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Abstract

The kinetochore is a structure composed of proteins and centromeric DNA that attaches
chromosomes to microtubules of the mitotic spindle. Correct assembly of kinetochores is
essential for accurate chromosome segregation during mitosis and meiosis. The
centromere of Saccharomyces cerevisiae contains 125 base pairs of DNA organized into
three conserved regions, CDEI, CDEII, and CDEIII. CDEIII is bound by CBF3, a
complex of four essential proteins, p11 0 , p64, p58, and p23. Only p64 has a recognizable
DNA-binding motif, a GAL4-like zinc cluster domain. The oligomeric states,
approximate shapes, and subunit-subunit interactions among CBF3 proteins have been
characterized using gel filtration chromatography and velocity sedimentation. p110 is an
elongated homodimer, p64 is a globular homodimer, p23 is monomeric, and p23 and p58
form a stable heterodimer in solution. p58 binds to each of the other CBF3 components
individually. While there is no evidence that other CBF3 proteins can interact in the
absence of p58, p58 mediates an interaction between p64 and p1 10. These results
suggest that p58 plays a central role in the assembly of CBF3 onto centromeric DNA and
allow us to build a scale model of the CBF3-DNA complex.
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Chapter 1
Introduction: Structural components of the yeast
kinetochore

During eukaryotic cell division, it is essential for correct chromosome segregation

that each chromosome becomes correctly attached to the mitotic spindle. A correctly

attached chromosome is one in which one sister chromatid is attached to microtubules

emanating from one pole of the spindle, and the other chromatid is attached to

microtubules from the opposite pole. The failure of chromosomes to attach properly to

spindle microtubules can result in the generation of aneuploid daughter cells. While

chromosome loss often leads to cell death, aneuploidy has also been associated with

transformation and tumorigenesis (Cahill et al., 1998; Orr-Weaver and Weinberg, 1998).

The structure that mediates attachment of the chromosomes to the mitotic spindle

is called the kinetochore, and it is present in one copy per sister chromatid in most

organisms. In addition to its role in attaching chromosomes to microtubules, the

kinetochore has been implicated in moving chromosomes along the walls of

microtubules, mediating movement of chromosomes attached to the tips of dynamic

microtubules, holding together sister chromatids in mitosis and homologous

chromosomes during meiosis, and signaling to the cell cycle machinery that correct

spindle attachment has occurred. In vivo assays for kinetochore function measure only

chromosome loss, which could be a consequence of the failure of any of these

kinetochore activities or of a defect in DNA synthesis.
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The kinetochore is composed of proteins and centromeric DNA (CEN DNA). In

humans and fruit flies, the size of the centromere is measured in megabases and hundreds

of kilobases, respectively, and is composed primarily of repetitive DNA sequences

(reviewed in Murphy and Karpen, 1998; Wiens and Sorger, 1998). Electron microscopy

reveals the mammalian kinetochore to be a distinct three-layered "trilaminar" structure

associated with 10-30 microtubules. Proteins that localize to this trilaminar structure

include a histone H3 homolog (CENP-A), an alpha-satellite DNA repetitive element-

binding protein (CENP-B), and a microtubule motor (CENP-E) (Cooke et al., 1990;

Warburton et al., 1997; Yao et al., 1997). The analysis of these proteins has been limited

by the difficulty of experimental manipulation in animal cells.

In contrast to higher eukaryotes, the yeast Saccharomyces cerevisiae provides a

simple system for analysis of kinetochore structure and function. The yeast centromere

contains only 125 base pairs of conserved DNA sequences, and many proteins that bind

to the centromeric sequences have been identified and analyzed both biochemically and

genetically. In contrast to the mammalian kinetochore, the yeast kinetochore does not

form a distinct structure in the electron microscope. And, whereas the mammalian

kinetochore contacts multiple microtubules, each yeast kinetochore associates with only

one microtubule (Peterson and Ris, 1976; Winey et al., 1995). Nevertheless, the

functions of kinetochores in yeast and higher eukaryotes appear to overlap, and some of

the proteins suspected to be involved in kinetochore function in the different organisms

share significant sequence homologies. Thus, S. cerevisiae, which is highly amenable to

both biochemical and genetic analysis, provides an excellent model system for

understanding the structure and function of the kinetochore.
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The purpose of this chapter is to describe what is currently known about the

structural components of the yeast kinetochore. While much recent work has

investigated the molecular basis of sister chromatid cohesion (reviewed in Allshire, 1997)

and mitotic checkpoint control (for reviews, see Nicklas, 1997; Straight, 1997), these

topics will not be addressed here. And, although reference will be made to non-yeast

systems, discussion will be confined to the biology of S. cerevisiae unless otherwise

noted.

Assays for kinetochore function

The kinetochore is required for correct chromosome segregation, so defects in

kinetochore function in vivo are manifested by increased rates of chromosome loss.

Mutations in kinetochore structural proteins and regulatory factors, in mitotic spindle

components, and in CEN DNA all increase chromosome loss. During mitosis, wild type

yeast lose any one of the sixteen native chromosomes approximately once per 105

divisions (Hartwell et al., 1982). Chromosome loss is assayed by detecting the loss of a

dominant marker present on a "test chromosome". Various investigators have used

different types of test chromosomes, including circular plasmids (minichromosomes),

linear chromosome fragments, native yeast chromosomes, and yeast artificial

chromosomes (YACs).

In the context of these assays, "chromosome loss" is a phenotypic, not a

mechanistic, term. That is, the loss of a dominant marker can occur by many different

mechanisms, including failure to replicate, nondisjunction, premature disjunction, failure

of kinetochore-microtubule attachment, and actual loss of DNA. The "sectoring assay"

can distinguish among some of these abnormalities by differentiating between cells

-7-



containing different numbers of test chromosomes (Hieter et al., 1985). In this assay, a

genomic ade2 mutation turns colonies red due to a defect in the adenine biosynthesis

pathway. Test chromosomes contain a single copy of SUP], a tRNAochre gene that

suppresses the ade2 mutation and turns diploid yeast colonies pink or white, depending

on whether the cells contain one or two copies of the suppressor, respectively. Knowing

the number of chromosomes in the daughter cells can help distinguish between

mechanisms of missegregation. For example, a 1:0 division, in which one daughter

receives one copy of a chromosome and the other receives no copies, is much more likely

to be caused by actual chromosome loss or failure to replicate than by nondisjunction.

Centromeric DNA

Isolation of yeast centromeres

The first centromeric DNA isolated from S. cerevisiae was the centromere of

chromosome III (CEN3) (Clarke and Carbon, 1980a). CEN3 was identified based on its

ability to convey stable mitotic segregation to a circular plasmid containing an

autonomous replication sequence (ARS). Normally, ARS plasmids, which are present in

50-100 copies per cell, are lost rapidly when cells are grown in conditions that do not

select for an auxotrophic marker present on the plasmid (Clarke and Carbon, 1980b).

This loss occurs because ARS plasmids do not engage the mitotic spindle and as a result

segregate disproportionately to the mother cell during cell division (Murray and Szostak,

1983). A DNA fragment containing the CDCIO gene and adjacent sequences was found

to increase transmission frequency of an ARS plasmid greater than 90-fold after ten

generations of non-selective growth (Clarke and Carbon, 1980a; Clarke and Carbon,

1980b). This plasmid was estimated to be present in approximately one copy per cell,
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and it segregated correctly during meiosis. CDC1O was known to be closely linked to the

centromere of chromosome III by high resolution linkage analysis (Mortimer and Schild,

1980), and subcloning of the CDC10-containing DNA fragment identified a region of

DNA that, when present in cis, conveyed mitotic and meiotic stability to an ARS

plasmid. Removal of this DNA sequence from the endogenous chromosome III caused

the chromosome to be lost rapidly during cell division, and the cloned region could be

substituted for a genomic centromere without affecting chromosome segregation (Clarke

and Carbon, 1983). These last experiments demonstrated that the cloned fragment

contained sequences necessary and sufficient for centromere function and therefore

contained an actual centromere.

The cloning of additional yeast centromeres led to the recognition of conserved

sequence regions within CEN DNA. Several centromeres were isolated by cloning yeast

biosynthetic genes closely linked to centromeres, retrieving adjacent DNA sequences by

overlap hybridization ("chromosome walking"), and then identifying the CEN DNA by

its ability to stabilize the transmission of an ARS plasmid (Fitzgerald-Hayes et al., 1982;

Panzeri and Philippsen, 1982; Stinchcomb et al., 1982; Mann and Davis, 1986). Other

centromeres were identified in genetic screens looking for DNA fragments that either

stabilized an ARS plasmid (Hsiao and Carbon, 1981) or reduced ARS plasmid copy

number (Hieter et al., 1985) and by the sequencing of the entire yeast genome.

Nucleotide sequence analysis of the centromeres showed that all functional centromeres

contained an approximately 125 base pair region of DNA composed of three adjacent

conserved DNA elements (CDEs), CDEI, CDEII, and CDEIII (Fitzgerald-Hayes et al.,

1982; Hieter et al., 1985) (Figure 1.1). By convention, the CDEI proximal side of the
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centromere will be referred to as the left and the CDEIII proximal side will be referred to

as the right.

Structure-function analysis of conserved centromere sequences

The three regions of the centromere, when placed in the context of a larger piece

of DNA, are necessary and sufficient for complete mitotic centromere function (Cottarel

et al., 1989). As shown in Figure 1.2A, CDEI is an eight base pair partial palindrome

consisting of the sequence RTCACRTG, where R is a purine. Deletion of CDEI

increases the rate of chromosome loss during mitosis 10 to 30-fold (Niedenthal et al.,

1991). The six nucleotide palindrome on the right side of CDEI is most important for

function, since mutations in these nucleotides can have the same effect on chromosome

loss as a complete CDEI deletion (Niedenthal et al., 1991). The high conservation of

CDEI sequences suggests that CDEI interacts with a site-specific DNA-binding protein.

The precise sequence of CDEII varies significantly among the sixteen yeast

centromeres, as shown in Figure 1.3. CDEIIs range in size from 78 to 87 nucleotides and

are distinguished by a high content (greater than 85%) of A+T residues. The

arrangement of nucleotides is not entirely random, consisting primarily of tracks of

identical residues up to eight bases long. Removing larger and larger amounts of CDEII

sequence progressively increases chromosome loss rates (Cumberledge and Carbon,

1987; Gaudet and Fitzgerald-Hayes, 1987), and completely deleting CDEII destroys the

centromere (Gaudet and Fitzgerald-Hayes, 1987). Centromere function is also sensitive

to increasing the length of CDEII: doubling the length of CDEII by adding a second

CDEII sequence in tandem increases chromosome loss 100-fold (Gaudet and Fitzgerald-

Hayes, 1987). The importance of the A+T content and the precise arrangement of the
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sequence is uncertain. Substituting half of CDEII with DNA that is not A+T-rich or with

DNA that is A+T-rich but not organized into tracks reduces centromere function 40- or 4-

fold, respectively (Cumberledge and Carbon, 1987). However, replacing the entire

CDEII region with non-CDEII A+T-rich sequence destroys the centromere (Heus et al.,

1994). The lack of exact conservation and relative insensitivity to some large sequence

changes suggest that if CDEII is bound by sequence-specific, as opposed to structure-

specific, DNA binding proteins, the recognition sites for these proteins are fairly general.

Unlike CDEI and CDEII, CDEIII contains individual nucleotides that are

essential for centromere function. CDEIII, shown in Figure 1.2A, is roughly an imperfect

palindrome centered around a cytosine residue. The effect of altering conserved

nucleotides varies non-randomly throughout CDEIII and is summarized in Figure 1.2B.

Mutations in the central CCG are the most severe, followed by mutations in bases

adjacent to CCG, and then by mutations in the sequences near the edges of CDEIII

(Hegemann et al., 1988; Jehn et al., 1991). Although CDEIII is somewhat palindromic,

mutations on different sides of the palindrome have quantitatively different effects.

Within the central TTCCGAA sequence, mutations on the right side are more severe than

mutations on the left. Mutations on the left edge of CDEIII are more severe than those on

the right edge. This asymmetry is important for CDEIII function, since centromeres in

which CDEIII is inverted relative to CDEI and CDEII are inactive (Murphy et al., 1991).

The high conservation of CDEIII suggests that it binds site-specific DNA binding

proteins, and the asymmetry demonstrates that the proteins have a defined orientation,

suggesting that CDEIII-bound proteins participate in specific interactions with other

kinetochore components.
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The integrity of the centromere is also required for proper chromosome

segregation during meiosis. Alterations in both CDEI and CDEII cause defects in

meiosis that are more severe than the mitotic defects associated with these mutations

(Sears et al., 1995). These changes primarily increase premature separation of sister

chromatids during meiosis I and nondisjunction during meiosis II, but they have less of

an effect on meiosis I nondisjunction. Deletions of portions of CDEII have the most

severe effects on meiotic chromosome segregation, including a seventeen-fold increase in

meiosis II nondisjunction. The relationship between the meiotic and mitotic defects is

unclear, although the observation that centromere mutants have relatively minor increases

in meiosis I nondisjunction is consistent with there being fundamental differences

between the kinetochores found in homologous chromosomes and in sister chromatids.

