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Abstract

Chapter 1 studies the optimal strategies of a monopolist selling a good to consumers who
engage in word of mouth communication. The monopolist uses the price it charges to
influence both the proportion of the population that is willing to purchase the good and
the pattern of communication that takes place within the social network. I find a number
of results: (i) demand is more elastic in the presence of word of mouth; (ii) the monopolist
reduces the price to induce additional word of mouth for regular goods, however for goods
whose valuation is greater for well connected individuals the price may, in fact, be greater;
(iii) the optimal pattern of diffusion involves introductory prices which vary up and down;
and (iv) exclusive (high priced) products will optimally target advertising towards indi-
viduals with many friends whereas common (low priced) products will target individuals
with fewer friends. Chapter 2 presents a model of friendship formation in a social net-
work. During each period a new player enters the social network, this player searches for
and forms friendships with the existing population and all individuals play a prisoner's
dilemma game with each of their friends. The set of friendships a player forms reveals
some information to a friend about how likely she is to subsequently cooperate. Coopera-
tive types are able to separate themselves from uncooperative types by becoming friends
with people who know one another. The threat of communication amongst people who
know one another prevents an uncooperative type mimicking a cooperative type. Chapter
3 analyzes the effects of policies which support electricity generation from intermittent
technologies (wind, solar). I find that intermittent generation is a substitute for base-
load technologies but may be complementary or substitutable for peaking/intermediate
technologies. I characterize the long run implications of this for carbon emissions.
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Introduction

The thesis contains three chapters. The first chapter considers a setting where consumers

engage in word of mouth communication about a product, it characterizes product demand

and a firm's optimal pricing and advertising behavior in this environment. The second

chapter presents a model of friendship formation where individuals signal their willingness

to cooperate through their choice of friends. The final chapter characterizes the long-run

implications of support for intermittent electricity generating technologies on the mix of

conventional technologies and carbon emissions.

Chapter 1 studies the optimal strategies of a monopolist selling a good to consumers

who engage in word of mouth communication. In the model consumers spread news about

the monopolist's good to uninformed consumers through a social network. The monopolist

uses the price it charges to influence both the proportion of the population that is willing

to purchase the good and the pattern of communication that takes place within the social

network. I find a number of results: (i) demand is more elastic in the presence of word

of mouth and this induces a downward bias in estimates of consumers' valuation for

the good which ignore word of mouth; (ii) the monopolist reduces the price to induce

additional word of mouth for regular goods however for goods whose valuation is greater

for well connected individuals the price may, in fact, be greater; (iii) the optimal pattern

of diffusion involves introductory prices which vary up and down; and (iv) exclusive (high

priced) products will optimally target advertising towards individuals with many friends

whereas common (low priced) products will target individuals with fewer friends.

Chapter 2 presents a model of friendship formation in a social network. During each

period a new player enters the social network, this player searches and forms friendships



with the existing population and all individuals play a prisoner's dilemma game with each

of their friends. The way in which new players search for and then establish friendships

reveals some information to a friend about how likely they are to be willing to cooperate.

This willingness is modeled through the discount factor of an individual which is private

information. Types who have high discount factors, and are hence cooperative, can signal

their type to new friends by also becoming friends with some of their friends. It is the

threat of communication amongst friends who know one another which deters an uncoop-

erative type from copying the cooperative type. I relate the sequential equilibrium in this

paper to a model of network formation by Jackson and Rogers (2007) which describes the

relative frequency of random and network based meetings and can explain many of the

stylized facts associated with social networks. The model of network formation in this

paper is used to predict when how the parameters describing random and network based

meeting might very across environments and the welfare implications in these cases.

Chapter 3 analyzes the effects of policies which support electricity generation from

intermittent technologies (wind, solar) on the long-run incentives for investment and gen-

eration from dispatchable electricity generation technologies (gas, coal, nuclear, oil) and

the implications for carbon emissions. The nature of electricity markets, instantaneous

matching of supply and demand, means that intermittent technologies are not perfect sub-

stitutes for any one dispatchable technology. The variability of load usually determines

the long run mix of generating technologies in a competitive electricity market. When

there is a significant amount of intermittent production the mix of other generating tech-

nologies is determined by the variability of net load (load net of intermittent output). Net

load may be more variable than load itself if the intermittent output is not too positively

correlated with load. This increase in variability results in a substitution away from base-

load generating technologies towards peaking and intermediate technologies. If peaking

and intermediate technologies are more carbon intensive than non-renewable "baseload"

technologies, this substitution can more than offset the emission benefits derived from the

output of the renewable technology.



Chapter 1

Tell Your Friends! Word of Mouth

and Percolation in Social Networks

1.1 Introduction

A widely recognized phenomenon is the diffusion of products and innovations within

populations. A key conduit for this diffusion is often word of mouth (WOM hereafter)

between members of the population. A large number of studies have found that WOM

is an important source of information for consumers' purchase decisions.' The significant

influence of WOM on purchasing decisions raises a number of questions pertaining to an

environment where consumers share their experience of a firm's good or service with each

other. How does WOM affect demand for a product? What strategies does a firm employ

in the presence of WOM? Do these strategies differ across different product categories?

How are traditional advertising strategies affected by WOM? This paper characterizes

product demand, and the firm's optimal pricing and advertising behavior by considering

how a firm may strategically affect the probability consumers engage in WOM through

the price and the subsequent pattern of communication which takes place. It combines

a model of a monopolist and a percolation model of WOM in a social network. The

1See Bass (1969), Sheth (1979), Arndt (1967), Day (1971) and Richins (1983), Mobius et al (2006),
Chevalier and Mayzlin (2006) Godes and Mayzlin (2003,2004), and Reichheld (2003).



percolation process describes the pattern of WOM that takes place in the social network

as a function of a firm's pricing and advertising strategies, and consumer's valuations.

The paper studies a monopolist selling a good to an initially uninformed population

with heterogeneous valuations for the good. Consumers are connected within the popu-

lation by a social network which is modelled as a random graph with an arbitrary degree

distribution. Consumers may communicate with their friends in the social network. The

content of communication is to inform the receiver that the good exists. In order to pur-

chase the good, consumers must first find out about the good and second be prepared to

purchase it at the price charged by the monopolist. The analysis assumes that an infin-

itessimal fraction of the population become informed and the remainder of the population

may only find out about the good via WOM diffusing through the social network. Later,

I also consider the case where consumers may become informed from costly advertising

undertaken by the monopolist.

WOM is modeled as a percolation process on the social network. Representing the

social network by a random graph with arbitrary degree distributions makes the analysis

of the percolation process particularly tractable and maintains a great deal of freedom

in the distribution of friendships across the population. The percolation process assumes

individuals are prepared to engage in WOM with a certain probability, which is a function

of the individual's valuation for the good and the price charged by the monopolist. This

probability is modelled by a step function, whereby the consumer only engages in WOM

if she is prepared to purchase the product. When the price is zero everyone is willing to

engage in WOM and the potential pathways for communication correspond to the social

network, however as the price increases fewer people are prepared to engage in WOM

and there are fewer pathways for communication. The connectedness of the network over

which communication may take place becomes increasingly disconnected at higher prices,

mitigating the effect of WOM. The analysis proceeds in two steps: firstly the formulation

of WOM as a percolation process allows one to map the primitive of the model, the social

network, and firm's strategy, price, to the network describing the potential communication

pathways between individuals; second the demand and profit of the monopolist may then

be derived as a function of this communication network, the price and level advertising.



The model is able to provide insights into how the social network affects the nature

and shape of demand for a good, what pricing strategies a monopolist may use in a static

and dynamic setting, the individuals to target advertising towards and how an owner of

the rights to advertise to individuals within a social network can benefit from utilizing

information about a consumer's relative connectivity. Demand has two regions, one at

high prices, where very few people hear about the good, and another at lower prices, where

there is a significant fraction of the population communicating about the good through

WOM. At these lower prices demand is more elastic than demand when the population

is fully informed. Estimates of consumers' valuation for the good are biased downwards

and estimated counterfactual responses to price increases are overstated when WOM is

ignored. Regular goods are priced below what a monopolist would charge absent WOM;

however for goods whose valuation is greater for people with many friends, the price can

in fact be greater. Introductory prices may include periods of sales as prices fluctuate

up and down to facilitate a more effective spread of the good through the population.

Increasing advertising costs may benefit consumers. Exclusive (high priced) products will

optimally target advertising towards individuals with many friends, whereas common (low

priced) products will target individuals with fewer friends.

1.1.1 Related literature

This paper is related to a recent economics literature which considers the optimal strat-

egy for an outside party trying to maximize an objective which is a function of agents'

actions in a social network (see for instance Goyal and Galleotti (2007), Ballester et al.

(2006), Banerji and Dutta (2006) and Galleotti and Mattozzi (2008)). The most related

of these is Goyal and Galleotti (2007) which considers the optimal advertising decisions of

a monopolist in the presence of local information sharing and local adoption externalities.

In contrast to these papers the present paper is the first to use a model of percolation

to capture the pattern of communication and endogenize the probability that individuals

engage in WOM as a function of their valuation for the good and monopolist's strategies.

The model addresses new questions concerning the optimal strategies the monopolist em-



ploys when it can affect the diffusion rate of information, and gains fresh insights into the

shape and nature of demand and the effects of diffusion of information via WOM on the

pricing and advertising behavior of the monopolist.

There are also a number of papers which consider diffusion of an action or adoption

decision of agents interacting in social networks. In these papers an agent's payoff is a

function of the actions of agents connected to them in the social network. Some of these

papers, like this paper, find that there is some critical threshold which determines whether

an action or behavior will successfully propagate through a population (for instance Ellison

(1993), Morris (2000), Jackson and Yariv (2007), Lopez-Pintado (2007)). In these papers

the probability an agent is prepared to propagate/pass on the action/information is a

function of the decisions of other agents, in this paper the focus is different, it is on the

strategic decision making of an outside party, the monopolist, when it can influence this

probability (also known as the percolation probability) and hence the rate and distance

of diffusion.

Within the broad literature that considers percolation processes, some other papers,

as this paper does, consider the spread of phenomenon on social networks which are

modelled by random graphs with arbitrary degree distributions, for epidemic diseases

(Newman (2002), Sander et al. (2002)) and fads/innovations (Watts (2002)). In contrast

to these papers, the innovation of this paper is to endogenize the percolation probability

itself by making it a function of the strategy (price) chosen by the monopolist. In doing

so I am able to relate the strategy of the monopolist to the characteristics of the network

and diffusion process.

1.2 Model

There is a monopolist selling a good to a population of consumers N = {1, .., n} who

have heterogeneous preferences for this good and are initially unaware that it exists. A

fraction e - 0 of these people will find out about the good exogenously, everyone else

must find out about it either through WOM from one of their friends or from informative

advertising undertaken by the monopolist. Consumers have a uniform valuation for the



good 0i - U [0, 1] and they derive utility Oi - P if they purchase the good and 0 otherwise.

The individuals who desire the product will be those for whom 0i > P. Hence the demand

for the good if the population is fully informed is 1 - P.

The population is connected by a social network described by a graph (N, B) with n

nodes and a set of edges - C {(i,j) i # j E N} where an element (i,j) CE indicates

there is a friendship between individuals i and j. The social network considered here is

an undirected network so if (i, j) CE then (j, i) E E. Each person may engage in WOM

with their friends. I assume that the probability an individual i passes on information

about the good to her friends is a function v (0, P) of the individual's valuation for the

good and the price charged by the monopolist. Specifically:

v(,P) = lif0-P>20 (1.1)

= 0if0,-P< 0

The key characteristic of this function is that it is increasing in the individual's willingness

to purchase the good 0 - P. It is the relationship between the probability and the price,

that allows the monopolist to affect the rate, and distance which WOM about the good

spreads within the social network.

All consumers are initially unaware of the good, so the fraction of the population that

eventually buy it is in part determined by how many people find out about it. The timing

of the model is as follows:

1. Each person in the population becomes informed with independent probability E 0

2. Monopolist chooses a fraction of the population w to inform directly through a costly

advertising technology

3. Informed consumers purchase the product if 0, > P and tell all their friends about

the product through WOM according to v (0, P)

4. Step 3 is repeated for newly informed consumers until there are no more consumers

being informed



An important part of the analysis will be to describe the social network and how this

network affects the number of people who become informed about the product. The study

of random graphs goes back to the influential work of Erd6s and Renyf (1959, 1960, 1961).

One of the key insights of Erd6s and Renyif is to consider the properties of a "typical"

graph in a probability space consisting of graphs of a particular type. I assume the social

network is described by random graphs with an arbitrary defined degree distribution

{pk} (as per Newman, Strogatz and Watts (2001)) where Pk represents the fraction of

individuals in the population with k friends and E Pk = 1. There are several different

algorithms for constructing random graphs of this type, one is the "configuration model".

