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Abstract

Cell migration plays a crucial role in the development of a multicellular organism. The
migration of primordial germ cells (PGCs) in Drosophila requires numerous migratory
steps and cell-cell interactions in order to form the embryonic gonad, and therefore
provides a model system for the study of general cell migration processes. Screens for
mutations affecting the migration of PGCs, or germ cells, in Drosophila reveals that this
process can be dissected into discrete genetic steps. Each step requires a specific subset of
genes including serpent (srp), huckebein, columbus, zinc finger homeodomain protein-1
(zjh-1), heartless, tinman (tin), fear-of-intimacy, the homeotic genes abdominal A (abdA)
and Abdominal B (AbdB), trithorax group members trithorax (trx) and trithoraxgleich, as
well as the loci corresponding to the 9.35 and 22.38 mutations. Closer examination of the
role of trx in germ cell migration demonstrates that it is required for the function of AbdB,
but not abdA in this process. Many of the genes identified through these screens are
necessary for the proper specification and/or differentiation of SGPs into gonadal
mesoderm. Analysis of genes required for both embryonic pattern formation and germ cell
migration reveals that the origin of gonadal mesoderm lies within the eve domain of the
mesoderm.

Further investigation into the development of gonadal mesoderm indicates that this
tissue is closely related to another eve domain mesodermal derivative, the fat body. Both
cell types require tin, zfh-I and clift (cli) for steps leading to their specification. Although
gonadal mesoderm and fat body develop in similar positions along the dorsoventral axis,
gonadal mesoderm is only specified within parasegments (PS) 10-12, whereas fat body
develops in PS 4-13. The execution of the cell fate decision between fat body and gonadal
mesoderm cell identity along the anteroposterior axis is controlled by the srp and abdA
genes. abdA acts to repress srp expression within PS 10-12 and allow development of
gonadal mesoderm in place of fat body within these parasegments. Therefore, screens to
identify genes required for germ cell migration have laid the groundwork for deciphering
many of the developmental steps leading to the proper specification and differentiation of
gonadal mesoderm.

Thesis supervisor: Ruth Lehmann
Title: Professor of Cell Biology
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CHAPTER 1

Introduction

Primordial germ cell migration in vertebrates

The role of cell movements in the embryonic development of an organism has been the

focus of countless studies. Cell movements are involved in a number of developmental

processes ranging from morphogenic events such as gastrulation, to cell migration systems

including neural crest cells and primordial germ cells (PGCs). PGCs are those cells that

give rise to either sperm or eggs, and in many organisms arise in a position distinct from

where they eventually populate the gonad (Dixon, 1994). Moreover, PGCs must migrate

through and along different tissues in order to reach their final destination. The process of

PGC migration has been well described in two vertebrate species, Xenopus and the mouse.

In both organisms, PGCs form near the invaginating endoderm primordium, and are

subsequently incorporated into the developing gut. PGCs then migrate through the gut

primordium, along its developing mesentery, and toward the genital ridge that will
comprise the somatic component of the gonad (reviewed in Chiquoine, 1954; Heasman and

Wylie, 1981). Thus, PGCs must adopt numerous migratory characteristics during their

travels to the gonad: they posses invasive behavior as they move through the gut wall, they

must adhere to and migrate along the gut mesentery, and finally, they must recognize the

target genital ridge tissue and halt their migratory cell behavior in order to differentiate

along with somatic cells into the gonad. Given their highly stereotyped migratory path,
PGCs presumably receive and respond to cues from surrounding tissues in order to be

properly guided to the genital ridge. PGC migration therefore provides an excellent model

system for the study of general processes of cell migration within a developmental

framework.



The migration of PGCs can also provide a paradigm for addressing cell biological

questions regarding mechanisms of cell motility and adhesiveness. In vitro studies of

Xenopus PGCs reveal that their movement is associated with certain structural

characteristics such as filipodia and retraction of the trailing end (Heasman and Wylie,

1978). Ultrastructural analysis has shown that the migratory morphology of PGCs is

correlated with particular cytoskeletal arrangements such that PGCs orient their movement

and cytoskeletal architecture in the same direction as the somatic cells over which they

migrate (Heasman and Wylie, 1981). One extracellular matrix (ECM) component,

fibronectin (FN), has been implicated in facilitating the adhesiveness of Xenopus PGCs to

somatic cells in culture (Heasman et al., 1981). Moreover, it has been shown that mouse

PGCs alter their adhesiveness to FN depending on their developmental stage. PGCs in the

hindgut have a stronger affinity to FN than those migrating along the gut mesentery, while

PGCs found in the genital ridge are even less adhesive to FN than migratory PGCs

(ffrench-Constant et al., 1991). Mouse PGC adhesiveness to another ECM molecule,

laminin, also decreases once they emigrate from the gut, but then remains the same until

gonadal differentiation (Garcia-Castro et al., 1997). Thus, changes in the affinities of

PGCs to ECM components may facililate the migration of these cells over different tissues

to reach the genital ridge. Both FN and laminin are found along the tissues over which the

PGCs migrate, consistent with the model that these factors may indeed play a role in PGC

migration in vivo (Garcia-Castro et al., 1997).

In addition to interactions between PGCs and the somatic cells along which they

migrate, PGC migration in the mouse also involves specific interactions between the PGCs

themselves. At early developmental stages when PGCs are located within the gut, few

PGCs are found to associate with one another. However, once they leave the gut, PGCs

are found linked to one another via filipodia-like structures. These networks are lost by the

time PGCs reach the genital ridge, where they re-adopt the rounded morphology seen at

early stages. Interestingly, the first PGCs to migrate from the gut often move directly to

the genital ridge, since the gut mesentery has not developed by this stage. It is thought that

these "pioneer" PGCs may guide subsequent PGCs along the developing gut mesentery via

their intercellular connections (Gomperts et al., 1994).

In addition to cell biological studies, numerous experiments with mouse PGCs have

been aimed at the identification of additional factors that actively guide germ cells along

their migratory route. A number of secreted molecules, including stem cell factor (SCF, or

Steel factor, SF), leukemia inhibitory factor (LIF), interleukin-4 (IL-4), basic fibroblast

growth factor (bFGF), retinoic acid (RA), and tumor necrosis factor-alpha (TNF-a) all

increase the number of PGCs found in a variety of cell-culture conditions when taken from



embryos at various developmental stages (Cooke et al., 1996; Dolci et al., 1991; Felici and

Dolci, 1991; Godin et al., 1991; Kawase et al., 1994; Koshimizu et al., 1995; Matsui et

al., 1991; Resnick et al., 1992). SCF and IL-4 appear to function in vitro by promoting

PGC survival rather than proliferation, as evidenced by the lack of an increase in

bromodeoxyuridine (BrdU) labeling in experimental versus control samples (Cooke et al.,

1996; Godin et al., 1991). In fact, addition of SCF or LIF to mouse PGCs in culture

suppresses apoptosis that normally occurs in the absence of these factors (Pesce et al.,

1993). However, PGC proliferation can be induced in culture by the addition of factors

resulting in high intracellular cAMP levels (Felici et al., 1993; Pesce et al., 1996). Another

secreted molecule, transforming growth factor-p31 (TGF-31) has been shown to inhibit

PGC proliferation even though it also imparts a chemotropic effect on PGCs in culture

(Godin and Wylie, 1991).

Consistent with their effects on PGCs in culture, many of these factors are

expressed within the tissues along which the PGCs migrate, or in the PGCs themselves.

SCF RNA is expressed around the hindgut and its associated mesentery, as well as in the

genital ridge (Matsui et al., 1990), while its cognate receptor, c-kit, is expressed within the

PGCs (Manova and Bachvarova, 1991; Orr-Urtreger et al., 1990). IL-4 protein can be

detected from genital ridge extracts at the time when PGCs are normally imbedded within

this tissue (Cooke et al., 1996) Likewise, a receptor for LIF (LIFR) is expressed on the

surface of PGCs isolated from genital ridges (Cheng et al., 1994). RNAs encoding

pituitary adenylate cyclase-activating polypeptides (PACAPs), which raise PGC

intracellular cAMP levels in culture, are expressed in migrating PGCs and gonadal ridges

colonized with PGCs (Pesce et al., 1996). Expression of TGF-P1 is also found within the

genital ridge, but its domain of expression expands to outlying regions of the dorsal body

wall as well (Godin and Wylie, 1991). This expression outside of the genital ridge is
consistent with TGF-3 l's in vitro ability to inhibit PGC proliferation, rather than promote

survival.

Although the expression patterns of some of these factors combined with their

effects on PGCs in culture suggest that these molecules may be involved in PGC

migration, a lack of functional data for these factors in vivo has hampered further

investigations. Moreover, the majority of these molecules have only been shown to

increase PGC number in culture, and therefore the mechanisms by which these factors

actually function in guiding PGCs along a stereotyped migratory path remain to be

elucidated. An exception to this lack of functional data is provided by genetic analysis of

the roles of SCF and c-kit in PGC migration in the mouse. Mutations in the gene encoding

SCF, known as Steel (Sl), as well as in the gene encoding c-kit, Dominant White Spotting

-10-



(W), affect a number of tissues in the developing mouse, including the gonads (reviewed in

Fleischman, 1993). In homozygous W mutants, less than half the normal number of PGCs

are found migrating toward the genital ridge. This number continues to decrease as

development ensues. In addition to a loss in PGC number, those that do survive are often

found in ectopic locations, including ventral to the hindgut from which they emigrate,

instead of their normal dorsal position. Virtually no PGCs are successful in reaching the

genital ridge, and are often found adhering to one another in large clumps (Buehr et al.,

1993). Together with cell culture and expression data, these results suggest a model by

which Sl and W function in PGC migration by promoting the survival of only those PGCs

that follow the correct migratory path (Godin et al., 1991). However, given that PGCs are

found in ectopic locations in W mutants, Wand Si most likely have an additional, active

role in PGC guidance.

PGC migration in Drosophila

Although detailed descriptions of PGC behavior, cell-cell interactions, and growth

conditions have been made available through studies in Xenopus and the mouse, with the

exception of SCF and c-kit, very little is known regarding the actual molecules that function

in vivo to facilitate PGC migration in vertebrates. In order to understand the mechanisms

underlying PGC migration, and how particular factors contribute to this process, I have

used a system more amenable to genetic analysis, Drosophila melanogaster, to address

these questions.

Remarkably, PGC migration in Drosophila is strikingly similar to that observed in

vertebrates. PGCs form extraembryonically, and are incorporated into the developing gut.

They migrate through the gut and into the mesodermal layer where they encounter the cells

that will comprise the somatic component of the gonad. Germ cells and somatic cells

finally coalesce into the spherical structure of the embryonic gonad (for a detailed

description, see Chapter 2; Moore et al., 1998; Warrior, 1994). Therefore, the hallmarks

of migratory cell behavior seen in Xenopus and mouse PGCs are also found in the

analogous cells of the fly. Drosophila PGCs must possess invasive behavior to penetrate

the gut wall, they must move toward and recognize the correct somatic gonadal cells, and

presumably must change their states of adhesiveness to form the tightly coalesced gonad.

Given that PGC migration in Drosophila can therefore also provide an excellent model

system for the study of mechanisms governing general cell migration processes, one can

utilize the myriad of genetic and developmental tools available in this system to investigate

PGC migration further.
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Early Drosophila PGC development

In Drosophila, the PGCs are the first to cellularize within the embryo. Numerous

genes have been identified that are required for PGC formation through maternal effect

screens (Boswell and Mahowald, 1985; Boswell et al., 1991; Lehmann and Nisslein-

Volhard, 1986; Manseau and Schiipbach, 1989; Schiipbach and Weischaus, 1989;

Schipbach and Wieschaus, 1986). In the absence of these genes' activities, the

morphologically distinct "germ plasm", which is thought to harbor the molecules necessary

for directing PGC formation, is absent (reviewed in Rongo and Lehmann, 1996). These

genes are additionally required for the proper localization of nanos (nos) RNA (Wang et

al., 1994). nos is required for development of abdominal structures in the embryo, and

cannot exert its normal function unless localized to the posterior pole (Gavis and Lehmann,

1994; Lehmann and Nisslein-Volhard, 1991; Wang and Lehmann, 1991). Therefore,

genes identified through these maternal-effect screens are not specific for PGC

development. However, one of these genes, oskar (osk), is sufficient to direct all the steps

necessary to form functional PGCs in an ectopic location, demonstrating the pivotal role for

this gene in PGC development. Moreover, osk gene dosage controls the number of PGC

that form in the embryo (Ephrussi and Lehmann, 1992).

More recently, a number of molecules have been identified that may be involved

more specifically in PGC formation and/or function, without an associated role in abdomen

formation. The mitochondrial large ribosomal RNA (mtlrRNA) was identified as a

component of the germ plasm based on its ability to rescue PGC formation in u.v.-

irradiated Drosophila embryos (Kobayashi et al., 1993; Kobayashi and Okada, 1989).

Ultrastructural analysis of embryos hybridized in situ to detect mtlrRNA demonstrated that

this RNA is largely found outside of the mitochondria in germ plasm, consistent with a role

for this factor within the germ plasm itself (Kobayashi et al., 1993). Although the PGCs

"rescued" by mtlrRNA injection appear to migrate into a gonad, the resulting adult flies are

sterile, suggesting that PGC development is impaired. Moreover, the ability of mtlrRNA to

induce ectopic PGCs is only observed when it is co-injected with UV-irradiated germ

plasm. These results demonstrate that mtlrRNA is not sufficient to act as a PGC

determinant. However, recent preliminary evidence suggests that mtlrRNA does play a

role in PGC development. When injected into early embryos, a ribozyme that targets this

RNA is able to prevent the formation of PGCs (Kobayashi, 1997).

Another factor implicated in the formation of Drosophila PGCs is the product of the

germ cell-less (gcl) gene. gcl was fortuitously identified as a transcript localized to the

posterior region of the embryo, from where the PGCs form. The RNA and protein

products of this gene are incorporated into PGCs, and can be detected within these cells

-12-



until they exit the gut (Jongens et al., 1994; Jongens et al., 1992). Immunoelectron

microscopy revealed that the Gcl protein is associated with the nuclear pore complex of

PGC nuclei on the nucleoplasmic side (Jongens et al., 1994). Expression of antisense-gcl

results in viable embryos lacking PGCs, suggesting a role for gcl in PGC formation

(Jongens et al., 1992). Conversely, increased levels of gcl expression can initially induce a

greater number of PGCs than normally found in wild-type embryos, but these additional

PGCs do not survive to develop into functional germ cells. Similarly, ectopic gcl

expressed at the anterior pole of the embryo results in anterior buds that are reminiscent of

early PGCs, but they fail to form functional PGCs capable of migration (Jongens et al.,

1994). Taken together, these results suggest a role for gcl in PGC formation, but reveal its

insufficiency in directing the entire PGC developmental path.

Although not found to play a role in PGC formation, an RNA product called Polar

granule component (Pgc) was identified as a message specifically found in the posterior

region of early Drosophila embryos. Like gcl, Pgc RNA is subsequently taken up by the

PGCs, persisting until the PGCs begin their migration through the gut. PGCs form in

embryos expressing antisense-Pgc RNA, but their numbers are drastically reduced in later

developmental stages. Although a few PGC are capable of forming gonads in these

embryos, the resulting adults are sterile. Sequence analysis of the Pgc RNA suggests that

it is an untranslatable product. Therefore, Pgc RNA appears to be necessary for PGC

development and for subsequent differentiation into functional germ cells (Nakamura et al.,

1996).

While these three factors appear to play specific roles in PGC formation and/or

development in Drosophila, more detailed analyses of their actual functions are unavailable

due to the lack of existing mutations in the corresponding genes. Moreover, it is unclear if

any of these factors play a direct role in the migration of PGCs during embryogenesis. One

gene recently identified to be required in the PGCs for their migration is nos. It had been

shown previously to function as the posterior determinant in the Drosophila embryo

necessary for directing formation of abdominal structures, but not PGCs (Wang and

Lehmann, 1991). However, removing nos function specifically in the PGCs reveals a

primary role for this gene in PGC migration. PGCs lacking nos activity are able to migrate

out of the developing gut, but instead of moving toward cells that will comprise the somatic

component of the gonad, they remain in large clumps outside the gut wall. In addition,

PGC morphology is aberrant, suggesting a role for nos in PGC migratory cell behavior

(Forbes and Lehmann, 1998).

The isolation of additional genes required early in the PGCs through classical

genetic screens for zygotically acting factors may prove difficult. Analysis of zygotic gene
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expression in early Drosophila embryos through the incorporation of radiolabeled nucleic

acid precursors revealed that PGCs appear transcriptionally quiescent until they are

incorporated into the developing gut (Zalokar, 1976). A potential explanation for this result

has been provided by the observation that a phosphorylated form of RNA polymerase II is

specifically absent from early Drosophila as well as C. elegans PGCs, while it is found in

somatic cells. It is thought that this phosphorylated form of RNA polymerase II is

involved in transcriptional elongation; therefore, its absence in PGCs is consistent with

their lack of RNA polymerase II transcriptional activity (Seydoux and Dunn, 1997).

Additional studies have shown that early Drosophila PGCs are incapable of transcribing

Gal4-VP16-dependent target genes, even when this transcriptional activator is artificially

provided to these cells. Moreover, germ plasm localized ectopically to the anterior of the

embryo is sufficient to repress RNA polymerase II-dependent gene expression in this

region (Van Doren et al., 1998). Taken together, these results suggest that a global

transcriptional repression mechanism is acting on RNA polymerase II-dependent promoters

within the early PGCs, perhaps directly at the level of RNA pol-ymerase II modification.

Interestingly, Kobayashi et al. (1996) have observed the premature expression of zygotic

PGC-specific markers in PGCs lacking nos function. Given that nos is required in the

PGCs for their migration, these results suggest that repression of zygotically active genes is

important for PGC migratory behavior.

Although these results imply that genes acting zygotically in the PGCs may not

function at early developmental stages, transcriptional activity resumes in the PGCs before

their initial migratory steps. The RNA polymerase II phosphoisoform can be detected as

the PGCs begin their invagination into the gut primordium (Seydoux and Dunn, 1997).

Moreover, one of the earliest known Drosophila PGC-specific transcripts, vasa, is present

before the PGCs begin their migration through the gut endoderm (Van Doren et al., 1998).

Therefore, it may yet be possible to identify zygotically-acting genes required in PGCs for

their migration.

Origins of Drosophila somatic gonadal cells

The migration of PGCs not only involves the PGCs themselves, but also the somatic cells

with which they associate to form the gonad. Therefore, many genes required for PGC

migration may act within these somatic cells to ensure proper gonadogenesis. Early studies

of gonad development through observational analysis revealed that the coalesced gonad

contains 26-37 somatic mesodermal cells ensheathing the PGCs (Sonnenblick, 1941). Fate

mapping of the Drosophila blastoderm using gynandromorph analysis suggested that the

primordium of the somatic component of the gonad arises from either parasegment (PS) 10

-14-



or PS 11 (Szabad and N6thiger, 1992). The more recent identification of markers

expressed within the somatic gonadal cells suggested that they form within three

parasegments of the embryo, PS 10-12 (Boyle et al., 1997; Brookman et al., 1992;

Warrior, 1994).

One of these markers, the 412 retrotransposon, is expressed within the mesoderm

of all parasegments at the time when PGCs are migrating through the gut. After PGCs

have left the gut, high levels of 412 retrotransposon expression become specifically found

in those cells that appear to encapsulate the PGCs to form the gonad. However, this

specific expression is not dependent on the presence of PGCs. Many copies of this

retrotransposon are present within the Drosophila genome, and at least more than one insert

displays this expression pattern. It is unclear whether the specific gonadal expression is

due to an increase in levels within the somatic gonadal cells, in addition to a decrease in

other parasegments (Brookman et al., 1992). The 68-77 strain is an enhancer trap line

expressing P-galactosidase within somatic gonadal cells, and is thought to be under the

regulatory control of a 412 retrotransposon (Boyle and DiNardo, 1995; Simon et al., 1990;

Warrior, 1994; M. Boyle and S. DiNardo, personal communication). Consequently, its

developmental expression profile mimics that of the 412 retrotransposon (Boyle and

DiNardo, 1995). A second enhancer-trap line, bluetail, is expressed only within cells in

PS 12-14. By following cells expressing 3-galactosidase in the bluetail line during PGC

migration, it was observed that mesodermal cells in PS 12, in addition to PS 10 and PS 11,

most likely contribute to the embryonic gonad, consistent with the conclusions drawn

based on expression of the 412 retrotransposon (Boyle and DiNardo, 1995; Brookman et

al., 1992; Galloni et al., 1993).

Genes required for somatic gonadal cell development

Although the aforementioned markers have proved valuable in the identification of

those cells contributing the somatic component of the gonad, they do not appear to have a

function in the development of the resulting tissue, the gonadal mesoderm. Recent efforts

to examine somatic gonadal cell development have revealed a number of genes involved in

the specification and differentiation of these cells.

