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Abstract

The work described in this thesis centers on inertialess motion at low Reynolds num-
bers at the crossroad between biofluids and microfluids. Here we address questions re-
garding locomotion of micro-swimmers, transport of nutrient around micro-organisms
as well as mixing and heat exchange inside micro-droplets of water.

A general framework for the investigation of optimal locomotion strategies for
slender swimmers has been developed and applied to different systems. Here we
exclusively study the hydrodynamical aspects of locomotion without further consid-
eration for the swimmers internal dynamics. The first system studied is the "three-
link" swimmer, first introduced and discussed by Nobel prize laureate E.M. Purcell
in his famous lecture "Life at low Reynolds number" [121]. For this simple swim-
mer, we find and later discuss optimal stroke kinematics and swimmer geometries.
We then further investigate flagellated swimmers and verify the convergence of the
optimization procedure in the case of a single flagellum, for which the optimal stroke
kinematics are known analytically. Optimal stroke kinematics and geometries for
uniflagellates are also computed and found to be relevant in the context of biological
microorganisms. We then turn our attention to stroke kinematics of biflagellates and
demonstrate that all the different strokes, which are experimentally observed to be
performed by biflagellated organisms such as green algae chlamydomonas, are found
to be local hydrodynamical optima. These observations strongly suggest the central
role of hydrodynamics in the internal dynamical organization of the stroke patterns.

Finally, we present experimental results on convective transport and mixing inside
small droplets of water sitting on superhydrophobic substrates. We demonstrate by a
scaling analysis, that the regular convection pattern is due to a thermocapillary driven
Marangoni flow at the surface of the droplet. We develop an analytical solution for
the temperature and flow field inside the droplet, which is found to be in agreement
with our experimentally recorded data.

Thesis Supervisor: A. E. Hosoi
Title: Associate Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Motivations

The characteristic length scales associated with major technological innovations have

decreased dramatically over the past decades, as many fields of engineering are reach-

ing down to the micro and nano scale. Microfluidics, for example, is a prolific research

field which holds promise for many applications such as "lab-on-a-chip" -based devices

for medical diagnostics, microfluidics for biological assays, tissue engineering or micro-

reactors for energy applications. While the advantages of handling such small volumes

of fluid are numerous not the least of which being portability, there are inherent phys-

ical constraints associated with mixing and transport at the microscale. These new

technological challenges are at the center of an intense reseach effort as described by

H. Stone and coworkers [149] and have fostered an increased understanding of funda-

mental fluid motion and transport processes in the viscously dominated low Reynolds

number fluid regime, which governs the hydrodynamics at these scales.

A comparison between the characteristic length scales of biology and man-made

devices leads to the observation that recent microfabricated engineering products re-

side at the same scale as the vast majority of living organisms which are found at the

micrometric scale and are able to overcome the physical limitations associated with

this scale (see figure 1-1). This observation has initiated a recent research trend at the

crossroad between biofluids and microfluids, which presents a unique opportunity to:
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Artificial Cilia

Environmental microfluidics

Carbon Nanotube Robosnail

Figure 1-1: Schematic representation of how the length scale of recent technologi-
cal innovations compare with biological systems. Red box highlights length scales
of interest in the work presented herein. Pictures are reproduced from: myosin [63],
E-coli [11], paramecium [130], robosnail [28], robotic fly [166], environmental microflu-
idics [148], artificial cilia [50]

(1) find inspiration in biological micro-organisms to improve micron scale technology

and (2) to use engineered micro-devices to better understand locomotion, transport

and interactions of micro-organisms with their surrounding environment. Both ap-

proaches have been followed recently. Experimental investigations have initiated the

use of biologically inspired microfluidic devices to induce: motion via biomimetic

micro-pumps [4], transport via bacterial carpets [47] and mixing via biologically in-

spired artificial cilia [50,90] (see figure 1-1). In return, microfluidic devices have been

used to investigate the locomotive response of micro-organisms to mechanical shear

in the flow [110, 148] (see figure 1-1).

In this thesis we consider several problems which are similar in spirit as they

consider motion at low Reynolds numbers at the boundary between biofluids and mi-

crofluids. We first investigate locomotion of different flagellated organisms through

numerical simulations and optimization. In this study, we seek to rationalize and

identify the physical driving forces behind the diversity in stroke patterns observed

Inm 1m1M



experimentally in flagellated microorganisms and the implications regarding locomo-

tion and nutrient uptake. In parallel, we seek to determine efficient beating patterns

for the future design of microfabricated swimmers. We also consider systems involving

non-biological soft matter and examine the mechanical properties of liquid droplets

interacting with recently developed carbon nanotube based superhydrophobic sub-

strates. Our interest is in exploring self-sustained regular convective patterns and

heat transfer within the liquid, which have technological implications in mixing and

transport of microfluids and could also be used as original microbiological assays.

A thorough presentation of all the motivations behind the study of these different

systems is beyond the intentions of this general introductory chapter. The detailed

background for each of these studies is further described in subsequent chapters of

this thesis.

1.2 Outline and contributions

Chapter 2 through chapter 5 represent the first part of the work related to the bi-

olocomotion of different micro-swimmers. Here we study the deformation and stroke

patterns of these swimmers. More specifically we are interested in probing the exis-

tence of optimal kinematics with regard to swimming and enhancement of nutrient

uptake.

* Chapter 2 presents a general introduction to low Reynolds number swimming

and describes the governing hydrodynamics. We develop an original framework

for the analysis and systematic investigation of optimal locomotion strategies

for deformable slender swimmers in this flow regime. Here we exclusively study

the hydrodynamical aspects of locomotion without further consideration of the

swimmer's internal dynamics.

* In chapter 3, the optimization framework is applied to the "three-link" swimmer,

which was first introduced and discussed by Nobel prize laureate E.M. Purcell in

his famous lecture "Life at low Reynolds number" [121]. For this simple swim-



mer, well-defined optimal stroke kinematics are found for swimming efficiency

and distance travelled over one stroke period. The importance of the geometry

of the swimmer and the amplitude of the strokes are investigated as well. The

efficiency is found to increase with slenderness and approaches the asymptotic

optimal value for slendernesses comparable to biological systems. Large ampli-

tude strokes are found to be optimal in the limit of infinitly slender swimmers

but to be considerably suboptimal for any realistic value of the slenderness.

This simple swimming mechanism provides a benchmark for our modeling ap-

proach, which is found to be effective, robust and to rapidely converge toward

unique and well-defined optima.

* In chapter 4, we extend our modeling framework to flagellates and consider

stroke kinematics of uniflagellated swimmers. The optimization procedure is

first verified against an analytical solution for optimal single-tail swimmers. We

further investigate optimal stroke kinematics for uniflagellates. These strokes

are always found to be traveling waves propagating along the tail of the swim-

mer and closely resemble stroke patterns exhibited by biological uniflagellated

organisms. The question of optimal geometries and morphologies for swimmers

is also adressed. We first examine the influence of the head shape on optimality

and highlight the positive impact of the head drag anisotropy on optimal swim-

ming. We also discuss the existence of an optimal tail to head length ratio and

find a simple morphological criterion which proves to be relevant in the context

of sperm morphometry across a large sample of mammalian species.

* Chapter 5 presents a study of a more complex swimmer. The methodology de-

veloped in chapters 3 and 4 is generalized to adequately model multiple flagella

and is applied to biflagellates. In this case, optimal stroke patterns are compared

to experimental observations of green algae chlamydomonas, whose strokes have

been extensively recorded using high-speed cinematography [131-135]. The op-

timality of stroke kinematics is discussed in relation to the question of transport

and enhancement of nutrient uptake by laminar mixing at the micron scale.



Chlamydomonas primarily exhibits two strokes which are different in struc-

ture: the undulatory stroke and the breaststroke which resembles the effective-

recovery stroke undergone by cilia. The optimization procedure converges to

both the undulatory stroke and the breaststroke, which are found to be local hy-

drodynamic optima for swimming and feeding respectively. The computation of

the vorticity field and the particle pathlines around the swimmer demonstrate

enhanced mixing and nutrient flux toward the organism for the breatstroke

compared to the undulatory stroke. An important observation from our inves-

tigation of both uniflagellates and biflagellates is that all biologically observed

stroke patterns are found to be hydrodynamical optima, with no further con-

sideration of the internal dynamics of the swimmer. This fact emphasizes the

crucial role of the hydrodynamics in the internal self-organization of the flagel-

lum.

The second part of this work also investigates questions related to transport and

mixing at the micron scale but in the context of a non-biological system. In this case,

we focus our attention on free surface flows, convective transport and heat exchange

inside micro-droplets.

* In chapter 6, we report experimental observations of stable axisymmetric con-

vection rolls inside small droplets of water sitting on super-hydrophobic sub-

strates. These stable and regular convective structures appear when the tem-

perature of the substrate is raised by means of a controlled heating plate. We

develop a scaling analysis, which strongly suggests that the convection is due

to a thermocapillary Marangoni effect at the surface of the droplet, which is in

agreement with our experimental observations. An analytical solution is derived

for the heat problem as well as for the velocity problem by assuming diffusion

dominated heat transfer in the droplet and a point heat source at the contact

point between the droplet and the hydrophobic surface. This solution agrees

with the data collected experimentally. The effect of finite heat advection as

well as the validity of the point heat source assumption are further explored



numerically.

* Chapter 7 presents a brief summary of the thesis as well as suggestions for future

work.



Chapter 2

Low Reynolds number locomotion

2.1 Previous work on micro-swimming

Since the early 1950's, the question of locomotion in the inertialess fluid regime has

been of great interest to many fluid dynamicists. At first glance, the question appears

paradoxical: how can an organism generate propulsion when momentum and inertia

are neglected? Early work by G.I. Taylor demonstrated analytically that net propul-

sion could be induced using purely viscous stresses by the action of a wave of lateral

displacement propagating along a sheet [154], as well as by a spiral wave propagating

along a cylindrical tail [155]. In these cases, Stokes equations were solved on the

entire domain, and no slip boundary conditions were applied on the waving body.

In 1953, G.J. Hancock first introduced the use of fundamental solutions (or sin-

gularities) in flagellar hydrodynamics [69]. Using a distribution of singularities along

the centerline of a cylindrical rod, he deduced the propulsion velocity and swimming

efficiency of an undulating slender rod. This method conveniently models flagellar

hydrodynamics as it substitutes the differential Stokes equations in the entire fluid

domain by an integral equation over the boundary of the swimmer. This pioneering

work introduced the use of singularity methods or integral methods in flagellar hydro-

dynamics and more generally in slenderbody theory [8,41,83,89,157]. One of the main

outcomes of this body of work was the introduction by Gray and Hancock [64, 65] of

resistive force theory to model the hydrodynamics around a slender rod. This simple



method only retains the leading order term in slenderbody theory and linearly relates

via resistive coefficients the local drag force to the local velocity at the centerline of

the rod. Resistive force theory remains today the method of choice for first order

approximations of flagellar hydrodynamics.

J. Lighthill has also made enormous contributions to the field of Flagellar hy-

drodynamics and more generally to microbiological fluid mechanics. He generalized

Hancock's use of singularities [100, 102] and analytically solved several problems re-

lated to propulsion at low Reynolds numbers [100, 101]. His close collaboration with

biologists and zoologists enabled him to identify biologically relevant questions and

new research topics in biofluiddynamics and to address them rigorously as a fluid

dynamicist [16, 100]. An extensive review of the early prolific work on low Reynolds

number swimming can be found in [17].

Although his work in the field is relatively limited, E.M. Purcell brought the topic

to the forefront of fluid mechanics by posing the problem of low Reynolds number

locomotion as an open and famous question to the scientific community. His highly

cited paper Life at Low Reynolds Number [121,122], transcripted from his famous

lecture, presents a clear picture of the inertialess regime by introducing what is now

known as the "scallop theorem". This "theorem" will be explained in more detail in a

later discussion. Also famous is the example, given in this lecture of a simple swimmer,

the three-link swimmer, which exhibits non-reciprocal swimming patterns and thus

generates net propulsion. In his presentation, the question of the swimming direction

of the three-link swimmer remained open. This question has been addressed in a

recent study by Becker et al. [10], in which the direction of swimming was identified.

From the simple observation that, in the inertialess regime, the net motion of a

swimmer only depends on the geometrical deformations of its body, it becomes in-

tuitive that time should not be a relevant parameter. This means that, in principle,

one should be able to reformulate low Reynolds number locomotion as a geometri-

cal problem rather than a dynamical problem. This path has been investigated by

Shapere and Wilczek [142-144] using Gauge field theory. This geometrical approach

to low Reynolds number swimming is particularly useful when looking at optimal ef-



ficiency of various stoke patterns. In their study, Shapere and Wilczek looked at the

motion generated by infinitesimal deformations of a sphere. Avron et al. investigated

optimal swimming within a class of two-dimensional swimmers using conformal map-

ping [5]. Other studies have approached swimming of micro-organisms theoretically

using string theory [87,88]. Using such geometrical approaches, new low Reynolds

number swimmers have been imagined and analyzed [6,112].

More recently, flagellar hydrodynamics has been approached from a dynamical

fluid-structure interaction point of view. In this case, the flagella no longer has a

prescribed motion, rather it is considered to be an elastic filament interacting with

the surrounding Stoke's flow, which is modeled using resistance coefficients. Wiggins

et al. have studied propulsion of a passive elastic filament, which is set into oscillatory

motion at one end of the filament [98, 164, 169]. Other studies have modeled elastic

filaments subject to internally generated bending forces [26, 56, 94, 104], which are

known to occur in the case of axonemal flagellar beating of spermatozoa for example.

It has been suggested that mathematically flagellar beating could be a self-organized

phenomenon, generated by internally oscillating stresses [26].

This problem has also been approached from a purely numerical point of view.

Extending the immersed boundary method [117] to numerically compute the coupled

interactions between a Stokes flow and an elastic boundary [38,39,55], Cortez et al.

developed a method to simulate fluid structure interactions of an elastic filament

in the inertialess regime [37]. This computational tool has been used to investigate

biological hypotheses concerning internal generation of stress within the flagellum.

Finally, recent technological breakthroughs in microfabrication have opened doors

to potential applications of microswimming to targeted drug delivery or minimally in-

vasive surgery. Such critical problems require the design and manufacturing of swim-

ming microrobots. To this end, an increasing number of experimental swimmers have

been designed, built and tested. Magnetically driven spiral shaped micro-machines

have been reported to self-propel effectively under a large range of Reynolds numbers.

In this case, the entire swimming trajectory was successfully controlled throughout

the entire motion of the swimmer [79, 80, 114, 167]. The feasibility of propelling a



micro-machine via oscillation of a passive elastic tail has also been investigated, and

such swimmers have been build [151]. A magnetically-driven microscopic swimmer

made of colloidal magnetic particles linked by DNA and attached to a red blood cell

has also been shown to self-propel in the inertialess regime [52].

2.2 Motivations

The vast majority of living organisms are found in an astonishing diversity at mi-

crometric scales. This thesis was originally inspired by microscopic observations of

a variety of such organisms. A glimpse of this diversity is given in an illustration

drawn by J. Lighthill of different groups of microorganisms presented in the 1975

John Von Neumann lecture [100]. This drawing is reproduced in figure 2-1. Despite

many obvious differences, these organisms share a number of common traits. First,

they are all unicellular and hence relatively simple systems to model from a hydro-

dynamical standpoint. Secondly, they all seem to exhibit some degree of locomotion.

This implies that motility is a dominant aspect of life at micro-scales, which is quite

remarkable as it may seem at first glance that, at these small scales, transport should

be dominated by diffusion. Here we ask two questions that are key to this study of

microswimming: How do these organisms propel themselves? Why and how well do

these organisms propel themselves? In an engineering sense these questions translate

to : How can we model motility of micro-organisms? Can we learn anything from

optimizing their motile functionality?

One last dominant trait shared by many microorganisms, which can be readily

seen in J. Lighthill's drawing, is the prevalence of flagella as motility appendages. In

figure 2-1, organisms with flagella are represented inside the circle in the center of

the drawing, which indicates that flagellates are related to many different biological

groups. Among eukaryotes, all flagella have the same structure called the eukaryotic

flagellum or axoneme, a structure that is extremely well preserved across the eukary-

otic domain. This same structure is essentially used to propel eukaryotic unicellular

organisms and sperm cells or to expel mucus in the human lungs (cilia) by beating col-
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Figure 2-1: "A general overview of microorganisms with flagella and related organ-
isms". (Reproduced from [100])
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Figure 2-2: "The modular structure of a flagellum". (Reproduced from [162])

lectively. The eukaryotic flagellum has an internal "9+2" structure [53,77], comprised

of a bundle of nine rigid microtubule doublets arranged around two central micro-

tubules (see figure 2-2). Dynein arms, which are ATPase molecular motors, extend

from each one of the nine microtubule doublets to the neighboring doublet and induce

sliding through ATP-hydrolysis. This mechanism results in bending and can be in-

duced at any location along the flagellum to actively alter its shape. In fact, eukaryotic

flagella have been observed to beat in significantly different ways: sperm exhibit trav-

eling waves that propagate down the flagellum, cilia exhibit effective-recovery strokes

and the green algae, chlamydomonas, exhibits both previously mentioned strokes.

These final observations motivated this study of flagellar locomotion, and in par-

ticular, of the stroke patterns of flagellated organisms. Since it is theoretically possible

for organisms to alter and possibly control the waveform along the flagellum, it is of

interest to investigate whether optimal stroke patterns exist. Hence our two ques-

tions become: How can we model motility of flagellated swimmers? What can we

learn from optimizing the stroke pattern of the flagellum? In the following study,

these questions will be addressed by looking only at the hydrodynamics and not the

internal dynamics of the swimmer. In chapters 3, 4 and 5 we will investigate three

different systems: the simple three link swimmer, uniflagellates and biflagellates.



U(t)

Figure 2-3: Swimmer undergoing one stroke or periodic deformation of period T. The
surface is represented at time 0, t and T, which relevant notations.

2.3 Modeling approach

This section describes some general notations and aspects of the modeling approach,

which are common to all three studies described in chapters 3, 4 and 5.

2.3.1 Representation of a swimming organism

The focus of this study is on optimality of stroke patterns from a hydrodynamical

point of view. Hence, the internal dynamics within the swimmer are not modeled and

the swimmer can be simply seen as a deformable surface immersed in a viscous flow,

whose kinematics and deformations are entirely prescribed. Let E(t) represent the

surface of the swimmer at time t, and R(t) and U(t) be the position and velocity at a

given material point on the surface. For two dimensional planar motions, the location

of the swimmer at each time t is defined by the position vector of a reference material

point Ro(t) attached to the swimmer and a reference orientation Oo(t). Figure 2-3

represents a swimmer undergoing a surface deformation and the related translation

and rotation. Because the system under consideration is unsteady, all variables are

expected to depend on time t. To simplify the notation, time dependency of all

variables will no longer appear explicitly, unless it is required to avoid confusion.



In order to swim continuously, an organism undergoes a "stroke", which is a

periodic deformation of its body-shape. Here, we will explicitly impose the kinematics,

i.e. the geometry of the periodic deformation of the surface (or stroke pattern). Over

the course of one stroke, the swimmer -starting at t = 0 from an original surface

geometry- continuously deforms. When at t = T it returns to its initial surface

geometry at the end of the stroke, it may no longer be at its original location, in

which case there has been a net displacement. Hence, the velocity field U along the

surface E of the swimmer can be written at all times as the superposition of a rigid

body motion Urig and a deformation field Udef. The velocity field due to the rigid

body motion at a given point R on the surface E reflects the net translation U0 and

rotation Q0 of the swimmer:

Uo = Ro, Qo = 0o , U rig = Uo + Q0 x (R - Ro) , (2.1)

where the dot stands for a time derivative.

The rigid body motion, U r
ig, is unknown and must be computed using the appro-

priate hydrodynamics. The deformation field Udef describes the surface deformation

of the swimmer (or stroke pattern) and is prescribed.

2.3.2 Low Reynolds number hydrodynamics

The equations governing the dynamics of newtonian fluids are the Navier-Stokes

equations, which for an incompressible flow can be written as

p- + u VU -Vp + V 2u, (2.2)

V = 0 , (2.3)

where p is the density of the fluid, Ap the dynamic viscosity, u the velocity field

and p the pressure field. For a given length scale L and characteristic velocity U,

the equations can be made dimensionless. In this case, the only remaining non-

dimensional parameter is the Reynolds number Re = pLU, which represents the



ratio of inertial to viscous forces.

When considering microswimming, the characteristic length-scale is in general at

most L - 100 pm and the characteristic velocity of the swimmer is typically no more

than U ~ 100 pm. Hence the Reynolds number Re for microorganisms swimming

in water is at most on the order of Re ~ 10-2 and inertia can be neglected. In this

regime, the Navier-Stokes equations reduce to Stokes equations

-Vp + pV 2  = 0 ,

V u=0. (2.4)

Two important properties of Stokes equations are worth mentioning here: the

equations are both linear and time reversible. The linearity of the governing equations

has important implications in the methods that will be used to solve the hydrody-

namics around our microswimmers. Time reversibility leads to the so-called "scallop

theorem" [121], which can be understood as follow. Recall that in order to swim, an

organism implements periodic deformations of its body-shape. A reciprocal motion is

one type of periodic deformation, in which the organism deforms to a new shape and

then returns to its original shape by going through the same sequence of deformations

but time reversed. Such reciprocal motion is exhibited by an idealized scallop, which

can only open and close its shell. The "scallop theorem" simply states that such

reciprocal motion does not generate any net translation. A detailed discussion and

rigorous proof of the "scallop theorem" can be found in [31].

It follows from this remark that low Reynolds number swimmers need to undergo

a non-reciprocal deformation or stroke pattern in order to generate propulsion. One

such stroke is exhibited by the three-link swimmer and will be discussed in chapter 3.



2.3.3 Dynamics of the swimmer

Equilibrium equations

Let (a - n) be the hydrodynamic stress acting on the surface E at a given point.

Since the density of the swimmer is roughly the same as that of water, a dimensional

analysis identical to the one in section 2.3.2 but considering the inertia of the swimmer

instead enables us to neglect its own inertia compared to the viscous stress acting

on its surface. Hence at any time during the stroke, conservation of momentum and

angular momentum for the swimmer reduces to the equilibrium equations

Jj(o . n) dE = 0,

JJRx (a.n) dE= O . (2.5)

Equations of motion

Because of the linearity of Stokes equations, the hydrodynamic stress (a - n) acting

on the surface E depends linearly on the velocity distribution U at the surface E.

This linear relationship can be readily seen in the integral form of Stokes equations,

which relates stress and velocity distributions at the surface through a linear integral

equation (see [1] for example). Hence the integrals in the equilibrium equations (2.5)

can be viewed linear as functions of the velocity distribution U and can be symbol-

ically written as 4r (U) = 0. The subscript E is a reminder that the integrals in

equations (2.5) are taken over the surface E, which implies that the linear operator

CE depends on the instantaneous shape of the swimmer.

Recall from section 2.3.1 that the velocity U at the surface of the swimmer can

be decomposed into the sum of a prescribed deformation Udef and an unknown rigid

body motion Urig . Substituting this decomposition into the equilibrium equations

yields a system of equations CE(U r ig  
Udef) = 0, which can be inverted, solved for

the rigid body motion components (Uo, Q0 ) and integrated in time to find the net

displacement of the swimmer.



Time integration

The equations of motion discussed in section 2.3.3 take the form of a system of coupled

first order nonlinear ODEs for Ro and o. These equations can be written as

ro(t) =f (ro(t), c(t)) ,

ro(O) is given , (2.6)

where ro = (Ro, 0o) represents the instantaneous position of the swimmer, with given

initial conditions ro(0) and c(t) is a prescribed vector of control (or decision) functions

which parameterizes the kinematics. This system is integrated in time explicitly with

a fifth order embedded Runge-Kutta algorithm using the Cash-Karp parameters.

The algorithm allows for accurate and efficient computation by adapting the size of

the time step to reach a desired level of accuracy. The same algorithm is used in

chapters 3, 4 and 5. More detail on the time integration algorithm can be found

in [120].

Rate of work

A quantitative measure, which is essential to this discussion on optimal low Reynolds

number locomotion, is the energy expense of the swimmer. Intuitively, one might

guess that this energy expense should be minimized when investigating efficient swim-

ming. In this study, which is exclusively concerned with the hydrodynamics of swim-

ming, a measure of the energy expense is given by the total amount of viscous dissi-

pation in the fluid which is equivalent to the work exerted by the swimmer against

the viscous fluid.

In the following, we consider a stroke pattern of period T. As the organism swims,

the stroke can be represented by a continuous sequence of surface geometries, which

we denote by E(q) for q E [0 T]. The vector R(q) represents the position vector

of a material point on the surface during the stroke. It is important to note that

this specific sequence of geometrical configurations can be implemented at different

rates as defined by a time dependent parameterization function q(t), with q(0) = 0
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Figure 2-4: Schematic represention of a given stroke undergone at different time
parameterization functions q(t).

and q(T) = T. A schematic illustration of a given deformation sequence undergone at

different time parametrizations q(t) can be found in figure 2-4. For a given parameter-

ization, the surface at time t is given by E(q(t)), while R(q(t)) represents the position

vector of a material point on the surface at time t. This is a direct consequence of

the properties of Stokes equations mentioned in section 2.3.2. In this section, we will

show that for a given sequence of geometrical shapes E(q), the time parameterization

q(t), which minimizes the total mechanical work exerted by the swimmer against the

viscous fluid, is such that the rate of work is constant throughout the stroke. This

discussion can also be found in the appendix of [10].

For a given time parameterization q, the rate of work at time t can be written

4 = ( (. n) - UdE . (2.7)

At a given point on the surface, the velocity can be expressed as

U = dR(q(t)) dR(q(t))
U =q(t) d (2.8)

dt dq

which is the product of q(t) times a function of q only. Because of the linear de-

pendence of the stress acting at the surface on the velocity distribution U (which

we discussed in section 2.3.3), the stress (a -n) is also the product of 4(t) times a



function of q only. Hence for a given stroke, the rate of work can be written as

S= [q(t)F(q(t))]2 , (2.9)

and the total work exerted on the viscous fluid during one stroke can be written as

W = [q(t)F(q(t))]2 dt . (2.10)

It should be noted here that the function F depends of course on the specific stroke

under consideration.

A lower bound for the total work W can be readily obtained from Schwartz's

inequality

W = fT [q(t)F(q(t))]2dt •  12dt

I fT 12 [jT 2

1 q Lr(t)F(q(t))dt F(q)dq . (2.11)

Schwartz's inequality becomes an equality if and only if the function 4q(t)F(q(t)) and

the function f = 1 are linearly proportional, which simply implies that the rate of

work 4 = [4(t)F(q(t))]2 is constant.

Hence for a given stroke, the mechanical work W reaches an absolute minimum

value which is uniquely defined and equal to - F(q)dq2 when the time param-

eterization is such that the rate of work 1 is constant. This proves that the search

for optimal strokes at low Reynolds number is essentially a geometrical problem with

the kinematics of each stroke patterns being associated with a uniquely determined

minimal mechanical work.

