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Abstract

As the hard disk drive industry is pressured to lower the acoustic noise of their products,
new methods must developed to lower the acoustic emissions from their motors. This paper
uses a simple model of the three phase brushless motor to argue that the acoustic noise can be
eliminated by driving the motor with sinusoidal currents. A brief analysis is then conducted to
determine the voltage waveforms which will drive sinusoidal currents and make maximum use
of the power supply.

The waveforms derived do not allow conventional motor position detection because all of
the phases are driven simultaneously. Instead of sensing the BEMF as is normally done, a
phase-locked loop (PLL) which senses current through one sense resistor is presented to
provide the position feedback. The sinusoidal drive and associated phase locked-loop were
then implemented on an actual hard drive. The acoustic measurements showed a drastic
reduction in the pure-tone acoustic noise of the hard drive, and the testing demonstrated the
feasibility of the design.

Thesis Supervisor: James L. Kirtley Jr.

Title: MIT Professor of Electrical Engineering
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Chapter 1

Introduction

This thesis proposes a new method of driving a brushless three phase motor with the hope

that the new drive scheme will reduce the pure tone acoustic noise of the motor. This thesis is

geared towards the hard disk drive industry, which is under increasing pressure to reduce the

noise emissions of their products. The results in this paper, can, however, be applied to any

situation where the acoustic noise of a brushless three phase motor must be reduced.

As the world becomes more and more digital, businesses and people are needing ever-

increasing amounts of digital storage capacity to handle the growing amount of digital

information. To handle this growing sea of bits, companies which must store large amounts of

data use Redundant Array of Inexpensive Drives or RAIDs to store their information. A RAID

unit contains multiple hard drives which can be configured to either optimize data output or

increase the redundancy of information in the RAID. Typically eight hard disk drives are

located within one RAID unit. Because of the great number of hard drives in one unit, the

acoustic noise emitted from the entire unit can be significant. The pure tone noise of each hard

drive adds up and the result may be unbearable to a human operator which must be near the

RAID. RAID manufacturers therefore place acoustic noise requirements on the drives which

they purchase for installation in their products. Hard drive manufacturers must meet these

demands, or suffer diminished sales [2], [3].

There are generally two avenues engineers can explore to reduce the acoustic noise of the

hard drives. The mechanics of the system can be altered, or the electrical drive can be

modified. There are a variety of mechanical design rules which can be used to reduce the



acoustic noise; the geometry of ball bearings can be more tightly controlled, or the poles and

slots of the motor designed appropriately [1].

In the electrical arena, the acoustics come from the interaction of the phase currents with

the magnetic elements in the motor. Harmonics of the current waveform generate forces in the

phase windings of the motor. If these forces are at a mechanical resonance of the motor, the

motor structure may vibrate and generate audible noise. The pure tone acoustic noise, which is

the most objectionable, occurs at multiples of the electrical frequency of the motor.

The generation of this pure-tone noise can be diminished if the driving current is

frequency modulated, or dithered. Dithering the current waveform spreads the harmonic

energy over a range of frequencies [4]. This reduces the peak energy of the harmonic, and

makes the noise less noticeable to the human ear. This technique does not remove the energy

of the harmonic. Instead it takes advantage of how the human ear perceives sound, and moves

the energy content of the acoustics into a less irritating form. This is a partial solution to the

acoustic noise problem, but it is not a comprehensive solution because acoustic noise is still

generated.

This paper will seek to develop and implement an electrical drive which will reduce the

acoustic noise emissions of a brushless three phase motor. To reach that goal, some

background information on a typical drive scheme is introduced in Chapter 1. Chapter 2

describes the thought process behind the generation of the ideal driving voltages which result

in the lowest acoustic noise. Chapter 3 introduces the different techniques which may be used

to control the phase voltage of the motor.

The most significant portion of this thesis is the phase-locked loop presented in Chapter 4.

It is the development of this loop which allows the proposed system to be implemented in

practice. Chapter 4 presents valuable relationships which allow the driving waveforms to be

synchronized with the rotor position.

Finally, the results of testing the acoustic performance of the system are presented in

Chapter 5.



1.1 Motor Model

The motor being examined in this thesis is a DC brushless three phase motor. This

section will introduce the motor model, and define key terms for future reference. The model

will be used in this chapter and all subsequent chapters to propose solutions and analyze their

performance. Later in this section a classic drive system will be presented to illustrate the

system-level differences between the drive schemes currently used, and the one proposed in

this thesis.

Throughout this work, the motor will be modeled as an ideal, balanced three phase motor.

The three phases are connected together in Wye formation. Each phase winding of the motor

can be modeled as a series self-inductance, a series mutual inductance, a series resistance, and

a back electromotive force (BEMF) generator.

MAca MAB,BC

R, R,

VBMF-Ay Vk VBEMF-B

VCT + VBEMF-C

R,

M BC,CA

Vc

Figure 1-1: Three Phase Motor Model



The mutual inductances, MAB,CA MAB,Bc, and MBC,CA, are the combined mutual

inductances in each phase. For illustration, the voltage drop across the mutual inductances in

phase A will be

MAdI dI cMAB + McA (1.1)
dt dt

The phases are all connected together, so the sum of the phase currents equals zero. Assuming

that the mutual inductances are equal, and recognizing that I, +I c = -IA, the voltage induced

in phase A by the mutual inductance is

-MdIA (1.2)
dt

where M = MAB = McA.

The induced voltages in the phase can therefore be expressed as a single inductance, Lm.

Lm is the self-inductance minus the mutual-inductance. The motor model can then be

simplified to be

VBEMF-B

VcT

Figure 1-2: Simplified Three Phase Motor Model



The phases of the motor are spatially shifted relative to each other by - radians. Because

the BEMF generators are proportional to the flux linkage of the motor, the BEMF waveforms

are also are shifted by - radians. If co is the electrical frequency of the motor, then the

BEMF generators can be written in terms of some periodic function, f(cot), as

VBEMF-A = VBEMF- A (t)= KTO of(O Ot), (1.3a)

VBEMF-B = VBEMF-B (t)= KTm of(o t - I), (1.3b)

VBEMF-C = VBEMF- C (t) = KT of(, t + ), (1.3c)

where

KT = motor constant.

The exact form of f(oot) depends upon the construction of the motor. In most cases, the

flux linkage of the motor is made to approximate a sinusoidal form, so f(cot) is very nearly

sinusoidal. In some applications, the BEMF is shaped to be more trapezoidal in an attempt to

reduce torque ripple. Although f(oot) will always assumed to be sinusoidal throughout this

work, equations (1.3) are written generally as a reminder that the acoustic noise of the motor

could be due to the mechanics, and not the electronics, of the system.

The phase currents can be easily expressed in terms of the center tap voltage, VCT, and the

corresponding phase voltage and BEMF generator. Using bold type to represent the Fourier

transforms of the corresponding functions, the currents can be expressed in the frequency

domain as



VA'A VA CT ())-VBEMF-A(Co)
LAjc + RM ((1.4a)
Lmjo + R,

V, (C) - Ver (C) - VBEMF-(C)
Is(c) LMj+RM (1.4b)

LMjo + R,

Ljco + R,

When the motor is operated properly, the phase voltages are driven with periodic voltages

at a frequency of co. Like the BEMF generators, the phase voltages are shifted relative to

each other by - radians. In terms of the periodic function g(%ot), the phase voltages can be

written as

VA = VA (t= g(o 0 t), (1.5a)

V = VB (t) = g(o t- ), (1.5b)

Vc = Vc(t)= g(ot +-2). (1.5c)

For future reference, the terminal characteristics will now be derived. We begin by

solving for the center tap voltage, VCT. The center tap voltage can be expressed in terms of

the phase voltages and the BEMF generators. The value of VCT can be found by adding the

three phase currents in (1.4) together, and setting the sum equal to zero. The equation can

then be solved for VcT to give

VCT = -.(VA + VB + Vc) - (VBEMF-A + VBEMF-B + VBEMF-C). (1.6)



In later chapters, it will be extremely helpful if the center tap voltage is expressed in terms of

only one phase voltage and one BEMF generator. The sum of VA, VB and Vc in (1.6) can be

combined by first expressing VA by its Fourier series,

VA (t) = V, cos(no t - vAn), (1.7)

where

vAn = phase shift of nth harmonic,

VAn = amplitude of nth harmonic.