Consider the following formation process for the configuration model. For a given N

consider forming a sequence of n numbers which are i.i.d. draws from Pk. This is known

as the "degree sequence" where the ith number ki is the number of friends of individual i.

One can think of individual i as having ki stubs of friendships to be. Stubs are then chosen

at random and connected together until there are no stubs left.2 It has been shown that

this produces every possible graph with the given degree sequence with equal probability

(Molloy and Reed (1995)). The configuration model is the ensemble of graphs QN,{pk}

produced via this procedure and the properties derived in the analysis are for the average

over this ensemble of graphs in the limit as n -* oo.

I now define a number of characteristics of networks.

Definition 1 A path exists between two individuals i and j if there exists a sequence of

individuals where i is the first member of the sequence and j is the last member of the

sequence such that for the (t + 1)th member of the sequence (t, t + 1) E

Using this definition of a path I define a component.

Definition 2 A component C (i) of individual i is the set {j13 path from i to j}

2This process assumes there is an even number of stubs to begin with and does not rule out two stubs
from the same individual connecting to one another or multiple links existing between two individuals.
Under some regularity conditions on {Pk } the instances of own or multiple links become small in a variety
of senses as the size of the network n - oc. For an excellent discussion of these issues see Jackson (2008).



The size of a component ICI is the number of individuals in it. In undirected networks

components are connected subsets of the population, who may all reach one another

by following friendships in the network, such that j E C (i) t i E C (j). The set of

components in a network represents a partition of the set N. Denote this partition of N

induced by E as II (N, E). An important part of the analysis will be the distribution of

component sizes in the partition II (N, E). Define the size of the largest component 9 in

a graph (N, E) by

s= max ICl
CEf(N,E)

Definition 3 A giant component is said to exist in a random graph with degree distribu-

tion {pk} if EN, [] = 0 (n).

In subsequent sections the question of the existence and size of a giant component in

a network will be central to the analysis. In the next section I explain how to represent

a social network with a probability generating function and some of the characteristics of

generating functions which will become useful for deriving the distribution of component

sizes.

1.3 Representing social networks with random graphs

with arbitrary degree distributions

A social network with an arbitrary degree distribution given by {pk} can be described

by a probability generating function. The probability generating function Go (x) for the

social network is written as:
00

Go (x) = pkX
k=0

This is a polynomial in the generating function argument x where the coefficient on the kth

power is the probability Pk that a randomly chosen individual has k friends. Generating

functions have a number of useful properties that can allow one to calculate a variety

of local and global properties of the social network. A good exposition of these and the



formalism for calculating various properties can also be found in Newman, Strogatz and

Watts (2001). I will briefly reproduce some of them here for clarity.

Derivatives The probability Pk is given by the kth derivative of Go according to:

1 dkGo

k! dxk X=0

Moments Moments of the probability distribution can be calculated from the derivative

of the generating function. The mth moment equals:

Ek kmpk [ d m Go (x)=

Where the average degree, which I denote by zl, is given by zl = G' (1) = Zk pkk and the

terminology (xd)m means repeating m times the operation: differentiate with respect to

x and then multiply by x.

Powers The distribution of the sum of m independent draws from the probability dis-

tribution {Pk} is generated by the mth power of the generating function Go (x). For

example, if I choose two individuals at random from the population and sum together the

number of friends each person has then the distribution of this sum is generated by the

function [Go (x)]2. To see this, consider the expansion of [Go (x)]2

[Go0 (X)]2 = [ PkXk

= PjpkxJ+k

= poo0 + (pop1 + PIP) x1

+ (Pop2 + PIPI + P2Po) X2

+ (PoP3 + P1P2 + P2P1 + P3Po) X3...

In this expression the coefficient of the power of x' is the sum of all products PkP3 such

that k +j = 1 and is thus the probability that the sum of the degrees of the two individuals



will be 1. This property can be extended to any power m of the generating function.

The distribution of the number of friends of a person found by following a randomly

chosen friendship will be important in the analysis to come. This is not the same as the

distribution of the number of friends of a person chosen at random because people with

many friends are more likely to be found, when selected in this way, since they have more

friendships. A person with k friends is k times more likely to be found than a person with

1 friend. Therefore the probability of finding a person with k friends is proportional to

kpk. After the correct normalization the generating function for this distribution is:

E kkP k X G' (x)

E k kpk zl

Now consider choosing a person randomly and looking at each of her friends. Then

for each friend, the distribution of the number of friendships these people have, which

do not lead back to the originally chosen person (this is k - 1 if the friend has k friends

themselves since one must lead back to original individual chosen), is generated by the

function G1 (x):
G' (x)

The assumption that friendships between individuals are independent of one another

means that as the network becomes large, (n -- oc), then the probability that any of the

neighbors also know one another goes as n- 1 and can be ignored in the limit of large n.

Making use of the powers property of generating functions the probability distribution of

second neighbors of the individual is given by:

pk [Gi (x)]k = Go (Gi (x))

In the analysis I utilize results regarding the robustness of random graphs with ar-

bitrary degree distributions. Part of the analysis will consider the resultant network

of individuals when the individuals who do engage in WOM are removed according to



v (0, P) (those people with 0- - P < 0) . This is equivalent to a percolation problem on

a random graph. A depiction of this process is given in Figure 1-1. Consider the original

social network shown in Figure 1-1 where the individuals who desire the product (0, > P)

are represented as the black nodes. The process of percolation takes one from this network

to the network of WOM on the right where only the friendships between individuals who

are willing to engage in WOM is shown.

O

0A O
Original Social Network Network of WOM

Figure 1-1: Percolation process

In general a giant component does not always exist in either network. If it exists

in the network of WOM then it will in the original social network but not vice versa.

One of the most important and well studied topics in the random graph literature is

characterizing the conditions under which the giant component does or does not exist

when a parameter(s) describing the network is varied. Typically the cases, also known as

phases, where the giant component does and does not exist, are separated by a critical

threshold. In the model developed here this quantity will be the price which affects the

probability individuals will engage in WOM. When the giant component does exist in

the network of WOM every individual who knows someone in the giant component will

become informed about the good. This will occur as a result of the tiny fraction E of the

population who find out about the good independently. By the law of large numbers in

the limit as n -+ oc at least one of these individuals will be in the giant component, and

thus WOM will spread out from this person to all the people in the giant component.

3This process of percolation is a variant of the Reed-Frost model in the epidemiology literature



The network of WOM is also a random graph I denote the probability space of these

graphs by N,{p}P. The methodology for describing the network of WOM that I use in

this paper was developed in Callaway et al. (2000). For expositional purposes I reproduce

part of their analysis here to derive the probability generating function for this second

network in terms of the first network and the probability that a person engages in WOM.

To this end let qk be the probability that an individual with k friends is willing to engage

in WOM. Note this allows for some correlation between 0, and the number of friends of

individual i. The product Pkqk is the probability that a randomly chosen individual has k

friends and is willing to engage in WOM. The probability generating function F (x) for

this distribution of people is given by:

00

Fo (x) = pkqkx k  (1.2)
k=0

where kFo (0) = Pkqk and when v (0, P) is given by equation 1.1 Fo (1) = 1 - P which

is the fraction of the population with valuations 0i > P. If we again consider following a

randomly chosen friendship from the social network, the individual we reach has degree

distribution proportional to kpk rather than just Pk. Hence the probability generating

function that an individual has k friends and also desires the good, when she is chosen by

randomly following a friendship is:

F (x) = ,k kPkqkx k - 1  Fo (x) (1.3)
Ekkpk Z

1.3.1 Distribution of component sizes

Now let H1 (x) be the generating function for the probability that one end of a randomly

chosen friendship from the original social network in Figure 1-1 leads to a component of a

given size in the network of WOM. Denote the probability that this component is of size s

by h'. The component may in fact be empty if the individual at the end of the friendship

has 0, < P which occurs with probability 1 - F (1) or the individual may purchase the

good and have k friends (distributed according to FI (x)) any of whom may also purchase



the good. Note that the giant component, if there is one, is excluded from H1 (x). When

component sizes are finite the chances of a finite component containing a closed loop goes

as n - 1 which becomes negligible as n becomes large. This means that the distribution of

components can be represented as in Figure 1-2 where each component is represented as

a tree like structure consisting of the single individual reached at the end of the randomly

chosen friendship plus any number, including zero, of other tree-like structures.

Figure 1-2: Schematic representation of the sum rule for components found by following a
randomly chosen friendship

Therefore H 1 (x) must satisfy the following self consistency condition:

H1 (x) = 1 - F (1) + xqoPo + xqlpl [Hi (x)] + xq2P2 [H1 (x)]2 + ... (1.4)

H1 (x) = 1 - F (1) + xF1 (Hi (x))

If an individual is chosen randomly then there is one such component at the end of

each friendship of that person. Therefore the generating function for the size of the

connected components in the network of WOM that a randomly chosen individual belongs,

is similarly generated by a function Ho (x) which satisfies:

00

Ho (x) = 1 - Fo (1) + xFo (H1 (x)) = Z hsxS (1.5)
s=0

where hs is probability a randomly chosen individual from the population belongs to a

component of size s. These four relationships, equations 1.2, 1.3, 1.4 and 1.5, determine

the distribution of the sizes of the connected groups of individuals who can communicate

to one another about the good. The size of the giant component, if it exists, is given by

the number of people not in components that are of finite size, 1 - H0o (1) .



The analysis proceeds in the next section by making assumptions about the correlation

between the probability a person has k friends pk and the individual's valuation 0, and

how the probability qk that individuals pass on information about the good is related to

the individual's valuation and the price charged by the monopolist. Denoting the joint

distribution of 0 and k in the population by 4 (0, k) and the conditional distribution of 0

given k as q (0 k) then pk and qk (P) can be calculated as

pk = 4 (0, k) dO

qk (P) = /v(0, P) (0 k)dO

and substituted into the above relationships to derive Fo (x, P) , F (x, P) , Ho (x, P),

H1 (x, P) in terms of the price P to describe the network of WOM. One then relates this

network to the subsequent demand for the good and hence the profits of the monopolist. In

principle the methodology described here may accommodate a variety of functional forms

for v relating valuations, price and even advertising effort to an individuals' probability

of talking about the good. Indeed any two functions P, ii such that

f (0 P) (0 k) d = j0 (0, P) (0lk)d

holds will result in the same level of demand. For example when 0 and k are uncorrelated

an equivalent specification for v (0, P) would be v (0, P) = 01-p

Also the methodology can easily incorporate a probability less than 1 that an individual

passes on news about the good along any individual friendship. Denoting this probability

by qb the above expressions would be unchanged except that F (x) = qb X Zk qk-1

Ek kpk

For the remainder of the paper I will focus on the case where qb = 1.

1.4 Demand

In this section I bring the insights of percolation processes on random graphs to bear on the

characterization of demand for a good in the presence of WOM. One of the central insights



from the random graph literature is that there is a critical threshold which determines

whether a giant component does or does not exist. I find that absent any advertising

by the monopolist, demand for the good, as measured by the fraction of the population

who purchase the good, exhibits two distinct regions: one where demand is zero and the

giant component does not exist, and another where demand is non-zero and the giant

component exists. These two regions are separated by a critical price p"it below which

the giant component exists and above which it does not. Provided a giant component

exists in the social network, then as prices rise demand shrinks from a positive fraction of

the population continuously to a 0 fraction of the population at the critical price, where

it will in general have a strictly negatively slope. In comparison to the fully informed

demand curve the demand curve under WOM is more elastic. Ignoring the effect of WOM

introduces a downward bias in welfare calculations and an upward bias of consumers'

response to price increases after the population has become informed.

1.4.1 Critical price

The following theorem characterizes the conditions when a giant component exists in

terms of a critical price below which it exists and above which it does not.

Theorem 1 Suppose an individual's valuation is independent of the number of friends,

qk = q = 1 - P for all k and pk is such that E[kE[k] < 1, then, there exists a critical

price pc"it such that

En, pk} [S] = (n) , and Hi (1, P) < 1 ifO P < Perit

and

En,.{pk} [ = 0 (n /8 log n) , and Hi (1, P) = 1 if Prit < P < 1

Moreover the critical price satisfies 1 - PCt = E[k]

Proof. The result follows immediately from results on percolation thresholds in the

statistical physics literature cited in the appendix. *



The intuition behind the result is best illustrated by considering the number of people

who subsequently buy the product after an individual who is prepared to engage in WOM

hears about the good from a friend. If a person has k friends then the expected number

of first neighbors who are informed by this person and then purchase the good themselves

will be (1 - P) (k - 1), where it is k - 1 because the individual hears about the good

from one of her friends. Now taking the expectation over the expected number of friends

of a person found by following a randomly chosen friendship is (1 - P) pkk(E[kI -

(1 - P) -E[k]. When this quantity is greater than 1 the component will initially grow

exponentially, while for values less than 1 the component will decay and die out. This is

known as the reproduction rate. The critical price is the price at which this reproduction

rate equals 1. Subsequently when P < peit a giant component exists and when P > pcrt

it does not.