Kinetochore proteins

The chromatin structure of the centromere is distinct from that of the surrounding

DNA. In DNA isolated from yeast cells, the -125 base pair centromere as well as

sequences to its left and right are protected from nuclease digestion, suggesting that a

150-250 base pair region is bound up in a large nucleoprotein complex (Bloom and

Carbon, 1982; Funk et al., 1989). It has been postulated that this 150-250 base pair

region and the proteins bound to it were the functional equivalent of the mammalian

trilaminar kinetochore observed in the electron microscope (Bloom and Carbon, 1982).

Alterations in the nuclease resistance of this sequence in the presence of centromere

mutations supported this hypothesis (Saunders et al., 1988), and suggested that

chromosome missegregation associated with these mutations was due to the failure of

kinetochore proteins to assemble properly at the centromere. Subsequently, Cbflp and

-12-



the protein complex CBF3, which bind in a sequence-specific manner to CDEI and

CDEIII, respectively, were isolated, and genetic analysis showed that these proteins were

indeed required for kinetochore function. Other potential kinetochore proteins have been

identified either biochemically or genetically, but none of them have been shown to bind

to CDEII. In this section, the isolation and initial characterization of proteins

demonstrated and suspected to function at the kinetochore will be described.

Cbflp

Cbflp is a helix-loop-helix protein that binds to CDEI DNA. Alternatively called

CBP-1 (Cai and Davis, 1989), CP1 (Bram and Kornberg, 1987; Baker et al., 1989), and

CPF1 (Jiang and Philippsen, 1989), Cbflp was identified based on its ability to bind

CDEI sequences at the centromere. Mitotic chromosome loss rates are increased up to

10-fold by deleting or mutating Cbflp (Mellor et al., 1991; Foreman and Davis, 1993),

demonstrating that Cbflp function is important for centromere function. Several lines of

evidence suggest that binding of Cbflp to CDEI is important for the in vivo function of

Cbflp. First, a CEN plasmid containing a CDEI deletion is lost at the same rate in wild

type and CBF1 deletion backgrounds, suggesting that Cbflp mediates the function of

CDEI (Baker and Masison, 1990). Second, mutations in CDEI that decrease its ability to

bind Cbflp in vitro increase the loss rates of plasmids or linear chromosome fragments

bearing those mutations (Baker et al., 1989; Cai and Davis, 1989; Wilmen et al., 1994).

Conversely, point mutations in Cbflp that decrease its ability to bind to CDEI increase

chromosome loss in vivo (Foreman and Davis, 1993). Third, in vivo footprinting

experiments demonstrate that CDEI is protected from dimethyl sulfate methylation in a
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wild type strain but not in a strain deleted for CBF1 (Densmore et al., 1991), suggesting

that Cbflp binds to CDEI in the cell.

In addition to its role in chromosome segregation, Cbflp functions as a

transcriptional activator for a variety of genes involved in metabolism. Cells with CBF1

deletions display methionine auxotrophy and slow growth which cannot be accounted for

by increased chromosome loss alone (Baker and Masison, 1990). The CDEI sequence is

found in many upstream activation sequences (UASs), including MET16, MET25, and

GAL2 (Bram and Kornberg, 1987; Kent et al., 1994). Cbflp assembles with the products

of the MET28 and MET4 genes into a complex that binds CDEI in the UAS of MET16

(Kuras et al., 1997). It is believed that the Cbflp/Met28p/Met4p complex clears

nucleosomes from the DNA surrounding its binding site, making these regions more

accessible to general transcription factors (Kent et al., 1994; O'connell et al., 1995). The

relationship of this chromatin remodeling function at transcription sites to the role of

Cbflp at kinetochores is unclear, especially because point mutations in Cbflp can

separate methionine auxotrophy from chromosome loss phenotypes (Foreman and Davis,

1993).

CBF3

CBF3 was initially identified as a set of proteins in yeast nuclear extract that

bound specifically to CDEIII DNA in vitro (Ng and Carbon, 1987; Lechner and Carbon,

1991). This complex includes four proteins, p 1 10, p64, p58, and p23, encoded by the

genes NDC10/CTF14/CBF2 (Doheny et al., 1993; Goh and Kilmartin, 1993; Jiang et al.,

1993), CEP3/CBF3b (Lechner, 1994; Strunnikov et al., 1995), CTF13 (Doheny et al.,

1993), and SKPJ/CBF3d (Connelly and Hieter, 1996; Stemmann and Lechner, 1996),
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respectively. These genes are all essential for growth, and mutations in them are

associated with increased chromosome loss (Doheny et al., 1993; Goh and Kilmartin,

1993; Jiang et al., 1993; Lechner, 1994; Strunnikov et al., 1995; Connelly and Hieter,

1996; Stemmann and Lechner, 1996). None of the CBF3 proteins binds to CDEIII on its

own (Stemmann and Lechner, 1996; Espelin et al., 1997), but the combination of all four

is necessary and sufficient for binding to CDEIII in vitro (Espelin et al., 1997; Kaplan et

al., 1997). Extracts prepared from cells containing CBF3 protein mutants fail to support

in vitro assembly of CBF3 onto DNA (Doheny et al., 1993; Sorger et al., 1995; Kaplan et

al., 1997), and mutated CDEIII sequences that compromise centromere function in vivo

also decrease or inhibit binding of CBF3 to DNA in vitro and in vivo (Ng and Carbon,

1987; Lechner and Carbon, 1991; Sorger et al., 1995; Espelin et al., 1997; Meluh and

Koshland, 1997). These results strongly suggest that the binding of CBF3 to CDEIII is

required for kinetochore function.

A large collection of evidence supports the notion that CBF3 initiates assembly of

the kinetochore on centromeric DNA. First, beads coated with CDEIII DNA can bind to

microtubules in vitro when incubated with yeast nuclear extract but not when incubated

with purified CBF3 alone (Sorger et al., 1994). This result suggests that CBF3, in

addition to binding CDEIII, interacts with unidentified microtubule binding proteins.

Second, CDEIII is necessary to recruit both Cbflp and another kinetochore component,

Mif2p, to the centromeres in vivo, although neither protein binds directly to CDEIII

(Meluh and Koshland, 1997). Third, mutations in CDEIII that disrupt CBF3 binding in

vitro completely eliminate the nuclease protection of centromeric DNA isolated from

cells (Saunders et al., 1988). In contrast, mutations in CDEI or CDEII only alter the size
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of the protected region. This result suggests that binding of CBF3 to CDEIII is necessary

for assembly of the remaining kinetochore components at the centromere. Based on these

findings, a reasonable working model is that CBF3 initiates kinetochore formation.

However, confirmation of this model will require identifying other kinetochore

components and establishing that CBF3 must bind to CDEIII before the components can

assemble.

Only one of the CBF3 proteins, p64, has a recognizable DNA-binding motif. p64

is a member of a family of proteins characterized by an approximately 30 amino acid

Zn(II) 2Cys 6 zinc cluster DNA binding domain. Most of the zinc cluster proteins,

including Gal4p, Pprlp, and Haplp, are fungal transcription factors that bind alone as

homodimers to either direct or inverted repeats of the sequence CCG (Marmorstein et al.,

1992; Marmorstein and Harrison, 1994; Zhang and Guarente, 1994). In contrast, p64

binds to DNA only in the presence of the remaining CBF3 proteins, and CDEIII contains

only a single CCG. Protein-DNA crosslinking studies show that p64 contacts two

regions of CDEIII DNA, including the essential CCG sequence (Espelin et al., 1997).

Mutating residues of the p64 zinc cluster that correspond to amino acids important for

zinc cluster DNA binding in Gal4p and Pprlp increases chromosome loss in yeast

(Lechner, 1994). These results support the notions that the zinc cluster of p64 contacts

the CCG of CDEIII and that this binding is critical for kinetochore function. It seems

reasonable that, because there is only a single CCG in CDEIII, p64 requires interaction

with other proteins to enable zinc cluster DNA binding. However, the precise protein-

protein interactions that allow p64 to bind DNA are not yet known.

Organization of CBF3 on DNA

-16-



While the activities of all four CBF3 proteins are required for binding of CBF3 to

CDEIII, only three proteins have actually been shown to contact DNA (Espelin et al.,

1997). The results of protein-DNA crosslinking studies are summarized in Figure 1.4.

As discussed above, p64 contacts two sites in CDEIII, the CCG and 3-4 bases

approximately one helical turn to the left of CCG. p58 contacts a trinucleotide region

that falls in between the two p64-interacting sites, suggesting that p58 and p64 sit on

opposite sides of the DNA helix directly across from one another. Unlike p58 and p64,

p110 does not interact with discrete regions, contacting nucleotides throughout CDEIII

and 25 base pairs to the right. The presence of additional nonspecific DNA to the right

enables formation of a lower-mobility, "extended" CBF3 complex in which additional

p110 protein interacts with the new DNA sequences. These results demonstrate that the

binding of CBF3 to CDEIII is asymmetric, which may explain why inverting CDEIII

relative to CDEI and CDEII inactivates the centromere.

Regulation of CBF3 assembly

Calculations based on the yield of CBF3 purified from yeast show that each cell

contains only as many CBF3 complexes as centromeres, suggesting that the cell regulates

CBF3 levels (Lechner and Carbon, 1991). A possible mechanism for this regulation is

demonstrated by the finding that functional p58 levels may be regulated by two opposed

mechanisms (Kaplan et al., 1997). The first mechanism is post-translational activation of

p58. p58 expressed on its own in a recombinant system is incapable of participating in

CBF3-DNA complex formation. However, when coexpressed with p23, p58 is functional

in CBF3 DNA binding. This "activation" event probably involves the phosphorylation of

p58 by an unidentified kinase. That similar activation occurs in yeast was demonstrated
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by the finding that activated p58 that has been coexpressed with p23 and then purified

away from the p23 can complement defects in the in vitro DNA binding of extracts from

either p58 or p23 mutant strains. The second mechanism for controlling p58 is regulated

degradation. p58 overexpressed in yeast has a half life of approximately 15 minutes. In

contrast, p64 and p110 have half lives greater than five hours. Mutations in components

of the 20S proteosome, the proteolytic machinery required for degrading ubiquitin-tagged

proteins, increases the half life of p58. In addition, p58 may be covalently modified

before its degradation. These results suggest that p58 is specifically tagged by ubiquitin

or a ubiquitin homolog and targeted for degradation.

Why would it be important to control the levels of active CBF3 proteins? One

possibility is that low levels of CBF3 enhance the specificity of CBF3 DNA binding.

Specificity of kinetochore assembly is important, because extra kinetochores can lead to

attachment of a chromatid to both spindle poles and subsequent fragmentation during

anaphase (Mann and Davis, 1983). Alternatively, because there are so few centromeres

in the cell, it may be necessary to limit free CBF3 protein levels to prevent titrating out

other kinetochore components. In either scenario, chromosome loss would be increased

by increasing CBF3 levels.

The function of p23

In addition to its role in activating p58 for kinetochore function, p23 is also

required for the degradation of cell cycle regulating proteins. p23 is a component of

SCF, a complex that ligates ubiquitin moieties onto proteins to target them for

degradation (Feldman et al., 1997; Skowyra et al., 1997). There are multiple forms of

SCF, and they all include p23 and the protein Cdc53p (Skowyra et al., 1997). In
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addition, the different SCF complexes contain one of many proteins that are responsible

for specifically recognizing the target for ubiquitination. These targeting proteins each

contain an F-box, a region required for association with p23 (reviewed in Krek, 1998).

The relationship between the functions of p23 in kinetochore assembly and in ubiquitin-

mediated degradation are unclear. p58 contains an F-box sequence which mediates its

interaction with p23 (I. Russell, unpublished observation). However, mutations in p23

can separate its different functions (Connelly and Hieter, 1996). One intriguing

possibility is that the p23-p58 interaction concomitant with p23-dependent activation of

p58 recruits p23 to the kinetochore to serve a function more closely related to its role in

degradation. Identification of other F-box proteins and determining whether any of them

play roles at the kinetochore may be useful in exploring the functions of p23.