Making use of the fact that V, and Vc are simply phase shifted versions of VA, the sum of the

three phase voltages can be written as

VA + VB + V = V cos(no t - v )
n=O

+ VA cos(nco t- VA 2n) (1.8)

+ VAn Cos( 0co t- vAn +
n=O

Using the trigonometric identity cos(a + b) = cos(a)cos(b)T sin(a)sin(b), equation (1.8) can be

simplified to

VA + VB + Vc = 31 VA cos(ncot - v[L + cos(n )] (1.9)

Equation (1.9) can be expressed in the frequency domain as the result of filtering the phase

voltage VA with some filter, Co (co). Defining the filter as



C ()= _+ICOS(O o ), (1.10)

the sum of the driving voltages can be written in the frequency domain as

VA (Co)+ VB,(o))+ Vc((o)= 3VA (coC (). (1.11)

For input frequencies which are a multiple of three times the fundamental frequency,

Co0 (o)= 1. For all other integer multiples of the fundamental, C (co)= 0. The sum of the

three phase voltages therefore only contains triple-n harmonics. The relationship expressed in

(1.11) can be applied to the three BEMF generators, and that result along with (1.11) can be

substituted back into (1.6) to write the center tap voltage as

VeT (0)= VA (o)C ()- VBEMF-A (co)C(o). (1.12)

Equation (1.12) is useful because the phase currents can now be expressed solely in terms of

their terminal voltages and BEMF generator. Substitution of (1.12) into (1.4a) allows the

current in phase A to be written as

VA ( ).(1- C ( ))- VBEMF-A (0). (1--Co (O))
IA (O) = (1.13)

LMj + R,

The transfer function (1- CO (o)) results in the removal of all of the triple-n harmonics of VA

and VBEMF-A. The result of filtering VA and VBEMF-A with (1- C , (c0)) will be referred to often

in this paper. To make the discussion progress more smoothly, two new variables, VA and

VBEM_ A , are introduced. VA, the composite driving voltage, and VBEM A , the composite

BEMF voltage, are defined respectively as



(1.14)

(1.15)

vA (o) = v,(B)(1- cOo ()),

VBEMF-A(O) VBEMF-A ( c (0)).

Equation (1.13) can then be written more compactly as

~)A V (0()O- VBEMF-A(C)
LMjo + R

(1.16)

The final relationship which is of significance for this study is the relationship between

torque and current. The torque of a three phase motor has the same functional dependency as

the BEMF, so the torques can be written as

TA = IA KT * f (o t),

TB= IB KT f(ot-),

Tc = IC • KT Of(Cot + 1).

(1.17a)

(1.17b)

(1.17c)

The sum of the individual phase torques can be expressed using the relation in (1.11).

The total torque therefore contains no triple-n harmonics, and

TTTo (0)= 3 . TA (o). (O). (1.18)



1.2 Conventional Six-State Motor Drive

The standard drive scheme used in the hard disk drive industry is six-state drive. A brief

overview of this drive system is presented here to familiarize the reader with drive schemes

which are competing against the sinusoidal drive presented in this paper. The drive scheme

outlined here will later be implemented and used as a control to test the acoustic performance

of the sinusoidal drive. A system top-level diagram of a six-state controller is shown if Figure

1-2.

12V
UPC

UPB

STATE UPA

I,,, _/ FLTEoK MACHINE MOTOR
SFILTER E MOTOR

DNA

DNB
CLOCK DNC

GND

PHASE
VCO FILTER DETECTOR

Figure 1-3: Top-Level Control Diagram for a Six-State Driver

Fundamentally, a six-state driver consists of a state machine, three half H-bridge power

drivers, a phase detector, and a voltage controlled oscillator (VCO). In each state of the state

machine, the gates of the power devices are controlled to put appropriate voltages onto the

motor phases. The rotor position is sensed on the phase voltages, and the information used to

clock the state machine at the appropriate frequency.



1.2.1 Typical Voltage Waveforms

The six-state drive scheme is commonly used because it is easy to implement and provides

a straightforward method of locking the driving voltages to the motor position. In six-state

drive, each phase of the motor cycles through three states during one electrical cycle. The

phase can be held at ground, driven to some positive voltage, or floated. If the phases are

controlled such that one phase is floating, one phase is driven to ground, and the third is

driven to some voltage, VHIGH, then the motor can be in one of six states. These six states, and

the states of the motor phases, are summarized in Table 1.1.

Table 1.1: Driving Voltages for Six-State Control

The voltage VHIGH controls the amount of current, and thus the amount of torque delivered

to the motor. VHIGH can either be a constant value, or the average of a pulse-width modulated

(PWM) signal. PWM is the preferred method of voltage control because it reduces the amount

power dissipated in the power devices. The power devices are n-MOS transistors with built-in

body diodes. By switching a transistor either entirely on or entirely off, the power losses in

the transistors can be lowered. The drivers are implemented as shown in Figure 1-2.

State VA VB VC

0 Floating 0 Floating

1 VHIGH Floating 0

2 VHIGH VHIGH 0

3 Floating VHIGH Floating

4 0 Floating VHIGH

5 0 0 VHIH



12V

High-sideDrivers -I F d

- VA V Vc

Low- side
Drivers H Y H

RsENSE

GND

Figure 1-4: MOSFET Drivers Used to Control Phase Voltages

The body diodes allow the current to naturally commutate between the high-side drivers

and low side drivers when the transistors switch on and off. If current is being sourced into

phase A when the high-side driver of phase A is on, then when the high-side switches off, the

current will flow through the low-side body diode. A phase of the motor may be floated by

bringing the gate voltage on both the low-side and high-side drivers down to ground.

1.2.2 Locking Voltage Waveforms to BEMF

A significant benefit of the six-state drive is that it allows straightforward detection of the

BEMF phase. During the times when a phase is undriven, no current is flowing through the

phase, so there is no voltage drop across the winding due to its impedance. When a phase is

floated, its voltage is equal to the BEMF voltage plus the center tap voltage. During State

Three, VA is floating, so its phase voltage is

VA = I(VA + VB + Vc)- 3(VBEMF-A + VBEMF-B + VBEMF-C) VBEMF-A. (1.19)



Solving (1.19) for VA, we find that

VA = VBEMF-A + (VB +Vc). (1.20)

Equation (1.20) illustrates the important consequence of six-state drive-the BEMF can be

detected on the undriven phase. Since one phase is undriven at all times, BEMF phase

information can always be acquired. The BEMF waveform is recovered from the undriven

phase by subtracting the average of the two driven phases from the undriven phase. The signal

is then passed through a phase detector to generate a signal proportional to the phase error of

the BEMF. The phase error signal is then filtered and integrated to generate the input into the

VCO. The VCO then outputs a clock signal which is used to commutate the motor.

Optimal performance of the motor is obtained by aligning the phase currents with their

associated BEMF voltages. This can be approximately done by aligning the BEMF waveform

with the voltage waveform as in Figure 1-3.

V
Volts 0 EMF

0 2  ot

Theta(radians)

Figure 1-5: BEMF Voltage Aligned with Phase Voltage.

VA in Figure 1-5 is shown only when the phase is being driven. The regions when the

phase is not driven are omitted because the phase voltage will then be as expressed in (1.20).

When the BEMF waveform is in phase with the driving voltage, the zero-crossing of the

BEMF is visible. A comparator can be used to detect this zero-crossing, and the zero-crossing

information used to generate a phase error.



1.2.3 Locking Motor Current to Commanded Current

The magnitude of the driving voltages can either be controlled directly, or by using a

current feedback loop. The six-state drive scheme presented in this paper will use a current

feedback loop to maintain the proper voltage level of the driving waveforms. If the speed of

the current loop is slow, then the loop will set the average current flowing through the motor.

If it is fast, then it can have the effect previously described of aligned the current with the

BEMF.

1.2.4 Locking Motor Speed to Commanded Speed

The current command, ICOMMAND, in Figure 1-3 is controlled via an external speed

regulation loop. Measurements of the motor speed are made and the error between the actual

speed and the desired speed results in a change in the current command.



Chapter 2

Development of Sinusoidal Drive
Scheme

In Chapter 1, the six-state control system for a hard drive motor was presented. In this

chapter, the sources of acoustic noise in the six-state drive scheme are briefly examined, and

the motivation for a sinusoidal current drive presented. Next, possible voltage waveforms are

examined and the optimal waveform is derived. The waveforms presented at the end of this

chapter were first proposed by Bert White of Silicon Systems, Inc.

2.1 Problem with Six-State: Torque Harmonics

The weakness of the six-state drive scheme presented in Chapter 1 is that it introduces

acoustic noise into the motor. The current waveform created by the switching scheme has very

abrupt transitions. When phase A is held high, the power supply sources current to the phase

and the current magnitude is positive. When phase A is floated, the current in the phase drops

to zero as quickly as the inductor will allow. Because the torque is proportional to the current,

it too will change abruptly. If harmonics in the torque waveform excite mechanical resonances

in the motor, or hard drive assembly, then the noise generated may become audible.