This allows one to reduce the problem of finding optimal strokes to finding optimal

stroke kinematics, i.e.: optimal sequences of surface shapes. It bears emphasis that

even if the particular time parameterization which minimizes the work is unknown,



the minimal work can still be computed as:

Wmin = [ F(q)dq 4 T (t)dt] (2.12)

In the following, all discussion about the work exerted by the swimmer on the sur-

rounding fluid will always implicitly refer to the minimal work Wmin given by equa-

tion (2.12).

2.3.4 Locomotion optimization

Objective function and efficiency

As mentioned earlier, the present work investigates optimal stroke patterns. To this

end, we need to define an objective function, which measures how "good" a given

stroke is. This objective function will depend on the specifics of the problem under

consideration and will be presented in more detail for each problem individually in

the coming chapters.

Nevertheless, a few general comments regarding the objective function are in order

here. One possible measure of the "effectiveness" of a given stroke is an efficiency,

which is a scalar. Here, the term efficiency is loosely defined as the fraction of the total

energy expense effectively used towards a given objective, such as moving forwards

or feeding. One such efficiency is extensively used in the following chapters and will

often be referred to as the swimming efficiency.

In the following, we define the swimming efficiency and discuss its relevance with

respect to low Reynolds number swimming. Consider a stroke of period T during

which the organism swims over a distance to at an average speed of U0 = fo/T. For

this particular stroke, the swimming efficiency is defined as the ratio of the work

required to move an equivalent swimmer over the distance eo at the average speed

Uo, to the total work exerted by the swimmer against viscosity

aUo to
S = (2.13)

Wmin

40



Here Wmin is the minimal work as given by equation (2.12) and a is the drag coefficient

of the equivalent swimmer, which will be specified in later chapters. The quantity aUo

can be interpreted as the force required to move the equivalent swimmer at velocity U0.

This definition for the swimming efficiency is consistent with previous work [10, 69].

While in general, the swimming efficiency can be computed for any strokes, we are

usually only interested in those strokes resulting in net translation only. Recall from

section 2.3.1 that at the end of each stroke, the deformation of the body induces a net

displacement, which is composed of both a translation of vector Ro(T) - Ro(O) and a

rotation of angle AO = Oo(T) - 00(0). While the change in position corresponds to the

distance traveled to and should be maximized, the change in orientation should remain

as small as possible. If the net rotation over one stroke is non-zero, the swimmer will

move along a circle as it undergoes a series of stroke and will eventually get back to

its original location, resulting in no net translation. In the following chapters, the

stroke kinematics with non-zero net rotations are avoided as they are by no means

optimal for locomotion. It bears emphasis that for all acceptable stroke kinematics

with zero net rotation, the efficiency 8 of the stroke will have the same value whether

it is computed over one, two or n stroke periods. This is because for these strokes,

the distance traveled over n strokes is nfo and the minimal work is nWmin, while Uo

is constant.

There are a number of interesting properties of this swimming efficiency due to the

particular structure of Stokes equations (2.4). Assuming all swimmers are immersed

in the same Newtonian fluid of dynamic viscosity p, Stokes equations (2.4) can be

made nondimensional by fixing a length scale and a time scale. The solution to

the nondimensional Stokes equations for the velocity and pressure fields does not

depend on any nondimensional parameters. This implies that for a given stroke the

nondimensional distance traveled io, average speed U0 and minimal work Wmin do

not depend on any nondimensional parameters either. Since the efficiency E is itself

nondimensional, we can conclude that S depends neither on the chosen length scale

nor on the time scale and thus characterizes the kinematics of the stroke itself. A

direct consequence is that a swimmer undergoing a given stroke is exactly equivalent



(i.e. same U, to, Wmin and S) to a similar swimmer whose dimensions have been

scaled down by a factor of two that executes the same stroke twice as fast.

Finally, it bears emphasis that £ is in fact a measure of both how fast and how

"energy efficient" a particular stroke is. In order to demonstrate this point, first

suppose we want to find the stroke which will allow the swimmer to go the fastest.

A naive approach would be to decrease arbitrarily the period of the stroke T to zero

or to increase the characteristic size of the swimmer to infinity, in which case the

average speed of the swimmer Uo = fo/T becomes virtually infinite, regardless of

the kinematics of the stroke. This infinite average speed is of course reached at the

cost of an infinite energy expense Wmin and is in no way representative of an optimal

swimming strategy. A more relevant way of investigating fast swimmers is to compare

different strokes performed by the same swimmer, for which the energy cost is the

same. This is equivalent to assuming that the swimmer always carries the same fixed

(and limited) energy supply and to then find the stroke which maximizes the distance

over which the swimmer can travel during a given period of time. In this case, for

all strokes a is fixed by the geometry of the swimmer, Wmin is the fixed amount of

energy carried by the swimmer, T is the fixed time for which the swimmer is allowed

to travel and hence maximizing the traveled distance or the average swimming speed

is equivalent to maximizing the swimming efficiency S.

Similarly, suppose we now want to find the stroke which is most energy efficient,

meaning that the work done against viscous forces Wmin is the smallest. Again, a

simplistic approach would be to increase the period of the stroke T or to reduce the

characteristic size of the swimmer to zero. This would make the total work Wmin

done by the swimmer go to zero, however the average traveling speed Uo would also

go to zero. The true problem here is to compare the energy cost of strokes performed

by the same swimmer, which swims at a prescribed average speed. For all strokes, a

is again fixed by the geometry of the swimmer, the average speed Uo is prescribed,

and to is the fixed distance over which the swimmer is allowed to travel. In this case,

minimizing the energy cost and hence the total work exerted by the swimmer on the

flow is again equivalent to maximizing the swimming efficiency 8.



The use of the term swimming "efficiency" may be confusing as it may seem to

only refer to the energy cost minimization problem. However as we have seen here

the value of S measures both how fast and how energy efficient a giving stroke is.

Hence it represents the adequacy of a given stroke for swimming and will be used as

the objective function in our optimization procedure.

Optimization approach

So far, we have presented general aspects of the models used to represent a swimming

microorganism. The input of this model is the full description of the stroke kinematics

or periodic deformation of the swimmer's surface. Given this, our model for the

dynamics of the swimmer allows us to compute and integrate over one stoke period

the motion of the swimmer as well as the rate of work exerted against the fluid.

Finally the efficiency can be computed, using equation (2.13).

The form of the equations of motion (2.6) is characteristic of a continuous-time

deterministic dynamical system, where the position of the reference point ro(t) is

the state of the system and the vector of control functions c(t) parameterizes the

deformation of the swimmer. This system is deterministic because the state of the

system as well as the control (or decision) function are only required at time t in order

to predict the exact evolution of the system. Here, we are interested in finding strokes

or control trajectories, determined by the control function c(t), which maximize the

efficiency. This problem bears close similarities with cost minimization problems

in optimal control theory [13], which can be derived from Pontryagin's minimum

principle. However in optimal control, the objective function is a cost functional

which takes the form of the time integral of an additive cost, which is only a function

of the current state of the system and the control (or decision) at that time. The focus

of the present study is in optimizing efficiencies, which cannot be written as additive

cost functions. Optimal control and related methods such as calculus of variation are

therefore not best suited to this analysis.

Another approach to this optimization problem is to represent the continuous

control functions describing the stroke or deformation of the swimmer by a finite set



of deformation parameters. These deformation parameters form a vector of finite

dimension and will be discussed in more detail for each problem individually in the

next chapters. Once this parameterization has been established, the input to the

model is simply the vector of deformation parameters or variables. The equations of

motion can then be integrated over one period by imposing the surface deformation

prescribed by the input deformation parameters. Finally, the efficiency is evaluated

and given as an output. In this formulation, since the efficiency can be written as

a nonlinear function of a finite set of variables, nonlinear programming can be used

in order to maximize the efficiency. This nonlinear programming approach has been

used throughout this study. It is interesting to note, that this formulation also allows

us to optimize simultaneously the stroke itself as well as other geometric parameters

characterizing the swimmer.

Optimization algorithm

In the following chapters, the optimization toolbox from MATLAB is used in order to

find optimal stroke patterns. We use the routine fmincon, which finds the minimum

of a constrained nonlinear multivariable function. A detailed description of the opti-

mization algorithms implemented in the fmincon routine is beyond the scope of the

present discussion, which is limited to general remarks.

The efficiency is a complex function of the deformation parameters, which involves

the integration of the swimmer's motion over the entire trajectory. Hence, no analyt-

ical formulation for the derivatives of the efficiency with respect to each deformation

parameter could be derived, and the optimization algorithm relies instead on numer-

ical evaluation via finite differences for the computation of all derivatives required by

the algorithm.

In our study, fmincon, which finds the optimal of a nonlinear function subjected to

constraints, implements sequential quadratic programming. Sequential quadratic pro-

gramming methods are designed to directly solve the Karush-Kuhn-Tucker (KKT)

equations, which are a set of necessary condition on the Lagrangian function for the

optimality of constrained problems. In this case, the solution to the KKT equa-



tions is found using a quasi-Newton type iterative process, which closely mimics

quasi-Newton methods for unconstrained problems. The quasi-Newton method im-

plemented in fmincon is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method,

which avoids the numerically costly evaluation of second derivatives by accumulat-

ing curvature information from previous gradient evaluations. More detail on these

algorithms can be found in classical textbooks on nonlinear programming [13].

2.3.5 Summary

In this chapter, we have discussed general aspects of the methods used to model

and optimize swimming at low Reynolds numbers. We explained how the equations

of motion can be deduced from the prescribed deformation of the surface of the

swimming organism and how these equations can be integrated in time numerically

to find the displacements of the swimmer. We then presented the use of a scalar

quantity - the efficiency - to compare and characterize the optimality of different

swimming strategies. Lastly, we discussed nonlinear programming as a method to

optimize stroke patterns for low Reynolds number swimming, and briefly described

the algorithm used in the following chapters.

In the three next chapters, the specifics of this method will be developed in detail

for each of the three different problems. First, the geometry of the swimmer will be

described. Then the equation of motions will be derived by solving the hydrodynamics

and applying the equilibrium conditions. The spatial discretization of the swimmer

allows us to solve for the displacements numerically and will be discussed for each

swimmer. We will then develop and give expressions for the relevant efficiencies.

Finally, we will describe the representation of a continuous swimming stroke using a

finite set of parameters, which is necessary in order to optimize the stroke kinematics

using nonlinear programming.





Chapter 3

Optimizing Purcell's three-link

swimmer

3.1 Introduction

In his famous lecture Life at Low Reynolds Number [121], E. M. Purcell presented

what may be the simplest active tail that can effectively propel itself at low Reynolds

numbers - the three-link swimmer. This swimmer can be viewed as a simplified

and discretized version of the eukaryotic flagellum made of three slender rods, which

can be actively articulated at the two hinges. Unlike the "two-link scallop", the

additional link enables the three-link swimmer to undergo non-reciprocal motion and

hence theoretically to swim forward. An experimental three-link swimmer has been

designed and its swimming abilities confirmed in a recent study by B. Chan and

A.E. Hosoi [161]. Also a helical bacteria, spiroplasmas, has been conjectured to use

a three-link-like mechanism to propel itself [12].

In a recent study, Becker et al. [10] optimized a discrete and limited set of geo-

metric parameters characterizing the infinitely slender three-link swimmer. They also

addressed the question, which remained open at the end of E.M. Purcell's lecture,

as to which direction the three-link swimmer swims. However, as the authors lim-

ited their study to geometric designs, the quantitative results given in this work are

suboptimal.



parameter (scalar) opt. function opt.

arm length slenderness stroke amplitude stroke pattern

Becker et al.
O(1/ln )

Present study

O(1/(ln )2 )

Table 3.1: Summary of the parameters optimized in previous work by Becker et al. [10]
and in the present study.

Two key ideas separate the study presented in this chapter from previous work by

Becker et al. as summarized in Table 3.1. The first is the concept of kinematic opti-

mization versus geometric optimization. Geometric optimization addresses questions

related to the geometric design of biological and mechanical swimming devices. In

contrast, kinematic optimization confronts the question: "Given a swimmer with a

particular geometry, what is the optimal actuation strategy?" As an analogy, consider

an olympic swimmer. The geometry of the swimmer is fixed but he is physically able

to employ any number of strokes: freestyle, breaststroke, butterfly, etc. Kinematic

optimization seeks the "best" sequence among this infinite array of possible stroke

patterns. The second significant difference between the present study and previous

work is that optimizing kinematics requires a functional rather than a parametric vari-

ation. Unlike the geometric parameters considered in earlier studies, the stroke shape

and sequence cannot be described by a single scalar, rather it must be represented by

a continuous function (see Figure 3-3).

In this chapter, the methodology outlined in chapter 2 is applied to one of the

simplest, and historical, figures of low Reynolds number studies: the three-link swim-

mer. This investigation also provides a benchmark for the method developed in this

thesis and may give some insight into what to expect for more complex swimmers. In

the following, we extend the model used by Becker et al. to include stroke kinematics,

hydrodynamic interactions between the different links and effects of finite slenderness,

to provide a complete description of the three-link swimmer. Both the kinematics of

the stroke and the geometry of the swimmer are fully optimized [152]. We also discuss

Geometry Kinematics



f(s) n(s) (Fx, F Y)

2L s = 2L

Figure 3-1: Schematic of the swimmer. The slice and corresponding notation on the
left refer to the local velocity, tangent vector and drag force per unit length. Notation
on the right refers to the velocity, tangent vector and force associated with an entire
link. Note that (F", Fr) and (~i, y) lie in the x - y plane while 0 and 7i point out
of the page in the 2 direction.

the implications of large stroke amplitudes on optimality [153].

3.2 Methods

This section presents in detail the method used to find optimal stroke patterns and

optimal swimming geometries for the three-link swimmer.

3.2.1 Geometry of the three-link swimmer

The three-link swimmer is modeled as a slender fiber of length 2L and radius r with

characteristic aspect ratio i = r/2L (see figure 3-1). The arc-length s is measured

along the centerline from one end of the swimmer to the other. The vectors R(s, t),

t(s,t) and n(s,t) represent the position of the swimmer, and the tangential and

normal unit vectors respectively at arc-length s and time t.

The swimmer is assumed to be rigid and undeformable except at two joints where



the centerline is free to bend (see figure 3-1). It can therefore be modeled as an

inextensible jointed chain of three rigid cylindrical slender rods of length 2Li (where

i = 1, 2, 3 labels each of the three links), which are free to rotate at the two hinges

between two adjacent links. We further consider a swimmer with a symmetric geom-

etry i.e. L1 = L3 and we define the geometric parameter rl as the ratio between the

lengths of the middle link and the side links r7 = L 2 /L 1.

The motion of the three-link swimmer is constrained to remain planar. Therefore

the location of each link can be represented by a position vector Xi (t) corresponding

to the three degrees of freedom: the two-dimensional position vector of the center of

the link, Ri = (xi, yi) and the rotation angle Oi, such that Xi(t) = (xi(t), yi(t), (t))

(see figure 3-1). The tangential and normal unit vectors to each link are given by

ti(t) = (cosOi(t),sinOi(t)) and ni(t) = ( - sinOi(t),cos0 (t)). For the sake of read-

ability, the time dependency of all parameters will no longer appear explicitly.

The shape and the deformation of the swimmer is completely determined by im-

posing the value of the angles between two adjacent links at the hinges, a1 = 02 - 01

and C2 = 03 - 02 at all times. The superpostion of the rigid body motion and the

deformation, which is characterized by pl and p2, leads to the following constraints

on the motion of the links relative to one another at each junction

-- Li+Oi+lni+l =+ Liini

6i+1 = Oi )+ i + (3.1)

The two first equations are geometric compatibility equations, which ensure that the

velocities of two neighboring links remain equal at the junction, such that the links do

not detach. The third equation represents the prescribed deformation of the swimmer.

We further define a velocity vector for each link as 1V = Xi = (ii, 6 ).



3.2.2 Hydrodynamics

Slenderbody theory

The slenderness 1/ of the three-link swimmer is assumed to be large. The hydro-

dynamics of the unbounded flow surrounding such slender deformable swimmers is

taken into account using slenderbody theory, which spares us the challenge of solv-

ing Stokes equations (2.4) in the entire fluid domain. The slenderbody formulation

derived by R.G. Cox [41] is used in this study. This formulation explicitly relates the

local hydrodynamic force f(s) acting on the swimmer at position s to the velocity

distribution U(s) along the entire length 2L of the slender fiber. This expression is

obtained by asymptotic matching of an expansion in powers of 1/ In r. All the details

regarding the derivation of the slenderbody formulation can be found in [41]. The

integral relationship between the force per unit length f and the velocity distribution

between A = 0 and A = 2L takes the following form:

f [-U lim-,, (J - U ln(2E)) [tt 2
27r In In (In r)2 -U 1

+ 2() [3tt -2 I] (+ (3.2)

where
s- 2Le 22 L i _ 1 ( 3 .3)

J= 2L I- -tt Ud, (3.3)2J s+2Le al l 3J 2

here I stands for the identity operator and the following notation simplifications

have been used: f = f(s), U = U(s), U = U(A), A = R - R, R = R(s),

/R = R(A), t = t(s), t = t(s). This formulation accounts, to first order, for non-local

hydrodynamic interactions between the links, and is a reasonable approximation when

the links interact weakly. When two links get too close to one another and approach

self-intersection, the hydrodynamic interaction is no longer accurately modeled and

the formulation becomes singular. Note that when the swimmer is infinitely slender,

the first term in 1/ In r dominates the expansion. In this limit, slenderbody theory

reduces to resistive force theory, and the local hydrodynamic force per unit length

f(s) at location s is linearly proportional to local velocity U(s), the constant of



proportionality being given by the drag coefficients. Furthermore in this limit, the

ratio of the drag coefficients in the normal and tangential directions is equal to two as

can be inferred from the tensor [tt - 2 I]. In all results presented here, the interaction

term in 1/(ln K) 2 is always preserved.

The force distribution f and interaction term J given by equations (3.2) and

(3.3) are integrated over each separate link to find the resultant hydrodynamic forces

(Fix, Fy) and moments - acting on each link. All moments are computed about the

center of the middle link.

(F x , F) (f (s) f(s) ) ds

i= (R- R 2) x f(s) ds . (3.4)
J2Li

For all integrals, the velocity U(s) at location s along the swimmer can be expressed

as a function of the components of the velocity vectors V. We symbolically define a

force vector F = (Fix, F , 7T) for each link, see figure 3-1; after integration, equations

(3.4) take the form:

3

F = E AVj. (3.5)
j=1

The coefficients of the matrix Ai are obtained by integration of equations (3.2) and

(3.3) (see appendix A for more detail on the derivation of the coefficients). As ex-

pected from the linearity of Stokes equations, the force vectors of each links are linear

functions of the velocity vectors. Furthermore, the force acting on a given link de-

pends on the motion of all the three links, as expected for a slenderbody formulation

accounting for non-local interactions.

The physics of slenderbodies at low Reynolds number

Using this slenderbody formulation, one can find the drag coefficients for a slender rod

of slenderness 1/ and length 2L by simply integrating equations (3.2,3.3) analytically



for a straight filament. Let t, n, U and F be the tangential vector, normal vector,

velocity at the center of the link and total hydrodynamic force acting on the rod

respectively. The force F on the rod is linear in U and can be written as

F = ci(U - t)t + c'(U -n)n , (3.6)

with the following expressions for the drag coefficients

clI = -47rp L(3.7)
In -, (37)

= 8xrt Lc- = - (3.8)
ln(2) -

Note that the drag coefficient in the normal direction is larger than the coefficient

in the tangential direction. The ratio TK = c'l/c± approaches 0.5 in the limit of

infinitely slender bodies, which is historically the value used by Gray in Hancock in

their original investigation of flagellar hydrodynamic using resistive force theory [65].

It is important to see that this drag anisotropy lies at the origin of propulsion for

slenderbodies. In fact it can be shown that for a locally isotropic drag, deforming

slenderbodies are unable to generate any net motion. A detailed discussion of this as

well as a rigorous mathematical proof can be found in [10].

3.2.3 Equations of motion

As discussed in chapter 2, the motion of the swimmer is governed by conservation

of linear and angular momentum. In the low Reynolds number case, this simply

implies that the motion of the swimmer is force- and torque-free. With the notation

introduced earlier, these equilibrium equations can be written as

3 3 3

E F E (EA V = 0. (3.9)
i=1 i=1 j=1

Equations (3.1) and (3.9) form a system of nine equations in the nine unknows

(V, V2, V3), which can be written as a system of coupled first order differential equa-



tions in (X 1, X 2 , X 3 ) which is integrated in time using a fourth order Runge-Kutta

scheme as discussed in section 2.3.3.

Finally, the rate of work I exerted by the swimmer on the viscous fluid as it

deforms can be evaluated during the stroke as

(s) - U(s) ds -V . (3.10)
J i=0

The square root of 4 is then integrated in time as required by equation (2.12), in

order to compute the minimal achievable work for a given stroke kinematics.

3.2.4 Optimization of the three-link swimmer

Parameterization of the stroke

As we have just seen in section 3.2.1, the deformation of the three link swimmer

is entirely determined by the time variations of the two angles 1p and 02 between

the middle link and the two side links. Hence, all instantaneous configurations of

the three-link swimmer can be represented by a single point in the two dimensional

(01, 02 )-space. A "stroke" is a periodic deformation of the swimmer,w hich is entirely

determined by the periodic sequence of configurations (v1, 02). It can therefore be

represented by a single closed curve in the two dimensional (01, p 2 )-space. For exam-

ple, the original stroke suggested by E.M. Purcell [121], in which only one arm moves

at a time, can be represented as a square in the (1, p 2 )-space. This stroke will be

referred to as the "Purcell stroke" (see figure 3-3) and is the only sequence considered

in the study by Becker et al [10]. The problem of finding optimal stroke kinematics

for the three-link swimmer can therefore be understood as finding a closed curve in

the (p1, p 2 )-space, which maximizes a given objective function. Without loss of gen-

erality, all strokes can be parameterized and represented by two periodic functions

coi(t) and 02 (t) of period T, which we seek to determine in this study.

A given stroke needs to be represented by a finite set of parameters in order to

use the nonlinear optimization procedure described in section 2.3.4. Since we wish to



find two periodic functions 1i(t) and p2 (t), an obvious choice of discrete parameters

to represent the stroke are the Fourier coefficients in the development of i1(t) and

02 (t) in a Fourier series. For regular and differentiable functions, the amplitude of

the Fourier coefficients decays rapidly to zero and thus our optimization procedure

can be based on finding the optimal first k coefficients of the series such that:

() = a' +Z ag cos (2 ) + bn' sin 2t , (3.11)
n=1

(P2(t) a + cos (27 + b 2 sin 27 )) . (3.12)
n=l

In addition to the stroke kinematics, the geometry of the swimmer can be simulta-

neously optimized as well. This simply requires that we add the geometric parameter

rl to the list of optimization parameters.

Constraints for singular strokes

As noted before, our formulation for the hydrodyamics around the swimmer breaks

down and becomes singular when the links approach one another too closely. Hence

in the following, we constrain the maximum attainable angle between two neighboring

links by imposing the two following constraints

37

-4

| K2 (t) < (3.13)
-4

These constraints become rather important as the value of the slenderness 1/r is

decreased and the interaction term becomes significant. In this case, singularities

occuring for strokes close to self-intersection are large enough to significantly affect

our model for the hydrodynamics and alter the objective function landscape. In

this case, the optimization algorithm eventually fails (as it tends to converge toward

singularities).

Alternatively, this problem can be resolved by regularizing the singularities di-



rectly in the hydrodynamic formulation. This approach has been pursued as well and

will be described in detail later in this chapter when we investigate large amplitude

strokes.

Objective function

We now define more precisely the objective functions used in this analysis. Here, we

investigate stroke patterns of the three link swimmer for both swimming efficiency

and distance traveled during the stroke. These two functions are precisely the ones

considered by Becker et al. [10].

Let T be the period of the stroke, to the distance traveled by the swimmer during

one stroke, and Wmin the minimal work associated with the stroke. The first objective

function considered is the distance traveled by the swimmer to. The second objec-

tive function is the swimming efficiency $ defined in section 2.3.4. The "equivalent

swimmer" required in the definition of 9 is in this case the fully straighten three link

swimmer for which pl = 0 and cp2 = 0. Hence the swimming efficiency can be written

cli Uo Lo
8 = (3.14)

Wmin

With this definition, S represents the ratio of the work required to translate the

straightened three-link swimmer along its axis at velocity Uo for a distance of to over

the total work exerted by the swimmer during the stroke.

Zero net rotation strokes

We end this description of the methods by returning to the discussion of non-zero net

rotation strokes initiated in section 2.3.4. Since the stroke kinematics are optimized

over only one period, there is no guarantee that the optimal stroke will in fact only

result in a net translation of the swimmer, with no net rotation. This condition can

be imposed using two different methods.

The first approach to this problem is to impose the zero net rotation condition

via a simple penalty scheme. In this case, the efficiency is simply weighted with a



prefactor function of the rotation angle AO = Oo(T) - o0(0), which decreases the

efficiency as the rotation angle increases. The efficiency takes the form

S = cll(1 - (A0)2) U0,e (3.15)
Wmin

where 0 is a scalar. A typical range of values used for this scalar is P = 100 - -1000.

However, this value has very little impact on the optimal strokes that were ultimately

discovered.

Additionally, certain symmetries in the stroke itself can be implicitly assumed and

ensure that the swimmer does not rotate over one stroke. Such symmetries will be

discussed in the next section.

3.3 Optimal strokes for the three-link swimmer

3.3.1 Limit of infinitely slender swimmers

General comments on the symmetry and structure of optimal strokes

Several general observations can be made regarding optimal stroke sequences. First,

because of the linearity and time independence of Stokes equations, we expect op-

timal strokes to be symmetric with respect to reflections across the axes pl = P2

and pl = -P2. This can be seen by considering a geometrical configuration where

p1 = p2. In this case, the axis of direction n 2 going through the center of the middle

link is a symmetry axis of the swimmer (see diagrams on figure 3-3). Starting from

this configuration, sweeping the right arm down and moving forward in time is indis-

tinguishable from sweeping the left arm down and moving backwards in time. The

optimal stroke should be invariant if played backwards in time (time independency)

and reflected about the body's line of symmetry (linearity). Hence P91 = P2 is an

axis of symmetry. The second axis of symmetry can be deduced in a comparable

way, as the arms of the swimmer are also interchangeable in a configuration such that

P1 = -p2. This can be readily seen since for pl = - 2 the center of the middle link



is a symmetry center of the swimmer (see diagrams on figure 3-3). It should be noted

that this is not the case for the two axis defined by pl = 0 and (2 = 0. Along these

two axes, the configuration of the swimmer does not show any apparent symmetries

and the arms can be uniquely identified by their positions relative to the body. In

this case, symmetry arguments do not apply and the stroke pattern is not expected

to be symmetric relative to reflections across the two axes defined by cp1 = 0 and

2 = 0.

These symmetries allow us to restrict our computations to one quarter of the

optimal curve in a frame (@1, @2) that has been rotated from the original (pl, 02)

frame by 7r/4, such that ¢1 - -(1 + 02) and 2 = ( 1 + ). With this

definition, @1 corresponds to the axis 1 = 02 and @2 to the axis pl = -P2. The

symmetries impose the following constraints on 1 and @2

2l(t -21(2 t)

22 -¢2(t)= -¢2(-t),

These constraints can be taken into account without loss of generality by assuming

the following expressions for @1 and @2:

k
k1 (2 7r

si(t) = a cos (2p + 1)t)
p=O

d(t) = kbp sin (2p + )t (3.16)

p=0

These expressions for the Fourier expansions enable us to consider a factor of four

times fewer deformation parameters as that required by the original Fourier develop-

ment given by equations (3.11).

