver from
parameters that are transmitted from the SV on a signal called the navigation data message. The
calculation of these two variables is covered in Appendix A. Equation (61) reveals that for each

measurement (i.e. one for each SV in view) we have a non-linear equation. The unknowns to be estimated
are:

[(7 ' cAtu]'z[ux u, u, cAtu]' (62)
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Since there are four unknowns to be solved for, this accounts for the requirement that we make pseudo-
range measurements to four different satellites in order to get a navigation solution. A solution is obtained
by linearizing (61). To linearize (61) we use a Taylor expansion about an estimate of the user’s position
and clock bias :

Let X= [U ! cAfu] be our current best estimate of the receiver navigation state vector.

If [) is the pseudo-range from the receiver's estimated position to the SV, then the Taylor expansion
about this estimate is:

. A
pi:pi+§|'—0—(X—X)+a; 63)
X=X

where &, now includes errors from the higher order terms and all unknown biases that are not modeled
and removed. Taking the partials and rearranging (63), we get an equation in terms of the pseudo-range
residual, Ap;, and the error in our estimate, /AU c(At,-4t)]

A

i, —u,
Ap=p—p=|Zuml) ZOT0) (i) g m g
lSi -U \S,. —U{ ‘S,. -U i, —u,

c(AF, - At,)
We can rewrite (64) as:
AU
[ ar
Ap =|-7 I]L (o7~ Atu)}g,. (65)

wheref,. is the line of sight unit vector from the current estimate of the user's position to the i * satellite,

and AU is the error in the position estimate. If we make measurements to m different SV's then we can set
up the measurement equations:

Ap=HAX +E (66)
Ap, - &
A ~ 7. AU &
where Ap= ':02 H= :2 AX:!ZC(Af _Ar )} E=|"
Ap, -7, g,

and the position error can be obtained from the overconstrained least squares solution:

AX=(H"HY'HAp ©67)
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By adding the solution of (67) to the current best estimate of the state, we have a new estimate of the
receiver's position based on the current measurements. This recursive least squares approach to solving for
the receiver position is the most common method employed by GPS receivers. Extending this to a Kalman
filter is quite straightforward and is explained in the next section.
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2.2 GPS Measurement Sensitivity Matrix
In order to fit within the framework of a standard Kalman filter, the measurements should be linearly

related to the state vector. The standard Kalman filter measurement equation for a time invariant system
is:

Y[k1= HXTk]+V[k] (68)

In (68) the vector Y is the measurement, the matrix / is the measurement coupling matrix (often referred
to as the sensitivity matrix in filtering literature), X is the state vector, and V' is the measurement noise.
Referring back to Equation (61), we have the following relationship between a GPS measurement and the
state vector:

p = |Si —Ul+cAtu —cAt, +¢g 61

This is a single measurement to the i™ SV. Expanding (61) we get:

P =A(x, —u,) +(y,—u,) +(z,—u,) +cAt, —cAt,, +¢ (69)
1 1 X 1 y 1 z u v 7

In (69) the measurements are clearly not a linear function of the state vector. This fact requires the
implementation of an extended Kalman filter. If we stack up measurements to m different SV's we can
rewrite the measurement equation as:

p=h(X)-cAi_ +E (70)
A
- | P o \
where p=| .|, X= [ux w, i, wu, w, #, w, u, i, cAl, fc]
P
and using the notation from Section 1.3: . =CAt,

In the extended Kalman filter we use a Taylor series expansion to linearize the measurement about the
current estimate of the state, in an identical manner to that shown in Equation (63). Thus the
measurement coupling matrix is given by:

dh( X)
ax | .

X=X

Hg = (71)

where X is the a priori estimate of the current state, i.c. the filter's prediction of the state at the current
epoch, prior to incorporation of the current measurement.
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Taking the partials yields the matrix:

_(x‘_fi;)oo_—(%—_fi;—)ooiz‘—iﬁ;—)001o
S -0 S -U" s, -0
Cx. i Ay, - Ay, -t
o (xzf'x)oo—woo&—?y—)001o
c=| |S,-U" S, -0~ s, -0~ (72)
R N
Gumi) o0 TOWmh) g mG i)
1S, -0 S ~U s, -0 |

Note that (72) consists of the line-of-sight unit vectors from the current estimate of the user's position to
each of the SV's, augmented with a column of ones. This matrix is usually referred to as the "geometry”
matrix.
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2.3 GPS Measurement Errors
2.3.1 GPS Measurement Error\Noise Model

The fundamental measurement equation for a single SV, given in (61), was:
Jo) =|S,. —U|+cAtu—cAtw +& (61)

Once again, we are estimating the user position, U, and clock bias, 4f,. The satellite position, S;, and the
SV clock bias, 4t,,, are calculated from broadcast data, as explained in Appendix A. All remaining errors
were lumped into the term, &. A more careful look at the errors that occur during the typical measurement
results in the following pseudo-range equation:

p, =|S, ~U|+cAt, —cAt, +AS, F+ Ry, +I1+T+M+N 73)

These error contributions are:

SV Ephemeris Errors: The term given by AS~ is the result of any inaccuracies in the calculation of the
satellite position, primarily due to errors in the broadcast ephemeris data. AS, which is the actual offset in
the SV position, will result in a ranging error equivalent to the projection of that offset onto the line-of-
sight vector, 7 , to that SV. As might be expected, these errors tend to be highly time correlated.

SV Clock\Selective Availability: Rs, in (73) represents what is by far the largest error contributor. As
described in the navigation solution, knowledge of the SV's clock bias is crucial to obtaining an accurate
range measurement. At propagation velocities, every 3 nanoseconds of clock error translates to about one
meter of ranging error. This term includes any inaccuracy in the knowledge of the SV clock bias. The
clock bias term is calculated by the receiver, as described in Appendix A, from parameters transmitted on
the navigation data message. It turns out that the reason that the SV clock bias cannot be determined
accurately is due to a policy implemented by the US Government called Selective Availability (SA). The
purpose of this policy is to deliberately degrade the accuracy of real-time navigational information
available to civilian users of the GPS. The method used to implement SA is to add a deliberate,
continuously varying, "random" error to the value that is calculated from the clock correction parameters.
As can be seen from the error budget in Table 2.1, this error component is an order of magnitude larger
than all the others and essentially determines the accuracy of a single receiver C/A code GPS user.
(Military users have access to decryption information which allows them to reverse this deliberate error.)
The ranging error due to the Ry, is highly non-white with a small uncorrelated noise-like component.

Atmospheric Effects: The next two terms in (73), / and 7, are due to variations in the propagation velocity
of GPS signals as they travel through the ionosphere and troposphere. Since accurate knowledge of the
propagation speed is germane to the ranging process, these variations contribute directly to range errors.
Ionospheric errors are predominantly non-white with a small white component. Tropospheric errors are
generally small with an equal time correlated and uncorrelated component.

Multipath: Multipath errors, denoted by the A term in (73), are caused by GPS signals bouncing off of
reflective surfaces near the receiver antenna, and causing the correlator to lock to them. This means that
the receiver will not be measuring the true direct path range, and will instead have an error offset. As
would be expected for a stationary receiver, this error is predominantly a bias. For a moving receiver, with
a properly located antenna, this error is fairly small, with an equal uncorrelated component.

Receiver Measurement Noise: The last error term in (73), V, is due to any inaccuracies in the
measurement process caused by receiver electronics and software. The exact nature of these errors is
dependent upon the particular receiver's implementation. In most cases, modern receiver technology limits
this error source to a very minor contribution.
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Error Source Bias (o, meters) Uncorrelated Total (o, meters)
(o, meters)
Ephemeris 2.1 0.0 2.1
SV Clock/ SA 20.0 0.7 20.0
Ionospheric 4.0 0.5 4.0
Tropospheric 0.5 0.5 0.7
Multipath 1.0 1.0 14
Receiver Noise 0.5 0.2 0.5
Total 20.5 1.4 20.6

Table 2.1. GPS ranging error budget™®.

Table 2.1 shows a typical C/A code receiver's expected ranging error budget. In this initial filter design, it
is intended that the GPS measurements be made with this kind of receiver. In order to fit within the
framework of a Kalman filter, the noise process represented by V'/k/ in Equation (68) should be time
uncorrelated (white). From Table 2.1 we can see that a receiver of this type is dominated by highly non-
white errors that are predominantly the result of Selective Availability.

There are at least three approaches that could be taken in this particular application to deal with this
problem. The first approach involves incorporating a dynamic model into the filter to track SA. Although
the details of how SA is implemented are classified, long term observation of the behavior of these errors
by the civilian user community seems to indicate that a reasonably good model for SA is a second order
Gauss-Markov process[9]. A state space model for this process would require the addition of two states for
every satellite being used. Since it is typical for a minimum of 5 SV's, and often 8 or more, to be in view,
this approach would more than double the size of the state vector and significantly increase the filter's
computational burden. Although, in some circumstances, this may be an acceptable and practical
approach, in this filter implementation it was not considered optimal.

The second approach involves the use of military GPS equipment. A military receiver gains an advantage
over a typical C/A code receiver in several ways. First, the effects of SA can be completely removed, and
thus the error contribution due to the SV clock is solely a result of inaccuracies in the tracking and
prediction of the SV's atomic clock. This results in ranging errors caused by the SV clock to be typically
2.0 m bias and 0.7 m uncorrelated noise'™®. The second way in which a military receiver gains an
advantage is through the use of dual frequency tracking. A military receiver uses a different ranging
signal, called the P-code, which is transmitted on two different L-band carriers. By making dual frequency
correlations, the P-code receiver is able to remove a large part of the ionospheric error by solving for the
frequency dependent delay this effect causes. The result is to reduce ionospheric errors to 1.0 m bias and
0.7 m uncorrelated noise®®. The resulting total ranging error for a military receiver is typically 3.3 m bias
and 1.5 m uncorrelated noise®®’. The use of a military GPS receiver in implementing this filter is not
covered in this work but is likely to be included in future extensions.

The third approach to dealing with the highly time correlated nature of pseudo-range errors utilizes a
technique called differential corrections. This technique involves the use of a second GPS reference
receiver at the data processing site, and results in the removal of the largest amount of time correlated
error component. This is the approach used in the design of this filter and is discussed in detail the next
section.
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Figure 2.2. Pseudo-range errors for 200 second interval collected from sv19(@),sv9(®),sv17(®),sv23(0).

In Figure 2.2 above, the error\noise component of the pseudo-range measurements for four different
satellites is plotted over a 200 second interval. This data was collected with an Ashtech Ranger model 6M
C/A code tracking receiver located at an accurately surveyed point. The errors were determined by
calculating the predicted pseudo-range based on the known receiver location and information on the SV
position and clock error. In this figure we can see that the errors essentially consist of a small white noise
component, on the order of a couple of meters as given in Table 2.1, and a slowly varying bias, which is
mostly due Selective Availability. There is also a small bias component present in all plots, due to an error
in the receiver clock prediction. This bias is common to all SV's and does not affect the position solution.