The homeotic genes

The homeotic genes are required for specifying the identities of particular

parasegments in the development of the fly. Remarkably, they function in assigning the

correct identities to multiple tissue-types within a region of the embryo and adult (for

reviews see Duncan, 1987 and Peifer et al., 1987). Given that the origins of the somatic
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gonadal cells appear to lie within PS 10-12, it is not surprising that the homeotic genes

abdominal A (abdA) and Abdominal B (AbdB) are required for their development. abdA is

required for specifying identities in PS7-13, whereas AbdB is required for PS 10-14. abdA

was first implicated in the development of the gonad through analysis of mutations within

its regulatory region (Lewis, 1978). One particular mutation, iab-4, is homozygous viable,

but results in a transformation of PS 10 into the identity of PS9 as well as adult sterility

(Karch et al., 1985; Lewis, 1985). More detailed investigations of iab-4 mutants revealed

that this sterility is due to a lack of gonadal development within the embryo. In iab-4

mutant embryos, PGCs migrate through the gut, but fail to be surrounded by somatic

gonadal cells and consequently disperse within the embryo. These studies also determined

by nuclear transplantation that wild-type function of abdA is required in the soma for gonad

formation (Cumberledge et al., 1992). Careful observations of gonadal mesoderm

development in iab-4 mutants revealed that the PGCs and somatic cells initially associate

with one another, but fail to coalesce into the gonad (Boyle and DiNardo, 1995).

It has also been shown that abdA and AbdB are required for the expression of

somatic gonadal cell-specific markers. For example, expression of the 412 retrotransposon

is markedly reduced in embryos lacking abdA function. Loss of AbdB function also results

in fewer cells specifically expressing the 412 retrotransposon, although not to the same

extent as that seen in abdA mutants. Associated with the reduction in 412 expression in

AbdB mutants is a PGC migration defect, whereby a reduced number of PGCs are

incorporated into the gonad (Brookman et al., 1992). This effect on 412 expression seems

to be due a requirement of AbdB in the specification of a subset of somatic gonadal cells.

In wild-type embryos, the bluetail enhancer trap line and the clift (cli, also known as eyes-

absent) gene are specifically expressed within the posterior gonad after coalescence. In

AbdB mutants, expression of these markers is no longer detected, presumably because

these posterior cells are never specified (Boyle and DiNardo, 1995).

Consistent with their functions, abdA and AbdB are expressed within the

parasegments that they control (Boulet et al., 1991; Celniker et al., 1989; DeLorenzi and

Bienz, 1990; Karch et al., 1990; Macias et al., 1990). Within the mesoderm, AbdA protein

is present in PS8-12, and can be detected in gonadal cells surrounding the PGCs (Boyle

and DiNardo, 1995; Cumberledge et al., 1992; Karch et al., 1990). In iab-4 mutants, this

gonadal expression is reduced, whereas in other mesodermal tissues, AbdA protein levels

appear unchanged (Boyle and DiNardo, 1995). Therefore, the specific gonadal defect seen

in iab-4 mutants can be attributed to a loss in abdA expression in this tissue. Whereas

AbdA protein is detected in all parasegments from which somatic gonadal cells develop, at
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early embryonic stages, AbdB protein is only mesodermally expressed in PS 12-14.

However, at later stages, this expression expands into PS 11 (DeLorenzi and Bienz, 1990).

The initial domains of abdA and AbdB gene expression are set up by members of

the segmentation genes, which are responsible for early patterning of the embryo (Harding

and Levine, 1988; Reinitz and Levine, 1990). Maintenance of proper expression borders

for all homeotic genes requires both activating and repressive inputs. Genes required for

maintaining the active state of homeotic gene expression are collectively known as the

trithorax-group (reviewed in Kennison, 1993). The founding member of this group,

trithorax (trx), encodes a large protein with zinc finger-like motifs, suggesting that it may

bind directly to DNA (Mazo et al., 1990). The Polycomb group of genes are necessary for

preventing ectopic homeotic gene expression after their initial boundaries have been set

(reviewed in Kennison, 1995). Sequence analysis of the Polycomb (Pc) gene, a Polycomb

group member, reveals a domain that is homologous with one found in the Drosophila HP 1

protein. This protein is associated with heterochromatic regions within the genome and is

involved in inhibiting the expression of genes found near these sites as a result of

chromosomal rearrangements or transposition (James and Elgin, 1986; Eissenberg et al.,

1990; Eissenberg et al., 1992). These results suggested a model by which the Pc protein

product may repress homeotic gene expression through its involvement in higher order

chromatin structure (Paro, 1990).

It is crucial to the development of an organism that the expression levels and

boundaries of the homeotic genes are maintained by the trithorax and Polycomb group

members. Mutations in these genes mimic the homeotic mutations themselves, resulting in

the mis-specification of proper segment identities. In the embryo, both trx and a number of

Polycomb group members are required for maintaining the proper levels and boundaries of

abdA and AbdB expression (Breen and Harte, 1993; Sedkov et al., 1994; Simon et al.,

1992). It has been shown that proper expression boundaries of both abdA and AbdB are

also required for normal gonad formation. Mutations in one Polycomb group member,

extra sex combs (esc), results in an expansion of 412 expression into more anterior regions

of the embryo. This result suggested that ectopic abdA and/or AbdB is sufficient to specify

additional somatic gonadal cells. Surprisingly, in esc mutants fewer PGCs coalesce into a

gonad, but do so in the correct position along the antero-posterior axis (Brookman et al.,

1992).

In order to further explore these results, Boyle and DiNardo (1995) examined

gonadal mesoderm development in embryos expressing ectopic abdA activity driven by a

heat shock promoter. They found that like in esc mutants, 412 is expressed in more

anterior parasegments. Moreover, PGCs were able to travel more anteriorly to associate
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with the ectopic 412 expressing cells, suggesting that they indeed are specified as somatic

gonadal cells. This result was corroborated by Greig and Akam (1995) who showed that

expression of abdA throughout the mesoderm also resulted in an anterior expansion of 412

expression. However, their results did not indicate that PGCs could migrate more

anteriorly, although gonad coalescence was disrupted. Boyle and DiNardo suggest that

anterior PGCs found in heat shock-abdA embryos are a result of migration defects at late

stages in gonadogenesis; therefore, it may be that ectopic expression of abdA in Greig and

Akam's experiments did not persist long enough to cause anterior migration of PGCs. In

contrast, ectopic AbdB expression is not sufficient to specify anterior somatic gonadal cells.

However, this is presumably due to AbdB's ability to repress abdA expression when

ectopically produced (Greig and Akam, 1995).

clifunction in somatic gonadal cell development

Previous to our screens, the cli gene was the only marker expressed specifically in

somatic gonadal cells within the mesoderm that had been shown to actually function in

gonadogenesis. Early in embryogenesis, Cli protein is expressed throughout the

mesoderm, but then is refined to discrete clusters of cells in PS 10-12 that contact PGCs.

These cell clusters are most likely somatic gonadal cells; since they associate and coalesce

with PGCs and are absent in abdA mutants (Boyle and DiNardo, 1997). In cli mutants, the

number of cells specifically expressing 412 is markedly reduced. Those few remaining

somatic gonadal cells are able to associate with PGCs, but never coalesce into a gonad

(Boyle et al., 1997; Moore et al., 1998; see Chapter 2). cli seems to function in the

differentiation of somatic gonadal cells, rather than their specification. In embryos lacking

cli function, cli RNA can still be detected in somatic gonadal cells when they first associate

with PGCs. However, this expression is soon lost, and is consistent with the reduction in

412 expressing cells observed in cli mutants (Boyle et al., 1997).

Given that PGC migration in Drosophila is similar to that seen in vertebrates,

combined with the numerous migratory steps and cell-cell interactions that PGCs

experience along their developmental path, we hope that PGC migration in Drosophila can

provide an excellent paradigm for the study of migratory cell behavior during development.

Although the studies described above have proven useful in identifying factors involved in

Drosophila PGC and somatic gonadal cell development, key questions remain as to what

additional mechanisms are involved in guiding PGCs along their migratory route. I have

therefore undertaken a genetic approach to identify genes required for PGC migration in

Drosophila by screening for mutations that disrupt this process during embryonic
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development. The goal of this type of screen is to identify those genes playing a role in

ensuring that PGCs reach their destination in the embryonic gonad. This type of approach

could yield a number of different types of molecules, ranging from those involved in

signaling processes between the PGCs and the somatic cells with which they interact, to the

factors involved in the proper specification and differentiation of these same cell types.

Chapter 2 describes a screen taken to near saturation that identified genes on the

third chromosome necessary for PGC migration and gonad formation. The results from

this screen delineate discrete steps occurring during the migration of PGCs, and identify a

number of genes required for development of the gonadal mesoderm. Thus, proper

specification and differentiation of this tissue is crucial for the PGCs to carry out the

necessary migratory steps involved in gonadogenesis.

Chapter 3 provides phenotypic analyses of three mutants obtained from the third

chromosome screen, as well as from a screen for second chromosome mutants. The

identification of genes required for steps in somatic gonadal cell specification led to a more

in-depth analysis of the development of gonadal mesoderm. In Chapter 4, I describe

experiments demonstrating that gonadal mesoderm is closely related to another mesodermal

tissue, the fat body, as well as provide an outline of the genetic mechanisms deciding

between gonadal mesoderm and fat body cell fates. Finally, Chapter 5 discusses the

implications of the results from the screens, as well as of the analysis of gonadal mesoderm

and its relationship to the fat body. Given what has been learned from the experiments

outlined in this thesis, further directed studies aimed at extending our understanding of

PGC migration and gonadal mesoderm development are suggested.
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Specific Aims

The aims of this thesis are to describe a screen conducted to identify genes required

for germ cell migration and gonad formation in Drosophila, as well as preliminary

characterizations of a subset of phenotypes yielded from this screen. In addition, an in-

depth analysis of the control of the cell fate decision between gonadal mesoderm and fat

body identities during embryogenesis is presented. Chapter 2 describes a saturation

mutagenesis of the third chromosome and the genes identified to affect gonad formation.

This chapter also includes an analysis of gonadal mesoderm development in mutants

isolated from the screen, and how these results demonstrate that gonadal mesoderm

originates from the eve domain of the mesoderm. A phenotypic analysis of three genes

identified through this screen of the third chromosome as well as one carried out on the

second chromosme is presented in Chapter 3. Chapter 4 includes studies indicating that

gonadal mesoderm is closely related to another mesodermal cell type, fat body, as well as

how the cell fate decision between these two tissues is controlled along the anteroposterior

axis. Finally, Chapter 5 discusses some of the issues raised from this work, including a

comparison to mammalian systems.
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CHAPTER 2

Identification of genes controlling germ cell migration and embryonic gonad

formation in Drosophila

SUMMARY

Gonadogenesis in the Drosophila embryo is a complex process involving numerous cellular

migratory steps and cell-cell interactions. The mechanisms guiding germ cells to move

through, recognize, and adhere to specific cell types are poorly understood. In order to

identify genes which are required for these processes, we have conducted an extensive

mutagenesis of the third chromosome and screened for mutations disrupting germ cell

migration at any point in embryonic development. Phenotypic analysis of these mutants

demonstrates that germ cell migration can be broken down into discrete developmental

steps, with each step requiring a specific set of genes. Many of these genes are involved in

the development of gonadal mesoderm, the tissue which associates with germ cells to form

the embryonic gonad. Moreover, mutations we isolated that affect embryonic patterning as
well as germ cell migration suggest that the origin of gonadal mesoderm lies within the eve

domain of the developing mesoderm.
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INTRODUCTION

Cellular movements play a crucial role in the development of a multicellular organism.

They can serve a variety of functions ranging from creating different tissue layers during

gastrulation to the processes of organogenesis. Some of these processes include bringing

different cell types into contact with one another in order for their final differentiation to

proceed. The migration of primordial germ cells (PGCs) provides a model system for the

study of cellular movement and differentiation during development. In many organisms,

germ cells form in a position distinct from where they will eventually populate the gonad.

The PGCs must locate and adhere to cells that will comprise the somatic component of the

gonad, which requires movement through and along different tissue layers. Previous in

vitro studies in Xenopus and mouse have identified adhesive molecules such as fibronectin

that are involved in some aspects of gonadogenesis (ffrench-Constant et al., 1991;

Heasman et al., 1981). Moreover, genetic studies in mouse have shown that the signaling

molecule Steel factor and its receptor, c-Kit, are involved in germ cell survival

(Fleischman, 1993). Presumably, many other factors required for the migration of PGCs

remain to be identified.

PGC migration in Drosophila is similar to that found in vertebrates, including some

of the cellular movements and interactions described above (Fig. 2-1). The PGCs, often

referred to as pole cells in Drosophila, are the first to cellularize at the posterior pole of the

embryo (Fig. 2-1A). During gastrulation, they move along the dorsal surface of the

embryo along with the posterior midgut (PMG) primordium, and are incorporated into the

invaginating PMG pocket (Fig. 2-1B). The PGCs then migrate through the PMG wall,

moving along its basal surface to the dorsal side of the embryo (Fig. 2-1C). From this

position they move toward lateral mesodermal cells in parasegments 11-13 (PS 11-13, Fig.

2-1D,E). As the germ band retracts, PGCs associate and align with mesodermal cells in

PS 10-12 that will give rise to the somatic component of the gonad (Fig. 2-1F). Finally,

the PGCs and gonadal mesoderm coalesce in PS 10 to form the embryonic gonad (Fig. 2-

1H). Germ cell migration in Drosophila therefore provides a model system for the study of

cellular movements and cell-cell interactions.
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Figure 2-1. Germ cell migration in wild-type embryos.

Anterior is to left in all panels. Staging according to Campos-Ortega and Hartenstein

(1985). (A-H) Germ cells visualized using an anti-Nanos antibody (arrowheads); (A-D)

lateral views; (E-H) dorsal views. (A) Stage 5. Germ cells form at the posterior pole of

the embryo. (B) Stage 8. During gastrulation, germ cells adhere to the posterior midgut

(PMG) anlage, and are carried into the PMG lumen. (C) Stage 9-10. Germ cells begin

their migration through the PMG. (D) Stage 11. Germ cells have migrated to the dorsal

side of the PMG, and begin to associate with lateral mesoderm in PS 11-13. (E) Stage 11.

In the fully extended embryo, germ cells have migrated into the lateral mesodermal layer

and are beginning to separate into two bilaterally symmetric groups. (F) Stage 12. During

germ band retraction, germ cells migrate anteriorly and associate with somatic gonadal

precursors (SGPs) in PS 10-12. (G) Stage 13. Once the germ band has retracted, all germ

cells have aligned with the SGPs. (H) Stage 15. Germ cells and gonadal mesoderm

coalesce into the embryonic gonad.
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Fig. 2-1: Germ cell migration in wild-type embryos
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Recent work has characterized one of the first steps in Drosophila germ cell migration, that

of the movement of the germ cells through the PMG. Ultrastructural studies have shown

that during this stage, apical junctions dissolve in the PMG, and intercellular gaps form

through which the germ cells migrate (Callaini et al., 1995; Jaglarz and Howard, 1995).

However, it is not known if these gaps are required for germ cell movement through this

tissue. Mutations affecting the development of the PMG suggest that this may be the case.

serpent (srp) and huckebein (hkb) are both required for the proper differentiation of the

midgut, as mutations in them cause a transformation of part of the PMG into a more

hindgut-like tissue. In these mutants, the PMG intercellular gaps fail to form, and germ

cells are rendered helpless to reach their destination in the mesoderm (Jaglarz and Howard,

1995; Reuter, 1994; Warrior, 1994). Once across the gut wall, the germ cells in a wild-

type embryo then migrate along the basal surface of the gut to its most dorsal side. Genetic

analysis has revealed that wunen (wun) is required for this directed migration of the germ

cells along the basal surface of the PMG. The expression pattern of this gene within the

PMG and hindgut suggests that it acts by repelling germ cells away from other areas of the

gut (Zhang et al., 1996; Zhang et al., 1997).

The development of the somatic component of the gonad has also been the focus of

numerous studies. It has been known for some time that mutations in the homeotic gene

abdominal A (abdA) abolish gonad function (Karch et al., 1985; Lewis, 1978), and that

abdA is required in the soma for gonad formation (Cumberledge et al., 1992). Moreover, a

regulatory mutation in the abdA locus, iab4, causes specific defects in gonad coalescence

(Boyle and DiNardo, 1995; Cumberledge et al., 1992; Warrior, 1994). More recent work

has shown that both abdA and Abdominal B (AbdB) are required for the specification of

somatic gonadal precursors (SGPs), those cells which give rise to gonadal mesoderm, in

PS 10-12 (Boyle and DiNardo, 1995). Prior to this specification step, the tinman (tin),
and wingless (wg) genes are involved in establishing domains within the parasegment from

which SGPs can develop (Boyle et al., 1997). Subsequent to their specification, SGPs in

PS 11-12 migrate anteriorly toward PS 10, and along with germ cells coalesce to form the

embryonic gonad (Boyle and DiNardo, 1995). The maintenance of SGP cell fate during

this migration requires the function of the clift (cli, also known as eyes-absent) gene. cli

expression in the mesoderm is restricted to SGPs by stage 11, and depends on abdA and

AbdB function (Boyle et al., 1997).

Although the combined results of this work have lent valuable information toward

the understanding of processes required for gonadogenesis in Drosophila, many questions

remain unanswered. For instance, very little is known regarding how the germ cells are

directed away from the PMG to associate with SGPs in PS 10-12. Moreover, the
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mechanisms behind how the germ cells and their somatic partners migrate anteriorly and

coalesce to form the embryonic gonad remain to be elucidated. One powerful technique
that can be used for the identification of additional genes involved in these developmental

processes is mutational analysis. Previous screens of existing mutants have identified

genes required for both general patterning and gonad assembly in the Drosophila embryo

(Boyle et.al., 1997; Warrior, 1994). However, a comprehensive study of all mutations that

affect germ cell migration had yet to be accomplished. We describe here a large-scale

mutagenesis of the third chromosome identifying zygotic mutations affecting germ cell

migration at discrete points during Drosophila embryogenesis. Over 8000 mutagenized

lines were screened for defects in gonad formation, yielding more than 300 lines which

were kept for further analysis. We present the phenotypic analysis of mutants

corresponding to 11 genes which have the most specific effects on gonad formation, and

describe how these mutants provide further insight into the mechanisms governing the
proper migration of germ cells in Drosophila.
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MATERIALS AND METHODS

EMS mutagenesis and establishment of balanced lines

See Fig. 2-2 for an outline of the screen. A ru st es ca chromosome carrying the fat facets-

lacZ (faf-lacZ) transgene (Fischer-Vize et al., 1992), that had recently been isogenized was

used for the target mutagenesis strain. This line had been selected for its low frequency of

germ cells found outside the gonad at stage 15. A total of 2100 ru st P{faf-lacZ] e" ca

males were mutagenized with EMS (Sigma and ICN: 1500 with a 25 mM solution, and 600
with a 35 mM solution) in 1% sucrose for 24 hours according to standard procedures

(Ashburner, 1989), with the modification that they were starved for 6 hours on a Kimwipe

saturated with water prior to EMS treatment. These males were then mated to 4200 virgin

females of the genotype Df(3R)H99 P{hs-hid] pP/ Ubx-lacZ TM3, Sb [The Df(3R)H99

P { hs-hid} chromosome was used as a dominant temperature sensitive lethal mutation and

was a generous gift from Megan Grether and Hermann Steller (Grether et al., 1995)]. The

crosses were incubated at 250C, and after 5 days the males were discarded to prevent clonal

mutations. A total of 12,500 single males from the Fl generation of either genotype were

each mated to 2 Df(3R)H99 P{hs-hid] pP/Ubx-lacZ TM3, Sb virgin females. These

crosses were allowed to lay eggs for 5 days, after which the parents were discarded. The

progeny were then subjected to 2 hours of heat shock on days 5 and 6 by placing vials

directly in a 370 C water bath, with a 24 hour interval between heat shocks. Induction of

ectopic hid expression in this manner presumably causes massive cell death, and results in

embryonic/larval lethality. We found that about 10% of our isolates contained flies that

were not of the mutagenized ru st P{faf-lacZ] e" ca/Ubx-lacZ TM3, Sb genotype.

However, these "lines" usually contained only 1-2 "escaper" progeny and did not pose a

serious problem to the screening procedure. Lines that were kept for further analysis (see
below) were inspected for "escaper" flies and if necessary, virgin females and males of the

desired genotype were collected and used to establish balanced stocks. Lethal lines were

determined by the absence of ru st e' ca homozygotes.

Screening procedures and detection of P-galactosidase activity

Eggs of approximately 6-16 hours of age were collected from balanced lines using the

block method as described in Nisslein-Volhard et al. (1984). Eggs were collected from

apple juice-agar plates and placed into 18-well staining blocks (design by Phillip Zamore),

and processed for X-gal staining using the following procedure: Eggs were washed twice

in PBT, and then dechorionated by placing in a 50% bleach solution for 5 minutes. After

washing twice in PBT, they were fixed in heptane saturated with 2.5% glutaraldehyde for 7
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minutes. The embryos were allowed to dry for 4 minutes in a fume hood, and then washed
in PBT for 30 minutes. Embryos were then stained for f-galactosidase activity using 10%
X-gal in DMSO (Diagnostic Chemicals Limited), 1:50 in a staining buffer containing 10
mM sodium phosphate buffer, pH 7.2, 150 mM NaC1, 1 mM MgC12, 3 mM
K4[FeII(CN)6], 3 mM K3[FeII(CN)6], and 0.1% Triton X-100. Staining took place at
370 C, and embryos were then screened directly in staining blocks under a dissecting
microscope for defects in germ cell migration. Any line producing embryos that failed to
form wild-type gonads was propagated an additional generation and subjected to a
secondary screening procedure (see below).

Whole-mount antibody staining

Antibody staining was performed with either a rabbit polyclonal anti-Vasa or anti-Nanos
antibody (generously provided by Anne Williamson and Charlotte Wang, respectively),
and rabbit anti-f-galactosidase (Cappel). Prior to use, the anti- -galactosidase and
secondary antibodies (see below) were diluted 1:10 and preabsorbed against an overnight
collection of wild-type embryos.