Other kinetochore proteins

Mif2p

MIF2 was initially identified as a gene fragment that caused aberrant chromosome

segregation when expressed at high levels (Brown et al., 1993). Mutations in MIF2 have

a synergistic effect on chromosome loss when present in combination with CDEI

mutations, and are synthetically lethal in combination with CBF1, NDCIO and CEP3

mutations (Meluh and Koshland, 1995). In vivo, Mif2p associates with centromeric DNA

in a manner dependent on functional CDEIII (Meluh and Koshland, 1997), demonstrating

that Mif2p is an actual component of the kinetochore. While this result suggests that

Mif2p interacts with CBF3, the observation that overexpressing Cbflp but not p110 or

p58 can partially rescue mif2 viability defects (Meluh and Koshland, 1995) supports the

notion that Cbflp and Mif2p contribute to the same function at the kinetochore.
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Sequence analysis of MIF2 reveals two homologies that may be relevant to kinetochore

function. First, MIF2 shares homology with regions important for the function of the

protein CENP-C, a component of the inner plate of the mammalian kinetochore (Saitoh et

al., 1992; Meluh and Koshland, 1995). Second, Mif2p contains an eight amino acid "A-T

hook" motif that allows HMG-I(Y) proteins to bind in the minor groove of A+T-rich

DNA (Reeves and Nissen, 1990). Although this homology suggests that Mif2p might

bind to the A+T-rich CDEII sequence, deletion of the A-T hook region of Mif2p results

in a protein that is still functional in vivo (Jaffe, 1996), demonstrating that this region is

not required for Mif2p function.

Cse4p

CSE4 was identified in a screen for mutations that increase the loss rate of a

chromosome bearing a centromere with a partially deleted CDEII (Stoler et al., 1995).

Sequence analysis demonstrated that Cse4p shares a region of significant homology with

histone H3 and with CENP-A, a histone H3 homolog found specifically in the inner plate

region of active mammalian centromeres (Warburton et al., 1997). This homology is in

the histone fold, a domain that participates in both protein-protein and protein-DNA

interactions in the nucleosome (Luger et al., 1997). In addition to histone sequence

homology, Cse4p coelutes with histones from DNA (Stoler et al., 1995). These results

suggest that Cse4p is a kinetochore-specific histone H3 variant that assembles into

nucleosomes either on or surrounding centromeric DNA. Additional support for this

notion comes from the finding that high copy CSE4 suppresses growth defects of a

histone H4 mutant that is defective in chromosome segregation (Smith et al., 1996).

Chromatin
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In addition to the possibility that Cse4p is a component of kinetochore-specific

chromatin, several other results suggest that the chromatin structure in or around the

centromere is important for kinetochore function. Mutations in Spt4p, a protein believed

to be involved in chromatin remodeling during transcription, and in the histone H4 can

increase chromosome loss rates (Basrai et al., 1996; Smith et al., 1996). Depletion of

histones from yeast alters the regions of centromeric DNA resistant to nuclease

digestions, specifically increasing the sensitivity of CDEII (Saunders et al., 1990). While

these results do not distinguish between direct and indirect effects of chromatin structure

on the kinetochore, they raise the possibility that DNA conformation or interactions with

nucleosomes influences kinetochore assembly or stability.

Microtubule motors

It is expected that the yeast kinetochore will contain at least one motor protein,

both because of the microtubule-based functions of the kinetochore and because motor

proteins localize to the kinetochores of higher cells (Pfarr et al., 1990; Steuer et al., 1990;

Yen et al., 1992; Wordeman and Mitchison, 1995; Walczak et al., 1996). At least one

mammalian motor protein, the kinesin-like motor CENP-E, has been shown to be

required for microtubule-mediated chromosome movement in vitro and in vivo (Schaar et

al., 1997; Wood et al., 1997). With the complete sequencing of the S. cerevisiae genome,

it is known that yeast contain only six kinesin-related proteins, and some of them have

been shown to be required for events during mitosis (Hoyt et al., 1992). One yeast motor

protein, Kar3p, copurifies with CBF3 on CDEIII DNA (Middleton and Carbon, 1994).

Kar3p has in vitro microtubule motor activity and can mediate the binding of latex beads

coated with CEN DNA to microtubules in the presence of CBF3 (Middleton and Carbon,
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1994). However, the non-specific DNA binding activity of Kar3p may account for some

of this bead binding activity. Deletions of KAR3 lead to defects in nuclear fusion during

mating (Meluh and Rose, 1990) and in synaptonemal complex formation during meiosis

(Bascom-Slack and Dawson, 1997), but there is no genetic evidence that it functions at

the kinetochore.

Cbf5p

Cbf5p was identified as a protein from yeast extracts that bound with low affinity

to yeast centromeric DNA (Jiang et al., 1993). Cbf5p binds to microtubules in vitro and

contains homology to known microtubule associated proteins (Jiang et al., 1993). CBF5

is an essential gene that interacts genetically with both NDCIO and MCK1, a gene

encoding a serine/threonine kinase believed to play a role in chromosome segregation

(Jiang et al., 1995). Recent experiments have shown that Cbf5p is required for the

biosynthesis and covalent modification of ribosomal RNA (Lafontaine et al., 1998).

Although the role of Cbf5p in rRNA metabolism is not inconsistent with the protein also

functioning in chromosome segregation, the evidence that Cbf5p acts at the kinetochore

is inconclusive.

Conclusions

While the past twenty years have seen huge advances in our understanding of

centromeric DNA and DNA-binding components of the kinetochore, relatively little is

known about the proteins that bind to microtubules or about the kinetochore assembly

pathway. Identification of microtubule binding proteins will require further genetic

analysis, including development of screens specific for isolating proteins functioning at

the interface between microtubules and CEN-binding proteins, and the biochemical
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isolation of proteins that interact physically with known kinetochore components. At this

point, assembly questions revolve around CBF3, including how the various CBF3

proteins and DNA sequences contribute to CBF3 complex formation and how this

assembly is regulated. Understanding the CBF3-DNA structure, which appears to play a

central role in kinetochore function, is also expected to give insight into how other large

nucleoprotein complexes assemble at specific sites in the genome.

- 23 -



Figure 1.1. Organization of the yeast centromere. A 125 base pair region of the
centromere is necessary and sufficient for full function during mitosis and meiosis. The
centromere is composed of three adjacent conserved DNA elements, CDEI, CDEII, and
CDEIII. Arrows indicate palindromic sequences.
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Figure 1.2. Conserved centromere sequences CDEI and CDEIII. (A) The sequences
of CDEI and CDEIII regions from all sixteen yeast centromeres are shown. Consensus
residues and the number of times out of sixteen each residue occurs are indicated below
the sequences. In the CDEI consensus, R = purine. Sequences were retrieved from the
Saccharomyces Genome Database (Cherry et al.). (B) A summary of the effects of
CDEIII point mutations on centromere function in vivo. Chromosome fragments bearing
point mutations in the CDEIII region of CEN6 were assayed for loss. For each position,
the effect of the most severe point mutation is shown. No data has been collected for
bases marked with asterisks. Results are summarized from data presented in Jehn et al.
(1991).
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Figure 1.3. CDEII nucleotide sequences. The DNA sequences of all sixteen CDEII
regions are presented, and the length and A+T content of each are indicated on the right.
Although no precise sequences are conserved, tracks of identical bases are spread
throughout each CDEII.
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CDEII

ACATAATAATAAATAATTTTAAAAATATAAAATATTTTTAATAGTTTTTAAATATTTTACAGTTTATTTTTTAAATTTATTTATA
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Figure 1.4. Regions of CEN3 contacted by CBF3 proteins. The 89 base pair region
contacted by CBF3 proteins in vitro is presented. p58 and p64 contact discrete sequences
(shaded regions) within CDEIII (dashed box), and p110 makes contacts along an 89 base
pair stretch of DNA. The 56 base pair "core" is the minimal sequence required for CBF3-
DNA complex formation and corresponds to the region protected from nuclease digestion
by CBF3 in vitro. Results are summarized from Espelin et al. (1997).
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Chapter 2
Physical characterization of individual CBF3
proteins and analysis of CBF3 subcomplex
formation using hydrodynamic methods

Introduction

In Chapter 1, I argued that CBF3 is an essential DNA binding component of the

yeast kinetochore and may function to initiate kinetochore assembly. The four protein

components of CBF3, p1 10, p64, p58, and p23, are necessary and sufficient for the

binding of CBF3 to DNA in vitro (Kaplan et al., 1997). This finding allowed Espelin, et

al. (1997) to determine, using recombinant CBF3 proteins in protein-DNA crosslinking

experiments, that p58, p64 and p110 directly contact DNA. In this chapter, I describe

experiments that explore interactions among the protein components of CBF3.

The relatively simple separation methods of gel filtration and velocity

sedimentation are valuable tools for studying the structures of proteins and protein

complexes. Using these methods, one can derive quantitative information about the

native molecular weight, size, and shape of a protein. Interactions between proteins can

also be assayed by mixing the proteins together and looking for increases in size or mass.

Since hydrodynamics techniques are non-destructive and can be performed using

virtually any buffer, native proteins can be analyzed and detected using assays that

directly measure protein function.
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In this work, I used gel filtration chromatography and velocity gradient

sedimentation to characterize the protein components of CBF3 individually and in

subcomplexes. I have taken advantage of the finding that recombinant CBF3 proteins

produced separately can be mixed together to reconstitute DNA binding activity (Kaplan

et al., 1997), indicating that the separately expressed proteins are functional for assembly

onto DNA. I report that all of the CBF3 proteins are multimeric in solution and when

combined can form subcomplexes, even in the absence of centromeric DNA. I use these

results and additional information about size and shape to build a three-dimensional

model of CBF3 bound to DNA. I speculate that the subcomplexes formed in vitro

represent intermediates in the CBF3 assembly pathway, and discuss ways in which the

structures of CBF3 components might contribute to DNA binding specificity.

Materials and Methods

Expression of recombinant CBF3 in insect cells

CBF3 genes were subcloned into the pFastBac plasmid (GIBCO BRL,

Gaithersburg, MD) and baculovirus DNA was prepared as described in the pFastBac

manual. p23, p64, and p110 constructs were created containing the sequence MRGS-H6

fused to the initiator methionine. p 110 has methionines at residues 1 and 12 of the

published sequence, and I found that p110 fused at Met-12 was more active in bandshifts

than protein fused at Met-1. Thus, p110 fused at Met-12 was routinely used for the work

described here. Proteins were expressed in High Five insect cells (Invitrogen

Corporation, Carlsbad, CA) by infecting with one or more baculoviruses and harvesting

after 48 to 72 hours. To minimize protein degradation, all steps of the extraction were

performed on ice. Cytoplasmic extracts were prepared by swelling cells in hypotonic
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lysis buffer (10 mM Tris-HCI [pH 8.0], 10 mM KC1, 1.5 mM MgCl 2 , 10 mM 0-

mercaptoethanol, 10 pgg/ml each of leupeptin, pepstatin, and chymostatin, 50 gM TPCK,

1 mM PMSF), breaking the cells with a dounce tissue grinder (Wheaton, Millville, NJ),

and centrifuging the lysate to pellet the nuclei. Supernatants were adjusted to 10%

glycerol, 150 mM KC1, and 50 mM 0-glycerophosphate before freezing for storage. The

nuclear pellet was extracted for 30 minutes in nuclear extraction buffer (10 mM HEPES

[pH 8.0], 50 mM P-glycerophosphate, 0.1 mM EDTA, 0.5 M KC1, 5 mM MgCl 2, 10%

glycerol, 50 mM NaF, 10 mM -mercaptoethanol, 10 pgg/ml each of leupeptin, pepstatin,

and chymostatin, 50 gM TPCK, 1 mM PMSF) and centrifuged to remove DNA and other

insoluble material. Under these extraction conditions, p64, p58, and p110 were found

primarily in nuclear fractions while p23 partitioned mostly to the cytoplasmic fraction.

Nuclear extracts used for purification were prepared in the absence of EDTA so that

material could be incubated directly with metal chelate resin (see below). 1% Triton X-

100 was included in nuclear extraction buffer when p110 was prepared for purification to

improve solubility.

H6-tagged proteins were purified using Ni-NTA Superflow resin (Qiagen, Inc.,

Valencia, CA). Extracts were adjusted to 3 mM imidazole, added to resin, and bound in

batch overnight at 40. For p64 and p23, resin was washed in Ni buffer (20 mM HEPES

[pH 8.0], 500 mM NaC1, 10% glycerol, 10 mM 3-mercaptoethanol, 50 mM imidazole),

before eluting in the same buffer with 500 mM imidazole. For p 1 10, resin was washed in

Ni buffer (3 mM imidazole), eluted in batch with Ni buffer (250 mM imidazole), and

diluted to 150 mM NaCl before loading onto a column containing a small volume of
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Poros 20 HQ resin (PerSeptive Biosystems, Cambridge, MA) to concentrate the protein.

p110 was then eluted in Ni buffer containing 800 mM NaCl and no imidazole.