As alluded to earlier, for the monopolist to sell to a non-zero fraction of the population

there needs to be a giant component. If this is not the case all of the En individuals will

belong to components whose average size is finite so total demand will be approximately

a fraction E of the population and therefore negligible as E -4 0. If the giant component

is of size 0 (n) then almost surely at least one of the en individuals will belong to the

giant component and thus the fraction of the population which becomes informed about

the good is the fraction of people who know someone in the giant component. 4 This

reasoning implies that demand exhibits two distinct regions one where the giant compo-

nent is of size 0 (n) and the other where it is not, which depend on the price chosen by

the monopolist. An important quantity is the probability that a friend does not belong

to the giant component and thus does not become informed via WOM. If there exists

a giant component of size 0 (n) then H1 (1, P) < 1 and the probability a person with

k > 0 friends is informed is 1 - H1 (1, P)k > 0. The fraction of the population informed

is therefore 'k Pk (1 - H1 (1, p)k).

4 When taking the limit of limits this requires that e -- 0 slower than (



1.4.2 Level of demand

The first step of the analysis is to determine the fraction of the population who become

informed about the product. This is the fraction of people who know someone in the giant

component. The probability that the person at the end of a randomly chosen friendship

does not belong to the giant component HI (1, P) is the smallest non-negative solution to

the self consistency condition equation 1.4:

H, (1, P) = 1 - F (1, P) + F (H 1 (1, P), P)

where F is now written as a function of the price P when the percolation probability is

written in terms of price, qk (P) = f v (0, P) ¢ (O k) dO. The probability a person with k

friends becomes informed is hence 1- (Hi (1, p))k and the total fraction of the population

which is informed is:

Epk (1 - (H 1 (1, P))k
k

The second step of the analysis is to determine how many of these people purchase the

product S (P), this is given by:

S (P) = Pk (I - (H1 (1, P))k) j (0Ok)dO
k

which given the functional form chosen for v (0, P) is the size of the giant component"

S (P) = Fo (1, P) - Fo (H, (1, P), P)

where again price is now an argument of F. Suppose there is no correlation between 0

and k then f( q (O k) dO = 1 - P for all k and S (P) can be written in terms of the price

P as:

S (P) = (1- P) EPk (1 - (H1 (1, P))k) (1.6)
k

'Callaway et al. (2000) derive this expression using the generating function approach. Molloy and Reed
(1995) derive an equivalent expression for the size of the giant component using a different methodology.



It should be obvious from this expression that the difference between demand as

generated here and the standard fully informed demand comes through the H 1 (1, P)

term in equation 1.6. The distribution of valuations within the fraction of the population

who find out about the product is U [0, 1] because the probability a person finds out about

the product is independent of her own valuation as she hears about it from a neighbor.

Demand is the product of the probability that an individual finds out about the good

E p (1- (H1 (1, P))k) and the probability a person is prepared to purchase the good
k

(1 - P), given the price and distribution of valuations amongst the informed individuals.

When the monopolist chooses a price it influences both the fraction of the population who

find out about the product E Pk ( - (H 1 (1, P))k) and the proportion of these people

(1 - P) who are prepared to purchase it.

The following example considers a Homogeneous and a Hub social network to illustrate

some of the characteristics of demand with WOM. I will then formalize these for a more

general class of networks later in this section. The mean degree is 3 for both networks,

in the first homogeneous social network (triangles) every individual has exactly 3 friends

so the generating function is Go = x3 and in the second Hub network (asterisks) 98% of

the population have 2 friends and 2% have 52 friends so Go (x) = 0.98x 2 + 0.02x 5 2 . The

inverse demand curves are shown below along with the fully informed inverse demand

P = 1 - Q.Decreasing the price from P = 1, a giant component appears first in the

Hub network, where there is greater variance in the distribution of friendships, at a price

P - 0.94. Demand grows relatively slowly because it is unlikely that the individuals with

0, > P and 2 friends become informed when the giant component is very small. As the

price falls further the giant component grows faster and the inverse demand curve appears

convex in this region. When the price reaches P = 0.5 a giant component appears in the

Homogenous network. Initially the giant component in the Homogeneous network grows

very quickly compared to the Hub network because everyone has the same number of

friends. In fact the giant component in the homogeneous network becomes larger than

in the Hub network at P r.1 0.45 and at a price of 0.3 it contains approximately 40%

more individuals. This difference is driven by the relative likelihood of a person with 3

friends versus 2 friends becoming informed in this range of prices. Eventually the giant
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Figure 1-3: Homogeneous versus Hub networks

component in the Homogenous network consists of almost all individuals for whom 0, > P

so S o 1 - P and it can only grow at the rate at which new people are willing to purchase

the product for a given price change. Since both networks are fully connected eventually

the giant component in the Hub network also approaches 1 - P and for both networks

S= 1 at P= 0.

The following theorem characterizes demand as price varies absent any direct adver-

tising by the monopolist.

Theorem 2 Suppose 0 and k are uncorrelated then demand for the good S (P) is

1. Continuous

S (P) = 0 for P > Perit
2.

S (P) > 0 for P < Pcrit

dS = 0 for P 2 pcrit
3. dP

as < 0 for P < P'it

4. lim pcrnt- = - (1- Prt)G'(1) < 0

PdP Gil(,)S

5. >dS> IP I for P < Pcrit
S dP 1-P



Proof. See appendix. M

This theorem establishes that demand is continuous in price and that at the critical

price the slope of demand makes a discontinuous change from zero in the region P > pcrt

to a strictly negative amount at pcrit. This change in the growth rate distinguishes the

two regions of demand. This change in the behavior of demand does not come as a result

of the fully informed demand having a negative slope at P = 1. Indeed provided that a

fraction 1 - Prit of the population have valuations 0 greater than P"'it and valuations are

locally distributed uniform with density 1 around P"cit the above theorem will continue

to be true. This means that the fully informed demand may in fact asymptote to 0 as P

increases such that for the inverse demand curve lim o P = 0 and the theorem will be

unchanged. The elasticity of demand when there is WOM P dS is:

PdS -P (1 - P) dH 1 (1, P) p)k-1
S dP= 1 p[1 + EpkkH1 (1,S dP 1 - P 1 - EpkH1 (1, P)k dP k

k

which is the fully informed elasticity adjusted by a factor 1+ (1-P) d Pkkuk-1 where
k

the second term comes from the increase in connectivity of the network from lowering the

price. This is new customers, with k > 2, forming a bridge to the giant component to

connect previously disjoint components of individuals.

1.4.3 Biases in estimates which ignore WOM

One can imagine using cross-sectional data to non-parametrically identify the relationship

for S (P). In this section I find that failing to recognize the effects of WOM in generating

this demand may lead to several of biases. The first is a downward bias in welfare

calculations of consumer surplus of the form fp S (P) dP.

Corollary 1 Suppose 0 and k are uncorrelated and the price of the good is P then an

estimate of consumer surplus CS P = f; S (P) dP is biased downwards.

Proof. See Appendix. m



An estimate of the valuations of consumers who purchase the product based on the

demand curve S (P) understate the valuations of the purchasing consumers. It is obvious

that the population being uninformed leads to fewer consumers purchasing the product

than if they were fully informed, however this corollary implies that even amongst the

consumers who do find out about the product and purchase it, an estimate based on S (P)

of their valuations will be biased downwards. The reason is that the marginal consumers

at a price of P are a combination of individuals who know about the product and have

valuations 0 - P, and consumers in previously disjoint components with valuations 0 -

U [P, 1] who become informed via one of the consumers with 0 e P. Failing to recognize

that demand changes through this second channel induces a downward bias in estimates

of consumer valuations because it attributes a valuation of 0 - P to a group of consumers

with valuations 0 - U [P, 1]. Thus welfare calculations such as evaluating the introduction

of a new good will understate the consumer surplus.

A second bias may occur when considering how consumers will respond to an increase

in price once WOM has diffused.

Corollary 2 Suppose 0 and k are uncorrelated and the price of the good is P then an

estimate AS

AS = s() -s (PAP)

of the consumer response to a price increase AP overstates the actual response AQ

AS < AQ

Proof. See Appendix m

The distribution of valuations are distributed U [0, 1] across those people who are

informed about the product. An increase in the price by AP will change demand by

Ap % however an estimate based on S (P) overstates the elasticity with respect to price

of the consumer's preferences for the product and will predict a greater response. A

monopolist choosing to increase its price or a policy maker introducing a tax will estimate

a larger change in demand than what would actual take place.



1.5 Static pricing

In this section I study the optimal static pricing decision of the monopolist. For reg-

ular goods, where valuations and number of friends are uncorrelated, I show that the

monopolist will set a lower price when there is WOM compared to when consumers are

fully informed. However, for goods where there is significant positive correlation between

valuation for the good and an individual's number of friends then the monopolist may

in fact price above the fully informed level. When the monopolist can price discriminate

between consumers based on numbers of friends, then better connected individuals are

charged lower prices.

1.5.1 Regular goods

The first result in this section is that the monopolist will set a lower price when there is

WOM compared to when consumers are fully informed.

Theorem 3 Suppose valuations and number of friends are uncorrelated and marginal

costs c < 1, then a monopolist facing demand given by S (P) charges a lower price P vOM

than a monopolist facing a fully informed population P;,, where demand is given by

Q(P)= 1-P.

Proof. See appendix. *

This theorem comes as an immediate consequence of demand being more elastic under

WOM in Theorem 2. The WOM monopolist has an additional incentive to stimulate

demand through the word of mouth channel and will lower prices below the price that

would be charged by the monopolist facing a fully informed population. The effect can be

so large that consumers may in fact be better off being uninformed than fully informed.

Corollary 3 Consumer surplus may be greater when consumers are uninformed and the

monopolist charges PvoM than if consumers are fully informed and the monopolist charges

Proof. See appendix *



This proposition illustrates that consumers may in fact be better off when they are

uninformed because the monopolist lowers the price below PI to stimulate word of mouth

in the population. The gains to consumers may in fact be quite significant, for instance

in a social network where everyone has 3 friends the consumer surplus is 65% larger in

the WOM setting than the fully informed setting. Of course a social networks which does

not have a significant fraction of the population in the giant component at any price it

will no longer be true.

1.5.2 Correlation between valuations and number of friends

For goods where there is significant correlation between the connectivity of individuals

and their valuation for the product, in contrast to Theorem 3, it can be the case that the

monopolist will charge a price higher than it would if everyone is informed. When there is

significant positive correlation, the network of WOM is much better connected at higher

prices than a network with no correlation. The following proposition illustrates a case

where significant positive correlation leads to prices above the fully informed monopoly

price 1".

Theorem 4 If pcnt > 0 and all consumers with 0 E [c, 0] have k = 1 then the monopoly

price will be greater than the fully informed monopoly price 1+c

Proof. See Appendix m

The intuition for this result is that when the mix of marginal consumers has a large

fraction of individuals with low connectivity then demand will be relatively inelastic. In

this theorem the mix contains only individuals with 1 friend. These consumers can not

provide a bridge to connect components which are disjoint from the giant component for

c < P < 0, thus demand is relatively inelastic compared to the fully informed demand

over the range of prices P E [c, 0] and the monopolist will not price at or below the fully

informed monopoly price .1+

The types of goods which would naturally have some correlation between valuation

and the number of friends are fashion and status products, where the value is, at least in



part, increasing in the consumer's ability to display them to others. The example given

here suggests that these types of goods will receive a higher mark up than other types of

goods all else equal.

1.5.3 Price discrimination

When the monopolist can discriminatingly price to consumers with different numbers of

friends, the optimal set of prices will be decreasing in the number of friends each person

has. For the monopolist there is a greater incentive to offer a lower price to individuals

with more friends because these individuals are the most effective at informing others.

When the monopolist decreases the price to one of the groups it can increase the number

of people informed of all groups through WOM.

Monopolist's maximization problem when it can discriminate between consumers with

different numbers of friends is:

S({Pk}) = max Pkqk (1- H 1 (1, {Pk})) Pk - ) (1.7)
{Pk} EO [0,1] n

where the value of H (1, {Pk}) is now a function of the set of prices {Pk}.