All antibody detection was done with horseradish peroxidase using a biotinylated
secondary antibody (Jackson ImmunoResearch) and the Elite Kit (Vector Labs). For the
secondary screen all incubations, including fixation and devitellinization, were conducted in
the 18-well staining blocks described above (protocol modified from Royzman, et al.
(1997)]. Embryos were dechorionated as above and fixed for 20 minutes with gentle
shaking in 4:1 heptane:4% formaldehyde in PBS. Embryos were washed twice in fresh
heptane, and an equal volume of methanol was added followed by rigorous shaking for
divitellinization. Non-divitellinized embryos were removed from the blocks, and the

remaining embryos were rehydrated and subjected to antibody staining as described in
Eldon and Pirrotta (1991). Embryos were mounted onto slides in LX112 embedding
medium (Ladd Research Industries, Inc.) according to Ephrussi et al. (1991), then
analyzed with a Zeiss Axiophot microscope using Nomarski optics.

Cuticle preparations

Cuticle preparations were made of all potential mutant lines in a manner similar to that

described by Nisslein-Volhard et al. (1984), with the following modifications: Embryos

were collected on apple juice-agar plates for 12 hours, and allowed to age for 24 hours at

250 C. Unhatched eggs were collected into specialized 18-well staining blocks (design by
Philip Zamore), dechorionated, and fixed for 10 minutes in a 3:1 acetic acid:glycerol

solution at 65°C. Embryos were washed twice in PBT and placed onto a slide. Excess
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PBT was removed with a filter paper (Whatman), replaced with a small drop of Hoyer' s

medium, and covered by a 22x22 mm coverslip. Embryos were cleared by a 36 hour

incubation at 650C, and analyzed with a Zeiss Axiophot using dark field with a 20x

objective.

Complementation tests, mapping, and deficiency analysis

For lines that showed relatively normal patterning (Class 1), complementation tests were

conducted between mutants with similar germ cell migration defects. Allelism was

determined based on failure to recover transheterozygous viable progeny, as well as the

presence of a germ cell migration defect in transheterozygous embryos. Lines which

showed obvious defects in pattern formation were crossed to mutants obtained from the

Bloomington Stock Collection having similar phenotypes. In addition, once

complementation groups were established from the "specific" class of mutants, a

representative allele from each group was crossed to three mutants previously known to

show defects in gonad formation: abdA (Cumberledge et al., 1992), AbdB (Brookman et

al., 1992), and tin (our observations; Boyle et al., 1997).

Fifteen mutants in our "specific" class do not fit into complementation groups, even

when tested against each other. Given that these mutants all have relatively weak

phenotypes with poor penetrance, we believe them to be the result of synthetic effects

caused by more than one mutation. This result is similar to that obtained in the screens for

defects in embryonic pattern formation (Ntisslein-Volhard et al., 1984). Moreover, we

found 14 lines with defects in dorsal closure that also complemented each other, and could

not be attributed to known loci. If we include these "single alleles" in our calculation of

allele frequencies, we have induced an average of 3 alleles per locus. However, given that

we have identified more than 1 allele for 20 of 22 known loci, we presume it unlikely that

these other single alleles represent 29 unknown loci. Therefore we have not included this
"single allele" class from our calculations to estimate the degree of saturation for this

screen.

Six complementation groups were roughly mapped by meiotic recombination using

the ru st es ca markers. Once mapped to an interval, mutants were crossed to deficiency

stocks (obtained from the Bloomington Stock Collection) uncovering the interval and tested

for complementation based on lethality. Once a non-complementing deficiency was found,
mutants of known genes uncovered by the deficiency were tested against our mutants for

allelism, again based on lethality. In this way we discovered that 3 of our complementation

groups were allelic to the htl, trx, and zjh-1 loci.
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Whole-mount in situ hybridization

Whole-mount in situ hybridization to embryos with biotinylated and digoxigenin-labeled

antisense riboprobes was performed according to the double labeling method as described

in Lehmann and Tautz (1994).

Antisense riboprobes were prepared for detection of the 412 retrotransposon using

the pSK2.4 #3 plasmid (Brookman et al., 1992), and synthesized using T7 RNA

polymerase and biotin-21-UTP (Clontech) according to the method of Lehmann and Tautz

(1994). Antisense RNA probes were prepared for the detection of lacZ using the pC4 0-

galactosidase plasmid (Thummel et al., 1988), and synthesized using T7 RNA polymerase

and the Boehringer Mannheim 'Genius' 4 Kit according to the method of Gavis and

Lehmann (1992). Embryos were mounted as described above.

Fly Stocks

The following alleles were used for the complementation analyses described above, and all

further phenotypic analyses: abdA"', AbdB D101.3 (both gifts from Welcome Bender), cno2,

Df(3R)crbS87-5, DI9D, fkhE200, ftz 7B, htlAB42 (a gift from James Skeath), hh'", hkb2, kniFc,

opa"P, srp9L, srw1, tllLO, tinAGC14 (a gift from Manfred Frasch), tld 9Q, trxB" (a gift from Jim

Kennison). All alleles not designated above were obtained from either the Bloomington or

Tiibingen stock collections.
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RESULTS

A screen for mutations affecting germ cell migration
In order to identify genes required for germ cell migration and gonad formation, we

conducted a systematic screen of the third chromosome for EMS mutations that disrupt this

process at any point during embryonic development. In theory, one could approach this

task by assaying for gonad function through a screen for sterility of homozygous male and

female animals. However, previous screens based on this assay have mainly identified

genes involved in oogenesis, spermatogenesis, and embryonic pattern formation, and not
those required for germ cell migration or gonad formation itself (Castrillon et al., 1993;
Schupbach and Wieschaus, 1991; Broihier and Lehmann, unpublished results). One
possible explanation for this result could be that mutations in genes required for germ cell
migration may also be lethal, thereby rendering it impossible to isolate homozygous mutant
adults. Moreover, it is known through experiments involving germ cell transplants that
only a small number of germ cells is required to form a fertile gonad. Therefore, a
mutation would have to prevent all germ cells from becoming incorporated into a gonad in
order to result in sterility. In light of these arguments, we chose to directly screen mutant
embryos for defects in gonad formation by labeling germ cells. We reasoned that this
would allow the identification of genes required for germ cell migration that are involved in
other processes necessary for viability of the fly. This direct visualization was made
possible by the use of afatfacets-lacZ transgene (faf-lacZ; Fischer-Vize et al., 1992). The

protein product of this transgene is maternally provided and localized to the posterior pole
of embryos where it is incorporated into germ cells. [-galactosidase activity is maintained

in these cells throughout embryonic development. In order to facilitate rapid screening of

mutant lines, we utilized a "blue balancer" (Ubx-lacZ TM3) to distinguish homozygous
mutant embryos from their siblings. The crossing scheme used to generate the single
balanced mutant lines is shown in Fig. 2-2. For our target mutagenesis strain, we created
an isogenic, multiply marked chromosome (including the faf-lacZ transgene) that showed a
very low background loss of germ cells. Establishment of single balanced mutant stocks

was facilitated by the use of a hs-hid transgene (Grether et al., 1995). Any fly carrying this

transgene dies when subjected to heat shock during embryonic or larval development. In

this way, only the desired genotype was able to survive in these crosses.

Embryos of 6-16 hours of age were collected from mutant lines, and stained for [-

galactosidase activity. Thus, one staining procedure allowed us to visualize the germ cells

as well as identify homozygous embryos by their absence of the characteristic striped

staining pattern (an example is shown in Fig. 2-2). Any mutant line that produced embryos
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lacking wild-type gonads, or that showed a significant number of germ cells outside the
coalesced gonad was kept for further analysis.

Figure 2-2. Crossing scheme to establish lines isogenic for a mutagenized third
chromosome

For an explanation of stocks used, see Materials and Methods). Markers as described in

Lindsley and Zimm (1992). * designates mutagenized chromosome. Below the crosses is

shown an example of embryos from a wild-type line containing thefaf-lacZ chromosome

over a "blue balancer," stained for 3-galactosidase activity. Homozygous embryos are at

stage 14, showing germ cells in coalesced gonads (arrow). "Blue balancer" embryo is at

stage 11.
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Fig. 2-2: Mutagenesis scheme for identification of genes
affecting germ cell migration
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The results of our screen of the third chromosome are summarized in Table 2-1. We

analyzed 8854 independent lines, 86% of which are homozygous lethal. Using the
Poisson distribution, we calculate an average frequency of 1.9 lethal hits per chromosome,
and therefore estimate to have screened a total of 17,000 lethal hits. We chose 327 lines to

keep for further study, and subjected them to a secondary screen consisting of two

procedures. In order to analyze the overall developmental state of mutant embryos as well

as to inspect in more detail the germ cell migration defect, we immunolabeled embryos to

highlight the germ cells using an anti-Vasa antibody (see Materials and Methods). In

addition, we assayed for defects in embryonic patterning by preparing cuticles of unhatched

larvae. All lines which failed to show a germ cell migration defect in this analysis were

discarded.

Classification of mutant phenotypes

The results of the secondary screen enabled us to categorize the mutants into classes based

on phenotypic similarity (Table 2-1).

Class 1: Mutations that most specifically affect germ cell migration and gonad

formation. We found that 70 lines, or 21% of the mutants selected from the secondary

screen, consist of mutants where overall embryonic morphology and patterning of the

embryo appear relatively normal. However, many mutants in this class have subtle

developmental defects in addition to those affecting germ cell migration (see below).

Although the majority of these mutants show strong, highly penetrant germ cell migration

defects, 15 mutants in this class show a relatively weak germ cell phenotype with variable

penetrance. We have chosen not to study these mutants further given that they fail to fit

into complementation groups (see Materials and Methods), and their phenotype overlaps

with variability found in wild-type strains.

Class 2: Mutations affecting embryonic patterning. A significant proportion (34%)

of our mutants show defects in embryonic patterning as well as in germ cell migration.

This was an expected result, given that previous studies as well as our own analysis

demonstrate that a majority of existing patterning mutants have defects in germ cell

migration (Warrior, 1994; Broihier, Moore, and Lehmann, unpublished results).

Class 3: Dominant maternal/synthetic effects/multiple mutations. A small fraction

(2%) of the selected mutants do not fit into the classes described above. Two of our mutant

lines show dominant maternal dorso-ventral polarity effects, given that heterozygous

females lay mutant eggs when outcrossed to wild-type males. These mutations are variable

in penetrance, which allowed the stocks to survive in order to be analyzed in our screen. In

four mutants, >25% of the total embryos laid have severe developmental defects, including
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faulty patterning of the larval cuticle. These phenotypes could be explained as the result of

multiple lesions on more than one chromosome.

Class 4: Lost stocks. 9% of the mutants kept did not survive long enough to be

placed into the above categories. This includes stocks that either died or lost the balancer

chromosome, and therefore, the original mutation(s).

Class 5: False positive. This class (34%) includes mutants that either could not be

attributed to third chromosome lesions, or that failed to show a phenotype in the secondary

screen.

Table 2-1. Screen for genes required for germ cell migration and gonad formation

on chromosome 3.

(n) represents the number of mutant lines in each category. (a) A small percentage of our

lines could not be placed into complementation groups. Two show dominant effects with

variable penetrance. Four lines showed grossly abnormal cuticle phenotypes, and could

not be categorized into a particular class of patterning mutants. We assume these are the

result of multiple lesions on one or more chromosomes. (b) 28 lines were not included in

the secondary screen either due to death of the stock, or loss of the balancer chromosome.

(c) The phenotypes of many of our mutant lines do not segregate with embryos

homozygous for the third chromosome, and therefore are probably the result of mutations

on another chromosome. In addition, some of the mutants kept from the primary screen

did not show a germ cell migration defect when subsequently analyzed using an anti-Vasa

antibody.
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Table 2-1: Screen for genes required for germ cell migration
and gonad formation on chromosome 3

lines scored

lines selected

lethal hits/chromosome

Phenotypic Classes

specific effect on germ cells

pattern formation

dominant/
multiple a

lost b

8842

327

1.9

%of selected lines

110

false positive c 113



Complementation analysis suggests a high degree of saturation

In order to sort our mutant lines into complementation groups, we selected Class 1 mutants

with similar phenotypes and crossed them to each other, scoring both for lethality and

defects in germ cell migration (all of our selected mutant lines are homozygous lethal). For

the Class 2 mutants, we crossed our alleles to previously identified mutations with similar

cuticle defects. These complementation tests were also scored for lethality.

Seventy Class 1 mutant lines that displayed a strong, highly penetrant germ cell

migration defect fall into 9 complementation groups (Table 2-2). Prior to our screen, it had

been shown that the abdA, AbdB, and tin genes are required for gonad formation (Boyle et

al., 1997; Cumberledge et al., 1992; Warrior, 1994). Complementation tests between our

mutants with germ cell migration defects similar to those reported for abdA, AbdB, and tin

mutants revealed that we isolated alleles of all loci, demonstrating our screen's success in

identifying genes required for the process.

We also conducted complementation tests between Class 2 alleles and many of the

mutants identified in previous screens for defects in pattern formation (Table 2-2; Jirgens

et al., 1984). This analysis illustrates two important results from our screen. First, when

comparing our data to previous studies analyzing pattern mutants and their effects on germ

cell migration (Warrior, 1994; Broihier, Moore, and Lehmann, unpublished results), we

find that our screen was successful in isolating alleles of all genes required for embryonic

patterning that are also necessary for germ cell migration. Secondly, we obtained multiple

alleles for the majority of loci identified by our screen (Table 2-2). When combining the

results for the allele frequencies of genes in both the Class 1 and Class 2 mutants, we have

isolated an average of 5.8 alleles per locus (see also Materials and Methods). This allele

frequency is similar to that obtained in the saturation screens for defects in embryonic

patterning (Jirgens et al., 1984). Given the results of our complementation analysis of

both Class 1 and Class 2 mutants, we are confident to have thoroughly screened the third

chromosome for zygotic mutations affecting germ cell migration and gonad formation.

Although it is possible that genes required for overall embryonic patterning could also play

a role in germ cell migration, we have chosen to focus the remainder of our phenotypic

analysis on those complementation groups having relatively specific effects on germ cell

migration and gonad formation.
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Table 2-2. Complementation analysis of Class 1 and Class 2 mutants.

(a) 6 of our lines fail to complement alleles of the previously identified thread (th) locus,
which has been recently found to be required for cellularization of the early embryo (Eric

Wieschaus, personal communication).
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Table 2-2: Complementation Analysis

#alleles
Class 1: specific germ cell migration defect

abdominal A (abdA) 3
Abdominal B (AbdB) 3
columbus (clb) 15
heartless (htl) 4
fear-of-intimacy (foi) 3
tinman (tin) 1
trithorax (trx) 17
trithoraxgleich (trg) 4
zinc finger homeodomain-1 (zfh-1) 5

Class 2: pattern formation mutants

gut development
huckebein (hkb) 4
serpent (srp) 11

dorsal/ventral polarity
shrew (srw) 8
tolloid (tld) 19

gap
hunchback (hb) 4
forkhead (fkh) 2
knirps (kni) 5
tailless (tll) 3

pair-rule
fushi-tarazu (ftz) 2
odd-paired (opa) 8

segment polarity
hedgehog (hh) 7

neurogenic
Delta (Dl) 4
Delta-like (Dl-l) 3

dorsal open
canoe (cno) 1

cellular differentiation
crumbs (crb) 2

cellularization
thread (th)a 6



Placing genes on the chromosomal map

Rough mapping of 2 representative alleles from each of the 6 remaining

complementation groups in Class 1 placed the genes between the intervals of either ru and

st [fear-of-intimacy (foi)], st and e [trithorax (trx ), trithoraxgleich (trg), and heartless

(htl) ], e and ca [columbus (clb )], or distal to ca [zinc finger homeodomain protein-] (zfh-

1)]. Mutants were then crossed to deletions spanning their respective intervals, and again

scored for lethality. Deletion analysis and further complementation tests revealed that 3 of

our groups were allelic to the htl, trx, and zfh-1 genes (see Materials and Methods). For

the clb,foi, and trg loci, all deletion strains obtained from the Bloomington stock center

deficiency kit complemented our alleles. The approximate meiotic map positions for these

loci are as follows: clb, 3-80.0; foi, 3-25.2; trg, 3-55.1.

Phenotypic analysis of mutants reveals discrete steps in germ cell migration
Closer inspection of the germ cell migration defects in each of the mutant groups revealed

that most could be categorized into discrete classes according to the earliest step of germ

cell migration they disrupt (Fig. 2-3):

-Migration of germ cells through the PMG.

Previous work has shown that mutations in srp and hkb disrupt the ability of the germ cells

to invade the gut wall and pass through to the interior of the embryo (Br6nner et al., 1994;

Jaglarz and Howard, 1995; Warrior, 1994). Our phenotypic analysis has demonstrated

that they were the only mutants we identified that affect this particular step of migration

(Fig. 2-3A). Given that we have thoroughly screened the third chromosome for defects in

germ cell migration, it is likely that these are the only genes on this chromosome required

zygotically for the migration of the germ cells through the PMG.

-Movement of germ cells from endoderm toward mesoderm.

Mutations in clb, htl, and zfh-l result in many germ cells remaining associated with the basal

surface of the gut, instead of moving into lateral mesoderm (Fig. 2-3C). Those germ cells

that do leave the PMG often appear disorganized within the mesoderm, and do not correctly

navigate toward SGPs (see Broihier et al., 1998). zfh-1 mutants have an additional defect

in that those germ cells that do detach from the gut will often continue to migrate past lateral

mesoderm and into the ectoderm (for a detailed description, see Broihier et al., 1998). It is

interesting to note that although the majority of germ cells do not migrate correctly in clb,

htl, and zfh-1 mutants, there is always a small number of germ cells in each mutant that are

able to associate correctly with SGPs (see Discussion).

We have begun an analysis of the cause of these defects by assessing the

development of the gonadal mesoderm using specific markers. One of these markers, the
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412 retrotransposon, specifically recognizes SGPs after the germ band has retracted

(Brookman et al., 1992). zfh-1 mutants show a drastic reduction in the number of cells

expressing 412 (Fig. 2-4B). Combined with the severe germ cell migration defect seen in

zfh-1 mutants, these data suggest a pivotal role for this gene in the development of the

gonadal mesoderm. Mutations in the htl gene also reduce the number of gonadal mesoderm

cells found in stage 14 embryos, but not to the same degree as that found in zfh-1 mutants.

Moreover, gonadal mesoderm cells in htl mutants are irregularly shaped, suggesting an

additional defect in gonadal mesoderm differentiation (Fig. 2-4C). In contrast, 412

expression appears normal in clb mutant embryos, implying that this gene is not required

for the specification of SGPs (M. Van Doren and R. Lehmann, unpublished results).

Results consistent with those described above are seen using a variety of markers,
including anti-Cli, Dwnt-2 RNA, and anti-Zfh-1, which recognize gonadal mesoderm at

various points in development.

-Maintenance of association with gonadal mesoderm.

Previous work has shown that the homeotic genes abdA and AbdB are required for gonad
assembly (Boyle and DiNardo, 1995; Cumberledge et al., 1992; Warrior, 1994).

Comparing these mutant phenotypes with those of other genes identified in our screen

allows us to place the requirement for abdA and AbdB at a discrete point during germ cell

migration.

Our phenotypic analysis demonstrates that mutants lacking abdA function show an

earlier germ cell migration defect than had been seen in previous studies (Fig. 2-3E). For

the present analysis, we have used the abdA"' allele (see Materials and Methods), which is

a translocation breaking within the coding region, and fails to express a protein that is

detectable by existing anti-AbdA antibodies (Karch et al., 1990). Earlier studies focused

on a mutation in the abdA regulatory region, iab4, that affects abdA function in a subset of
abdominal segments, and perhaps, in a subset of tissues (Cumberledge et al., 1992;

Warrior, 1994). In mutants lacking most or all abdA function, germ cells are able to move

through the PMG and initially find lateral mesoderm. However, germ cells fail to maintain

their specific association with the mesoderm, and disperse in the posterior of the embryo.

Earlier work has shown that abdA is required in the soma for gonad formation (Boyle and

DiNardo, 1995; Cumberledge et al., 1992). This defect appears to be the result of a failure

of gonadal mesoderm development, since the expression of 412 is severely reduced in

these mutants in a manner similar to that seen in embryos lacking the Bithorax-Complex

(Brookman et al., 1992).

Whereas abdA is required for the development of all gonadal mesoderm cells,

mutations in AbdB appear to only affect the posterior component of these cells. In these
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mutants, many germ cells are able to coalesce along with gonadal mesoderm to form a

gonad; however, some germ cells are excluded from this gonad, presumably due to the

reduction in number of SGPs (Boyle and DiNardo, 1995; Brookman et al., 1992; our

observations). We also identified mutations in a regulator of homeotic gene expression,

trx, that has a germ cell migration phenotype very similar to that seen in AbdB mutants

(Fig. 2-3G). The "lost" germ cells in trx and AbdB mutants remain in an area ventral and

posterior to the gonad until after coalescence. The trx gene is known to be required for

maintaining the expression of homeotic genes including abdA and AbdB (Breen and Harte,

1993; Mazo et al., 1990). Several lines of evidence suggest that the defect seen in trx

mutants is due to reduced function of AbdB, including the result that a hs-AbdB construct

can partially rescue the trx germ cell migration defect (see Chapter 3). Surprisingly, initial

results from our analysis of gonadal mesoderm development appeared to be inconsistent

with this theory. In embryos lacking zygotic trx, 412 appears to be expressed at normal

levels (see Chapter 3), whereas in AbdB mutants, fewer SGPs express high levels of 412

than the number seen in wild type (Brookman et al., 1992). However, embryos which

lack both maternal and zygotic trx show 412 expression levels identical to those seen in

AbdB mutants (see Chapter 3). These results suggest that trx, like AbdB, is required for a

subset of SGPs to maintain their identity and as a result, to maintain their association with

germ cells (see Chapter 3; Boyle and DiNardo, 1995).