If unmodeled, the highly time correlated nature of the biases, caused primarily by the first three error
sources in Table 2.1, will cause the Kalman Filter to track these variations as if they were plant dynamics.
This necessitates their removal, which is accomplished in this filter through the differential correction
technique discussed next.
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2.3.2 Differential Correction Technique

The underlying principle behind the differential technique is that most of the highly time correlated errors
discussed in the previous section are also correlated over distance. This means that two receivers within a
certain distance of each other will be subject to essentially the same errors when making ranging
measurements to the same satellite. The differential technique, illustrated in Figure 2.3, is thus to locate a
reference receiver at a surveyed site. This receiver makes pseudo-range measurements to all SV's in view
and then by using the receiver's known position, calculates what each pseudo-range should be. The
differences are correction factors which can be applied to any other receiver's (within a certain range)
pscudo-range measurements to the same satellites, resulting in a dramatic increase in the accuracy of
those measurements. Since errors are significantly correlated only for a limited time and distance, the
corrections should be applied quickly, and only to receivers within a certain range from the reference
location. For the purposes of this application positioning accuracy of 10 m or less are considered quite
acceptable, since we are often tracking targets whose size itself exceeds this amount. It turns out that if we
locate the reference receiver within 1000 km of the airborne unit, and apply the corrections within 10
seconds, this level of accuracy is attainable!"”

v —@ @ @ @
IR _.—“'_.:g«"’."‘_,_’.n--“‘” .
"":'::-:-:’:E::'“" B both receivers make
.. -, " . measurements to all
“ . SV's in view

airbome
receiver

raw pseudo-range

ref receiver calculates
/— corrections and

observables applies to

transmitted to ground reference measurements from

site for processing located at recerver airborne receiver
surveyed site —P

Figure 2.3. Differential correction scenario.
The application of differential corrections is as follows. The reference receiver depicted in Figure 2.3 is

located at a surveyed site and we know its position vector, Ur. Recall that the basic pseudo-range equation
to the i/ SV as given by (61) is:

Pr; =[S, —Up|+cAty, —cAL,, +&, (74)
where the subscript R refers to the reference receiver.

Since we know Uk, using the values S; and A, calculated from the ephemeris data, and an estimate of the
receiver's clock bias, we can calculate a predicted value for the first three terms on the right hand side of
(74). If this value is subtracted from the actual value of pr; measured by the reference receiver, we end up
with an estimate of the error component &;.
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That is:
Ex ® Pry —|S, —Up|+cAty, —cAL,, = Ap, (75)

Equation (75) defines the basic pseudo-range correction for the i SV. The reference receiver will make
this calculation for all SV's it collects measurements on. At the same time, the airborne receiver makes a
pseudo-range measurement to the same SV's. Each of these measurements consists of:

Pa, =I8, U | +cAt,, —cAt,, +eé, (76)

Since the assumption is that a large part of the error component in (76) is common to the error in (74), we
have:

£y = Ep HV, an

1
where v; is the uncorrelated part of the error.

Thus, if we subtract the pseudo-range correction in (75) from (76) the error component in the corrected
pseudo-range is reduced to v, which has a significantly reduced bias and is much more predominantly
white noise. The corrected airborne measurement is thus given by:

pcAi:pAi—Ap,.:’Si—UAl+cAtAu—cAtwi+vi (78)

This correction process is applied to every pseudo-range measurement made by the airborne receiver that
is common to the reference receiver. Only corrected ranges are then used in the filter. Note that in the
above calculation we used an estimated value of the receiver clock bias. The particular value used in the
determination of the pseudo-range correction is not critical since any offset here will be common to all the

measurements to each SV, and thus will end up being removed from the final position solution"®,
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Figure 2.4. Pseudo-range errors after differential correction (same interval and SV's as Figure 2.2).
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In Figure 2.4 above, we see the result of applying the differential corrections technique to the pseudo-
range measurements whose errors were plotted in Figure 2.2. As desired, the result is to eliminate most of
the time-correlated bias component, leaving predominantly white noise like errors. A GPS-only extended
Kalman filter was run on both the uncorrected and corrected data sets to illustrate the effect of the
unremoved bias on the position solution. Figure 2.5 shows the position estimation error in the x coordinate
for a filter run on both data sets. As might be expected for the uncorrected data, the time-correlated bias in
the pseudo-ranges is tracked by the filter and shows up as a slowly varying position error. In fact, without
any attempt to model the bias component in the filter, this is indistinguishable from target movement. For
the filter run on the differentially corrected data, we see a dramatic decrease in estimation error and we
achieve the desired affect of having an unbiased estimator.
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Figure 2.5. Position estimation error in x coordinate for an extended Kalman filter run on uncorrected(®)
and differentially corrected(®) data.
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2.3.3 GPS Measurement Noise Covariance Matrix
Once the differential correction process described in Section 2.3.2 is applied to the GPS measurements,
the remaining errors are due predominantly to receiver noise and multipath and are on the order of 1-3

meters. These errors may be modeled in the filter as independent, zero mean, white noise processes with
expectation of reasonable results. The resulting measurement noise covariance matrix would then be:

Yy

Ro =BWVLUW W =E] 7 [w v - v} )

v

m

With the assumption that these are independent identical processes then we get:
R, =01 (80)
P
where / is the mxm identity matrix (assuming m measurements) and :

o, =E{vv;} 81)
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3. Radar Measurement Model

The intent in this filter design is to integrate position (tracking) data on an airborne target, obtained from
a ground-based radar sensor, with position data obtained from a GPS receiver. The type of radar used to
track aircraft in a cooperative scenario such as this would typically be a microwave pulse radar. This type
of radar transmits pulses at the target which are, either actively or passively, bounced back from the
target. This enables the radar system to measure the direction and range to the target. A passive system
relies on what is called “skin” return, which is simply the electromagnetic energy reflected off the target’s
body, for a signal to track. Since we have already assumed that the aircraft being tracked is cooperative on
account of its requirement to transmit GPS data, it might also be reasonable to expect that a radar
transponder would be used. A transponder is a device carried aboard the target that transmits a return
pulse to the radar system whenever it receives a pulse from the ground. This provides a more reliable
“active” return signal for the radar to track. In both of the above cases, the measurement set is identical
and the types of errors are very similar. This section derives the model for the radar sensor measurements.

3.1 Radar Position Measurements

The measurements that are obtained from the tracking radar are normally given in a spherical coordinate
system and consist of the azimuth and elevation angle, and the range to the target. These coordinates are
given relative to a topocentric frame such as the one shown in Figure 3.1. The topocentric coordinate
frame is a right handed system with it’s origin on the earth’s surface and its axis pointing to East, True
North, and Up. By True North, we mean that this is the direction toward the Conventional Terrestrial
North Pole, which is the point where the z axis of the ECEF frame, defined in Figure 2.1, intersects the
reference ellipsoid. The East axis points along the direction of the latitude lines, and the Up axis is
normal to the plane formed by the Fast and North axis, which is essentially the local vertical direction.
This local radar coordinate system has its origin at the radar location and is abbreviated as the ENU
frame. The Azimuth (4z) angle is given clockwise from the North axis and the Elevation (El) angle is
positive relative to the £-N plane.

Radar ™

E

Figure 3.1. Radar Measurements and Local (ENU) Coordinate System.
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If we define the target position vector in the ENU frame to be:

E X,
T,=|N|=|y, (82)
U z

then from Figure 3.1, we see that the relationships between the measurements and the Cartesian (ENU)
coordinates are given by:

xu

Az = tan” (%) (83)

u

ZU

El = tan ' (——=)
N
Rng = /x> +y2+2’ (85)

(84)
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3.2 Radar Measurement Sensitivity Matrix

In order to derive the radar measurement coupling matrix for the extended Kalman filter, we need to
derive the relationship between these measurements and the state vector. Recall that the state vector gives
the target position in ECEF coordinates. Thus, to find the sensitivity matrix, we need to first find the
function /#(X), in the basic measurement equation, which relates these ECEF coordinates to the radar
measurements. The form of the radar measurement equation is:

Y [k]= hp (XKD +V, [K] (86)
Az[k]
where Y,[k]=| EI[k] |, X[k] is the state vector as given in (50), andV',, is the radar measurement
Rnglk]
noise vector.

Let the target position vector in the ECEF frame, which corresponds to the appropriate elements of the
state vector, be given by:
xP
Fe=\Yp ®7)

Zp

Referring to Figure 3.2, the target position vector, given in ECEF coordinates, from the radar frame
(ENU) origin is given by:

T, =y, (88)

The radar antenna phase center is at the local ENU frame origin and its location is usually accurately
surveyed. We assume here that we know the ECEF coordinates of this frame origin. This vector is given

by:

xR
Sz =Yz (89)
Zp
Thus:
Xp —Xp
Ty =P =Sy =|Y,~ W& (90)
Z,—Zp
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Figure 3.2. Relationship between radar (ENU) frame and FCEF frame.

Equation (90) gives us the target position vector relative to the radar frame origin in ECEF coordinates. In
order to relate that vector to the measurements, we need to rotate the EFCEF vector into the FNU frame. In

addition to knowing the radar frame origin in ECEF coordinates (,§ ), we assume we know, or have

derived, the geodetic latitude, &, and longitude, A, of the origin. (The relationships between the ECEF
coordinates and the geodetic latitude and longitude are derived in Appendix B.) Using this information
we perform the frame rotations as follows. We start with the U, E, N axis of the radar frame aligned with
the X, Y, Z axis of the ECEF frame in that order, and rotate around the Z axis by the angle A, where the
longitude angle is measured positive in an easterly direction from the zero meridian (X axis). This gives
the first rotation matrix:

—sinA cosA O
R=| 0 0 1 ©1)
cosA sinA O

Next we rotate about the E axis by the angle 5, where North latitude angles are measured positive. This
gives the second rotation matrix:

1 0 0
R,=|0 cosd -sind (92)
0 sind cosd
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Combining these two rotations with equation (90), the target position vector from the radar frame origin,
in ENU coordinates, is given by:

xu
I, =y, :RZRI(PE_SE)
zu

—-sin4 cos A 0 | xp,—xg
=|-sindcosA —sindsind cosd | y, — yy (93)
cosdcosA  cosdsind  sind | z, —z,

or more explicitly:
E=x,=—sinA(x, —x;)+cosA(yp, — yz) 94)
N=y, =-sindcosA(x, —x,)—sindsinA(y, — yp)+cosd(z, —z) (95)
U=z, =cos6cosA(x, —xz)+cosdsinA(y, -y, ) +sind(z, —zz) (96)
Substituting (94) - (96) into (83) - (85) gives the measurements (4z, EI, Rng) in terms of the states (x,, y,,
z,). Thus our equation for the radar measurements is:
E
tan~'[—
an”' [
U
El |=|tan"' [-———=] .
Rng VE*+N? y
VE*+N*+U? "

)

where £,N and U are defined by (94)-(96) and v,, v., and v, are the measurement noise processes. Clearly
our measurements are not a linear function of the state variables, and thus, as with the GPS
measurements, the radar coupling matrix for the filter is the Jacobian of the vector function 4#(X) in
Equation (97). The coupling matrix is thus given by:

_ I(X)
2.4 x=x

H, (98)
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0

0

(99)

(100)