2.2 Solution to Acoustic Noise: Sinusoidal Currents

In order to develop a quieter electrical drive, a driver must be developed which reduces

the harmonic content of the torque. Because the phase torque is the product of the phase



current and the flux linkage, which has the same time varying form as the BEMF waveform,

the harmonic content of the torque can be modified by modifying the phase current. Ideally,

the phase current would be chosen to match the BEMF waveform so that the product of the

two equaled the ideal torque waveform. The ideal phase torque is TmEALCOS 2(ot). The ideal

torque waveform has this form because it contains only one frequency at twice the driving

frequency. The ideal current waveform is then defined as

IIDEAL  TIDEAL COS2 (O Ot )Tf c(L t) =DE(2.1)

Kf (O ot)

Creation of an ideal phase current for a particular f(o0 t) is not always possible. The

function f(cot) is proportional to the flux linkage of the motor, so it must pass through zero at

some point during an electrical cycle. If the zeros of f(o0t) do not cancel with the zeros of

cos2(Oot), then the ideal phase current must be infinite at those points. Attempting to actually

derive the ideal current waveform for any individual motor is impractical. It is best to simply

assume that the BEMF is sinusoidal. This means that in order to reduce the harmonics of the

torque, the motor must be driven with sinusoidal currents. The phase voltages should

therefore be chosen so that the phase currents are pure sine waves.

2.3 Generation of Sinusoidal Currents

In order to drive sinusoidal currents through the motor, a suitable set of driving voltages

must be formulated. Referring back to equation (1.16), in order for the phase current to have a

sinusoidal form, the difference of VA and VBEMA must be sinusoidal. We are assuming that

the BEMF is sinusoidally varying, so VBE_-A is a pure sinusoid and therefore VA must also

be a pure sinusoid as well. Because VA contains all but the triple-n harmonics of V A

restricting the harmonic content of VA only restricts the harmonic content of VA at frequencies



other than three times the fundamental frequency. If VA must be purely sinusoidal, then the

only non-zero term of the Fourier series of VA  is VA1 and we can say that

VA = VAl cos(ot - VAI). VA will therefore contain this term in its Fourier series, along with

any other terms at the triple-n harmonics. In general then, the phase voltage which results in

sinusoidal currents has the form

VA = VA0 + VA1 COs(C0 t - v) + 0 + VA3 cos(3Co 0t- V3 ) + + 0 + VA6 cos(6cot - v 6)+....

(2.2)

The coefficients and phase shifts in equation (2.2) can be chosen in any arbitrary manner

and the composite driving voltage will still contain only the fundamental component. There

are countless ways to select these coefficients, and two of the most sensible are presented in

this chapter. The first method is the more obvious of the two, and selects the coefficients so

that each phase is driven with a sinusoidal voltage. The second method will emerge as the

preferred method and selects the coefficients so that the power supply is fully utilized.

2.3.1 Sinusoidal Voltages

Driving each of the phases with a sinusoidal drive is the easiest conceptual way of

obtaining the desired harmonic-free current. Because only one power supply is being used, the

sine wave must be offset by half of the supply voltage, VSUP. The sinusoidal voltage drive is

not, however, the most optimal way of driving the motor. The efficiency of this system can be

quantified by examining how effectively the drive scheme makes use of the available power

supply. For a phase voltage offset by VsUP, the maximum amplitude of the sinusoid is only

-VsUP. The composite driving voltage therefore also has a magnitude of LVsu p . As will be

shown in the following section, this does not make optimal use of the power supply. Although

conceptually simple, sinusoidal voltage drives are not the best technique.



2.3.2 Hook Voltages

There are an infinite number of driving waveforms which will result in a sinusoidal

composite driving voltage, VA . The only restraint on all of them is that their frequency

content consist only of triple-n harmonics and a fundamental component. The Fourier

coefficients of VA may be chosen to create a waveform which makes optimal use of the power

supply, or they may be chosen to fulfill some other special requirement of the system. For our

system, we will impose two additional constraints on the harmonic coefficients of VA. First,

the coefficients must be chosen so that the phase voltages are never negative. This constraint

stems from the fact that only one power supply referenced to ground will be used. This

constraint is easily met, because a simple change of VA0 will make any waveform non-negative.

The second added constraint is that the power supply must be used as effectively as possible.

The second constraint is more difficult to meet, and requires the selection of all of the Fourier

coefficients and phases.

Finding these coefficients by working with them directly is difficult and clumsy. A better

approach is to manipulate the ideal composite driving voltage so that the resulting phase

voltages satisfy our requirements. The first step in deriving the optimal waveforms requires

rewriting the composite driving voltage in terms of the phase-phase voltages of the system.

This is key to formulating an expression for the optimal waveform. The composite driving

voltage is equal to VA minus VcT. If VCT is expressed in terms of phase voltages, then the

composite driving voltage can be written in terms of phase-phase voltages as

VA VCA (2.3)
3



We cannot make any assumptions about the form of VAB and VCA, at this time, but we can

prove they must be sinusoidal. If we write VA in terms of VA , then since V, is delayed by Zi

radians, VAB can be expressed in the frequency domain as

VAB ()= VA(o)( -e- (2.4)

The filtering expressed in (2.4) has the effect of zeroing out the triple-n harmonics of VA.

Since VA must have the form presented in (2.2), with non-zero coefficients only at the triple-n

harmonics and at the fundamental, we may conclude that VAB is a pure sine wave with the form

VAB = J3 -VAl cos((ot 
- 

VA1 + 6), (2.5)

where

VA1 = amplitude of fundamental of VA',

VA1 = phase shift of fundamental of VA'

The ability to express the phase-phase voltage as a simple sinusoid allows us to rephrase

the maximization problem in a more readily solvable manner. In order to make more efficient

use of the power supply voltage, the magnitude of VA must be maximized. From equation

(2.3), it is seen that maximizing the amplitude of VA is analogous to maximizing the amplitude

of VAB minus VCA. This amplitude is maximized by making the phase-phase voltages as large

as possible for a given power supply. The phase-phase voltages will be defined as in Figure 2-

1.
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Figure 2-1: Phase-Phase Voltages

The phase-phase voltages must be somehow converted to phase-ground voltages. ViA and

ViB will refer to the phase voltages obtained by manipulating the phase-phase voltage VAB.

The magnitude of VA can be made as large as possible if V1A is set equal to the positive

portion of VAB, and -ViB is set equal to the negative portion of VAB. Both phase voltages will

then be entirely positive each can be raised as high as VSUP. The magnitude of the phase-phase

voltage in this case will also be VSUP. VBC and VCA can be broken up in a similar manner to

give V2B and V2C, and V3c and V3A, respectively. The results of each of these divisions is

presented in Figure 2-2.
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Figure 2-2: Phase Voltages Resulting from Splitting up Phase-Phase Voltages

The phase voltages presented in Figure 2-2 are not compatible with each other. V1A does

not equal V3A, and the waveforms for the other phases do not match either. Each phase-phase

voltage places different constraints on the phase-ground voltages. The difference between

these waveforms must somehow be removed. The inequality between VIA and V3A can be

eliminated by adding an appropriate waveform, V1, to VIA and VIB and a second waveform ,

V3, to V3C and V3A. Because V1 is added into both V1A and V1B, phase-phase voltage VAB will

still be sinusoidal. The same is true for VCA. V1 and V3 should be chosen so that

VIA + V1 = V3A + V3. (2.6)

Equation (2.6) can be rearranged so that the known waveforms V1A and V2A are on the

left-hand side of the equation,

VA - V3A = V 3 - V . (2.7)



Plotting the left hand side of equation (2.7) results in the waveform in Figure 2-3.
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Figure 2-3: Difference of Correction Voltages V3 and V1

The waveform in Figure 2-3 is also equal to the difference between V3 and V1. V1 and V3

must be chosen so that their difference results in the waveform in Figure 2-3. Because VIA is

zero for half of the cycle, and ViB is zero for the other half, V1 must be positive at all times so

that the sum of V1 plus VIA and VIB remains positive. Similar reasoning places the same

constraints on V2 and V3. This motivates us to set V3 equal to the positive portion of V3-V1

and set -V1 equal to the negative portion. Similar processing on the other phase voltages lead

to a compatible set of correction voltages, V 1, V2, and V3. When these correction voltages are

added into the original phase voltages, the waveforms in Figure 2-4 result.
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Figure 2-4: Hook Waveforms-Optimal Phase Voltage Waveforms

The waveforms in Figure 2-4 are referred to as hook waveforms and were first proposed

by Bert White of Silicon Systems, Inc., as a method of generating sinusoidal currents. If

hook(co0t) is used to designate the function that returns a hook waveform of height one, then

the phase voltages of the motor can be written as

VA (t) = VMAG hook (o ot), (2.8a)

VB (t) = VMAG .hook(co ot - ), (2.8b)

Vc (t) = VMAG hook (o0 t + -), (2.8c)

where

VMAG = magnitude of driving voltage.