In addition, we have identified another complementation group, trg, which has a

germ cell migration defect identical to that seen in AbdB and trx mutants. Mutations in trg

show genetic interactions with homeotic genes including Ultrabithorax (Ubx), abdA, and

AbdB. Flies that are transheterozygous for trg and any of the aforementioned homeotic

genes are only semi-viable and often show thoracic abnormalities, suggesting that trg is a

new member of the trx-group of genes (Moore and Lehmann, unpublished results).

Mutations in the tin locus have a unique effect on germ cell migration. Germ cells

are able to migrate through the gut epithelium to find their target mesodermal cells, and

remain associated with SGPs throughout germ band retraction. The germ cells attempt to

line up, but do not achieve the organized nature they attain in wild-type embryos (Fig. 2-

31). The alignment of germ cells continues to deteriorate as development ensues, resulting

in the dispersion of germ cells at stage 14. It has been shown that tin is required for proper

development of gonadal mesoderm (Boyle et al., 1997). We have found that expression of

412 is virtually abolished in embryos lacking tin function (Fig. 2-4D). This result is

consistent with previous studies demonstrating expression of another SGP marker, cli, is

drastically reduced in tin mutants (Boyle et al., 1997). It is unclear why tin mutants show
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such a relatively late germ cell migration defect, given tin's striking effect on expression of

gonadal mesoderm markers (Boyle et al., 1997; Broihier et al., 1998; see DISCUSSION).

-Gonad coalescence

Mutations in a novel gene, foi, specifically affect the ability of the germ cells and gonadal

mesoderm to coalesce into the embryonic gonad. The hallmark of this phenotype is the

appearance of very late stage embryos with germ cells and SGPs remaining in a line,

instead of the characteristic round shape normally found in gonads by stage 14 (Fig. 2-

3K). Once again, the fault appears to lie with gonadal mesoderm as highlighted by 412

expression (Fig. 2-4E). Although 412 is expressed in an apparently normal number of

cells, their morphology and shape is aberrant in a way very similar to that found in htl

mutants (compare Fig. 2-4C with Fig. 2-4E). In wild-type embryonic gonads, gonadal

mesodermal cells are tightly associated with one another and with the encapsulated germ

cells. This is in sharp contrast to that seen infoi mutants, where the SGPs appear as if

they are incapable of making close contacts with one another.

Figure 2-3. Genes required for germ cell migration act during discrete steps in
development.

Anterior left in all panels. (A-L) Germ cells visualized using an anti-Vasa antibody. (A-H)
lateral views; (I-L) dorsal views. (A,C,E,G,I,K) Mutant embryos displaying their

characteristic phenotypes. (B,D,F,H,J,L) Wild-type embryos of comparative stages. (A)

srp- (stage 12). Many germ cells fail to exit the PMG, due to its transformation into a more

hindgut-like structure (arrowhead). (C) clb (stage 11). A subset of the germ cells

associates with lateral mesoderm (arrow), but many remain behind on the basal surface of

the PMG (arrowhead). (E) abdA- (stage 13). Germ cells fail to remain associated with

mesodermal cells (arrowhead). (G) trx (stage 13). A subset of the germ cells (arrowhead)

is found ventral and posterior to the gonad. (I) tin- (stage 14). Germ cells lose their

attachment to mesodermal cells once the germ band has retracted (arrowheads). (K)foi-

(stage 15). Germ cells fail to coalesce into the embryonic gonad (arrowhead), but remain

aligned with SGPs.
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Fig. 2-3: Genes required for germ cell migration act during
discrete stages in development
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Figure 2-4. Mutations affecting gonadal mesoderm development.

Anterior left in all panels; lateral views. (A-E) Gonadal mesoderm development assayed

by expression of the 412 retrotransposon (arrowheads). All embryos are at approximately

stage 14 (Campos-Ortega and Hartenstein (1985)]. (A) Wild type; (B-E) Mutants. (B) zfh-

1-. The number of gonadal mesoderm cells is drastically reduced compared to wild type.

(C) htt. Both the number and morphology of gonadal mesoderm cells is affected.

However, more cells are present than in zfh-1 mutants (compare with panel B). (D) tin-.

Gonadal mesoderm cells are virtually abolished by this stage in development. (E)foi-.

SGPs show aberrant morphology. Finger-like protrusions are seen, and they fail to show

the tight cell-cell interactions characteristic of a coalesced gonad. However, SGP number

appears normal. This embryo has been stained longer than the embryos in A-D, revealing

low levels of 412 expression in the fat body.
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Fig. 2-4: Mutations affecting gonadal mesoderm development
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The segmental origin of gonadal mesoderm is within the eve domain

Recent work has analyzed the role of pair-rule and segment polarity genes in the

specification of certain mesodermal cell types (Azpiazu et al., 1996). Of those genes

located on the third chromosome, these studies found that fushi-tarazu (ftz), odd-paired

(opa), and hedgehog (hh) are required for development of the midgut visceral mesoderm

and fat body. Moreover, these results place the origin of the midgut visceral mesoderm and

fat body within the "eve domain" of each parasegment. The results from our screen

demonstrate that genes required for the development of these tissues are also required for

germ cell migration (Table 2-2). We therefore reasoned that this requirement may be

attributable to the function offtz, hh and opa in the development of the gonadal mesoderm.

Mutations inftz, opa, and hh all result in embryos showing significant reductions in the

number of cells expressing 412 (Fig. 2-5). Thus, the germ cell migration defect in these

mutants is most likely due to their effect on gonadal mesoderm development.

It is interesting to note that, while we identified alleles offtz, opa, and hh in our screen, we

did not identify alleles of hairy (h), another pair-rule gene on the third chromosome. This

result is consistent with the fact that loss of h function does not result in a failure of midgut

visceral mesoderm development (Azpiazu et al., 1996). In fact, we find that the gonadal

mesoderm appears to develop correctly in h mutants. These results suggest that the origins

of the gonadal mesoderm, like midgut visceral mesoderm and fat body, lie within the eve

domain of the mesoderm.

Figure 2-5. Pair-rule and segmentation genes affecting germ cell migration and

gonadal mesoderm development.

Anterior left in all panels; lateral views. Embryos are at approximately stage 13-14.

(A,C,E,G) Germ cells visualized using an anti-Vasa antibody; (B,D,F,H) gonadal

mesoderm development assayed by expression of the 412 retrotransposon (arrowheads).

(A,B) Wild type; (C,D)ftz-; (E,F) opa-; (G,H) hh-. (C,E,G) Mutations inftz, opa, and hh

all result in the failure of germ cells to associate with mesodermal cells; (D,F,H) The

number of gonadal mesoderm cells is severely reduced in all mutants shown.
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Fig. 2-5: Segmentation genes required for
gonadal mesoderm development
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DISCUSSION

A comprehensive screen of the third chromosome

We have conducted an exhaustive screen of the third chromosome to identify genes

required for germ cell migration and gonad formation in the Drosophila embryo. This

screen was made possible by the use of a set of tools that allowed us to establish close to

9000 independent mutagenized lines, and screen them directly by utilizing a histological

marker for germ cells and balancer-bearing embryos. We isolated 186 mutant lines with a

strong germ cell migration defect, and have categorized them according to their phenotypes.

Based on our isolation of multiple alleles for most loci, combined with the fact that we

identified mutations in all loci on the third chromosome previously known to be required

for gonad formation, we are confident to have come close to saturation in this screen.

Thus, the genes and phenotypes we identified represent nearly all zygotic factors affecting

germ cell migration and gonad formation on the third chromosome.

Before undertaking this screen, We predicted that most mutants affecting germ cell

migration would be lethal. This was not an obvious assumption, since mutants lacking

fertile gonads are perfectly viable (Lehmann and Niisslein-Volhard, 1986). However,

previous studies screening for adult sterility failed to isolate mutations causing aberrant

migration of embryonic germ cells (Castrillon et al., 1993; Schiipbach and Wieschaus,

1991). Indeed, our assumption proved correct; all mutants that showed a strong, highly

penetrant germ cell migration defect are also lethal. Although studies to determine the cause

of lethality for some of these mutants are still underway, one simple explanation is that the

mutations are pleiotropic. If this is the case, then one can argue that most genes required

zygotically for the proper migration of germ cells are also necessary for other

developmental processes in the embryo. We have already found that many of these genes

are required for the development of a number of different cell types during embryogenesis

(see below).

An additional problem with assaying for sterility is that it was unclear if mutations

affecting the migration of germ cells would necessarily result in sterile adults, since the

results of pole cell transplantation experiments demonstrate that only a small number of

germ cells is sufficient for gonad function. In order to prevent this inherent bias, we chose

to screen embryos directly, and kept any mutants which showed even the most subtle

defects in gonad formation. Interestingly, many of our newly identified mutants do not

abolish the ability of some germ cells to associate with SGPs, but nevertheless exert severe

effects on the process as a whole. Moreover, we have identified additional genes required
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for both patterning of the embryo and gonad formation that were missed in earlier studies

due to our more stringent screening assay (Table 2-2).

Identification of genes required for discrete steps during the migration of germ cells

The results of our phenotypic analyses of mutants identified in this screen show that the

process of gonad assembly can be broken down into discrete steps (Fig. 2-6): 1) Migration

of germ cells through the PMG, 2) Migration away from the PMG and into lateral

mesoderm, 3) Alignment and maintenance of germ cell association with somatic gonadal

precursors (SGPs), and 4) Gonad coalescence.

Although detailed studies have analyzed the process of migration through the PMG

(Callaini et al., 1995; Jaglarz and Howard, 1995), little was known before this screen

about the ability of the germ cells to detach from the endoderm and move into the

mesodermal layer. Previous work had shown that mesoderm was required for this

process, given that germ cells failed to move away from the endoderm in mutants lacking

twist (twi) and snail (sna) activity (Warrior, 1994). However, since twi and sna are

required for the development of all mesoderm, it was unclear what, if any, more specific

mesodermal factors played a role in this step. We have found that clb, htl and zjh-l all are

necessary in directing the germ cells away from the endoderm and into the mesodermal

region. Moreover, these genes appear to function within the developing mesoderm (see

below). Since some mesodermal cell types do develop in embryos lacking clb, htl, and

zfh-1 function (Lai et al., 1993; Beiman et al., 1996; Gisselbrecht et al., 1996; M. Van

Doren and R. Lehmann, unpublished), their phenotypes suggest a role for these genes

beyond general mesoderm formation. Furthermore, germ cells in these mutants do not find

the correct mesodermal target cells in PS 10-12, and some continue to migrate into other

parasegments, as well as other tissues. This result suggests that in wild-type embryos, at

the time the germ cells migrate away from the PMG, the mesoderm to which they adhere

has become somewhat specialized, requiring the function of clb, htl, and zfh-1.

Experiments are underway to determine how the genes identified in our screen function in

this regional specialization (see Broihier et. al., 1998).

The majority of mutants that had been analyzed previous to our screen display a

phenotypic onset during the alignment of germ cells with SGPs (Boyle and DiNardo, 1995;

Cumberledge et al., 1992). We identified mutations in a gene,foi, that is required at an

even later stage in embryogenesis: gonad coalescence. This gene provides a missing link

between the tight association of germ cells with their somatic partners, and their

cooperative movement into the spherical structure of the gonad. Given the nature of the

defect within gonadal mesoderm, foi provides our most promising candidate for an
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adhesive factor involved in preferential cell-cell interactions between the gonadal mesoderm

cells themselves. This theory is especially tantalizing, given thatfoi has an additional

requirement in late embryonic tracheal branch fusion, a process requiring cell-cell

interactions (Van Doren and Lehmann, unpublished results).

Figure 2-6. Genetic summary of germ cell migration: third chromosome.

Embryo drawings after V. Hartenstein. Blue: foregut and hindgut; red: anterior and

posterior midgut; gray: gut lumen; green: mesoderm; purple, SGPs; yellow: germ cells.

Phenotypic analysis of mutants identified in our screen shows that germ cell migration in

Drosophila can be broken down into discrete developmental steps. Genes identified in our

screen are shown beside the first embryonic stage at which germ cell migration is disrupted

in corresponding mutants.
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Fig. 2-6: Genetics of germ cell migration: third chromosome
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Mutations affecting gonadal mesoderm development

Many of the genes identified in our screen appear to be required for germ cell migration via

their role in the development of the somatic tissue involved in gonadogenesis. Previous

studies have analyzed the specification of the SGPs, and have also found abdA, AbdB, cli,
and tin necessary for the development of these cells (Boyle et al., 1997; Boyle and

DiNardo, 1995). Our results suggest that initiation of the developmental pathway toward

the specification of SGPs occurs at an earlier step than previously identified. zh-1 and htl

both are required for the development of gonadal mesoderm, but exert their effect on the

interaction with germ cells at an earlier stage than that seen for abdA, AbdB, cli, and tin.

We and others have found the tin gene to be required for development of gonadal

mesoderm, as exemplified by the lack of expression of gonadal mesoderm specific markers

in tin mutants (Boyle et al., 1997; Fig. 2-4D). Although the drastically reduced expression

of cli in tin mutants can be seen as early as stage 11 (Boyle et al., 1997), the resulting germ

cell migration defect cannot be detected until stage 13 (Fig. 2-31). More recent work has

shown that most SGPs are at least.partially specified in tin mutants, but fail to maintain this

specification during later developmental stages (Broihier et al., 1998). This may explain

how germ cells are initially able to associate with SGPs, but lose this association as SGPs

fail to maintain their identity.

It has been recently shown that the htl gene, which encodes a Drosophila fibroblast

growth factor receptor (DFR1/DFGF-R2), is involved in the dorsolateral migration of the

invaginating mesodermal layer along the overlying ectoderm. Loss of function mutations

in this locus affect the development of a number of dorsal mesodermal cell types, including

midgut visceral mesoderm, cardiac mesoderm, and some somatic mesodermal derivatives.

These studies further indicate that the number of precursors corresponding to the affected

mesodermal cell types is significantly reduced in htl mutant embryos (Beiman et al., 1996;

Gisselbrecht et al., 1996). Our phenotypic analysis of both germ cell migration and

gonadal mesoderm defects in htl embryos demonstrates that this gene is required at an early

stage in the development of yet another mesodermal cell type, the gonadal mesoderm. htl is

also necessary for the Dpp-dependent maintenance of tin expression in dorsal regions of the

mesoderm (Gisselbrecht et al., 1996). Therefore, htl could be acting through tin to specify

SGPs, since tin is required for gonadal mesoderm development (see above). Conversely,

htl could be required for a signaling process that is independent of its role in maintaining

tin's dorsal expression pattern. Further experiments are necessary to distinguish between

these two possibilities, but the finding that htl has an additional requirement in gonadal

mesoderm morphological differentiation suggests that the latter theory could prove correct.
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Moreover, recent studies demonstrate that tin's role in gonadal mesoderm development is

independent of Dpp signaling (Broihier et al., 1998).

We have also identified genes involved in the differentiation of gonadal mesoderm

in addition to those required for its initial specification. Given that gonadal mesoderm

morphology, but not cell number, is affected infoi mutants, it likely represents a

downstream target of genes such as zfh-1 and tin. Molecular characterization offoi will

allow a better understanding of its role in the differentiation of gonadal mesoderm.

Origin of the gonadal mesoderm

We have found that the segmentation genes ftz, hh, and opa are all required for germ cell

migration and gonadal mesoderm development. Furthermore, in a preliminary screen to

identify patterning genes required for germ cell migration, we have found that mutations in

even-skipped (eve) and engrailed (en) also have a drastic effect on the development of

gonadal mesoderm (Broihier, Moore, and Lehmann, unpublished results). These

segmentation genes identified in our screens have been previously shown to play a role in

the patterning of a component of mesoderm which gives rise to midgut visceral mesoderm

and fat body (Azpiazu et al., 1996), termed the "eve-domain". Taken together, these

results show that genes required for patterning of the mesoderm affect gonadal mesoderm

in the same way in which they affect midgut visceral mesoderm and fat body.

Recent studies suggest that each parasegment of the mesoderm is initially

subdivided into two domains. hh and en are positively regulated by pair-rule gene action in

the eve-domain of the mesoderm, whereas wg is a target in the "slp domain" (Azpiazu et

al., 1996; Riechmann et al., 1997). Our observations of the loss of gonadal mesoderm in

hh and en mutants support the model that SGP origin lies within the eve domain of the

mesoderm (Fig. 2-5). This conclusion is further supported by the observation that more

gonadal mesoderm cells form in sip mutants (Broihier, Moore, and Lehmann, unpublished

results). Because wg is positively regulated by sip, this model conflicts with the finding

that loss of wg function causes a reduction in the number of SGPs, while ectopic

expression of wg leads to an increase in the number of SGPs (Boyle et al., 1997; Broihier,

Moore, and Lehmann, unpublished results). We therefore propose that the effects of loss

and gain of Wg activity reflect a function for this gene which occurs at a later time than

initial mesodermal A-P patterning. Indeed, the model described above concerning

mesodermal sip and eve domains proposes that the segmentation genes, including hh and

wg, have an additional requirement beyond A-P specification of the mesoderm involving

the resolution of sharp borders between the sip and eve domains. Moreover, hh and wg

show numerous regulatory interactions between one another (Hidalgo, 1991; Ingham and
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Hidalgo, 1993; Lee et al., 1992), therefore implying that wg may function indirectly in the

development of gonadal mesoderm. Further studies are required to determine whether the

roles described above, or other as yet uncharacterized functions of these segmentation

genes, are involved in gonadal mesoderm development.

Germ cell specific genes?

Current evidence suggests that genes required zygotically for germ cell migration act in the

soma rather than in the germ cells. It has been previously shown that abdA is required in

the soma for gonad assembly (Cumberledge et al., 1992). The phenotypes of both srp and

hkb mutants, in which the germ cells are unable to migrate through the PMG, can most

likely be attributed to the genes' requirements for the development of the PMG (Bronner et

al., 1994; Jaglarz and Howard, 1995; Reuter, 1994). Moreover, with the exception of clb,

all of our remaining Class 1 genes are required for the development of gonadal mesoderm,

which can presumably explain their roles in germ cell migration. Although clb is not

required for SGP specification, recent studies have found it to be expressed in gonadal

mesoderm, but not in the germ cells, suggesting that it too acts in the soma (Van Doren and

Lehmann, unpublished results). Given that we have thoroughly screened the third

chromosome for genes required zygotically for germ cell migration, it is curious that we

have no compelling candidates for genes that function in the germ cells for the many

processes they must execute to form a coalesced gonad. Presumably, there are factors

expressed in the germ cells that allow them to move through tissue layers and guide them to

recognize their target mesodermal cells. It is possible that these factors may be maternally

provided to the embryo, and thus could not be identified in a zygotic screen. Indeed, two

molecules known to act in the germ cells for proper gonad formation, nanos (nos), and

Polar granule component-] (Pgc-1), are both contributed by the mother to the oocyte

(Kobayashi et al., 1996; Nakamura et al., 1996; Forbes and Lehmann, 1998). Thus,

maternal-effect screens may be key in identifying the missing germ-line cues which act in

concert with genes we have identified that are essential for germ cell migration, gonadal

mesoderm development, and gonad coalescence.
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CHAPTER 3

Phenotypic analyses of three mutants affecting gonad formation in Drosophila

SUMMARY

The combined results from screens of the second and third chromosomes reveal that germ

cell migration in Drosophila occurs in discrete developmental steps with each step requiring

a specific subset of genes. Phenotypic analyses of three mutants that affect different steps

of this process are presented. First, I describe the role of the trx gene in germ cell

migration and show that trx most likely acts to ensure proper function of AbdB, but not

abdA, in this process. Futhermore, germ-line clonal analysis demonstrates that trx is

required throughout embryogenesis to maintain gonad integrity. A screen of the second

chromosome revealed two mutants, 9.35 and 22.38, which affect different steps in gonad

formation. In 9.35 mutants, germ cells fail to migrate properly away from the midgut and

into lateral mesoderm. The 22.38 lesion affects a later step involving germ cell-somatic

gonadal precursor associations. Both mutants appear to specifically affect germ cell

migration, given that many other embryonic developmental processes are normal.

Preliminary mapping experiments place them within broad regions of chromsome 2L.
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INTRODUCTION

Our analysis of genes on the third chromosome required for germ cell migration in

Drosophila led to the model that this developmental process can be broken down into

discrete genetic steps, with each step requiring a different subset of genes (see Chapter 2;

Moore et al., 1998). In addition to conducting a saturation mutagenesis of the third

chromosome for genes required for germ cell migration, Heather Broihier and I also carried

out a screen for mutations affecting this same process on the second chromosome. The

screen methodology was very similar to that used in the third chromosome screen, with the

exception that a dominant temperature-sensitive (DTS) mutation was used to establish

balanced lines instead of the hs-hid construct. We screened 3194 mutant lines for defects

in germ cell migration, and identified 7 complementation groups that had strong, highly

penetrant, and relatively specific effects on this process. We also identified 8 genes that

were previously known to be required for pattern formation in the embryo, and determined

that they were also necessary for germ cell migration (Table 3-1). Although this screen of

the second chromosome was not carried to saturation, our results from this analysis are

consistent with those described in the screen of the third chromosome (see Chapter 2;

Moore et al., 1998). For example, we found that the developmental steps required for

germ cells to properly migrate and form a gonad that we disrupted through mutations on the

second chromosome were the same as those characterized in the third chromosome screen.