Furthermore, because at all time t, 1 (t+T/2) = -@1(t) and 2(t+T/2) = -2(t),



these axes of symmetry imply that there is no net rotation over one complete stroke

cycle, preventing the optimal swimmer from going in circles. This can be understood

with the following simple argument. The first half of the stroke between t = 0

and t = T/2 might lead to a certain rotation characterized by a change in angle

00. However, during the second half of the stroke between t = T/2 and t = T

deformation is equal and opposite, and by linearity of Stokes equations, will lead to

the exact same rotation but in the opposite direction. Hence for such deformations of

the swimmer, there will be zero net rotation at the end of the stroke and the penalty

scheme introduced in section 3.2.4 is no longer necessary.

Finally, two additional observations can be made regarding the amplitude of op-

timal stroke sequences. For small amplitude strokes, the distance traveled to, the

average speed Uo, and the mechanical work 1, all go to zero. An expansion of the

efficiency, E, shows that it too decays to zero for small pli and 02. Thus regardless of

which of the two optimality criteria we choose, small strokes are never desirable. For

larger amplitudes, Uo is bounded while it can be shown that JD increases quadrati-

cally with amplitude; so again, large amplitude strokes are suboptimal. Thus optimal

stroke patterns are expected to exist and to be found within a finite ring in the

(P1, p 2)-space centered at the origin.

Optimal stroke kinematics

We first consider the case of an infinitely slender swimmer, 1/ir -- oc, and search

for stroke patterns that optimize swimming efficiency and distance traveled. In this

study, we extensively explore the space of all acceptable three-link strokes by starting

the optimization procedure from a wide variety of initial guesses, as represented in fig-

ure 3-2. We seek at first to find optimal strokes using the most general decomposition

in Fourier coefficients given by equations (3.11). Using this general parameterization,

initial guesses are taken to be circles of radius r" in the ( p1, y02 )-space with the center

located at point (x P, y ), such that a l = x , a02 
- y a 1 = r and b 2 = rP . For all

initial guesses, the center and radius of the circle are chosen to satisfy the constraints

of equation (3.13). Initial guesses used in this investigation include circles with the
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Figure 3-2: Representation in the (c1, V2 )-phase plane of initial stroke sequences used

in the optimization of the three-link swimmer.

following characteristics: x~ = y = 0, x ' = -y', x = y~', x = 0 and y' = 0 (see

figure 3-2). Note that for the three last conditions listed above, the corresponding

strokes do not satisfy the zero net rotation condition at the end of the stroke as they

do not have the symmetries discussed previously.

For each objective function, the optimization procedure rapidly converges to a

unique solution regardless of the initial guess. Hence, it appears that the phase space

is well-behaved and that there are well defined optimal stroke kinematics for a three-

link swimmer moving at low Reynolds number. Optimal stroke sequences are shown

in figure 3-3. The black ovoid is the optimal stroke for swimming efficiency and the

medium gray peanut shaped stroke is optimized for distance traveled. An important

observation is that, as expected, both optimal strokes have the two axis of symmetry

01 = 02 and W1 = - 2 discussed above.

It bears emphasis, that these strokes were found using the general Fourier decom-

position from equations (3.11), which does not impose any symmetries on the solution.

In fact, the procedure converges to these symmetrical optima even for initial guesses

with no symmetries, for which there is a non zero net rotaion (see figure 3-2). This

justifies our later use of the simplified Fourier development given by equation (3.16),
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Figure 3-3: Stroke sequences of three-link swimmers in the ( o1, p2)-phase plane for:
(black line) optimal efficiency, (medium gray line) optimal velocity and (light gray
line) the optimal "Purcell stroke" which corresponds to the square. Small swimmer
diagrams correspond to successive configurations of the swimmer during the stroke.
The swimmer moves to the left when the trajectory is followed counterclockwise and
to the right otherwise.

which enables us to compute significantly more terms in the Fourier development of

optimal strokes.

In this discussion, Stokes equations have been made nondimensional using the

length scale Lref = L1 and the time scale Tref. The optimal distance stroke corre-

sponds to a dimensionless distance traveled of 0.623 with an efficiency of 0.0093. In

comparison, the maximum distance attained with the Purcell stroke is 0.483 with a

corresponding efficiency of 0.0063. This represents an increase of about 29 %. The

gain is even more striking when considering the efficiency criterion. The maximum

efficiency reached by the optimized three-link swimmer is 0.0130 (see Figure 3-3) for a

link ratio of rl = 0.933 and a corresponding dimensionless distance traveled of 0.492; in

contrast, the best efficiency achieved with the Purcell stroke is 0.0077 with r = 0.809

(and a distance of 0.420) as computed by Becker et al. in [10]. The optimal efficiency

0.0130 value reflects the expected order of magnitude for low Reynolds number swim-

mers. In comparison, the maximum efficiency achieved by an undulating slender rod



propagating a sinusoidal wave is 0.0736, as calculated by Hancock [69]. The increase

in efficiency between the Purcell stroke proposed in [10] and the optimal stroke is of

69 %, which is significant and testifies to the relevance of optimizing kinematics in

low Reynolds number swimming. This large increase in efficiency is due to the added

degrees of freedom allowed by the general description of stroke kinematics, which

enables the optimization procedure to converge to stroke patterns able to dissipate

less energy against viscosity. For such strokes, the increase in efficiency is signifi-

cant because, in the low Reynolds number regime, the hydrodynamics is completely

dominated by viscosity.

3.3.2 Effect of finite slenderness

The effect of finite slenderness on the optimal efficiency is investigated here. In this

study, the slenderness is imposed and the stroke kinematics which maximizes the

efficiency is computed using the same procedure as in the infinite slenderness case.

Slendernesses ranging from 1/r = 102 to 1015 were investigated. For this range

of slenderness, there is no qualitative change in the structure of the stroke, which

remained close to the stroke depicted in figure 3-3. The value of the maximal efficiency

however increases significantly with the slenderness, asymptotically approaching the

infinite slenderness limit for small values of , (see figure 3-4). This suggests that, from

a purely hydrodynamical standpoint, the three-link swimmer should be as slender as

possible in order to be as efficient as possible. This could have been foreseen from

our basic understanding of the mechanism underlying swimming of slenderbodies at

low Reynolds number. As discussed above, the anisotropy in drag is what drives

the propulsion at low Reynolds number. While the ratio of drag coefficients is of 2

for infinitely slender rods, it decreases significantly as the slenderness decreases (see

equations (3.7)). Hence for moderately slender rods the anisotropy in drag decreases,

which leads to less efficient swimming.

While slenderness is always desirable from the hydrodynamic stand point, it has a

mechanical cost in terms of the material properties required to guarantee acceptable

stiffness and robustness of an extremely slender swimmer. Hence, there seems to be
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Figure 3-4: Efficiency of the three-link swimmer as a function of slenderness.

a tradeoff between the slenderness which would allow for highly efficient strokes and

the slenderness which can be obtained in cases of practical interest.

It is therefore interesting to note that most of the increase in efficiency is obtained

for slenderness less than 103. In fact, the maximal efficiency for a swimmer of slen-

derness 1/, = 103 is within 80% of the efficiency of the infinitely slender swimmer.

This suggests that most of the gain in efficiency can be obtained for slenderness on

the order of 10'. While comparisons with biological systems should always be made

cautiously, it is intriguing to note that slendernesses of that order of magnitude are in

fact observed in the majority of microorganisms. The radius of a eukariotic flagellum

is about 0.15 pm and can be over 100 pm in length [17], which corresponds to a

slenderness on the order of 103. Such organisms are obviously more complex than

our rather crude three-link device, however both are subject to the same constraints

imposed by low Reynolds number hydrodynamics. This observation may therefore be

helpful in developing a better understanding of the basic hydrodynamical constraints

acting on a slender swimmer.



3.3.3 Convergence and optimality analysis

The problem of finding optimal strokes for the three-link swimmer reduces to that of

finding two periodic functions, which is itself equivalent to finding an optimal closed

curve in the (01, p2)-space. As the space of all acceptable strokes can be relatively

easily represented, we will attempt to characterize the quality of the optimum found

and make a few general observations regarding optimality for three-link swimmers.

The scope of this short analysis is limited to strokes optimized for swimming efficiency.

We first investigate the smoothness of the optimal parameterization. Using the

simplified Fourier series (equation (3.16)) which implicitly assumes certain symme-

tries, we compute the optimal stroke using 2k + 1 = 21 harmonics. Once the opti-

mization procedure has fully converged, the values of all the coefficients in the series

are plotted as a function of the index of the corresponding harmonic, see figure 3-5(a).

The semi-log plot shows that the amplitude of the coefficients in the Fourier develop-

ment decays to zero exponentially, which is the signature of an infinitely smooth and

differentiable function. For such functions, only the first few harmonics are neces-

sary to determine the dominant behavior of the function, as the amplitude of higher

harmonics rapidly decays to zero.

We further investigate how many terms are necessary in the Fourier series to

achieve a desired accuracy. The optimal stroke for swimming efficiency is now fully

computed by including an increasing number of harmonics in the development. For

each of these strokes, the normalized error in the optimal efficiency is computed,

assuming the stroke computed with the maximum number of 2k + 1 = 21 harmonics

is the exact solution. Figure 3-5(b) shows the rapid decay (- 1/n5 ) of the error in the

efficiency. In fact the efficiency of the stroke, computed with only the first harmonic

in the expansion, is already within 1 % of that of the optimal solution.

The two previous observations strongly suggest that the first harmonic - cor-

responding to the two coefficients af' and bl2 in equation (3.16) - dominates the

behavior of the stroke and determines its main characteristics. This allows us to

project the space of all acceptable strokes onto the two dimensional (a1", bf2)-space,
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in order to gain insight about optimality of three-link strokes. Figure 3-5(c) shows

the efficiency £ of strokes computed using only the first harmonic in the Fourier ex-

pansion. The swimming efficiency S is a quasi-convex function of the two variables

al' and b¢2, which has a unique global maximum in this reduced space. Although

the optimization procedure only guarantees convergence to a local maximum, this

strongly suggests that the global optimum or at least a very strong optimum has

been achieved. This is also suggested from our investigation of the space of accept-

able optimal strokes, for which the optimization procedure systematically converged

to the this same stroke, regardless of the initial guess, see section 3.3.1. Finally, this

analysis shows that the problem of optimizing locomotion is well-defined and well-

behaved at low Reynolds numbers and suggests that a locomotion optimization of

more complex swimmers might be achievable.

3.4 Investigating large amplitude strokes

We end this chapter on the optimization of three-link swimmer locomotion by giving

some insight into what ensues when the constraint on the stroke amplitude (equation

(3.13)) is relaxed and the swimmer is allowed to undergo large amplitude strokes.

This work is the result of an original correspondence with O. Raz and J.E. Avron,

which can also be found in [126] and [153].

3.4.1 Large amplitude strokes of O. Raz and J.E. Avron

For infinitely slender swimmers, the existence of highly efficient large amplitude

strokes has been suggested in [10]. This study only investigated the Purcell stroke

and optimized the stroke amplitude only. In this case, two optima were found: the

first (against which our previous results are compared) has an efficiency of 0.0077 for

a stroke angle of 1.13 rad and the second has an efficiency of 0.0155 (already higher

than the stroke we present) for a stroke angle of 2.98 rad. The rational for com-

paring our results with the lower efficiency stroke corresponding to a smaller stroke

amplitude will become clear in the following discussion.
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In their own investigation on optimal stroke patterns for Purcell's three-link swim-

mer, 0. Raz and J.E. Avron allow for large amplitude strokes (pij and S02 up to values

close to 7r) and propose two new stroke patterns that have been optimized for efficiency

and distance traveled for an infinitely slender swimmer. The new stroke patterns bet-

ter our optimized results for efficiency and distance traveled from section 3.3.1 by

approximately 50 % and 10 % respectively and hence are mathematically superior.

These strokes are represented in figure 3-6(a). However, some care must be taken as

such mathematical results may not necessarily be relevant to biological or engineering

systems which often conceal subtle constraints.

It should be noted that both the efficiency stroke suggested by O. Raz and

J.E. Avron [126] and the large amplitude peak in the study of Becker et al. [10] are

suspect as they arise at very large amplitudes, where the stroke angle becomes close

to 7r and for which the arm and body pass quite close to one another. In this large

amplitude regime, hydrodynamic interactions between links become non-negligible



for any realistic values of K and resistive force theory should not be used to model the

hydrodynamics. In fact, an early investigation of the efficient large amplitude Purcell

stroke suggested by Becker et al. [10] showed that when taking into account the far

field hydrodynamic interaction, the efficiency is well below the assymptotic value for

any physically achievable slenderness 1/, which is why we discarded such strokes in

the first place and only compared our results to the first efficiency peak in [10].

The present short investigation of high amplitude strokes focuses primarily on

strokes optimized for swimming efficiency. First we will revisit our model in order

to include large amplitude efficient strokes and we will see how these compare to the

optimal stroke found in section 3.3.1 as the slenderness 1/ is decreased to realistic

values. Finally, we will briefly comment on inherent problems associated with strokes

optimized for distance traveled.

3.4.2 Efficient large amplitude strokes

In the following, the upper bound imposed on the angles pl and 02 (equations (3.13))

is relaxed from 37r/4 to 3. This new bounding value is the same as the one used by O.

Raz and J.E. Avron in their investigation of efficient strokes, and it allows for large

amplitude strokes as 7r 3.

Regularization of slenderbody theory

The singularity associated with slenderbody theory has been discussed earlier in sec-

tions 3.2.2 and 3.2.4. When investigating high amplitude strokes, our formulation

breaks because the optimization procedure is attracted towards nearby singular con-

figurations, which occur when two links get extremely close together, almost overlap-

ping. Those singularities are exclusively due to the slenderbody formulation and are

not representative of any underlying phenomena arising from the physics of the fluid.

In fact, it is well known that when two cylinders get very close to one another, the

hydrodynamic interaction becomes dominated by a lubrication layer. The interaction

between two neighboring links through a lubrication layer will cause considerable



viscous dissipation but no locomotion. Therefore, strokes approaching such configu-

rations are never expected to be efficient for locomotion and we do not expect to find

any optimal stroke in this regime. The failure of the optimization procedure is solely

due to an inaccurate representation of the strong lubrication interactions, which only

come into play when the links are within a few radii r of one another.

In this analysis, we regularize the singularities, by superposing an artificial lu-

brication term to the far field hydrodynamic term given by slenderbody theory (see

appendix A for more detail on the artificial lubrication used here). This artificial

term is constructed such that it retains all the physics of the real lubrication layer,

albeit without solving it exactly. The lubrication force between two parallel cylinders

approaching each other is known to scale as 6-2, where 6 is the gap distance. There-

fore, the lubrication interaction is only significant when the centerlines of two links

are within a few radii r of one another. Furthermore, the lubrication forces exerted

by one link on the other are equal and opposite in sign. Therefore, the lubrication

interaction does not alter the equilibrium equations and the motion of the swimmer.

However, it does affect the viscous dissipation term when two links get too close.

Alternatively, the artificial lubrication term used in this study can be understood as

a penalty scheme, which represents the relevant physical effects of lubrication: its ef-

fect is limited to stroke patterns that approach self-intersection, it does not alter the

motion to of the swimmer, it strongly increases the viscous dissipation and thus Wmin

for stroke patterns approaching self-intersection and therefore significantly decreases

the efficiency for such strokes.

In conclusion, the addition of the artificial lubrication term enables us to explore

large amplitude strokes as it prevents the optimization procedure from being attracted

by singularities. However one must be careful to verify that this artificial term does

not introduce any non-physical phenomenon which could be exploited to find non-

physical optima. Hence, once the optimally efficient stroke is found and the value of

the optimal efficiency is known, the stroke is computed a second time without the

addition of the lubrication term. In all our computation, the values for the efficiency

of the optimal stroke computed with and without the lubrication term are found



to be similar. This confirms that, even though the amplitude of the stroke is large

with angles approaching the upper bound value of cp, p2 < 3 the swimmer remains

sufficiently far from self-intersecting configurations at all times. Thus, the lubrication

term (which is only significant when the links are within a few radii of one another)

does not artificially alter the value of the efficiency of the optima.

Effect of finite slenderness on large amplitude strokes

We first consider infinitely slender swimmers and investigate the (01, P2)-space with

the relaxed constraints by following the same procedure described in section 3.3.1.

When large amplitude strokes are permitted, we find two locally optimal strokes for

swimming efficiency. The first one has been discussed in the previous section 3.3.1. It

is centered in the middle of the (01, p 2)-space and will be referred to as the optimal

medium amplitude stroke. The second one is located in the lower right quadrant,

as suggested by O. Raz and J.E. Avron [126] and will be referred to as the optimal

large amplitude stroke. The optimum, selected by the optimization procedure, merely

depends on where in the (01, p2)-space the initial circle is centered.

The stroke proposed by Raz and Avron is represented in figure 3-6(a) in the lower

right quadrant. It has an assymptotic efficiency of 0.0199, which is 1.53 times higher

than our original stroke, and reaches a large stroke angle of 3 rad. Figure 3-6(b)

represents the two locally optimal strokes found by our procedure. The optimal large

amplitude stroke is qualitatively similar to the one suggested by Raz and Avron, and

it reaches a slightly better efficiency of 0.0210, which is 1.62 times higher than the

optimal medium amplitude stroke.

We now quantify the effect of finite slenderness on the efficiency of large amplitude

strokes. This is done in much the same way as in our previous investigation of the

effects of finite slenderness. Again, we examine slenderness ranging from 1/K = 102 to

1015. For each slenderness, we look for strokes with an optimal efficiency. Figure 3-6

reports the values of the optimal efficiency for the two local optima as functions of

the slenderness. As before, the kinematics are fully optimized for each value of slen-

derness. It can be seen that the drop in efficiency for the optimal large amplitude
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of 1/.

stroke is much more severe than for the other one, as slenderness is decreased. This

was predictable since for large amplitude kinematics, the interactions between links

are accentuated and the arms and body of the three link swimmer push viscous fluid

against one another. This leads to a drop in efficiency for swimmers of finite slender-

ness in which the hydrodynamic interaction becomes important. It bears emphasis,

that this drop in efficiency is not a result of the artificial lubrication term introduce

for the purpose of this analysis. In fact for this range of slenderness, the efficiency

of the optimal large amplitude stroke was recomputed without the lubrication term

and was found to be within 1 % of the value obtained with the lubrication term.

In figure 3-7, we show that for values of t > 10- 6 , the optimal medium amplitude

stroke outperforms the optimal large amplitude stroke. To put these numbers in

perspective, eukaryotic flagella have a diameter of roughly 250-400 nm, owing to

their common "9+2" microtubule structure [2]. Typical flagella lengths are on the

order of 10 pm, although they may be as long as 200 pm, hence the biologically

observed 1's range from 10- 2 - 10- 3 . A flagellum of prescribed radius on the order

of 250-400 nm would require macroscopic flagellar lengths on the order of 20cm to

achieve an aspect ratio of r - 10- 6, which is 1000X longer than those observed in

nature. Alternatively, for a microscopic flagellum of length on the order of 100 pm, an



aspect ratio of , - 10-6 would require the flagellum to have an unrealistic atomistic

radius size of 1A.

Thus, while optimal large amplitude strokes exist for the three link swimmer in the

non-physical limit of infinitely slender swimmers, these strokes become suboptimal

for any realistic value of the slenderness 1/.

3.4.3 Optimizing the distance traveled over one stroke

We end this chapter with a re-evaluation of the relevance of using the traveled distance

o as an optimizer for low Reynolds number locomotion. This discussion is related

to the stroke proposed by O. Raz and L.E. Avron [126] (see figure 3-6(a)), which

outperforms our peanut shaped stroke (see figure 3-3) in terms of distance traveled

over one stroke. The dumbell stroke travels over a distance of 0.710, with a reference

length equal to Lerf = L 1. This represents an increase of factor 1.14 compared to our

peanut shaped stroke.

The problem of stronger hydrodynamic interactions for large amplitude strokes is

no longer relevant for strokes, which are optimized for fo only. However, the dumbbell

solution invites another subtle question illustrated by the following analogy. Imagine

a competition in which two athletes attempt to swim the furthest in one stroke.

The first swimmer executes one perfect freestyle stroke. The second executes almost

one complete cycle of freestyle, then flips over onto his back and does an almost

complete backstroke before flipping back onto his stomach, doubling the distance of

the first swimmer. Intuitively, we regard this trick as a clever cheat as the second

swimmer has performed two strokes rather than one. This is precisely the scenario

that the dumbbell describes: the three-link swimmer completes almost one full cycle

(corresponding to one lobe of the dumbbell) then flips over in a reversible manner

(linear connecting region), and repeats the cycle upside-down (the other lobe) and

virtually doubles the distance traveled. Since the "linear connecting region" reflects

reciprocal deformations, no net translation is associated with these segments and

hence, the swimmer can freely take advantage of the cycle at the tip. Pushing this

trick further, one could imagine a whole class of these "strokes" that are likely to beat



even the dumbbell. Consider a curve that consists of multiple path segments radiating

from the origin of the (p1, p 2)-space like the spokes of a wheel. Each "spoke" would

carry an almost closed loop at its tip, and the distance traveled would be artificially

increased.

Our working definition of a stroke is: a periodic deformation of the swimmer. In

this regard, the dumbbell stroke should be regarded as legitimate as it is a periodic

deformation of the swimmer. Furthermore, this definition of a stroke carries the same

ambiguity as the definition of the period of a function. For example, the "cosine"

function is 27 periodic, but it is also 47 periodic. Similarly, consider one period of a

stroke. Going sequentially twice through the same stroke could also be seen as one

stroke, in which case the distance traveled over one stroke is virtually increased by a

factor of two. Therefore, the analysis of Raz and Avron exposes the limitation of our

working definition for a stroke and points out an interesting and open mathematical

question namely: What is a "stroke"?

Interestingly, this difficulty is unique to strokes that optimize distance and does

not arise in the efficiency calculation. Even though the "spokes" do not cost the

swimmer anything in distance traveled, they do cost energy. As these radial segments

have an energetic price but no translational gain, it will always be more efficient to

restrict the swimmer to the cycle at the tip than to perform the complicated (and

energetically costly) flipping maneuver and repeat the cycle upside-down.

Perhaps an even more interesting remark, would be to question the relevance of

using the distance traveled over one stroke as an optimizer all together. As discussed

in section 2.3.4, the swimming efficiency is a measure of how fast and how energetically

efficient a given stroke is. The distance traveled over one period on the other hand is a

poorly defined optimizer. Therefore in the next two chapters, we will only investigate

optimally efficient strokes, and will no longer use the distance traveled over one stroke

as a useful metric.





Chapter 4

Optimal uniflagellated swimmers

4.1 Introduction

Studying swimming properties of uniflagellates is relevant both for its technologi-

cal and biological implications: technological implications because engineering such

microswimmers is feasible with today's technology [52] and biological implications be-

cause many simple eukaryotic organisms are uniflagellates. An in-depth investigation

of swimming uniflagellates is of interest in different areas of biology and the pioneer-

ing work of Gray and Hancock [64, 65] has been followed by an increasing number of

studies.

The eukaryotic flagellum described in chapter 2 has been extensively studied by

molecular biologists. Such simple unicellular organisms do not have complex ner-

vous feedback systems to control and regulate locomotion, yet they exhibit incredible

degrees of coordination and control over the waveform of the flagella. The mechani-

cal and chemical mechanisms underlying the coordination and regulation of flagellar

beating remain poorly understood. Despite this shortcoming, flagellar waveforms of

sperm cells have been recorded experimentally and investigated [75, 85, 92]. Also,

computational simulation reproducing the molecular structure of the eukaryotic flag-

ellum to various degrees of accuracy have been used to investigate simple mechanical

mechanisms able to regulate and propagate waves along the flagellum [38, 40,103].

The work of C. Brokaw is particularly significant in this regard [19-23,84]. All of



these studies essentially focus on the waveform of the stroke.

Also, many biologists have investigated the adaptive significance of the morphol-

ogy and morphometry of sperm cells. Sperm cells are highly specialized cells, which

are subjected to high levels of competition within-males and for some species between-

males. The relative sizes of the different parts of sperm cells (namely head, midpiece

and flagellum) and their functional significance have been the subject of many stud-

ies [3, 18, 27, 43, 57-59, 96,108,119,136,146].

Living organisms and their behavior are complex and therefore challenging to un-

derstand, model and predict. While, any such attempt requires caution, sperm cells

may be one of the few biological systems, where such effort may be rewarded. The

function of sperm cells to transport genetic material to the egg as well as the use

of a flagellum to locomote are sufficiently well-defined to make these cell amenable

to mathematical models. Also, the high level of cell specialization together with the

intense level of competition experienced by sperm cells seem to justify the optimiza-

tion of the swimming function through computational simulations and the subsequent

comparison with biological observations.

Previous studies have looked at optimal propulsion within a class of prescribed

traveling waves [51, 74,118]. In this chapter we investigate optimal unconstrained

stroke kinematics, designs and morphologies of uniflagellated swimmers. The method-

ology presented in chapter 2 and successfully applied to the study of the three-link

swimmer in chapter 3, is extended to more complex geometries.

4.2 Methods

In this section, we describe our model for flagellated swimmers. While in general the

method is similar to the one developed for the three-link swimmer (see chapter 3),

the hydrodynamics and the kinematics of the swimmer need to be described in more

detail.
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4.2.1 Geometry and deformation of the swimmer

Flagellated swimmers are modeled here as a spheroidal rigid head attached to a

deformable flagellum (see figure 4-1). As with the study of the three-link swimmer in

chapter 3, the motion of the swimmer is constrained to be planar.

The head is a prolate spheroid with semi-major axis Lo and eccentricity e. The

position of the spheroid is given at any time by both the position vector Ro(t) =

(x0(t), y0(t)) of the center O and the angle 00(t) between the R -axis and the unit vector

along the major axis of the spheroid to(t) (see figure 4-1). The unit vector normal to

the major axis no(t) is defined by no(t) = i x to(t). The position vector Ro(t) of O

together with the orientation 00(t) of the major axis constitute the reference location

of the swimmer, as defined in section 2.3.1.

The flagellum is modeled as a slender fiber of length 2L, characteristic radius r

and aspect ratio r, = r/2L. Let s be the arc-length measured along the centerline
of the flagellum and p(s) = r (2V  L ,( t , s), R(t, s), t(t, s), n(t, s) and 0(t, s) be

the radius*, curvature, position vector, tangential and normal unit vectors and angle

*An ellipsoidal shape for the slender flagellum is required by our model for the hydrodynamics



between the :^-axis and the tangential vector t(t, s) at time t and location s along

the centerline (see figure 4-1). The flagellum is connected to the head at s = 0 such

that the tangential unit vector at s = 0 has the same direction as the major axis of

the head t(t, s = 0) = to(t). With these boundary conditions, the location, shape

and deformation of the flagellum are completely determined by the curvature y(t, s).