101)

(102)

(103)

(104)

0

0

Atan (/)] o Altan” (E4)] - Atan (E/)] .
éx;P: @)P: &P:
a,.U 1.0 a1, U
Ay M e I e
&, Yy 2,
AVE* +N* + U] 0 0 AVE* + N? +U?] 0 0 AVE* + N? +U?) .
&F @)P &P
where:
ﬂtaﬂ_l(%)] _ —sinAd-N+sindcosA-E
&, B N> +E’
é[tan—l(%)] _cosA-N +sindsind-E
&p - N> +E’
é[tan_l(%)] _ —cosd-E
&, - N*+E?
U(sinA-E+cosAsind: N)
tan (U VE* +N?* .cosAcosd +
A g JE'+N*
&, E +N+U”
U(cosA-E—sinAsind-
Ao (U o) NET N sin cosi - (osA B —_sinZsind-N)
VE*+N*" VE> +N?
&, E>+N*+U?
U-coso N
tan"'(U VE* +N? siné - ——e
A JE TN
&, E*+N*+U?
AVE* +N?+U?] —sind-E-sinécosA-N+cosdcosd-U

&, JE* +N*+U°
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AVE* +N*+U?] cosA-E—-sindsind-N+cosdsind-U

(106)
&, VE*+ N +U*?
AVE* +N*+U*] cosd N +siné-U
= (107)

x, JEX+ N2+ U?

where, once again, £, N, and U are functions of the state vector, given by (94)-(96). Note that 5 and A are
constants determined by the “fixed” location of the radar site. Thus, in the expressions above, all the
trigonometric functions are constants that may be pre-computed off-line.
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3.3 Radar Measurement Error\Noise Model

Since the Kalman filter framework requires that we are able to characterize the errors in our observables
as white noise processes we once again desire to fit the radar measurement model into the form of
equation (86), where J/k] is such a process. As we might expect, it turns out that most radar
measurements also have significant time correlated components, and we once again have a measurement
of the form:

Az b | |v,[k]
ykl=| El |=h(X[kD)+]| b, |+|v,[k] (108)
Rng b, | |vIk]

where b represents the bias component and v/k/ the white noise component of each measurement. The
exact nature of these errors is, naturally, highly dependent on the particular type of radar sensor being
used. However, some generalizations can be made to present a reasonable initial model for use in the
filter. It is expected that, at implementation, calibration data from the particular radar being used will
allow fine tuning of the model.

The type of radar typically being employed for aircraft tracking is called a “monopulse” tracking radar. In
this type of radar, a range measurement is made by bouncing an electromagnetic pulse off the target and
measuring the round-trip travel time to the target. Scaling by an assumed propagation velocity gives the
range to the target. The bias component in the range measurement would be expected to consist of fixed
latencies which were most likely due to the electronics, and also a slowly time varying component. In
some cases there are deliberate latencies added to the system, as is the case with a transponder aided
tracker. In that case, the transponder is typically programmed to add a delay of the order of several
microseconds (thousands of meters) between the time it receives a radar pulse until it replies. Fixed, or
constant latencies, are either known or measurable beforehand and it is assumed here that they can simply
be subtracted from the measurements. Slowly time varying error components that might also be present in
range measurements can be due to effects such as multipath. In this case we have no a-priori knowledge
of the bias and we cannot simply remove it. Multipath effects tend to be present primarily when tracking
low altitude targets.

The bearing angle to the target is typically measured by making a phase comparison of the signal returned
to two closely spaced antenna elements. A signal nulling process is used to steer the antenna, either
electronically or physically, so that it is pointing at the target. In the case of a physically steered antenna,
the azimuth and elevation angles may, for example, be read off resolvers on the antenna pedestal. Here we
would also expect there to be fixed angle errors which may be measured and subtracted off, and some
slowly time varying components which would not be removable.

Since it can be expected that the exact nature and amount of the range and angle biases will vary greatly
not only from one mechanization to another, but also between two different sensors of identical type, the
general approach to modeling radar biases will be to obtain calibration data on each sensor which can be
used to remove any fixed errors. In this initial implementation of the filter, the slowly varying time
correlated radar errors due to phenomena such as multipath will not be removed.

The remaining error component will essentially be an uncorrelated noise process that we will model as
independent white noise added to each measurement. In the case of both bearing and range measurements,
these types of errors are caused primarily by the electronics involved with discrimination process. For the
range measurement, the radar receiver may have a detector that is attempting to find the edge of a
received pulse, and for the bearing measurement, a discriminator may be used to find a signal null. In
both these cases we can expect the quality of the detection to depend directly on the received signal-to-
noise ratio. That is, the magnitude of the errors expected are inversely proportional to the signal to noise
ratio.
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A common rule of thumb for the magnitude of radar errors is given by
k
orN—F—=
vS/N

where S/N is the peak-signal to mean-noise ratio out of a matched filter detector and k is a proportionality
constant that depends on the particular mechanization of the radar sensor. We can use (109) to derive a
simple expression for the spectral density of the noise processes, v, in (108). Starting with the expression
for the signal to noise ratio out of a receiver" >

S/
s,/

(109)

= (110)
N, F
where S,/N, = Signal power to noise power ratio out of radar receiver.
SyN; = Signal power to noise power ratio into radar receiver.
F = Noise figure of receiver.
For the input noise power we can substitute the idealized expression:
N, =K;TB  (watts) (111)

where Kz = Boltzman constant (J/degK).
T = Temperature in degrees Kelvin.

B = Receiver bandwidth (Hz).

Also, using a simple form of the radar range equation, the input signal power at the radar receiver is given
by[12]:
_ I)t GAe O-cs
i ( 47[)2 R4

where P, = Transmitted Power (W).

(112)

G = Antenna gain.
A, = Antenna effective apertire (m’).
o, = Target radar cross section (mz ).

R = Target range (m).

Substituting (111) and (112) into (110) we get the following expression for the signal-to-noise ratio at the
output of the receiver (i.e. used by the detector):

S PGAo,

o

N, (4n)'K,TBFR’

o

(113)
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In Equation (115) it is reasonable to assume all the factors, with the exception of range, are constant for a
given tracking scenario. The result is then that, for a particular radar sensor, the received signal-to-noise
is inversely proportional to the fourth power of the range. That is:

k
S%v == (114)

where k now is a proportionality constant that incorporates all the physical parameters of the particular
radar sensor being employed. If we now take Equation (114) and substitute it into (109) we get the
following relationship for the standard deviation of our measurement errors:

o =kR’ (115)

where k now incorporates the square root of the proportionality constant in (114) and the proportionality
constant used in (109). The above derivation is not meant to serve as a rigorous, ironclad method for
determining the process noise variance in our radar measurement model, since there are many
simplifications made, and a large number of physical parameters to include in an actual calculation.
Rather, it is meant to demonstrate, from first principles, that we might expect the measurement noise
variance to vary with the target's range from the radar sensor. It would therefore be reasonable to
incorporate some range dependence into the measurement noise covariance matrix of the filter. This range
dependence would typically not be expected to be monotonic over the entire operating range of the radar,
and in fact many radars suffer from certain degradations that occur at short ranges as well"] Tt is
believed that the best approach to handling this would be to obtain calibration data from the radar sensor
and to formulate a polynomial fit in range for the magnitude of the noise variance. Thus we would expect
to have a measurement noise covariance matrix that is given by:

o 0 0 £.(Rng) 0 0
EJ, [kV ' [JI}=R:=| 0 o5 O |=| O f.(Rng) 0 (116)
0 0 og, 0 0 f(Rng)

where lA?ng is the filter's best estimate of the current range of the target, obtained by taking the
magnitude of T z in Equation (90).
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4, Filter Description

The structure of the filter employed in this work is essentially a discrete time extended Kalman filter with
non-linearity only in the measurements. That is, since the chosen process model has a linear state
evolution equation, the only linearization that needs to be performed is on the measurements. As seen in
Sections 2 and 3, measurements from both sensors are non-lincar functions of the state vector. It is
assumed the reader is familiar with Kalman filtering concepts and Section 4 primarily describes details
specific to this implementation. For more background on general Kalman filtering the reader is referred to
[5] and [13].

4.1 Matrix Definitions
The general form of this filter is shown in Figure 4.1, using the following matrix definitions:

X/kJ: (11x1) The state vector which consists of position, velocity, and acceleration for each
spatial coordinate in an Earth Centered Earth Fixed coordinate system, and the phase and frequency of
the GPS receiver clock. Defined in Equation (50).

@(a,T): (11x11) The plant dynamics state transition matrix. This matrix, which defines the
discrete time behavior of the plant, is a combination of the target dynamics state transition matrix given in
Equation (19), and the GPS clock model state transition matrix given in Equation (42). Note that this
matrix is a function of two parameters: @, the acceleration model correlation time constant, and 7', the
discretization sample period. In this filter, it is generally assumed that a will be fixed for a class of targets
being tracked and will not change in real-time. However, a possible extension to this filter would be to
employ an adaptive algorithm that allows « to change in response to perceived target dynamics. Since the
parameter 7 may vary if the data fed into the filter is not evenly sampled in time, the state transition
matrix is recalculated in response to this. Defined in Equation (51).

Oa, Gl o;,“’, 0}2,1): (11x11) The process noise covariance matrix. This matrix defines the
statistics for the noise driving the plant model, and again is a combination of the covariance matrices for
the target dynamics, defined by Equation (38), and the GPS clock model, defined in Equation (49). This
matrix is also a function of the target acceleration model parameters, ¢ and o,,>, which, as mentioned
above, are not expected to vary during the filter operation. The two parameters, o;,2 and o;cz , which define
the spectral densities of the noise processes driving the continuous time clock model, are determined by
the chosen receiver hardware, and do not vary during filter operation. This covariance matrix is also a
function of the sample period, 7, and like the state transition matrix, must be recalculated if the data
sample time changes. Defined in Equation (53).

H[k]: (m+3x11) This is the linearized measurement sensitivity matrix which defines the
relationship between the measurements and the state vector. The filter's measurement vector has the form:

[ Az[k] ]
El[k]
| Ruglk]
Y[k]— ,Dl[k] (117)

AN

where the p's are the pseudo-range measurements to the "m" satellites that are available, and the three
radar observables are Azimuth, Elevation, and Range. The H matrix is the combination of the GPS

48



measurement coupling matrix defined in Equation (72), and the radar measurement coupling matrix,
defined in Equations (98-107). Thus H is given by:

H Ik, X[klk—lll} (118)

Hik]= [HG [k, XTk|k —1]]

Since the H matrix is a function of the current a-priori state estimate, it must be updated at every filter
epoch. In addition, the size of the matrix will vary depending upon the number of measurements available
to the filter at a given epoch.

R(7): ((m+3)x(m+3)) This is the filter measurement noise covariance matrix and is a

combination of the GPS measurement noise covariance matrix, R, and the radar measurement noise
covariance matrix, Rg(r). All GPS observables are assumed to have independent, identical, and stationary
statistics and thus R is an (mxm) constant matrix. As described in Section 3, however, the radar
observables typically do not have stationary noise statistics and thus the (3x3) matrix, R,(Rng), is updated
as the estimated target range varies. Thus R has the form:

R.(Rng) 0
< (Rng) } .