Gel filtration chromatography

Gel filtration chromatography was performed on a SMART System (Pharmacia

Biotech, Uppsala, Sweden) using Superose 6 and Superose 12 columns. To determine

diffusion coefficients, standard curves were generated by plotting elution volume versus

1/D, where D is the diffusion constant, for protein standards (Bio-Rad, Hercules, CA):

thyroglobulin (MW = 670 kDa, D = 2.63x10 7 cm2S-1), bovine gamma globulin (MW =

158, D = 4.1), chicken ovalbumin (MW = 44, D = 7.8), and equine myoglobulin (MW =

17, D = 11.3). Diffusion coefficients for protein standards were obtained from Sober

(1970) and represent values determined in water at 200 C (D20,w). Elution from a gel

filtration column correlates with Stokes radius (Siegel and Monty, 1966). The

relationship a = kT/6rnD, where a is the Stokes radius; k, the Boltzmann constant; T,

absolute temperature; and r1, viscosity of the medium, allows D20,w to be determined for

an unknown provided that both the unknown and the protein standards are run in the

same buffer. All columns were run at 40 with column buffer (10 mM HEPES [pH 8.0], 6

mM MgCl 2, 10% glycerol, 150 mM NaC1, 10 mM [3-mercaptoethanol). Analyses were

repeated at least two times and values for 1/D varied by no more than 4% between

experiments.

Separation ofpurified proteins

Purified p23 and p110 were diluted to 150 mM NaCI with column buffer lacking

NaCl. Because p64 was only partially soluble at 150 mM NaC1, it was diluted to 300

mM NaCl and separated using column buffer containing 300 mM NaCl. Diluted proteins
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were centrifuged to remove insoluble material before loading onto the column. Elution

was monitored by absorbance at 280 nm and fractions were collected and analyzed by

immunoblotting and by bandshift assays.

Separation of proteins in insect cell extract

Because it was difficult to express and purify p58, all analyses of p58-containing

mixtures were performed using insect cell extracts. Samples were prepared by dialyzing

nuclear extracts into column buffer using a microdialysis system (GIBCO BRL) and then

centrifuging to remove insoluble material. To compare directly the elution profiles of

different sets of coexpressed proteins, the fraction size, the number of fractions and the

starting point for fraction collection were kept constant.

Glycerol gradient sedimentation

Gradients were prepared in 2 ml volumes by layering 0.4 ml of column buffer

containing decreasing concentrations of glycerol and incubating the gradient at 40 for 1

hour to equilibrate. Purified p64 was analyzed in 300 mM NaCI and all other proteins

were analyzed in 150 mM NaCl. p110 and p64 were sedimented in 15-35% gradients

while p23 and p23/p58 were sedimented in 5-25% gradients. Purified p23, p64, and p110

were prepared by diluting to the same salt concentration as the gradient with column

buffer lacking glycerol and NaC1. Insect cell extract containing p58 and p23 was

dialyzed into column buffer lacking glycerol but containing 150 mM NaC1. For p110 and

p64, gradient standards were added directly to the protein samples; for p23 and p58, the

standards were run separately and in duplicate. Gradients were centrifuged at 50k rpm

10-16 hrs, 40, in a TL-S55 swinging bucket rotor (Beckman Instruments, Fullerton, CA)

and fractionated by removing 100 p1 at a time from the top of the gradient. Fractions
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were then analyzed either by bandshifts or by TCA precipitation followed by

immunoblotting. Protein standards (Boehringer Mannheim, Indiannapolis, IN;

cytochrome c [MW = 12.5 kDa, s = 1.9 Si, chymotrypsinogen A [MW = 25, s = 2.58],

hen egg albumin [MW = 45, s = 3.55], bovine serum albumin [MW = 68, s = 4.22],

aldolase [MW = 158, s = 7.4], and catalase [MW = 240, s = 11.3]) were separated on

SDS-polyacrylamide gels, stained with Coomassie blue, and quantified using IPLab Gel

image processing software (Signal Analytics, Vienna, VA). All samples were analyzed

at least two times, and sedimentation coefficients varied by no more than 15% between

experiments.

Bandshift assays and immunoblotting

Bandshift assays were performed to determine relative levels of active CBF3

proteins in column and gradient fractions. To detect active p58 in a fraction, an aliquot of

that fraction was mixed with excess recombinant p64 and p110 in a standard 30 pl

bandshift reaction containing 40 fmol of DNA probe, 9 gLg casein and 3 glg sheared

salmon sperm DNA in 10 mM HEPES (pH 8.0), 6 mM MgCl 2, 10% glycerol, adjusted to

150 mM KC1. Similarly, to detect p64, fractions were added to excess p23, p58 and

p1 10; p 1 10 was detected in the presence of excess p23, p58 and p64. In all cases, the

DNA probe was a 56 base pair fragment of CEN3 containing CDEIII, 6 nucleotides to the

left and 25 nucleotides to the right, synthesized as previously described (Espelin et al.,

1997). Samples were separated on 4% nondenaturing acrylamide gels, detected using a

phosphorimager, and quantified using ImageQuaNT software (Molecular Dynamics,

Sunnyvale, CA).
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For immunoblotting, rabbit polyclonal antibodies specific to each of the CBF3

proteins were used and detected using 1251 protein A (DuPont/NEN, Boston, MA). Blots

were scanned by phosphorimager and quantified as above.

Calculations

Native molecular weights were calculated using the expression MW = RTs / D(1-

i'p), where R is the ideal gas constant; T, absolute temperature; s, sedimentation

coefficient; D, diffusion coefficient; i, partial specific volume; and p, density of water at

200. Partial specific volumes (0.715 cm 3g 1 for p110, 0.724 for p64, 0.697 for p23, and

0.719 for a p23/p58 heterodimer) were estimated from amino acid content. Stokes radii

were calculated using the equation a = kT/67tTlD, where a = Stokes radius and il =

viscosity of water at 200 C. f/fo was calculated using the relationship f/fo = a /

(3,M/4nN) 1/3, where M is molecular weight and N is Avagadro's number.

Results

The analysis of recombinant CBF3 proteins expressed in insect cells required

experimentally determining two hydrodynamic properties for each protein, the diffusion

coefficient and the sedimentation coefficient. I obtained these values using gel filtration

columns and glycerol gradients, respectively, each calibrated with protein standards.

While other methods may allow more accurate determination of protein hydrodynamic

properties, the techniques used here permitted recovery of the samples and subsequent

functional analysis. Using the experimentally-determined values, I calculated solution

stoichiometries and estimates of both size and shape. A summary of hydrodynamic data

for all CBF3 proteins is shown in Table 2.1.
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p110 and p64 are homodimers in solution

For the characterization of p1 10, partially purified protein (Figure 2. 1A) was first

analyzed by gel filtration chromatography. Absorbance at 280 nm was used to identify

the elution volume of the major protein peak, and immunoblotting and bandshift assays

confirmed that p110 protein was contained within that peak. An example of a gel

filtration experiment is shown in Figure 2.2A. Most of the active p 1 10, identified by

bandshift, eluted slightly earlier than the majority of the p 110 detected by antibody,

suggesting that a portion of the protein was incorrectly modified or improperly folded.

p 110 eluted just after the 670 kilodalton marker, much larger than expected for an

approximately 110 kilodalton monomer. There were two likely explanations for this

anomalous behavior. First, p110 might be elongated. The rate of movement through a

gel filtration column is determined by the size, or more specifically, by the length, of a

protein, which may not correlate directly with molecular weight if the protein is

irregularly shaped. Second, if p 110 was multimeric in solution, both its size and mass

would be greater. To distinguish between these possibilities, I analyzed p110 by glycerol

gradient sedimentation (Figure 2.2B). Using the sedimentation coefficient and diffusion

coefficient, determined by comparing p110 to protein standards in glycerol gradients and

gel filtration chromatography, respectively, I calculated a molecular weight corrected for

both size and shape. The corrected, or native, molecular weight of p110 is 197

kilodaltons. By comparing this value to 112 kilodaltons, the monomer molecular weight

of p110 predicted from amino acid sequence, I conclude that p110 is a dimer in solution.

Based on the diffusion coefficient, a Stokes radius of 80 angstroms was calculated for the

p110 dimer. Thus, p1 10, which directly contacts DNA, is roughly as long as 4.5 helical
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turns of a B-form double helix. Finally, by calculating f/fo, an indicator of protein shape,

I determined that the p110 dimer is elongated, as opposed to globular.

The hydrodynamic properties of p64 were determined using similar methods.

Like p 110, active p64 ran on a gel filtration column slightly ahead of the peak of total

protein (Figure 2.3A). Most of the p64 behaved like a 111 kilodalton protein, although a

second, minor, peak detected by bandshift eluted later from the column just ahead of the

44 kilodalton marker. If the primary peak consists of dimeric p64, this secondary peak

could be monomeric. I analyzed p64 by glycerol gradient sedimentation (Figure 2.3B)

and calculated a native molecular weight of 132 kilodaltons. Thus, the majority of p64 in

my preparation is a dimer in solution. p64 has a Stokes radius of approximately 45

angstroms and, unlike p1 10, is globular.

p23 may be post-translationally modified

Using the same hydrodynamic methods, I analyzed the solution structure of p23.

Examples of both gel filtration and glycerol gradient sedimentation experiments are

shown in Figure 2.4. Although there was no convenient method for analyzing p23

activity in column fractions, preliminary results demonstrate that when added to an in

vitro translation reaction of p58, recombinant p23 can activate p58 for CBF3-DNA

binding (I. Russell, unpublished results). From the hydrodynamics experiments, the

native molecular weight of p23 was determined to be 30.3 kilodaltons. Comparing this

value to the predicted monomer molecular weight of 23.9 kilodaltons, a stoichiometry of

1.3 was calculated. While the calculated molecular weight suggests that p23 is a

monomer in solution, the value is 30 percent greater than the predicted molecular weight,

suggesting that the monomer is heavily post-translationally modified. This notion is
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supported by the findings that p23 is homologous to a cytoplasmic glycoprotein in

Dictyostelium (Kozarov et al., 1995), and that p23 is highly phosphorylated in yeast (K.

Kaplan, unpublished observations).

To test the hypothesis that p23 is post-translationally modified in insect cells, I

expressed p23 in E. coli and purified it for hydrodynamic analysis. I reasoned that

because most eukaryotic post-translational modifications do not occur in bacteria, I

would see a difference in the molecular weights of p23 expressed in bacteria and p23

expressed insect cells if the latter protein was post-translationally modified. I applied

bacterially-expressed p23 to glycerol gradients and gel filtration columns and calculated a

native molecular weight of 25.0 kilodaltons (data not shown, summarized in Table 2.1).

Comparing this value to the predicted molecular weight of p23, I conclude that

bacterially-expressed protein is a monomer and infer that p23 expressed in insect cells is

also a monomer but is post-translationally modified. While the nature of this

modification is unknown, p23 in yeast extract migrates on SDS-PAGE closer to p23 from

insect cells than it does to p23 from bacteria (data not shown), suggesting that p23 is also

modified in yeast. Finally, the presence of a small quantity of p23 eluting earlier from a

Superose 12 column than the primary peak (fraction 5, Figure 2.4A) suggests that some

p23 may also form a dimer in solution.

p23 and p58 form a heterodimer in solution

I next determined the hydrodynamic properties of p58. Preparation of p58 that is

active for CBF3 DNA binding requires coexpression with p23 (Kaplan et al., 1997).

Thus, to analyze p58 that was functional, I expressed p58 and p23 together in insect cells

and assayed fractions for p58 activity by mixing them with excess p64 and p110 in
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bandshift reactions. p58 was very difficult to express and purify, so to have adequate

quantities for detection I applied extract prepared from insect cells coexpressing p23 and

p58 onto columns and gradients (Figure 2.5) without prior purification. The calculated

molecular weight of the material that complemented p64 and p 110 in a bandshift was

77.2 kilodaltons. Because p58 that is purified away from p23 is still active for CBF3-

DNA binding (Kaplan et al., 1997), it was necessary to determine whether the 77.2

kilodalton active material contained p23 as well as p58.

To determine whether p58 associates with p23 in a p23/p58 coinfection, I took

advantage of the observation that p23 fused to glutathione-S-transferase (GST-p23) elutes

much earlier from a Superose 12 gel filtration column than does active p58 coexpressed

with untagged p23 (data not shown). I reasoned that I could detect an association

between p58 and p23 because the peak of active p58 bound to GST-p23 would be shifted

to the left relative to the peak of active p58 bound to untagged p23. As shown in Figure

2.5A, when p58 is coexpressed with GST-p23, almost the entire active pool of p58 elutes

earlier from the column than the active material in a p23/p58 coinfection. I conclude

from this result that in a GST-p23/p58 coexpression most or all of the p58 is physically

associated with GST-p23 and I infer that active p58 is also associated with untagged p23

when p58 and p23 are coexpressed. When I add the predicted molecular weight of p58 to

the calculated molecular weight of p23 and compare this value to the calculated

molecular weight of the p23/p58 complex, I conclude that active p58 is bound to p23 as a

heterodimer.