The position vector R(t, s) along the flagellum can be deduced by integration of the

Serret-Frenet equations along the centerline

Ot(t, s)Ot(t, s) (t, s)2 x t(t, s) = O,
&s

aR(t, s) = t(t, s), (4.1)

subject to the following conditions at s = 0

t(t, O) = to(t) , (4.2)

R(t, 0) = Ro(t) + Loto(t) . (4.3)

The velocity distribution along the centerline is written as the superposition of a rigid

body motion and a deformation

U(t, s) = Urig(t, s) Udef(t, s). (4.4)

The rigid body motion of the swimmer Urig can be computed from the time derivatives

of Ro(t) and Oo(t) as given by equations (2.1). The deformation of the flagellum at

each time t is known from the prescribed time variations of the curvature along the

centerline. Hence Udef is given at any time t by the integration of the time derivatives

around the flagellum, which we will later describe. This is due to the presence of terms like In s(2L-s)

in the assymptotic expansion used to derive the slenderbody theory used in the present work. For
a more detailed discussion see [61].



of the Serret-Frenet equations along the centerline

S(t -) j(t, s) x t(t, s) - y(t, s)2 x t(t, s) = 0 ,

Udef(t S)
)= (t, S), (4.5)

subject to the following conditions at s = 0

t(t, 0)=0, (4.6)

Udef (t, 0) 0. (4.7)

For readability, the dependency on time t will no longer appear explicitly and the

dependency on the arc-length s will only appear, when required to avoid confusion.

Whenever possible, the following notational simplifications will be used: Ro = Ro(t),

Uo = Uo(t), to = to(t), no = no(t), Oo = Oo(t), R = R(t, s), U = U(t, s), t = t(t, s),

n = n(t, s), 0 = 0(t, s), R = R(t, s), t = t(t, s), i = n(t, A).

4.2.2 Hydrodynamics around the swimmer

In order to accurately model the dynamic interactions between the swimmer and the

surrounding fluid, we need to solve Stokes equations in an unbounded fluid domain.

In place of the Stokes equations, one can derive an equivalent integral representation

defined over the boundary of the fluid domain [1,91]. Hence at low Reynolds number,

the flow field is best computed using a boundary element method.

In our case, an accurate numerical representation of the geometry of the swimmer

would require an unfeasibly large number of boundary elements in the discretization

of the surface, owing to the typically large aspect ratio, 1/ir - 103 of the flagellum.

Hence a full treatment of the hydrodynamics using boundary elements would be

numerically costly and cannot be integrated into the optimization framework. In this

study, the hydrodynamic equations are solved using a simpler singularity method,

in which the system of fundamental solutions (or Green's functions) is no longer

distributed over the entire boundary of the fluid domain (i.e.: the surface of the



swimmer) but rather over the centerline of the swimmer. This essentially reduces

the integral equation over the surface of the swimmer to a reduced integral equation,

which is less accurate but can be solve more efficiently.

In the following, we first introduce the most commonly used fundamental solutions

(or Green's functions) to the Stokes equations. We then describe the systems of

singularities required to model both the flagellum and the head of the swimmer.

Finally, we discuss how the interactions between the flagellum and the head can be

taken into account.

Fundamental singular solutions to Stokes Equations

Consider the inhomogeneous Stokes equation

-Vp + pIV 2 u = -f 6(x) , (4.8)

V -u = 0 , (4.9)

where f is a force and 6(x) is the three-dimensional delta function. The solution to

the system of equation (4.8) can be written

us(x; f) = S(x) f, (4.10)

where us(x; f) represents the flow velocity at the location x due to point force f (or

Stokeslet of strength f) located at the origin and S(x) is the Stokeslet tensor

S(x) = + . (4.11)

Higher order solutions can be obtained by differentiating the Stokeslet. One such

solution is the potential doublet

u (x; g) = - V2us(x; g) = D(X) -g, (4.12)

where uD(x;g) represents the flow velocity at the location x due to a potential



doublet of strength g located at the origin and the potential doublet tensor D(x) is

defined by 1 1 zz
D(x) = 8  3 x . (4.13)

A potential doublet does not impose any net force on the fluid.

The last fundamental solution introduced here is the rotlet

1
ul(x; 7) = -2V x us(x; r) = R(x) -7, (4.14)

where uR(x; 7) represents the flow velocity at the location x due to a point torque

7 (or rotlet of strength r) located at the origin and the rotlet tensor R(x) is defined

by

R(x) - 7r r x . (4.15)

A more extensive overview of fundamental solutions of Stokes equations can be

found in [9,33].

Hydrodynamics around the head

The head of the swimmer is modeled as a moving prolate spheroid in an otherwise

unbounded and quiescent flow. The rigid motion of the head is described by the

translational velocity Uo = Ro and the rotational velocity Q0 = 0o at the center

O. Integration of the hydrodynamic stress acting on the surface of the head yields

the total force F and torque 70 exerted by the fluid on the spheroidal head (see

figure 4-1).

An exact analytical solution for the flow around a prolate spheroid can be derived

via a singularity method, by distributing fundamental solutions between the two foci

of the spheroid. The derivation of this solution can be found in [33]. The fundamental

solutions necessary to enforce the no-slip boundary condition at the surface of a trans-

lating spheroid is a constant distribution of stokeslets and a parabolic distribution of

potential doublets between the two foci on the major axis. For a rotating spheroid, a

parabolic distribution of rotlets between the two foci are necessary, as well as higher



order fundamental solutions (see [33]).

Integrating the distribution of stokeslets and rotlets between the two foci yields

the expressions for the force Fo and torque To0 acting on the head as a function of the

translational and rotational velocities Uo and Q0

Fo-to = c Uo to

Fo no = c Uo no

To = c o

167re3 Lop-

-2e + (1 + e2) In(1e) U
32re 3 Lop
=2 r 3 L o p - U o - n o ,

2e + (3e 2 - 1) ln(le)
32re3 (2 - e2)LP

3(-2e + (1 + e2) In('+'))

Furthermore, the fluid velocity uo(x) induced by the head at a point x in the flow

can be found by integrating the contribution to the flow from the distribution of

singularities between the two foci. The fluid velocity at x due to the head is given

by:

1
S S() +  --- (1 2 - 2)(A) F0 d

- j(1 - )R(A) o0 2 d + j (A)To d~,
4 _1 j_1

(4.17)

where A = x - (Ro + c~to) and H, is a tensor that arises due to the contribution of

higher order fundamental solutions, and is given by the following expression:

9(1 - e2 ) L e2( 1 _ 2 (A to)no + (A. no)to
e (A)70o = (1 - 52o 32p(1 + e2) (4 Al15

+ (1 5L2e 2 (1 2) (A to)(A no)A (4.18)S 1 - 0 4 A2 A5 o. (4.18)

Note that for e = 1, equation (4.17) reduces to the well-known expression for the

creep flow around a sphere, which can be simply modeled as the superposition of a

stokeslet, a potential doublet and a rotlet at the center of the sphere.

(4.16)



Hydrodynamics around the flagellum

The flagellum can be modeled as a slenderbody in an unbounded quiescent flow.

The flow around slender bodies is the subject of slenderbody theory, which has been

thoroughly investigated [8,41,42, 83, 89,157]. In this study, the viscous interactions

between the flagellum and the surrounding fluid are modeled using non-local slender-

body theory [89].

In this formulation, fundamental solutions (stokeslets, potential doublets and

rotlets) are distributed along the centerline of the slenderbody. Asymptotic matching

between the inner expansion of the flow along the centerline and the outer expansion

yields an integral equation for the flow around the centerline accurate to order O(r).

No-slip boundary conditions at the surface of the slenderbody can be satisfied by

imposing the strength of the distribution of potential doublets to be r2/2 times the

strength of the distribution of stokeslets and taking a zero distribution of rotlets. This

derivation yields the following integral equation for the velocity along the centerline

of the body

U = £(s) f(s)- 2
L [S(R - i) f (- I f ()f ]d (4.19)

where U = R is the velocity at the centerline and f(s) is the distribution of forces per

unit length acting on the flagellum, which is equal and opposite to the distribution

of stokeslet per unit length acting on the fluid. £(s) is a local linear operator, which

can be expressed as

(s) - In (n 2 exp(1))I + 2tt] - 21 - tt] . (4.20)

Because the motion of the flagellum is constrained to remain planar, f(s) only has

components in the (i, ^)-plane. This equation has been derived for a slenderbody of

radius p(s) = r L2 For a complete derivation of this equation see [62].

As with the flow around the head, the fluid velocity uf (x) induced by the flagellum

at a point x in the flow can be found by integrating the contribution to the flow due



to the distribution of forces f(s). Hence, the fluid velocity at x is given by:

U() = - S(x - R)f(s)ds. (4.21)

Hydrodynamic interactions

Hydrodynamic interactions between multiple moving bodies is a dominant aspect

of low Reynolds number fluid dynamics. The viscous flow due to a stokeslet for

example only decays as 1/r (see equation (4.11)) and therefore the motion of one

body is expected to depend on the motion of the other bodies. In our case, this is

particularly worrisome as the head and the flagellum are attached to one another and

cannot be treated separately as moving in an unbounded quiescent flow.

In the present study, hydrodynamic interactions are taken into account by using

Faxen's laws, which relate the hydrodynamic forces acting on a body to both the

motion of the body and the no longer quiescent ambient flow u,. Fax6n's laws for

the head, which is modeled as a prolate spheroid, can be found in [70] and to the first

order, they take the following form

uo . 0= ±o +!conono Fo + u.(Ro) + (D2uo)p + O(L 4 )Uo 0 = toto + non 3!

1 1
-o 2 = - To + L2(2 ( u,) + O(L) . (4.22)

Here D2 and I1 are the differential operators given by

D2 2 2 
2  , (4.23)

0 2 ay2 42 '

[o]= L2 :k x + e2 4y + e2i y)

(a+e2 +e2 , (4.24)

where to is assumed to be colinear with i and no is assumed to be colinear with 9

to simplify of notation. As expected, Faxen's laws reduce to the previously derived

equations (4.16) for a quiescent flow when uo = 0. For the slender flagellum, Faxen's



laws simply take the form:

U: £(s) 2f (s)- ( -2L R - f R () - I+ f f (s)]d + u(R) (4.25)

Hydrodynamic interactions between the spheroidal head and the slender flagellum

are taken into account by considering that the ambient flow around the head is the

flow induced by the flagellum uf given by equation (4.21). Similarly the ambient

flow around the flagellum is considered to be the flow induced by the head uo given

by equation (4.17).

4.2.3 Governing equations

Dynamics of the swimmer

The expressions for the flow induced by the flagellum uf (equation (4.21)) and by the

head u0o (equation (4.17)) are substituted respectively into equations (4.22) and (4.25)

as the ambient ' flow. This substitution yields a system of equations governing the

hydrodynamics around the swimmer:

U = L(s) f(s ) 2L S(-ifR + )( f () d

jJ (S(A) + e2L (1- 2)D(A)) F

S (1 - 2)R(A)To d + /1 )
4 1 _1

Uo (= to + 1 nono Fo - 2L S(A)f(s)ds

(1- e2)L+ I - (toA + Ato)

487rp o A 5  J Al15
2toto -3 15(A . to) 2 lAA)f(s) ds (4.27)

+ A + A A I
1 1 1 2L 2xA

Q0 = To + 2 (1 + e2) z x A
cO 87(2 - e2)( o (( Al

+ 3(1 - e2 )(A - to)(A - no) A f(s)ds , (4.28)
|A|5

T0 d~, (4.26)



where A = R - (Ro + cto) and A = Ro - R.

This system of equations is closed by imposing that the swimmer remains in

equilibrium at each time. The force and torque equilibrium equations are given by:

Fo + Lf (s)ds = 0 (4.29)

TO + (R- o) x f (s)ds = 0 . (4.30)

The velocity decomposition in equation (4.4) is introduced in the integral equation

(4.26) and equations (4.26)-(4.30) yield a system of equations which can be solved for

Uo, Q0 , Fo, To and the distribution of hydrodynamic force f, given the deformation

Udef.

Rate of work

Using the previously defined notation, the rate of work exerted against viscous forces

given by equation (2.7) takes a simple form for uniflagellates:

=Fo Uo +To - + j f (s) -U(s)ds (4.31)

4.2.4 Numerical approach

The integral equations (4.26)-(4.30) governing the motion of the swimmer are solved

numerically and the numerical approach is briefly described here.

Spatial discretization

A first order geometrical representation of the flagellum is obtained by discretizing the

inextensible slender rod into a regular grid of N inextensible linear elements. Each
L

element has a half length of ds = - and can be defined as the segment [si, si+1],

where si = 2ids is the arc-length of the location of the node between segment i - 1

and segment i for i = 0,..., N. The location of the center of each segment is given by

the position vector Ri = (xi, yi) and the corresponding arc-length a, = (2i - 1)ds for
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Figure 4-2: Spatial discretization of the flagellum

i = 1,..., N. A representation of this spatial discretization can be found in figure 4-2.

We can further define ti, ni and Oi as the tangential vector, normal vector and angle

between the ^c-axis and ti at arc-length ai, such that ti = (cos 0i, sin Oi). The position

vector Ro and orientation to = (cos 0o, sin 0o) of the head are known.

For this discretization, the position vector R at ai can be easily computed from

numerical integration of the Serret-Frenet equations (4.1),

Oi+1 = Oi + 2 ds -(si) ,

Ri+1 = Ri + ds (tiT1 + ti), (4.32)

with the conditions at s = 0

01 = 00 + 2 dsy(so) ,

R 1 = Ro + ds t1 + Lo to. (4.33)

Let U represent the velocity at the center ai of the i-th element. The velocity U

can be written U = Ui' + Uief and represented numerically. The rigid body motion

only depends on the motion of the head (Uo, Qo) and simply takes the form

Uir = Uo + Ro0 x (Ri - Ro) . (4.34)

The deformation velocity is fully defined by the time variations of the curvature and

can be computed by numerical integration of the time derivatives of the Serret-Frenet



equations

0i+1 = Oi + 2 ds ;(si) ,

T+1 = f + ds (Oi+1 n7i + ni), (4.35)

with the conditions at s = 0

01 = 2ds (so) ,

Rl = ds 01 tl . (4.36)

Finally, let fi be the hydrodynamic force per unit length at the center ai of the

i-th element. We assume that the distribution of force is constant over each segment

and define F = 2fids the total hydrodynamic force on the i-th segment.

Numerical resolution

With this discretization, the system of equations governing the motion of the swimmer

can be solved numerically. The integral equation (4.26) is solved using a simple

collocation scheme, resulting in a point matching solution at the collocation points

oi. Equation (4.26) can then be written in discrete form:

A U - + i (Mj - NFi) - VOFo - W070 -U f (4.37)
0 j=1

where Ai is a 2 x 3 matrix, Li, Mij, Afij, Vio are 2 x 2 matrices and Wio is a 2 x 1

matrix. Expression for these matrices can be found in appendix B.

Similarly, equations (4.27,4.28) can be discretized

N

Uo - LoFo + MojF = 0, (4.38)
j=1

N

0 - oro + E ojFj = 0, (4.39)
j=1



where Lo is a 2 x 2 matrix, AMoj a 2 x 2 matrix, do a 1 x 1 and roj a 1 x 2.

Additionally, the equilibrium equations (4.29,4.30) can be written

+ E A T F. = 0. (4.40)
TO j=l

Finally, the rate of work given by equation (4.31) can be evaluated numerically

as:
N

=Fo -Uo +To - o + Uj. (4.41)
j=1

Equations (4.37-4.40) form a linear system of 2N+6 equations in 2N+6 unknowns

(Uo, o,Fo, 7o, F1,..., FN), which can be inverted and solved. The position (Ro, 00)

of the swimmer during the stroke is computed by time integration of the rigid body

motion (Uo, o) using the procedure described in section 2.3.3 . The square root

of the rate of work F is also integrated in time, as required by the computation

of the minimal work Wmin given by equation (2.12). The motion of the swimmer

is computed for one entire stroke period T, after which the total distance travelled

to = IRo(T) - Ro(0)I, the average velocity Uo = and the minimal work Wmin can
T

be computed.

4.2.5 Optimization procedure

Stroke parameterization

As discussed in section 2.3.4, the nonlinear optimization approach requires a param-

eterization of the stroke kinematics through a finite set of parameters. The deforma-

tion of the swimmer is fully described by the curvature function y(s, t) for arc-lengths

ranging from s = 0 to s = 2L and times between t = 0 and t = T. As the deformation

of the swimmer is periodic, we further know that the curvature distribution along the

tail -y(s, 0) at time t = 0 is the same as the distribution -y(s, T) at time t = T.

Therefore, we seek to describe a function of two variables with a finite number

of deformation parameters. This parameterization should be able to represent all



possible strokes and thus be as general as possible. In this study, we extend the

Fourier based representation developed in the case of the three-link swimmer, which

proved to be satisfactorily efficient and versatile. At each point along the flagellum,

the curvature is a periodic function, which can be written as a Fourier series and

represented by its Fourier coefficients. Given the spatial discretization of the flagellum

introduced earlier, we would ideally represent the curvature at each node of arc-length

si by a set of corresponding Fourier coefficients. However, because the number N of

segments in the spatial discretization of the flagellum typically ranges from 50 to 200,

this leads to an excessive number of deformation parameters.

In order to avoid the computational limitations concomitant with an extremely

large number of deformation parameters, we define a coarser discretization for the

curvature made of a regular grid of N, elements, where N, typically ranges from 5

to 20. The curvature is imposed at the nodes of this coarse grid defined by their
2L

arc-length s, = p- for p = 0, 1,..., N. At each of these nodes, the curvature is
-y

expanded in a Fourier series

=(s, t) = + a + as cos -nt + b sin . (4.42)
n=1

The curvature 7(si, t) at each of the N nodes si for i = 0, 1,..., N- 1 is deduced from

a cubic spline interpolation of the values at the N, + 1 nodes sp. This interpolation

guarantees that the curvature is twice continuously differentiable. If we only retain

the first k terms in the Fourier development, the curvature can be parameterized by

a set of (2k + 1) (N, + 1) Fourier coefficients, which form the vector of deformation

parameters.

Swimming efficiency

We now define the exact expression for the swimming efficiency, used in this analy-

sis. The parameter which remains to be determined is the drag coefficient a of the

equivalent swimmer. Recall from chapter 2 that the efficiency represents the fraction

of the total energy expense effectively used towards a given objective. This definition



applied to uniflagellates introduces the idea of a payload.

On the one hand, if the swimmer has no head and the objective is to move the

flagellum only, the entire flagellum can be considered to be the payload. Consider a

stroke for which the swimmer moves a distance to at an average speed of U0. The

numerator in the efficiency then represents the work required to move the straightened

flagellum over the same distance to at the same average speed U0. The coefficient a

is thus taken to be equal to the drag coefficient of a slender rod of length 2L, which

we have already seen in the study of the three-link swimmer. Thus, the swimming

efficiency takes the same form as in the three-link case:

cll Uo eoS= U (4.43)
Wmin

On the other hand, if the swimmer has a head and the objective is to move the

material included inside the head only, the head can be considered to be a payload. In

this case, the flagellum can be considered to be a deadload. Similarly to the case of a

single flagellum, the numerator in the efficiency then represents the work required to

move only the payload over the same distance to at the same average speed U0. Here,

the coefficient a in the expression of the efficiency corresponds to the drag coefficient

of the equivalent payload and is taken to be equal to the drag coefficient of a sphere

of same volume. The volume included inside the head is equal to V = 4re2 L3 and we

thus define the equivalent radius of the head L' q as the radius of the sphere of same

volume L q = e2/ 3Lo. With this definition, the drag coefficient a0o of the equivalent

head takes the form a0o = 67rpL q and the swimming efficiency can be written:

ao Uo to= (4.44)
Wmin

This general expression for the efficiency of uniflagellates allows us to compare swim-

mers, whose heads include an identical volume but have different shapes.



Zero net rotation strokes

Similarly to the three-link study, the zero net rotation condition can to be imposed

via two different methods. The first approach is general and does not restrict the

space of allowed strokes. In this case, we impose the condition through the same

penalty scheme introduced in section 3.2.4. In this case, the efficiency is weighted

with a prefactor, which decreases the efficiency for an non-zero net rotation at the

end of the stroke.

The second approach is to impose the zero net rotation condition by adding a sym-

metry constraint directly on the stroke itself. This simply means that the curvature
T

along the tail at time t + - is always opposite to the curvature at time t:
2

T T
7(t + -, s) = -y(t, s) for all t e [0, 2] and s E [0, 2L]. (4.45)

It can be readily seen that such strokes will always lead to a zero net rotation at

the end of a stroke, for the same reason developed in the context of the three-link

swimmer in section 3.3.1. This condition is easily translated into the discretization

of the curvature required by the stroke parameterization, by imposing

a2p = 0 for p= 0,1,2,3,... and n= 1,2,...,N

bp = 0 for p = 1,2,3,... and n = 1,2,..., Ny.

(4.46)

This approach constraints the space of possible strokes, but divides the number of

design variables by a factor of two, which represents a considerable gain.

For all geometries investigated here, optimal strokes where found to be symmet-

rical. There were no significant differences between optimal strokes computed using

the two different methods of imposing the zero net rotation condition. The second

method which implicitly assumes the stroke to be symmetric leads to shorter compu-

tation times and was therefore used in all of the following computations.



4.3 Validation of the model

We now seek to use our model for low Reynolds number locomotion of uniflagellated

swimmers and the related optimization approach in order to find stroke kinematics

that optimize swimming efficiency. The first problem under investigation is that of a

single-tail swimmer, which has no head and is only made of a deformable flagellum.

In this case, the expression for the swimming efficiency is given by equation (4.43).

This problem is particularly interesting because it has been previously investigated

analytically and consequently provides a valuable testbed for our locomotion model

and optimization procedure. We will first briefly describe the analytical solution to

this problem which we will then compare to the results given by our model.

4.3.1 Analytical optimal for a single-tail swimmer

A detailed derivation of the analytical solution of the optimal stroke for a single-tail

swimmer can be found in Mathematical Biofluiddynamics by J. Lighthill [99]. The

outline of this derivation is presented here, along with a summary of all assumptions.

Consider a single-tail swimmer of length 2L. The stroke is explicitly assumed to

consist of a periodic traveling wave propagating along the flagellum. Let A be the

wavelength measured in the i-direction, and A the wavelength measured along the

curved body of the swimmer. Notations relevant to this particular problem are illus-

trated in figure 4-3, while all other notation remains the same as that introduced in

section 4.2.1. The geometric parameter w = A/A characterizes the apparent contrac-

tion in the length of the swimmer, due to the waveform. The period of the stroke T is

the time required for the waveform to propagate a distance A in the frame of reference

attached to the swimmer. The distance traveled by the swimmer over one period is

eo. We further define the swimming velocity of the swimmer Uo = fo/T, as well as

the wave velocity in the frame of reference attached to the swimmer Vo = A/T.

In the global frame of reference, the single tail is explicitly assumed to only move

along the periodic waveform propagating in the k-direction at velocity Vo - Uo and to

swim at a constant velocity of U. The velocity Vo is prescribed and characterizes how
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Figure 4-3: Schematic of single-tail swimmer with notation used in the analytical
derivation of optimal stroke kinematics.

fast the swimmer deforms. The swimming velocity U is unknown, but the complete

motion of the swimmer is known as a function of Uo and Vo. While these assumption

for the motion of the swimmer are accurate for an infinitely long swimmer, for which

the waveform is repeated an infinite number of times, they are not exactly correct for

a swimmer of finite length, for which the swimmer might have some "up and down"

motion along the i-axis during the stroke.

In this analysis, the hydrodynamic forces acting on the swimmer are modeled

using resistive force theory. Hence the force per unit length f(s) acting on the fiber

only depends on the local velocity U(s) and the drag coefficients in the tangential and

normal directions, which are further assumed to be respectively equal to clI and c L.

The local velocity U(s) can be fully expressed in terms of s, Uo and Vo which yields an

expression for the hydrodynamic force per unit length as well. The swimming velocity

Uo can be found by integrating the hydrodynamic force over the length of the tail and

imposing the equilibrium condition given by equation (4.29). This swimming velocity

yields the following expression

U0  (1 - v)(1 - rK) (4.47)
Vo 1-v-vrK

cll 1 f2L
where rK = is the ratio of drag coefficients and v cos(0(s))2 ds is a

C1 T Jo
geometric parameter characterizing the waveform.

Additionally, the work exerted against viscous forces can be easily calculated from

equation (4.31). Finally, an expression for the swimming efficiency C - which depends



on w, v and rK- in equation (4.43) can be found. From a simple minimization

argument, one can deduce that the swimming efficiency is minimized when w2 = v

and the cosine of the tangential vector t(s) -: = cos 0(s) is constant all along the tail

except for a set of measure zero. This implies that the waveform has the shape of a

"saw-tooth", or a triangular wave, made of connected linear segments, which make

an angle of constant cosine with the swimming direction, see figure 4-5(a). The value

for the optimal efficiency S, the swimming velocity U0 and the angle Io between the

tangential unit vector to the centerline take a simple analytical form:

C = (1- Vr) 2

Uo = (1- v/) V0 ,

T0 = os
- 1  1

As discussed earlier, in the limit of infinitely slender swimmers for which resistive

force theory can be used, the ratio of drag coefficient rK is equal to 0.5 for which

S = 0.0858, U0 = 0.293 Vo and T0 = 40.060.

4.3.2 Comparison between analytical and numerical optimal

Our model for the swimmer together with the optimization approach is now ap-

plied to the same problem of finding optimal strokes for a single-tail swimmer. One

should keep in mind that the formulation developed in section 4.2 is much more gen-

eral than the optimization problem solved analytically in the previous section. The

"saw-tooth"-wave is the optimal stroke, among strokes which propagate a periodic

waveform along the tail. Our model for the swimmer allows for propagating waves,

but is by no means limited to this class of strokes. It is general enough to represent

any possible 2D deformation of the swimmer.

In order to investigate the space of all possible strokes, the optimization procedure

is started from a variety of different initial guesses, as was done for the three-link

swimmer. In this case, strokes can no longer be simply visualize as closed curves in



Figure 4-4: Representation of typical initial guesses for the optimization of the single-
tail swimmer.

a two-dimensional space, and the search could not be done as systematically as in

the three-link swimmer case. Figure 4-4 represents a sample of initial guesses, which

is representative of the diversity of strokes used as initial guesses. Most of them do

not resemble traveling waves, some exhibit large deformations other only very small

deflections around the straightened position. Finally some of them are non-symmetric

in time as defined in section 4.2.5

For all of the initial strokes depicted in figure 4-4 and all the initial guesses that

are not represented here, the optimization procedure converged to the same optimal

stroke. This solution is represented in figure 4-5(b). The optimal stroke found by

the optimization routine is in fact a periodic traveling wave propagating along the

single tail, whose waveform approaches the "saw-tooth" solution. The edges of the

waveform are rounded due to limitations in the spatial discretization of the slender

rod. Nevertheless, the waveform can be seen to approach the characteristic form

of a sequence of connected straight linear segments. Figure 4-5(c) is a superposi-

tion of snapshots of the curvature distribution along the tail. It is made of narrow

peaks of high curvature (where the centerline changes direction with a small radius

of curvature) connected by region of curvature close to zero (characteristic of straight

segments). This curvature distribution converges to that of a "saw-tooth" which is a

superposition of delta functions and is zero everywhere except at the discontinuities.