1 2 3 4 5 6



The hook waveform is the optimal voltage drive which will generate sinusoidal currents.

When the phases are driven with the waveforms defined as in (2.8), the composite driving

voltage is

* 1V m .sin(cot- ) (2.9)VA = (VAB - VCA) = 6(

The maximum value of VMAG is VSUP, so the maximum magnitude of the composite

driving voltage is 3Vsup. This method of driving the waveforms is therefore T33 1.15 times

better than the sinusoidal voltages power with respect to supply utilization.



Chapter 3

Controlling the Phase Voltage

The voltage waveforms developed in the previous chapter must now be driven onto the

motor phases. As with the six-state drive scheme, the voltage magnitude can be controlled

either with a linear controller or a PWM controller. PWM control reduces the amount of

power dissipated in the power switching devices, so it will be used to drive the hook

waveforms onto the motor phases.

3.1 Generation of PWM Signals

There are several possible ways of generating the PWM signal required to drive the

motor. The one which will be discussed here uses comparison of the hook waveform to a

triangle wave. Provided the frequency of the triangle waveform is sufficiently fast, the PWM

will accurately represent the hook waveform. Setting the PWM signal frequency at 60 times

the electrical frequency of the motor results in satisfactory representation of the hook

waveform. If the motor spins at 7200 RPM and has 6 poles, then the frequency of the voltage

modulation is 21.6 kHz. This frequency is beyond the range of human hearing, so it should

not introduce audible noise.

Unlike the six-state case in which only one phase was being modulated in any given state,

sinusoidal drive requires that two phases be modulated at the same time. The PWMs of these

two motor phases do not necessarily have to be in phase with each other. They can either be

in phase, out of phase by i radians, or have any phase shift in between. Only phase shifts of 0



and it radians will be discussed here. These two different modulation methods will have

different effects on the appearance of the current waveform.

In order to compare the effects of in-phase switching and out-of-phase switching, the

effects during one full cycle will be examined. Recalling the pictures in Figure 2-4, one phase

of the motor will be held low during any state, and the other two states will be modulated at

duty cycles determined by the height of the waveform. For the following discussion, it will be

assumed that phases A and B are being modulated, and that phase C is held low.
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Figure 3-1: In-Phase and Out-of-Phase PWM

3.2 In-Phase PWM

When the two triangle waves are in phase with each other, the pulse associated with one

PWM cycle for each phase is as shown in Figure 3-1. It is apparent that in general both

phases are held high at the same time during one PWM cycle. The exact amount of overlap

depends on the voltage being driven on each phase of the motor. If the voltage level being



compared against the triangle waveform is assumed to be DC, then the pulses will be centered

in the middle of the switching cycle.

The fact that the two phases are driven high at the same time has important consequences

for the phase-phase voltages. When the PWMs from the two cycles are subtracted from each

other to obtain the phase-phase voltage VA, a new PWM signal is generated. The exact form

of VAB depends on the duty cycles of VA and VB. As VA and VB switch, V, can cycle through

different values depending upon the order of the rising and falling edges of VA and VB. Figure

3-2 shows the possible switching orders of VAB.

-VSUP 0 - Vsu

0 VAI' tVl B VBT VT 0

V AVV O VSUP 0 VSUP

Figure 3-2: Possible Switching Orders for In-Phase PWM

In Figure 3-2, VA T indicates a rising edge of VA , VA I indicates a falling edge, and similarly

for VB. The horizontal arrows represent the order of switching events and the numbers above

them indicate the value of VAB. When the PWM waveforms are in phase, the waveform VAB

only changes between two levels in any given cycle.

3.3 Out-of-Phase PWM

When the two triangle waves are out of phase with each other, the pulse associated with

one PWM cycle for each phase is as shown in Figure 3-1. From Figure 3-1 it is apparent that

the phases are held high generally at different times during the switching cycle. This will

result in a different PWM for VA than was found for the in-phase technique. The same type



of diagram can be used to represent the switching cycle of the out-of-phase PWM. For the

out-of-phase PWM the switching diagram is as shown in Figure 3-3.

O -VSUP 0o T -v P

VBT -~ VA - VAT vlo -VsUP 0

Figure 3-3: Possible Switching Orders for Out-of-Phase PWM

Figure 3-3 illustrates a shortcoming of the out-of-phase switching technique. The PWM

of the phase-phase voltage switches over a range of three levels while the in-phase technique

switches over only two. These added levels represent a less than optimal means of generating

a DC voltage. If the average of VA over one cycle is between VSUP and 0, then the PWM

should switch only between those two levels to minimize the energy in the switching frequency

of the PWM waveform. When the two PWM signals are out of phase with each other, the

PWM for VA changes between VSUP, 0 and -VSUP. This is twice the switching magnitude of

the in-phase scheme. Doubling the swing of the PWM results in a doubling of the energy at

the switching frequency. This will most likely not degrade the acoustic performance of the

system because the frequency of the PWM is well beyond the range of human hearing. The

effects of the two PWM switching schemes will be discussed again in Chapter 4 because of

their role in closing the phase locked loop.



Chapter 4

Closing the Phase Locked Loop

In order to effectively operate the motor, the hook waveforms presented in Chapter 2 must

be phase-locked to the motor. This chapter discusses the difficulties of acquiring rotor position

information via the BEMF and proposes an alternative phase detection strategy.

In the six-state drive scheme, phase information was obtained by using the undriven phase

to observe the BEMF waveform. Unfortunately, the proposed sinusoidal current scheme

drives all phases at all times, so it is impossible to make a direct measurement of the BEMF.

It is possible that the driving waveforms could be modified to allow one phase to be floated.

This would allow the BEMF to be detected in the same manner as before. This would also,

however, increase the harmonic content of the current waveform, and possibly reduce the

acoustic performance. Alternatively, position sensors could be placed on the motor to generate

a position signal which can be used to lock the driving voltages to the motor. This however is

prohibitively expensive. The approach which will be presented in this thesis makes use of the

phase information embedded in the current waveform.

4.1 Inferring the BEMF Phase from the Current Phase

The current flowing through each phase winding is a function of both the driving voltage

and the BEMF. Shifts in the BEMF will therefore have some effect on the phase shift of the

current. It is possible to exploit this relationship to obtain BEMF phase information from the



current phase. First, however, the exact relationship between these two phases should be

developed. In general, the current flowing through a phase of the motor is

,A ( V()- V;EMF O)
Ljco + RM

The phase voltage is being driven with the hook waveform, so VA is as defined in (2.9).

Assuming that the BEMF is purely sinusoidal, the expression for IA becomes

V sin(Ot -- M) VBEMF Sin(ot - ?- M - BEMF.)
I A =

(LMo) 2 + R

= tan- ,

(4.2)

(4.3)

= magnitude of the BEMF,

= phase shift of the BEMF,

= current shift due to motor impedance.

Equation (4.2) can be rewritten in terms of a single sine function. Using appropriate

trigonometric identities to combine the two sine functions we find that

-2
VMAG _ 2 - L cos( BEMT +

IA
a 3 (Ly) 2 +(RM)

K = VMAG4 .v,

(4.4)

(4.5)

with

where

VBEMF

SBEMF

SM

(4.1)

sin(ot- - C - B),



sin 2- sin(B ) ) (4.6)

K2 - 2K cos(BEjM (

where

B = current phase shift due to BEMF phase shift.

Equation (4.6) shows that B has a functional dependence on both BEMF and K. Ideally a

more direct relationship is desired, but the dependence given by (4.6) is enough to draw some

relationship between the current phase and BEMF phase. Insight can be gained by considering

what happens to the phase shift for extreme values of K. When VBEMF > > VMAG, K = 0, and

we would expect that the current phase shift has no dependence on the driving voltage. The

phase shift of the current would therefore depend exclusively on 4 BEMF. When VMAG

VBEMF, K = 1, and equation (4.6) reduces to 4,B -21 +2BEMF. When VMAG > >VBEMF K

approaches infinite, and there should be no dependence of the current phase shift on the BEMF

phase shift. Figure 4-1 plots the relationship between B and BEMF for values of K = 1, 1.2,

2, and 10.
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Figure 4-1: Current Phase vs. BEMF Phase

Figure 4-1 indicates some possible constraints on the operating conditions under which

there is a satisfactory relationship between B and lBEMF. For large values of K, there is little

gain from 4 BEMF to B,, and it is difficult to determine the BEMF phase from the current phase.