R(Rng)=
(Rng) { 0 R,

Pand K: (11x11) and (11x(m+3)): These are the normal state estimation error covariance and
Kalman gain matrices and are defined in Figure 4.1.

4.2 Implementation Description

The general form of an Extended Kalman Filter with only non-lincar measurements is shown in Figure
4.1. This section outlines details particular to this specific implementation of the general filter shown
there. In the subsequent description, the filter epochs are assumed to be driven by the GPS data, which is
available at a one second spacing. Radar data, which is typically available at a much higher rate, is
sampled to coincide with these epochs. With the exception of the initialization, the following steps are
performed recursively:

Initialization: This step is generally performed by assigning to the initial state estimate the first
position fix on the target, available from any source. This fix could be calculated independently from
either sensor's data. For example, it could be a single epoch least squares GPS solution. However,
simulations indicate the filter should be quite robust to initial position errors, and will converge fairly
rapidly even from extremely large distances. The error covariance matrix must also be assigned some
initial value, and this normally should indicate to the filter the magnitude of the initial position estimation
error. It is expected that, regardless of how these two matrices are initialized, the filter should converge
properly. The real issue to be determined in initialization is how quickly the filter converges and how long
the initial filter transients take to die out. One exception is that assigning the initial state estimate to zero
causes the filter to attempt inverting a singular matrix. Obviously, this should be avoided and the filter
code should have some method of detecting this condition.

State and Covariance Extrapolation: This is the normal Kalman filter procedure of taking the
current state estimate and error covariance and predicting forward one time step. The navigation state
vector is projected forward using the target dynamics model represented by the state transition matrix @,
and the error covariance matrix is projected forward using @ and Q, the process noise covariance. Note
that since both these matrices are functions of the data sampling time, a routine for recalculating them is
invoked if the filter detects a change in 7. In initial simulations of the filter on real data, changes in
sample time occurred occasionally due to missed GPS data epochs and were detected from time stamping
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available on the data. Note that, depending on the data rates available from the particular sensors used,
different data sampling schemes could be employed. For example, it is not necessary that data from both
sensors be available at each epoch. The filter can be driven by whichever data is available at a desired
sample time.

Calculate Measurement Coupling Matrix: Using the a-priori state estimate, the measurement
coupling matrix is computed. For the GPS measurements this involves using the current position estimate
and the computed SV positions to calculate the geometry matrix given in Equation (72), and for the radar
measurements the matrix defined by Equation (98) is calculated. The size of the matrix depends upon the
number of measurements available at the current epoch. Note that when calculating H, it is convenient to
also calculate the predicted observables needed for the filter innovation used in the update step. For
example, when computing the line-of-sight vectors to each SV, the predicted pseudo-ranges can be
calculated simply by using the SV clock bias and estimated receiver clock bias. Similarly, the predicted
radar measurements are easily calculated from the values of £, N, and U, that are computed to find the
radar measurement sensitivity matrix.

Calculate Filter Gain Matrix: The Kalman gain matrix is computed using the current values of
H, R, and P[k|k-1]. The current value of the measurement noise covariance matrix, R, is obtained using
the predicted radar range.

Measurement Update: In this final step the current measurements are incorporated. In the actual
filter implementation, care must be taken when calculating the innovation, y[k]— y[k], since two of the
radar measurements involve angles. The innovation term thus contains azimuth and elevation angle
differences, which if not treated properly can cause the filter to behave unstably. For example, if the
estimate is converging on the true target position in azimuth from one side and then at the next
measurement crosses over, the innovation must be corrected in sign and magnitude so the filter is steered
back in the appropriate direction. If not accounted for, the modulo 27 nature of the angle innovation may
steer the filter in azimuth all the way around 360° again. This can be handled simply by ensuring that the
innovation is always corrected to be in the range 0 - =, with the appropriate sign. After the new state
estimate is calculated, the updated error covariance is calculated.
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Initialize

x[0j0]
P[oj0]
Extrapolate State Estimate and Covariance
£[k|k—1]= OR[k — 11k —1] (120)
Plk|k —1]= ®P[k -1k -11®" +Q (121
\
Calculate Measurement Coupling Matrix
o
H= G | F=Rke] (122)
Calculate Filter Gain
K[k]= Plk|k - 1H[k]" (H[k)P[k|k - l]H[k]T + R)‘1 (123)
Measurement Update
x[k|k]1= x[k|k — 1]+ K[kJ(Y[k]- h(x[k| Kk —1]) (124)
Plklk]= (I -K[kH[k])P[klk ~1] (125)

Figure 4.1. Flow chart for an extended Kalman filter with non-linear measurement equation.
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5. Filter Simulation and Test

Verification of the filter design presented in this work was conducted in several stages. First, a set of two-
dimensional (planar) simulations was run using various target trajectories and measurement sets. These
studies, which allowed manipulation of the target dynamics and filter parameters, provided considerable
insight into the accuracy and convergence of the filter under a variety of scenarios. Next, the full three
dimensional form of the filter described in the previous sections was implemented using Matlab™”!, and
tested using data collected from actual GPS receivers combined with simulated radar data. The results of
these tests are presented below. Future testing will include actual implementation of this filter into a
tracking system at MIT-Lincoln Laboratory, where airborne kinematic GPS data will be available in
conjunction with instrumentation radar tracking data.

5.1 2D Simulations
5.1.1 2D Planar Radar-Only Filter Simulations

This set of simulations was conducted with a two dimensional formulation of the filter that utilized only
radar measurements. At first the target was kept stationary and a Monte Carlo analysis was conducted to
examine the convergence of the filter under different initial conditions and values of the model
parameters. It was found that, with one exception, the filter converged to a steady state solution about the
real target position for all tested values. The one exception was if the filter was started with a zero state
vector which represents an equilibrium point for the system. As would be expected, the values chosen for
the initial conditions and model parameters affected the rate of convergence, i.e. the dissipation of the
initial filter transients. Figure 5.1 shows the ensemble mean error variance for the x coordinate position,
velocity, and acceleration for a set of 20 simulation runs with a stationary target. No dimensions were
assigned for these simulations. Figure 5.2 shows the ensemble mean estimation error, for all the state
variables, for the same simulations. From these results, it can be seen that the filter is convergent, in the
sense that it reaches a steady state position error, and that the estimate is unbiased.

18 T T T T T

18} Fo
(1)
14} -
12H -
Ermr‘ 10 i
Var. 3]
{no 8 ]
dim:)
6
4 i
2 1
0 1 1 1 1 . 1
0 200 400 600 800 1000 1200

_ Filter Epoch
Figure 5.1. Mean error variance for x pos.(®), x vel (@), x acc.(©) with
predicted steady state values in red. {T=0.1, a=1, 6,,°=10 (for x and y), target range = 500+v,
(v,~N[0,1]), target bearing=rm/'4+ vy (vy~N[0,.001]), number samples = 1024}
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With a standard Kalman filter the steady state error covariance, P, can be accurately predicted from the
steady state solution of the matrix Riccati equation:

®P. " +GOG' —®P H" (HP,H" + Ry 'HP,®" =P, (126)

For the extended Kalman filter, although the error covariance is still propagated by the Riccati equation,
the value of the measurement coupling matrix, H, is a function of the current state estimate. Since the
state estimate is a random variable, H is not known beforechand and, strictly speaking, the actual value of
the error covariance cannot be precomputed. However, when conducting simulations, the trajectory of the
target is known in advance, and we can therefore compute a nominal point by point solution to Equation
(126), by using the value of H evaluated along this trajectory. This technique was employed, and it turns
out that in all these simulations, the solution always closely predicted the behavior of the error covariance,
although the predicted value was always slightly larger. This nominal prediction was extremely useful in
determining whether the filter was behaving reasonably under dynamic target simulations, where, as will
be shown below, the error covariance appears divergent. In Figure 5.1 the error covariance predicted by
this method is shown in red just above each plot.

w) 1 T T T T
|
200}
100
Estimation
Error
(no dim.) -100

0 200 400 600 800 1000 1200
Filter Epoch
Figure 5.2. Ensemble mean estimation error for all state variables (x,)) for stationary target.
{Same parameters as Figure 5.1}

The next set of simulations investigated the behavior of the 2D radar-only filter with a moving target.
With a dynamic target, several issues arise that are not apparent in the static case. Selected results are
shown below for a simulation of a target with linearly increasing range and bearing angle. The trajectory
is thus a spiral outward from the radar site. Once again, a properly tuned filter tracked the target quite
well. Figure 5.3 shows a typical target and filter trajectory for these simulations. The filter was initialized
with a small position error, and the target and filter plots are virtually identical except for the initial
acquisition phase. The most interesting results here come from examination of the estimation errors for
this trajectory. Figure 5.4 shows the ensemble average error covariance plot for the x coordinate the filter
with the predicted values in red. This plot shows that the estimation errors are increasing in magnitude
and appear to be sinusoidally modulated. It turns out that for this particular measurement set, there is a
structural dependence of the error covariance on the range and bearing of the target. This can be
understood by looking at the situation depicted in Figure 5.5.
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Figure 5.3. Target and filter trajectories for moving target simulation.
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Figure 5.4. Ensemble average x pos(@), x vel(®), x acc(®) error variance for above simulation with
predicted values in red.
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Figure 5.5. Structural dependence of positional uncertainty on target position.

In the above figure we depict a target located at position (R, @ = (img,mg. Any particular measurement of
that target position is characterized by a region of uncertainty based on the magnitude of the noise
variances. For a range/bearing measurement this region takes the approximate shape of the arc between
the red lines in Figure 5.5. The thickness of this arc is set by oz and the arc length at the center is
determined by mg oy, where mg is E{R}. In this scenario we make the assumption that mroe> 0% , i.€. the
range is sufficiently large so that the arc of uncertainty is longer than it is thick. With the assumption that
oy is small, the arc length is approximately the straight blue line at R=mg, with say length L. The
measurements are statistically characterized by:

®~N(my,02) and  R=N(m,,0}) (127)

where my and me correspond to the true trajectory of the target. The projection of the line Z onto the x
and y axis are approximately given by:

dx = Lsin(myg) and  dy=Lcos(myg) (128)
Now since L is proportional to the angle variance, i.e.

L ocmyoy  thenfrom (128) dx oc m,0 sin(mg ) (129)
and dy o< myo, cos(myg) (130)

Thus since dx and dy represent the uncertainty in position variables x and y we can conclude:
ol o« m} sin’(mg)ol and o, o my, cos’ (mg )og (131)

What the above essentially says is that, even using a range/bearing measurement with stationary statistics,
(i.e. R, the measurement noise covariance matrix (different from the R used above), is constant,) we
would expect to see the uncertainty in x and y position vary with the target position and thus with time for
a moving target. In fact, if the target is moving away from the radar, we can expect position uncertainty to
grow proportional to the square of the range. For targets with an angle rate, we can expect to see a
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sinusoidal modulation on the x and y error covariance. Equations (131) predict the behavior of position
errors for the above simulations quite well.