Similarly, figure 4-5(d) represents the angle O(s) along the tail. The angle distribution

of the computed solution approaches the characteristic "square-wave" shape of the

analytical solution. The values for the swimming efficiency, the swimming velocity
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Figure 4-5: (a) Analytical solution for an optimal single-tail swimmer of periodic
waveform. (b) Computed optimal single-tail swimmer. (c-d) Timeshots of the cur-
vature distribution y and angle 0 as a function of the arc-length for the computed
optimal kinematics of a single-tail swimmer.

and the characteristic angle of the waveform are very similar to those of the analytical

optimal saw-tooth. These values are reported in table 4.1 and can be compared to

the analytical results.

Two observations can be made following this study. Firstly, our representation

of locomotion and the associated optimization for flagellated swimmers are validated

by the results of this study. For all initial trial strokes, the optimization procedure

converged towards a well defined solution, which also was the case in the three-link

study. Furthermore, the solution found corresponds to a stroke, which has been

shown to be optimal among all strokes propagating periodic waves along a single tail.

These observations confirm the versatility, consistency and robustness of our method.

Secondly, we were not able to find any stroke with a swimming efficiency higher than

the previously suggested "saw-tooth"-stroke, as the procedure converged to the same

solution regardless of the initial guess. Recall that a broad array of initial guesses

were tested: mostly non-traveling-wave-like strokes of small and large amplitudes,

traveling-wave-like strokes of various waveforms, and asymmetrical strokes. This

strongly suggests that the "saw-tooth" stroke, while it cannot be rigorously proven

to be a global optimum, is at least a much more general optimum than previously

demonstrated.



Analytical solution
Computed solution

Table 4.1: Analytical and computed
wave.

characteristic values of the "saw-tooth" optimal

Figure 4-6: Fluorescence microscopy image of human spermatozoa adapted from
Neuhaus et al. [113] representing the different parts of a sperm cell.

4.4 Optimal stroke kinematics for uniflagellates

In this section, we investigate efficient unifiagellated swimmers and focus on their

stroke kinematics. Unifiagellated swimmers, which are modeled in this study, resem-

ble sperm cells (see figure 4-1). It should be noted however, that the geometry of our

model swimmer is a rather simplified version of real sperm. Natural sperm cells can

be divided in three sections: the head, the midpiece and the tail, which is sometimes

called the principal piece (see figure 4-6). The midpiece is the region at the base of

the flagellum, which is thicker than the flagellum and connects the tail to the head.

One major omission in our geometrical model is the absence of the midpiece. In this

analysis, we will always refer to the principal piece plus the midpiece as the tail of

the swimmer.
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Figure 4-7: Representation of typical initial strokes for the optimization of uniflagel-
lated swimmers.

4.4.1 Description of the optimal stroke kinematics

Our model swimmer is prototypical for a sperm cell of a primate and has the following

dimensions: head length 2Lo = 4.5 pm, head width 2eLo = 3.0 pm, tail (principal

piece plus midpiece) length 2L = 50 pm and tail radius r = 0.150 ptm. Optimal

strokes are found following the same optimization procedure used previously, starting

from a variety of initial guesses. Figure 4-7 represents a sample of the initial guesses

used in this study. Most of them do not have the structure of a traveling wave. The

optimization procedure was started from both very small amplitude strokes as well

as large amplitude strokes.

The main result from this optimization search is that propagation of a waveform

from the base of the head down the tail of the swimmer is an optimal stroke. In fact,

as with the single-tail swimmer, the optimization always converges to a traveling

wave solution, regardless of the initial stroke. No other strokes were found to be

optimal, even locally. The optimal stroke for the model swimmer is represented in

figure 4-9(d). The resemblance between the optimal computed stroke kinematics

and beating patterns exhibited by sperm cells is both striking and intriguing. Also,

our investigation suggests that in general organisms, which propel by propagating

waves along their tails, are indeed using an optimal swimming mode in terms of the

swimming efficiency, regardless on the specifics of the waveform.

While an in-depth quantitative analysis of the computed waveform and compar-

ison with biological data is difficult to achieve, several general comments can be
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Figure 4-8: (a) Timeshots of the curvature distribution -y as a function of the arc-
length for the optimal stroke of a uniflagellated swimmer with a head of eccentricity
of 0.67. (b) Same for a head of eccentricity 0.2.

made. Global characteristics of the optimal stroke, which was found, are in agree-

ment with previous studies, which investigated only prescribed sinusoidal traveling

waves [74, 118]. The number of waveforms for the optimal kinematics is about one

and the ratio of the amplitude of the wave to the wavelength is also about one, which

is in agreement with [74]. The time variations of curvature along the length of the

tail for the optimal stroke of our model uniflagellate are represented in figure 4-8(a).

As for the single-tail swimmer, figure 4-8(a) shows that the waveform is due to a local

region of high curvature, which propagates down the tail. It is interesting to further

note that in this case the amplitude or maximum curvature decreases as the wave

propagates, although only slightly. This can also be seen in the representation of the

stroke, figure 4-9, where the bent region of the tail closer to the head has a slightly

larger curvature than the bent region at the free end to the tail. This decrease in

amplitude will be further investigated as we look at the influence of the shape of the

head on the optimal waveform in the next section.

4.4.2 Influence of head shape on optimal stroke kinematics

One parameter, which significantly affects the structure of the optimal stroke and

its associated swimming efficiency is the shape of the head. In this study, the only

parameters describing the shape of the head is the eccentricity of the head. When
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(a) (b)
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Figure 4-9: Representation of optimal stroke kinematics for:. (a) single-tail swimmer,
(b) uniflagellated swimmer with eccentricity for the head of e = 1.0, (c) e = 0.8,
(d) e = 0.6, (e) e = 0.4, (f) e = 0.2.

the eccentricity is equal to e = 1, the head is a sphere and it becomes a more slender

ellipsoid as the eccentricity e is decreased to zero. Here we vary e and analyze its

effect on the waveform and the efficiency. As e is varied, the volume inside the head

is kept constant in order to still compare efficiencies of equivalent swimmers, which

can carry the same volume of payload. For values of the eccentricity ranging from

e = 1.0 to e = 0.1, the volume inside the head is kept equal to that of the model

swimmer in section 4.4.1 (, 21.20 im 3) and the optimal stroke is computed started

from a small amplitude initial guess.

In the case of a spherical head, the optimal waveform is similar to the propagating

periodic wave exhibited by the single-tail swimmer. As the eccentricity is decreased,

the waveform seems to loose its periodicity and the amplitude of the bend in the

curved section of the tail decreases as the wave propagates towards the free end

of the tail. Figure 4-9(a-f) shows representations of the optimal strokes found for

uniflagellate swimmers with heads of a varying eccentricity. This change of waveform

as the wave propagates can be seen in figure 4-8. Furthermore, the decrease in

curvature as the wave travels is more pronounced for a head of eccentricity e = 0.2

(figure 4-8(b)) than for a head of eccentricity e = 0.67 (figure 4-8(a)).

This "loss" of curvature can be more easily represented by considering what will

be called the total curvature F. We define the total curvature F associated with a

bending section of the central line as the integral along the centerline of the curvature

over this bending section. This integral simply corresponds to the angle F representing

the change in the direction of the centerline due to the bending section. Figure 4-10
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Figure 4-10: Variation of the total curvature F as the wave propagates down the
flagellum for: the single-tail swimmer, uniflagellated swimmers with eccentricity for
the head of e = 1.0, e = 0.8, e = 0.6, e = 0.4 and e = 0.2. Shaded area represent

regions for which end effects cannot be neglected in the computation of the total
curvature.

represents the change of total curvature F as the bending section propagates along

the tail. In order to compute these variations, we simply consider a particular section

of the waveform as the centerline starts to bend at the base of the head. Once the

bending region has fully developed, it can be easily followed by tracking the peak in

the curvature plot (see figure 4-8). The value of F can be computed as reported in

figure 4-10, as the peak in curvature travels down the tail.

In the case of the single-tail swimmer, the waveform remains periodical and the

value of the total curvature remains roughly constant as the wave travels along the tail

(see figure 4-10). Note that as a given wave forms and later ends at the extremities of

the tail, the total curvature F first increases around s = 0 to a given value and later

decreases close to s = 2L and we therefore only rely on intermediate values of s for

which F represents a fully developed traveling wave. As the eccentricity of the head

is decreased, the total curvature F first reaches a maximum value as is forms at the

base of the head but then decreases in amplitude as it travels towards the other end

of the tail. Figure 4-10 clearly pictures this trend, which becomes more severe as the

eccentricity decreases.
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Figure 4-11: (circles): Efficiency of optimal uniflagellated swimmers as a function of
the eccentricity of the head. (squares): Efficiency for a unifiagellated swimmer with
eccentricity e whose stroke is the optimal traveling wave of the single-tail swimmer.

While for a biological swimmer, a decrease in curvature as the wave propagates

could be due to many internal mechanisms such as diffusion of the active region of

the flagellum, it is interesting to note that it also leads to optimal strokes. In fact,

this alteration of the waveform leads to a significant increase in efficiency. Figure 4-

11 reports the value of the efficiency corresponding to the optimal stroke. This plot

also indicates for each eccentricity, the efficiency of a swimmer which propels itself

using the simple periodic traveling wave that has been optimized for the single-tail

swimmer. Hence, it should be noted that the gain in efficiency given by the optimal

stroke compared to a suboptimal traveling wave becomes more and more significant

as the eccentricity decreases and the optimal waveform becomes less and less periodic.

As the eccentricity is decreased, the efficiency of the optimal swimmer increases and

reaches an absolute maximum for e e 0.20. Hence in order to move a given volume of

payload, the optimal eccentricity should be much lower than those typically observed

in microorganisms.

It may come as a surprise that the optimal eccentricity is so low. In fact, one

could have argued that the optimal eccentricity should correspond to a minimal drag

of the head in the axial direction. We thus compare the drag coefficients on a head of
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constant volume for different values of the eccenctricity e. These drag coefficients can

be easily estimated by using the expressions given in equation(4.16) and imposing

the constant volume constraint. This calculation is straightforward and the total

normalized drag coefficient of the head in the axial direction c Lo is found to reach

an absolute minimum of value 0.95 for an eccentricity of e = 0.52, where the drag

coefficient has been normalized by its value for a sphere of same volume. The minimal

drag eccentricity is much larger than the value of e - 0.20, which we obtained for our

optimal swimmer. In fact the normalized drag coefficient for our optimal swimmer is

much larger as well and takes the value of 1.05.

Nevertheless, this result should not be too surprising and can be well understood

by going back to the basic mechanism underlying low Reynolds locomotion, namely

the drag anisotropy, which we discussed previously in section 3.3.1 in the context

of the three-link swimmer. The drag coefficient in the axial direction is larger for

e = 0.20 than for e = 0.52 but the ratio of the normal and tangential drag coefficients

is also larger in this case. This increase in drag anisotropy, which is at the root of

low Reynolds number locomotion, can be exploited in order to generate more efficient

strokes. In fact, the change in the waveform as e is decreased is an illustration of

how a stroke can be altered in order to take advantage of the drag anisotropy to

increase the efficiency. It is therefore worth mentioning that in general increasing the

drag anisotropy of the head can lead to significant increases in terms of swimming

efficiency. In this regard, one could eventually investigate optimal head shapes for

low Reynolds number swimming, as there seems to be a trade off between minimizing

the drag coefficient c6 in the axial direction and maximizing the ratio between the

normal and the axial coefficient col/c . For spheroidal heads, this trade off leads to an

optimal eccentricity of e = 0.2, for which the axial drag coefficient c" is larger than its

minimal value reached for e = 0.52 but smaller than the value for an eccentricity going

to zero as cl diverges to infinity in that case. Similarly, the ratio of drag coefficients

for the optimal eccentricity e = 0.2 is higher than for e = 0.52 but smaller than its

value of c o/c 1 2 for an eccentricity e going to zero

While the biological significance of the optimal eccentricity of e = 0.20 seems
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doubtful as most sperm head do not exhibit such large elongation, it is still interest-

ing to point out that previous studies on sperm competition have found a positive

correlation between the elongation of the head and the swimming speed of the organ-

ism [108]. In this experimental study, spermatozoa with elongated head were found to

swim faster, which could be due to both a decrease in the tangential drag coefficient

as well as the increase in drag anisotropy.

4.5 Optimal morphology for uniflagellates

While a systematic analysis of optimal stroke kinematics is difficult to achieve, because

it is difficult to numerically parameterize and quantify a stroke, an investigation of

optimal geometries for swimmers can be done much more easily, as the geometry

of the swimmer can be naturally represented by a few parameters. Furthermore,

while the availability of precise experimentally recorded data on microorganism stroke

kinematics is only limited, quantitative measurements on sperm morphology have

been thoroughly performed and the results are well documented. For these reasons,

we now turn our attention to the geometry of the swimmer and investigate optimal

morphologies and more specifically whether there exists an optimal ratio of tail to

head length. To address this question, we make the simplifying assumption that the

head is a sphere and no longer consider the effect of the head eccentricity.

4.5.1 Optimal ratio of tail length to head length

Intuitively, one would expect an optimal tail length to exist for a given head size. This

is because, when the length of the tail goes to zero the swimmer becomes a rigid sphere

and can no longer propel itself. In this case, the swimming efficiency goes to zero.

Similarly when the length of the tail goes to infinity, most of the swimmer becomes

deadload and a growing fraction of the work done against viscosity goes into moving

the tail itself and not the head, which is the equivalent swimmer corresponding to the

payload. Hence we expect the efficiency to decay to zero when the length of the tail

goes to infinity. Therefore, the efficiency should reach a maximum value for a finite

105



0.014 -

0.012

0.01 
-0- Lo = 2 pm

S0.008 - ' Lo = 3 m
" Lo = 4 M m

0.006 -+- Lo = 5 pm
-- L = 6 pm

0.004 -
-O- Lo = 10pm

0.002 .... - J.J.L. Higdon, 1979
Lo = 3 pm

0
0 50 100 150 200 250

Length of flagellum 2L in pm

Figure 4-12: Efficiency as a function of the length 2L of the flagellum for various sizes

of the head Lo. The black dashed line corresponds to results from J.L.L. Higdon [74]
after the data has been renormalized.

tail length somewhere between these two limit cases.

In order to investigate this question further, we first fix the radius of the head L0.

We then impose the length of the tail L before performing a complete optimization

of the stroke kinematics, following the same procedure used so far. The value of the

efficiency corresponding to this specific geometry is stored. We then perform this op-

timization for a large number of tail lengths L. Figure 4-12 represents the efficiency

of the optimal stroke kinematics as a function of the tail length L. This analysis is

repeated for different values of the head size: Lo = 2,3, 4, 5, 6 and 10 pm. For all

these head sizes, the efficiency plots are represented in the same figure 4-12. For each

head size, a maximum efficiency is reached for a specific value of the tail length, thus

demonstrating that optimal tail lengths exist. The results presented here are consis-

tent with those of a previous study by J.J.L. Higdon [74], who investigated sinusoidal

planar waves only. For a fixed head size, the length of the tail was increased and the

swimming efficiency of the sinusoidal wave reported. The results from this investiga-

tion are renormalized to match the dimensions of our own study and reproduced in
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figure 4-12. The same trend can be observed in this earlier study (see figure 4-12).

Also, a comparison with our results further reveals the relevance of fully optimizing

the kinematics. Higdon's study presents results for a swimmer whose head is a sphere

of diameter 2Lo = 3 pm (after renormalization). The optimal length of the tail is

found to be 36 pm and is the same as the one we found for a swimmer of the same

head size. However, the maximum efficiency of the sinusoidal wave, which is reported

in [74] is of 0.00846, while we found a maximum efficiency of 0.01129, representing

an increase of 33 % in efficiency.

For each head radius Lo, the tail length can be made nondimensional by rescaling

it with the head size and each efficiency curve, corresponding to a given head radius,

can be renormalized by the maximal efficiency reached at the optimal length. After

rescaling, all efficiency curves are found to collapse and the value of the relative tail

length, for which the maximum efficiency is attained, is found to be approximately

L/L o r 12 (see figure 4-14). Hence, regardless of the size of the head Lo the optimal

length of the tail for any uniflagellated swimmer is equal to 12L. This constitute a

rather simple criterion for optimal morphology, which can be tested against biological

data.

Even though a clear optima is found, it should be noted that the peak in efficiency

is very broad (see figure 4-14). In fact, the efficiency is within 90 % of the maximum

value for a swimmer, whose tail length ranges between 8Lo and 24L and is still within

80 % for a tail lengths between 6Lo and 33Lo.

4.5.2 Comparison with reported data on sperm morphology

Finally we compare this simple morphological criterion for optimal swimming with

published biological data on sperm morphometry measured experimentally. Such

comparisons always require caution as biological organisms are often subject to nu-

merous environmental constraints which can affect the organism's behavior and are

not taken into account in this model. However, several studies on sperm morphome-

try have in fact reported a positive correlation between the size of the head and the

length of the tail [43, 57]. Since the function of sperm cells is indeed to transport
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material from one point to the other, it is interesting to investigate how this posi-

tive correlation compares to what we have found to be an optimum from a purely

mechanical point of view. Our interest is therefore not so much into whether sperm

cells of a particular species satisfy a morphological criterion, rather whether there is

an average trend in the morphology of microswimmers which corresponds to the cri-

terion found in the tail to head length ratio for optimally efficient swimmers. Recall

from our earlier discussion about the efficiency section 2.3.4, that the swimmers are

optimized for their swimming efficiency and hence for their swimming velocity.

To this end, we focus our attention on all species in the entire class of mammals,

and investigate whether such a trend exists in mammals. Data on sperm morphometry

is collected from two major sources [3, 43]. For any given species, data is only taken

into account if both the value of the head length and the value of the tail length is

known. In cases for which the lengths of the head, the midpiece and the principal

piece are known, the length of the tail is taken to be equal to the sum of the length of

the midpiece and principal pieces as discussed in section 4.4. Whenever data is found

in multiple sources, we report the average value. In all such cases, the values from

the different sources were found to be in good agreement. Data was collected for a

total of 302 species representing 5.6 % of the known 5416 mammalian species [165].

Thirteen orders are represented in the dataset, which covers 45 % of all 29 mammalian

orders. All of the largest mammalian orders are present in the dataset, as these 13

orders include 88 % of all mammalian species. A summary of the sample of species,

for which data on the sperm morphometry is known, is given in table 4.2.

All the different mammalian species are represented as points in the two dimen-

sional (2L, 2Lo)-space (see figure 4-13). Each order is represented with a different

symbol. We also report in figure 4-13 the line corresponding to the optimal tail to

head length ratio as well as the bounds in the (2L, 2Lo)-space for which the swim-

ming efficiency for a given Lo is within 90 % and 80 % of the optimal value. It

can be readily seen that most of the species have tail to head length ratio within 80

% of the optimal value. It bears emphasis, that the agreement between the optimal

morphology and the morphology of spermatozoa observed experimentally are in good
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Class Mammelia i

Artiodactyla
Carnivora
Cetacea
Cingulata
Chiroptera
Dasyuromorphia
Diprotodontia
Lagomorpha
Peramelemorphia
Perissodactyla
Primates
Proboscidea
Rodentia

species in dataset / total species data coverage
302/ 5416

66/240
22/286

1/84
1/21

29/1116
2/71

15/143
1/92
3/21
3/17

47/376
1/3

111/2277

5.6 %

27.5 %
7.7%
1.2 %
4.8 %
2.6 %
2.8 %
10.5 %
1.1%

14.3 %
17.6 %
12.5 %
33.3 %
4.9 %

Table 4.2: Extend of data set coverage for mammals.
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Figure 4-13: Optimal length of the flagellum 2L as a function of the size of the head
Lo (black line). Symbols represents data measured experimentally on 302 species of
mammalian sperm.
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Figure 4-14: Efficiency normalized with the maximum efficiency as a function of the
tail to head size ratio L/Lo. Histogram represents the relative number of species
found to have a given tail to head length ratio L/Lo in the data set of 302 species.

agreement despite obvious simplifications in our model. Recall that we made the

simplifying assumption that the head of the swimmer is spherical, whereas in reality

the elongation of the head varies. Also we modeled the tails of all swimmers as simple

slenderbodies of radius r = 0.150 pm, while in reality they are made of a thicker mid-

piece and and principal piece. Furthermore, while all sperm tails have the structure of

the eukaryotic flagellum, which usually has a radius around r = 0.150 pm, the radius

of sperm tails for some species have been reported to deviate substantially from this

average value. The sperm cell flagellum of a small mammal called bandicoot has a ra-

dius of up to 0.800 pm [36], which is significantly higher than the usual. Interestingly,

bandicoots correspond to two species within the order Peramelemorphia, which are

observed to deviate from our optimal criterion. It is of course unclear whether or not

this increased radius is related to the fact that the tail is much longer than otherwise

suggested by the optimal morphology criterion. It is however a good reminder that

variation in many morphological parameters is not taken into account in our model.

We can further represent the distribution of the 302 species, for which data was
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Figure 4-15: Efficiency normalized with the maximum efficiency as a function of the

tail to head length ratio L/L o . Histogram represents the relative number of species

found to have a given flagellum length to head size ratio L/Lo. In this case the data

has been rescaled depending on the number of recorded mammalian species in each

order to correct for oversampling of a given order.

collected, as a function of their tail to head ratio. Figure 4-14 represents the efficiency

curves which we previously found as well as a histogram representing the tail to head

ratio of the 302 species. Figure 4-14 again shows that most of the 302 species have

tail to head length ratios which have an efficiency within 80 % of the optimal value.

It can be further noted that for most of the orders, the distribution is centered around

the optimal value of L/Lo e 12. This is true for many orders, for which we have a

large amount of data available: order Rodentia (rodents), order Chiroptera (bats),

order Primates, order Carnivora. However it can be seen that this is not the case

for all orders. For the order Artiodactyla (bovines are in this order for example), the

distribution of tail to head lengths of the sperm cells is centered about L/Lo = 6 - 7.

While such swimmers can still reach efficiencies within 80 % of the maximal efficiency,

their morphology is significantly different from the optimal one.

In order to get an idea of what the distribution of tail to head length ratio would
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be if all mammalian species where represented, one can extrapolate the distributions

found for each order separately, by renormalizing them with the inverse of the data

coverage percentage from table 4.2. This is equivalent to giving each order a relative

weight corresponding to the number of species in the order. It is in fact relevant to do

so, as we are more interested in a general trend rather than the specific morphology

of the spermatozoa for a given species. In this regard, we can anticipate that the

order Artiodactyla is oversampled in our dataset, as almost 27.5 % of the species are

represented, while only 5.9 % of all rodents are represented.

This global distribution is represented in figure 4-15 and gives a general picture of

the distribution of sperm morphologies across all mammalian species. In this case, the

distribution coincides even more strikingly with the optima derived in our analysis.

This agreement validates our analysis and suggests that the swimming efficiency as

defined by equation (4.44) may be a relevant parameter to consider, when studying

swimming microorganisms. Our results also suggest that in general, the morphology

of mammalian sperm cells allows them to be efficient swimmers.
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Chapter 5

Optimizing biflagellates

5.1 Introduction

In the previous chapter, we examined several aspects of the swimming properties

of uniflagellates, namely details of the stroke kinematics and the morphology of the

swimmer. We found that, in general, traveling waves are optimal for the locomotion

of uniflagellates and also that a morphological optimum exists for the tail to head

length ratio, which is observed to be relevant to mammalian spermatozoa. These

observations however are only related to uniflagellates and do not apply to the many

organisms which have several flagella and have been observed to use a variety of stroke

patterns. In fact, the drawing of J. Lighthill reproduced in figure 2-1 is a beautiful

illustration and a good reminder of the diversity, which prevails at the micron scale.

Unicellular organisms range in size over several orders of magnitudes, from less

than a micrometer to several hundreds of micrometers. It is interesting to notice

that larger cells tend to have more flagella: sperm cells are a few microns long and

have one flagellum, green algae chlamydomonas are a few tens of microns long and

have two flagella, ciliates such as paramecia are a few hundreds of microns long and

have a very large number of flagella, which are then called cilia. When multiple

flagella are present at the surface of the cell, interesting questions arise related to

beating synchronization and the role of hydrodynamics in coordination and collective

behavior [66].
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In this chapter, we will focus our attention on biflagellated swimmers using a

direct extension of the model developed in our previous study. A prototypical bi-

flagellated organism is the green algae chlamydomonas, which has a cell body of

about 10 pm in length and two 10 pm long flagella. Locomotion and stroke pat-

terns of chlamydomonas have been investigated experimentally by U. Riiffer and

W. Nultsch [131-135]. The complex beating patterns of chlamydomonas have been

found to vary significantly in reponse to various stimuli. However at the level at

which we are interested in modeling locomotion of biflagellates, chlamydomonas can

be considered to primarily exhibit two different strokes. The most common stroke

is often called the breaststroke and is reproduced from [131] in figure 5-5(a-b). It

has the same effective-recovery structure as the stroke of cilia, and is quite different

from an undulatory traveling wave. Another stroke, which is observed in response to

a shock of light [134] or an electric stimulation [168] is an undulatory stroke, which

resembles the beat patterns observed in uniflagellates as discussed in the previous

chapter. An illustration of this stroke is reproduced from [134] in figure 5-3(a-b).

We propose to examine optimal stroke patterns for biflagellated organisms and to

investigate whether these two different beating modes can be found and explained by

considering the hydrodynamics only.

5.2 Modeling of the dynamics of biflagellates

5.2.1 Geometry of the swimmer

Our representation of biflagellated swimmers is directly derived from the model for

uniflagellates developed in chapter 4. The cell body is considered to be a rigid

sphere of diameter 2Lo = 10 pm, which corresponds to the size of green algae

chlamydomonas. The position of the head cell is given at each time by the posi-

tion vector Ro and the angle 00, which defines the orientation of the cell body. Here,

to = (cos 00, sin 00) is the unit vector in the main axis of the head and no = i x to is

the unit normal vector (see figure 5-1).
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Lo
s = 2L

Figure 5-1: Schematic of a biflagellated swimmer and related notation.

The swimmer has two deformable flagella of equal length 2L and slenderness

r = r/2L. The attachment of the two tails is defined by the angle of attachment b,

which is arbitrarily taken to be equal to 7r/12. Each tail is represented by a different

subscript i = 1, 2. Let si be the arc length measured along the centerline of the ith

tail, and yi, ti, ni, Ri and Oi be the curvature, tangential unit vector, normal unit

vector, position vector and angle between X^ and ti along the centerline of the ith tail.

Each tail is attached to the head at si = 0 and such that

R,(si = 0) = Ro + Lo(cos 0 to ± sin' no),

ti(si = 0) = cos 0 to + sinb no.

The position vector and deformation velocity along the tails can be obtained by inte-

gration of the Serret-Frenet equations along the centerline of each tail, as described

in section 4.2.1.

5.2.2 Dynamics of the swimmer

We use the same hydrodynamic modeling developed for uniflagellated swimmers,

which is described in section 4.2.2. The system of singularity distributions model-

ing the flow has the same structure as for the uniflagellated case: a distribution of

stokeslets and associated potential doublets (of strength r2/2 times the strength of

the stokeslet distribution) for each of the two tails, and a point rotlet, stokeslet and

associated potential doublet for the spherical head.
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The only difference occurs when considering the hydrodynamical interaction term,

for which the extra tail has to be taken into account. Recall that interaction between

the different parts of the swimmer are due to the ambient flow generated around one

part by the motion of the other part, which can be taken into account by use of

Faxen's laws. Hence, we model the interaction by computing on the one hand the

ambient flow around the head as the superposition of the flow induced by both tails

and on the other hand the ambient flow around each tail as the superposition of the

flow induced by the head and the other tail.