The motor is operating in this region when the motor is spinning at low speeds and VBEMF is

therefore low.

4.1.1 Selecting Proper Phase Delay

In order to maximize the torque delivered to the motor, the current waveform should be in

phase with its corresponding BEMF waveform. In sinusoidal drive, the fundamental of the

current lags the driving voltage. The amount of this delay depends on the motor parameters,

as well as on the speed at which the motor is run. Table 4.1 lists the motor parameters,



operating speed, and resulting phase shift and BEMF magnitude of two motors which are likely

to be driven by the sinusoidal drive.

Motor LM RM (Q) RPM KT (Vs) P coo (rad/s) 4 M (rad) K

(mH) (max.)

1 0.25 1.43 7177 2.00E-3 6 2,255 0.376 1.54

2 0.25 0.58 7177 2.12E-3 6 2,255 0.771 1.45

Table 4.1: Typical Motor

Motor parameters courtesy of Seagate Technologies

Parameters

The value of K in Table 4.1 is given assuming VMAG = 12V in order to operate the motor

at full speed. On a 12V supply, this is the largest value of K possible. In order to bring the

BEMF into phase with the current waveform, the BEMF phase shift, BEMF, must equal ,M plus

B. The resulting equation cannot be solved analytically. Although a solution, if one exists,

can be found numerically, it is more beneficial to resort to graphical techniques. The

conditions for optimal BEMF current phase shift can be expressed as

(4.7)=BEF -M B,

then the solution to the equation can

BEMF - M, with the graph of B .

superimposed on top. The phase shift

1.2.

easily be interpreted as the intersection of a load line,

Figure 4-2 repeats the graph of 4, with a load line

of motor 1 in Table 4.1 is used, and K is assumed to be
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Figure 4-2: Current Phase vs. BEMF Phase with Optimal Phase Shift

Changes in motor impedance will result in sliding the load line vertically up and down the

graph. The load line can be used to illustrate several important features of the relationship

between BEMF phase and current phase. One of the most important conclusions is that the

load line will always intersect ,B' so there is always a solution corresponding to the optimal

phase shift. Second, the optimal BEMF phase shift will always be less than the phase shift due

to the motor. This is a result of the inverse relationship between +B and BEMF. As the BEMF

phase is delayed, the current phase is advanced.

For 4~ < -, very little error is introduced if 1 B is linearized. From Appendix A, the

slope of ,B at the origin is

dB - -1d#-B-= - (4.8)
d#BEMF IK -11



B, can then be approximated as a simple line passing through the origin, and equation (4.7) can

be rewritten as

-1
- 1BEMF = - M + BEMF, (4.9)

IK-11

and solved to give

BEMF M K 2-1 (4.10)

For the maximum values of K in Table 4.1, the optimal phase shift of the BEMF is at worst

only 27% of the phase shift M.

The dynamic behavior of the loop must next be examined to ensure that the relationship

between BEMF and B will allow the phase-locked loop to work properly. Because the gain

from BEMF to B is negative, the PLL will interpret a delay of the phase current as an advance

of the BEMF waveform. The loop will therefore increase the delay of the BEMF.

Conversely, the loop will interpret an advance of the phase current as a delay of the BEMF

waveform, so the loop will reduce the delay of the BEMF. This action is shown visually in

Figure 4-3 by drawing arrows indicating the direction of motion along the B, curve.
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Figure 4-3: Phase Response of PLL

Figure 4-3 illustrates that BEMF cannot be delayed too much past 4Or or the BEMF phase

will enter an operating region in which the PLL forces the BEMF phase to move in the wrong

direction. In this region, the loop increases the delay of the BEMF when in fact it should be

decreasing it. Based on the typical values of +m and K in Table 4.1, this should not occur

under normal operation.

If the operating point does happen to lie very close to a peak of one of the curves in

Figure 4-3, then the likelihood of skipping a cycle increases. In fact, as the operating point

approaches the peak of 1,, the operating range of the loop goes to zero. If this situation should

ever arise, the loop can be made operational by sacrificing efficiency for stability. The

operating point can be moved towards the origin along the curve of +B, and the operational

range of the loop will increase. This will, however, reduce the torque delivered to the motor

because the BEMF and current will no longer be in phase. If the operating point is pushed all

the way back to the origin, then the maximum loop stability will be attained, but the motor

efficiency will be considerably lowered. When the operating point is at the origin, +B = 0, so



the current lags the BEMF waveform by ,M radians. Therefore the applied torque will be

scaled by cos( M).

4.2 Detecting the Phase Current

The preceding section established that there is an exploitable relationship between the

current phase and the BEMF phase. It is now necessary to establish a reliable method of

measuring the current phase information. Three possible methods of current detection will be

explored. The first two were originally proposed by Bert White of Silicon Systems, Inc., now

with Texas Instruments. In the first method, three sense resistors are placed in series with the

phase windings in order to generate voltages proportional to the phase currents. In the second

method, the on-resistance of the power MOSFETs is used to measure the polarity of the

current. In the third scheme, which is developed in this paper, the single current sense resistor

is used to make readings of the phase current.

4.2.1 Three Sense Resistor Method

This method is quite straightforward and uses three sense resistors placed in series with

the motor phases to read the current. The voltage generated across each resistor then gives an

exact representation of the current flowing through the phase. From a signal generation

standpoint, this is the most ideal way of obtaining the current waveform. Unfortunately

economic considerations make this an impractical option. Hard disk drive manufacturers are

unwilling to add cost to their products by adding additional components. In addition, the

resistors add additional power losses to the system. Hard drive manufacturers are continually

seeking to increase the efficiency of their motors, so they are reluctant to adopt a solution

which requires putting resistance in series with the motor windings.



4.2.2 MOSFET On-Resistance Method

In response to the need to remove the phase current sense resistors from the current

detection scheme, Bert White proposed that the voltage drop across the power MOSFETs could

be used to detect the phase current. Essentially, the three sense resistors are replaced by the

on-resistance of the six power MOSFETs. The use of MOSFETs instead of discreet resistors

requires the current detection scheme to be slightly more refined, because the current is being

switched between the high-side and low-side drivers. The current detection scheme must

therefore be sophisticated enough to observe the appropriate transistor at the appropriate time.

This is easily done because the same logic that controls the power drivers can switch the

comparator to the appropriate transistor.

If the on-resistance, RDS(ON), of the FETs is large enough, then a detection scheme built

around the MOSFET drivers will work. Unfortunately, the trend in the hard drive industry

has been to use FETs with smaller and smaller values of RDs(oN). At the time of this thesis

work, National Semiconductor was already producing the NDS8936, a MOSFET power driver

with less than 50 m 2 of on-resistance. If the amplitude of the current flowing through the

motor at full speed is only 300 mA, then the amplitude of the available voltage signal across

the FET is only 15 mV. This number is much too small to accurately detect the zero-crossing

of the current, especially when comparator offsets may be on the order of 10 mV. The phase

offset, ,os, caused by the comparator offset is equal to

0o= sin-' /os
IPEAK RDS(ON) 

(4.11)

The phase offset resulting from the numbers listed above is 0.7 radians, which is entirely

unacceptable. While the MOSFET current technique would be able to work in theory, in



practice there is not enough available signal across the MOSFET to accurately determine the

zero-crossing.

4.2.3 Single Sense Resistor Method

The first current sense method presented in this thesis depended on the addition of three

phase-resistors. This solution allowed exact measurement of the phase current, but was

discarded for economic and power reasons. The second current detection scheme took

advantage of resistive paths already present in each phase of the motor. This solution, too,

was abandoned because the available voltage signal is not large enough to measure accurately.

The third and final current detection technique takes advantage of the only other resistive path

available for signal detection in the motor-the current sense resistor.

The current sense resistor is used during the motor start-up routine to regulate the amount

of current which flows through the motor. It is placed between ground and the source of the

pull-down transistors of all three phases. The sense resistor provides a dependable resistance

across which the phase currents of the motor can be measured, but unfortunately, the current

flowing through the sense resistor changes from one phase to another depending on the state of

the power drivers. If VA is high, and VB and Vc both happen to be low, then the current

flowing through the sense resistor equals the current of phase A. A list of all possible

switching states, and the corresponding value of 'SENSE is presented in Table 4.2.