-42-



p58 can interact with either p64 or p110

Once I found that I could assay p58 associations in insect cell extract relatively

easily using gel filtration chromatography and bandshifts, I decided to apply a similar

method to the analysis of interactions between p58 and other CBF3 components. When

expressed separately and applied to a Superose 12 column, active p58 in p23/p58 extract

peaks in fraction 14 (Figure 2.5A, closed circles), while p64 and p110 peak in fractions

12 and 5, respectively (Figure 2.7A, closed circles, and data not shown). The elution

profiles of active p58 coexpressed with either p64 or p110 are shown in Figure 2.6. With

extract containing p23, p58, and p64, almost all of the active p58 elutes from the column

earlier than it does in a p23/p58 coexpression, peaking in fraction 10 (Figure 2.6A). The

completeness of this shift indicates that most of the active p58 in the p23/p58/p64 extract

is associated with p64 and suggests that the association is very tight. The coexpression of

p23 and p58 with p110 also shifts the elution profile of p58 to the left, demonstrating that

p58 and p110 can associate (Figure 2.6B). Two aspects of the p58-pl 10 association are

different from the p23-p58 and p58-p64 associations. First, only a fraction of the p58 is

shifted on the p23/p58/pll10 column. One explanation for this result might be that p110

is expressed at low levels and therefore is unable to bind up all of the p58. Second, p58

coexpressed with p110 elutes in multiple indistinct peaks spread out over a large portion

of the column. This result would be expected if p58 and p110 formed multiple

complexes of different sizes. A simpler explanation for both of these observations is that

the p58-p 110 interaction is unstable, so that p58 that is initially complexed with p110

dissociates during the column run and elutes after the actual p58-p 110 complex.
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p58, p64, and p110 form a complex in the absence of CEN DNA

I next asked whether I could detect a trimolecular complex that contained p58,

p64, and p1 10. Although it has previously been shown that all three proteins coelute

from a gel filtration column (Lechner and Carbon, 1991), those experiments did not

demonstrate that the proteins were associated in a single complex. When I compared the

fractionation of p23/p58/p 110 and p23/p58/p64/p 110 extracts on Superose 12 columns,

p58 activity profiles were indistinguishable (data not shown). While this result might

indicate that a trimolecular complex does not form, I suspected that it was obtained

because the resolution of large complexes is limited on a Superose 12 column. As an

alternative approach, I asked whether mixing p64 with both p58 and p110 would cause a

shift in the elution profile of p64. As shown in Figure 2.7A, p64 in the absence of other

CBF3 components elutes as a single peak in fraction 12. Mixing p110 with p64 does not

detectably shift the p64 activity profile, indicating that p110 and p64 do not interact in the

absence of p58 and p23. When p23/p58 extract is mixed with p64 extract, the majority of

the p64 elutes slightly earlier from the column (fraction 10). The peak of p64 activity in

this p23/p58 + p64 mix corresponds to the peak of p58 activity in a p23/p58/p64

coexpression (Figure 2.6A), consistent with the formation of a single p58/p64 complex.

In contrast to mixing p64 with either p23/p58 or p110 extracts, mixing all three extracts

together causes a substantial portion of the p64 to elute very early from the column, in

fractions 2-7 (Figure 2.7B). By comparing Figures 2.7A and B, it is apparent that the

shifting of p64 into this larger complex is dependent on the presence of both p23/p58 and

p110 extracts. This early-eluting p64 has multiple peaks and elutes over a broad volume,

suggesting that the interaction that shifts p64 either is relatively weak or consists of
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multiple complexes. Because p58 can interact with either p64 or p1 10, and because I

have been unable to detect interactions between p23 and either p64 or p110 (data not

shown), I conclude that the shift in p64 activity is due to formation of one or more

complexes containing p64, p58, and p110.

p58 in yeast

To examine the relationship between the properties of recombinant CBF3 proteins

and the properties of the same proteins in yeast, I applied extract prepared from wild type

yeast to a gel filtration column and assayed fractions for p58 activity. In Figure 2.8, I

show that the bulk of the active p58 elutes from a Superose 12 column with a peak in

fraction 10. This peak of activity corresponds to the peak of active recombinant p58

when it is associated with p64, suggesting that in yeast, the majority of active p58 is

associated with p64. Some active p58 in yeast extract elutes earlier from the column,

showing that a portion of the p58 in yeast is contained in an even larger complex.

Discussion

CBF3 is an essential DNA binding component of the yeast kinetochore composed

of four proteins, but very little is known about how these proteins contribute to the

structure of CBF3 and its assembly onto DNA. In this report, I have characterized the

CBF3 proteins in solution and shown that p110 is an elongated homodimer, p64 is a

globular homodimer, p23 is monomeric, and p23 and p58 form a stable heterodimer. p58

binds to each of the other CBF3 components, and, while there is no evidence that p64 and

p110 interact in the absence of p58, p5 8 can mediate formation of a p58-p64-p 110

complex. In conjunction with previous results that describe protein-DNA interactions in

the CBF3-DNA complex, I use my characterization of CBF3 protein structures and
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protein-protein interactions to build models for both the assembly pathway and the final

structure of CBF3 on DNA.

The structure of CBF3

By measuring sedimentation and diffusion coefficients, I have determined the

stoichiometries and rough physical dimensions for each of the CBF3 proteins in solution.

These descriptions are necessarily imprecise due to a variety of factors, including my

reliance on quantitative methods that depend on standard proteins and the limited

resolution of the hydrodynamics techniques and detection methods. However, my

conclusions about stoichiometry are internally consistent because each of the calculated

stoichiometries is very close to integral. Three additional results support the validity of

my techniques. First, molecular weights determined for p64 using the two independent

hydrodynamics methods are similar (117 versus 138 kilodaltons). Second, the difference

in calculated molecular weights of p23 expressed in insect cells and expressed in bacteria

is consistent with the difference observed by SDS-PAGE. Third, both p64 and p110

contain coiled-coil sequence motifs, consistent with the finding that these proteins are

both homodimers in solution.

Based on the stoichiometries of CBF3 proteins in solution, the simplest proposal

for the makeup of the core CBF3-DNA complex is two p64s, one p58, one p23, and two

p 11Os. The predicted total molecular weight of the protein components of this complex

is 405 kilodaltons. A model for the assembled structure based on stoichiometries, Stokes

radii, and protein-protein interactions, as well as protein-DNA interactions previously

identified by crosslinking studies (Espelin et al., 1997), is shown in Figure 2.9. I

assumed uniform protein density and circular cross-sections to calculate the shorter
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dimensions of the proteins in this model. This assumption is an oversimplification, but it

enables an approximation of what the complex might look like. The CBF3-DNA

complex is 180 angstroms long, with a width ranging from 55 to 120 angstroms. For

comparison, a single nucleosome is 110 angstroms in diameter and 40 angstroms thick.

My results do not rule out that the three-dimensional structure of CBF3-DNA is more

complicated and might include bending or twisting of the DNA and proteins.

Assembly of CBF3

My results demonstrate that p58 plays a central role in the assembly of CBF3 by

interacting with each of the other CBF3 proteins and mediating interactions among them.

p58 forms stable complexes with both p23 and p64. A tight interaction with p23 has

previously been suggested by findings that p23 and p58 copurify when expressed in yeast

and when expressed in insect cells (Stemmann and Lechner, 1996; Kaplan et al., 1997).

Based on my findings that all active p58 is associated with p23 when the proteins are

coexpressed in insect cells, and that all CBF3-DNA complex formed in the presence of

p23 contains p23 (data not shown), I infer that all of the partial complexes that include

p58 also include p23. It has been shown that p23 can be purified away from activated

p58, leaving the p58 competent to assembly into CBF3 in the absence of p23 (Kaplan et

al., 1997). This result demonstrates that while p23 and p58 can interact, a stoichiometric

interaction is not required for CBF3 assembly. In other words, p23 plays a catalytic role,

but not a structural role, in CBF3. Why, then, is p23 included in the CBF3-DNA

complex if it isn't required? Presumably, p23 binds to p58 as a necessary step in the

post-translational activation of p58. That this interaction is required for CBF3 assembly

ensures that p23 and p58 will interact, and may lead to the relocalization of p23 to the
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kinetochore. I speculate that this localization event enables p23 to perform an additional

function at the kinetochore possibly related to its role in the SCF ubiquitin ligase complex

(Feldman, et al., 1997; Skowyra, et al., 1997). Mutations in p23 have been identified that

separate its function at the G1-S transition, where it is required for the degradation of

Sic lp, and at G2-M, where p58 must be activated for kinetochore assembly (Connelly

and Hieter, 1996). It will be interesting to determine whether mutations in p23 can be

found that arrest cells at G2-M but still enable p23 to activate p58.

A stable interaction between p58 and p64 has been suggested by the finding that

p58 copurifies with p64 from yeast extract (Stemmann and Lechner, 1996). This notion

is supported by two of my results. First, all of the active p58 associates with p64 when

the proteins are expressed in insect cells. Second, the active p58 in yeast extract is

present in a complex that behaves in gel filtration chromatography similarly to the p58-

p64 complex in insect cells. In yeast, p58 is turned over very rapidly (Kaplan et al.,

1997). Preliminary results showing that the efficient overexpression of p58 in vivo

requires the co-overexpression of p64 (A. Grancell, unpublished observation) suggest that

the tight interaction between p58 and p64 serves to stabilize p58 against degradation.

Such an interaction might facilitate the folding of p58 and prevent its degradation by

machinery that scavenges misfolded proteins.

Based on my observations of interactions among CBF3 proteins, I propose that

the various p58-containing subcomplexes represent intermediates in the CBF3 assembly

pathway (Figure 2. 10B). A p23-p58-p64 complex appears to be the dominant form of

active p58 in the cell. Because protein complexes containing p110 appear to be unstable,

I suspect that interactions between the p23-p58-p64 complex and p110 are transient, until
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the four proteins together contact DNA. The DNA-bound CBF3 is stabilized by protein-

DNA interactions, by protein-protein interactions, and possibly by conformational

changes induced in the proteins or DNA upon CBF3 binding. A prediction of this model

that can be tested is that binding to DNA will serve to stabilize protein-protein

interactions in a complex containing p58, p64 and p1 10.

Implications for the specificity of CBF3 binding

In a haploid yeast cell, there are only 32 sites where CBF3 must assemble

(centromeres). Given the large amount of additional DNA in the genome, what

characteristics of CBF3 determine its binding specificity? In one model, CDEIII contains

essential nucleotides that interact with each of the CBF3 proteins, so that assembly of

CBF3 onto DNA involves specific interactions both among CBF3 proteins and between

each of the proteins and DNA. Thus, CBF3 is like a puzzle of interlocking pieces. Two

predictions of this model are 1) nucleotides that contact each of the proteins will be

highly conserved and 2) mutating any of the bases involved in specific contacts would

disrupt CBF3 assembly. An alternative model for CBF3 binding specificity is that only

one of the CBF3 proteins makes essential sequence-specific contacts, and that the other

proteins act to facilitate this binding. Predictions of this model include 1) the nucleotides

contacted by the sequence-specific binding protein are highly conserved while other

nucleotides are less well-conserved, and 2) mutating the contact sites for the sequence-

specific binding protein will have greater impact on CBF3 binding than mutating bases

that contact other proteins.

The second model is more strongly supported by both in vivo mutational analysis

of CDEIII and protein-DNA crosslinking results. p64 contacts four of the seven
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absolutely conserved nucleotides in CDEIII, and two more completely conserved bases

are immediately adjacent to essential p64 contacts (Espelin et al., 1997). Additionally,

point mutations in the bases contacted by p64 have more severe consequences for in vivo

function than do mutations in bases contacted by either p58 or p110 (Jehn et al., 1991).

These results suggest that p64 may be primarily responsible for determining the binding

specificity of CBF3.

My finding that p64 is a dimer in solution also supports the second hypothesis. I

propose that p64, like other zinc cluster proteins, specifically recognizes DNA sequences

at its binding site, and by this functions as the sequence recognition component of CBF3.

Other members of the zinc cluster family bind as homodimers to sequences containing

either direct or inverted repeats of CCG (Marmorstein et al., 1992; Marmorstein and

Harrison, 1994; Zhang and Guarente, 1994). The requirement for intact CCGs is not

absolute. In vitro selection of binding sites was performed for the zinc cluster protein

Haplp (Zhang and Guarente, 1994). Many of the selected sequences contained only one

intact CCG, and the only base conserved in the second would-be CCG was the central

nucleotide. CDEIII sequences contain a pattern similar to the patterns of isolated Hap lp

binding sites. One CCG, which is a contact site for p64, is absolutely conserved, while

the other p64 contact site contains a single completely conserved G near the center of the

site (see Chapter 1). These p64 contact regions form a pseudo-palindromic recognition

site centered on the conserved G residue contacted by p58. I propose that, like Haplp,

p64 binds as a dimer to the intact CCG and to the imperfect G-containing half site.