The above heuristic explanation of the behavior of the error covariance points out that range and angle
measurements in themselves cause an inherent degradation of positioning accuracy even with the
assumption of stationarity in measurement noise. When this effect is combined with the range dependence
of the radar measurement noise model presented in Section 3.3, the deterioration of position estimates can
be considerable at large ranges.

5.1.2 2D Planar Radar+GPS Filter Simulations

In this set of simulations, the effect of augmenting the radar-only filter, described in Section 5.1, with a
single GPS observable was examined. As discussed in Section 2, a GPS receiver obtains a position
solution by making ranging measurements to a number of satellites. If we require a navigation solution
from a GPS sensor only, we need a minimum of four different satellites, and any number of measurements
less than this would not be sufficient for the GPS-only filter to converge. Since the intent of this filter
study is to explore a low level integration of measurements from the two types of sensors (GPS and radar),
this set of simulations looked at the utility of combining a single GPS range measurement with radar.

Once again, a variety of static and dynamic simulations were conducted, and the filter was observed to
converge to the target trajectory in all cases. For these simulations the GPS range measurement noise was
chosen to be the same magnitude as the radar range measurement noise. (This, in fact, turns out to be an
approximately realistic assumption for real-world radar and GPS sensors.) The most significant effect of
the combined measurement set can be seen by looking at simulations with the spiral trajectory used for the
radar-only filter. With the radar-only filter we saw a significant degradation in estimation accuracy with
increasing range. By augmenting the radar-only filter with a single GPS observable, we can almost
completely remove this effect. Figures 5.6 and 5.7 compare the estimation errors and error covariances
from typical simulation of the radar-only filter and of the GPS augmented filter for the same spiral
trajectory.

100 T T T T T

Error
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Figure 5.6. Estimation errors in x coordinate from typical simulation of radar-only filter (@) compared to
radar + single GPS range filter (@) for spiral trajectory.

56



e , L ..I .,I.. ” '

500 1] i

Error
Var. 400/ |
(no

dim.)

200}

100+

 Filter Epoch

Figure 5.7. Estimation error variance in x coordinate from typical simulation of radar-only filter (@)
compared to radar + single GPS range filter (®) for spiral trajectory.

In Figure 5.6 we see the expected increase in estimation errors as the target increases in range for the
radar-only filter. In comparison, however, the filter augmented with a single GPS measurement shows
almost no such degradation. This is confirmed by looking at the error variance plot in Figure 5.7. The
radar-only filter displays the expected range and angle dependence, whereas the GPS augmented filter has
almost constant error variance. The small spikes occur when the two range measurements are aligned, i.e.
when the radar, target, and satellite are all collinear. Once again, as a means of verifying the performance
of the filter, the steady state solution to the algebraic Ricatti equation was calculated along the known
trajectory. This nominal performance is compared to the actual (ensemble mean) error covariance of the
augmented filter in Figure 5.8, and we can see that the filter does indeed appear to behave reasonably.
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Figure 5.8. Ensemble mean error variance in x position (@) versus predicted steady state solution (@) for
GPS augmented filter.
{T=0.1, a=0.1, 6,7=100 (for x and y), radar range noise: (v,~N[0,1]), bearing noise: (vy~N[0,0.01]),
GPS range noise: (v,;~N[0,1]), number samples = 1024}

5.1.3  Summary of 2D Planar Simulations

Examination of the radar-only 2D filter simulations served as a base-line performance metric for the study
of this filter integration. As was shown, a radar-only filter can be constructed that serves, when properly
tuned, as an unbiased position estimator. However, when using the standard radar measurement set, the
estimation error has a geometric dependence which results in significant degradation of performance with
increasing range. By augmenting the radar-only filter with a single GPS range measurement we were able
to almost completely remove any geometric degradation in filter performance. Apart from any robustness
issues that may be addressed by such an integration, these results indicate a significant benefit in
combining sensor data even when only a partial measurement set is available from GPS. Further
investigation of the benefits of combining different measurements was conducted and the results are
presented in Section 5.3.
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5.2 Filter Tuning

An important issue, whose relevance is highlighted when simulating dynamic targets, is that of filter
tuning. By tuning, we refer primarily to the setting of the model parameters « and o;,” which are
appropriate for the dynamics of the target we expect to track. Assuming we have properly characterized
the sensor errors and our process model is correct, these parameters will essentially determine the filter's
ability to track. One way to think about this is to realize that the dynamics of our plant model are
governed by these parameters. In other words, the aircraft model "flying" in our filter is only capable of
the dynamics we assign to it. If we set the model parameters to correspond to a slow flying, less
maneuverable aircraft, and we subsequently try to track a fast, highly maneuverable aircraft, we might
expect to see the filter diverge. However, modeling a highly maneuverable target in the filter can result in
the filter being too sensitive to measurement noise, which it interprets as reasonable target dynamics. In a
real application we might hope to track a wide variety of target dynamics reasonably well, and we would
thus be driven by a trade-off between performance and flexibility. Much work in the literature has focused
on the problem of adaptively changing the target model in response to perceived dynamics.

In addition to the target dynamics model, we also have two parameters that tune the GPS receiver clock
model, qf and 072 . It turns out that due to the stability of most clocks used in GPS receivers, the clock
bias, although large, varies relatively slowly. The result is that there is a fair degree of latitude in selecting
these parameters without adversely affecting the position solution. These spectral densities can be derived
from an Allan variance plot of the clock behavior™™, however, quite acceptable results can be obtained
using values that have been derived for a whole class of clock oscillators. For example, in all the tests
conducted in this work, values of a and ;,” were used that apply to all temperature compensated crystal
oscillators.

Tuning of the target dynamics model is somewhat more critical. The figure below shows an example of
filter divergence due to improper setting of the filter these parameters. Here, the maneuver variance used
in the filter process model is much too small for the dynamics of this spiral trajectory, and the filter track
can clearly be seen to diverge from the target. Qualitatively, this is an example of the filter process model
not being able to keep up with the aircraft.
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Figure 5.9. Sample divergence of an improperly tuned filter. Target (@) Filter (@).
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The position estimation errors for the x coordinate for two different filter tunings are shown in Figure
5.10. The more central blue plot corresponds to a filter which is correctly tuned. As discussed previously,
the magnitude of the errors will increase with range and be sinusoidally modulated, but they should
remain unbiased. This is essentially the case for the properly tuned filter shown below. However, the red
plot in Figure 5.10 corresponds to a mistuned filter. Here the estimation errors are clearly biased. Note
that the bias is also a function of position.
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Figure 5.10. Estimation errors for x coordinate for properly (@) and improperly (@) tuned filter.

As might be expected, there is a trade-off in tuning the maneuver variance of the filter. As shown, if we
improperly model the aircraft dynamics, we can expect the filter to develop a bias error. However, in our
effort to ensure the filter remains unbiased by increasing the maneuver variance, we also the cause the
filter to start paying more attention to noise, thereby increasing the error covariance. Figures 5.11 and
5.12 demonstrate this trade-off. Figure 5.11 plots the estimation errors for a range of values of a;,’, while
Figure 5.12 shows the error variance of the x position for the same values. The correlation time constant
was fixed at a=1/30 for all these simulations.
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Figure 5.11. Estimation error in x position for 5,°= 1000 , 100 , 10, 1(®), 0.1(®©) .

Time Averaged of Estimation Errors from Figure 5.11
On 1000 100 10 1 0.1
avg. est.err. X | .9 .9 1.4 5.8 25.7

In Figure 5.11 it is a little difficult to distinguish the behavior of the different plots, but the essential idea
is that for the small maneuver variance (0.1) we have the outlying sinusoidally modulated plot, which
displays a low noise component and a large bias. As the maneuver variance increases the bias decreases,
but the magnitude of noise component increases. As an indicator of the bias in the above plots, a time
average of the estimation error was calculated for a section of the trajectory. These are tabulated above and
confirm that the larger the maneuver variance, the less the bias. In Figure 5.12 we can see how the
magnitude of the error variance is directly proportional to the maneuver variance.
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Figure 5.12. Error variance in x position for 6,,’= 1000(@), 100(®), 10(®), 1(®), 0.1(®) .

Tuning the filter correctly also involves determining the appropriate value of acceleration time constant,
a. To illustrate the effect of & on the filter performance, a target trajectory was created with an
instantaneous turn maneuver. i.c. the target makes a perfect 90° left turn. This corresponds to an
impulsive acceleration, which, of course, would be impossible for a real aircraft. This, however, serves to
demonstrate the dependence of filter behavior on the o parameter. Figure 5.13 shows the filter trajectory,
while attempting to track the left turn, for three different values of a. The filter was run with noiseless
measurements for these simulations, and thus the filter is tracking the target perfectly before going into
the turn.

The best way to understand the behavior in Figure 5.13 is to realize that the filter is modeling real aircraft
dynamics, and thus it would not expect or be able to track an infinite acceleration. As a result, the filter
will execute turns within the limitations of the dynamics assigned to its process model. For a longer
acceleration correlation time (smaller @) the filter is slower to react (slower to decorrelate previous
acceleration components) and when it goes into a turn, the turn is wider and it stays in it longer (longer
correlation of new accelerations). This results in overshooting of the desired trajectory very similar to
filter ringing. In this example, the dynamics are unrealistic and thus the filter will never track perfectly.
However, the value of a can most likely be set optimally for a realistic set of dynamics. Once again, there
is a trade-off in adjusting a. We cannot make « arbitrarily large (short correlation time) in an attempt to
allow it to track any possible quick dynamics, since increasing o will also increase the error covariance,
although the dependence is not monotonic as in the case of o,,”. Figure 5.14 shows the x position
estimation error for the trajectories in Figure 5.13.
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Figure 5.13. Filter trajectory for 90° left turn for o= 1(@) , 0.1(®), .01(©).
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Figure 5.14. x position estimation error for 90° left turn for o= 1(@), 0.1(®) , .01(©).
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5.3 3D Filter Simulation and Testing

In this section a full three dimensional implementation of the filter is tested. In order to determine the
uscfulness and effects of the integration, first a single sensor version of the filter is tested for both radar
and GPS. This helps establish a baseline for filter performance and enables us to verify proper filter
construction for each measurement type.

5.3.1 3D GPS-Only Filter

Using the measurement model developed in Section 2 and the target dynamics and GPS clock models
presented in Section 1, an Extended Kalman Filter for GPS only was implemented. The filter was tested
using static measurement data that was collected using two Ashtech Ranger XII GPS receivers. Both
receivers were placed at accurately surveyed sites, with one receiver simulating the target and the other
used as a differential reference station. These tests validated the formulation of the GPS filter and served
as an indicator of GPS-only estimator performance.