Moreover, those segmentation genes on the second chromosome required for patterning of

the eve-domain of the mesoderm were identified in our screen. We have since determined

that these genes in fact affect the development of the gonadal mesoderm (see Chapter 2;

Moore et al., 1998).

Given that the combined results of both screens identified similar steps in germ cell

migration that can be genetically disrupted, I chose to conduct further studies aimed at

elucidating the mechanisms underlying some of these particular steps. I report here

phenotypic analyses of three mutants identified through our screens that affect various steps

of germ cell migration: one was recovered from the third chromosome mutagenesis, and

two were isolated during the second chromosome screen. Two mutants interfere with germ

cell-SGP interactions, while the other disrupts the migration of germ cells away from the

PMG and into lateral mesoderm.

Of the complementation groups on the third chromosome that we identified to play a

role in gonad formation, I conducted further analyses on two that showed nearly identical

phenotypes affecting the association of germ cells with SGPs. Mapping and

complementation analysis revealed that one group was allelic to the trithorax (trx) gene,
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while the other group has not been ascribed to a previously identifed locus (see Chapter 2;

Moore et al., 1998). Although much is known regarding the requirements for trx in the

regulation of homeotic gene expression (see Introduction), a specific role for trx in the

process of germ cell migration had not been previously described. I therefore chose to

pursue studies of this gene focusing on its function in formation of the embryonic gonad.

Mutations in the trx gene were initially identified as a result of their phenotypic

similarities to loss-of-function mutations in a number of genes in the Antennapedia and

bithorax complexes including Antennapedia, Sex combs reduced, Ultrabithorax,

abdominal A (abdA), and Abdominal B (AbdB) (Capdevila and Garcia-Bellido, 1981;

Ingham and Whittle, 1980; Lewis, 1968). Further genetic studies combined with molecular

analyses revealed that these phenotypes were due to a requirement for the trx gene in

positively maintaining the expression of the homeotic genes (Breen and Harte, 1991; Breen

and Harte, 1993; Capdevila and Garcia-Bellido, 1981; Duncan and Lewis, 1982).

Consistent with these observations, trx encodes a large protein containing regions of

homology with zinc finger-like DNA-binding domains, suggesting that it may regulate gene

expression at the transcriptional level (Mazo et al., 1990). Genetic screens aimed at the

isolation of additional mutants showing dosage interactions with homeotic mutations

demonstrated that trx is a member of a large group of genes, called the trx-group, which is

required for positively regulating homeotic gene function (Kennison and Tamkun, 1988). I

have tested mutations in the trx-group of genes that are located on the third chromosome for

their ability to complement mutations from our screen with similar phenotypes, and have

found none to be allelic (see Chapter 2; Moore et al., 1998). Although it was known

previous to our screens that the trx-group of genes were required for positively regulating

homeotic genes including abdA and AbdB, members of the trx-group had not been shown

to play a role per se in germ cell migration. Moreover, the mechanism by which trx

functions to ensure proper gonad formation had not been investigated.

I present here a phenotypic analysis of the germ cell migration defect associated

with the loss of trx function. Given that both abdA and AbdB play active roles in gonad

formation, it follows that trx could be required for maintaining the expression of these

genes in the tissues in which they act to affect germ cell migration. Surprisingly, my

results strongly suggest that while trx is necessary for AbdB function in this process, it is

not required for the initial role of abdA in germ cell migration. Furthermore, germ-line

clonal analysis demonstrates that trx function is required throughout embryogenesis to

maintain gonad integrity.

Of those previously unidentified mutants on the second chromosome that affect

germ cell migration, I chose to study further two that had strong, highly penetrant
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phenotypes that showed relatively specific effects on the process. I present here a

phenotypic analysis of these two mutants, 9.35 and 22.38, as well as preliminary efforts to

determine their map positions. These results show that the two mutants affect two different

steps during germ cell migration, and do not show obvious defects in other embryonic

developmental process. Furthermore, I have demonstrated that for one of these mutants,

22.38, the phenotype appears to be caused by a defect in germ cell-SGP interactions.
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MATERIALS AND METHODS

Fly Stocks

The majority of deletion and P-element strains were obtained from the Bloomington Stock

collection except for the following: Df(2L)TE80xl, Df(2L)TE128x11, Df(2L)TE128x36,

Df(2L)TE128x33, Df(2L)TE128x45 were all generous gifts from G. Reuter, and

Df(2L)N22-14 and Df(2L)N22-5 were both kindly provided by T. Schiipbach. R. Mottus

graciously provided the Df(2L)J2 stock. P-element stocks with the designation

P{lacWkxxxxx were kindly provided by the Berkeley Drosophila Genome Project through

T. Laverty.

The trxBI allele, a generous gift from J. Kennison, contains a small deletion within the

coding sequence producing a truncated protein, and therefore is likely to represent the null

phenotype (Breen and Harte, 1993; Sedkov et al., 1994).

Hs-AbdB and Hs-abdA were both generously provided by G. Morata through M. Boyle.

Hs-Wgf/M3 was also a gift from M. Boyle and is described in Noordermeer et al. (1992).

In the Hs-AbdB and Hs-abdA "rescue" experiments, the following strains were

constructed: Hs-AbdB/ftz lacZ CyO; trxBn/Ubx-lacZ TM3, and Hs-abdA/ftz-lacZ CyO;

trxB/Ubx-lacZ TM3. Ectopic expression of the heat-shock constructs was induced

according to the method described in Boyle et al. (1997). Embryos produced from these

lines were scored as phenotypically trx- by assaying for lost germ cells found ventral to the

gonad, and this number was compared to that obtained from counting embryos laid by the

same strains but without heat-shock.

Whole-mount antibody staining

Antibody stainings were performed with rabbit polyclonal anti-Vasa and mouse monoclonal

anti-Cli antibodies (generously provided by A. Williamson and N. Bonini, respectively).

Antibody detection for anti-Vasa was done with horseradish peroxidase using a

biotinylated anti-rabbit secondary antibody (Jackson ImmunoResearch) and the Elite Kit

(Vector Labs), and for anti-Cli using an alkaline phosphatase-conjugated anti-mouse

secondary antibody (Jackson ImmunoResearch). Both secondary antibodies were pre-

absorbed against an overnight collection of wild-type embryos prior to use. Embryos were

fixed and devitellinized according to the method of Gavis and Lehmann (1992), with the

modification that embryos used for the anti-Cli detection were fixed in 1XPBS with 50mM

EDTA. Embryos were rehydrated and subjected to antibody staining as described in Eldon
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and Pirrotta (1991). Double antibody detection was performed according to the method

described in Patel (1994). Embryos were mounted onto slides in PolyBed 812

(Polysciences) according to Ephrussi et al. (1991), then analyzed with a Zeiss Axiophot

microscope using Nomarski optics.

Germ-line clones

Germ line clones of trx mutant cells were induced according to the method described in

Chou and Perrimon (1992). The P[ry , hs-neo, FRT]82B chromosome was kindly

provided by J. Treisman and recombined with the trx"" allele according to the method

described in Xu and Rubin (1993). The P[ry+, ovoDI]/TM3 and P[ry', hs-FLP] stocks

were also gifts from J. Treisman. Flies of the appropriate cross were allowed to lay for 2

days at 250 C. The resulting embryos were aged for two more days, and then subjected to a

2 hour heat-shock at 370 C on days 4 and 5.

DAPI staining of ovaries

DAPI staining was carried out as described by Lin et al., 1994. Samples were mounted in

50:50 PBS:Glycerol containing 2.5% DABCO (sigma).

Whole-mount in situ hybridization/antibody double labeling

Whole mount in situ hybridizations and subsequent antibody stainings were performed

according to Lehmann and Tautz (1994).

An antisense-412 retrotransposon digoxigenin-labeled riboprobe was synthesized

using the Boehringer-Mannheim 'Genius' 4 kit as described in Gavis and Lehmann (1992)

and the pSK2.4#3 plasmid (Brookman et al., 1992) with T7 RNA polymerase. Embryos

were mounted and analyzed as described above.

Recombination frequencies

The following values were obtained from mapping experiments described for 9.35, with x

representing the number of recombinant flies, and n the total number of progeny scored:

k10210, x=2, n=185; k07602, x=4, n=138; k09030, x=15, n=181; k00206, x=6, n=142;

k07118, x=l 1, n=124; k07704, x=10, n=157. Statistical significance between values was

determined using a standard t-test.
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RESULTS AND DISCUSSION

Gonadogenesis defects in trx mutants closely resemble those seen in AbdB, but not
abdA mutants.

In a screen to identify genes required for germ cell migration on the third chromosome (see

Chapter 2; Moore et al., 1998), we isolated 17 alleles of the trx locus. It has been shown

that trx is required for maintaining the expression of homeotic genes, including abdA and

AbdB, which are known to play a role in germ cell migration (Breen and Harte, 1993;
Mazo et al., 1990). It therefore seemed possible that the germ cell migration phenotype

seen in trx mutants was due to loss of abdA and/or AbdB activity. In an effort to determine

if this is the case, I directly compared the trx germ cell migration defect to that seen in

embryos lacking abdA or AbdB function (Fig. 3-1). Germ cell migration in trx mutants is

virtually identical to that seen in AbdB mutants, but differs from that observed in embryos
lacking abdA activity (compare Fig. 3-1A with 3-1B,C). In trx mutants, like AbdB
mutants, the posterior component of the germ cells fail to maintain their association with

SGPs, and remain in an area ventral to where the gonad is forming (Fig. 3-1A,B,
arrowheads). This contrasts to embryos lacking abdA function, where all germ cells

disassociate from SGPs (Fig. 3-1C, arrowhead). These results suggest that the germ cell
migration defect in trx mutants is due to a loss of AbdB activity, whereas abdA function in

this process is uncompromised. In order to further test the phenotypic relationship between

trx and AbdB mutants, I analyzed expression of AbdB-dependent gonadal mesoderm

markers in trx mutant embryos. An example of one marker, Cli, is shown in Fig. 3-1D,E.

In wild-type coalesced gonads, Cli protein expression in SGPs is maintained only in the

posterior component of gonadal mesoderm (Fig. 3-1D, arrowhead). This maintenance of

posterior gonadal Cli expression is dependent on AbdB activity (Boyle and Dinardo, 1995).
I found that trx is also required for maintaining Cli expression after gonad coalescence. In

embryos lacking trx function, fewer germ cells are incorporated into the gonad, and the

surrounding gonadal mesoderm fails to express Cli protein (Fig. 3-1E, arrowhead). This

phenotype is virtually identical to that observed in AbdB mutants (Boyle, 1997). A similar

result was observed for expression of Dwnt-2, another marker maintained in the posterior

gonad in an AbdB-dependent manner. These results support the hypothesis that trx is

required for AbdB's function in germ cell migration.
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Figure 3-1: Gonadogenesis defects in trx mutants closely resemble those seen in

AbdB, but not abdA mutants

Anterior is to left in all panels. Embryos in A-C are approximately stage 13; embryos in

D,E are stage 14 (Campos-Ortega and Hartenstein, 1985). (A-E) Germ cells visualized

using an anti-Vasa antibody in brown. (D,E) Cli expression is in blue. (A) trx-. The

posterior-most germ cells fail to associate with SGPs and are instead found ventral to the

forming gonad (arrowhead). (B) AbdB-. The germ cell migration phenotype is virtually

identical to that seen in trx mutants. (C) abdA-. In contrast to trx and AbdB mutants, all

germ cells fail to incorporate into a gonad (arrowhead). (D) Wild type. After gonad

coalescence, Cli expression is only maintained in the posterior region of the gonad

(arrowhead). (E) trx-. No Cli expression is detected after gonad coalescence (arrowhead).

This result is identical to that seen in AbdB mutants (Boyle and Dinardo, 1995).
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Fig. 3-1: Gonadogenesis defects in trx mutants closely resemble those
seen in AbdB, but not abdA, mutants

trx- A

AbdB B
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Ectopic AbdB expression can partially rescue the trx- germ cell migration phenotype
If the germ cell migration defect seen in trx mutants is due to loss of AbdB function, then
ectopic expression of AbdB may "rescue" the trx germ cell migration phenotype. In order

to test this hypothesis, ectopic AbdB activity was induced via a heat shock promoter in a trx
mutant background (see Materials and Methods). The resulting embryos were scored for

the presence of a trx- germ cell migration defect. This number was then compared to the

number of phenotypically trx7 embryos laid from the same line with no heat-shock

administered. In order to determine if rescue of the trx- phenotype is AbdB-dependent, a
similar experiment was conducted by ectopically inducing abdA expression in a trx mutant

background. The combined results from three independent experiments for ectopic AbdB
expression as well as the accompanying controls are shown in Table 3-1. In the absence of

heat-shock, roughly one-half of the embryos laid from the HsAbdB;trx -line showed a trx-

germ cell migration defect. This number is consistent with that seen in the trx mutant line

without the heat-shock construct. However, when AbdB activity is ectopically induced,
only approximately one in seven embryos has the trx mutant germ cell migration defect.
This is slightly more than the one to eight ratio expected for complete rescue (one-quarter of
the embryos will not harbor the Hs-AbdB construct). In contrast, the ratios of
wt:phenotypically trx- embryos are identical in the Hs-abdA;trx experiment, with or
without heat shock (Table 3-1). The reduced penetrance of the trx- phenotype in the Hs-

abdA; trx experiments is presumably due to the Hs-abdA insert and not abdA activity,

since the values are identical with or without heat shock. However, it is still possible that

this result is due to low levels of abdA expression. Nevertheless, the most likely
explanation for these results is that ectopic expression of abdA cannot rescue the trx- germ
cell migration defect. Taken together, these results strongly suggest that ectopic AbdB

activity, but not abdA, can partially compensate for the loss of trx function, indicating that
trx's requirement for germ cell migration in wild-type embryos is to ensure proper AbdB
function.
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Table 3-1: hs-AbdB can partially rescue the trx- germ cell migration defect

wt trx- phenotype wt: trx- phenotype

hs-AbdB; trx- a 154.3 +22.14 21.3 +7.4 7.2:1

no heat-shock 81 43 2:1

hs-abdA; trx-

no heat-shock

180 45 4:1

4:159

Embryos were scored as either phenotypically trx, or wt based on the germ cell migration phenotype.
Although half the hs-AbdB;trx- embryos had a trx- germ cell migration defect (See text)
without heat-shock, only approximately one in seven had the same phenotype when heat-shock
was administered. In contrast, the ratios of wt:trx- embryos in the hs-abdA;trx- experiment
remain the same, with or without heat-shock.

a For hs-AbdB;trx-, three independent experiments were scored. The average number of embryos
with each phenotype is presented, and the ratio calculated using these averages.



Maternally contributed trx activity is necessary for maintaining gonad integrity

The finding that trx regulates AbdB, but not abdA, function in germ cell migration is

surprising, given that trx is known to be required for abdA activity in other developmental

processes (Capdevila and Garcia-Bellido, 1981; Ingham and Whittle, 1980; Lewis, 1968).

One possible explanation for why zygotic trx activity is not required for abdA function in

germ cell migration is that the maternal contribution of trx plays this role. In order to test

this hypothesis, I removed maternal trx function by inducing germ-line clones of trx mutant

cells using the FLP/FRTovoD recombination system (see Materials and Methods; Chou and

Perrimon, 1992; Xu and Rubin, 1993). The germ cell migration phenotype seen at stage

12 in embryos lacking both maternal and zygotic trx activity is identical to that seen in

embryos lacking zygotic trx function alone (Fig. 3-2A,B). This result indicates that even in

the complete absence of trx activity, the initial function of abdA in germ cell migration is

not affected. However, in trx embryos derived from trx mutant germ-line clones, the

gonad fails to remain coalesced at late embryonic stages, and germ cells are consequently

scattered in the posterior region of the embryo (Fig. 3-2C, arrowhead). This is in contrast

to trx zygotic mutants, in which the gonad, albeit small, retains its characteristic spherical

structure (compare arrowhead in Fig. 3-2D with that in Fig. 3-2C). This result

demonstrates that trx plays a continued role in maintaining gonad integrity throughout

embryogenesis. It has not been determined if this late activity of trx is necessary for proper

abdA or AbdB function, or plays an as yet uncharacterized role.
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Figure 3-2: trx is required throughout embryogenesis to maintain gonad integrity

Anterior is to left in all panels. Embryos in A,B are stage 13; embryos in C,D are stage 16

(Campos-Ortega and Hartenstein, 1985). (A-D) Germ cells visualized using an anti-Vasa

antibody; (A,B) lateral views; (C,D) dorsal views. (A,C) Embryos lacking both maternal

and zygotic trx function. (B,D) Embryos lacking zygotic trx function alone. (A,B) The

germ cell migration phenotype seen at this stage in embryos lacking both maternal and

zygotic trx function is identical to that observed in embryos mutant for trx zygotic activity

alone. (C) When both maternal and zygotic trx functions are removed, germ cells that were

originally in gonads disperse throughout the posterior region of the embryo (arrowhead).

(D) When only zygotic trx activity is removed, those germ cells that are incorporated into a

gonad remain there even in very late embryonic stages.
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Fig. 3-2: trx is required throughout embryogenesis for maintaining gonad integrity
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It is still unclear why trx mutants do not show an abdA-like germ cell migration

phenotype. One possibility is that abdA function in germ cell migration occurs at an early

stage when trx-mediated maintenance of its expression has not yet occurred. However, it

has been shown that a later function of abdA, mediated through the iab-4 regulatory region,

is required for gonad coalescence (Cumberledge et al., 1992; Warrior, 1994). This iab-4

mutant phenotype is distinct from that observed in trx and AbdB mutant embryos. An

alternative explanation is that trx has different roles in maintaining the expression of

homeotic genes in different tissues. For instance, it is possible that trx plays a significant

role in maintaining AbdB lateral-mesodermal expression, whereas the requirement for trx in

regulating abdA expression in this region may not be as stringent. In fact, it has been

shown that in trx mutants, the reduction in levels of abdA expression is more pronounced

within heart mesoderm than in somatic mesoderm (Breen and Harte, 1993). This result

demonstrates that there are at least different requirements for trx function in different

aspects of a particular homeotic genes's expression, and therefore, implies that there may

be different requirements for trx function in maintaining the expression of multiple

homeotic genes. Further analysis of abdA and AbdB expression in the lateral mesoderm of

trx mutant embryos may help to elucidate the role of trx in abdA gonadal function.
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Germ cells fail to move correctly into lateral mesoderm in 9.35 mutant embryos

In a screen to identify genes required for germ cell migration on the second chromosome,
we isolated a mutant, 9.35, in which germ cells fail to move correctly away from the gut

endoderm and into the lateral mesodermal layer (Fig. 3-3). Although we only isolated one

allele of this complementation group, given its strong, highly penetrant and specific

phenotype, I decided to characterize this mutant further. Defects in germ cell migration in

9.35 mutants can be detected as early as stage 11. At this stage, instead of migrating into

lateral mesoderm, many germ cells remain in one group outside the PMG (Fig. 3-3A,

arrowhead). At this stage in wild type, germ cells have normally split into two bilaterally

symmetric groups within the mesodermal layer (Fig. 3-3D, arrowheads). In the mutant, as

the germ band retracts during stage 12, SGPs migrate anteriorly (Fig. 3-3B, arrow),

whereas many germ cells remain in a more posterior location close to the PMG (Fig. 3-3B,

arrowhead). In wild-type embryos at this stage, germ cells migrate anteriorly along with

SGPs, resulting in the close association of these two cell types (Fig. 3-3E, arrowhead).