Furthermore, I propose that each of these interactions is mediated by zinc clusters.

Because Haplp binds to its imperfect recognition site in vitro in the absence of other
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protein factors, I speculate that the reason p64 does not bind to CDEIII on its own is not

because the recognition site is imperfect, but because in the absence of other CBF3

proteins p64 is in an incorrect conformation for DNA binding. Thus, interacting with p58

and p110 leads to a conformational change in p64 that enables p64 to bind to CDEIII.

This obligatory interaction causes p64 to "recruit" p58 and p110 to the centromere, where

they may function to stabilize CBF3 by binding non-specifically to DNA or as assembly

factors for other components of the kinetochore. This model is presented in schematic

form in Figure 2.10. A prediction of this model is that formation of a p58-p64-p 110

complex changes the conformation of p64.

Future directions

In addition to understanding the structure of CBF3, I would like to know how

CBF3 assembly is regulated and how CBF3 contributes to assembly of the rest of the

kinetochore. Kaplan, et al. (1997) have shown that p58 is regulated by a combination of

activation and destruction mechanisms. In light of the results presented in this chapter

demonstrating that p58 plays a central role in CBF3 assembly, the finding that p58 is

highly regulated suggests that controlling p58 activity effectively controls assembly of

the entire CBF3 complex. Now that I have dissected the interactions made by p58, it will

be interesting to determine which step in the CBF3 assembly pathway, if any, is effected

by p58 activation. This assembly of CBF3 onto DNA appears to be an initiating event

for kinetochore assembly. The structural features of the CBF3 complex suggest that p64

and p110 are the most accessible proteins for interaction with other kinetochore

components. Using this information, I might now target p64 and p110 for mutational
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analysis to determine how these proteins contribute to interaction with other kinetochore

proteins and with centromeric DNA sequences outside of CDEIII.
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Table 2.I. Summary of protein hydrodynamics results.
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calculated MW

(kilodaltons)

monomer MW* stoichiometryt

(kilodaltons)

Stokes radius f/fott

(angstroms)

2.66

(2.64-2.68)

4.75

(4.69-4.80)

6.00

(5.70-6.34)

7.02

(6.90-7.15)

7.01**

(6.89-7.14)**

6.14

(5.70-6.58)

7.09

(6.70-7.49)

5.26

(4.95-5.58)

2.65

(2.49-2.81)

2.18**

(2.02-2.33)**

197.2

(184.4-209.7)

131.7

(126.0-137.6)

76.0

(75.2-76.3)

30.3

(29.0-31.6)

25.0**

(23.6-26.2)**

112.2

73.9

56.3 [86.6***]

23.9

23.9

1.76

(1.64-1.87)

1.78

(1.71-1.86)

0.88***

(0.87-0.88)***

1.27

(1.21-1.32)

1.05**

(0.99-1.10)**

80.1

(79.5-80.7)

44.8

(44.4-45.4)

35.5

(33.6-37.4)

30.3

(29.8-30.9)

30.4**

(29.8-30.9)**

2.09

(2.03-2.15)

1.34

(1.30-1.37)

1.27

(1.20-1.34)

1.48

(1.43-1.52)

1.58**

(1.52-1.63)**

Numbers in parenthesis indicate the range for each value as dictated by the size of gel filtration or glycerol gradient fractions.
* Calculated from the predicted amino acid sequence of protein plus 6H tag, if used.
** Indicates values for p23 expressed in bacteria.
*** Indicates values that include the monomer molecular weight of p58 plus the calculated molecular weight of p23.
$ Determined by dividing calculated MW by monomer MW.
tt Proteins with f/fO ratios less than 1.5 are considered "globular", while proteins with ratios greater than 1.5 are considered
"elongated".
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Figure 2.1. Recombinant CBF3 components. (A-C) Recombinant H6-tagged p110
(A), p64 (B), and p23 (C) purified from baculovirus-infected insect cells were separated
on SDS-polyacrylamide gels and stained with Coomassie blue. Arrows indicate the full-
length proteins. The p110 preparation contains a contaminating protein migrating at -48
kilodaltons which is detectable by anti-p 10 immunoblotting, suggesting that it is a
proteolytic breakdown product of p 110. The proteins shown here were used for
quantitative hydrodynamic analysis. (D) Recombinant p58 used for quantitative
hydrodynamics was undetectable by Western blot and was assayed by bandshift. Extract
from baculovirus-infected insect cells expressing p58 and p23 was mixed with p64, p1 10,
and CDEIII-containing radiolabelled DNA probe. Lane 1, no p23/p58 extract added; lane
2, p23/p58 extract added.
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Figure 2.2. Hydrodynamic analysis of p110. (A) The A280 elution profile (dotted line)
of purified p 110 applied to a Superose 6 gel filtration column is shown. The solid line
with circles indicates relative in vitro CDEIII DNA binding activity of each fraction
when mixed with excess p23, p58, and p64. Below the graph, the fractions are analyzed
by immunoblotting with affinity-purified anti-p 110 antibody and 1251 protein A.
Molecular weights of protein standards are indicated. (B) Purified p110 was sedimented
in a 15-35% glycerol gradient and protein from each fraction was TCA precipitated,
separated on an SDS-polyacrylamide gel, and immunoblotted as in A. Molecular weights
of protein standards are indicated.
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Figure 2.3. Hydrodynamic analysis of p64. (A) Purified p64 was applied to a
Superose 12 gel filtration column. The A2 80 elution profile (dotted line) and relative in
vitro DNA binding activity of fractions mixed with excess p1 10, p23, and p58 (solid line
with circles) are shown. Below the graph, fractions were immunoblotted with anti-p64
antibody and detected with 1251 protein A. Molecular weights of protein standards are
indicated. (B) Purified p64 was sedimented in a 15-35% glycerol gradient. TCA-
precipitated protein from each fraction was separated by SDS-PAGE and immunoblotted
as in A. Molecular weights of protein standards are indicated.
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Figure 2.4. Hydrodynamic analysis of p23. (A) Purified p23 was applied to a
Superose 12 gel filtration column and the A280 elution profile (dotted line) is shown.
Fractions were also analyzed by immunoblotting using anti-p23 antibodies and detected
with 125I protein A. Molecular weights of protein standards are indicated. (B) Purified
p23 was sedimented on a 5-25% glycerol gradient. Fractions were TCA-precipitated and
analyzed by immunoblot as in A. Molecular weights of protein standards are indicated.
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Figure 2.5. Hydrodynamic analysis of p58/p23. (A) Superose 12 gel filtration
chromatography of p58 coexpressed with different forms of p23. Extract from
baculovirus-infected insect cells expressing p58 and either p23 (closed circles) or GST-
p23 (open circles) was applied to a Superose 12 gel filtration column. The amount of
active p58 was assayed by mixing a portion of each fraction with excess p64 and p 110 in
a CDEIII bandshift assay, and the amount of probe shifted was quantified. Molecular
weights of protein standards are indicated. (B) Extract from baculovirus-infected insect
cells coexpressing p23 and p58 was sedimented in a 5-25% glycerol gradient. Fractions
were assayed for active p58 as in part A. Molecular weights of protein standards are
indicated.
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Figure 2.6. Coexpression with p110 or p64 increases the apparent size of p58. Insect
cell extracts containing p23, p58, and either p64 or p110 were applied to Superose 12 gel
filtration columns and assayed for p58 activity as described in Figure 2.5. For
comparison, the p58 activity profile of p23/p58 extract is also shown (closed circles). (A)
Extract containing p23, p58, and p64 (open circles). (B) Extract containing p23, p58,
and p110 (open circles).

- 65 -



- p23/p58 -e- p23/p58/p64

1

0.8

0.6
a-

0.4> 0.4

- 0.2

0

5 10 15 21
Fraction number

---- p23/p58 - p23/p58/pl 10

1

0.8

o 0.6
Ln

0.4

a)

CC 0.2

0

10
Fraction number

15 20
. . i l i l. . I .l l 

i



Figure 2.7. Mixing with p23, p58, and p110 but not with p23 and p58 or p110
increases the apparent size of p64. Insect cell extract containing p64 was mixed with
extract containing p23 and p58, with extract containing p110, or with both extracts,
separated on a Superose 12 gel filtration column and assayed for p64 activity by mixing
fractions with excess p23, p58, and p110 in a CDEIII DNA bandshift. The amount of
probe shifted was quantified and graphed. (A) p64 mixed with p23/p58 (open circles)
elutes slightly earlier from the column than does p64 alone. The elution profile of p64
does not change in the presence of p110 (triangles). (B) Mixing p64 extract with
p23/p58- and p 110-containing extracts (open circle) causes some of the p64 to elute
much earlier from the column.
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Figure 2.8. p58 in yeast elutes earlier from a gel filtration column than recombinant
p58. Wild type yeast extract (triangles), or extract from insect cells expressing p23 and
p58 (open circles) or p23, p5 8 , and p64 (closed circles) was applied to a Superose 12 gel
filtration column and fractions were assayed for active p58 as described in Figure 2.5.
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Figure 2.9. A scale model for the structure of CBF3 bound to DNA. CBF3 proteins
with experimentally-determined lengths and stoichiometries are position on CEN DNA
according to protein-DNA crosslinking results (Espelin et al., 1997). Proteins are drawn
to scale based on calculated Stokes radii, assuming constant protein density and circular
cross-sections. The 56 base pair "core" DNA is the region protected from nuclease
digestion by CBF3 in vitro.
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Figure 2.10. A speculative model for the role of p64 in CBF3 assembly onto DNA.
(A) Most zinc cluster proteins, including Haplp, bind DNA as heterodimers in the
absence of other protein factors. p64 cannot bind CDEIII without the other CBF3
proteins. I speculate that the reason p64 cannot bind DNA alone is because it is not in the
correct conformation. (B) p64 associates first with p58 and p23 to form a stable
complex (1). This complex is still unable to bind DNA, but it can transiently interact
with p110 (2). Formation of this tetramolecular complex leads to a conformational
change in p64, which enables p64 to bind centromeric DNA (3). Binding of p64 to DNA
alters the conformation of all CBF3 proteins and possibly the DNA, locking the
nucleoprotein complex together (4).
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Chapter 3
Final thoughts: A model for kinetochore assembly

In the previous chapter, I described experiments probing the structure of CBF3 in

vitro. These experiments led me to a specific model for the assembly of CBF3 in which

p58 mediates associations between the other CBF3 proteins and p64 provides the

specificity for DNA binding by recognizing specific regions of CDEIII. However, while

CBF3 is clearly an essential component of the yeast kinetochore and may even function

to initiate kinetochore assembly, it is not sufficient to mediate the binding of a

chromosome to the mitotic spindle. In this chapter, I present a model for the assembly of

the kinetochore based on these observations and on published information about

demonstrated and suspected components of the kinetochore.

A schematic representation of this model is presented in Figure 3.1. CBF3

functions as an initiator complex by selectively interacting with CDEIII DNA, similar to

the way in which ORC initiates assembly of replication machinery at the replication

origin (Bell and Stillman, 1992), and TFIID initiates assembly of transcriptional proteins

at promoters (reviewed in Orphanides et al., 1996). CBF3 binds to CDEIII in vivo in the

absence of other centromeric sequences and presumably without requiring other

kinetochore proteins. Once bound, CBF3 recruits additional kinetochore components,

including microtubule-binding proteins and Mif2p.
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The next step in kinetochore assembly is a conformational change of the

centromeric DNA facilitated by CBF3 and the proteins that initially bind to CBF3.

Ample evidence suggests that changes in chromatin structure are required for the

assembly and maintenance of the kinetochore, including the findings that genetic

manipulations that alter chromatin structure can increase chromosome loss rates and that

Cbflp may be involved in remodeling chromatin at sites of transcription. I propose that

Mif2p, which has strong genetic interactions with Cbflp, initiates bending in CDEII that

is enhanced by recruitment of additional molecules of Mif2p and Cbflp. This bending

leads to formation of a loop that encompasses the 150-250 base pairs of DNA protected

from nuclease digestion by the kinetochore. A loop of 200 base pairs of B-form DNA

would have a circumference of approximately 65 nm. This size is important to support

end binding of a microtubule (see below).

Formation of the loop complex allows the assembly of additional structural and

microtubule-binding components onto the kinetochore. The entire centromere (CDEI-

CDEIII) supports more efficient attachment to microtubules in vitro than does CDEIII

alone. One interpretation of this result is that proteins that bind CDEIII form a single unit

of microtubule attachment and that this unit is repeated multiple times when CDEIII is in

the context of other centromere sequences. p110 is a strong candidate for a factor that

polymerizes along the remaining centromeric DNA and mediates the binding of

microtubule-attachment units, because additional p110 molecules appear to polymerize

onto CBF3 and bind non-specific DNA in the CBF3 "extended" complex.