VA VB VC ISENSE

0 0 0 0
0 0 VSU ,  I¢
0 VS,, O IB

O Vsu VSUP -In

Vsp 0 0 'A

Vsup 0 VsP -I
VUP VsUP 0 -I

VUP VsU VSUP 0

Table 4.2: ISENSE Current as a Function of Switching State

Table 4.2 shows that ISENSE at any point in time can be expressed as the current flowing

through only one phase of the motor. The value of ISENSE depends on the state of the driving

switches, and therefore on the PWM waveforms driving the motor. ISENSE can be written as

the summation of each phase current multiplied by a corresponding masking waveform. The

masking waveforms equal one when a particular current is flowing through RSENSE, and equal

zero when that current is not flowing through RSENSE. ISENSE can then be easily written as

ISENSE A (MP -MN)+IB.(MP -MN)+Ic .(MP-M N) (4.11)

where

MP = mask for IA,

M N = mask for -IA',

MP = mask for I ,

MN = mask for -I ,

MP = mask for Ic,

M N = mask for -Ic .

The mask waveforms are easily generated from the normalized phase voltages, VA, VB,,

and Vc. The normalized phase voltages are the phase voltages divided by the power supply



voltage, VSUP. The mask for IA should equal 1 one when VA = 1, VB = 0, and Vc = 0. The

mask for -IA should equal one when VA = 0, VB = 1, and Vc = 1. The expressions for

masks MA and M N can then be defined as

M = VA -(1- VB)1- V_ ), (4.13)

MA = (1- VA) -VB -Vc. (4.14)

It is important to realize that because the duty cycles of the driving waveforms are a

function of VMAG, the times when MA equals 1 also depend on VMAG. The relation between

VMAG and M, is not a straightforward relationship, so it is most easily explained pictorially.

Because the available viewing times of the waveform are dependent on the switching times of

the PWM signals, it is expected that there is a difference between an in-phase PWM switching

scheme and an out-of-phase switching scheme. Scatter plots of the conditions under which

MA = 1 and MN = 1 are presented in Figures 4-4 and 4-5. MA is plotted in the interval 0

to Ai, and M N is plotted between Al and 27r. There is no overlap of these functions between

the conditions for both are mutually exclusive.

0 1 2 4 5 6E

I0 1 2 3 4 5 6
Theta (radians)

Figure 4-4: Conditions Under Which IA and -IA Flow Through RSENSE [In-Phase PWM]
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Figure 4-5: Conditions Under Which IA and -IA Flow Through RSENSE [Out-Of-Phase PWM]

Both graphs show a notable dependence on VMAG . As VMAG decreases, so does the

amount of time IA spends flowing through RSENSE. This makes sense because one of the

conditions for IA equaling ISENSE is that phase A be held high. As VMAG decreases, the time

that phase A is pulled high will also decrease. The times when IA can most often be measured

on RSENSE is centered around l. This makes sense because the conditions for viewing IA are

that VA must be high, and V, and Vc low. Referring back to the waveforms in Figure 2-4, the

unmodulated VA is higher than V, and Vc between - and 7c radians. During this period then,

it is expected that the ISENSE current would typically be the current in phase A.

The two switching schemes (in-phase vs. out-of-phase) have different distributions of

conditions under which IA is flowing through RSENSE. The in-phase switching scheme has a

wider range of VMAG values over which -IA can be observed. The out-of-phase switching

scheme has a wider range of angles over which IA can be sensed. This difference will have

consequences later when signal recovery is discussed.

It is therefore possible, during specific time intervals of the driving cycle, to detect

predominantly one phase on the sense resistor. During these intervals, if the current from only

one phase is observed, then it will be possible to detect current phase, and close the PLL.



4.2.4 Extracting Current Information-Track and Hold

During any cycle of the PWM, the ISENSE current may change between any of four possible

values. In order to effectively recover the correct phase current during a particular portion of

the driving cycle, our system must ignore the other phase currents which are essentially getting

multiplexed through the sense resistor. A track and hold circuit will be able to mostly recover

the original waveform. If the driving transistor are ever in a state when IA is observable across

the sense resistor, the sense resistor voltage will be tracked. If the switches ever enter a state

where IA is no longer observable, then the circuit will stop tracking and will hold the last valid

tracking voltage. If the value IA does not change considerably over the hold time then the track

and hold will return IA with only a slight error. The output of the track and hold can then be

used to generate phase error.

4.3 Generating Phase Error from Current Phase

Because it is only possible to sense IA across the sense resistor during specific ranges of

the driving cycle, phase detection can only be performed on certain parts of the current

waveform. From Figures 4-4 and 4-5 it is clear that the best location to sample the current in

phase A is in the interval from - to 7n. Using equation (4.10), the optimal phase shift for

motor 1 in Table 4.1 is approximately 0.1 radians. The zero crossings of the current will

therefore not be visible, so phase detection cannot be based on the detection of zero-crossings.

4.4 Generating Phase Error with Peak Detection

Because the peak of the current waveform is located near optimal viewing region, a peak

detection strategy can be used to obtain the phase information of the current. Suppose that we

wanted to center the peak of a sinusoidal waveform in a window of width 8 radians. From



time t = - to t = 0, the waveform is integrated with a negative polarity. From time t = 0

to t = , the waveform is integrated with positive polarity. If the sinusoid is exactly

centered in the window then the sum of the two integrations is zero. If, however, there is

some phase error, <, then the net result of the integration will be some value which is related

to the phase shift. Figure 4-6 shows a diagram of the method used to obtain the phase error

information.
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Figure 4-6: Integration Method Used to Generate Phase Error

The response of the proposed phase detector is most easily analyzed by examining its

partial responses to the input current waveform. The input to the phase detector is the output

from the track and hold. The track hold recovers as much of the current signal as possible, but

its output will never equal the actual phase current. The output of the track and hold can be

broken up into the actual phase current plus some error Ierror which is the result times when IA

is not flowing through the sense resistor.

I = IA +Ierror, (4.15)

where

IH = output of track and hold,

IA = actual phase current.



IA in general has some harmonic content, so the input into the phase detector can be

further broken up into

ITH = Ierror + I n COS(no 0t- an). (4.16)
n=O

4.4.1 Errors Due to Phase Current Harmonics

The proposed technique for phase detection was outlined in Figure 4-6. a is the width of

the observation window in radians, and 1 is the shift of the fundamental of the waveform

relative to the observation window. Positive values of indicate that the peak of the

fundamental of the current waveform is delayed with respect to the center of the observation

window.

The phase error due to any particular harmonic of the current is given by

0
0 2c0

PEn () =- In cos(nOot -(4 +n))dt + fIn cos(no) t -(4 + n))dt. (4.17)
r 0 0

where

an = phase shift of nth harmonic,

In = amplitude of nth harmonic,

and it has been assumed that al = 0.

After carrying out the integration of equation (4.17) and combining the terms, the

expression for PE() becomes



PE,()= 2 I" (i- cos(n )). (cos(n )(osccos -sin sin4)+ sin(n- )(sin n cos +cosa sinp))
n-o0

(4.18)

The total response of the phase detector is simply the sum of the responses due to the

individual harmonics. The total phase error can be written as

PE(4) = PEI ()+ IPEn(4), (4.19)
n=2

where it has been noted that PEo() = 0.

The summation in (4.19) is functionally dependent only on cos(+) and sin(+). If the

harmonic content of I A is known, then the summation in (4.15) will reduce to cos(4) times

some coefficient plus sin(4) times another coefficient. The coefficients of the sine and cosine

functions reflect the errors introduced into the phase detector by the harmonics of IA. The total

phase error can therefore be written as

PE() = 21 (ego sin +egh sin + osh CO), (4.20)
(o

where ego, ideal gain of phase detector, is given by

ego = 1- cos(), (4.21)

egh, the gain error due to harmonic content, is given by

egh = 1- cos(n o))(sin (n-cosn)- cos(n ) sin( n)), (4.22)
n=2 1



and eosh, the offset error due to harmonic content is given by

Cosh n I - cos(n ))(sin(n ) sin(c) + cos(n -) cos(xn)). (4.23)
n=2 nI

The naming convention used in equations (4.19) through (4.23) is based on the role of the

coefficients when equation (4.20) is linearized.

PE( ) go 2Il' (egoD + egh  +eosh) (4.24)
co

4.4.2 Errors Due to Track and Hold Circuitry

The preceding development assumed that the only errors in the phase detector were due to

the harmonics of the current. In this section the error introduced due to the track and hold will

be analyzed. To make the analysis of this error easier, the phase current will be assumed to

contain no harmonics. This makes the mathematical derivation more straightforward and

allows us to find an intuitively understandable answer.

As discussed in Section 4.2.3, IA can only be viewed at the times given by the mask

waveform MP. MP is a function of VMAG and cot. so the phase error due to the action of

track and hold will have a similar dependence.