Germ cells finally do move away from the basal surface of the PMG at later stages in the

mutant, but do not contact SGPs (Fig. 3-3C, white arrowhead) and are either found in

extreme posterior regions of the embryo (Fig. 3-3C, arrow), or in the yolk near the

developing PMG (Fig. 3-3C, black arrowhead). Thus, in 9.35 mutant embryos germ cells

appear stalled in their migration away from the basal surface of the PMG and into the

mesodermal layer. Germ cells eventually disengage from the PMG, but apparently at a

stage beyond the time during which they are able to contact SGPs.
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Figure 3-3: Germ cells are delayed in their movement away from the PMG in 9.35
mutant embryos

Anterior left in all panels. (A-F) Germ cells visualized using an anti-Vasa antibody in
brown; SGPs are recognized in blue by the 412 retrotransposon. (A,B,C,D,F) dorsal

views; (E) lateral view. (A-C) 9.35 mutant embryos; (D-F) Wild-type embryos of

comparative stages. (A,D) stage 11; (B,E) stage 12; (C,F) stage 13 (Campos-Ortega and

Hartenstein, 1985). (A) In 9.35 mutants, germ cells fail to migrate away from the PMG

(arrowhead) at a time that in wild type (D), germ cells have split into two bilaterally

symmetric groups within lateral mesoderm (arrowheads). (B) As SGPs migrate anteriorly

in 9.35 mutants (arrow), the germ cells remain behind, closely associated with the PMG

(arrowhead). (E) In wild type at this stage, germ cells and SGPs have moved together and

are closely associated with one another (arrowhead). (C) Germ cells eventually leave the

PMG in 9.35 mutants and are either found in extreme posterior regions (arrow), or

between the bilaterally symmetric gonads (black arrowhead). Rarely are germ cells

associated with SGPs, which appear to develop normally (white arrowhead; compare with

white arrowhead in panel F).
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Fig. 3-3: Germ cells are delayed in their movement away from the PMG
in 9.35 mutant embryos
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Many embryonic tissues develop normally in 9.35 mutants
As with all previously unidentified germ cell migration mutants, it is not known whether
the 9.35 phenotype is caused by a defect in the germ cells or in one (or more) of the
somatic tissues with which the germ cells must interact during their development. In an
effort to distinguish between these possibilities, I analyzed the development of a variety of
somatic tissues in 9.35 mutants using tissue-specific markers. Since most germ cells fail to
contact SGPs in the mutant, one obvious possible explanation is that there is a defect in
specification of SGPs or in the development of gonadal mesoderm. We tested this
hypothesis by analyzing expression of the 412 retrotransposon, a gonadal mesoderm-
specific marker, in 9.35 mutants. As in wild type, 412 is initially expressed in a segmental
pattern in the mutant (Fig. 3-3A), and then becomes restricted to developing SGPs at later
stages (Fig. 3-3B, arrow; 3-3C, white arrowhead). Therefore, gonadal mesoderm
development does not appear to be affected in 9.35 mutants. It has been shown that some
germ cells must move around the developing visceral mesodermal layer in order to contact
SGPs (Broihier et al., 1998). It seemed therefore possible that a problem with visceral
mesoderm development could inhibit germ cells from properly associating with SGPs.
However, as assayed by expression of the visceral mesodermal markers tinman, bagpipe

and Fasciclin III, (Azpiazu and Frasch, 1993; Azpiazu et al., 1996), development of this
tissue in 9.35 mutant embryos is normal. Since germ cells in 9.35 mutants are delayed in
their movement away from the PMG, it seemed plausible that defects in PMG development

could contribute to the phenotype. I therefore examined the expression of a gene, Race,
which is specifically transcribed in PMG cells at the stage when the germ cells are moving
through and away from this tissue (Tatei et al., 1995). I found Race expression to be
unaltered in 9.35 mutant embryos. In order to determine if the 9.35 mutation affects other

migratory cell-systems, I analyzed the expression patterns of the 2A12, BP102, and
22.C10 markers, which are expressed in tracheal system, central nervous system, and
peripheral nervous system, respectively (Samakovlis et al., 1996; Seeger et al., 1993;
Zipursky et al., 1985). I found no obvious defects in any of the three tissues examined. It
is still possible that subtle problems occur during the development of these cell-types, but
are not apparent using these particular markers. Taken together, these results show that

many embryonic tissues, including those intimately associated with the migrating germ

cells, appear to develop normally in 9.35 mutants. However, this mutation is homozygous

semi-lethal (see below), suggesting that some aspect(s) of embryonic development are

abnormal. Nevertheless, the 9.35 lesion could potentially lie in a gene affecting germ cells

specifically, which we did not identify in our screen of the third chromosome. Mosaic

analysis of the 9.35 mutant phenotype should determine if this is the case.
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9.35 maps to an uncharacterized region between the dumpy and black markers
Standard recombination experiments placed the 9.35 lesion between the dumpy (dp) and

black (b) markers. In order to further refine the region in which the 9.35 mutation is

located, as well as to identify additional alleles, I searched for deletions in this region that

failed to complement the 9.35 germ cell migration defect. A list of the deletions tested is

shown in Table 3-2. Of all deletions tested, which comprise nearly all deletions available

that uncover this region, all complemented the 9.35 germ cell migration defect. As

mentioned above, the 9.35 mutation is homozygous semi-lethal. Those rare females that

do develop into adults are nearly infertile, as a result of oogenesis being blocked by stage

8. The deletions in Table 3-2 were also tested for their ability to complement the 9.35

oogenesis phenotype. Two overlapping deletions, Df(2L)TW50 and Df(2L)pr-A14 fail to

complement the 9.35 oogenesis defect, demonstrating that the germ cell migration and

oogenesis defects associated with the 9.35 mutant chromosome are most likely due to

independent lesions.
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Table 3-2. Deficiencies tested against 9.35

Deficiency breakpoints

Df(2L)dp-h25

Df(2L)tkv3

Df(2L)cl-h3

Df(2L)2802

Df(2L)E110

Df(2L)J136-H52

Df(2L)spd

Df(2L)TE80xl

Df(2L)TE 128x 11
Df(2L)TE128x36

Df(2L)TE128x33

Df(2L)TE128x45

Df(2L)N22-14

Df(2L)N22-5

Df(2L)30A;C

Df(2L)Mdh

Df(2L)TE196x1
Df(2L)J233

Df(2L)J39

Df(2L)J2

Df(2L)esc 10

Df(2L)prdl.7

Df(2L)b87e25

Df(2L)osp29

Df(2L)rl0

Df(2L)H20

Df(2L)TW137

Df(2L)TW50

Df(2L)pr-A14

Df(2L)E55

Df(2L)TW84

Df(2L)TW161

21E2-4;25B2-5

25A2-3;25D5-E1

25D2-4;26B2-5

25F2-3;25F4-26A1

25F3-26A 1;26D3-11
27C2-9;28B3-4

27D-E;28C

28D4;28E1

28E4-7;29B2-C1

29A2-B 1;29C2-5

29A1-2;29E1-2

29A2-B 1;29E2-F1

29C 1-2;30C8-9;30D 1-2;3 1 A 1-2

29D 1-2;30C4-D 1

30A;30C

30D-F;31F

29E2-F1 ;30C2-4
31A-B;31F-32A

31C-D;32D-E

31B-32A

33A8-B 1;33B2-3

33B2-3;34A1-2

34B 12-C1 ;35B10-C1

35B 1-3;35E6

35E1-2;36A6-7

36A8-9;36E1-2

36C2-4;37B9-C 1

36E4-F1;38A6-7

37D2-7;39A4-7

37D2-E1;37F5-38A1

37F5-38A1;39D3-E1

38A6-B 1;40A4-B 1



Although the deletions tested uncover a large portion of the region between the dp

and b markers, "gaps" remain within this region that have not been analyzed with respect to

the 9.35 germ cell migration defect. In order to determine if the 9.35 lesion affecting germ

cell migration maps to one of these gaps, I tested existing lethal P-element-mediated

mutants for their ability to complement the 9.35 germ cell migration phenotype. A list of P-

element-induced mutant lines used in this study is shown in Table 3-3. Of all mutants

tested which map between 27F and 30A7-8, all complement the 9.35 germ cell migration

defect. The results from this analysis do not preclude the possibility that the 9.35 germ cell

migration lesion maps within the 27F-30A7-8 region, but demonstrate that it is not allelic to

previously identified P-element-induced mutations found in this same region.

In an effort to more finely map the mutation responsible for the 9.35 germ cell

migration defect, I analyzed recombination frequencies between this lesion and a subset of

the P-elements listed in Table 3-3. The results from this analysis are shown in Table 3-4.

The recombination frequencies (rf) obtained between 9.35 and various P-element mutations

are shown, starting on the left from P-alleles mapping more distally to those located more

proximaly in linear order. Of those P-elements tested, k10210 and k07602 map more

closely to the 9.35 mutation than the other inserts (rf for k07602 vs. k09030: p=0.97; see

Materials and Methods). It is not possible to determine from this data where 9.35 maps

with respect to these two P-elements, since the recombinaiton frequencies obtained are not

significantly different (p=0.88). Although the recombination frequencies for the more

proximal elements appear to be inconsistent with their linear order, these values are also not

significantly different (rf for k09030 vs. k00206: p=0.94). A more precise location for the

9.35 lesion will require further mapping with a larger number of progeny.
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Table 3-3. P-elements tested against 9.35

P{ PZ}wg[r0727]

J9.86

P { lacW }1(2)k10316
P{PZ}l1(2)rL220
P{PZ}gel[1]

P { lacW }1(2)k06009

P { PZ}mts[02496]
P { PZ}l(2)06243
P{lacW}l(2)kl0210

P{PZ}l(2)05836

P { lacW })1(2)k07602

P { lacW }1(2)k09030
J9.156

P {lacW}l(2)k15916

P{lacW}l1(2)k00206

P{lacW)1}l(2)k07118

P{PZ}l(2)01482

P { lacW }1(2)k07704

P{PZ}lmg[03424]

P{PZ}l1(2)06825
J21.246

Cytological position

27F1-2

28C

28C1-2

28C4-6
28D
28D1-2

28D1-2

28D3-4
28D7-9
28E1-2

28E3-4

28E4-5
28E7-8

28F1-2

29A1-2

29C1-3

29C3-5

29D1-2

29D4-5

29F1-2
30A7-8



Table 3-4: Fine mapping of the 9.35 germ cell migration phenotype

k10316 k06009 k10210 k07602 k09030 k00206

.178 .183 .011 .029 .083 .040

k07118 k07704 k16002

.089 .064 .094

Recombination frequencies between the 9.35 germ cell migration lesion and various lethal P-element alleles are shown

(For map positions of the P-elements, see Table 3-4). P-alleles are designated as kxxxxx. Recombination frequencies

are determined by calculating two times the number of recombinants scored (the other half are lethal), divided by the

total number of flies. Approximately 150 flies were scored for each P-element tested (see Materials and Methods).
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22.38 is a dominant maternal mutation affecting germ cell-SGP association

We identified another mutant in our screen of the second chromosome, 22.38, which also

displays a strong, highly penetrant germ cell migration defect (Fig. 3-4). However, the

onset of the phenotype associated with this mutant occurs at a later stage than that seen in

9.35 mutant embryos. In 22.38 mutants, germ cells successfully move away from the

PMG and into the lateral mesodermal layer (Fig. 3-4A). However, many germ cells fail to

maintain their association with SGPs and as a result are excluded from the gonad (Fig. 3-

4C, arrowhead). Nevertheless, gonads do form in the mutant, and appear to have a similar

number of germ cells when compared to wild type (compare Fig. 3-4C with Fig. 3-4F).

The defect seen in 22.38 mutants does not appear to be due to a problem with gonadal

mesoderm development, since expression of the 412 retrotransposon is normal (Fig. 3-

4G).

Figure 3-4. 22.38 affects germ cell-SGP interactions

Anterior left in all panels. (A-H) Germ cells visualized in brown using an anti-Vasa

antibody. (G,H) SGPs recognized in blue using the 412 retrotransposon. (A,B,D,E)

lateral views; (C,F,G,H) dorsal views. (A-C) 22.38 mutant embryos; (D-F) Wild-type

embryos of comparative stages. (G,H) 22.38;hs-wg. (A,D) stage 11; (B,E) stage 12;

(C,F-H) stage 14/15 (Campos-Ortega and Hartenstein, 1985). (A) Germ cells correctly

migrate away from the PMG and into lateral mesoderm in 22.38 mutants (compare with

panel D). (B) Some germ cells properly associate with SGPs, but others are found in

locations between the developing gonads (arrowheads; compare with panel E). (C)

Although some germ cells are incorporated into gonads, others are excluded (arrowhead;

compare with panel F). (H) When wg is ectopically induced in a 22.38 mutant

background, more SGPs are specified (compare size of bracket with that in panel G), and

all germ cells are incorporated into the gonad. (G) Germ cells are excluded from gonads in

22.38;hs-wg embryos that have not been subjected to heat-shock (arrowheads).
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Fig. 3-4: Germ cells fail to properly associate with SGPs in 22.38 mutants
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The 22.38 mutant line is unique among our collection in that it is homozygous

viable. It therefore is one of our most compelling candidates for a mutation that specifically

affects germ cell migration, since all developmental processes required for viability of the

fly are normal. This line has an additional intriguing feature in that the mutation(s)

responsible for the germ cell migration defect behaves in a dominant, maternal fashion:

female flies heterozygous for the 22.38 lesion lay eggs with the characteristic germ cell

migration phenotype, regardless of the genotype of the parental male. The 22.38 line is

also associated with a zygotic defect. Homozygous mutant adult females lay fewer eggs

than wild type. Closer inspection of mutant ovaries reveals that the number of nuclei per

egg chamber is often much less than the normal sixteen found in wild type (Fig. 3-5). In

extreme cases, as few as two nuclei are found within an egg chamber (Fig. 3-5B,

arrowhead). Moreover, the remaining nuclei are often of abnormal size (compare

arrowhead in Fig. 3-5A with Fig. 3-5C). Presumably, many of these egg chambers

containing an abnormal array of nuclei degenerate, thereby causing the lower fecundity

observed for 22.38 homozygous mutants. This zygotic defect appears to be female-

specific, since homozygous mutant male flies carry out spermatogenesis normally.

A defect in DNA replication within developing egg chambers has been observed in

females homozygous for a weak allele of the cyclin E (cycE) gene (Lilly and Spradling,

1996). The 22.38 oogenesis defect, however, is most likely not allelic to cycE, since

females transheterozygous for 22.38 and either a weak or null allele of cycE carry out

oogenesis normally. Moreover, cycE alleles on their own do not show a germ cell

migration defect.

Figure 3-5. 22.38 mutant egg chambers contain an abnormal number of nuclei of

aberrant shape.

(A-C) DAPI-stained ovaries from 4- to 5- day-old females to highlight nuclei. (A,B)

Ovaries from 22.38/22.83 females. (C) Wild type. (A,B) Egg chambers often contain

much fewer than sixteen nuclei. An extreme example is shown in (B), where an egg

chamber only contains two visible nuclei (arrowhead). Many nuclei are also larger than

found in wild type [compare arrowhead in (A) with that in (C)].

-93-



Figure 3-5: Nurse cell number and size are altered in 22.38 mutant ovaries
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In order to learn more about the nature of the dominant maternal mutation associated

with the 22.38 germ cell migration defect, I searched for chromosomal deletions that would

either enhance or suppress the phenotype. In addition, I examined the deletion strains

themselves for a similar germ cell migration defect, in order to determine if the 22.38 locus

is haploinsufficient. Recombination mapping of the lesion associated with the 22.38 germ

cell migration phenotype placed it between the black (b) and purple (pr) markers on

chromosome 2L. A list of deletion strains tested that uncover areas between these two

markers is provided in Table 3-5. None of the deletions tested show a haploinsufficient

germ cell migration defect; however, embryos homozygous for the deletions often showed

aberrant germ cell migration. This is presumably a result of the loss of multiple gene

functions associated with the deletions. In addition, none of the deletions enhanced or

suppressed the 22.38 germ cell migration defect. However, two deletion strains,

Df(2L)rlO and Df(2L)H20, fail to complement the zygotic 22.38 oogenesis defect.

Interestingly, the cycE gene is found in the region deleted in the Df(2L)rlO strain (Lilly and

Spradling, 1996). Although these two deletions fail to enhance or supress the 22.38 germ

cell migration phenotype, it is still possible that the mutation responsible for the germ cell

migration phenotype is the same as that causing the oogenesis defect. For example, if

22.38 were a neomorphic mutation, lowering the dosage of the wild-type 22.38 gene

product would not necessarily enhance or suppress the germ cell migration phenotype.

Likewise, it is still possible that 22.38 represents a neomorphic mutation in the cycE gene

that behaves recessively for oogenesis, and would not show a phenotype when

transheterozygous to loss of function cycE alleles (see above). Further attempts to separate

the 22.38 germ cell migration defect from the oogenesis phenotype may determine if the

two phenotypes are due to different, or the same, mutation(s).

-95-



Table 3-5: Deficiencies tested against 22.38

Deficiency breakpoints

Df(2L)b87e25

Df(2L)osp29

Df(2L)rl0

Df(2L)H20

Df(2L)TW137

Df(2L)TW50

Df(2L)pr-A14

Df(2L)E55

Df(2L)TW84

Df(2L)TW161

Df(2L)TW1
Df(2L)DS6
Df(2R)M41A4

Df(2R)M41A8

Df(2R)M41A10

Df(2R)rl 10a

34B 12-C1;35B 10-Cl

35B 1-3;35E6

35E1-2;36A6-7

36A8-9;36E1-2

36C2-4;37B9-C

36E4-F1;38A6-7

37D2-7;39A4-7

37D2-E1 ;37F5-38A1

37F5-38A1;39D3-El

38A6-B 1;40A4-B 1

38A7-B 1;39C2-3
38F5;39E7-F1
41A

41A
41A

41A



Ectopic wingless expression can rescue the 22.38 germ cell migration defect

Although gonads form in 22.38 embryos, many germ cells fail to be incorporated into

them. One possible explanation for this problem is that the SGPs are "saturated" for germ

cells in mutant embryos. In other words, the number of SGPs may be the limiting factor to

enable all the germ cells to occupy the gonad. This situation is reminiscent of that observed

in embryos where the number of germ cells specified is increased due to a higher copy

number of the oskar (osk) gene. Embryos derived from females carrying four copies of the

osk gene develop twice the number of germ cells as found in wild-type controls (Ephrussi

and Lehmann, 1992), and show a germ cell migration phenotype similar to that seen in

22.38 mutants (data not shown). This suggests that in 4x osk embryos, SGP number is

not sufficient to incorporate the additional germ cells. There is no significant difference in

germ cell number in 22.38 mutants compared to wild type (22.38: x=38; wt: x=40). In

order to determine if SGP number is a limiting factor in 22.38 mutants, and as a result

causes germ cells to be excluded from the gonad, I attempted to rescue the 22.38 germ cell

migration defect by specifying additional SGPs through genetic means. It has been shown

that ectopic expression of the wingless (wg) gene via a heat shock promoter can induce

additional SGPs to be specified within PS 10-12 of lateral mesoderm (Boyle et al., 1997).

Ectopic wg expression in 22.38 mutant embryos also causes additional SGPs to develop

(compare size of brackets in Fig. 3-4H with Fig. 3-4G). Moreover, all germ cells appear

to assemble into the gonad, as evident by the lack of germ cells located outside this organ.

In contrast, germ cells are excluded from the gonad in 22.38 embryos lacking ectopic wg

activity but that are subjected to the same heat shock regimen (Fig. 3-4G, arrowhead).

Thus, the germ cell migration defect associated with the 22.38 lesion can be diminished in

the presence of additional SGPs. Although expression of the 412 retrotransposon appears

normal in 22.38 mutants, it is possible that a subtle decrease in SGP number has not been

detected. Alternatively, SGP number could be normal in 22.38 mutants, but the function

of these cells could be compromised. For example, if SGPs express a reduced number of

putative "germ cell-receptors" in 22.38 mutants, then increasing SGP number will

effectively increase the concentration of receptor, and could result in the recruitment of all

germ cells. Likewise, if the 22.38 migration defect were a result of a reduction in "SGP-

ligand" expression in the germ cells, then an effective increase in germ cell receptor through

additional SGPs could also rescue the germ cell migration phenotype. Accurate SGP

counts as well as mosaic analysis may be necessary for determining in which cell-type the

22.38 defect occurs.

The fact that only one allele has been identified for both the 9.35 and 22.38 germ

cell migration defects, combined with the lack of accurate mapping data makes further
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genetic and molecular analysis of these loci challenging. Especially in the case of 22.38, it

is difficult to determine the wild-type function of the gene associated with the mutation,

given that it behaves as a dominant allele. Further screens in the lab are underway in an

attempt to saturate the second chromosome for mutations affecting gonad formation:

presumably, additional alleles of 9.35, and perhaps 22.38 will be isolated and will facilitate

additional phenotypic and molecular characterizations of these loci.
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CHAPTER 4

Gonadal mesoderm and fat body initially follow a common developmental path in

Drosophila

SUMMARY

During gastrulation, the Drosophila mesoderm invaginates and forms a single cell layer in

close juxtaposition to the overlying ectoderm. Subsequently, particular cell types within

the mesoderm are specified along the antero-posterior and dorso-ventral axes. The exact

developmental pathways that guide the specification of different cell types within the

mesoderm are not well understood. We have analyzed the developmental relationship

between two mesodermal tissues in the Drosophila embryo, the gonadal mesoderm and the

fat body. Both tissues arise from lateral mesoderm within the eve domain. Whereas in the

eve domain of parasegments 10-12 gonadal mesoderm develops from dorsolateral

mesoderm and fat body from ventrolateral mesoderm, in parasegments 4-9 only fat body is

specified. Our results demonstrate that the cell fate decision between gonadal mesoderm

and fat body identity within dorsolateral mesoderm along the antero-posterior axis is

determined by the combined actions of genes including abdA, AbdB, and srp: while srp

promotes fat body development, abdA allows gonadal mesoderm to develop by repressing

srp function. Finally, we present evidence from genetic analysis suggesting that before

stage 10 of embryogenesis, gonadal mesoderm and the fat body have not yet been specified

as different cell types, but exist as a common pool of precursor cells requiring the functions

of the tin, zfh-1, and cli genes for their development.
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INTRODUCTION

Developmental programs leading to the specification and differentiation of particular cell

types often involve a combination of cell-autonomous factors, specific patterns of cell

division, and cell-cell interactions. How these combined elements lead to the specification

of cell types within the developing Drosophila mesoderm has recently been the focus of

intense study. During stage 8 and 9 of embryogenesis, the pair-rule genes even-skipped

(eve) and sloppy-paired (slp) act in the mesoderm to allocate cells into two domains within

each parasegment (PS) along the antero-posterior (A-P) axis (Azpiazu et al., 1996;

Riechmann et al., 1997). Cells within each domain will give rise to a specific set of

mesodermal tissues, such that midgut visceral mesoderm (gut musculature), fat body (see

below), and gonadal mesoderm (somatic component of the gonad) are derived from the eve

domain, whereas cardiac mesoderm (heart precursors) and somatic mesoderm (muscles)

are specified within the sip domain. Concomitant with this early patterning of the

mesoderm are two consecutive waves of cell division, as well as the migration of the

mesoderm dorsally along the ectoderm (reviewed in Bate, 1993). This movement places

the mesoderm in close contact with the overlying ectoderm, allowing signaling processes to

occur between the two layers. Two such signals are the products of the segment polarity

genes hedgehog (hh) and wingless (wg), which function downstream of eve and sip,

respectively, to further define mesodermal sub-domains along the A-P axis (Azpiazu et al.,

1996).