While kinetochore proteins can mediate binding of a small piece of CEN DNA to

microtubules in vitro, it is likely that the kinetochore requires stabilization by association
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with additional DNA and DNA-bound proteins in vivo. The kinetochore transduces

forces generated by the microtubule, or at the site of kinetochore-microtubule interaction,

to the chromosome. Thus, the kinetochore has stricter stability requirements than most

other nucleoprotein complexes. I propose that additional stabilization of the kinetochore

is achieved by binding of nucleosomes to the kinetochore, in a structure that may

resemble the chromatin "30 nanometer fiber" of organized nucleosomes. These adjacent

nucleosomes may contain Cse4p, a histone H3 homolog that is similar to the mammalian

centromere protein CENP-A. In mammalian cells, the kinetochore also both contains

centromeric DNA and is associated with surrounding specialized chromatin

(heterochromatin).

Once the kinetochore is fully assembled it can interact with a microtubule. In

mammalian cells, microtubules attach to the kinetochore by inserting into the fibrous

corona surrounding the kinetochore outer plate (see Appendix B). It has been proposed

that long, flexible proteins, including the motor CENP-E, surround the microtubule and

extend part way up it to make contacts along the microtubule wall (Yao et al., 1997). I

suggest that a similar interaction occurs at the yeast kinetochore, which has also been

shown to form an end-on attachment with the microtubule. The kinetochore loop

structure proposed here is slightly larger in circumference than a microtubule (65 nm

versus 63 nm), so that microtubule-binding proteins extending from the loop could

surround the microtubule end.

To test this model, I would ask several specific questions about the structure of

the kinetochore. First, what are the identities of the kinetochore components that bind to

microtubules? Once identified, it should be possible to use in vitro microtubule binding

- 77 -



assays to determine the order of addition of these components. Second, what is the

chromatin structure at the kinetochore, and what components of the kinetochore are

required to define this structure? Specific chromatin alterations might include bending,

looping, and melting. Finally, what is the structure of the kinetochore as a whole? The

overall shape and size of kinetochores formed in vivo and excised using engineered

restriction sites would be analyzed using hydrodynamic methods or scanning electron

microscopy.
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Figure 3.1. Speculative model for assembly of the kinetochore. See text for
description.
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Appendix A
Physical domain mapping of p64 and p110 by
partial proteolysis

Introduction

How does a large nucleoprotein structure assemble? CBF3 contains at least three

different polypeptides in varying stoichiometries and contacts a large region of DNA. All

of the protein components are required for the assembly of CBF3 onto DNA (Kaplan et

al., 1997) and most point mutations in CDEIII impair centromere function in vivo (Jehn et

al., 1991). These results demonstrate that multiple protein-protein and protein-DNA

interactions are required to correctly assemble the CBF3-DNA complex. Understanding

how each of these interactions contributes to the function of CBF3 at the kinetochore will

require determining not only which proteins associate with which other proteins, or

which proteins contact what region of DNA, but also what parts of the proteins mediate

these interactions.

One approach to determining the relationship between protein structure and

function relies on the observation that many proteins contain functionally distinct

physical domains. That is, to some extent, proteins are modular. This point has been

demonstrated convincingly for transcription factors that posses separate DNA-binding

and transcriptional activation domains, which can be exchanged to create hybrid

functional proteins with novel specificities (Reece and Ptashne, 1993). It is not
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surprising that these domains are often composed of contiguous sequences of amino acids

that can fold independently.

Using the notion that protein functional regions constitute separable physical

domains, protein domain organization has been studied using limited proteolysis

(Nakayama et al., 1987). Flexible regions of proteins that link folded structural domains

are more accessible to endoproteases than sequences that compose structural units. Thus,

by treating proteins with frequently-cutting proteases it is possible to map protein

structure by delineating physical domains. With the addition of N-terminal

microsequencing, the exact boundaries of the domains may be identified.

Here, I explore the domain organization of the CBF3 proteins p64 and p 110. I

find that p64 contains at least two distinct physical regions, one of them being the zinc

cluster domain that putatively binds the conserved CCG sequence of CDEIII. p110

contains three domains, that may constitute a dimerization domain, a DNA-binding

domain, and a domain that interacts with the other CBF3 components.

Materials and Methods

Expression and purification of recombinant p64 in E. coli

E. coli strain BL21 containing the plasmid pUBS520, which expresses the DnaY

tRNA-ArgAGG/AGG gene (Brinkmann et al., 1989), was transformed with CEP3 cloned

into the vector pQE30 (Qiagen). Expression of the resulting MRGS-H6-tagged p64 was

induced with IPTG at 300. Cells were washed and sonicated in 50 mM NaPO4, 300 mM

NaCl before extract was bound to Ni-NTA Superflow resin. Remaining purification

steps were performed as described in Chapter 2.
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Purification of p110

p110 purified as described in Chapter 2 was insufficiently pure for proteolytic

analysis. Partially purified p110 was diluted to 150 mM NaCl and applied to a Poros 20

HQ column using a BioCAD chromatography system (PerSeptive Biosystems). After

washing, protein was eluted in a 150 mM to 1 M NaCl gradient. Fractions containing

p110 were identified by SDS-PAGE and silver staining.

Partial proteolysis

p64 and p110 were treated with dilute proteolytic enzymes in 50 mM HEPES (pH

8.0), 300 mM NaCl, 10% glycerol, 1 mM EDTA. Initial tests with different

concentrations of trypsin, chymotrypsin, or S. aureus V8 protease (Worthington

Biochemicals, Freehold, NJ) were performed to determine an approximate concentration

for generating proteolytic fragments. To start reactions, enzyme was added and reactions

incubated at 300 . Aliquots were removed at different time points and proteolysis was

stopped by boiling the sample in SDS-PAGE loading buffer and 5 mM PMSF. After

separating samples on SDS-polyacrylamide gels, protein was detected by Coomassie

staining (p6 4 ) or silver staining (p1 10). Microsequencing of p64 proteolytic fragments

was performed at the MIT Biopolymers Lab (Cambridge, MA).

Results

p64 expressed in E. coli and in insect cells behaves the same in in vitro DNA binding

p64 was expressed in E. coli as a H6- fusion protein and purified. I compared the

bandshift activity of H6-p64 expressed in bacteria to the same protein expressed in insect

cells and found that the two proteins have approximately the same specific activity when
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complementing p58, p23, and p110 in a bandshift reaction (Figure A. 1). This result

demonstrates that p64 expressed in bacteria is active and therefore structurally intact.

The p64 zinc cluster is separable from the rest of p64

Purified p64 was treated with trypsin, chymotrypsin, and stapholococcus V8

protease for varying lengths of time (Figure A.2). By primary sequence analysis, p64

contains 70, 74, and 78 possible cleavage sites, respectively, for these proteases

distributed throughout the 608 amino acid sequence. All three enzymes gave a similar

primary digestion product that migrated at approximately 58 kilodaltons (Figure A.2A).

N-terminal sequence analysis of this fragment showed that the cleavage site was slightly

downstream of the zinc cluster domain, as shown in Figure A.2B. No fragment

corresponding to the cleaved zinc cluster was detected, most likely because the fragment

would have migrated off the bottom of the gel. The finding that multiple enzymes

produce similarly-sized products supports the notion that the sites of cleavage are

exposed regions that link structural domains.

Given this result, I constructed an H6-tagged version of p64 that lacked regions

upstream of the proteolytic cleavage site. This protein expressed successfully in insect

cells but failed to function in a bandshift assay when mixed with p23, p58, and p110 (data

not shown). This result was expected, since the zinc clusters of other family members are

required for DNA-binding (Keegan et al., 1986; Pfeifer et al., 1989), and mutations in

highly conserved residues in the zinc cluster of p64 lead to increased chromosome loss in

vivo (Lechner, 1994). The next step in analysis of p64 structure will be to identify other

structural domains in the remaining 58 kilodaltons of the protein.
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p110 contains three physical domains

I applied the same method of partial proteolysis to p 110 purified from insect cells

(Figure A.3A). Full length p110 behaves on SDS-PAGE as a 116 kilodalton protein.

Treatment with dilute trypsin generates fragments of 96, 72, 40, and 25 kilodaltons.

Based on the kinetics of formation of the proteolytic products, a model for the domain

organization of p110 can be proposed (Figure A.3B). During the period of proteolytic

digestion, the strongest band that develops has a size of 72 kilodaltons. Formation of this

product corresponds with the appearance of the 40 kilodalton fragment. I reasoned that

because 40 kilodaltons plus 72 kilodaltons is approximately 116 kilodaltons, these

fragments are probably formed directly by cleavage of the full length protein. A decrease

in the amount of the 96 kilodalton fragment corresponds with an increase in the amounts

of the 25 kilodalton and 72 kilodalton fragments, suggesting that these two components

constitute the 96 kilodalton product. I failed to detect an expected 20 kilodalton

fragment, most likely because it would have migrated off the gel.

Discussion

Using partial proteolyisis, I have shown that both p64 and p110 can be cleaved

into distinct fragments. Because both proteins contain multiple sites that are not cleaved

under my conditions, I interpret these results to mean that only some of the cleavage sites

are accessible to proteases. The simplest explanation for this selective cleavage is that

the amino acids that constitute the inaccessible sites are within tightly packed structures

and that the accessible sites are found in sequences that connect these distinct domains.

In crystal structures of the zinc cluster proteins Gal4p and Pprlp, the zinc cluster

domain is tethered to the rest of the protein by a flexible "linker" region (Marmorstein et
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al., 1992; Marmorstein and Harrison, 1994). It was therefore expected that the zinc

cluster could be cleaved from p64. N-terminal microsequencing of a 51 kilodalton

proteolytic fragment of p64 showed that it was cleaved approximately 40 amino acids

downstream of the first cleavage site, suggesting that the "linker" region of p64 contains

at least 40 residues (data not shown). The structure of the remaining region of p64 was

not thoroughly investigated, but it is expected that this region will enable both

dimerization of p64 and interaction with other CBF3 proteins. Consistent with this

proposal, p64 contains a putative coiled-coil region in residues 369-390.

p110 appears to contain three distinguishable physical domains. N-terminal

microsequencing of these fragments may verify the proposed domain organization of

p110 and determine the orientation of the domains relative to the amino- and carboxyl-

termini. In the "extended" CBF3-DNA complex, additional p110 protein contacts 33

bases of non-specific DNA sequence to the right of the region bound in the "core"

complex. 33 bases corresponds to approximately 112 angstroms of B-form DNA, which

is 70% of the length of a p110 dimer. If I equate length with mass, which is certainly an

oversimplification, 70% of a p110 monomer corresponds to 81 kilodaltons,

approximately the size of the major tryptic proteolytic fragment of p 1 10. This calculation

suggests that the 72 kilodalton domain stretches along the DNA while the 20 and 25

kilodalton regions function in p110 dimerization and to bind p110 to other CBF3

proteins. In support of this model, p110 contains two short putative coiled-coil regions

that might fall into the 25 kilodalton domain if the 20 and 25 kilodalton domains are

oriented at the carboxyl-terminus of p110.
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Figure A.1. p64 expressed in insect cells and bacteria is equally competent to
participate in DNA binding. H6-tagged p64 was purified from either baculovirus-
infected insect cells (circles) or E. coli (squares) and added to excess p23, p58, and p110
in a CDEIII DNA bandshift assay. The amount of probe shifted was quantified and
plotted relative to the amount of probe shifted by a positive control.
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Figure A.2. Partial proteolysis of p64. (A) 0.2 mg/ml p64 purified from E. coli was
treated with 5 gg/ml trypsin (lanes 2-5), 1 gg/ml chymotrypsin (lanes 6-9), or 2 gg/ml V8
protease (lanes 10-13) at 300. Aliquots of reactions were removed at 10 min (lanes 2, 6,
10), 20 min (lanes 3, 7, 11), 40 min (lanes 4, 8, 12), and 80 min (lanes 5, 9, 13) and
stopped by boiling in SDS-PAGE loading buffer and PMSF. Samples were separated on
an SDS-polyacrylamide gel and stained with Coomassie blue. Lane 1 contains
undigested proteins. The tryptic fragment indicated with an asterisk was analyzed by N-
terminal sequencing. (B) The sequence of the amino-terminal portion of p64 is shown.
The arrow indicates the tryptic cleavage site, which is just downstream from the zinc
cluster homology region (boxed).
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Figure A.3. Partial proteolysis of p110. (A) 0.1 mg/ml purified p110 was digested
with 0.5 jgg/ml trypsin. Aliquots were removed at 5, 10, 20, 40, and 80 minutes (lanes 2-
6) and boiled in SDS-PAGE loading buffer with PMSF. Lane 1 contains undigested
protein. The molecular weights of digestion products are indicated on the right. The 54
kilodalton protein is a contaminant in the p110 preparation that is recognized by
antibodies directed against p1 10, suggesting it is a proteolytic degradation product
produced during purification. (B) A model for the domain organization of p110 based
on tryptic digestion. See text for a detailed description. The lines below the schematic of
full length p110 indicate the different tryptic fragments used to create the model, with the
molecular weights of the fragments indicated to the left.
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Appendix B
Chromosome movement: Kinetochores motor
along