The integration of 'error will occur in a window of e radians. Where this window is

located with respect to the masking waveform depends on the optimal phase shift. If the

current is to be kept in phase with the BEMF, then the center of the integrating window must

be delayed by Iop. This means that when the PLL centers the peak of the current in the

window, the peak will in fact be delayed by the optimal phase shift. Shifting the integrating

window will also effect the tracking times because now the integration occurs over a different



range of M . The tracking times, and therefore the tracking errors will be determined by

VMA, cOPT, and the width of the window.

For a given VMG, CPT, and 0, there is a completely determinable set of times indicating

whether or not the track and hold is tracking or holding. Only at the times when the track and

hold is holding will Ierror be non-zero. Calculating these errors is a task best left to numerical

tools such as Matlab. In order to give some intuition, however, the output of the phase

detector due to one holding segment is examined below.

4.4.2.1 Error Due to Holding for One Segment

Figure 4-7 shows the form of lerror centered in some tracking window of width E radians.

Each error due to a holding segment can be identified by a location time, tk, and a holding

duration, ATk. Each tk and ATk correspond to an interval over which the tracking error is non-

zero. The center of the tracking window has been shifted to t = 0 in order to make the setup

of the analysis more symmetric.

(-) (+)

ATk error

-8 0 at
2o0 kTime (seconds) 2C

Figure 4-7: Error in Track and Hold Output

The output of the phase detector to one of these regions of error is



PEk- ATk -1 COS ( 0tk ) fI cos( ot-)dt sgn(tk), (4.25)
ATk

tk 2

where

ATk = width of holding segment,

tk = midpoint of holding segment.

The function sgn(tk) takes care of the fact that if the holding segment is in the left half of the

integration window, the integration should be carried out with a negative sign. After carrying

out the integration in (4.25) and rearranging the terms, the expression for the phase error

becomes

PEk [(ATk COS 2 sin( " )) cos(o 0tk + ATk sin( " s( k gn(tk ) cs

+1 [(ATk oCOS(oTk -L sin(" OAT ))sin(otk) ATk sin( OATk otk gn(tk)in2 6---2----2 COS(()tk ) sgn(tk) sin

(4.26)

Equation (4.26) can be further simplified if the approximation is made that ATk<< 27, that is

if the tracking period is small relative to the period of the current waveform. The PWM

frequency is 60 times the electrical frequency, so the time holding times of the track hold will

be less than 60--, and we can make the above assumption to reduce (4.26) to

PEk () 21sin( tk COS oT cos(o otk) sgn(tk) sin
o0 2 oo 2

(4.27)

Some important results are expressed in (4.27). First, because the coefficient of cos(4) is

proportional to sin(o o tk ), integration of errors in the left half of the integration window will

never cancel with those errors on the right. Instead they will reinforce each other.



Conversely, for the coefficients of sin(4), errors from the first half of the integration will

tend to cancel with those accumulated during the second half. If the window of integration is

not delayed by op r, then the tracking and holding times will be symmetric for both the

positive and negative regions of integration. The errors will therefore cancel exactly and the

coefficient of sin( ) will be zero.

As in the case with the harmonic errors, it is helpful to express the total phase error due

to the track and hold by summing all of the errors together and extracting the coefficient of

sine and cosine. The gain error, e , and offset error, eost, for the track and hold are given by

eg - a OT cos( otk)sgn(tk), (4.28)

eos k °Tk 2 sin (o otk ), (4.29)

so the output of the phase detector due to the track and hold error is

PE() = 2' (e cos( ) + eosth ) .  (4.30)
co0

The gain- and offset-errors due to the track and hold can be calculated numerically using

Matlab. E was set equal to 6. The plots are all normalized by ego, and plotted as a function

of opr for VMAG = 0.6, 0.8, 1.0 and 1.2. VMAG is VMAG normalized by the power supply

voltage, VSUP,. A value of 1.2 for VMAG indicates that the magnitude of VMAG was 1.2 times

higher than the triangle waveform which was compared against it.
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Figure 4-8: Track and Hold Gain-Error for In-Phase PWM.
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Figure 4-9: Track and Hold Gain-Error for Out-Of-Phase PWM.
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Figure 4-10: Track and Hold Offset-Error for In-Phase PWM
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Figure 4-11: Track and Hold Offset-Error for Out-Of-Phase PWM.

The final expression for the output of the phase detector can finally be written as
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PE() = 21 [(ego + e + egth)sin +(eosh + e )os) ].
COo

(4.31)

4.4.3 Phase Error Due to Gain- and Offset-Error

Ultimately, what is important is not the gain- and offset-errors of the of the phase

detector, but how this translates into our ability to accurately lock the driving voltages to the

motor. If the phase-locked loop drives the phase error, PE(), to zero, then, using a first

order approximation to the phase error, the phase offset, os,, is

(4.32)s _ eosh +eosth

ego + egh + egth

Ignoring the effects of current harmonics, the phase offset as a function of kon is plotted in

Figures 4-12 and 4-13.
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Figure 4-12: Phase Offset-Error [In-Phase PWM]
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Figure 4-13: Phase Offset-Error [Out-Of-Phase PWM]

Figures 4-12 and 4-13 illustrate a key difference between the in-phase PWM and the out-

of-phase PWM. For in-phase PWM, the offset error sharply increases at 0.7 radians. For out-

of-phase PWM, the offset error do not start increasing until 1.9 radians. We are therefore

motivated to select the out-of-phase PWM scheme because of the greater range of optimal

phase shifts over which the offset error is approximately zero. It should also be noted that for

larger windows, the offsets will be worse, because the integration window will cover a range

of time during IA is not observable on the sense resistor.



Chapter 5

Testing the System

The sinusoidal drive presented in this paper is much more complex than the conventional

six-state drive. In order to test the practicality of the system, as well as the acoustic

performance, a test board was built. The conceptual layout of the test board, the testing setup,

and the testing results are presented in this chapter.

5.1 Building a Test Board

To conduct a fair test of the sinusoidal drive, a test board was built which can operate as

both a six-state drive and a sinusoidal drive. Six-state drive functionality was also included

because it is intended that the drive will be started in six-state mode and then switched into

sinusoidal mode when the disk drive reaches full speed. The motor will be started in six-state

mode due to the fragile nature of the sinusoidal phase detector.

The implementation of the system is conceptually very similar to the six-state drive

scheme. A state machine controls the manner in which the driving phases are driven. The

motor phase is detected with an appropriate phase detector, and the phase error is used to lock

the phase of the driving voltage to the BEMF. As before, a current control loop controls the

level of the driving voltage. A top-level system diagram is shown in Figure 5-1.
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Figure 5-1: Top-Level System Diagram of Test Board

In order to implement the hook waveform, the state machine must drive a different

average voltage on the phases for every cycle of the PWM. When operating the PWM at 60

times the electrical frequency, the state machine must have a defined output for 60 states, not

just 6 as with six-state. This raises the level of complexity of the state machine, but not

prohibitively.

In every state, a PWM signal must be generated which has the appropriate duty cycle. As

was discussed in Chapter 3, the PWM signal can be generated by comparing a voltage

waveform with a triangle waveform. For each PWM cycle, the state machine can command an

appropriate output from a DAC. The DAC is referenced to VMAG, so the output of the DAC

scales with VMAG. Because only two phases are modulated at once, only two DACs are

needed. If the hook waveforms are broken up into segments of 11 radians, then during each

segment one phase is held low, another phase is being driven with the positive-going portion of

the hook (uphook), and the third drive is being driven with the negative-going portion of the

hook (downhook). Breaking the waveforms up in this manner provides a simple way of

obtaining the out-of-phase characteristics which are desired to increase the range of possible

phase shifts. The uphook waveforms are compared against one triangle wave, and the



downhook waveforms compared against the out-of-phase triangle wave. The logic of the state

machine then directs the correct modulation to the appropriate phase.

The test board was built using the facilities at Texas Instruments, in Dallas, TX. The

primary logic of the design was built into a Field Programmable Gate Array (FPGA). A great

deal of credit for the system must be given to Bert White, who designed the original three

sense resistor sinusoidal drive (Section 4.2.1)

The window of integration employed in the phase detector was 2- radians. For -3

radians the current in phase A was tracked off of the sense resistor. For the next T radians,

the current in phase B was used as the input to the phase detector, and for the final 2 radians,

the current in phase C was used.

5.2 Acoustic Testing Procedure

The hard disk drive array was clamped in a rigid manifold to the top of a table. A

microphone was then placed near the hard drive. The signal from the microphone was then

passed through a spectrum analyzer and the frequency content measured.

Two different motors were tested in this experiment. One motor was manufactured by

Seagate Technology, and the second was manufactured by Nidec. Both motors were operated

at 7200 RPM and had 6 poles. The electrical frequency of both motors is therefore 2262

rad/sec or 360 Hz. The testing was conducted in an open air environment at Seagate

Technologies.