The filter was first run using data collected from the target receiver without applying corrections from the
reference receiver. The target dynamics model was set with all three axis using:

ol =01 (m/s)?
a=1/10 5!

and the clock dynamics model was set with the phase and frequency noise spectral densities at:

o, =00090 n’
o} =00355 (ms)’

which were derived from a table of typical Allan variances for temperature compensated crystal
oscillators’®. The GPS measurement noise covariance was set to:

2 __ 2
o,=20 m
which reflects the level of uncorrelated noise. The target receiver was located at FCEF coordinates:

[xyz]=/[1510885.9 -4463462.6 4283902.5] (meters, ECEF)

The filter was initialized with several hundred meters of position error, no target motion, and a fairly
large initial error covariance. Figure 5.15 shows the filter's estimate of the x coordinate for a 200 second
interval as compared to the receiver's internal point by point least squares position solution. Seven
satellites were in view during this interval and the filter was set to utilize all available measurements. For
comparison purposes, the uncorrected filter solution was adjusted to compensate for ionospheric and
tropospheric bias models that are applied in the receiver solution, but not necessary when differential
corrections are used in the filter. Figure 5.15 shows that the filter does indeed converge and tracks the
receiver's least squares solution fairly closely. There is some minimal smoothing apparent in the filter's
solution as a compared to the receiver's. If desired, this smoothing could be increased by tuning the filter
for stationary dynamics, but, for comparison purposes, the dynamics model parameters were kept closer to
a range we might expect for a moving target. Note that both solutions contain an error (in this instance on
the order 10 meters) that results from the unremovable bias caused by Selective Availability as explained
in Section 2.3. In Figure 5.16 the position error variances are plotted indicating that the filter is reaching
a steady state solution. The gradual increase in the position error variance apparent in this plot is a result
of changes in the satellite geometry which effect positioning accuracy. This is explained in Section
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5.3.1.1. The covariance predictor described in Section 5.1.1 is shown in black, once again validating that
the filter is not actually diverging but appears to be behaving reasonably.
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Figure 5.15. Estimation error of x position coordinate: receiver point by point least squares(@®); GPS-only
Kalman filter using uncorrected (no differential) pseudo-ranges(®).
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Figure 5.16. GPS-only filter error variance for x(@),)(®), and z(®) position (x predictor in black).
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The same filter was run on data sets that were differentially corrected utilizing a reference receiver in the
manner explained in Section 2.3.2. Figure 5.17 compares the filter's position estimation accuracy with
uncorrected data (corrected only for SV clock bias), differentially corrected data, and the receiver's
internal least squares solution which is smoothed and corrected with models for propagation delays. The
GPS-only filter plots in Figures 5.15 and 5.17 are identical with the exception that in Figure 5.15 the
ionospheric correction model used in the receiver's least squares solution is also applied to the filter
solution for comparison purposes. In Figure 5.17 we can see that the uncorrected filter solution has a large
bias as a result of Selective Availability and other unmodelled errors. Some improvement is gained in the
receiver by applying propagation delay correction models, but only the differentially corrected filter attains
an essentially unbiased solution.
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Figure 5.17. x position estimation errors for uncorrected GPS-only Kalman filter(@), receiver least
squares with internal 200 second smoothing(®), differentially corrected GPS-only Kalman filter(©).

5.3.1.1 Geometric Dependence of Error Covariance (GPS-Only Filter)

It turns out that, similar to the structural dependence noted with the radar-only filter, there is a
dependency of the GPS-only filter's error covariance on the satellite geometry. Although somewhat more
difficult to analyze rigorously, this effect is well understood and has been described extensively by the
phenomenon known geometric dilution of precision ). To understand the basic idea, refer back to Figure
4.1. By substitution of Equation (123) into (125), the a-posteriori error covariance (current time step after
incorporation of measurement) is given by:

Plk|k]= P[k|k —1]- P[k|k —1]H" (HP[k|k-1]H" + R)" HP[k|k -1] 132)
where P[k|k-1] is given by Equation (121).

In (132) we can see that the error covariance propagation in the filter is a function of the measurement
sensitivity matrix, /1. Recall that the /7 matrix for the GPS measurements, given by Equation (72),
consists of the line of sight vectors from the current position estimate to each of the SV's. It would thus be
natural to expect that error covariance would vary as the geometry relating the receiver and the satellites
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changes. Even if the receiver remains stationary, due to the orbital motion of the GPS satellites and the
rotation of the earth, the relative geometry will constantly change. The result is that, when observing what
we might expect to be the steady state error covariance of the filter, we can expect to see gradual variation
with time. The effect of satellite geometry on the accuracy of the position solution depends on how the
particular receiver implements its navigation solution. A receiver that utilizes the required minimum of
four satellites will typically search all possible sets of SV's in view to obtain the best geometry. An ideal
geometry utilizing four SV's has three satellites spaced equally (120° apart in azimuth) on the horizon,
and one directly overhead. Any geometry where satellites tend to be bunched together in the sky is much
less favorable. A navigation solution method that incorporates all available SV's, such as the Kalman filter
presented here, would be less susceptible to degradation due to geometry. This is due to the fact that the
GPS satellite constellation is designed such that there is almost always a reasonable spread of satellites
around the sky, and a filter utilizing all SV's in view would benefit from the best geometry. However,
under certain situations such as when the receiver antenna may be masked, we might expect to see
positioning accuracy degrade considerably. This is demonstrated in Figure 5.18, where the error variance
in the x position is plotted for a GPS-only filter run with four different sets of SV's. The lowest trace
corresponds to the filter being run with all available satellites and the other traces represent different scts
of four. (In the GPS constellation satellites are identified by an ID number, between 1 and 32, called their
PRN code, which is a reference to that SV's particular signal.)

3'5 l‘ ‘I v T : L] _ 1 v T ¥ » “l - 1 T

2.5 H E

1.5 -

X Position Error Variance (m2)
X nN
.(
1

05 o

1 1 1 1 1 1 1 1

0 : : 1 I : :
4.9658 4.966 4.9662 4.9654'4{.9656 4.9668 4.967 4.96724.96744.9676
GPS Time (seconds) S :

)(1()5

Figure 5.18. Error variance for x position coordinate for GPS-only filter run with different satellite sets:
All Available [159 17 21 23 26](@), [1 59 17](®), [17 21 23 26](©), [1 9 21 26)(®).

The magnitude of the estimation error for the x position coordinate is plotted in Figure 5.19 for two of the
filter runs shown in Figure 5.18.
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5.3.1.2 Observability Conditions (GPS-Only Filter)

As described in Section 2.1, a full GPS position solution in three dimensions (with no other information
available) is only possible with measurements to a minimum of four satellites. It seems intuitive then that
this requirement would define observability for the system. Since the measurement coupling matrix, H, is
a function of the current state estimate, the linearized system given by {®, H} is not time invariant.

Thus, as a means to verify observability, the rank of observability matrix given by:
Hi[k]
H[k]®[k]
0,[k]=| H[k1®[k] where n=11. (133)

| H[k]®"[k]|

was evaluated at each time step during the filter runs'. As might be expected, for all cases where at least
four SV's were available, the pair {®,H} was observable, and for all cases where less then four SV's
were used, the pair was unobservable. i.e.

n Vkm=>4

rank(O,[k])= {< n Vhkm<d4 where m = number of measurements. (134)

The result for all tests conducted was that whenever less than four SV's were available, the GPS-only filter
diverged. Figure 5.20 shows the x position estimate for two tests of the filter. In the first case four
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measurements are used, and in the second case one SV is removed, leaving only three measurements.
When the filter is run with three measurements only, it clearly diverges.
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Figure 5.20. x position estimate for GPS-only filter test with four SV's [1 5 9 17)(@)
and three SV's [1 5 9] (@). (Position truth dotted black line.)

Although the test given in (133) does not strictly define observability for a time varying system, in this
application it turns out to be a useful tool for determining which sets of measurements by themselves will
allow the filter to work over any useful time period. However, momentary loss of observability as defined
by this measure, does not necessarily mean that the filter will immediately become divergent.
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3.2 3D Radar-Only Filter Simulation

Primarily for the purpose of verifying convergence, a filter utilizing the radar measurement model
presented in Section 3, was simulated. These simulations were conducted by synthesizing radar
measurements from a sensor located 10 km from the GPS test receiver site (stationary target). The same
target dynamics parameters were used as in Section 5.3.1 and the radar measurements were assigned the
following noise intensities:

02, =002x10" (rad’) (0.25° std. dev.)
oz, =002x107 (rad®) (0.25° std. dev.)
Opong = 2.0 ()

The range measurement noise variance was chosen to be the same magnitude as the GPS pseudo-range
measurement noise variance. The filter was observed to converge to the target position with a steady state
error variance from all initialized positions (again, with the exception of the origin). Figure 5.21 shows a
typical plot of the x position estimate overlaid with the apparent noisy radar position measurements. The
position estimates appear quite noisy in this plot, considering the relatively small measurement noise
variances. But, as mentioned in the 2D simulations, the uncertainty in each coordinate is strongly
dependent upon geometry. To see that the estimator is actually working quite reasonably, the position
coordinate as measured by the radar is shown in red in Figure 5.21.
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Figure 5.21. x position estimate (@) for radar-only filter with noisy measurements (@). (Truth in black.)
The estimation error variance in each position coordinate for the above filter simulation is shown in

Figure 5.22. The strong range and angle dependence discussed in Section 5.1.1 is carried over to the three
dimensional situation and is apparent in these plots by the large error variance.
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Figure 5.22. Error variance in x(@), y(®), and z(©) position estimates for radar-only filter.
5.3.2.1 Observability Conditions (Radar-Only Filter)

If we use the observability condition defined by rank{O,[k]}=n, where O,[k] is given by Equation (133)
and n=9 (since we are not concerned with the GPS clock states in the radar-only filter), then strictly
speaking we must have all three measurements to ensure observability under all dynamics. i.e. for any
subset of measurements in these filter simulations, we have rank{O,[k]}<n for all k. The use of angle only
measurements, sometimes referred to as passive tracking, has been the subject of considerable study. It has
been established that target motion is observable, in angle only tracking, if and only if the sensor platform
accelerates under certain constraints!'”. In the problem of concern here, it is assumed that the radar sensor
position is fixed, and thus the requirement that we have all three measurements (azimuth, elevation, and

AN

range) is applicable.
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5.3.3 Combined 3D Radar+GPS Filter Tests

The final set of tests conducted in this work involved the complete filter that combined both the radar and
GPS measurement models. These tests confirm, as would be expected, that the filter is convergent. They
also demonstrate the synergy that occurs by using a filter that combines, at a low level, both sensors. This
synergy allows the combined estimator to converge with partial measurements from either sensor which
would normally constitute an unobservable situation in a single sensor filter. In addition, in situations
where the geometry is unfavorable for either sensor, inclusion of measurements from the other sensor can
significantly reduce the estimation errors.

Throughout all the combined filter tests the following dynamic model parameters were used, where the
acceleration noise processes were considered to be independent and identically distributed:

ol =01 (m/s’f
a=1/10 s’
o, =00090

O‘} =0.0355 s’

The target was stationary and located at the surveyed location:

[xyz]=[1510885.9 -4463462.6 4283902.5] (meters, ECEF)

The measurement noise statistics were set to:

O‘If =20 m’

02, =002x107 (rad’) (0.25° std. dev.)
oy, =002x107 (rad®) (0.25° std. dev.)
Ong = 2.0 ()

5.3.3.1 Full Radar and GPS Measurement Sets

The first set of tests verifies the functionality of the combined filter with a full complement of
measurements. For these tests we had seven satellites available, resulting in a fairly low geometric dilution
of precision. As expected, the filter converged to an essentially unbiased steady state estimate around the
true target position. Since the error covariance will vary as a function of the continuously changing
satellite gcometry, by "steady state”, we mean that the effects of initial conditions have dissipated and are
negligible. The position estimates in each coordinate for a typical test run are shown in Figure 5.23.