Theorem 5 If valuations and number of friends are uncorrelated and 3 {Pk} such that

l ({Pk}) > 0 then the optimal set of prices are P = + and 3k : {Pkj is decreasing for

2 < k < k and Pk = 0 for k > k.

Proof. See appendix. n

The proof considers the complementarity of demand from the different groups of con-

sumers. In fact the problem is equivalent to a multiproduct monopolist's problem where

Pkqk (1 - uk) in equation 1.7 is the demand for good k and the demands for each good are

complementary through the value of u ({Pk}). When marginally adjusting a price Pk the

monopolist faces the usual pricing incentives over the informed population (1 + c - 2Pk)

plus the impact of changing the price on the size of the informed population through
k(lUk-1)

u ({Pk}). The relative trade-off between these two effects is proportional to 1-k

which is increasing in the number of friends k. Hence Pk is decreasing in the number of



friends. In fact it can be profitable to give the good away for free to individuals with

sufficiently many friends because of the size of their influence on demand from individuals

with fewer friends.

This is a very intuitive result that offering discounts to the individuals who are best

able to spread news about the good increases the profits of the monopolist. As discussed

earlier the individuals with a large number of friends are very influential because these

individuals are both more likely to hear about the good and able to inform more people.

There have been a number of authors who have emphasized the importance of market

mavens for spreading information about products (for instance Feick and Price (1987) and

Gladwell (2000)). Interpreting market mavens as people who are able to influence many

people within the social network then this theorem underlines the importance of providing

a discount to these types of consumers because of the significant complementarity between

their choice to buy the product and the total number of people who hear about it.

1.6 Introductory pricing

In this section I find that introductory pricing involves periods of sales. The monopolist

increases and decreases the price of the good to optimally diffuse news of the good in

the population. The trade off facing the monopolist is to sacrifice immediate profits

to facilitate greater WOM today and a larger population of informed consumers in the

future. The natural intuition in this situation, is that the dynamic sequence of prices will

be increasing because as more and more people become informed there is less incentive

for the monopolist to keep the price below the monopoly level. I show that this not

necessarily the case for prices during the early stages of diffusion of WOM.

I will assume the good is non-durable to avoid the added complexity of strategic

purchasing decisions by consumers. In this section I also assume for tractability that

the marginal cost is 0 and that valuations and number of friends are uncorrelated. In

each period consumers who know about the good will purchase it if Oi 2 Pt. In the first

period, t = 0, a small number of people M0 , hear about the good and decide whether to

purchase it at the price Po. Those that purchase the good tell their friends, who are then



added to the total population of informed consumers in the next period denoted M1 . In

this way Mt grows over time. The current period payoff can be written as MtPt (1 - Pt)

where 1 - Pt represents the distribution of valuations (0 - U [0, 1]) across this population.

The distribution of valuations within Mt does not change because becoming informed

via WOM from a friend is independent of an individual's own valuation. Hence it is a

random draw from the distribution of valuations within the population. The change from

one period to the next Mt+ - Mt comes through the number of people who purchase the

good for the first time during period t and then tell their friends about it. The number

of people who know about the good, but have never purchased it, are the conduit for this

change. I will denote this population of people by Rt and the distribution of valuations

in it by Ft (0). Unlike the distribution of valuations across Mt, Ft (0) may change as Mt

grows. When a person in Rt purchases the good that person will not be in Rt+l, since

they have now purchased the good, however all of their friends, who are now informed via

WOM, will be in Rt+l, since they are now informed about the good but are yet to have

purchased it. If a person is in Rt but does not purchase the good during period t, 0 < Pt,

then that person will also be in Rt+. Thus after a sequence of prices P > 0 a stock of

people with low valuations can build up in Rt. Depending on the sequence of prices the

distribution of valuations within Rt changes.

In general the number of friends a person tells, when they purchase the good for the

first time, is a function of the time since the good was introduced and the size of the

informed population by that point in time. Individuals with many friends will find out

about the good earlier than those with few so over time the next individual informed

will have fewer friends. When a large fraction of the total population knows about the

product there is a probability that more than one of their friends have already found out

about the product from someone else in the past or the current period. The transition Mt

to Mt+1 is a stochastic process and depends on the distribution of both valuations and

number of friends of individuals within Rt. Characterizing how this distribution and Rt

evolve over time is a complicated problem. To illustrate why a monopolist may increase

and decrease the price over time I will consider a simplified problem to avoid a number

of the complexities that occur in the more general setting.



I will focus on a branching problem which assumes that the market is a mass of people

M which can grow without bound such that it never consists of a significant fraction

of the population. This is of course unrealistic over long time horizons since, if the

market continues to grow, at some point it will be bound by the size of the population.

Notwithstanding this, it does allow a much more tractable characterization of the problem,

which I argue is a reasonable approximation of behavior close to when the product is first

introduced and characterizes the incentives the monopoly faces for introductory prices.

This setting allows one to characterize how the change of valuations within Rt can lead

the monopolist to increase and decrease the price over time.

1.6.1 Infinite horizon branching problem

At the start of period 0 a unit mass M0 = 1 of individuals find out about the good.

During each period the monopolist chooses prices {Po, P1 , P2...} and in each period the

mass of informed individuals Mt chooses whether or not to purchase the good. The mo-

nopolist faces a trade off between making profits over the existing population of informed

individuals and lowering the price to sell to a greater number of individuals in Rt, thereby

increasing the mass of informed individuals tomorrow. The expected number of individ-

uals who become informed when a member of Rt purchases the good for the first time is

the reproduction rate G' (1) = 2. The growth rate conditional on price is deterministic

because I have assumed M0 is a unit mass of consumers.

In this problem there are three state variables and one control variable. The state

variables are the number of people informed of the good Mt, the number of people who

are both informed about the good but are yet to purchase it Rt and the distribution of

valuations within these people Ft. The control variable is the price in each period Pt.

Reducing the number of state variables

In this section I reduce the number of state variables from three to two by considering

the ratio of individuals who are informed but have never purchased to those that are

informed, this is Rt. I assume that the set of individuals in M0 are found in such a way
infrme, hisis -t



that R 21 Consider how changes when someone in Ro purchases the good,Mo Z2

the change of the state variables Mo and Ro are AMo = z and ARo = - 1. The
Z1 Z1

reproduction rate z is the expected number of additional people who become informed
Z1

AMt when a person in Rt purchases the good, and I - 1 is the number of additional
Z1

people in Rt when this happens ARt (the -1 comes from the purchasing individual no

longer being in Rt after purchasing). Therefore the new ratio is

R+AR Z2-z Mo + Z2-1
RZ + ARz2 Zl 1

M + AMt Mo + z
Z1

z2 - Z1

z 2

thus as more and more individuals purchase, the ratio R- remains constant. Using thisMt

relationship I can eliminate one state variable which I choose to be Rt.

Characterizing the transition functions

In this section I characterize the transition functions for both Mt and Ft which I denote

rM and FF respectively. The population of informed individuals next period Mt+1 is the

population last period Mt plus the number of people who hear about the good through

WOM from the consumers in Rt. This relationship is:

Mt+, = Mt + Rt (1 - F (Pt)) Z2
z1

Using the relationship R = 2-Z1-and substituting this into the transition function forMt Z2

Mt

Mt+ = (1 - Ft (Pt)) Z2 + Ft (Pt) M

= FM(M,F,P)

The distribution of valuations across the set of people yet to purchase Rt will depend on

the distribution the previous period and the price in the previous period. The cumulative

distribution function this period Ft (with associated pdf ft) will be a weighted combination



of the distribution last period ft-1 truncated at P which is the set of people in Rt-1

who didn't buy last period (Ft- 1 (Pt-1) Rt- 1) and a uniform distribution over the newly

informed people (1 - Ft- 1 (Pt-l)) (z - 1 Rt- 1. The relative weights for each are

1

for ft-1 and
Z1

1 + - 1) (1 - F-1 (Pt-1))

on the uniform. Thus the transition function for Ft is

min [F (0), Ft (Pt)] + (1 - Ft (Pt)) 0
Ft+1 (0) =

1+ (~ - 1) (1 - F (Pt))

= FF (F, P)

Define F as the set of continuous cdfs on [0, 1] which satisfy F(x)-F(x-6) <

Lemma 1 If F E .F" then rF (F, P) E F.

Proof. See appendix m

This lemma bounds the density of valuations in Rt above and is used to establish the

continuity of the mapping FF-

Lemma 2 FM : [1, 00) x Fx [0. 1] - [1, o00) and FF : Fx [0, 1] -+ F are continuous

mappings

Proof. See appendix m

The transition functions are single valued mappings and their continuity helps ensure

the problem is well behaved. The following lemma derives the limiting distribution of Ft

for a constant price P*



Lemma 3 If Pt = P* < p"'t for all t and Ft E F then the limiting distribution f* (0)

limt_,, ft (0) will be

f* (0) = z2 if 0 < P
z 2 - Z1

= 2  1-P* ifO>P*

Z2 - Z1

Proof. See appendix m

Given a distribution ft and price Pt then dft(O) > 0 if ft* (0) > ft (0) and f() < 0

if ft* (0) < ft (0) and d 0f( = 0 if ft (0) = f* (0) for all 0. The key characteristic of this

problem is that there is a discontinuity in the incentives between marginally increasing

vs marginally decreasing the price above and below P*. When the monopolist charges a

price greater than zero there is a stock of people who know about the good but are yet

to purchase it. This stock is the difference between the density f* (0) at 0 < P compared

to 0 > P. I show in the following section that it is this characteristic which leads the

monopolist to increase and decrease the price over time.

1.6.2 Introductory pricing problem

The monopolist's problem is the following:

00

J(M, F) = max t-lpt (1 - Pt)Mt
{Pt O

st

Mt+l =  (1- F (Pt)) 2  F
z1

min [Ft (0), Ft (Pt)] + (1 - Ft (Pt)) 0
Ft+1 (0) = Z

S+ ~1 - 1 (1- Ft (Pt))

Mo = 1

Fo = 0

I make the following assumption about the network structure and discount factor

3 < - < 1 so that the problem is well posed.
Z2 2



The problem is an optimal control problem where the state is an element of (M, F) E

[1, o) x F and the control is the price P C [0, 1]. Writing it recursively:

V (M, F) = max P(1 - P) M + V (M', F')
PE[0,1]

subject to

M' = FM (M,F, P)

F' = FF(F,P)

Theorem 6 The monopolist's problem has a unique solution, the value function is con-

tinuous and homogeneous of degree 1 in M and the policy function P (F) is upper hemi-

continuous and only a function of the state F.

Proof. See appendix n

A brief outline of the argument is as follows. The proof proceeds by defining a con-

traction mapping T :

(TV) (M, F) = max P (1 - P) M + pV (M', F')
PE[O,1I

M'=rM(M,F,P)
F'=FF(F,P)

and looking for a solution in the space of continuous functions V : [1, 00) x T --IR which

are bounded in the norm

IlVl| = max V(M, F)
FEF
M=1

Letting H (M, F) be the space of these functions. Then the maximization is for a continu-

ous function over a compact set P E [0, 1] so the maximum exists. Then from the Theorem

of the Maximum (Berge 1963) the maximum is continuous and from the homogeneity of

the problem with respect to M the contraction T maps H (M, F) -+ H (M, F). Using

the contraction mapping theorem the contraction has a unique fixed point which satisfies

the recursive relationship. The properties of the policy function then follow immediately

from the theorem of the maximum and homogeneity of the value function with respect to



its first argument.

The value function is linear in M and the policy function is only a function of the

distribution of valuations in the set of people who are informed but yet to purchase the

good. I am able to further characterize the dynamic set of prices in the following theorem

which highlights the incentives of the monopolist to increase and decrease the price over

time.

Theorem 7 7T such that for all t > T the optimal price sequence {P* } is weakly in-

creasing or decreasing.

Proof. See appendix m

The argument is a proof by contradiction. I first show that the optimal prices Pt* E

[0, ] and that if {Pt*} is weakly increasing or decreasing then the sequence will converge

to a price P* C [0, ]. In this case Ft will converge to the distribution F* given in lemma

3. This distribution is kinked at the price P* where the density is discontinuous. The

contradiction comes from considering deviations Pt + 6 and Pt - 6. The growth rate t+

is ((1 - Ft (Pt)) a + Ft (Pt)) thus the marginal change in growth rate is proportional to

limp__f+ f* (Pt) for Pt + 6 and limp,,p f* (Pt) for Pt - 6. The kink in F* means that

limfPPt+ f* (Pt) < limp, p- f* (Pt). The contradiction then comes from showing that for

a small enough 6 one of the two deviations is profitable.