The testing was initiated by first starting the motor and bringing it up to full speed in six-

state mode. After taking measurements in six-state mode, the drive system was then changed

to sinusoidal mode. Any transients introduced by changing the drive scheme were allowed to

settle out and then acoustic measurements were made again.



5.3 Results of Testing

The results of the acoustic testing are presented in this section. The graphs are all

courtesy of John Baker at Seagate Technologies. The graphs are all referenced to previous

acoustic measurements of the motors when driven with an older six-state drive. Their standard

control system implemented both a normal six-state control scheme and also a dithered

variation of the six-state driver. The acoustic response of the drive to the standard controller

was used a reference to compare the new drive with the drive system it will be replacing. The

following figures present the results of the acoustic testing.
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Figure 5-2: Current and Voltage Waveforms for Sinusoidal Drive
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Figure 5-7: Acoustic Spectrum Nidec Motor-Sinusoidal Drive vs. Old Six-State
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Figure 5-9: Acoustic Spectrum Seagate Motor-New Six-State vs. Old Six-State
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Figure 5-10: Acoustic Spectrum Seagate Motor-Sinusoidal Drive vs. Old Six-State (Dithered)
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Figure 5-1 1: Acoustic Spectrum Seagate Motor-Sinusoidal Drive vs. Old Six-State



Chapter 6

Discussion of Results

The primary purpose of the testing was to prove both that the system could lock to the

acquired phase information, and also that the acoustic noise of the motor was reduced. The

testing shows that the drive system can be implemented, and also that it delivers the acoustic

performance it promised.

6.1 Waveform Distortion

The most notable difference between the expected waveforms and the actual waveforms is

that as implemented, the currents generated by the test board are not sinusoidal, but contain a

significant level of distortion. This can be for a number of reasons. The first reason is that

the current feedback loop is responding to the system. This can be seen by the glitches on

VMAG. This puts distortion into the hook waveform. The shape of the phase current will

therefore also be distorted. The current control loop may be responding because it is too fast,

or because there is some error in the actual construction of the test board. The test board was

known to be flaky, so it is possible that the errors are due to coupling on the test board.

A second source of possible distortion comes from the implementation of the phase

detector. The phase detector described in Chapter 4, outputs a phase error signal only after it

has completed both the positive and negative integrations. The test board, however, was

implemented so that the phase-locked loop responded to the output of the integrator in the

phase detector even during an error detection cycle. This will cause the loop to respond to the

instantaneous output of the phase detector, instead of the final output. Even if the current is in



phase with the motor, the output of the instantaneous output of the phase detector will be

interpreted by the phase-locked loop as a phase error.

Also, because the output of the phase detector is proportional to the current flowing

through the motor, it is possible that changes in VMAG were introducing errors in the output of

the phase detector which might have caused some unusual oscillations.

The oscillations present in the current did not effect motor performance as far as the

acoustic test, but a cleaner signal would generally be desired to ensure proper functioning of

the phase locked loop.

6.2 Reduction of Acoustic Noise

The true test of the sinusoidal drive was whether or not it would succeed in reducing the

acoustic noise of the motor. In the testing performed for this thesis, the sinusoidal drive

performed exceptionally in this regard. On both motors the sinusoidal drive scheme

outperformed the new six-state drive, the old six-state drive, and the dithered six-state drive.

The data in Figures 5-5 and 5-6 illustrate the remarkable ability of the sinusoidal drive to

eliminate harmonics of the motor. The new six-state drive in Figure 5-5 exhibits several

resonant peaks. These peaks are at 6, 7, 11, 24, and 36 times the electrical frequency of the

motor. The sinusoidal drive scheme reduces the 11th harmonic by 10 dB. The resonant peak

at the 24th harmonic is reduced by 7 dB, and the 36th harmonic is reduced by 5 dB. These

differences in acoustic noise were actually audible during testing. This test clearly

demonstrates the improvement of a sinusoidal drive over a six-state drive.

Figure 5-6 compares the performance of the sinusoidal drive to the results of dithering the

old six-state drive. It should be noted that there was nothing in common between these two

drive systems, so it is possible that differences in the power drivers or other parts of the

circuitry played a part. Nevertheless, Figure 5-6 gives compelling evidence of the superiority

of a sinusoidal drive in eliminating acoustics. Comparing the acoustic noise spectrum in



Figure 5-6, we can see that the drive system with sinusoidal drive outperformed the dithering

technique by substantially reducing the content at the 12th harmonic and the 36th harmonic.

The effect of the dithering can be seen in Figure 5-6 by the smearing of the frequency content

at 8.3 kHz.

The testing on the Seagate motor supported the conclusion that the sinusoidal drive can

substantially reduce the pure-tone noise emitted by a motor, but it also highlighted the frail

nature of the system. When the Seagate motor was driven with sinusoidal drive, the speed

control loop was not able to maintain the speed of the motor. The testing of the Seagate motor

had to be done without closing the speed control loop.

6.3 Future Work and Improvements

The experimentation showed that implementing a sinusoidal drive is a practical solution to

the problem of acoustic emissions from motors. The system as presented in this thesis is by no

means perfect, however, and much can be done to make the response of the system better.

The reasons for Seagate drive failing to speed-regulate must be investigated and

understood. It is not acceptable for the sinusoidal driver to work successfully with one hard

disk drive and not another.

The primary work needs to be done on the phase-locked loop, which is the most fragile

part of the system. A balance must be found between the smallest integration window which

can be used and still provide adequate gain in the phase detector.

Further studies should be conducted concerning the possibility of detecting the phase

current both at its negative peak and positive peak. The negative peak of the current will occur

in the region where the negative phase current is flowing through RSENSE. These peaks can be

used as well to generate phase error. The phase detector would therefore operate on the

positive peaks interleaved with the negative peaks. It would then be possible to generate phase



error information on six peaks instead of just three as was done on the test board. The errors

due to the track and hold when detecting the negative peaks will be different from the errors

generated when tracking and holding the positive peaks, and the result of these differences

should be investigated as part of a solution proposing to detect phase on all six available peaks.



Appendix A

A.1 Small Signal Gain of Phase Detector

The small signal gain between the BEMF current and the phase current can be found by

differentiating equation (4.6) with respect to +BEMF. Doing so gives

d4B -1
dBEN sin2 (+BEM)

IK2 - 2Kcos(BEM+ 11

[K2 - 2Kcos(BEMF) + 1 "COS(+BEMF) - Ksin 2 (BEMF)(K2 - 2Kcos(BEM) + 1)i J

K2 - 2Kcos(#BEM) 1 1
(A.1)

The slope of the phase relation between ,B and BE4F is found by evaluating (A. 1) at zero. The

slope at the origin is therefore

-= - 1 (A.2)
d+BEMF BEM=0 K - 11

A.2 Location of Zero-Slope point of <B

The location of the point of zero-slope of (A. 1) can be found by setting the equation equal

to zero and solving for +BEMF. It is assumed that K > 1. The only way (A. 1) can equal zero is

if the term in brackets is equal to zero. There is no value of BEMF for which the square root

term on the left can equal zero. We must therefore solve



JK2 - 2K cos(4BE ) + 1 cCOS4BEMF )- Ksin2 (BEMF )(K2 - 2Kcos(4BEM)+ 1)

jK2 - 2Kcos(4BEM)+1 10

(A.3)

This equation can be manipulated by,

/K 2 - 2Kcos(4BE) +1 os*C( BEMF)= Ksin2 (BEMF)(K2 - 2Kcos(BEM) + 1)

(K2 - 2Kcos(4BEMF )+ 1) *COS(BEF)= Ksin2 (BEMF),

cos2 BEMF)- (K + )COS( BEMF ) + 1= 0,

cos(2 BEM)-(K )cos( BE)+1= 0,

(K +)+ ±(K +1)2 -4
COS(aBEM) K v

and finally,

cos(4BE) = K

or

os(BE ) =

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

Since we are assuming that K > 0, the correct solution corresponds to cos(BEMF ) = K. This

can be substituted back into (4.6) to find the corresponding value of B,. Making use of the fact

that



(A.10)

We can substitute back into (4.6) to find

(A.11)

There is a simple relationship between 1B and BEMF. Replacing the parameter K by

cos(+BEM), (A. 11) can be rewritten as

sin(,) + cos(,BE) = 0. (A.12)

The values of B, and BEMF which satisfy equation (A. 11) fall along a circle centered at the

origin. Any valid operating point of the system must be in this circle in order for the

relationship between the phase current and BEMF current to be correct.

sin(+ BEMF)=,

~ = sin '(- -)
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