Using this model for the hydrodynamics of the swimmer, we impose the equilib-

rium equations on the entire system as is done for uniflagellates in equations (4.29,4.30).

We use the same spatial discretization and the motion of the swimmer is numerically

computed and integrated in time using the same method as described in section 4.2.4.

5.2.3 Optimization procedure

The optimization procedure developed for uniflagellates is again directly applied to the

case of biflagellates. In this study, we explore two different purposes for locomotion.

One of them is swimming, which we have already discussed; the other is feeding.

Later in this chapter, we will discuss the hydrodynamic implications of these two

locomotion modes and derive two formulations for efficiencies characterizing these

two modes.

A few additional remarks specific to the optimization procedure applied to biflag-

ellated swimmers are made in the following.

Geometric constraints on stroke patterns

In this analysis we add an additional geometric constraint on acceptable stroke pat-

terns for biflagellated swimmers. This constraint is imposed in order to avoid inter-

section between the spherical head and the two flagella. In our previous study of

uniflagellates, this constraint was not required, as the head of the swimmer was usu-

ally small compared to the flagellum and the optimization procedure never converged
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towards strokes in which the tail approached the head of the swimmer. For chlamy-

domonas however, the spherical head of the swimmer has a diameter of 10 pm and the

flagella are also 10 pm, and hence the tail is relatively short. For such geometries, our

procedure sometimes converges towards strokes were one flagellum penetrates the cell

head. Recall that only the far field hydrodynamic interaction is taken into account,

which does not properly model the hydrodynamics when the flagellum is near the

surface of the cell body. Furthermore, our prescription of the flagellar deformation

by simply imposing the curvature along the tail does not prevent interpenetration of

flagellum and head.

We therefore impose the following geometrical constraint at all times on the de-

formation of the flagellum:

|Rii(si) - Ro Lo for all s, E [02L], andi=1,2.

Symmetrical stroke patterns

By adding one flagellum, one can readily anticipate an increase in the complexity of

the system's behavior. The stroke kinematics of two separate flagella are now being

optimized, which increases the number of deformation parameters by a factor of two.

In order to reduce the computational cost required by the optimization procedure, we

will in some cases implicitly assume a symmetry in the stroke kinematics, as we did

for the uniflagellated swimmer in section 4.2.5. Such symmetrical strokes are defined

such that at all times the axis to, which goes through the center of the head is an

axis of symmetry of the swimmer. This can also be expressed as follow:

'1(si = s)= --'2(s2 = S) for all s E [0 2L].

In this case, the problem reduces to finding the general stroke kinematics for one flag-

ellum, while the other can be simply deduced as the mirror image. For biflagellates,

such strokes will always be referred to as symmetrical strokes.
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(a) (b)

(c) (d)

Figure 5-2: Representation of typical initial strokes for the optimization of biflagel-
lated swimmers.

5.3 Optimal biflagellated swimmers

5.3.1 Swimming efficiency for biflagellates

We first study biflagellates in the context of their swimming efficiency, as a direct

extension of our previous work on uniflagellated swimmers. The expression for the

swimming efficiency remains the same and can be simply written as

c1 Uo toS = (5.1)
Wmin

In this case, the axial drag coefficient is equal to c = 6rpLo since the head is

considered to be spherical. The optimization procedure is started from different initial

guesses, a sample of which is represented in figure 5-2. Note that these initial guesses

vary greatly in amplitude; the strokes represented in figure 5-2(a-b) consist of small

amplitude oscillations around the straight configuration for the flagella, while those

represented in figure 5-2(c-d) exhibit large amplitude deformations.

Unlike our previous study of uniflagellates, the optimization procedure does not

always converge to the same solution and the addition of a second flagellum is found

to substantially increase the complexity of the optimization problem. For all initial

strokes which we originally conjectured, the procedure converged to three different
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strokes found to be locally optimal for swimming. These strokes are represented in

figure 5-4(a-c).

5.3.2 Optimal strokes

The first locally optimal stroke is represented in figure 5-4(a). It is found for sym-

metrical initial guesses of small amplitude (see figure 5-2(a)), when the stroke is

constrained to remain symmetrical as described in section 5.2.3. Both the time varia-

tion of the curvature along the tail and the snapshots of the strokes at different times

(figure 5-4(a)) show that this stroke is essentially made of two traveling waves which

symmetrically propagate from the base of the head towards the extremity of the tail.

The efficiency is found to be equal to S = 0.00184.

The second optimal stroke is reproduced in figure 5-4(b). It is very similar to the

previous one and is found for asymmetrical initial guesses of small amplitude (see

figure 5-2(b)), when the symmetry in the stroke pattern is no longer enforced. This

stroke also consists of two traveling waves that propagate along the tail. In this case,

the swimming efficiency takes a slightly lower but comparable value of 1 = 0.00165.

While the first symmetrical traveling wave has not been observed experimentally, the

asymmetrical optimal traveling wave closely resembles the undulatory stroke, which

is undergone by chlamydomonas after a shock. The kinematics of the computed

undulatory optimal stroke can be compared to the experimentally recorded stroke,

see figure 5-3(b-c) and is found to be qualitatively in good agreement.

The last optimal stroke is found for an initial large amplitude guess with implicitly

enforced symmetry. This stroke is represented in figure5-4(c). Its swimming efficiency

is higher than the two previous strokes and takes a value of S = 0.00366. This stroke

however has not been observed experimentally and its structure appears to be more

complex than the previous two strokes. As can be seen on both the curvature plots

and the representations of the swimmer (figure 5-4(c)), two separate sections of high

curvatures, which are opposite in sign, simultaneously develop along the tail and

propagate. One can conjecture that this stroke may not be observed as no simple

self-organized mechanism is able to sustain such complex periodic deformation.
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(a) ,(b.. '. (b) ' (c)

. ' i

Figure 5-3: Representation of stroke patterns of chlamydomonas using high-speed
cinematography, reproduced from Riiffer and Nultsch [131,134]. (a) Free swimming
chlamydomonas undergoing an undulatory beat [134]. (b) Representation of an un-
dulatory stroke, in the frame of reference linked to the cell [134]. (c) Computed
undulatory stroke optimized for swimming efficiency.

It is interesting to note at this point, that none of the presented strokes produces

very efficient swimming. The values found for the swimming efficiency should be

compared with what has been previously found for uniflagellates. The optimal uni-

flagellated swimmer with a spherical head of diameter 2L = 10 pm and optimal tail

length is found to reach a much higher efficiency of 0.01402 (see figure 4-12). In fact,

the value of the efficiency for a uniflagellated swimmer, whose tail is 20 pm long is

0.00344 which is almost the same as the efficiency of the large amplitude optimal

stroke and higher than the efficiency of either the symmetrical or the asymmetrical

optimal traveling waves.

Hence from our analysis, chlamydomonas does not appear to be a very efficient

swimmer, at least not with respect to the swimming efficiency defined in this study.

We therefore turn our attention to another aspect of transport at low Reynolds num-

ber and investigate optimal strokes related to feeding and enhancement of nutrient

uptake. This survey about optimal strokes for swimming is however incomplete. Fol-

lowing the discussion on optimal strokes for feeding, we will later find a final locally

optimal stroke for swimming, which will be discussed.
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Figure 5-4: Time snapshots of the curvature y as a function of the arc-length for all
optimal strokes found. Each stroke is further represented by a sequence of shapes.
(a) Strokes optimized for swimming efficiency with small amplitude symmetric initial
guess. (b) Strokes optimized for swimming with small amplitude antisymmetric initial
guesses. (c) Strokes optimized for swimming with large amplitude symmetric initial
guesses. (d) Strokes optimized for swimming using optimal feeding stroke as the
initial guess. (e) Strokes optimized for feeding.
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5.4 Optimal biflagellated feeders

5.4.1 Scaling analysis for the transport problem

Previous studies have investigated the generation of feeding currents [32, 73,105] by

propagating periodic waves along flagella. Similar to what we have done in the case

of swimming, we now consider in questions related to nutrient uptake and seek to

determine the existence of optimal stroke kinematics for feeding purposes. Before

going any further in the analysis and modeling of this problem, it is worth getting

some insight into the characteristic transport timescales from a scaling analysis, in

order to justify the relevance of feeding currents to such organisms.

The generation of advective feeding currents for the enhancement of nutrient up-

take is only meaningful if the transport problem is not completely dominated by diffu-

sion. The Peclet number represents the ratio of the characteristic diffusive timescale

over the characteristic advective timescale. For this problem, the Peclet number can

be written as

UrefLref
Pe =

D

where Uref is a characteristic velocity for the fluid flow, Lref is a characteristic length

scale and D is the diffusivity of the nutrients under consideration. For small Peclet

numbers, the diffusive timescale is much smaller than the advective timescale and the

transport problem is entirely dominated by diffusion. In this case, nutrient uptake

cannot be increased by advection. For a typical swimming biflagellate, the length

scale is on the order of 10 pm, the beat frequency for chlamydomonas is on the order

of 50 - 100 s - 1 and an upper-bound for nutrient diffusivity is given by the diffusivity

of CO 2 which is about 10- 9m 2 s- 1 . This scaling analysis gives an estimate for the

P6clet number of Pe - 5 - 10. For larger molecules, we expect the Peclet number

to be even higher than for CO 2 . Hence transport is not completely dominated by

diffusion and it is relevant to investigate the advective transport of nutrients via the

generation of feeding currents.
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5.4.2 Feeding efficiency for biflagellates

We therefore seek to define a feeding efficiency, which characterizes how effectively

the stroke enhances nutrient uptake. In agreement with our prior definition of the

swimming efficiency, the feeding efficiency is defined as the fraction of the total en-

ergy expense effectively used to create a flux of nutrients. We thus need to determine

the effective flux towards the surface of the cell body, which in general requires the

resolution of the full advection-diffusion equation for the concentration of nutrients

in the entire flow field. This however would require detailed numerical modeling and

significant computations, which would make the optimization procedure significantly

more expensive. Because the Peclet number is finite, we instead decouple the ad-

vection from the diffusion problem and focus our attention only on the advection of

nutrients in order to quantify how well a given stroke is able to advect flow towards

the cell body.

Because the problem is unsteady, the estimation of nutrient uptake cannot rely on

average flow fields over one stroke period and associated fluxes. Instead, the particle

pathlines have to be fully integrated in time. We simplify this problem by considering

a finite number of spherical fluid blobs of radius a = 1 pm*. The center of each sphere

lies in the (:R, )-plane at a distance d = 5 pmt from the surface of the cell body. The

blobs are densely packed and equally spaced on a circle of radius Lo + d centered at

the same point as the cell body (see figure 5-7). We follow the motion of each virtual

blob by computing the particle pathlines of the center of each blob over one stroke

period. We only consider blobs that get closer to the surface of the cell after one

stroke to contribute to the effective nutrient flux. The work required to move each

blob is simply equal to 57rpaf/7-, where £ represents the net distance the blob has

traveled towards the cell surface over one period 7 of the stroke. The drag coefficient

for a sphere of fluid of radius a moving in an unbounded fluid of the same viscosity

is given by 57rpa, see [70]. The feeding efficiency £f is defined as the sum of the work

*The radius of the blob a has a value of 1 pm, which corresponds to the distance from the slender
flagellum over which the fluid is still significantly moved by the motion of the flagellum.

t The distance d has been chosen to be about twice the diffusive length for CO 2 over one stroke
period T.
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(a) (b) (c)

Figure 5-5: Representation of stroke patterns of chlamydomonas using high-speed
cinematography, reproduced from Riiffer and Nultsch [131,134]. (a) Free swimming
chlamydomonas undergoing a breaststroke beat [131]. (b) Representation of a breast-
stroke, in the frame of reference linked to the cell [131]. (c) Computed breast stroke
optimized for the feeding efficiency.

required to move all the equivalent blobs closer to the cell body over the total work

exerted by the swimmer against viscosity.

5.4.3 Optimal breaststroke for feeding

Using this definition for the feeding efficiency as the objective function for our op-

timization procedure, we find one optimal stroke regardless of the initial guess (see

figure 5-2). This stroke is represented in figure 5-4(e) and bears close similarities with

the breaststroke, which is the most commonly observed stroke for chlamydomonas.

For a comparison between our computed optimal stroke and experimentally recorded

strokes see figure 5-5(b-c). The optimization procedure in this case converges to a

breaststroke, which has the same effective-recovery structure as observed in ciliates

(see stroke representation in figure 5-4(e)). It is remarkable, that both the undulatory

stroke and the breaststroke, which are observed experimentally and have very differ-

ent structures (traveling wave vs. effective-recovery stroke), are found to be optimal

by considering hydrodynamics alone. In terms of the organization of the stroke, the

breaststroke is observed to consist of a single peak of curvature traveling from the

base of the head towards the end of the tail. The curvature plots in figure 5-4(e) show

the propagation of a section of high curvature, with no change or alteration in sign.

The feeding efficiency for the computed breaststroke is 0.0316 and the swimming

efficiency is 0.00304. For comparison the feeding efficiencies for the symmetrical
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Figure 5-6: (a-f) Vorticity field around a biflagellated swimmer undergoing a breast
stroke. (g-l) Vorticity field around a biflagellated swimmer undergoing the undulatory
stroke.

propagating wave, asymmetrical propagating wave and the large amplitude stroke

optimized for swimming have all much lower values, which are respectively of 0.00652,

0.00007 and 0.00524.

The superiority of the breaststroke in generating feeding currents compared to

other strokes can be readily seen when representing the vorticity field around the

head of the swimmer. Figure 5-6 represents snapshots of the vorticity field around

a biflagellated swimmer undergoing the undulatory stroke (figure 5-6(a-f)) and the

breaststroke (figure 5-6(g-1)). The color-scale is identical in all pictures and we can

therefore observe that the breaststroke develops much larger scale vortex structures

around the head of the swimmer than the undulatory stroke. This larger scale flow

results in the generation of more efficient feeding currents. These currents can be fur-

ther observed by following the trajectories of particles in the flow over during a stroke.

Figure 5-7 represents the particle pathlines of points corresponding to the centers of

the blobs considered in the calculation of the feeding efficiency. The breaststroke

is observed to drag particles close to the cell surface, thus generating feeding cur-

rents (figure 5-7(a)). For the undulatory stroke no such currents are observed (see

figure 5-7(b)).
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Figure 5-7: Representation of the particle pathlines of material points for two succes-
sive strokes of a biflagellates. The swimmer is represented in its geometry and location
at the end of the two strokes. Yellow and red marks represent respectively the initial
and final position of the particles. Gray lines represent the particle pathlines. (a) Op-
timal computed breaststroke for feeding efficiency (b) Optimal undulatory stroke for
swimming efficiency.

5.4.4 Optimal breaststroke for swimming

Finally, we go back to the initial survey of optimal swimming strokes. While the

breaststroke could not be found from any of the initial guesses depicted in figure 5-

2, its swimming efficiency of 0.00304 compares well to the efficiency of the large

amplitude stroke described in section 5.3.2, which is 0.00366. We therefore pursue our

original search for optimal swimming strokes, by taking the breaststroke optimized for

feeding as the initial guess. As mentioned at the end of section 5.3.2 we find another

optimal breaststroke with a swimming efficiency of 0.00636 and of feeding efficiency

0.0278. This stroke is represented in figure 5-4(f). It has the same structure as the

breaststroke optimized for feeding but in this case the two flagella extend further

away from the cell body at the end of the recovery stroke and before beginning the

effective stroke.

This final remark is in good agreement with experimental observations, as the

breaststroke is found to prevail over the undulatory stroke, which is only observed as a

shock response. Hence, the breaststroke is found to be efficient for both swimming and

feeding, although the swimming efficiency is still well-below what can be achieved by
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an optimal uniflagellate. Further more, we argued in section 2.3.4 that the swimming

efficiency as defined in this study is in fact a measure of how fast a swimmer can

propel itself. In light of this discussion, it is interesting to note that the maximum

swimming velocity measured experimentally for the breaststroke and the undulatory

stroke are respectively 240 pm.s - 1 [131] and 50 /pm.s- 1 [134]. The ratio between

these two values is of 240/50 - 4.8, which agrees quantitatively with the ratio of

efficiencies found for the optimal swimming breaststroke and the undulatory wave

0.00636/0.00165 , 3.8.
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Chapter 6

Marangoni convection in droplets

on superhydrophobic surfaces

6.1 Introduction

We now turn to a different problem also related to motion at low Reynolds number

and investigate the dynamics of droplets on heated superhydrophobic substrates. This

chapter* presents experimental and analytical results, which are independent from the

previous studies on low Reynolds locomotion, although also related to questions of

mixing and transport.

Non-wettability, effective heat transfer coefficients and other material properties

of hydrophobic surfaces are of interest in many industrial applications, such as effi-

cient condensing design and waterproofing textiles. Since [163] noted seventy years

ago that the hydrophobicity of a substrate can be enhanced through a combination of

chemical modification and surface roughness, multiple studies have observed a sub-

stantial increase in static contact angles by integrating these two strategies. More

recently the non-wetting properties of these substrates have been further enhanced

and contact angles close to 1800 have been achieved by introducing nanoscale rough-

*This work was done in collaboration with Volkmar von Armin and Gareth H. McKinley in the
Department of Mechanical Engineering at the Massachusetts Institute of Technology and is part of
"Heat transfer and Marangoni convection in droplets on super-hydrophobic surfaces", D. SW. Tam,
V. von Armin, G. H. McKinley and A. E. Hosoi, submitted to J. Fluid Mech., 2008
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ness [15,124,127,171].

Numerous techniques have been developed over the past decade for fabricating ro-

bust superhydrophobic surfaces by combining chemical non-wetting treatments with

controllable levels of roughness over a wide range of length scales. General discussions

of the principles for preparing such surfaces are given by [125] and by [116]. [115]

and co-workers used fractal patterns formed in an alkene wax to produce the first

superhydrophobic surfaces with contact angles greater than 1600. Since then sur-

faces have been prepared using a variety of materials processing techniques including:

lithographically patterned silicon posts having a wide range of aspect ratios [93, 95];

silicone arrays patterned using soft lithography [71]; layer-by-layer (LBL) assembled

polymeric coatings decorated with nanoparticles [170]; and microporous polymeric sil-

ica structures [60] in addition to the vertically aligned carbon nanotube carpets [97]

used in the present study. In many of these formulations the surface coating consists

of polymeric or ceramic constituents that are poor thermal conductors which limits

the efficacy of the surface in heat transfer applications. One of the advantages of

the carbon nanotube carpets employed in the present work is the high axial thermal

conductivity of the graphene sheets that form the tultiwall nanotubes.

The interactions between small liquid droplets and such superhydrophobic sur-

faces give rise to interesting phenomena in terms of the dynamics of the droplet [25].

The dynamic deformations of a droplet impinging and bouncing on a hydrophobic

substrate have been investigated [128,129]. An other important dynamic behavior

is related to the adhesion and motion of droplets at the surface of the substrate.

Droplets are observed to reach large velocities as they move on top of the superhy-

drophobic surface, which raises the question of whether the liquid is sliding or rolling.

This could potentially have interesting applications as it could lead to the design of

surfaces with apparent slip of liquid.

Furthermore, hydrophobically modified surfaces have interesting heat transfer

properties which have primarily been studied in the context of condensation on cooled

substrates (see Table 6.1). In most applications, dropwise condensation is preferable

to film condensation as the continuous condensed fluid film acts as an insulating layer,
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HEAT TRANSFER VIA PHASE CHANGE ON HYDROPHOBIC SURFACES

Condensation Boiling Spray Cooling

Dropwise Film Nucleate Film Droplet Film

Present
[54] N/A [86] Study N/A

Study
[156]

Table 6.1: Summary of heat transfer in various geometries from superhydrophobic
surfaces. A few representative studies are listed in each regime.

resulting in lower heat transfer coefficients [140]. Thus it is often advantageous to

promote dropwise condensation by changing the wettability of the relevant surfaces,

making them hydrophobic [54]. Recent studies have taken this one step further; by

introducing wettability gradients into the substrate, condensing drops rapidly move

towards more hydrophilic regions providing a passive mechanism that can increase

the effective heat transfer coefficient by an order of magnitude [45].

The reverse problem of a liquid impinging on a hot surface has been less well-

studied in the context of hydrophobic surfaces though numerous articles exist describ-

ing the evaporation of a single drop on a partially wetting substrate [49,107,137] and

extensive studies have been performed on the Leidenfrost effect (see e.g. recent work

by [14]). It has also been demonstrated that the effective heat transfer in such droplet

systems can be significantly enhanced by adding surfactant to the fluid, decreasing

the contact angle, and promoting nucleation within the impinging droplet [81,123].

One of the few studies that incorporates the effects of hydrophobicity is [111] in which

a slowly evaporating droplet on a patterned polymer surface was investigated. Un-

like our system, the substrate was not heated and hence the droplet remained in a

parameter regime in which Marangoni stresses were negligible.

In addition, a limited number of studies have investigated the effects of surface

chemistry on boiling. [160] conducted an experimental study to quantify the effects of

surface wettability on the density and distribution of nucleation sites. They confirmed



that increasing wettability both shifts the boiling curve to the right and increases the

maximum heat flux, and found that the fraction of cavities that nucleate decreases as

the wettability of the surface improves. [86] presents a nice review and brief history of

the study of pool boiling. The author then goes on to derive a mathematical model

to predict critical heat fluxes which account for the effects of hydrophobicity (through

changes in the static contact angle), vapor momentum and gravity. Predictions from

this model are then successfully compared with existing experimental data. More

recently, [156] performed an experimental study in which the authors applied short

microsecond voltage pulses to investigate the effect of surface properties on fast,

transient microboiling.

However, the full problem of understanding the heat and mass transfer properties

of a single stationary droplet on a heated hydrophobic surface is further complicated

by the presence of a mobile free surface. Gradients in temperature along the free

surface lead to gradients in surface tension which may in turn drive thermocapillary

Marangoni convection [109] within the drop (as illustrated in Figure 6-1). A detailed

and extensive literature on thermocapillary driven flows exists and both experimental

and theoretical studies are reviewed in [139] and [48] respectively, as well as in [150]

which considers thermocapillary motion in droplets and bubbles.

One of the few analyses that has carefully investigated the effects of Marangoni

stresses in evaporating sessile drops is the recent study by [76]. In this work, the

authors model convection in a droplet on a partially wetting surface using both a

lubrication analysis and a full finite element model (FEM). They find that convection

rolls are observed - with a down-welling in the center of the droplet - driven by a

non-uniform temperature distribution at the surface of the droplet which arises from

evaporative cooling. Surprisingly, the lubrication approximation is in good agreement

with the FEM even for contact angles as high as 40'.

In this study, we investigate Marangoni convection within a single droplet on a

heated superhydrophobic surface. The analysis differs from that of [76] in that our

droplet is nearly spherical and hence not amenable to lubrication techniques. Ulti-

mately, by comparing experimental data with analytic predictions, we can extract a
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value for the effective heat transfer coefficient of the system. In section 6.2 we describe

the experimental setup and procedure. Section 6.3 presents the derivation of the gov-

erning equations for the system which are then solved analytically in section 6.4.

Finally, section 6.5 presents a quantitative comparison of analytic and experimental

results.

6.2 Experimental methods

6.2.1 Background

Several dynamic aspects related to the properties of the carbon nanotube carpeted

substrate described in [97] have been investigated. One such study originally focused

on the motion of a water droplet released at the surface of an inclined substrate.

In this study, Dr. Volkmar Von Armin and Prof. Gareth McKinley intended to

determine whether the droplet was rolling or whether it was indeed sliding at the

surface of the substrate. In order to do so they visualized the internal motion of the

droplet by seeding the water with tracer particles and recorded their motion with

high-speed imaging. This led to the observation of a strong flow from the center

of the droplet towards the contact point, as tracer particles seemed to be attracted

by the contact point. This observation could not be related to either a rolling or

a slipping motion. Following these observations, the droplet was then immobilized

on the surface of the substrate and the internal dynamics recorded. This follow up

experiment is at the center of the present study and is described in more details in

the next section.

6.2.2 Experimental setup

A schematic of the experimental setup is shown in Figure 6-2. Monodisperse silica

particles 300nm in diameter were added to deionized water at a concentration of 1wt %

in order to track convective motions (see Figure 6-3). The droplets were formed at the

tip of a thin glass capillary approximately 10 pm in diameter, and were deposited on a

133



low temperature: high surface tension
heat transfer
ht(T-T)

evaporation
hk(T-T)

high temperature: low

Figure 6-1: Schematic and notation for a droplet on a superhydrophobic surface.
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Figure 6-2: Schematic of the experimental setup.

silicon wafer coated with a vertically aligned carpet of carbon nanotubes (for details on

the non-wetting properties and manufacture of the superhydrophobic surface see [97].

The radii of the droplets ranged between 0.4 - 0.6 mm and contact angles were near

1800 (see Figure 6-3a). The superhydrophobic surface was heated from below via a

heating plate with variable input current.

As soon as the liquid droplet is put in contact with the heated surface, the fluid

is set in motion and convective structures develop. In order to visualize the tem-

perature and velocity fields, both optical and infrared images of the droplet were

taken. Figure 6-3b is a thermal image of the droplet taken with a FLIR Systems

ThermaCAM infrared camera. This picture shows contours of constant temperature

and reveals a temperature gradient inside the droplet that is roughly oriented towards
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the contact point. The maximum temperature variation within the drop ranged from

approximately 1 - 20 0 C and the temperature of the substrate did not exceed 50 0 C.

Particle paths were visualized using a Phantom HSV v5.0 high speed camera at

400 fps in conjunction with a long-distance video microscope system (K2 Infinity).

The droplets were illuminated from behind with a diffuse light source, as represented

in figure 6-2. The image is focused on the thin glass capillary, which corresponds

to the midsection of the droplet. The local velocity field within the droplet was

measured by tracking small solid particles within the focal plane at the center of

the droplet. Figure 6-3c) is a superposition of images taken with the experimental

set up and showing the inner convective motion of the fluid. On this picture, the

direction of the flow is given by particles moving downward in the center of the

droplet. Particles within the focal plane appear as sharp points - although some

residual blurry images of particles that are close to, but out of, the focal plane remain

in the image. The characteristic velocity of the inner flow in the experiments was

approximately Umeas 1 mm s - 1 and the characteristic time scale for one complete

cycle of the convective structures was on the order of is. At the surface of the droplet,

the fluid appears to be convected upwards, away from the heat source. In the focused

midsection of the droplet, particles are accelerated downwards, away from the free

surface towards the contact point P (see Figure 6-1 for notation). Also, particles that

are initially out of the plane of focus are observed to move towards the focal plane

and the contact point P. This suggests an axisymmetric toroidal geometry for the

convective structures.

The experimental data was recorded for various values of heat input and drop size.

It bears emphasis that for illustration purposes, pictures in figure 6-3(b) and (c) were

taken using larger values of heat flux and brighter lightning than those used, when

data was collected. In later experiments, the temperature at the heating plate was

lowered in order to remain in the stable roll regime, and the light source was dimmed

to avoid thermal contamination. Also, the "stem", which can be seen at the top of

the droplet in figure 6-3(c) is the glass capillary that was used to deposit the droplet.