This theorem shows that the monopolist will increase and decrease the price over

time. One can gain an intuition for the result from the proof. The proof by contradiction

assumes the price remains approximately constant, when this occurs for a period of time

there is a stock of individuals with valuations slightly below the price who know about

the good but are yet to purchase it. At some point in time it becomes worthwhile for

the monopolist to drop the price to allow these consumers to purchase the product and

subsequently inform their friends. If this is not the case then the monopolist can profit

from increasing the price. This provides an intuitive explanation of sales whereby the

benefit of the sale is reaped in future periods from the increased WOM it induces. This

theory of sales is a rather natural one, the sale generates greater future demand through

the additional WOM from people who wouldn't normally purchase the good.



1.7 Advertising

In this section I study the advertising decision of the monopolist by allowing it to engage

in informative advertising. Advertising allows the monopolist to spread news of the good

to individuals in components outside the giant component. I find that in the presence of

WOM, marginal returns to advertising exhibit a peak at the critical price, a monopolist

selling an exclusive (high price) good will target advertising at individuals with many

friends whereas a monopolist selling a common (low price) good will target advertising

at individuals with relatively fewer friends, and an owner of the rights to advertise to

people within the social network will optimally allocate advertising for exclusive products

to well connected individuals and advertising for common products to less well connected

individuals.

Throughout this section I will talk about the returns to advertising not in terms of

profit or revenue but rather in terms of how many consumers a specified level of advertising

attracts to the product. The effects of direct advertising can be thought of as striking

entire components of individuals within the network of WOM represented by F and

Ho. Whenever anyone within a component of individuals finds out about the product,

the entire component becomes informed via WOM as members of the component pass

on news about it. The marginal returns from increasing the level of advertising are the

number of additional consumers found by advertising to another individual chosen at

random from the population of people not already advertised to. This can be thought of

as a traditional advertisement where w (fraction of the population) represents the level of

exposure it gets in the population. For a given level of advertising, the marginal returns

from advertising can be written as a function of the distribution of component sizes, where

h, (P) is the probability an individual chosen at random belongs to a component of size

s, for a given price P. When the level of advertising is w the probability that the next

person advertised to belongs to a component of size s, which has not already been found

via advertising (none of the other members of the component have been advertised to) is

hs(P) x (1 - w)s -1 where (1 - w)" 1 is the probability that no one else in the component

has been advertised to as well. The marginal return is therefore:



E sh, (P) (1 - w)" - = Ho (1 - w, P)
S

and the aggregate return is:

Ho (1 - w, P) dw

= Ho (1, P) - Ho (1 - w, P)

= 1-S(P)-Ho(1 - w,P)

Assuming a constant cost per unit of advertising a and marginal cost of production

c, the monopolist's profit is defined by

7 (P, w) = (P - c) (1 - Ho (1 - w, P)) - aw

Theorem 8 For all (w, P) c [0, 112 \ (0, Pcrit) 7, (P, w) is continuous and differentiable

with respect to both price and advertising, and lim ir (w, P) = 0.
(w,P)-- (O,Per st )

Proof. See appendix m

Corollary 4 If ir (w', P') > 0 for some (w', P') then 3E > 0 such that for all (w, P) E

B, (0, Pcrit) where B, is an open ball 7r (w, P) < i (w', P') .

Proof. See appendix *

This theorem and corollary mean that if we find (w*, P*) E [0,112 \ B, (0, PCrit) which

maximizes n (w, P) then this is the optimal strategy for the monopolist. The set [0, 1]2 \

B6 (0, Pcrit) is compact and r (w, P) is continuous so the optimal strategy exists, and we

can apply the theorem of the maximum to the problem hence 7 (a) is continuous and

(w (a) , P (a)) is upper hemicontinuous. Necessary conditions for the optimal price and

level of advertising are

(1 - Ho (1 - w*, P*)) - (P* - c) <
S(1-w*,P*)



and
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Figure 1-4: Effects of increasing advertising costs

An implication of Corollary 3 is that increasing the advertising cost a, can in fact

increase consumer surplus as the monopolist reduces advertising and relies more on the

price to stimulate WOM amongst consumers. If advertising is free a = 0 then the monop-

olist chooses w = and a price P = -, as a - oo the monopolist will choose w = 0 and

P = P voM for a high enough. Corollary 3 shows that consumers can in fact be better off

in the latter case. Indeed Figure 1-4 illustrates how consumer surplus can increase or de-



crease when the advertising cost increases for a social network Go = x 3 and marginal cost

c = 0.42. In Figure 1-4 (a) and (b) increasing the advertising cost corresponds to moving

along the curves shown starting from the upper right. As the advertising cost increases

the monopolist cuts back on the level of advertising and compensates by decreasing the

price to stimulate word of mouth. When advertising costs exceed 0.18 the monopolist

starts to dramatically decrease the price which increases the equilibrium quantity and

consumer surplus despite the lower levels of advertising taking place.

There is a wide range of potential equilibrium price and advertising pairs depending

on the marginal costs of production and advertising. In the following sections I focus on

characterizing the marginal returns to advertising.

1.7.1 Marginal returns to advertising

In this section I find that the marginal returns to advertising exhibit a peak as P -- pcrit

w -- 0, and are decreasing and convex with respect to advertising. The marginal return

to the first unit of advertising is the average size of components containing uninformed

individuals. I find that the average size of these components (marginal returns of the

first unit of advertising) exhibit a very distinctive feature around the critical price. In

particular the average component size asymptotes to infinity as the price advertising

strategy pair approaches the critical price with zero advertising. This implies that for low

levels of advertising there are regions where marginal returns are sharply increasing and

decreasing at prices close to the critical price. I provide examples of how the marginal

returns vary across a number of networks.

The following theorem characterizes the marginal returns to advertising close to the

critical price and zero advertising.

Theorem 9 If 0 < pcrt < 1, then lim(,p),(o,pcrt) H (1, P) = oc.

Proof. See appendix *

This theorem implies that around the critical price the marginal returns to the first

units of direct advertising increase and decrease very sharply. The sharp increase is caused
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Figure 1-5: Marginal returns to advertising for different social networks



by the phase transition where the giant component appears. The distribution of compo-

nent sizes contains more and more very large components as the price approaches the

critical price. I conclude that for low levels of advertising marginal returns to advertis-

ing will exhibit a peak at a price close to the critical price. I contrast this result to an

identical model of advertising without WOM. In such a model if the monopolist adver-

tises to w% of the population (1 - P) w% of the people will end up buying the product

if the price is P. The demand in this model is linear in the level of advertising and in

contrast to the WOM case the marginal returns are constant. Figure 1-5 illustrates how

the marginal returns to the first unit of advertising vary across three networks, each with

a mean number of friendships per individual of 5, Poisson, Exponential and Hub (2%

have 103 friends and 98% have 3 friends). Each has the distinctive spike at the critical

price, however for prices below the critical price the networks are very different. In the

Poisson network the marginal returns are strictly increasing, in the Exponential network

they are approximately constant until P = 0.6 before they start to increase, and in the

Hub network the marginal returns are non-monotonic.

The following theorem characterizes marginal returns as the level of advertising changes.

Theorem 10 Advertising exhibits decreasing and convex marginal returns.

Proof. See appendix m

As advertising increases the largest components are relatively more likely to be struck

first by the advertising because of their size. Thus as the level of advertising increases

the marginal returns fall away sharply at first and then flatten out at higher levels of ad-

vertising as the mix of unadvertised components contains a greater fraction of small sized

components. This can be seen for the Poisson network in Figure 1-6 where the distinctive

spike in marginal returns is evident close to the critical price and zero advertising but as

advertising increases the marginal returns fall away sharply and are much flatter at higher

levels of advertising.
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1.7.2 Targeted marketing

If the monopolist can target its advertising at individuals with a certain number of friends

then how should it do so? In this section I find that when prices are high and the

giant component doesn't exist or is small then individuals with many friends should be

targeted, if on the other hand the giant component is large then it is more effective to

target advertising at those people with few friends who are least likely to be in the giant

component.

Consider the question of which individual the monopolist should advertise to first? I

fix the price at a level P and assume the monopolist can observe the number of friends

of an individual. The return from advertising to an individual with k friends is the size

of the component the individual belongs to, (1 - P) (1 + k multiplied by the

probability the individual is not in the giant component, (H1 (1, p))k The optimal target

individual is the individual which maximizes the return for a given value of P, this person

is:

k* = arg max (1 - P) (H1 ( 1 , P))k 1 +k Hl (1,P)
k (Hi (1, P))



where k is constrained to be an integer.

Theorem 11 Suppose pk > 0 for all k then the highest return type of individual k* is:

k* { Lk**J , [k**] } for P < pcrit

where
r ( 1 u(P)

** max nH (1, P) H (1, P)

Proof. See appendix m

This theorem allows one to characterize the optimal target individual for a monopolist

charging P. Note that the floor and ceiling functions (L[-, [-1) are necessary because k

is an integer. The following corollary illustrates how the optimal target, ignoring integer

constraints, k** changes as price changes.

Corollary 5 The optimal target k** is continuous in P for P < Prit, limpprTt k** = ,

k** -1 ] for P < pCrit
- In HI(1,P)

Proof. See appendix m

The optimal target individual depends on the price. When there is no giant component

at high prices P > Pcrit (H 1 (1, P) = 1) then the individuals with the most friends should

be targeted. However when the giant component exists P < P"'it (H1 (1, P) < 1) then

individuals with fewer friends should be targeted. The intuition is that as a greater

proportion of the population become informed those people with many friends are very

likely find out about the good via WOM.

A firm selling an exclusive product, which is sold at a high price such that only a

small fraction of the population is prepared to purchase it, should target its marketing at

individuals who can pass on information about the product to as many people as possible.

On the other hand if the firm is selling a common product, which a larger fraction of the

population is prepared to purchase, then the optimal targets for advertising are individuals

with few friends. In this case these are the people most likely to be on the "fringe" of the

network, or in other words the least well connected parts of the network. This means that



they are unlikely to hear about the good via WOM and in expectation will provide the

highest return to direct advertising. As the level of advertising increases then the targeted

consumer for the next unit of advertising should be a person with fewer friends than the

previous consumer. In other words the targeted individual moves towards the fringes of

the network. Again the reason for targeting individuals with fewer and fewer friends is

that these are the people least likely to be already informed when a greater proportion of

the population are already informed.

1.7.3 Application to social networking sites: Matching consumers

to advertising

In this section I assume there is an owner of the rights to advertise to people within

the social network. An example of this entity is an online social networking site such

as Myspace or Facebook which can sell the rights to advertise to the individuals on

their websites. Part of the value from the rights to advertise on these websites is the

additional information that the websites have about each consumer. I find that when the

website utilizes the information it has about the number of friends each person has, it will

optimally allocate advertising for high priced products to individuals with many friends

and low priced products to consumers with relatively few.

I assume that there are m different monopolists each selling m different goods. The

problem for the owner of the advertising rights is to allocate advertising rights across the

m monopolists to maximize the profits from advertising. Each Consumer's valuation for

the goods is represented by a vector O0 = (01 .... 0') where each O' is an independent draw

from U [0, 1]. Thus the demand for each good is independent of the other m - 1 goods. All

monopolists have different prices P-. Initially a vanishingly small fraction e -+ 0 of the

population find out about each good exogenously and WOM is sufficient for the people

in the giant component for each good to become informed. Note there are now different

giant components for each good. The opportunity to advertise is scarce and only a small

fraction 6 of individuals may be advertised to.

To simplify the analysis I will assume that the owner of the advertising rights maxi-



mizes its own profits by allocating the rights across the monopolists to maximize the total

returns to advertising aggregated across all goods, valuing each good equally. The prob-

lem is therefore to allocate the 6 consumers to the monopolists where they are expected to

be in the largest component outside the giant component. I assume that 6 is small relative

to the giant component thus if multiple individuals are allocated to the same monopolist

the probability that they are in the same component outside the giant component is a 0.

Benefit from knowing an individual's number of friends

The return to advertising to a person chosen at random from the population for a mo-

nopolist charging PJ is:

Ho (1, Pj ) = Pk (1 - Pj) (H1 (1, PJ)) k 1 + k HI , P)
k pi) L H1 (1, PJ)

where H 1 (1, P3) is the probability that a randomly chosen link does not lead to an indi-

vidual in the giant component when the price is PJ. This is the weighted sum over all

people with k friends where the return from each person is the product of the probability

they will purchase the good (1 - PJ), the probability they are not in the giant component

(H (1, P3))k, and the expected size of the component they belong to 1 + kH(1,P)

When advertising cannot be targeted consumers are optimally shown an advertisement

for product j** defined as:

j** = arg max HtO (1, Pi)

which is the good with the largest component size outside the giant component. If there

is a broad range of prices covered by the m products then for the networks presented in

Figure 1-5, (a) and (b) suggest that for the Poisson and Exponential networks j** is going

to be the product with the price closest to the critical price. Unless there is a product

with a price almost precisely at the critical price for a very heterogeneous networks such

as the Hub network in Figure 1-5 (c) j** will be a product with a price significantly less

than the critical price with a price close to 0.7.