Patterning of the mesoderm along the dorso-ventral (D-V) axis also requires

signaling events between the two germ layers. During stage 10 of embryogenesis,

decapentaplegic (dpp) signaling is required in the ectoderm to maintain expression of the

tinman (tin) gene exclusively in the dorsal region of the mesoderm (Frasch, 1995;

Staehling-Hampton et al., 1994). Previous to this stage, tin is expressed throughout the

mesoderm (Azpiazu and Frasch, 1993). Dorsally-restricted tin expression is necessary for

the specification of dorsal mesodermal derivatives, including the midgut visceral

mesoderm, cardiac mesoderm, and dorsal muscles (Azpiazu and Frasch, 1993; Bodmer,

1993). Another wave of cell division occurs during this stage, along with the segregation

of the mesoderm into an inner and outer layer. The inner layer in part becomes visceral

mesoderm, whereas the outer layer gives rise to the somatic musculature (Bate, 1993). By

this time, specification of different mesodermal cell types has commenced, as is evident by

the cell-type specific expression of the bagpipe (bap) gene in the visceral mesoderm

(Azpiazu et al., 1996). Although a developmental and genetic pathway including eve, hh,

dpp, tin, and bap has been described for the specification of the midgut visceral mesoderm,
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similar pathways for other mesodermal derivatives such as gonadal mesoderm and the fat

body have yet to be elucidated.

Some of the genes required for specification and differentiation of gonadal

mesoderm have been recently identified. It has been shown that the homeotic genes

abdominal A (abdA) and Abdominal B (AbdB) are required for specifying somatic gonadal

precursors (SGPs), those cells which become gonadal mesoderm, within PS 10-12 (Boyle

and DiNardo, 1995). The clift (cli, also known as eyes-absent) gene is required for

gonadal mesoderm differentiation, and is specifically expressed in SGPs beginning at stage

11 (Boyle and DiNardo, 1995). This restricted expression requires abdA and AbdB

function (Boyle and DiNardo, 1995; our observations). Additional genes required for the

development of gonadal mesoderm including eve and hh have been identified through

screens for mutants affecting germ cell migration in Drosophila (Moore et al., 1998).

These studies showed that gonadal mesoderm is virtually abolished in eve mutants, but

present in sip mutants, demonstrating that gonadal mesoderm, like visceral mesoderm and

fat body, is derived from the eve domain of the mesoderm (Azpiazu et al., 1996; Moore et

al., 1998). It has been shown that gonadal mesoderm lies immediately ventral to the

visceral mesoderm that requires tin function for its specification (Boyle et al., 1997).

These and other studies found that tin is also required for gonadal mesoderm development

(Boyle et al., 1997; Moore et al., 1998). However, this function for tin does not depend

on a regulator of late tin expression, dpp, suggesting that the early, uniform expression of

tin throughout the mesoderm is critical for the development of this tissue (Broihier et al.,

1998). The zinc-finger homeodomain protein-1 (zfh-1), has been identified as another

regulator of gonadal mesoderm development (Broihier et al., 1998; Moore et al., 1998). It

has been demonstrated that when both tin and zfh-1 function are removed from embryos,

gonadal mesoderm is abolished, and virtually no fat body cells develop. This suggests a

model by which tin and zfh-1 function together in the determination of lateral mesoderm,

from which gonadal mesoderm and fat body are derived (Broihier et al., 1998).

The Drosophila fat body is an organ composed of adipose tissue that is thought to

function as the fly equivalent of the mammalian liver (Rizki, 1978). It is a mesodermally-

derived structure, which like gonadal mesoderm, arises from the eve domain of the

mesoderm (Azpiazu et al., 1996; Riechmann et al., 1997). Although a number of markers

have been identified that are expressed in fat body precursors at various embryonic stages

(Abel et al., 1993; Hoshizaki et al., 1994; Rehorn et al., 1996), little is known about the

developmental and genetic steps leading toward the specification of this cell type. One fat

body marker with a known developmental function is the serpent (srp) gene. srp encodes

a GATA family member transcription factor that is expressed in fat body precursors from
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stage 10 throughout embryogenesis (Abel et al., 1993; Rehorn et al., 1996). In srp

mutants, fat body precursors form, but fail to proliferate and differentiate (Rehorn et al.,

1996).

Although these combined studies have provided valuable information toward

understanding the developmental programs required for both gonadal mesoderm and fat

body, many questions regarding the origin and specification of these two cell-types remain

unanswered. We present here an analysis of gonadal mesoderm development as it relates

to the development of the embryonic fat body. Our studies indicate that both tissues are

found at identical D-V positions within different parasegments, and initially follow a

common developmental path relying on the same subset of genes. In addition, we show

that the abdA, AbdB, and srp genes determine the cell fate decision between gonadal

mesoderm and fat body cell fates along the A-P axis. Our results show that srp promotes

fat body development, while abdA allows gonadal mesoderm to develop by negatively

regulating srp function.
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MATERIALS AND METHODS

Fly stocks

The following alleles were used for all phenotypic analyses: abdAMX' and AbdBD10. 3 were

both provided by Welcome Bender. There is no detectable protein in abdAMX' mutants, and

therefore is thought to approximate the null phenotype (Karch et al., 1990). AbdBD101.3 is a

point mutation that is phenotypically null (I. Duncan, personal communication). cli2D is a

strong allele obtained from Bloomington stock center (Boyle et al., 1997). dppH46 was

provided by Vern Twombly and Bill Gelbart. This allele contains a deletion within the

locus and is thought to approximate the null phenotype (St. Johnston et al., 1990). srp9L

was obtained from the Bloomington stock center and behaves as a phenotypic null (Reuter,

1994). tinAGC14 [Df(3R)GC14] was obtained from Manfred Frasch and is a deletion

removing the entire locus (Azpiazu and Frasch, 1993). For analysis of lack of zfh-1

function, embryos transheterozygous for zjh-1 75 26 /65 3 4 were used, and in the tin,zfh-1 and

cli;zfh-1 double mutant strains, zfh-1 7 5.26 was used. Both zfh-1 alleles show no detectable

protein in embryos, and behave as phenotypic nulls (Broihier et al., 1998). The abdA srp

double mutant was constructed using the abdAD10024 and srp9L alleles. The abdAD100.24

allele behaves as a phenotypic null (I. Duncan, personal communication.)
The hsp70-abdA line was obtained from Gines Morata through Monica Boyle.

Ectopic abdA function was induced by heat shocking embryos at 4 and 6 hours of

development according to the method of Boyle and DiNardo (1995). Embryos were fixed

and antibody stained as described below.

Antibody staining

The following antibodies were used in immunostaining of embryos: rabbit polyclonal anti-

P-galactosidase (Cappel), mouse monoclonal anti-Cli (provided by Nancy Bonini), rabbit

polyclonal anti-Srp (provided by Rolf Reuter), and mouse polyclonal anti-Zfh-1 (provided

by Zichun Lai). Prior to use, the anti-f3-galactosidase and secondary antibodies (see

below) were pre-absorbed against an overnight collection of wild-type embryos.

Antibody detection was performed with either horseradish peroxidase using a

biotinylated secondary antibody (Jackson ImmunoResearch) and the Elite Kit (Vector

Labs), or with a directly conjugated alkaline-phosphatase secondary antibody (Jackson

ImmunoResearch). Embryos were fixed and devitellinized according to the method

described in Gavis and Lehmann (1992), with the modification that 1XPBS and 50 mM

EDTA were used in place of PEMS during the fixation. Embryos were rehydrated and

subjected to antibody staining as described in Eldon and Pirrotta (1991). For whole-mount
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analysis, embryos were mounted onto slides in PolyBed812 (Polysciences) according to

Ephrussi et al. (1991), then analyzed with a Zeiss Axiophot microscope using Nomarski

optics.
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RESULTS

Gonadal mesoderm and fat body precursors share identical positions in different

parasegments

It has been recently shown that both gonadal mesoderm and fat body are derived from

within the eve domain of the mesoderm (Moore et al., 1998; Riechmann et al., 1997).

Moreover, in this domain, both tissues arise from clusters of lateral-mesodermal cells as

defined by expression of Zfh-1 protein at stage 10 of embryogenesis (Broihier et al.,
1998). Since gonadal mesoderm is derived only from PS10-12 (Boyle et al., 1997 and

Fig. 4-1A,B), we wanted to investigate in more detail the spatial relationship between

gonadal mesoderm and fat body within different parasegments. We found that in PS4-9

and PS 13, precursors of the embryonic fat body, as visualized by expression of the Srp

protein (Abel et al., 1993; Rehorn et al., 1996), are found in the identical D-V position as

SGPs, visualized by high levels of Zfh-l protein, in PS 10-12 (Fig. 4-1). We refer to this

region of the fat body and gonadal mesoderm collectively as dorsolateral mesoderm. In all

parasegments, additional fat body precursors arise in an area ventral to where the SGPs

form in PS 10-12 (Fig. 4-1C,D). These cells we have collectively termed ventrolateral

mesoderm. As a consequence, while ventral fat body is specified in all parasegments, there

is a dorsal gap within the developing fat body in PS10-12 in which SGPs are specified

(Fig. 4-1C,D). Therefore, in PS4-9 and PS13, only fat body develops from lateral

mesoderm, whereas in PS10-12, both gonadal mesoderm and fat body are specified. We

confirmed these results by sectioning embryos stained with markers recognizing both

gonadal mesoderm and fat body.
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Figure 4-1: Gonadal mesoderm and fat body precursors occupy identical positions

within different parasegments.

Anterior left in all panels; lateral views. Embryos in panels A and C are at stage 11;

embryos in panels B and D are at stage 13 (stages according to Campos-Ortega and

Hartenstein, 1997). (A,B) Somatic gonadal precursors (SGPs) highlighted using an anti-

Cli antibody (A, arrows; B, stippled circle). (C,D) SGPs highlighted in brown using an

anti-Zfh-1 antibody (C, arrows; D, stippled circle); fat body precursors visualized in blue

using an anti-Srp antibody. In PS 10-12, SGPs occupy the most dorsal region of staining,

whereas fat body precursors are found in more ventral and in (C), posterior areas. The

ventral and posterior fat body precursors in (C) most likely give rise to the ventral fat body

cells in (D). In PS4-9 and PS 13, fat body precursors span the entire region highlighted by

staining.
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Fig. 4-1. Gonadal mesoderm and fat body develop in similar positions

in different parasegments
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Control of gonadal mesoderm versus fat body cell fate along the A-P axis

The observations that gonadal mesoderm is only specified from dorsolateral mesoderm in

PS 10-12, and that fat body develops in the same D-V position in PS4-9 and PS 13 led us to

investigate what controls the cell fate decision between gonadal mesoderm and fat body

along the A-P axis. It has been shown that the homeotic genes abdA and AbdB are

required for the specification of gonadal mesoderm, with abdA required for gonadal

mesoderm in PS 10-12, and AbdB required only in PS 12 (Boyle and DiNardo, 1995). We

find that in abdA mutants, Srp-expressing cells are found in the region normally occupied

by gonadal mesoderm (Fig. 4-2B; compare with 4-2A). Moreover, in embryos lacking

AbdB function, Srp-expressing cells are now observed in PS12 (Fig. 4-2C; compare with

4-2A). This suggests that in wild-type embryos, abdA and AbdB function to repress srp

expression in PS 10-12. The srp gene has been shown to be required for the proliferation

and morphogenesis of fat body precursors (Rehorn et al., 1996). Therefore, abdA and

AbdB result in the inhibition of fat body development within these parasegments. Previous

work has shown that ectopic expression of abdA in parasegments anterior to PS 10-12

results in an expansion of gonadal mesoderm into these parasegments (Boyle and DiNardo,

1995). We find that ectopic abdA also represses Srp expression in these same anterior

parasegments, suggesting that abdA promotes gonadal mesoderm at the expense of fat

body (Fig. 4-2E; compare with 4-2D). We also find that ectopic abdA activity represses

Srp expression even in ventrolateral regions of PS 10-12 (Fig. 4-2E, arrowhead; see

Discussion). Taken together, these results demonstrate that abdA and AbdB play key roles

in directing the developmental decision between gonadal mesoderm and fat body cell fates

along the A-P axis.
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Figure 4-2. abdA and AbdB promote gonadal mesoderm development at the expense

of fat body.

Anterior left in all panels; lateral views. (A-C) SGPs highlighted using an anti-Zfh-

antibody (brown, stippled circles); fat body precursors visualized using an anti-Srp

antibody (blue). (D,E) Fat body precursors identified using an anti-Srp antibody (brown).

(A,D) Wildtype. (B) abdA-. SGPs are absent, and have been replaced by fat body

precursors. (C) AbdB-. SGPs have been replaced by fat body precursors in PS12 (see

designations under stained cells), where AbdB is known to function (Boyle and DiNardo,

1995). (E) hs-abdA. Fewer fat body precursors are found in PS8-9 than in wildtype.

This is precisely where ectopic gonadal mesoderm has been found to develop in hs-abdA

embryos (Boyle and DiNardo, 1995). Inhibition of srp expression extends into ventral

regions of the fat body tissue in PS 10 (arrow). This area has not been shown to be

occupied by SGPs in hs-abdA embryos (Boyle and DiNardo, 1995; see Discussion).
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Fig. 4-2. abdA and AbdB determine gonadal
versus fat body identity in PS 10-12

mesoderm
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We next wanted to determine if the reciprocal cell fate transformation of fat body

into gonadal mesoderm could occur by removing a gene activity required for the

development of fat body. One gene known to be required for fat body development is the

srp gene (Rehorn et al., 1996). We therefore analyzed the expression of two gonadal

mesoderm cell markers, Zfh-1 and Cli proteins, in srp mutant embryos. By stage 11 in

wild-type embryos, high levels of Zfh-1 protein are found in gonadal mesoderm (PS 10-

12), whereas low levels are expressed in other parasegments (Broihier et al., 1998 and Fig.

4-1C). However, we find that in srp mutant embryos, high levels of Zfh-1 are expressed

in every parasegment (Fig. 4-3A), suggesting that aspects of gonadal mesoderm

development are occurring in place of fat body development. Like Zfh-1, Cli protein

expression in lateral mesoderm is only found in the gonadal mesoderm within PS10-12 in

wild-type embryos (Fig. 4-1A). In embryos lacking srp function, Cli expression is

expanded anteriorly and posteriorly, indicating that gonadal mesoderm cell types now

develop in these parasegments (Fig. 4-3C; compare with Fig. 4-1A). Taken together, these

results demonstrate that srp activity results in the repression of gonadal mesoderm

development outside of PS 10-12 and therefore, like abdA, plays a role in the decision

between gonadal mesoderm and fat body cell fates. Thus, the combined results of the

effect of abdA, AbdB, and srp on the development of fat body and gonadal mesoderm

suggest that a switch mechanism is involved in specifying gonadal mesoderm versus fat

body cell fates along the A-P axis. abdA and AbdB switch "off' fat body cell fate, thereby

allowing gonadal mesoderm development, whereas srp is involved in a mechanism

switching "off"' gonadal mesoderm identity and "on" the developmental program toward fat

body differentiation.

Our results demonstrating that srp is expressed in dorsolateral mesoderm within

PS 10-12 in abdA mutants suggests that abdA normally acts upstream of srp to negatively

affect its expression within this region. In order to directly test the epistatic relationship

between abdA and srp, we investigated the effect of removing the activities of both genes

on the development of dorsolateral mesoderm. We found that like embryos lacking srp

function alone, embryos mutant for both abdA and srp express gonadal mesoderm-specific

markers in PS4-13 (Fig. 4-3B,D). Thus, abdA acts upstream of srp to negatively regulate

its function, thereby allowing the development of gonadal mesoderm. This result further

demonstrates that in the absence of fat body development, abdA is no longer necessary for

the specification of SGPs.
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Figure 4-3. Expression domains of gonadal mesoderm markers are expanded in srp

and abdA srp mutants.

Anterior left in all panels; lateral views. All embryos are at approximately stage 11. (A,C)

srp-. (B,D) abdA- srp-. (A,B) Expression of zfh-1 (brown) using an anti-Zfh-1 antibody.

In wild type, high levels of Zfh-1 mesodermal protein are only found in PS 10-12 (see Fig.

4-1C, arrows). In srp and abdA srp mutants, high levels are detected in all parasegments.

(C,D) Cli expression (brown) using an anti-Cli antibody. Cli mesodermal protein

expression is only detected in PS 10-12 in wild-type embryos (see Fig. 4-1A, arrows). In

srp and abdA srp mutants, Cli expression expands anteriorly and posteriorly.
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abdA inhibits srp function to allow gonadal mesoderm development
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Gonadal mesoderm and fat body share common genes for their development

The observation that at stage 13 the dorsal fat body and gonadal mesoderm occupy the

same D-V position within different parasegments suggests that they may be

developmentally closely-related tissues. In principle, these two tissues could develop by

two different mechanisms. On the one hand, at the time that zfh-1 and tin define lateral

mesoderm, gonadal mesoderm and fat body could be already specified as distinct cell

types. This might be manifested in the requirement of different genes for early steps in the

development of each tissue. Conversely, precursors of the gonadal mesoderm and fat body

could initially follow the same developmental pathway, therefore requiring the same genes,

and only later would follow alternate paths toward gonadal mesoderm or fat body

development.

In an effort to distinguish between these two possibilities, we analyzed fat body

development in embryos lacking the functions of genes required for gonadal mesoderm

development that were identified in a screen for mutations affecting germ cell migration in

Drosophila (Moore et al., 1998). We find that the zfh-1, tin, and cli genes are all required

for fat body development (Fig. 4-4). In zJh-1 mutants, fewer fat body precursors develop,

often resulting in gaps within the developing tissue (Fig. 4-4A). tin is also required for the

proper number of fat body cells to develop correctly. In tin mutant embryos, the bridges of

fat body cells that normally span the parasegments at stage 13 fail to form (Fig. 4-4B,

arrow). At this stage, fat body tissue instead remains in a state that morphologically

resembles a structure normally seen at stage 12. Previous work has shown that tin does

not depend on dpp for its function in gonadal mesoderm development, suggesting that it is

the early, dpp-independent expression of tin throughout the mesoderm that is necessary for

gonadogenesis (Broihier et al., 1998). We have found that in dpp mutants, fat body cells

do develop, although the morphology of the fat body structure is difficult to assess given

the severe developmental defects associated with this genetic background (Fig. 4-4C).

However, a larger number of Srp-expressing cells are present in dpp mutants than in

embryos lacking tin function (compare Fig. 4-4C with Fig. 4-4B), implicating the early

function of tin in the pathway leading toward the specification of fat body as well as

gonadal mesoderm. Whereas tin and zfh-1 act at an early stage in gonadal mesoderm

development, the cli gene is later required for the differentiation of this tissue (Boyle et al.,

1997; Broihier et al., 1998; our observations). We find that cli also affects differentiation

of the fat body. In cli mutants, fat body precursors form, but do not differentiate into the

characteristic "ladder" structure found at this stage in wild-type embryos (Fig. 4-4D).

It has been shown that the above genes can be placed into a genetic hierarchy based

on epistasis experiments. We have shown that gonadal mesoderm is completely absent, and
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that the number of fat body precursors is virtually abolished, in embryos lacking both zfh-1

and tin function (Broihier et al., 1998 and Fig. 4-4F). Because the phenotypes seen in the

double mutant are more severe than those observed in either single mutant, it can be

concluded that tin and zfh-1 share overlapping functions in the development of both tissues.

It has been recently shown that cli expression in gonadal mesoderm is markedly reduced in

embryos lacking zjh-1 activity. In cli;zfh-1 double mutants, the gonadal mesoderm defect

is identical to that seen in zfh-I single mutants. Taken together, these results indicate that

zfh-1 acts upstream of cli in gonadogenesis (Broihier at al., 1998). We have also examined

the effect of removing both cli and zfh-1 function on the development of the fat body. In

cli;zfh-1 double mutants, the defect observed in the fat body is identical to that seen in zfh-1

mutants alone (compare Fig. 4-4E with Fig. 4-4A). Interestingly, a larger number of fat

body cells are present in the double mutant than in cli single mutants (compare Fig. 4-4E

with 4-4D; see Discussion). These results suggest that zfh-1 and cli interact similarly in

both gonadal mesoderm and fat body development.

Thus, we have demonstrated that many genes required for development of gonadal

mesoderm act in a similar manner to direct fat body development. These combined results

favor the hypothesis that steps leading to the specification of gonadal mesoderm and fat

body initially occur via the same genetic pathway.
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Figure 4-4. Genes required for gonadal mesoderm development have a similar

requirement in the development of the fat body.

Anterior left in all panels; lateral views. All embryos are approximately at stage 13. (A-G)

Fat body development visualized using an anti-Srp antibody. (A-F) Mutants; (G) Wildtype.

(A) zJh-I. The number of fat body cells is reduced when compared to (G), often resulting

in gaps within the tissue. (B) tin-. The characteristic bridges of fat body cells between

parasegments fail to form (arrow). This structure resembles that seen in wild-type stage 12

embryos. (C) dpp-. Fat body precursors develop, although the tissue morphology cannot

be assayed due to the severe developmental defects associated with these embryos.