This capillary was removed before any data was recorded.
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Gravity
Density of water
Dynamic viscosity of water
Kinematic viscosity of water
Specific heat of water
Thermal conductivity of water
Thermal conductivity of air
Thermal diffusivity of water
Coefficient of thermal expansion
Change in surface tension due to temperature
Latent heat of vaporization
Saturation temperature at atmospheric pressure
Atmospheric temperature
Characteristic radius of the droplets
Characteristic convection speed

Symbol Value
g
p

p
CP
kw
kair

fat

a = 9o/&T
Lv
Ts
Ta
a

Umeas

9.8
9.982 x 102

1.002 x 10-3
1.004 x 10-6

4.182 x 103

5.9 x 10- 1

2.4 x 10-2
1.41 x 10-7
3.0 x 10 - 4

-0.155 x 10- 3

2.454 x 106
373

S295
S0.5 x 10- 3

- 10 - 3

Table 6.2: Characteristic values of relevant physical parameters.

On a clean carbon nanotube surface, the convective structures were observed to

reach a steady state and were very stable. However, the observed structures are

extremely sensitive to the substrate properties. As particles left by previous exper-

iments accumulated on the substrate, the quality of the surface degraded and the

stability of the observed convection rolls declined. After several seconds the struc-

tures would become unstable ultimately culminating in an unstructured swirling of

the entire droplet. Owing to the extreme sensitivity of the convection pattern to the

quality of the substrate, all the experimental data presented herein was taken on a

clean, freshly-prepared surface.

6.3 Physical model

Consider a liquid of dynamic viscosity p, density p, thermal conductivity kw, specific

heat Cp, saturation temperature Ts and latent heat of vaporization L,. We assume

that the carbon nanotube surface heats the liquid droplet of radius a at the con-

tact point P on the surface and we neglect any radiative heat transfer. There are

at least three possible mechanisms that could drive convection in the droplet: buoy-

ant (buoyancy-driven) convection, Marangoni (surface tension-driven) convection, or
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Figure 6-3: (a) Photo of a water droplet (0.5 mm radius) on a superhydrophobic
surface seeded with silica tracer particles. The inset shows an SEM image of the

surface coated with a carbon nanotube forest. (b) Thermal image of a drop deposited

on the heated substrate. (c) Superposition of 20 consecutive snapshots of the water

droplet taken at 10ms time intervals.

mass flow arising from spatially non-uniform evaporation, as in the "coffee stain"

problem [49].

In our experiments there is clear evidence that the mechanism cannot be buoy-

ancy as the rolls are going in the wrong direction - with a down-welling in the center

of the droplet and an upflow at the interface. Furthermore, the Rayleigh number

Ra = atga3AT/v, in our experiment is roughly 50. Critical Rayleigh numbers char-

acterizing the onset of buoyancy-driven instabilities are generally on the order of

103 depending on the geometry; for convection between two flat plates, the critical

Rayleigh number is 1707, for a sphere under radial gravity it is 3091 [29]. Simi-

larly, the convection in the "coffee stain" study relies on a combination of nonuniform

evaporation and the pinning of the contact line. As our experiments are performed

on a superhydrophobic surface, the contact line is free to move and we can rule out

the coffee ring phenomenon. Finally, in our geometry, the temperature inside the

droplet increases locally near the contact point creating a temperature gradient di-

rected towards P. Since the surface tension of water increases as the temperature

decreases, this temperature gradient generates a gradient in surface tension at the

interface, which drives the fluid upwards at the surface of the droplet generating the

experimentally observed vortex.
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From simple arguments, it appears that the convection rolls may originate in

thermocapillary effect. In order to confirm this hypothesis, we further investigate the

time scales of the problem via a scaling analysis.

6.3.1 Scaling analysis

As observed by [141] "because flows actually powered by ... interfacial tension have

been overlooked or misconstrued so often, there seems to be a need for simple criteria

by which they can be recognized." We can address this question in our particular

geometry and determine under what conditions we expect to observe buoyant instead

of Marangoni convection.

From (6.17) we find that the characteristic velocity of Marangoni flows scales like

UM ~ aAT/p. To find the characteristic velocity associated with buoyant convection,

we balance the rate of viscous dissipation in the roll with the rate at which potential

energy is gained as the heavier fluid descends:

I pV(u)2 dV ' ApgUBa 3 . (6.1)

The integral on the left scales as p(UB/a)2a3 , hence the characteristic velocity as-

sociated with buoyancy-driven convection is UBs Apga2/p. This velocity can be

also written UB - ctpga2AT/p with Ap - atpAT. Which convective instability is

actually observed in the system depends on the characteristic time scales. In general,

the instability with the fastest growth rate, or shortest characteristic time scale, will

be the one that is observed. Thus, if we define a dimensionless number 7B/TM, we

expect to observe Marangoni convection if this number is large and buoyancy-driven

convection if this number is small. Again, it is simple to distinguish between these two

modes in an experiment as the rolls switch directions, rolling inward for Marangoni

and outward for buoyancy. Estimating the size of TB/T7M we find:

TB UM aAT a

M UB Apga 2  atpga2
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Figure 6-4: Characteristic timescales for various sizes of water droplets. The gray
shaded region indicates the range of droplet sizes in our experiments. Material pa-

and Ra = atga3 AT/v,. As with convection in thin films, we expect to observe

Marangoni convection for small length scales (i.e, in thin films and small drops) and

buoyant convection for larger length scales (thicker layers and larger drops) [141]. For

water, the transition to buoyancy-driven convection occurs around a plets.1 cm which

is considerably larger than the droplets in our experiment.

However, this is not the whole story. Although wC. Note thfar from the onset of

buoyancy-driven convtersection in our experiment, there is another buoyancy-driven in-

stability that one might expect to observe. Namely, as the fluid is heated from below,

and cooled from above, we have the inherently unstable situation of a sphere with its

center of mass above its geometric center point - hence, the droplet should roll. For

a sphere, this instability should manifest for arbitrarily small Rayleigh numbers. In

our experiments, we are saved from this complication because, in the neighborhood

of the contact point, the sphere is slightly deformed giving the droplet a stabilizing
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base. The extent and effectiveness of this finite size contact region can be calculated

following the arguments of [106], and we find that the size of the contact region, f,

scales like the inverse Capillary number, fc, namely:

a2
-l = a

2 - (6.3)

Again, the characteristic velocities and time scales associated with rolling can be

computed by balancing the rate of potential energy gained by rolling with the rate of

viscous dissipation. In this case, the viscous dissipation is restricted to the deforming

contact region (as the rest of the drop is in solid body rotation):

PV(u) 2dV p ( 2 3 - ApgURa 3  (6.4)

Hence the characteristic velocity associated with the rolling instability UR is given by

UR ~ Apggl C/( p a). Comparing the time scale associated with the onset rolling with

that of buoyancy-driven convection, we find:

7R UB a3  3
uR Bo' (6.5)

where Bo is the Bond number. Hence, rolling will manifest at small Bond numbers.

All three time scales are summarized in Figure 6-4 where the material parameters

have been chosen for water. As one can see from the figure we expect to see transitions

between the three types of instabilities as one varies the radius of the droplet. For

very small drops, we expect to see rolling (a < .3 mm). This is consistent with our

experimental observations as very tiny droplets either roll off the apparatus or, if they

are pinned with a pipette, exhibit large swirling motions on the scale of the droplet.

For droplet sizes ranging between (0.3 mm < a < 7 mm), we expect to observe

Marangoni convection namely toroidal convection rolls flowing inward. This is

what was observed in the bulk of our experiments. Finally, for very large droplets

(a > 7 mm) we expect to see a transition to buoyancy-driven convection. This

parameter range was outside our regime of interest as the "droplets" are considerably
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larger than the Capillary length and deviate considerably from the spherical geometry

assumed herein. Hence we restricted our experimental data to droplets below this

transition.

This scaling analysis confirms the hypothesis that the motion inside the droplet is

due to a Marangoni effect and we therefore proceed to analyze the effects of surface

tension gradients in our system. In the following subsection, both the momentum

and the energy of the fluid are modeled, subject to the relevant boundary conditions.

6.3.2 Governing equations

In this analysis, we consider the small Reynolds number limit and neglect inertial

effects within the drop. Thus, the governing equations for the fluid motion are the

incompressible Stokes equations:

Vp = pV 2U, V u = 0 (6.6)

where p and u are the pressure and velocity fields within the droplet respectively.

The governing equation for the heat transfer problem is given by conservation of

energy

pCp ~ + u -VT = kwV 2T + - 6(r - ro) , (6.7)

where ¢ is the viscous dissipation per unit volume and T is the temperature field

within the droplet. In equation (6.7), the heat conduction term scales as kwAT/a 2 ,

106 for a characteristic temperature difference inside the droplet of about 10K. On

the other hand, the viscous dissipation term scales as pUmeas2 /a2  10- 3 and is

therefore negligible relative to conduction. In this simple system, heat exchange

takes a number of different forms - convection, conduction, and evaporation - at

the boundary as summarized in Figure 6-1. The small region of contact between

the hydrophobic surface and the droplet is modeled as a point heat source. We thus

include a delta function at the contact point of intensity 4s, where 4s has units of

J s- 1 and ro is the vector position of the contact point. Alternatively, the three-
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dimensional delta function 6(r - ro) in equation (6.7) can be written as 6(r - ro) =

6(Jr - rol)/47rlr - ro 2 . Section 6.6 investigates the validity of the point heat source

assumption on the solution.

Using values from Table 6.2, the characteristic time scales for heat advection and

diffusion are given by

pCpa2  
a

tdiff = kw S , tadv - 1 s. (6.8)
w Umeas

In our experimental observations, the vortex structure was observed to be stable and

unchanged for at least 60s. Thus, the convection rolls can reasonably be assumed

to be a steady state phenomenon over the time scale of the experiment (which is at

most a few seconds) and we neglect the time dependency in the energy equation.

The Peclet number, Pe, represents the ratio of the diffusive time scale over the

advective time scale. A small Peclet number therefore characterizes a diffusion dom-

inated heat transfer. Pe can be written as the product of the Reynolds number, Re,

and the Prandlt number, Pr:

Pe = Re -Pr . (6.9)

Although not rigorously negligible throughout the entire domain in the experiments,

the convective effects scale with Re as the Prandtl number is constant for a given

fluid; for water, Pr = pCp/kw - 7.2. Therefore, the Peclet number is considered

small in the following analytical study (to be consistent with the small Reynolds

number assumption above), and diffusion is considered to be the major mode of heat

transfer inside the droplet. The effects of a finite Peclet number are further explored

in section 6.7. Thus the governing heat equation reduces to Poisson's equation for

the temperature field:

kwV2T = ( r - r0) (6.10)
47rlr - ro012

Due to the point heat source approximation, the velocity and temperature field

are expected to be singular. Therefore, some care must be taken in defining the

Reynolds number as the velocity varies considerably within the droplet owing to
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the mathematical singularity at the point of contact where both the temperature

field and velocity field diverge. In this small region, neither the Peclet number,

Pe, nor the Reynolds number are small. However, elsewhere (in more than 99 %

of the volume of the droplet), the flows are slow and inertia is negligible (Re <K

1) in both the experiment and in the analytical solution. If the neighborhood in

which Re becomes significant is sufficiently small, we expect the model to capture the

experimentally observed structures reasonably well away from the point of contact;

however, one cannot expect the model to accurately reflect the behavior of the flow

in the neighborhood of the singularity. In reality, this singularity is mitigated by the

finite extent of the contact region; estimates on the size of this region are given in

section 6.8.

6.3.3 Boundary conditions

At the surface of the droplet both heat transfer, via convection and conduction to

the surrounding air, and evaporation tend to cool down the droplet. The convective

and conductive heat transfer at the interface between the water droplet and the

surrounding air is modeled with Newton's law of cooling [78], which can be written

as

Ot = ht(T - Ta) , (6.11)

where qt is the total heat flux due to convection and conduction, ht is the heat transfer

coefficient and Ta is the ambient temperature.

The local energy loss due to evaporation can be written as

Oevaporation= J [Cp(T - Ts) + Lv] , (6.12)

where J is the local mass flux due to evaporation. In our case T - Ts e 60K, thus

C,(T - Ts) 105 J kg- 1 and Lv 106 J kg -1 . Therefore, we neglect the first term

in equation (6.12) and assume that latent heat of vaporization does not depend on

temperature. The local mass flux J depends on a number of variables including the
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temperature at the interface T, the pressure at the interface p, the relative humidity

of the air Hm, and the local curvature R - '. Over the time scale of the convective

structure p, Hm and R - 1 are all constant, and J can be written as a function of the

local temperature T only. For small temperature differences, the mass flux J can be

safely approximated as a linear function of T.

Combining the two terms Ot (6.11) and €evaporation (6.12), the energy flux boundary

condition at the surface of the droplet takes the form

-kwVT-n = h(T - To) , (6.13)

where h is the effective total heat transfer coefficient, n is the unit vector normal to

the interface and To is a reference temperature. Because the equation is linear in the

temperature T, the reference temperature, To, can be scaled out of the problem and

does enter into our calculation.

The boundary conditions for Stokes equations (6.6) correspond to a stress bal-

ance at the surface of the droplet projected in the normal and tangential directions.

The normal stress balance is replaced by the assumption that the droplet remains

spherical. This assumption is experimentally satisfied because the Bond number,

characterizing the ratio of gravity over surface tension, is small (Bo = pga 2 /a < 1)

and because of the non-wettability of the substrate. The tangential stress balance

can be written as follows:

t.r.n = t - Vsa (6.14)

where 7r is the stress tensor, t is the unit vector tangent to the interface, Vs is the

gradient along the surface and a = o(T) is the surface tension. Thermocapillary

effects arise due to gradients in surface tension, which again may be approximated as

linear in temperature such that

a = Ua- a. (T-Ta) , (6.15)

where Ua is the surface tension at ambient temperature, Ta, and a is the first derivative
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of the surface tension with respect to the temperature at Ta.

6.4 Analytical solution

The assumption that the Peclet number is small decouples the energy conservation

equation from the Stokes equations (6.6). Therefore, (6.10) is solved first using the

boundary condition (6.13). Equation (6.6) is then solved introducing the previously

obtained solution for the temperature field in the boundary condition (6.14).

6.4.1 Nondimensionalization

The problem is nondimensionalized as follows:

i = r/Lref, = U//uref, p= P/Pref, T = (T- To)/ATref, (6.16)

using the scales

Lref = a, ATref = Os/47rkwa, Uref = alATref/P, Pref = PUref/a, (6.17)

where ATref is the characteristic temperature variation induced by a point heat source

of intensity (s and is obtained directly from the nondimensionalization of equa-

tion (6.10), and uref is the characteristic velocity induced by Marangoni stresses due

to the temperature gradient. It should be noted that with this definition, Uref is not

expected to be small, as it represents the characteristic velocity at the surface due to

the thermocapillary forcing, which we modeled as a singular forcing. Therefore, the

velocity in the flow is only expected to be on the order of Uref in the small contact

region and should be much smaller in most of the droplet.

The governing equations for velocity, pressure (6.6) and temperature fields (6.10),

as well as the boundary conditions (6.13) and (6.14) can be rewritten in dimensionless
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form:

Vj = V 2ui, (6.18)

V -ii=0 (6.19)

V2T = 60i - rol)V2 0 2 (6.20)

-VT-n = Bi T , (6.21)

t-i-n = t -VT , (6.22)

where Bi = ha/kw is the Biot number. The tildes on top of the dimensionless variables

will be omitted in the following sections; henceforward, all variables are dimensionless

unless otherwise noted.

6.4.2 Temperature field

The solution to equation (6.20) is obtained via separation of variables. Because the

equation is linear, the solution can be written as the sum of the Green's function of the

Laplacian with a singularity at ro, and a continuous function that can be developed

in Legendre polynomials. The problem is assumed to be axisymmetric and, in the

spherical coordinate system defined in Figure 6-1, the solution to the heat problem

can be written as the following summation:

1
T(r, 0) = 1 + cnrnP, (cos 0) (6.23)

(r2+ 1- 2rcoS ) n=O

where P, is the Legendre polynomial of order n.

By introducing (6.23) into the boundary condition (6.21), the coefficients, Cn, of

the series can be directly identified and evaluated as

1 - 2Bi
cn = I (6.24)2(n + Bi)

Details on this derivation can be found in appendix C.

146



6.4.3 Velocity field

For axisymmetrical fluid motions, the solution to the Stokes problem can be found in

terms of Stokes' streamfunction b ( [70]). The velocity field can be extracted from

the the streamfunction using the following relations in spherical coordinates:

1 a8 1 &b
ur= r2sin 0  Uo rsinO r (6.25)

In spherical coordinates, Stokes equations (6.6) become

E 2 (E 2 0) = 0, (6.26)

where
E2 - 2  sin (6.27)

a8 r 2  6 Sinae ( 62

Using separation of variables, the solution to equation (6.26) can be written as

the following series:

00

(r, 0) = (R, ' + Sr-n+1 + Tnrn+2 + Unr-n+3) C-1/2 (cos 0) , (6.28)
n=2

where C1/2 is the Gegenbauer polynomial of order n and degree -1/2 defined as

/2(cos ) = [Pn-2(COS ) - P(cos 6)] for n > 2 (6.29)2n - 1

Details on the derivation of the solution to equation (6.26) may be found in [70]. The

streamfunction (6.28) is then introduced in the boundary condition for the Stokes

flow (6.22) using (6.25), which takes the following form in spherical coordinates:

a r + -- r = aT (6.30)
Identifying the coefficientsr r and S in equation (6.28) yields an analytical

Identifying the coefficients Pn, Q,, R, and Sn in equation (6.28) yields an analytical

147



T
1E-00
101
5E02

8E04
4E-04
2E-04
1E-04

Figure 6-5: Analytic solution of the temperature field and corresponding streamlines.
The colormap represents the dimensionless analytical temperature field for Bi s 800
and the black arrows represent the streamlines of the fow in the centerplane defined
by r = 0. The analytical solution is computed using n = 100 terms in the expansion.

expression for the streafficients, we expect the number of terms required to increfunction

linea (r,ly ) with (1- Finally, the velocity 1 + and u, can be deduced
8 + 1 equation 2(6.31) using equations (6.25).1/2

n= (2n-1)((n-1)+Bi)

Details on this derivation can also be found in appendix C. Using equations (6.23)

and (6.31), the temperature field and streamfunction can be easily computed. Fig-

ure 6-5 shows the temperature field (6.23) and the streamlines (6.31). The convergence

of the sums in the expressions for the temperature field and the streamfunction in

equations (6.23,6.31) is dependent on the Biot number, Bi. For higher values of Bi,

more terms need to be computed in order to accurately approximate the solution.

From the form of the coefficients, we expect the number of terms required to increase

linearly with Bi. Finally, the velocity field components, u, and so, can be deduced

from equation (6.31) using equations (6.25).
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Figure 6-6: Schematic ray-tracing diagram of the geometrical optics for a spherical
liquid droplet.

6.5 Experimental validation of the model

Using the experimental setup described in section 6.2, data was collected for a variety

of heat fluxes and drop sizes. The velocity of the flow at different locations was

determined by tracking particles. Following this procedure, details of the fluid flow

inside the droplet were experimentally reconstructed and compared to the analytical

solution developed in section 6.4.3.

6.5.1 Optical correction for spherical droplet

In order to compare the experimentally observed flow field to the analytical solution,

we need to correct the observed particle displacements for the optical deformation

induced by the fluid droplet itself. The image plane from the midsection of the

droplet is focused on the CCD chip of the high-speed camera through the optical

system (see Figure 6-2). However, the hemispherical droplet of water acts as an

additional lens between the midsection of the droplet and the optical system (see

Figure 6-6). Applying the Snell-Descartes law [68] to light rays close to the optical

axis, the system is found to be stigmatic to the first order and the image of an object
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M(0, r) in the midsection appears at the point M'(p', r') (see Figure 6-6) such that

Srwater. . Rwater
S= g(r) = --nar rsin arcsinr - arcsin r , (6.32)

r water [. (rwaterr' =f(r)= nwater cos arcsinr - arcsin nwater r , (6.33)
?air [ a nir ]

where r is the distance from the object to the optical axis (recall that lengths have

been scaled by the drop radius), r' the distance from the image to the optical axis, p'

the distance from the image to the midsection plane of the droplet, nwater the index

of refraction of water and nair the index of refraction of air. The optical distortion

increases with distance from the optical axis. When applied to the raw data, this

analysis provides a correction of approximately 17 % (of the radius) for r = 0.65,

which is the upper limit of our recorded data.

6.5.2 Experimental and analytical results comparison

To compare the analytical solution of the flow field to the experiment, the velocity

profile along the x-axis was measured by tracking particles in the focal plane whose

trajectories remained close to the x-axis, defined by 0 = 0 in spherical coordinates (see

Figure 6-1). The observed position x' of the particle along the axis and its velocity

lu'l were recorded and the real position x = r along the x-axis and velocity lul luxI

were deduced by correcting for optical deformation as described in section 6.5.1,

x = f-'(x') and lul = df-l(x')|u'I. Several experiments were performed for different

magnitudes of the heat source, 4%, as summarized in Table 6.3. The heat flux, 4s, was

evaluated by measuring the rate of change of the radius of the droplet, which is related

to the evaporation loss. Assuming that the bulk of the energy transfer was used in

the phase transition, the heat flux is approximated as 4 a, 47ra2'pL,. The radius of

the droplet was roughly half a millimeter in all three experiments. The heat source

intensity on the other hand varied significantly between the different experiments

(see Table 6.3). The velocities measured inside the droplets were nondimensionalized

using the scaling described in equation (6.17).
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a in mm (Is in J s- 1  ATref in K uref in m s- 1

Experiment 1 0.534 0.0139 3.51 0.54
Experiment 2 0.681 0.0453 8.97 1.39
Experiment 3 0.664 0.0657 13.34 2.06

Table 6.3: Summary of the experiments

Figure 6-7 shows the nondimensional flow velocities from all three experiments

measured along the x-axis and Figure 6-8 represents the experimentally observed

particle pathlines plotted on top of the streamfunction as computed for Bi = 800.

Streamlines were recorded experimentally by tracking one particle over an extended

period of time. The different sets of data shown in Figure 6-7 all collapse onto one

curve as anticipated, which validates the scaling. Additionally, this confirms that,

in the low Reynolds number and low Peclet number regime, the internal dynamics

and heat transfer of the droplet only depend on one nondimensional parameter, the

Biot number. Finally, an important observation, which can be made by looking at

the velocity profile in figure 6-8, is that the experimental data validates our initial

assumption of a localized heat source at the contact point. In fact, the experimental

data itself shows a singular-like increase in the velocity of the flow between the center

of the drop and the contact point. Experimental data can only be recorded up to a

distance of 65 % of the radius a away from the center, because of optical limitations.

Over this distance, the increase in velocity, which is measured experimentally, is of

more than a factor of ten and strongly suggests that the flow velocities close to the

contact point are indeed fairly high.

The only parameter that is not explicitly known in the experiment is the effective

heat transfer coefficient, h, which appears in the Biot number. To calculate the

analytic velocity profile in Figure 6-7, we first computed a family of profiles along z,

each profile corresponding to a different Bi, and fit the data by minimizing the error

between the analytical solution and the experimental data. The fitted Biot number

has a value of Bi = 800, which corresponds to a generalized heat transfer coefficient

of h 7.1 x 105 W m- 2K- 1. For this Biot number, the analytical solution and the
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Figure 6-7: Analytical and experimental velocity profile, jul. The spatial variable x
represents the dimensionless coordinate along the x-axis: x = 0 lies at the center of
the droplet, x = 1 lies at the contact point. The black line represents the analytic

velocity profile in the drop for Bi = 800. Different symbols correspond to three sets
of data with heat sources of different intensity. Error bars give an estimate of the

error in measuring the velocity of a particle by extracting the position of its centroid
in successive frames and hence are a reflection of the resolution of the image.
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Figure 6-8: Analytical and experimental streamlines. The colormap represents the

analytical streamfunction; black lines represent particular streamlines computed an-
alytically; black squares represent experimentally recorded particle trajectories. The
analytical solution is computed using n = 100 terms in the expansion.

experimental data are in extremely good agreement.

The fitted value for the heat transfer coefficient h can be compared to the value

of the coefficient in the case of a sphere in quiescent air, for which the heat loss is

only due to diffusion. For this system, the heat transfer coefficient is on the order

of 102 W m- 2K - 1 , corresponding to the small Biot number limit in which only small

temperature gradients are expected inside the sphere. This observation suggests that,

in our case, evaporation is the dominant form of heat transfer from the droplet to the

surrounding air and thus h ; he. This is consistent with our heat flux estimations,

since we have chosen s ff evaporation dS.

However, even for heat transfer in systems involving phase changes (which can

easily achieve h's on the order of 104 or 105 W m- 2 K-1), our value is quite high and

we believe that, in neglecting convective transport (i.e. assuming small Peclet number

everywhere) we are perhaps overestimating h. While our results are correct to first

order, the addition of convective effects would tend to smooth out the temperature

gradient near the singularity, lowering the effective heat transfer coefficient. A quan-

titative analysis of the first order effects of finite Pe is included at the end of the

chapter in section 6.7.

153



6.6 Validity of the point heat source assumption

In this section, we investigate the validity of the point heat source assumption, which

leads to a singular analytical solution. For small droplets, the radius £ of the contact

region between the droplet and the substrate decreases rapidly as suggested by the

scaling giving in equation (6.3) of section 6.3.1. In our experiments, the ratio between

the radius of the contact region and the radius of the droplet is on the order of

f/a x 10 % (see Figure 6-3).

In the following, the heat source is no longer modeled as a singular heat source

but rather as a distributed heat source. The governing equations for the heat prob-

lem (6.10, 6.13) are replaced by

kwV 2T = 0 , (6.34)

-kwVT"n = h(T' - To) + )f (cos0) , (6.35)
47ra

which can be written in nondimensional form

V 2 T = 0 , (6.36)

-VTa-n = Bi T" + fo(cos0) . (6.37)

The function fQ(cos 6) characterizes the distribution of the heat source and is sub-

jected to the normalization constrain

f(cos 0)sin dO = 2 (6.38)

Here we consider a sequence of functions fo defined as follow:

6(cos -cos a)2 a

f'(cos0) = (1-cos ) 0 < 0 < ,
0 a<0 <r.

a characterizes the area over which the heat source is distributed. For small a, this
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Figure 6-9: a) Error |IT - T 112 as a function of a showing the convergence of the
sequence Ta to the point heat source solution T. b) Velocity profile Jul along the
x-axis for the point heat source solution and for distributed heat source solutions with

=/a = 10 % and 20 %.

sequence of functions converges to a delta function.