When the advertising is targeted at an individual with k friends, the optimal market



j*k for the advertising is the market where

j*k = arg max (1 - PJ) (Hi (1, P'))k 1 + k (H1 (1, Pj)

This is very similar to the targeted marketing case in the previous section, except instead

of choosing an individual with k friends for a given P, we are choosing a product with price

P3 for a person with k friends. The optimal target follows the intuition of Corollary 5,

the optimal product is a common (lower priced) product for individuals with few friends

whereas the optimal product for an individual with many friends is a relatively more

exclusive (higher priced) product.

The difference between the return to advertising for product j*k and j** is the allocative

benefit from knowing the connectivity information of an individual. For a person with k

friends this benefit is

k HI 1,1P p k)

(1 - P3k) (HI (1, P3*k) 1 + k (I (1,pk))

(H' (1, pj*"))

-(1 - Pj") (Hi (1, P )) k 1 + k(H (, )
(H (1, P**))

The benefit from knowing a person's connectivity is that it provides an indication of the

probability that person is in the giant component and would find out about the good

otherwise. For networks such as the Poisson and Exponential networks j** is likely to be

a product close to the critical price where H 1 (1, Pj**) is close to 1.

Theorem 12 If pj* > pcrit then 3k such that fork > k > ** = j*k

Proof. See Appendix n

When PJ** is above the critical price then this benefit is zero for all individuals with a

connectivity above a threshold k, and all the benefit comes from allocating the rights to

advertise to individuals with few friends, to products with a price below the critical price.

This is more likely to be the case in the Poisson and Exponential networks compared to

the Hub Network shown earlier.



1.8 Conclusion

Word of mouth is one of the most influential sources of information for consumers when

making purchasing decisions. This paper considers informative WOM and how a monop-

olist can affect the pattern of WOM when the probability an individual engages in WOM

is related to her willingness to purchase the product. A key innovation of the paper is

to allow the monopolist to strategically affect the probability an individual is willing to

engage in WOM. A model of percolation on a random graph with an arbitrary degree

distribution is used and enables me to relate the pricing strategy of the monopolist to

the pattern of communication which takes place in the social network. It allows me to

study a number of new questions concerning the effect of WOM on demand, pricing and

advertising when a firm can affect the pattern of communication which takes place for its

own benefit. The setting is very tractable and I am able to introduce correlation between

valuations and friendships, price discrimination, regular and targeted advertising and in

an application I extend the model to consider how the owner of the rights to advertise

on a social network can optimally allocate advertising for specific individuals to different

products.

I find a range of interesting results: (i) demand has two distinct regions separated by

a critical price related to the first and second moments of the distribution of friendships

in the social network; (ii) estimates of consumers valuations are biased downwards and

estimates of consumer responses to counterfactual policy/strategy changes are biased

upwards if WOM is ignored; (iii) prices are below the fully informed monopoly level for

goods where there is no correlation between an individual's valuation of the good and

their number of friends, however the opposite may be true if there is significant positive

correlation; (iv) introductory prices may have periods of sales to optimally diffuse news of

the good through the population; (v) increasing advertising costs can benefit consumers;

(vi) marginal returns to advertising are peaked close to the critical price; and (vii) targeted

advertising should be directed towards individuals with many friends for "exclusive" high

priced products and towards people with relatively fewer friends for "common" low priced

products.



The tractability of the model suggests a number of avenues for future research. One is

to incorporate communication structures which include good and bad quality information

about the good. This would lead to different inference problems for agents in components

of different sizes. In the case of negative WOM the greater connectivity can be a double-

edged sword, on one hand it facilitates a greater diffusion of any negative information but

on the other, may also permit better statistical inference by aggregating information in

larger components. An aspect of the percolation process explored in sections 1.5.3 and

1.7.2 is the targeting of strategies at individuals depending on their degree. The resilience

of a network to the targeted removal of individuals has been studied in the context of

immunization and computer networks and may offer further insights in economic applica-

tions. More broadly percolation processes can provide a great deal of information about

the structure and pattern of communication that takes place through the distribution

of component sizes and how this changes in response to endogenously chosen variables.

There may be other applications in economics where this information is important and a

similar approach may be fruitful. This paper highlights its application to the pricing and

advertising strategies of a monopolist facing a population which engages in WOM about

its good.

1.9 Appendix A: Proofs

Proof of Theorem 1

Suppose an individual's valuation is independent of the number of friends, qk = q =

1- P for all k and {pk is such that E[k]-E[k] < 1, then, there exists a crztical price pcri

such that

En ,P, s] = 0(n), Ho (1, P) < oo and H, (1, P) < 1 if P < pcrt

and

EQ N,P,{pk} []= 0 (nl/Slogn), H (1, P) < oo and Hi (1, P)= l if P > Pcrit



Moreover the critical price satisfies 1 - pct = E[k]
E[k21-E[k]

Proof. Molloy and Reed (1995) show that the critical percolation threshold is qc =

Ek pkkk pkk 1 The result follows immediately by substituting 1 - Perit = qc
k pkk(k-1)

1 - pcrIt
E [k]

E [k2] - E [k]

H1 (1, P) is the smallest non-negative solution to

H 1 (1, P) = 1 - F (1, P) + F (H 1 (1, P) , P)

= P+(1- P) E kk (Hi (1, p))k-1
k

Note H1 (1, P) = 1 is always a solution to this equation and the right hand side is a convex

function (polynomial with only positive coefficients) in H1 (1, P). Thus H 1 (1, P) < 1 iff

the derivative evaluated at H 1 (1, P) = 1 is > 1. This condition is

E [k2] - E [k] >
(1 - P) > 1[k]

E [k]

which is true provided P < 1 -E[kE[k] prit

Proof of Theorem 2

Suppose 0 and k are uncorrelated then demand for the good S (P) is

1. Continuous

S (P)= 0 for P > Penrt

S (P) > 0 for P < pcrit

dS = 0 for P > pcrit
dP

dS < 0 for P < pcrit

4. limp pcrnt- = - (1 - Pcrit)

P dS ___IfP .
5. I dS > P or P < pcrit

S dP 1-P

G'(1) < 0
(Gl())



Proof. Let u = H 1 (1, P). Demand is given by

S = Fo (1) - Fo (u)

where u is the smallest non-negative solution to the self consistency condition:

u = 1 - Fi (1) + F (u) (1.8)

The following lemma illustrates some properties of u with respect to the price which

I will subsequently use to prove the above theorem.

Lemma 4 Suppose H1 (1, P) is given by equation 1.8 then

1. H 1 (1, P) = land - = 0 for Perit < P < 1

2. u < 1 and - > 0 for 0 < P < Pcrit

3. H1 (1, P) is continuous in P

Proof. Hi (1, P) is the smallest non-negative solution to:

u = P+ (1 - P) kku
z1

Now consider the function f (u, P) = P + (1 - P) k Pku - 1 first note f (1, P) = 1 and

so u = 1 always satisfies the above relationship, second f (u, P) is a polynomial in u with

positive coefficients so it is continuous, increasing and convex in the region 0 < u < 1 and

thus combined with f (0, P) = P there is at most one other solution 0 < u < 1.

When f' (1, P) < 1 there is no solution for 0 < u < 1 and u = 1 is the only solution.

When f' (1) > 1 there is a solution for 0 < u < 1. The condition f' (1) < 1 is equivalent

to P > pcrit:

f'(1)= (1 -P) kk(k - 1 ) p k <
z 1



1- < P
Ekk(k - 1)pk

pcrit < p

Therefore u = 1 for P > pcrt and 0 < u < 1 for P < pcrt, u = 1 for P > Pcrit

immediately implies - = 0 for 1 > P > P'i.

To show that > 0 in P < Pcrnt I look at the derivative for ':

du (1 - G, ()) 2

dP - G1 (u) - (1 - u) G' (u)

The numerator is positive for u < 1 and the denominator

00

1 - G, (u) - (1 - u) G () = 1 - Zp k2 [k - 1 - (k - 2)]
k=O

(where p'k = k) is continuous and equal to 1 at u = 0, equal to 0 at u = 1 and is

decreasing in u for 0 < u < 1 provided G" (1) > 0 which is a necessary condition for

pcr.t > 0. Therefore in the range P E [0, Perit) H 1 (1, P) is continuous and a > 0. m

Returning to the theorem. Using this lemma I conclude that for P > pcrit S (P) = 0

and for P E [0, Pcrit) S (P) = (1 - P) (1 - k Pkuk) is a continuous function since u

is continuous in P. I now prove the continuity of S (P) by showing that as the price

approaches the critical price from below S -+ 0:

If there exists a critical price, 0 < PCit < 1 then as price approaches the critical price

from below limppcrt- S = 0

Proof. I rewrite the relationship between P and u

P (u)= 1- (u)
1 - Gi (u)

such that P (u) is a continuous, monotonically increasing (one to one) function [0, 1) -+

[-1, 1]. I will now show that lim_,,- P (u) = pcrit.



P (1) = 2 so applying L'Hopital's rule

lim P (u)
u-1-

= lim P' (u)
u---

1- G' (1)
G' (1)

E [k]
E [k2] - E [k]

Spcrzt

Now P (u) is a one to one function and 0 < pc'it < 1 this implies that limp_,pcrt- U = 1

and hence limpperct- S = 0 0

This completes the argument for the continuity of S. So far we have shown P E

[Pcrit, 1] S (P) = 0, for P E [0, Pcrit) S (P) is continuous, and finally limppcrt- S = 0.

The next part of the theorem is:

If there exists a critical price, 0 < P"it < 1 then as price approaches the critical price

from below limppcrit- - = - (1 - Pcrit) )

Proof.

S = (1-P) [1 -

dS
lim

u-UI- dP
= lim - 1

u- l

dS

dP

EPkUk

k

du
dP-E PkUk

k I

z (1 - Pcrit) lim
U-- -

du
dP

du
lim

u-- dP

using L'Hopitals rule,

S1 - G,(u) - (1 - u) GI (u )
-- lI-

u-41

lim
u-+1-

(1 - G1 (U))2

- G () - (1-u) G(u)
(1 - G, (u))2

lim (1 - u) G (u)
u-+1- 2G', (u) (1 - Gi (u))

0

0

0=I

(I - P) -E kpkUk-1
(-k



and again

G"r (u) (I - U) - G (u)
= lim

- 1- 2G" (U)1 - Gi (u)) - 2 (G' (u))2
If(1)

2G' (1)2

Furthermore provided that G, (1) is non zero (which also implies G' (1) is non zero) then

the demand curve will exhibit a non-zero slope (s < 0) as the price approaches the

critical price from below. G' (1) > 0 also implies that there are are some people with 3 or

more friends, which is also necessary for P"rit > 0 so that for any network where pcr""t > 0

then demand will exhibit a kink at pcr2t separating the two regions of demand. N

At P < Pcrit dS < 0dP

Proof. Consider the expression for P s

P dS -P (1 - P) du pkk
S dP= - 1 - pkuk d P k

L k

the result follows immediately from u < 1 and > 0 for P < Pcrit.

The final element of the proof is

For P < pcrit dS P

Proof. From above

PdS -P (1- P) du k-l

S dP - P 1 -P pku k d P  k
k

where the second term inside the brackets is strictly positive from lemma 4 and the result

follows immediately. m

Proof of Corollary 1

Suppose valuations and number of friends are uncorrelated and the price of the good

is P then an estimate of consumer surplus CS (P) = f S (P) dP is biased downwards

Proof. I show that the estimate of the distribution of valuations implied by S (P)

is first order stochastically dominated by the actual distribution of valuations of the



consumers purchasing the product. Denote the actual distribution of valuations for the

consumers who purchase the good by G (0) and the estimate by G (0) . Preferences are

distributed uniformly across informed consumers when 0 and k are uncorrelated thus the

actual distribution of valuations is

0-P
G (0) = for P < 0 < 1

1-P
= Ofor0< P

The estimate G (0) from S (P) is

G(0) = 1 S(0) for P < 0 < 1
S(P)

= 0 for 0 < P

For any 0 [P, 1]

s (0) 0-P
G (0)-G(0) = 1

S(P) 1-P

substituting in for S , S (0) and rearranging

- E k (H (1, )k - H 1 (1P)k)> 0 for 0> P

because 0 > P and u (.) is an increasing function. First Order Stochastic Dominance

implies that estimates of consumer welfare using the distribution of valuations implied by

S (P) are going to be too small. m

Proof of Corollary 2

Suppose valuations and number of friends are uncorrelated and the price of the good is

P then an estimate of the consumer response AS = S ( -S (P + AP) to an increase

in the price by AP overstates the actual response AS

AS <Z\Q



Proof. Denote the actual distribution of valuations for the consumers who purchase

the good at P by G (0) and the estimate by G (0). Then AQ = -G (P + AP) AS

-G (P + AP). The result follows immediately from Corollary 1 where G (0)- G (0) > 0

for any 0 > P. a

Proof of Theorem 3

Suppose valuations and number of friends are uncorrelated and marginal costs c < 1,

then a monopolist facing demand given by S (P) charges a lower price PWOM than a

monopolist facing a fully informed population P;I, where demand is given by Q (P) =

1 - P.