Figures 5.24-5.26 give a comparison of the position estimation error variances for the combined filter and
the single sensor filters. In general, when a full complement of satellites is available the GPS solution is
less susceptible to geometric degradation and the filter performance will be driven primarily by the GPS
measurements. In this case we can see that we have a slight improvement in the estimation accuracy of the
combined filter over GPS alone. The largest performance gain is over the radar-only filter. In some cases
where satellite geometry is good, there may be some degradation in accuracy of the combined filter, as
opposed to the GPS-only filter, due to the incorporation of very noisy radar measurements.
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Figure 5.26. Position estimation error variance in x(@), (), & z(®) coordinate for GPS-only filter.
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5.3.3.2 Partial Radar or GPS Measurement Set

In this set of tests, the convergence and estimation error were examined for the filter run with only a
partial measurement set from either one or the other sensor. That is, we have either a full set of GPS
measurements (four or more satellites) and only a partial set of radar observables, or we have all three
radar observables (azimuth, elevation, and range) and less than four GPS measurements. In both these
cases the advantage of combining the sensor data in a single Kalman filter is evident since a stand-alone
Kalman filter for either sensor with partial measurements would typically not converge. Here we are able
to take advantage of some information from the other sensor to improve the estimator's performance even
if a complete position solution could not be obtained from that information alone.

Figure 5.26 shows the x position estimate error variance for three different runs of the filter with a full
radar measurement set and partial GPS measurements. The filter was run with one, two, and three
pseudo-range measurements respectively. In all three cases, not enough information would be present for
a GPS-only filter to converge. However, when this information is used to augment the radar
measurements, a distinct improvement over the radar-only filter is achieved. The actual amount of
improvement will depend on the geometric relationship between the satellites and the radar sensor. In
Figure 5.26 we can see that even a single GPS observable results in a significant decrease in the
estimation error variance. For this particular geometry, adding the second pseudo-range results in a
dramatic drop in error variance in the x coordinate.
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Figure 5.26. x position coordinate estimation error variance for radar-only filter(@) and combined filter
with one(®), two(®), and three(@) GPS pseudo-range measurements.

Testing of the combined filter was also conducted with a full set of GPS observables and partial radar
measurements. In these tests, four pseudo-range measurements were used, which would be enough to
ensure a GPS position solution, combined with a variety of different radar measurements. Figure 527 is a
plot of the x coordinate error variance comparing a GPS-only filter run with four pseudo-range
measurements and a combined filter with the same measurements plus a radar range measurement. As
can be seen, the addition of the single radar observable to the GPS measurement set reduces the estimation
error significantly. Adding this range measurement has a similar effect to adding another GPS observable
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to the measurements, and the amount of improvement will vary with the relative target/satellite/radar
geometry. It turns out that this is the only partial radar measurement that yields any discernible
improvement in the performance of the combined filter. Angle measurements, whether both are present or
just one, appeared to have no effect on filter performance in these tests. Also, a single angle measurement
combined with a radar range measurement did not improve the combined filter performance over just
adding the range measurement itself.
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Figure 5.27. x position coordinate error variance for combined Filter (@) with four GPS pseudo-range
measurements only (SV's [17,21,23,26]) plus radar range measurement and GPS-only filter (@) using the
same four SV's.

5.3.3.3 Partial GPS and Radar Measurements

The final set of tests conducted with the combined filter looked at filter behavior with partial
measurements from both sensors. In these situations we do not have sufficient information from either
sensor alone for a position solution, i.e. the system is unobservable as defined by rank O,[/k]<n for all k
with just one sensor. However, certain combinations of partial measurements from both sensors will
provide observability and allow the filter to converge.

The observability condition for the filter run with partial measurements can be summarized by saying that
a minimum of four measurements must be present. Recall that the GPS pseudo-range measurements are
not true ranges and must be corrected by the estimate of the receiver clock bias. Thus, whenever we are
utilizing GPS observables, we are required to have at least four measurements present in order to get an
estimate of this bias. Any combination of four, it turns out, will suffice, but the performance of the filter is
highly dependent upon the particular geometry. This results in some combinations of measurements
providing an unbiased position estimate but having large error variances. Figure 5.28 summarizes a subset
of tests by showing the x position estimation error variance for all the observable sets of measurements. In
this particular geometry, the combination of three GPS pseudo-ranges plus a radar elevation angle
measurement had much larger error variances. The combination of three pseudo-ranges plus a radar range
and angle measurement produced the best performance. However, removing the angle measurement
resulted in virtually the same level of error variance. Also note that in the tests where we have two GPS
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measurements and a radar range and angle measurement (plots @ and @), we can again see the strong
dependence of the error variance on the relative geometry. In this case, incorporation of the radar
elevation angle results in significantly better filter performance than if we use the azimuth angle to

complete the measurement set.
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Figure 5.28. x position coordinate error variance for combined filter run with partial measurements.
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Conclusions

The Kalman filter developed in this thesis is a methodology for the fusion of tracking data from two quite
different sensors which are now commonly employed separately to obtain aircraft position. The radar
sensor has been the mainstay of airborne target tracking for a considerable time and is still in general use.
The newer Global Positioning System is quickly gaining popularity in many traditional radar applications
and may eventually completely replace radar in cooperative tracking scenarios. However, during the
period that both sensors remain in common use, the question of how useful it is to combine these data and
what methodology might be used is a relevant one. This thesis presents answers to both these questions.

The methodology chosen here was an extended Kalman filter which is essentially a low level fusion of raw
measurements from cach sensor. Alternate methods might involve employing separate position estimators
for each sensor, the outputs of which may be combined in some manner to give a composite target position
estimate. In this situation, we might be expecting that the sensors are robust to failure and the
implementation of separate estimators in different hardware would aid in the robustness of the system to
failures in the computational hardware. However, in situations where we would more likely expect partial
sensor failures, the centralized filter approach presented in this thesis has distinct advantages. By partial
sensor failure we mean that, although a target position estimate may not be obtainable from that sensor
alone, a subset of measurements is still available. In these situations, separate position estimates from the
failed sensor would typically be of no use. However, in the extended Kalman filter approach presented
here, it is shown that this partial information can be utilized to improve the accuracy of the position
estimate over that which we would get from the other single sensor only. In addition, if both sensors have
partial failures, we would have no usable position estimate available from a separate, decentralized filter
approach, whereas the combined filter is often able to provide an accurate position estimate even with
these partial measurements.

To obtain a position estimate from a GPS sensor alone, we need to have a minimum of four satellite
measurements. For a radar sensor, we need to have both angles and a range measurement present to
acquire the target's position. With either of these sensors, if we have less than this minimum of
measurements for any period of time we can expect the outputs of any individual position estimator to
diverge. In this thesis it is shown that with the centralized Kalman filter we can utilize any remaining
subset of four measurements to obtain an unbiased position estimate. Also, as mentioned, incorporating
partial measurements from one sensor will improve performance of the filter over that which would be
obtained with measurements from the other sensor only. For example, with a full set of radar
measurements, incorporation of even a single GPS observable can significantly increase the accuracy of a
position estimate over that which we would obtain from the radar only. Likewise, even if we have enough
GPS observables to get a position solution, due to less then optimal satellite geometry we can often
improve this position estimate by incorporating a radar range measurement. In many cases incremental
improvements can be gained in accuracy with the inclusion of each new measurement.

It is expected that the work begun in this thesis will continue with the actual development of a combined
radar and GPS tracking system at MIT Lincoln Laboratory. In this future work, issues related to fitting the
dynamic models presented here to actual targets will be addressed, and measurement noise models will be
formulated for specific radar sensors. In addition, the problem of dealing with different sensor data rates
will have to be more carefully examined. The implementation of this filter in a real world system will
provide the opportunity to test the performance of this filter under realistic conditions and compare the
results with individual sensor tracking systems.
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Appendix A: Calculation of SV Position and Clock Error

In order to obtain a position solution as described in Section 2.1, two important components must be
calculated: the position of the SV at the time of transmission of the ranging code signal and the SV's clock
bias. Both of these may be computed from parameters that are transmitted on a navigation data signal
available to all receivers®”. The broadcast ephemeris gives parameters which describe the orbit of the SV
quite accurately for a small region around the point at which they are determined. The SV clock
correction parameters give coefficients to a polynomial which may be used to calculate the clock
correction at the desired time. The following section outlines the procedure used in this filter to calculate
these quantities.

We start with essentially two measurements from the receiver: the receiver epoch, 7z , and the pseudo
range to the SV of interest, o. Recall that the receiver epoch or receive time is measured as per the
receiver's clock and can be expected to vary considerably from GPS system time. Once again:

T, =t, +At, where  fz= receive epoch in GPS system time
At, = receiver clock bias (al)

Also recall that the SV begins transmission of the code sequence at 77, which is also according to its own
biased clock:

I.=t. +At, where  f7= transmit time in GPS system time
At,, = SV clock bias (a2)

Since we actually want the position of the SV at £, which is the transmit time according to GPS system
time, we proceed as follows:

Our pseudo-range measurement is defined as:
p=cl,~1) (a3)

Rrearranging, we get:

Iy =1y - % (a4)
Substituting this in (a2) results in:
=T, - -, (@)

From (a5) we see that in order to find the transmit time we need the SV clock correction, Af,,. The
polynomial used to calculate Af,, is:

At =af, +af,(t, -t ) +af,(t, —1,,) + At (a6)

In (a6) the coefficients, afy, af;, and af>, and the clock data reference time, ¢,., are given by the navigation
data message. A¢, is a relativistic clock correction term that is dependent upon certain orbital parameters.
It is calculated along with the SV position covered further along in this appendix. It can be seen
immediately that (a5) and (a6) are dependent, i.e. we need A, to find ¢, and vice versa. Also we have the
term A, that is calculated in the orbit determination procedure, for which we are trying to find #,. These
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interdependencies require us to proceed recursively to calculate both the clock correction and the SV
position.

We initialize the recursion by calculating an estimate to Az, and £,

At =af, +af (T, —t, ) +af, (T, -1,) @7

where 77 is obtained from (a4). It turns out that equation (a6) is not highly sensitive to f,, thus this
estimate is fairly good. Now we can obtain an estimate of #, from (a5). We then proceed recursively, as
shown in Figure Al. The first item calculated is 7, which is the time of transmission relative to the
ephemeris data reference time £,,. We then calculate the SV position at 7, using the broadcast ephemeris
data and the procedure described next in this appendix. This will yield the SV position (x,y,z) in ECEF
coordinates and the relativistic correction term, Af,. We now use (a6) to calculate a new estimate to Az,
and then (a5) to obtain an updated .. This, in turn, is used to update 7}, and the recursion continues until
sufficient convergence occurs.