A derivation similar to the one presented in appendix C yields the following ex-

pressions for the temperature field and the streamfunction:

T (r,O) _ -i--rnPn(cosO) , (6.39)
n + Bi

n=0

00 n(n- 1)f

(r, 0) = 0 -2(2n- 1)(n- (rn - rT+2) C-1/2 (cos 0), (6.40)

where
2n+l 1

f 2 f f2(x)P (x)dx. (6.41)

Figure 6-9(a) shows the convergence of the solution Ta for a distributed heat

source to the solution T for a point heat source as a goes to zero (i.e.: the surface

area over which the heat source is distributed goes to zero). Figure 6-9(b) shows the

magnitude of the flow velocity along the x-axis within the region of the droplet that

can be observed experimentally (see figure 6-7). The velocity profile for a heat source

distributed over 20 % of the radius is already very close to that of a point heat source

and it is even more so for a source distributed over 10 % of the radius. As expected

the distribution of the heat source only affects the solution of the flow in the vicinity

of the contact region.
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In the present study, the model is compared to experimental results in a region

of the droplet far enough from the contact region (see figure 6-9b). Hence, our

original assumption of a point heat source is valid and accurate enough to allow

comparison between our experimental data and the analytical expression for the flow

and temperature fields.

6.7 Effect of finite Peclet number

The only major physical phenomenon, which we neglected in our analytical study

and which is susceptible to affect our results, is the advection of heat. In this section,

we investigate the first order effect of a finite Peclet number on the steady state

temperature, pressure and velocity fields. For a finite Peclet number, the governing

equations in nondimensional form can be written

6(2 r - rol)
V 2 T - (=r - ro2 = Pe u* VT, (6.42)

r - ro12

V 2u = Vp , (6.43)

V -u = 0 , (6.44)

-VT.n = Bi T, (6.45)

t.Tr.n =t -VT . (6.46)

The fields are each split into two terms: u = uo + ul, T = To + T and p = Po + Pi,

where the subscript "0" represents the known analytical solution to the zero P6clet

number problem (6.23 and 6.31) and the subscript "1" represents the perturbation

fields due to the nonlinear advection term for finite Peclet number. This splitting

scheme is introduced in equations (6.42-6.46). The solution (uo,po, To) to the linear

system with a point heat source is subtracted from the finite P6clet number system,

leading to a set of equations for the perturbation field (ul, pi, T1). These equations

are discretized using finite differences and the full nonlinear system is solved using
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the following iteration scheme

V2T"+1 - Pe (uo + u) VT '+1 = Pe (uo0 + u ) VT 0 , (6.47)

V2U + 1  Vp + 1 , (6.48)

V -u + 1 =0, (6.49)

-VTn+*.n = Bi Tn+1 , (6.50)

t-Tr"i + n = t - VsT+1  . (6.51)

The iteration procedure is stopped once the convergence criterion IIu+1 - u 12 C

is satisfied.

When the advection term is included, cool water is advected downwards through

the center of the droplet towards the contact point, which lowers the temperature in

this region. Similarly heat is removed from the contact region and advected to the

sides of the droplet, which reduces temperature gradients. The general effect is to

decrease the Marangoni stress at the surface of the droplet and thus, for a given Biot

number, we expect to observe smaller velocities. Hence, increasing the Peclet number

has a similar effect on the velocity field as increasing the Biot number: both tend to

lower the temperature gradient at the surface and as a consequence the Marangoni

stress. Therefore, it is expected that for a given Peclet number the Biot number

required to fit the experimental data will be lower than the first order estimate in

which we neglected heat advection.

This can be seen on figure 6-10(a). Consider the velocity profile along the x-axis

for a Biot number of Bi - 600 and a Peclet number of Pe = 3500. This velocity

profile is very similar to the velocity profile for Bi = 650 and Pe = 0. In this case, we

call effective Biot number BiEff = 650, the Biot number which has the most similar

velocity profile when heat advection is neglected (Pe = 0). It can be seen that a finite

P6clet number has a similar influence on the velocity profile along the k-axis as an

increasing effective Biot number. Note that although a Peclet number of Pe = 3500

seems to be very large in this calculation, the heat advection term remains small in
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Figure 6-10: (a) Effect of increasing Biot number and increasing Peclet number on the
velocity along the x-axis. (b) Apparent biot number for which the velocity profile of
the numerical solution along the x-axis best fits the experimental data as a function
of the Peclet number.

most of the droplet and is only finite and non negligible around the contact region.

This is because the P6clet number is proportional to the reference velocity uref used

in the nondimensionalization, which is large and characteristic of the velocity induced

close to the heat source singularity (see section 6.4.1). The value of the Pclet number

computed with the flow velocity measured at the center of the droplet would still be

small as discussed in section 6.3.2.

Figure 6-10(b) further characterizes the increase in effective Biot number as the

P6clet number is increased for a fixed Biot number. The effective Biot number is

found by minimizing the error between the velocity profile for a given Biot and Peclet

number and the velocity profiles for a given Biot number and no heat advection. As

expected, the effective Biot number always increases with increasing Peclet number

indicating that, by neglecting heat advection, our lowest order model is likely to

overestimate the Biot number and the effective heat transfer coefficient. The gravity

of the error is illustrated in Figure 6-10(b), when the heat advection remains small

and the governing equation are only weakly nonlinear.
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6.8 Discussion

In conclusion, we have observed convective structures inside water droplets sitting

on superhydrophobic surfaces. A physical model has been proposed, suggesting that

these structures arise due to thermocapillary-driven Marangoni convection. Because

the Reynolds number and Peclet number are small and viscous dissipation is negligi-

ble, the heat transfer and fluid momentum problems decouple. It is then possible to

find a solution analytically in terms of Gegenbauer polynomials. This solution has the

form of a toroidal vortex and compares favorably with experimental measurements of

particle pathlines inside the drop. By matching the Biot number from experimental

observations to the numerical simulation, we are able to estimate the effective heat

transfer coefficient h 7.1 x 105 W m- 2K- 1 for droplets sitting on hot hydrophobic

surfaces.

It may come as a surprise that, in our physical model, the dynamics of the sys-

tem depends on only one dimensionless parameter, Bi, whereas a standard dimen-

sional analysis would predict four relevant dimensionless groups: the Reynolds num-

ber, Re, the Peclet number, Pe, the Biot number, Bi and the Marangoni number,

Ma = oaAT/lp. However, recall that as a first approximation, both the Reynolds

number and the Peclet are assumed to be small. Since Pe = Re - Pr, the Reynolds

number and the P6clet number cannot be varied independently without changing the

material properties of the fluid. This assumption reduces the number of independent

dimensionless groups to two. Furthermore, the governing equations are linear in ve-

locity thus the velocity scale may be chosen to eliminate a third dimensionless group.

By using the characteristic Marangoni velocity, aDs//kw, as a reference velocity, the

Marangoni number can be eliminated from the dimensionless governing equations.

Thus, the small Reynolds number assumption combined with the linear structure of

the governing equations leaves only one dimensionless parameter, Bi. Note however

that the dimensional velocities still scale linearly with the Marangoni number.

Furthermore, the analysis could be extended to include the influence of finite Pe

and Re by including a small Pe and Re perturbation about the base state computed
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herein. This introduces a weak coupling between the fluid flow and the heat transfer,

ultimately yielding a dimensionless heat transfer correlation function for the Biot (or

Nusselt) number as a function of Re, Pe and Ma. The first order effects of finite

P6clet number are described in section 6.7, however a detailed analysis is beyond the

scope of the present study.

Finally, beyond heat transfer implications discussed herein, it is quite remarkable

to see how regular and stable this self-generated and self-sustained flow pattern is.

It could be interesting to further investigate, what kind of Marangoni driven flow

patterns could be generated and controlled at the microscale. Such controllable con-

vective patterns could be exploited to enhance micromixing in fluid droplets [46] and

also possibly as an original microbiological assay [30].
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Chapter 7

Conclusions and outlook

7.1 Summary

In this thesis, we have presented a collection of work related to problems of motion,

transport and mixing in the inertialess low Reynolds number regime. While most of

the work consists of modeling and understanding the behavior of dynamical systems at

the micron scale, conclusions and observations are presented in the context of relevant

biological systems or compared to results obtained from direct experimentation.

Chapter 2 through chapter 5 present a detailed analysis of the locomotion of

self-propelled microswimmers. Chapter 2 describes the modeling approach and op-

timization framework developed in order to investigate optimal swimming strategies

for deforming slender bodies at low Reynolds number. A brief discussion about the

physical significance of swimming efficiency demonstrates the relevance of optimizing

stroke kinematics for microswimmers.

In chapter 3, we apply our modeling framework to a historical figure first intro-

duced by E.M. Purcell in the discussion of low Reynolds number swimming: the

three-link swimmer. In this chapter we discuss the existence and characteristics of

well-defined optimal stroke kinematics, which are found for this simple system. The

influence of the geometry of the swimmer is also investigated and swimmers are found

to perform better as they become increasingly slender, particularly in the limit of a

slenderness similar to those observed in biological systems. We also investigate the
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efficiency of large amplitude strokes and find that, while they do exhibit better ef-

ficiencies in the unphysical limit of infinite slenderness, their performances decrease

drastically as the slenderness is decreased. The efficiency of such stroke is well-below

the reported efficiency of our optimal stroke for any realistic value of the slenderness.

In the three-link case, the optimization procedure is found to perform well and to

converge towards an infinitely differentiable solution, which appears to be a global

optimum.

The modeling framework used for the three-link swimmer has been generalized in

order to represent flagellated swimmers, which are biologically more relevant. This

generalized framework is described in chapter 4. We first look at a single-tail swimmer

with no head attached. In this case, the effectiveness of the optimization procedure

is first verified against what is analytically known to be an optimal periodic traveling

wave solution: the saw-tooth wave. We find that our procedure converges to the

analytical saw-tooth regardless of the initial guess. We then use our method on a

typical uniflagellated swimmer with a spheroidal head and dimensions comparable to

sperm cells and find that regardless of the initial guess, optimal strokes are always

found to be traveling waves propagating from the base of the head to the end of

the flagellum. This suggests that microorganisms using this mode of locomotion

are in fact using an optimal swimming strategy. For such uniflagellated swimmers

the waveform is found to evolve as it propagates down the tail. The curvature of

the centerline is initially higher as the wave takes form at the base of the head and

decreases slightly as the wave propagates. We further investigate the influence of the

geometry of the uniflagellate on the swimming efficiency. For the geometry of the

head, we find that there is a trade-off between minimizing the axial drag coefficient

and maximizing the normal drag coefficient, as both lead to increase in efficiency.

We also find the existence of an optimal tail length for a given head size, which

lead to an optimal geometry criterion. Further looking at published data on sperm

morphometry for all mammalian species, we find that this criterion is reflected in

biological microswimmers.

Chapter 5 presents a study of biflagellated swimmers using a more general for-
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mulation of our model, which is able to consider multiple flagella. This analysis

is inspired by the experimental observations of stroke patterns of the green algae

chlamydomonas, which is known to undergo strokes which are structurally different:

an undulatory stroke, which resembles traveling waves observed in many smaller uni-

flagellated organisms and a breaststroke, which resembles the effective-recovery stroke

observed in larger ciliates. In the case of biflagellates, the optimization procedure is

observed to converge to different local optima, depending on the initial guess for the

stroke and whether a swimming or feeding efficiency is considered. All experimentally

observed strokes are found to be local hydrodynamic optima. Undulatory strokes are

found when optimizing for swimming efficiency and starting from small amplitude

strokes. Breaststrokes are always found when optimizing for feeding efficiency, re-

gardless of the initial guess and are also found when optimizing for the swimming

efficiency, with the initial guess being the feeding efficient breaststroke. Hence the

breaststroke is found to be efficient both for swimming and for generating feeding

currents, which can enhance transport of nutrient uptake. Undulatory strokes are

found to be only locally optimal for swimming. An important observation from our

investigation of both uniflagellates and biflagellates is that all biologically observed

stroke patterns are found to be hydrodynamical optima, with no further consideration

of the internal dynamics of the swimmer. This fact strongly emphasizes the crucial

role of the hydrodynamics in the internal self-organization of the flagellum.

A final investigation of self-organized mixing and transport at low Reynolds num-

ber is presented in chapter 6. We no longer consider biological systems and look at

self-sustained and regular convective structures in microdroplets. Experiments are

performed on small droplets sitting on top of superhydrophobic substrates for which

the contact angle approaches 180'. Upon heating of the substrate, a self-sustained

toroidal convective roll is observed and experimental data is recorded. We perform a

scaling analysis which shows that this mixing pattern originates in thermocapillary

Marangoni flow at the surface of the droplet. An analytical solution for the temper-

ature and velocity fields inside the droplet is derived in the limit case of a inertialess

and diffusion dominated system characterized by small Reynolds and P6clet num-
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bers. The solution agrees with experimental data. The effect of non-negligible heat

advection, characterized by a finite Peclet number, is investigated numerically.

7.2 Future work

The present investigation lays the groundwork for further complementary studies,

which could be addessed by extending and improving methodologies developed in

this thesis. It also raises new questions, which will require the development of new

tools.

Cilia

A direct extension of the work presented herein would be to conduct a similar study on

a single cilium in order to see whether the effective/recovery stroke is optimal from

a hydrodynamic standpoint. Given the recent technological interest in designing

artificial cilia for microfluidic applications, this procedure would allow one to find

cilia strokes, which are effective at moving or mixing the fluid, depending on the

needs of the particular application. This would constitute an extremely useful tool in

the design of artificial cilia devices. Furthermore, recent studies have suggested that

hydrodynamic interactions may be responsible for the metachronal wave observed in

beating cilia [66]. Thus, it would be interesting to extend the study to an array of

cilia beating collectively and investigate the relevance of metachronal coordination

and phase differences between adjacent cilia with regard to motility. Some insight

could be found as to whether cilia exhibit optimal self-controlled locomotion. This

study would require a more efficient implementation of hydrodynamic interactions

(as it is done in suspensions simulations for instance [158,159]) in order to handle the

increasing complexity of the system.

Interacting swimmers

The coordination of cilia further opens the door to the investigation of collective and

synchronized behavior at low Reynolds number. Such phenomena are in fact a dom-
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inant aspect of the motility of microorganisms and give rise to extremely complex

dynamics. Recently, the effect of coordination on transport, mixing and diffusion has

been investigated in colonies of chlamydomonas (volvox) [145,147] as well as suspen-

sions of microswimmers [44, 72,138]. In general, accurate numercial representation of

both the near and far field hydrodynamic interactions in such systems is extremely

challenging owing to the large number of interacting free agents. Looking at a simple

system made of two interacting swimmers could give insights as to how and why coor-

dination occurs as well as the existence of stable, unstable or oscillatory cooperative

swimming configurations.

Suspensions of swimmers

Transport properties in swarming suspensions of microswimmers have been studied

numerically by several authors, who computed and tracked the exact motion of a

large number of interacting swimmers [44, 72, 138]. These computations are fully

deterministic and the time integration of each trajectory requires the evaluation of

all the interaction terms in addition to imposing the force and torque free conditions

on each swimmer. However, experimental video recordings of swarming colonies of

bacteria show what appears to be a highly stochastic phenomenon. It would be

interesting to develop a statistical framework for the analysis of such suspensions.

Rolling spheres on superhydrophobic surfaces

Finally, it could be interesting to follow our investigation of thermocapillary driven

convection, with a stability analysis of the toroidal convective roll. The scaling anal-

ysis in section 6.3.1 suggests that the convective inner motion of the droplet can

become unstable because of the rolling instability due to the gradient in density.

This instability has in fact been observed experimentally, although it could not be

reproduced systematically. It has been further observed that in such cases, when the

droplet begins to roll, it can spontaneously depart and accelerate at the surface of the

substrate. Inducing motion of droplets on a solid substrate has been achieved through

chemical gradients [7, 82] or electric fields [67]. If controlled, this mechanism could
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have interesting applications as it would provide a purely mechanical mechanism to

transport small amounts of fluid.
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Appendix A

Three-link swimmer coefficients

In this appendix, we describe the expressions of all parameters used in the model

of the hydrodynamics around the three-link swimmer. All notations used for the

geometry of the three-link swimmer have been introduced in section 3.2.1. Let si be

the arc-length along the centerline of the nodes between two links such that Si+l =

si + 2Li+1 and so = 0. The center of each link is defined by the arc-length ai such

that ai+1 = i + Li+1 + Li and ao = 0.

A.1 Expression for drag coefficients

The expressions for the matrices Aq given in equation (3.5) are evaluated by splitting

all integrals over each link. We assume that the point of arc-length s is on the ith

link, such that s E [si_ 1 si]. The local hydrodynamic force fi(s) at s is given by

equation (3.2) and the subscript i is simply a reminder that s is on the ith. It can

be readily seen in equation (3.2) that the local hydrodynamic force f (s) depends on

the velocity distribution along the entire swimmer. We reformulate equation (3.2) by
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separating the contributions of each link:

3

fi (s) = fi (s) ,
j=1

fi(s) _ -U(s) lim (JJ(s) - U(s) In 2c) ti U(s)
27 - ln + E-0 no 2i [tt - 21] - n2 [3t it i - 21]

ff (s) J (s)- J(S)[titi - 2 I] ,
27p In2 K

where

1 fs-2Le -
J (s) - S+ A x I - -ti U(s)ds,

2 _1 - Js+2L 3 "
1 " I aa 1

JJ(s) = 2 +a ×x I-2tAt1 -U(A)ds, forij.

The local velocity U(s) at a point on the ith-link such that s E [s-I_ si] can be

readily expressed in terms of the components of V as

U(s) =( ) + (s - j) Oi ni.

With this expression for the velocity at each point, the local force can be integrated

over the length of each link to find the total force and torque applied on each link.

Principal hydrodynamic matrix A'

The coefficients for the matrix A' charaterize the hydrodynamic drag on the ith-link

due to its own motion. As mentioned in section 3.2.2 all moments are taken about

the center of the middle link. The value for all entries of the A' matrix can be found

analytically and after integration they take the following form:

ai b 0

A = bi ci 0

ai(y2 - Yi) - Ci(X - Xi) ci (y2 - yi) - b (X2 - Xi) di
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with

ai = cI c os2i O + C- sin2 0 ,

bi = cl sin2 + C coS 2 8i,

ci = (c - cz) sinOicos Oi

di = c

and

c 47rLip 8rLi 87L 3
-In( ) - In( ) - - - 3(ln(l) + L)

Hydrodynamic interaction matrix A3

We now turn to the hydrodynamic force due to the interaction between the different

links. The matrix Ai charaterizes the hydrodynamic drag on the ith-link due to the

motion of the jth-link. We first need to find expressions for Ji (s) as a function of

Vj, for s E [si- 1 si]. We therefore substitute the velocity along the jth-link using

equation (A.1) and analytically evaluate all integrals

J ( (J)(S) (J)2(S) (J)(S) V , (A.1)

(J)21(S) (J)22(S) (Ji)23(S)

where

1 cos 3Pj'(s) - 2sinOy Q(s) cosROjR(s) - 2 sinO S (s)
VD 11 (s) - In Tj3 (s) + z -7

2 4P((s) 2  Q(s)2  (4 Rf(s) 2 + S(s)2

sin j P (s) + 2 cos O Qj(s) sin j R(s ) + 2 cos S(s)
(J12 (S) z 2

4 P(s)2 S)2  4 R(s)2 + S (s)2

1 ssin ln(s) _+ (s)
(2)13S) ()y - s sin i) In T() S(S)2 2 P 2() + ()2 Rc~)~ + S (S) 2
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2 sin jP (s) + cos Oj Q(s) 2 sin OjR' (s) + cos 0 S(s)

4 /P(s)2 + Q(s)2  4/ R (s) 2 + S, (s) 2

1 2 cos OR P (s) - sin Q (s) +2 cos jR ,(s) - sin S (s)

2 4P ) 4 (S)2 + S (S)2

(J) 2 (s = S COS inT(s) - ) +In S) - S) R(s)

4P(s) 2 P+ Q(s)2  4 R (s) 2 + S (s) 2

We used the following notation simplifications:

X - Xj - Xi,

Y = Yj-Yi,

PiF(s) = SCos 0- COSOj - x,

Qj(s) = ssin - sinO - y,

Ri(s) = Sscos 0 + cos0 - x,

Si(s) = ssin + sinOj - y,

cos j P0 (s) + sin Oj Q (s)
cos Oj Ri (s) + sin Oj Si(s)

The local hydrodynamic force at the arc-length s E [sil si] due to the motion of

the jth-link can be deduced directly from equation (A.1) as:

S(f)(s) (f)12() (fi),13 (s) 27rpJti (s)

(fl)21(S) (f3) 22(S) (f )23(S) n2 -

All coefficients of the matrix Aq are obtained by numerical integration of these re-

lations between s = si-1 and s = si to match the total hydrodynamic force and

moment (about the center of the middle link) on the ith-link due to the motion of the

jth-link. In this study we use a ten-point gaussian quadrature rule for the numerical

integration.
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A.2 Expression for the artificial lubrication

We now describe the artificial lubrication term mentioned in section 3.4.2, which is

used in the three-link model, to regularize the slenderbody theory formulation by

R.G. Cox [41]. The short range lubrication interaction between two bodies have been

investigated by Claeys & Brady [34]. In general, the lubrication term is simply added

to the far field hydrodynamic interaction term and only dominates the interaction

when the minimum distance between the two bodies is close to one diameter of the

fiber. This approach is commonly used in suspension simulations [24,35].

Consider two identical and parallel slender cylindrical fibers approaching one an-

other at a velovity U in the direction normal to their centerline. The forces F acting

on each fiber are equal and opposite in sign and can be computed using the lubrication

approximation

F 7/pr3 LU (A.2)
8 6)

where L is the length of each fiber, r its radius and 6 is the gap distance between

the two. In this analysis, we artificially account for lubrication by assuming that the

ith and i + I th links both have a length of L2 and approach one another with parallel

centerlines at a velocity of L2(Oi+l - ~i)/2. We assume the gap to have a size of

L2 0i+1 - 8il. We then use the simple expression for the lubrication force given by

equation A.2 to find the lubrication force acting on each link.

The lubrication force acting on each of the two neighoring links are equal and

opposite and hence does not affect the equilibrium equation of the total swimmer.

The lubrication term is only required in the computation of the viscous dissipation

and will increase it significantly when two neighboring links are getting too close.
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Appendix B

Numerical discretization of

flagellated swimmers

Here we give expressions for all matrices, which appear in the numerical representation

of the dynamics of flagellated swimmers. All notations used in this appendix have

been previously introduced in section 4.2.1 and 4.2.4.

For each element i = 1,..., N the expression for the matrices in equation 4.37

are obained by numerical integration of the equations of motion (4.26,4.27,4.28). The

distribution of hydrodynamic force per unit length f(s) is assumed to be piecewise

constant over each element and the integrals are evaluated by applying the midpoint

rule. The matrices in equation 4.37 yield the following expressions:

(1 0 -(yi-yo)
0 1 (xi - Xo)

i = ( n (2 exp(1) [I + 2tit - 2 [1 - tti])

41 8( IRi - R(J )(R - R-j) for i

/-ii = 0,

= 1 If+ titi
Ij - si for i j,

Vii = 0.
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Note that, eventhough both matrices Mii and Afii are individually singular, the dif-

ference between the two Mi - ijV vanishes (see equation 4.26) and we can thus freely

set both Mii and jAi to be equal to zero.

The evaluation of Vio and Wio involves the evaluation of integrals over the constant

distribution of singularities located between the two foci of the prolate spheroidal

head. A change of variables rescales the integral between the two foci to an integral

for ( between ( = -1 and ( = 1. The numerical integration is done by means of

an Nq-point gaussian quadrature rule. The q quadrature points are called (q with

associated weights Wq. In our computations, the number of quadrature points used to

estimate these integrals is Nq = 10. With these additional notations, the expressions

for Voi and Woi, which characterize the ambient flow around the flagellum due to the

motion of the head, take the following form:

'1Z Rioq ( 1 -[i
Vio RioqRo Le 2  

2) I 3R Rio
q16 q Rio, I RO -3  2 Rio3 Ipo 5

3 L (1 - e2) e2 (1 p2)2 (Rioq to)no + (R 0q no)to
32rE W 3 (1 + e2 ) 4 IRoq15

q=1

+(1 -2)(Rioq to) (Rio, no)(- 5L e2 2 i + Ri13
41Rio 2  1 5joq I 3oJ

where Rio, = Ri - (Ro + c~qto).

The expressions for all matrices appearing in equations (4.38) and (4.39) can be

written:

1 1
2o = toto + -nono ,

c co

1 I +Roo + L2(1 -e2) -1 3(Ro -to)2
Mo - R + + +87rp JRoj| Roj| + 487rx |Roy3 1oj 15

6Roj - to 2toto ( -3 15(Ro -. to) 2

(toRo + Rojto) + Rojj 5 + Io 7

I~oj5 Irl" Ioj /
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1
7o = cI

1 [ Roj Ro]

ro = - (1 + e 2) X + 3(1 - e2)(Roj • to)(Roj no)
where R (2 o- R3 15

where Roj = Ro - Rj.
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Appendix C

Analytical solution for

temperature and velocity

C.1 Derivation of the solution

The boundary condition 6.20 takes the following form:

- T(r, 0) = Bi T(1, ).

The a priori expression for the temperature 6.23 is differentiated with respect to r

9 1 - cos 0
T(r, O) - -+ E ncP,(cosO). (C.2)

BT ,=1 (2 - 2 cosO)'r= n=O

This expression C.2 is introduced in the boundary condition C.1 and yields the fol-

lowing development:

1 - 2Bi
S(n + Bi)cnPn(COS) = (C.3)

n=O 2(2 - 2 cos 8)2

Using the identity
1 -2r cos

(r2±+ 1- 2COS 0)2 n=O
(C.4)
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at r = 1 and the unicity of the development in Legendre series, the coefficients c, can

be determined
1 - Bi

Cn - 2 (n + Bi) (C.5)

Introducing the development of the streamfunction in Gegenbauer polynomials

(6.28) in equation (6.25) and using the identities from appendix C.2 yields the fol-

lowing series expansion for the radial velocity:

n=o00

ur = (Rn r n-2 + S r - (n + l ) + Tr" n + Unr - ("- 1 )) Pn-l(cos9). (C.6)

n=2

Since ur has to be bounded at r = 0, the coefficients S, and Un must vanish. Also,

the radial velocity has to vanish at the interface r = 1 for the droplet to remain

spherical, thus Tn = -Rn. Hence the expansion (6.28) of the streamfunction can be

rewritten in a simpler form

00

0(r, 0) = Rn (n - n+2) Cn-1/2 (Cos ) . (C.7)

n=2

The expression for the temperature field 6.23 and for the stream function C.7 are

introduced in the tangential stress boundary condition 6.22

-- 2(-l2n)Rn  s n(n-1)cnl n / ( c  . (C.8)=2 (-)n sin 0 (2 - 2 cos) n=2 sin0 (C.8)

Using the identity

sin0 Cn1/2(COS 0)
3 = n(n - 1) (C.9)

(2 - 2 cos ) n=2 sin

the tangential stress boundary condition yields the equation

S2Rn(2n - 1) Cn-1/ 2 (COS ) - - (1 + Cn-1)(n - 1)n Cn 1 /2 (cos 0) . (C.10)
n=2 n=2

Thus, Rn = - - (1 + c 1 V n > 2. Rearranging the different terms, in order to
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isolate the singularity at ro yields the final expression for the stream velocity (6.31).

C.2 Properties of Gegenbauer polynomials

d C-1/2(cos O)
dO

d P_l1(cos 0)
dO

= sin 0 P-1 (cos ) ,

n(n - 1)C1/2 (COS O)
sin 0
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