Proof. Define the fully informed monopoly price as P)I and the WOM monopoly

price as P OM. A monopolist facing a fully informed population has a strictly concave

profit maximization problem and charges the unique monopoly price P), = + provided

c < 1. If c > 1 then there is clearly no price where the monopolist can make positive

profits. It is also true that

P-c 1
S > for any P > P,

P EFI

it was shown in Theorem 2 that tEWOM I> IEFI which implies that:

P-c 1
> - for any P > P*I

P EWOM

when demand is positive in the range of prices pc"t > P > Pp, . The WOM monopolists

profit function (P - c) S (P) is continuous and differentiable for P < P'~t. Therefore

the first order conditions for the monopolist are necessary and hence P- > 1 for allP 6WOM

P > P;, implies pMon PI.

Proof of Corollary 3

Consumer surplus may be greater when consumers are uninformed and the monopolist

charges P OM than if consumers are fully informed and the monopolist charges P 1I

Proof. Consider the social networks where everyone has 3 friends Go (x) = x3 . If the

marginal cost of the monopolist is 0 then the profit maximizing price when the population



is fully informed is 0.5 and consumer surplus is 0.125. On the other hand if the population

is uninformed the WOM monopoly price PWOM = 0.3215 and consumer surplus is 0.2057.

If marginal cost is higher, > 0.5, then there is no price above the monopolist's marginal

cost where the giant component exists thus consumer surplus is 0. *

Proof of Theorem 4

If all consumers with 0 E [c, 0] have k = 1 where 0 > -' then provided the giant

component exists at P = 0 the monopoly price will be greater than the fully informed

monopoly price 1+

Proof. I first show that demand will be linear in the region P E [c, 0]. Consider

S

dS
dP

=1 - Ho (1, P)

dHo (1, P) d (1 - pkqk (1 - Uk))

dP dP

- (1 - u) + kpkqk k-1

where u = H1 (1, P). In the range of prices P E [c, 0]

for k = 1 because all consumers 0 E [c, 0] have k = 1.

relationship for H1 (1, P) :

_ = 0 for k 1 and dql_ 1
dP cdP pl

Now consider the self consistency

1 - k -l )

u = 1- - kpkqk (1 -
k=2

This is independent of ql, thus for P E [c, 0] H1 (1, P) is constant, = - (1 - u) and S

is linear. Denote u = H1 (1, P) for P E [c, ].

Consider the first order condition of the monopolist in the range P G [c, 0]

d = - (P -c)(1 -u)
dP

this is decreasing in P and positive if (P) > P - c. Therefore the optimal price cannot

be less than or equal to f if > which is equivalent to

S(0)0+ >1
1-u

63



provided pcrnt > 0 and hence u < 1, this can be rewritten

Pkk 1 k)  (1 - 0) (1 - U)

Pkqk (u - uk)

> 0

> 0

which is true for u < 1 hence the monopoly price is greater than -+ .

Proof of Theorem 5

If valuations and number of friends are uncorrelated then the optimal set of prices

Po = 1 = 1+ and 3k: {Pk} is decreasing for 2 < k < k and Pk = 0 for k > k

Proof. Monopolist's maximization

7r = max pk k) ( uk) (Pk - C)

Where u = H1 (1, P). Assuming Pk > 0 for all k. First order condition for price Pk "

Pk (1 - Pk)(1 -Uk) -pk (1 - Uk) (Pk - c)-
oPk P3 (1 - P) (P - c) ju 1 -= 0 for Pk E (0, 1)

Equation defining the probability that a randomly chosen link is outside the giant

component:

D (u) = u -

Implicit function theorem

Ou

OD

OPk

du

dPk

SEkpk(1-Pk)(1-uk-l ) _1n
I -t

1-

z

Sk(k- 1)pk(1- Pk) uk - 2

kpk (1 - uk-1 )

kpk (1 - uk-1)

where 0 so P Now defining a = E (1 )(Pk which is the same fordP 2 z-E k(k--)pk(--Pk)uk-64

64

z- E k (k - 1)pk (1 - Pk) Uk-2

V

=



all k and going back to the first order condition for Pk

Pkqk (1 - uk) - Pk (1 - uk) (Pk - c) - akpk (1 - u k- l)

1 - 2Pk + c - ak - uk
1 - uk

= 0for Pk E (0, 1)

= 0for Pk E (0, 1)

and thus Pk is decreasing in k.

k = inf k1 + c-ak (_uk) <

Proof of Lemma 1

d(k 1-Uk1

dk

If 1+ c - ak 1uk <

0} then for all k > k Pk =

0 then Pk = 0 so defining

0. N

If F E then JF (F, P)E E

Proof. Let Ft = F and Ft+l = rF (F, P). Consider the value of ft+l for 0 < Pt as a

function of Pt and ft, this may be written as:

ft (0) + - (1 - Ft (Pt))
ft+l (0) - Z

ft ()
S  z 2

Z2 z2 z1

- (2

Hence if ft (0) <

Pt ft+1 (0) < 1 <

Z2- then the second term is < 1 and ft+l (0) < 22_ For 0 >

There are no mass points in Ft so the cdf FF (Ft, P) is also

continuous. Thus F (F, P) E F. *

Proof of Lemma 2

FM : F x [0, 1] x [1, oo) -+ [1, oo) and FF : F x [0, 1] - F are continuous mappings

Proof. Use the sup norm on the space of continuos cdfs on [0, 1]. FM and FF are single

valued mappings so I will proceed with an E q proof of continuity. That is for a give e > 0

there exists ,7 > 0 such that if |(Fo, Po), (F, P)I < r then IFF (Fo, Po), FF (F, P)] < e in

the case of FF and similarly in the case of FM.

+1 -F (P))
1) (1 - Ft (Pt))

z2
Z2--Zl



First I prove the continuity of FF. For any Fo C F" and Po E [0, 1]

F' (o) = rF (Fo, Po) =
min [Fo (0), Fo (Po)] +2 (1 - Fo (Po))

For any e choose / 1 _ Ez where a = z2

2For any (F, P) where (Fo,Po), (F P) < wehaveF (0) - Fo (0) < and P - Po <

For any (F, P) where 11(Fo, Po), (F P) 11 <,q we have IF (0) - Fo ()l < r7 and IP - Pol

r. Hence

= z0 IFo (Po) - F (P)I
Z1

< Z0 (Fo (Po)
z1

zl

1

1+

Z0 IFo (Po) - F (P)I

1+ ( - 1) (1 - min [Fo (Po), F (P)])

< rl- (a + 1)z1

Imin [F0 (0) , Fo (Po)] - min [F (0) , F (P)]I

wlog say Po > P now if 0 < P then

Imin [Fo (0) , Fo (Po)] - min [F (0), F (P)]I

< 7

z2 (1- Fo (Po)) -
Zl

(1- F (P)) 0

- Fo (P)I + IFo (P) - F (P) )

- 1 (1 - Fo (Po))

= Fo (0) - F (0)



|min [Fo (0) , Fo (Po)] - min [F (0) , F (P)]

< (a+1)

if P <0< < Po

, Fo (Po)] - min [F (0), F (P)]I

z<
z1

(a + 1) (r

= IFo (0)-F(P)l

< IFo(Po) -F(P)

< r(a + 1)

(aC +1) + ijZ20 (a +

-+1

And therefore

IrF (Fo, Po) - FF (F, P) <

and FF (F, P) is a continuous mapping.

For M' = FM (Mo, Fo, Po) = ((1 - Fo (Po))z + Fo (Po)) Mo. For any E choose r =
E/2 Any (M, F, P) for where:

Mo(,+1(+MF)+ )+1

II(Mo, Fo, Po) , (M, F, P) | < 71

if 0 > Po

= IFo (Po)-F(P)I

Imin [Fo (0)

hence

Now

IFF (Fo, Po) - IF (F, P)I 1))

< r2(a Z2Z (i
< (a+)

z1

|min [Fo (0), Fo (Po)] - min [F (0), F (P)]I < rl (a + 1)



IMo -M <r

IF (0) - Fo (0)l < 7

= IP-Po <r

and from earlier

Now

IrM (Mo, Fo, Po) - FM (M, F, P) < IFM (Mo, Fo, Po) - rF (Mo, F, P)|

+ FM (Mo, F, P) - F(M, F, P)I

< Mo (Z2+1)
(z2 I

r(a + 1)+ Z
(zI

Proof of Lemma 3

If Pt = P* < pcrit for all t and Ft E F then the limiting distribution ft (0) =

limt,, ft (0) will be

ft* (0) z 2

Z2 - Z 1

if 0 < P

z2 - Z-2 1-P if 0>P
z 2 - Z1

Proof. When Pt remains constant each period 1 - Ft (P) fraction of people purchase

and inform a others. For 0 < P we have the following expression for Ft (0) :Z1

- 1) (1 - F- 1 (Pt- 1 ))

rt IU) - rt-1 U) - (1+(1

Ft (0) < 2 0 and Ft (0) > Ft- 1 (0) when 20 > Ft- 1 (0) and Ft (0) - F-1 (0) -+ 0 as

Ft (0) -- Z2 0. Thus limt,, Ft (0) = z2-- for 0 < P
z2 -z 1 z2 -zl

+1 )

IFo (Po) - F (P)I < 1 (aC + 1)

z (1 - F_ 1 (Pt_1)) 0 - Ft- 1 (0) z



For 0 > P the only people with 0 > P are those that have been newly informed from

the period before, so the distribution is uniform for 0 > P hence Ft (0) can be written as

1 - at (1 - 0). Substituting this into the transition function FF :

a (at-1 (1 - P)) (1 - 0)
1-at(1-0) = 1- z for 0 > P

1 + (2 - 1) (at-1 (1 - P))

1 + (Z -1)(at-1 (1- P))

z z1 zI-Z2-1--_...__ Thus limtip ft 0 z2-1-P
Hence z2-zl < at < at- for any at-1 > Z2-z . Thus limt ft (0) = Z2-zl

Z2 -z z2-z1 Z2Z1

Proof of Theorem 6

The monopolist's problem has a unique solution, the value function is homogeneous of

degree 1 in M and the policy function P (F) is u.h.c and only a function of the state F.

Proof. The proof involves defining a contraction mapping on the recursive problem

and using this to show that there is a unique solution to it. The continuity of the value

function and u.h.c of the policy function come from the theorem of the maximum.

I first prove the homogeneity of the problem m

Lemma 5 J (-, F) is homogeneous of degree one in its first argument

Proof. Note that the state variable M does not appear in the transition equation

F thus for a given sequence of prices the states Ft will be unaffected by changing Mo to

AMo. Also note that Mi= ((1 - F (P) 2+ F (P))) is also unchanged. The objective

function can therefore be rewritten

J (Mo, Fo) = Mo x max t-P t (1- Pt) (i=o 1  2i)
{Pt t=o

Thus J (AM 0 , F0 ) = AJ (M0 , F) *

Now define the set of continuous cdfs on [0, 1] which satisfy

F(x) - F(x-6) < a5



for some finite a > 0 by F. From Lemma lany cdf FF (F, P) satisfies this property

provided F does. Also note the space F with the sup norm is complete.

Let H (M, F) be the space of functions V : [1, oc) x F -+ R which are continuous,

homogeneous of degree one with respect to their first argument and bounded in the norm

maXF V(F) . Define an operator T on H (M, F) by

(TV) (M, F) = max P (1 - P) M + /V (M', F')
PE[O,1]

M'=r M(M,F,P)
F'=rF (F,P)

where F E F and M E [1, oc). Note that the objective and transition functions are

continuous and the maximization is over a compact set so the maximum is achieved and

by the theorem of the maximum (Berge 1963) TV is also continuous. Also note that M'

is a linear function of M so TV will be homogenous of degree 1 in M. Thus TV maps

H (M,F) -*- H (M,F).