In the iteration described above and shown in Figure Al, the second step is to compute the SV's ECEF
coordinates and relativistic correction term, at the time 7}, . For a filter such as the one described in this
thesis, this calculation must be done repetitively and in real time. The method used in most applications
is fairly standard and utilizes a set of parameters, referred to as the "broadcast ephemeris", that describe
the orbit of the SV quite accurately for a short period of time. All SV's are tracked from the ground by the
control segment and the parameters describing each ones orbit are continually updated. Since each
receiver utilizing GPS signals needs to calculate the position of the appropriate SV's at its own particular
time, the parameters are used to extrapolate the elliptical path of the satellite about a reference point. A
list of the clock correction parameters and the broadcast ephemeris are given in Table Al. The calculation
of SV position and relativistic correction factor is described below.

Parameter | Description Units
foe SV clock correction data reference time seconds
afy constant coefficient for SV clock correction polynomial

af; 1* order coefficient

af 2™ order coefficient

foe ephemeris data reference time seconds
A semi-major axis meters
e eccentricity

M, mean anomaly at reference time radians
An mean motion correction rad/sec
@ argument of perigee radians
Cy. amplitude of cosine 2" harmonic correction term for argument of latitude radians
Cys amplitude of sine 2™ harmonic correction term for argument of latitude radians
Ci. amplitude of cosine 2"¢ harmonic correction term for inclination angle radians
Cis amplitude of sine 2™ harmonic correction term for inclination angle radians
C,. amplitude of cosine 2" harmonic correction term for SV radius meters
C, amplitude of sine 2" harmonic correction term for SV radius meters
ip inclination angle at reference time radians
i rate of change of inclination angle rad/sec
£ longitude of ascending node at GPS weekly epoch radians
O rate of right ascension rad/sec

Table Al. Ephemeris and clock parameters broadcast on navigation data message.
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Initialize

Atsv:aft‘)Jraﬁ (TT‘tac) +afé(TT'tvc)2
t=Tr-plc-Aty,

Calculate Input Time for SV
Orbit Determination

Tk:tt'toe

Calculate SV ECEF Coordinates
& Relativistic Correction Term
at Ty

» SV Position (x,y,z)
At,

Update SV clock Correction

Atw:af;+aﬁ(tt' od) +aﬁ(tftoJ2+Atr

—» SV Clock Corr. At,,

Update Transmit Time

ttzTR' C'At_w

Figure Al. Iteration for calculating SV position and clock correction.
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Several constants which are utilized in these calculations are:

4= WGS-84 value of earth's universal gravitational parameter (m’/s).
Qe = WGS-84 value of earth's rotation rate (rad/sec).

¢ = Propagation velocity (m/s).

We start by fixing the position of the SV along an elliptical path in an orbital plane which is tilted relative
to the ECEF frame. Figure A2 shows such an elliptical path and some of the relevant quantities. The
ellipse is described by a semi-major axis, 4, and eccentricity, e. The ephemeris data provides 4, and from
this we compute the mean (angular) motion of the SV along the ellipse in radians per second and apply a
correction factor:

n= 1/% + An corrected mean motion (rad/sec) (a8)

From n we can compute the mean anomaly at time T, M, which is actually a fictitious angle measured
from perigee through which the SV would have traveled assuming it is moving at the angular rate given
by the corrected mean motion:

M, =M, +nl, mean anomaly (rad) (a9)

where M), is the mean anomaly at reference time, 7.

We next compute the eccentric anomaly at time Ty, E, . This angle is defined by projecting the SV's
position on the ellipse out to an auxiliary circle along a normal to the semi-major axis. The auxiliary
circle coincides with the ellipse at perigee and has a radius of 4. The angle E; is defined relative to
perigee. The eccentric anomaly may be computed using a variety of equations. The method chosen here
involves iterating the following equations until the value of the mean anomaly computed in the iteration is
within a desired tolerance of the value computed by (a9).

We first estimate £ and M, by:
. . 1 2 .
E =M, +es1n(Mk)+-2~e sin(2M,) (al0)

Mk =F, —esin(E),) (all)

Next we iterate the following equations until the value of M, computed below matches the value computed
in (a9) within a desired tolerance:

E=-F + (Mk_Mk)

= = 12
TR 1—ecos(E,) @l2)

Mk = Ek - eSin(Ek) (al3)
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When the desired tolerance is achieved:

E = E i eccentric anomaly (rad) (al4)

aux circle

orbital ellipse " .

satellite
(S

perigee

true anomaly

Figure A2. Elliptical orbit

From the eccentric anomaly we determine the frue anomaly at time T}, v, This is the angle from perigee
to the radius vector from the earth center to the SV position on the ellipse:

L V1-e?sin(E,)

cos(E,)—e

v, =tan true anomaly (rad) (al5)

We have now fixed the angular displacement of the SV in its orbital plane relative to perigee. i.e. the frue
anomaly, vi , is the angle between perigee and the SV radius vector as shown in Figure A3. We want to
determine the position of the SV in its orbital plane. To do this we define a 2D coordinate frame with x'-
axis from the earth center through a point called the ascending node, which will be explained shortly, and
a corresponding y"-axis perpendicular to this. Now, if we find the angle between our x™-axis and the radius
vector we can easily find the (x'y’) coordinates of the SV in this frame. To find this angle we need to add
the angle known as the argument of perigee, and labeled @ in Figure A3, to the frue anomaly. (The
argument of perigee is transmitted as part of the broadcast ephemeris.) Thus the angle from the x"-axis to
the SV radius vector at time 7}, called the argument of latitude, is given by:

D, =v, +tow uncorrected argument of latitude (rad) (al6)
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As mentioned, our (x’)’) coordinate system for the position of the SV in the orbital plane is defined
relative to the ascending node. The ascending node corresponds to the point on the ellipse where the
orbital plane intersects the x-y plane of the GPS ECEF coordinate system, which is essentially the earth's
equatorial plane. This can be seen in Figure A4.

A simple relationship exists between the SV radius vector, 7, , and the eccentric anomaly, E .

r, = A(1-ecos(£,)) uncorrected SV radius (m) (al?)

However, before using @, and r;, to determine the SV coordinates in the orbital plane, we need to apply a
set of correction factors due to second harmonic perturbations in the orbit. These perturbations are
detected by the control segment and characterized by the six subscripted coefficients, C, in the equations
below. We compute three quantities, a correction term for the argument of latitude, the SV radius, and
also a quantity known as the inclination angle, which will be explained subsequently.

The corrections are computed as follows:

ou, =C, sin(2®,)+C,. cos(2P®,) argument of latitude correction (rad) (al8)
o, =C _sin(20,)+C,, cos(2®,)  radius correction (m) (al9)
oi, =C,_sin(2®,)+C,, cos(2®,) inclination correction (rad) (a20)

The new argument of latitude and radius thus become:

u, =®, +du, corrected argument of latitude (rad) @21)

r,=A(l—ecos(E, )+,  corrected SV radius (m) (a22)

ascending node

Figure A3. SV Position in Orbital Plane.
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The position of the SV in the orbital plane is now given by:

x; =r,cos(u,) and y, =r,sin(u,) (m) (a23)
The final step required is to express the SV's position, given in orbital plane coordinates, in the ECEF
frame. Since both systems have their origin at the earth's center, all we need to do this is two rotations.
Referring to Figure A4, we first rotate the orbital plane about the x’ axis, so that the orbit now lays on the

x-y plane in the ECEF frame. This rotation requires knowing the inclination angle at time 7;, denoted i, .
This angle is essentially the amount that the orbital plane is tilted relative to the equatorial plane.

The inclination angle is calculated by:
i, =i, +0i, + i 1, corrected inclination angle (rad) (a24)
where ipand i are provided in the broadcast ephemeris.
The second rotation is about the ECEF frame z axis. Here we rotate the x'-y’ axis so they coincide with x-y
axis of the ECEF frame. This requires knowing the angle between them. This angle, which is between the

Greenwich (zero) Meridian and the ascending node at time T} , is denoted the longitude of the ascending
node at time T, € , and is calculated by:

Q,=0Q,+ (Q + Qe )M, — Q oo longitude of ascending node (rad) (a25)

where Q,, Q, and . are provided in the broadcast ephemeris and Q. is defined above.

Combining these two rotations, the SV's ECEF coordinates are given by:

x, =x, cos(Q2,)— y; cos(i,)sin(Q2, ) (m) (a26)
y, =x,8in(Q, )+ y; cos(i, )cos(£2,) (m) (a27)
z, =y sin(i, ) (m) (a28)

The relativistic correction term, Af,, required in equation (a6) is calculated by:

,2\/;

02

At =

r

eJAsin(E,)  relativistic correction (s) (a29)
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Figure A4. Relationship of orbital plane to ECEF frame.
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Appendix B. Conversion of ECEF Coordinates to WGS-84 Latitude, Longitude, and Altitude.

As described in Section 3, radar measurements are typically given in a locally level coordinate frame with
the origin at the radar antenna phase center. The local level is considered a plane tangent to the reference
ellipsoid at the frame origin. This reference ellipsoid is part of the universal coordinate system called the
World Geodetic System - 1984 (WGS-84) which fixes positions relative to the earth. Positions are given
by a latitude angle, longitude angle, and height above ellipsoid. The reference ellipsoid is actually an
imaginary surface that approximately represents the earth's surface, but is precisely defined so that
positions may be determined relative to it. Since the radar frame is typically defined relative to the
ellipsoid, when rotating coordinates between the radar frame and the Earth Centered Earth Fixed (ECEF)
frame used in the filter, we need to determine the geodetic latitude, 5, and the longitude, A. Although, the
longitude of a position in this coordinate frame is simply represented by the inverse tangent of the ECEF
coordinates Y/X, the latitude is not so easily obtained. This can be seen in Figure B1, where we sec that
the normal line to the locally level plane tangent to the reference ellipsoid does not go through the ECEF

origin.
r
Z axis & CTP | ‘th Local ENU Frame
— H /
sy "\»\‘i\\i\
S

. Reference
N / Ellipsoid

N

N
\
N\
X-Y Plane
/ R, (Semi-Major Axis) —

Figure B1. Relationship of ENU Frame, Geodetic Latitude, and Reference Ellipsoid.

Given the ECEF coordinates (x,y,z) of the radar (ENU) frame origin, the following procedure is used to
determine the geodetic coordinates. The procedure is iterative.

Define the following constants:

R, = 6378137.0 m (Ellipsoid Semi- Major Axis)

F = 1/298.2572 (Earth Flattening Factor)

Now let:

b=R -RF (b1)
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e =

JR2-B

R

Now proceed with the following iteration:

Initialize
RN:RE
H=0

»
»

A

Set H'=H
Compute:

tand = (z/ x>+ y* YR, + H)/ (R, (1- e*)+ H)

l

Compute:

sin®(8) = tan®(5)/ (tan*(8) + 1)

v

Compute:

R, = R, /\1-¢’sin’(5)

v

Compute:

H-= [sz 1) -(tan2(6)+1)]—RN

y

NO

Is |H-H'|<desired tolerance?

YES

v

Geodetic Coordinates are given by:

S =tan"' (tan )

A=tan'(y/x)
H= height above ellipsoid
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