This Appendix contains a reprint of the article, "Chromosome movement: Kinetochores
motor along" by Adam Grancell and Peter K. Sorger, originally published in Current
Biology 1998, 8: R382-R385.
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Chromosome movement: Kinetochores motor along
Adam Grancell and Peter K. Sorger

The equal division of chromosomes among daughter
cells at mitosis involves a complex series of
kinetochore-dependent chromosome movements. The
kinetochore-associated CENP-E motor protein is critical
for the sustained movement of chromosomes towards
the metaphase plate during chromosome congression.
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In eukaryotes, chromosome segregation occurs on a
mitotic spindle formed from two polar arrays of micro-
tubules. Chromosomes attach to the spindle microtubules
by kinetochores, DNA-protein complexes that assemble
on centromeric DNA. The kinetochore-microtubule
linkage is very dynamic, and chromosomes move continu-
ously during mitosis. Chromosome movement is powered
by microtubule-based molecular motors, which use the
energy of ATP hydrolysis to generate force, and by micro-
tubule depolymerization, which liberates energy stored in
the microtubule lattice by GTP hydrolysis during assem-
bly [1]. A major challenge in the study of mitosis is to
determine which kinetochore proteins are responsible for
which aspects of chromosome movement, and to deter-
mine the relative importance of motors and microtubule
dynamics in generating force. Several recent papers on the
kinesin-related motor CENP-E advance our understand-
ing of kinetochore-associated motors and illustrate the
daunting technical challenges that must be overcome for
chromosome movement to be understood in full.

To make sense of chromosome segregation, it is impor-
tant to recall that spindle microtubules are oriented with
their minus ends anchored at the spindle poles - the
centrosomes - and their plus ends radiating outward.
Spindle microtubules can be divided into four classes on
the basis of the structures they contact (Figure 1, inset).
The first class, astral microtubules, contact the cell cortex,
where they play a role in orienting the spindle. The
second class, pole-to-pole microtubules, overlap in the
middle of the spindle with microtubules emanating from
the opposite pole; motor proteins found in the overlap
region cause pole-to-pole microtubules to slide relative to
each other, thereby controlling the length of the spindle.
The third class of microtubules interact with chromatin
via chromokinesins, motor proteins on the chromosome
arms which generate a polar ejection force that pushes

chromosomes toward the middle of the spindle. Lastly,
the fourth class of microtubules bind to kinetochores to
link chromosomes to the spindle. Although all four classes
of microtubules play a role in positioning chromosomes,
the force for chromosome movement is generated primar-
ily by the kinetochore-microtubule attachment.

The purpose of mitosis is to separate newly replicated chro-
mosomes into two equal and physically distinct sets. To
ensure the accuracy of this process, all pairs of sister chro-
matids must achieve a state of bivalent attachment prior to
their poleward movement at anaphase. Bivalent attachment
is achieved when one of a pair of sister chromatids is
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attached via its kinetochore to microtubules emanating
from one spindle pole, and the other sister is attached to
microtubules from the opposite pole. Chromosomes make
such bivalent attachments by a complex series of move-
ments, as illustrated in Figure 1 [2].

Early in prometaphase, each pair of sister chromatids
attaches by its kinetochore to the wall of a single micro-
tubule, leading to rapid (20-50 plm per minute) poleward
movement (Figure 1, state G). As the kinetochore-bound
microtubule depolymerizes, wall-binding matures into an
end-on attachment in which the extreme (plus) end of the
microtubule is found at the kinetochore. A period of slow
(2 p.m per minute) movement, alternating away-from and
towards the pole, then ensues (Figure 1, state Mo) until
collision with the end of a microtubule emanating from
the opposite pole produces bivalent attachment and slow
(2 Im per minute), but sustained, movement towards the
spindle equator (chromosome congression; Figure 1, state
C). Pairs of sister chromatids then oscillate about the
spindle equator (Figure 1, state Me) until the sudden loss
of sister cohesion at anaphase allows movement of individ-
ual chromatids towards opposite poles (Figure 1, state A).

A remarkable feature of all but the earliest prometaphase
chromosome-microtubule attachments is that the
microtubule plus ends remain associated with kineto-
chores. This can occur because chromosome movement is
tightly coupled to microtubule dynamics so that, as a
chromosome moves, microtubules attached to the leading
sister chromatid shrink and microtubules associated with
the trailing sister grow. The mechanisms that couple
movement to microtubule assembly are not known, but
kinetochore-associated motor proteins are thought to play
a key role in this coupling.

CENP-E structure and localization
With the aim of determining which proteins mediate
chromosome movement, there has been a sustained
attempt to identify kinetochore-associated microtubule-
based motors. Thus far, cytoplasmic dynein [3,4] and two
kinesin-like motor proteins - MCAK/XKCM1 [5,6] and
CENP-E [7] - have been localized to mammalian kineto-
chores. We shall focus here on CENP-E, a 312 kDa
protein with an amino-terminal kinesin-like motor
domain, a carboxy-terminal microtubule-binding domain
and a long intervening region that is likely to form a
dimeric coiled-coil [8] (Figure 2, inset). One can imagine
that a motor protein with such an architecture might link
apposed microtubules. The microtubule-binding activity
of CENP-E is turned on only at anaphase [8], however,
implying that CENP-E can crosslink microtubules only
late in mitosis.

Immuno-electron microscopy and light microscopy have
been used to determine the subcellular distribution of

CENP-E during the cell cycle [9,10]. Early in
prometaphase, just after nuclear envelope breakdown,
most CENP-E is associated with microtubules. Subse-
quently, CENP-E becomes concentrated at kinetochores,
presumably by traveling along microtubules by plus-end
motor activity ([10] and see below). Kinetochore localiza-
tion of CENP-E persists during metaphase and early
anaphase. Late in anaphase, however, CENP-E dissociates
from kinetochores, which are now near the spindle poles,
and accumulates at the spindle midzone. The midzone
contains the overlapping plus ends of pole-to-pole micro-
tubules and is involved in the lengthening of the spindle
in late anaphase (anaphase B). The relocalization of
CENP-E to the midzone may reflect a role for CENP-E in
crosslinking microtubules during spindle elongation.

Using immuno-electron microscopy, it was possible to
show that CENP-E localizes to the interface between
chromatin and microtubules even early in mitosis, when
partially-assembled kinetochores have yet to assume
mature electron-dense structures. It is reasonable to
assume that these sites of CENP-E staining are the sites
of nascent kinetochore formation [9,10]. In the subse-
quent period from prophase through anaphase, kineto-
chores are visible as distinct trilaminar structures and
CENP-E is found in the fibrous region extending from
the outer kinetochore plate and overlapping the ends of
microtubules [9,10] (Figure 2). Because of its location, this
fibrous corona is thought to contain the microtubule
binding components of kinetochores.

CENP-E polarity
What is the polarity of the CENP-E motor? A motor's
polarity is usually defined as the direction it moves on
non-dynamic (usually taxol-stabilized) microtubules in the
presence of ATP. Classical kinesin is a plus-end-directed
motor, but some kinesin-like motors move towards the
minus ends of microtubules; dynein is also a minus-end-
directed motor. The oscillatory nature of chromosome
movement implies a role for both plus-end-directed and
minus-end-directed motor activity at kinetochores. Deter-
mining which types of movement are associated with
which motors is, however, more tricky than it might
appear. For example, in the absence of ATP, plus-end-
directed kinesin can actually move cargo towards the
minus ends of depolymerizing microtubules, apparently
because the motors can hold on as depolymerization
occurs (see below).

An early study [11] detected minus-end-directed
microtubule motor activity in anti-CENP-E immunopre-
cipitates. More recently, however, Wood et al. [12] have
shown that a bacterially-expressed fragment of CENP-E
containing the motor domain has plus-end-directed motor
activity in vitro. One possible explanation for this discrep-
ancy is that the minus-end-directed motor activity brought
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Figure 2

The structure (inset) and kinetochore
localization (at three magnifications) of the
CENP-E motor protein. The CENP-E stalk is
potentially long enough for a single dimer to
bind to any of the 20-30 microtubules that
attach to a typical mammalian kinetochore.
See text for details.

down by anti-CENP-E antibodies might have arisen from
another motor protein associated with CENP-E. A second
possibility is that CENP-E has both plus-end-directed
and minus-end-directed motor activity, depending on its
state of covalent modification or on its association with
regulatory factors.

CENP-E function in the mitotic spindle
To investigate the functions of CENP-E in mitotic
chromosome movement, Wood et al. [12] immunode-
pleted the motor from Xenopus oocyte extracts, and then
examined spindle formation in vitro. In oocyte extracts
from which CENP-E had been depleted, most sister chro-
matids failed to align at the metaphase plate. One possible
explanation for this is that chromosomes skipped
prometaphase and metaphase and entered anaphase pre-
maturely. But sister chromatid separation - a marker for
anaphase entry - had not occurred on the misaligned
chromosomes, suggesting that CENP-E plays a role in
either the movement of chromosomes towards the
metaphase plate or maintaining them in that position once
they are there.

Taking a different approach, Schaar et al. [13] used
antibody microinjection to study CENP-E function in
living cells. When injected into interphase cells, anti-
CENP-E antibodies prevented metaphase chromosome
alignment. In injected cells, some chromosomes formed
only monopolar attachments and remained near one pole,
and other chromosomes formed bipolar attachments but
failed to congress. These results generally agree with
those in Xenopus oocytes and show that, in living cells,

CENP-E is necessary to form bipolar spindle attachments
and to move bivalently-attached chromosomes to the
spindle equator.

Not all chromosome movement was abolished by anti-
CENP-E antibodies, however. In injected cells, those
chromosomes that had achieved bivalent attachment oscil-
lated between the spindle poles, much like monovalently-
and bivalently-attached metaphase chromosomes in
unperturbed cells [2]. The existence of this oscillation in
CENP-E-depleted cells shows that some aspects of chro-
mosome movement were intact, even though the coordi-
nated movements leading to congression were defective.

A model for CENP-E function
We can account for these observations by postulating that,
during congression, the plus-end-directed motor activity
of CENP-E is responsible for moving chromosomes along
polymerizing microtubules towards their plus ends. It has
been demonstrated, however, that pulling forces associ-
ated with the tips of shrinking microtubules (minus-end-
directed movement), rather than pushing forces at the
growing microtubule ends (plus-end-directed movement),
provide the main force driving congression [141. The
failure of chromosomes to congress properly when
CENP-E activity is compromised suggests that CENP-E
plays a role in the minus-end-directed movement of chro-
mosomes, even though it has a demonstrated plus-end-
directed motor activity.

How could the plus-end-directed motor activity of CENP-E
drive minus-end-directed movement? One possible
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mechanism has been demonstrated in experiments by
Lombillo et al. [15]. In vitro, chromosomes isolated from
cultured cells bind via kinetochores to microtubule plus
ends. When these microtubules are induced to depoly-
merize and motor movement is prevented by depleting
ATP, the chromosomes remain attached to, and follow,
the shrinking microtubule ends to generate minus-end-
directed movement. This association with a shrinking
microtubule is inhibited by adding antibodies against
CENP-E. Thus it is possible that, in cells, CENP-E is
involved in generating minus-end-directed movement by
passively attaching chromosomes to shrinking microtubule
ends. An alternative possibility, suggested by the observa-
tion that cells microinjected with anti-CENP-E antibodies
still support oscillatory movement of chromosomes, is that
CENP-E regulates movement towards the equator and is
not required for the actual attachment of kinetochores to
microtubule ends.

Conclusions
Kinetochore-mediated chromosome movement is depen-
dent on a large number of different proteins, most of
which have not yet been identified, that must act in
concert to attach chromosomes to microtubules, control
the oscillatory movements of prometaphase, maintain
chromosome position at the metaphase plate, and move
chromosomes poleward at anaphase. The task of studying
this movement is confounded by the difficulty of separat-
ing the different types of motion in vitro, while maintain-
ing a semblance of the motion that chromosomes undergo
in living cells. Nevertheless, recent progress with
CENP-E demonstrates that the identification and charac-
terization of kinetochore-associated microtubule motor
proteins is a good first step in the search for a mechanistic
understanding chromosome segregation.
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