However, the number of fat body cells observed is greater than in tin mutants (compare

with panel B). (D) clt. Fat body precursors form, but fail to differentiate into the proper

structure. (E) cli; zJh-1-. Fewer fat body cells develop, resulting in a phenotype

indistinguishable from that seen in zJh-1 mutants (compare with panel A). Interestingly,

this phenotype is less severe than that observed in cli mutants (compare with panel D, see

DISCUSSION). (F) tin-, zfh-l. Fat body cells are virtually abolished.
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Fig. 4-4. Genes required for gonadal mesoderm development act
similarly in fat body development
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DISCUSSION

Previous work has shown that both gonadal mesoderm and the fat body develop from

lateral mesoderm derived from the eve domain of the mesoderm (Broihier et al., 1998;

Moore et al., 1998; Riechmann et al., 1997). Our analysis suggests that prior to their

specification as distinct cell types, gonadal mesoderm and fat body precursors exist as a

common pool of cells that require a unique set of genes for their determination and

development.

Positional relationship between gonadal mesoderm and fat body

We have shown that gonadal mesoderm and dorsal fat body precursors are found in

identical positions in different parasegments from stages 11-13 of embryogenesis.

Specifically, we found that in PS4-9, the dorsal component of fat body develops in the

same D-V location where gonadal mesoderm forms in PS 10-12. Moreover, in PS 10-12,

fat body precursors are found immediately ventral to where gonadal mesoderm develops.

These observations provide the first evidence suggesting that gonadal mesoderm and fat

body are developmentally closely-related tissues.

Genetic relationship between gonadal mesoderm and fat body

Our results demonstrate that mutations in genes disrupting gonadal mesoderm development

have similar phenotypic consequences on the development of the fat body. Moreover, we

found that the genetic hierarchy controlling gonadal mesoderm development is the same as

that functioning in the development of the fat body. These results provide further evidence

that both tissues follow a common developmental pathway.

We have shown that tin and zfh-1 are required for the development of both gonadal

mesoderm and fat body. Moreover, we have demonstrated that both tissues require the

dpp-independent expression of tin throughout the mesoderm that occurs before stage 10 of

embryogenesis. This is consistent with the observation that tin expression cannot be

detected in lateral mesoderm from stage 10 onward (Azpiazu and Frasch, 1993).

However, the effect of loss of tin function on both gonadal mesoderm and fat body cannot

be detected until later embryonic stages. It is only when both tin and zfh-1 are

simultaneously removed that the formation of gonadal mesoderm and fat body is virtually

abolished, revealing the early and overlapping functions of both genes in the developmental

pathways of both tissues. These partially redundant functions for tin and zjh-1 suggest that

zfh-1 acts at the same time as tin in the determination of lateral mesoderm. This is

consistent with the fact that like tin, zfh-1 is expressed throughout the mesoderm prior to
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stage 10 (Lai et al., 1991). Therefore, we propose that prior to stage 10, gonadal

mesoderm and fat body have not yet been specified, but exist as a population of precursor

cells requiring the functions of both tin and zJh-1. This is further supported by the

observation that at stage 10, Zfh-1 is expressed at uniform levels in lateral mesoderm

within PS4-12, whereas high levels of Zfh-1 expression specifically in PS 10-12 are not

detected until stage 11 (Broihier et al., 1998). Furthermore, the expression of all known

gonadal mesoderm and fat body cell-specific markers is only observed during or after stage

10 (Boyle et al., 1997; Broihier et al., 1998; Riechmann et al., 1997).

The cli gene is also required for both gonadal mesoderm and fat body development.

However, in contrast to tin and zfh-1, cli does not affect the determination of lateral

mesoderm. In cli mutants, precursors of both gonadal mesoderm and fat body form but do

not differentiate (Boyle et al., 1997; this work). This demonstrates that like zfh-1 and tin,
cli affects both fat body and gonadal mesoderm development in a similar manner. It is not

known at what point the cli gene is required in the development of either tissue. Cli protein

is found throughout the mesoderm prior to stage 11, but becomes specifically expressed in

SGPs at later timepoints. In contrast, Cli protein cannot be detected in fat body cells once

they have been specified. Therefore, there are two ways by which cli could be involved in

the development of gonadal mesoderm and fat body. One possibility is that cli is required

before stage 11 for both tissues, but does not belie its function until later stages in

development. A precedence for this type of gene behavior has been shown through our

studies of tin (see above). In this model, cli could also play a role in gonadal mesoderm

development at later embryonic stages, consistent with its expression pattern in SGPs

throughout embryogenesis. Conversely, cli could function early in fat body development,
but not play a role in gonadal mesoderm development until later in the differentiation of this

tissue. Although both explanations are formally possible, our results favor the first model.

The fact that cli mutants have similar effects on both fat body and gonadal mesoderm

development suggests that cli functions at a stage before gonadal mesoderm and fat body

have been specified as unique cell types. Moreover, the cli expression pattern indicates that

it is unlikely to function in fat body development after stage 10. We cannot at this point

discern whether or not cli continues to play a role in gonadal mesoderm development after

this stage.

Our analysis of fat body development in cli;zfh-1 double mutants demonstrates that

these two genes interact in a similar manner for both gonadal mesoderm and fat body

development, further indicating that the two tissues initially follow a common genetic

pathway. However, it is surprising that more fat body cells develop in the cli;zfh-1 double

mutant than in cli single mutant embryos. Interestingly, a similar result has been observed
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using the 412 retrotransposon as a marker for gonadal mesoderm development. In cli

mutants, fewer 412-expressing cells are detected than in zfh-1 mutants, whereas the double

mutant is indistinguishable from embryos lacking zfh-i function alone (Broihier and

Lehmann, unpublished observations). These results indicate that lack of zfh-1 activity

bypasses cli's requirement in both gonadal mesoderm and fat body development. One

possible explanation for this result is that without zJh-1 function, both cell types are

developmentally stalled at a stage before cli activity is required. Therefore, loss of cli

function does not affect these precursor cells, and they behave as in zfh-1 single mutants.

However, the fact that residual gonadal mesoderm and fat body cells still express tissue-

specific markers in zfh-1;cli double mutants suggests that some aspects of differentiation

proceed in these cells. Further investigation into the functional relationship between zfh-1

and cli will be necessary to address these observations.

Our results further suggest that precursors of gonadal mesoderm and fat body are

determined independently of the visceral mesoderm, another eve-domain derivative.

Although zfh- 1 and cli are required at an early stage for both gonadal mesoderm and fat

body development, neither is necessary for visceral mesoderm formation. In addition to its

role in visceral mesoderm specification (Azpiazu and Frasch, 1993; Bodmer, 1993), we

have shown that tin is also required for both gonadal mesoderm and fat body development.

However, we have demonstrated that these latter functions for tin are dependent on its

early, ubiquitous expression throughout the mesoderm. This is in contrast to previous

work demonstrating that dorsally restricted tin expression is necessary for visceral

mesoderm formation (Frasch, 1995; Staehling-Hampton et al., 1994). Therefore, tin's role

in visceral mesoderm specification is distinct from its requirement in the development of

gonadal mesoderm and fat body. Given that zfh-1, tin and cli all appear to function in

gonadal mesoderm and fat body development before stage 10, our results suggest that at

this stage, the developmental pathways leading toward gonadal mesoderm and fat body

versus visceral mesoderm specification have already diverged.

Control of decision between gonadal mesoderm and fat body cell fates

We have shown that the transcription factors abdA, AbdB, and srp are key players in the

control of gonadal mesoderm versus fat body development along the A-P axis. In

principle, two different mechanisms could account for the initial specification of each cell

type within a parasegment. The first possibility is that abdA and srp could merely act to

promote gonadal mesoderm and fat body development, respectively, with no effect on the

alternate tissue. Therefore, loss of function of these genes would result in lack of cell

differentiation, and possibly cell death. The second possibility is that abdA and srp also
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function in repressing development of the alternate cell type, thereby creating a switch

mechanism that chooses either gonadal mesoderm or fat body cell fates. Our results favor

the latter hypothesis. In abdA mutants, fat body develops in place of gonadal mesoderm.

In srp mutants, gonadal mesoderm markers are expressed where fat body normally

develops. Moreover, ectopic abdA promotes gonadal mesoderm at the expense of fat body

development in the dorsal component of lateral mesoderm. Therefore, the progeny of

dorsolateral mesoderm cells either give rise to gonadal mesoderm or fat body along the A-P

axis, depending on the presence or absence of abdA and srp.

Our results from the abdA srp double mutant demonstrate that the development of

gonadal mesoderm from dorsolateral mesoderm in PS 10-12 is executed through abdA-

dependent negative regulation of srp function in this region. It is not known at what level

this regulation occurs, although a likely possibility is that abdA directly affects srp

transcription, given that abdA encodes a homeodomain protein (Karch et al., 1990). The

phenotype observed in the abdA srp double mutant also shows that aspects of gonadal

mesoderm development can occur in the absence of abdA activity, as long as fat body

development is abolished. This suggests that the developmental "ground state" of

dorsolateral mesoderm is gonadal mesoderm. In light of this theory, it is interesting that in

other insect species as well as in many chilopods (centipedes), gonadal primordium

develop from multiple abdominal segments. Most strikingly, in Pyrrhocoris apterus (fire

beetle), gonadal tissue arises in abdominal segments one through eight (reviewed in

Johannsen and Butt, 1941; Seidel, 1924).

It is unclear what mechanism controls the D-V decision between gonadal mesoderm

and fat body within PS 10-12. Whereas abdA is required to promote gonadal mesoderm

versus fat body development in dorsolateral mesoderm in PS 10-12, fat body develops from

ventrolateral mesoderm within the same parasegments. It is possible that abdA expression

does not extend into the region where the ventral fat body precursors are found.

Alternatively, a ventrally-localized factor analogous to tin in the specification of dorsal

mesoderm derivatives could inhibit abdA function in more ventral regions of lateral

mesoderm. The results from the hs-abdA experiment argue that a combination of these

theories could prove correct. We have demonstrated that ectopic abdA expression can

inhibit srp expression, and therefore fat body development, in more ventral regions of the

embryo. This suggests that in wild-type embryos, abdA is either not present, or is not

active in the more ventral cells. However, gonadal mesoderm does not develop in place of

fat body in this ventral region of ectopic abdA activity (Boyle and DiNardo, 1995), arguing

for a ventrally-localized factor that inhibits some aspects of abdA function in these cells.

These results suggest that prior to abdA function, D-V differences within lateral mesoderm
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cells have already occurred. Further analysis of the spatial pattern of abdA expression in

the mesoderm may help to address how these differences along the D-V axis are generated.

A model for gonadal mesoderm and fat body development

Our combined results lead to a developmental and genetic model of the pathway toward

specification of two mesodermal tissues, the gonadal mesoderm and embryonic fat body

(Fig. 4-5). Since both tissues are derived from within the eve domain of the mesoderm, we

will only focus on this mesodermal component. During germ band extension (stage 8-9),

the early functions of both tin and zjh-1 determine lateral mesoderm while other

mesodermal sub-types, including those that will become visceral mesoderm, are determined

as distinct cell-populations. The cli gene then renders lateral mesoderm cells competent to

fully differentiate into either fat body or gonadal mesoderm identity. During late stage 10,

the combined functions of abdA, AbdB, and srp control the decision between gonadal

mesoderm and fat body cell fates along the A-P axis. In PS 10-12, abdA and AbdB

function to repress srp expression in dorsolateral mesoderm, thereby allowing gonadal

mesoderm development in this location. Ventrolateral mesoderm cells, expressing srp,

develop into fat body. In PS4-9, abdA function is absent, resulting in all lateral mesoderm

cells adopting a fat body cell fate. It is possible that cli has an additional role in gonadal

mesoderm development at this stage. Presumably other factors, such as those determining

D-V differences within lateral mesoderm cells and their derivatives, remain to be identified.

Taken together, these studies provide a model for the events leading to the specification of

gonadal mesoderm and fat body cell fates that includes gene functions, developmental

steps, and regulatory interactions.
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Figure 4-5. Model for lateral mesoderm development within the eve domain of the

mesoderm.

In PS4-9, tin, zfh-1, and cli are required before stage 10 to determine lateral mesoderm.

During stages 10-11, srp is involved in specifying fat body cell fates. In PS 10-12, the

same genes are required before stage 10 for lateral mesoderm determination. During stages

10-11, the combined functions of abdA and AbdB specify gonadal mesoderm identity by

repressing fat body development in dorsolateral mesoderm. abdA executes this function

through negative regulation of srp . It is possible that cli has a continued requirement in

gonadal mesoderm development at this stage. srp is required for specifying fat body

identity in ventrolateral mesoderm. Although abdA, AbdB, and srp are all required for

specifying gonadal mesoderm and fat body cell fates, respectively, along the A-P axis, it is

not known what controls the cell fate decision between these two tissues along the D-V

axis.

-127-



Fig. 4-5: Model for lateral mesoderm development in Drosophila
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CHAPTER 5

Discussion

Drosophila germ cell migration: implications for a mouse model

The genetic screens presented in this thesis were successful in outlining the steps required

for germ cell migration in Drosophila, as well as the identification of genes and

developmental processes necessary for the specification and differentiation of the somatic

gonadal mesoderm. However, it remains to be determined if any of the genes discovered

through these screens play a role in actively guiding the germ cells to their proper target

cells, the SGPs. For example, no putative ligand/receptor interactions analagous to the

SCF/c-kit paradigm in the mouse have been identified in the Drosophila system. Efforts to

identify the homologous factors in the fly via molecular techniques have so far proven

unsuccessful (A. Forbes, personal communication). It may be that these putative signaling

molecules in the fly are required for many other developmental processes and have a large

maternal component, thereby rendering their detection through genetic screens for

zygotically acting genes virtually impossible. It therefore may be necessary to integrate in

vitro studies similar to those used in the mouse into the genetic system that has been used

thus far in Drosophila. Preliminary studies have proven that germ cells can be induced to

migrate in culture (Jaglarz and Howard, 1995). Efforts are underway in our lab to set up

an in vitro migration system to identify chemotactic molecules acting on Drosophila germ

cells. Perhaps by using known soluble factors proven to affect mouse germ cell

development in culture (see Introduction), the identification of additional factors involved in

Drosophila germ cell migration may be possible. Combining these results with the

information gained through genetic screens may aid in determining the developmental

framework within which these soluble factors are acting.

Although molecules analagous to those shown to act on mouse germ cell

development were not identified through our screens in the fly, other developmental
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processes discovered through this work may have direct relevance to mammalian systems.

Chapter 4 describes how the gonadal mesoderm is a close developmental relative of the fat

body, and that both tissues seem to develop from a common primordium. This situation is

anatomically similar to that seen in the mouse developing urogenital ridge. In mouse

embryos, the urogenital ridge gives rise to both the gonad as well as components of the

nephric system. The gonadal component can first be seen as a thickening of the coelomic

side of the urogenital ridge. The other side forms the mesonephros, which in the male

develops to become an integral component of the developing testes (Buehr et al., 1992;

Merchant-Larios et al., 1993). Although a complete analysis of the developmental origin of

these two tissues has not been presented, one molecule, the product of the Wilm's Tumor-1

(WT-1) gene, is expressed and functions in both the gonad and nephric tissue (Armstrong

et al., 1992; Kreidberg et al., 1993; Pelletier et al., 1991). Since germ cells are able to

recognize and initially colonize the genital ridge in WT-1 mutants, it appears that this gene

is required for the differentiation, rather than specification, of somatic gonadal tissue

(Kreidberg et al., 1993). Perhaps it plays an analagous role to the Drosophila cli gene in

the differentiation of both gonadal mesoderm and fat body (see Chapter 4; Moore et al.,

1998b). Interestingly, in both WT-1 and cli mutants, germ cells initially associate with

their somatic partner cells, but then lose this attachment at later developmental stages (Boyle

et al., 1997; Kreidberg et al., 1993; Rongo et al., 1998). Further investigation of the

developmental relationship bewteen the mouse somatic gonad and mesonephric tissue may

reveal more similarities between gonad development in the mouse and fly.

Fat body as "second best tissue"

One of the first clues leading to the discovery that Drosophila gonadal mesoderm and fat

body are closely-related tissues was that in certain mutant backgrounds, "lost" germ cells

that do not coalesce into a gonad are often found within developing fat body tissue. An

example of one mutant, trx, is shown in Figure 5-1. In this mutant, the posterior germ

cells do not associate with SGPs, but instead are found associated with fat body cells (Fig.

5-1A-C, arrowheads). It is unclear if proper specification of fat body identity is required

for this phenotype, since the extreme morphological defects associated with srp mutants,

lacking fat body cells, preclude careful analysis of srp trx double mutants. However, it

seems plausable that in the absence of properly specified gonadal mesoderm, germ cells

preferentially adhere to fat body cells rather than other, more distantly-related mesodermal

tissues. In light of this suggestion, it is interesting that lost germ cells in trx mutants are

often found at the boundary of fat body-somatic musculature primordia (Fig. 5-1B,C,

arrowheads). Therefore, it seems as if in trx mutants, lost germ cells continue to migrate
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through the mesoderm past the area where SGPs normally develop, until they reach a tissue

(somatic mesoderm) that is less attractive than the fat body.

Figure 5-1: Lost germ cells associate with fat body cells in trx mutant embryos.

(A-D) Serial, 2-micron sections of a stage 13 trx- embryo double-labeled with anti-Vas

(brown) to detect germ cells, and svp antisense RNA (blue) to detect fat body cells. Dorsal

is up in all sections. (A) Section taken posterior to where the gonad forms reveals "lost"

germ cells associated with fat body cells (arrowheads). (B,C) Two sets of germ cells can

be detected, the more ventral group (arrowheads) representing lost germ cells. Note that

lost germ cells are found at the ventral border of fat body tissue (see text). (D) Section

taken anterior to site of lost germ cells.
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Fig. 5-1: Lost germ cells are associated with fat body precursors
in trx mutant embryos
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A similar situation is found in the developing mouse embryo lacking the function of

the Ftz-F1 gene. Ftz-F1 is required for development of both the gonad and adrenal gland.

Like WT-1, Ftz-F1 acts in the differentiation of these tissues, rather than their

specification. In Ftz-F1 mutants, germ cells initially colonize the genital ridge; however,

these somatic cells soon degenerate, and germ cells are subsequently found associated with

mesonephric tissue (Luo et al., 1994). Given that the somatic gonad may be closely related

to the mesonephros, mouse germ cells may preferentially adhere to nephric tissue in the

absence of properly developed gonadal tissue.

Determining dorso-ventral boundaries of gonadal mesoderm and fat body

development

As discussed in Chapter 4, the genetic mechanisms underlying the specification of

dorsolateral versus ventrolateral mesoderm within the developing Drosophila embryo

remain to be elucidated. However, preliminary evidence suggests that the wg signaling

pathway may be involved. It has been shown that wg is necessary for the development of

slp domain mesodermal derivatives (Reichmann et al., 1998; see Chapter 2 Discussion). In

wg mutants, fat body tissue, an eve domain derivative, develops from the sip domain as

well as the eve domain. However, it appears that fewer fat body cells are specified along

the D-V axis (Reichmann et al., 1997; Moore and Lehmann, unpublished results).

Moreover, gonadal mesoderm fails to develop in wg mutants (Boyle et al., 1997; Moore et

al., 1998a), suggesting that it is the dorsal component of lateral mesoderm that is missing

in this genetic background. Conversely, when wg is ectopically expressed via a heat shock

promoter after a time when it functions in the sip pathway, more SGPs are specified than

normally found in wild-type embryos (Boyle et al., 1997; see Chapter 3). Preliminary

evidence suggests that this increase in SGP number is due to an expansion of SGP

development into ventrolateral mesoderm of PS 10-12 at the expense of fat body cell

specification (Moore and Lehmann, unpublished results). It remains to be determined

whether this effect is due to wg signaling directly within the mesoderm, or if this cell

specification process occurs through a secondary signal relying on the wg signaling

pathway.

Although the dorsal boundary of lateral mesoderm specification appears to rely on

dpp signaling (Reichmann et al., 1998; Broihier and Lehmann, unpublished results), it is

unclear what genetic pathway directs the ventral developmental boundary of this tissue.

One candidate is the Epidermal Growth Factor (EGF) pathway. It has been recently shown

that the development of a particular group of ventral mesodermal cells, the DM cells, is

dependent on genes in the EGF pathway. Moreover, overexpression of the ligand acting in

-135-



this pathway is sufficient to specify additional DM cells (Liier et al., 1997). It has been

demonstrated that in dpp mutants, visceral mesoderm is diminished (Azpiazu and Frasch,

1993; Bodmer, 1993), whereas additional SGPs and fat body cells are specified

(Reichmann et al., 1998; Broihier and Lehmann, unpublished results). Therefore, it may

follow that in the absence of ventral mesodermal DM cells, lateral mesoderm derivatives

may expand into their domain. Preliminary evidence suggests that this is the case. In faint

little ball (flb) mutants, in which the EGF-receptor is inactive, additional gonadal mesoderm

as well as fat body cells are specified (Moore and Lehmann, unpublished reults). Although

it has yet to be determined if this expansion occurs ventrally, this result suggests that lateral

mesoderm derivatives are specified at the expense of more ventral mesoderm cell-types.

Additional experiments aimed at determining the direction of this lateral mesoderm

expansion are needed, as well as to determine if the EGF pathway signals directly to the

mesoderm, or relies on a secondary signal to direct the development of ventral mesodermal

cell-types.
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