Define the function (V + a) (M, F) = V (M, F) + aM

Lemma 6 Let (M, F) C [1, oc) x F and let H (M, F) be as above, with the associated

norm. Let T : H (M, F) -- H (M, F) satisfy

(monotonicity) V, W e H and V < W implies TV < TW

(discounting) there exists 7 E (0, 1) such that for all V E H and all a > 0, T (V + a) <

TV + ya

Then T is a contraction with modulus y

Proof. By homogeneity of degree 1,

V (M, F) = MV (1, F) for all V E H

Choose any V, W E H (M, F). Then



= W (M, F) -[V (M, F) - W (M, F)]

= W (M, F) - M [V(1, F) - W (1, F)]

< W(M,F)-M V-WI

Hence monotonicity and discounting imply

TV < TW + yIIV - W

Reversing the roles of V and W and combining the two results we get

ITV - TW I 5 yIIV - WI

I can now prove the following:

The operator T as defined above has a unique fixed point V E H (M, F) in addition

ITVo-VII (ap)" - VII, n= 0,1,2,..., all Vo E H(M,F)

and the associated policy correspondence G : (M, F) - P is compact valued and u.h.c.

Moreover, G is homogeneous of degree one in its first argument

P E G (M, F) implies P E G (AM, F), all A > 0

Proof. H (M, F) is a complete normed vector space and T : H (M, F) -+ H (M, F).

Clearly T satisfies the monotonicity property of 6.

v (M, F)

Choose V (M, F) E H (M, F) and



a > 0. Then

T(V +a) (M, F)

sup P (1 - P) M + 3V
PE[0,1]

M'=rFM(M)
F'=IF (F)

< sup
PE[0,1]

M'=rFM(M)
F'=FF(F)

P (1 - P) M + V

(M', F') + /aM'

(M', F') + a Z2
z 1

= (TV) (M, F) + p z2aM
z1

where the third line uses M' < M.- z1
Since the V was chosen arbitrarily, if follows

that T (V + a) < TV + /3a. Hence given the assumption that P0z < 1 T satisfies the

discounting condition in 6 and is a contraction of modulus /5~. It then follows from the

Contraction Mapping Theorem that T has a unique fixed point in H (M, F) and that

ITVo - V1 (c /p) IVo - VII, n = 0,1,2,..., all Vo E H(M,F)

That the policy function G is compact valued and u.h.c. follows from the Theorem

of the Maximum (Berge 1963). Finally if P E G (M, F) then P E G (AM, F) otherwise

AV (M, F) < V (AM, F) which by the homogeneity of degree 1 must hold with equality.

Proof of Theorem 7

T such that for all t > T the optimal price sequence {P*} is weakly increasing or

decreasing

Proof. It is useful to have the following two lemmas before proceeding *

Lemma 7 If Fo FOSD F' then V (Mo, Fo) > V (Mo, F')

Proof. For any sequence of prices {Pt} , it suffices to show that Mt > Mt. FF preserves

FOSD so if F FOSD F' then for a set of prices {Pt } Ft FOSD Ft . The growth rate each

sup P(1 - P)M+3(V+a) (M',F')
PE[0,1]

M'=rM(M)
F'=FF(F)

holds.



period ((1- Ft (P)) + F (Pt)) ((1- Ff' (Pt)) Z+ F' (Pt)) hence Mt t M'.

Lemma 8 The optimal price each period P E [0, 1]

Proof. Consider a price sequence { P'} where P' > -. A price sequence (P ...P- 1, , P '...-

will result in higher profits. In period t the one period profits are strictly greater because

Pt = 1 is the one period monopoly price and for all periods Mt+i > Mt'+i = 1, 2, ....

Now returning to the proof of the theorem. The proof is by contradiction. Suppose

there is a weakly increasing or decreasing price sequence {Pt*}. Every Pt* will be an

element of a compact set [0, 1] and any sequence which is weakly increasing or decreasing

will converge to an element of this set. Call this price P* = limt,, Pt*-

The value function is linear in Mt so I will write it as the product of Mt and a function

of Ft : V (Mt, F) = MtV (Ft).

I first rule out that P* = 0. A constant Pt = 0 is not optimal because any deviation

to a price above 0 gives a positive payoff. Now take a decreasing price sequence for which

limt,, Pt = 0 then an upper bound for V (Ft*) is P .(1-P ) Therefore limtoo V (Ft*) = 0

because limt,. Pt = 0. However V (F) is also bound from below by 1 from charging the

one period monopoly price P = 2. limt, V (Ft*) = 0 is therefore a contradiction and

P* = 0 is never the case.

FF (Ft, Pt) is continuous in Pt which implies that

lim ft* (0) = f* (0) = 2 for < P*
t-oo Z2 - Z1

Z2 - z1
lim ft*(0) f*(0) = -P* for0>P*
t-+ ooZ 2 - Z1

Define the discounted sum of profits from a sequence Pt = P* and ft = f* for all t as:

II (P*) = E P*(1-P*) M
t=O

st

Mo = 1

M+1= 1 P* Z2 + P*
Z2 - Z1  Zl Z2 - Z1
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From the optimality of {Pt*} and continuity of V in F limt, V (Ft*) = V (F*) = II (P*).

Therefore for any E > 0 t can be chosen high enough such that II (P*) + e > V (Ft*) >

n (P*) - E.

Now consider the following one period deviation from {Pt* }, in period t charge Pt* - 6.

This strategy cannot be better than {P* } so:

(P* - 6)) + ((1 - F* (P - 6)) 1
zl

+ Ft (P* - 6)) (F,t+ ) - V (F) 0

where Fs,t+l = FF (Ft, P - 6).

Ft* F* P -- P* so for any ca > 0 t may be chosen large enough such that

F* (P*) - F* (Pt* - 6) > z - a. Since Pt* - 6 < Pt*, F FOSD F*, and V (Fs,t+l) >

V (FA ). Combining these two facts the following is true:

-6 (1 - 2Pt) -62-o (6 Z2Z2 - Z1
V (Ft*1) > 0

rearranging

>0- p (6

where the first two terms are the change in this periods profits and the second term is a

lower bound on the change in future profits from selling to more people today. Finally

the continuity of V implies that for any E > 0, t may be chosen large enough such that

II (P*)- E < V (F*1,)

1 - 2Pt
(=2

for any w > 0 36, e, a > 0 such that

1- 2Pt

S a - (I (P*) -

6

- 1)) ((*) - E)

< -w
all (p*)z1

(Pt* - 6) (1 -

1 - 2P,

Z2

-1))

-6 (1 - 2Pt) - 62

- 07 Z

- Z - 1 V (F+I)

1)) (II (P*)- Z)2



PI -w1- 2Pt- a (P*)

for any w > 0. Note for p > 0 this also rules out P* = 1

Now consider a different deviation during period t to Pt* + 6 :

F* (Pt + 6))z1Zl

(1.9)

V (Fb,t+1) - V (Ft*)

Note

F* = FF (rF (F*, Pt* + 6) , P*)

now V (F,t+x) > II (P*) - E since a feasible strategy is to charge P* in every period after

Pt* + J6. Since FF, V are continuous for any a, E > 0 t can be chosen high enough such that

IF* - FF (FF (Ft*, Pt* + 6), P*)I < a and hence that V (Fb,t+1) > I (P*) - E

Z2

Z1
6(1 - 2Pt) + 62 +/ 2 1-P*

> 0

=~ /3

- 1) (n (P*) - E)

1 - 2Pt
S 1-- *

Z2--1Zl
z2-1-P* 

z2
Z2-Zl z1

for any w > 0 36, e, a > 0 such that

1-2Pt

) 1 - (I (P*)
Z2-1-P*

z2-zl Z2-- -a) (a - 1) ( (P*)2-zl Z1

1-2Pt

z )-* (P*)
%l

(1.10)1 - 2Pt
z2 l-P* (p)
zl

For
(1 - 2Pt) (zi)2

II (P*)(1 - P*) z2 - Z1)

both conditions given by equations 1.9 and 1.10 cannot be met so either Pt + 6 or Pt - 6

(Pt + 5) (1 - (P + 6)) + - F* (Pt +

2 1
Z1 ) ( *



is a profitable deviation which is a contradiction that there exists a T such that {Pt* } is

weakly increasing or decreasing for all t > T.

Proof of Theorem 8

For all (w, P) except (0, pcrt) the profit function is continuous and differentiable with

respect to both price and advertising, and lim i7 (w, P) = 0
(w,P)--+(O,P c

rst)

Proof. Provided Ho is differentiable with respect to P, w then so is 7r.

Ho (1 - w, P) = P + (1 - w) (1 - P) Epk (u*) k

where u* = H 1 (1, P) is the smallest non-negative solution to

kpk-1 (U*) k-1

u* = P + (1 -w)(1 - P) k  (

Ho is differentiable if u* is differentiable in w and P. The right hand side of the equation

for u* is continuous, increasing and convex in u*. I will show the differentiability of u* for

the 3 cases w > 0; P > Pcrit;and P < peit.

Using the implicit function theorem we have

du* 1 - G1 (u*)

dP 1 - (1 - w) ( - P) G' (u*)
du* - (1 - P) G1 (u*)
dw 1 - (1 - w) (1 - P) G (u*)

* and * exist provided 1 - (1 - w) (1 - P) G (u*) > 0
dP dw 1

When a > 0 the right-hand side of u = P + (1 w)(1 - P) E kVk"k-1 is strictly less

than 1 if u = 1 and strictly greater than 0 when u = 0. Therefore the solution is strictly

less than 1, and at the solution 1 - (1 - w) (1 - P) G' (u) > 0.

When P > pcrt by the definition of pcrt

1

pcr t = 1 -

e (1 - P) G' (u) < 1 for u < 1 and P > P"Crt



so again 1 - (1 - )(1 - P) G' (u) > 0 and and -L exist.

When P < Pcrt consider P +(1 - w) (1 - P)E kPk k-1 This is strictly convex in u for

0 < P < P'it and equal to 1 at u = 1. At any solution u* < 1 (1 - w) (1 - P) G' (u*) < 1

otherwise P + (1 - w)(1 - P)GI(1) 1. Hence 1- (1 - w)(1 - P) G' (u) > 0 and

and du exist.

Finally consider

lim 7r (w, P) = lim (P - c) (1 - Ho (1 - w, P)) - aw
(W,P)-(O,Pcrot )  (w,P)-(O,Pc'r t)

= (Prit - c) 1 - lim Ho(1-w,P)
(W,P)-_(0,P-rt)

It was shown in Theorem 2 that for the case w = 0 limpsp-,- t 1 - Ho (1, P) = 0 so the

theorem holds for this case. Now considering the case w > 0 take any sequence (w, P) -

(0, pcrt) where w > 0 the expression P + (1 - w)(1 P) kp()k < 1 at u = 1 and

kp
k- 1  uk-1

lim P + (1 - w)(1 - P) k() = 1 furthermore lim u* = 1. Hence
(w,P)-,(O,pcrt) z (wP)__(O,pcrit)

lim(W,p)_(o,pcrt) Ho (1 - w, P) = 1 and lim r (w, P)= 0. 
(w,P)-+(O,P

c
r
t)

Proof of Corollary 4

If 7r (w, P) > 0 for some (w', P') then 3E > 0 such that for all (w, P) E BE (0, P rit)

where BE is an open ball 7r (w, P) < r (w', P')

Proof. From theorem 8 the following two properties hold for profit 7r (w, P) is con-

tinuous in (w, P) for (w, P) - (0, P"rit) and lim r (w, P) = 0. The result follows
(w,P)-+(O,Pcrt)

immediately for e small enough (w, P) E Be (0, P""rt) ' 7w (w, P) < 7r (w', P'). *

Proof of Theorem 9

If 0 < PCrit < 1, for any sequence of strategies lim(w,p)_(0,pcrt) Ho (1, P) = oo

Proof. H' (1, P) is given by:

Ho (wP rit) = (1 - P) Go (Hi (1, P)) +1 -1L (1 - w) (1 - P) G' (Hi (1. P))

where H 1 (1, P) is the smallest non-negative solution to

H 1 (1, P) = P + (1 - P) (1 - w) G (Hi (1, P))



Theorem 8 proves that H' (w, P) is defined everywhere except (0, Pcrlt). Now consider

any sequence { (w, P)} -- (0, Pcrit) then

[rn (1 ) Zl (1- P) [G' (HI(1, P))]2

lim ( - P) Go (HI (1, P)) 1 +) 1 PG 1 P))
{(W,P)} -(0,Pt) G' (HI P))

1 Zl (1 - pcrt) [G' (1)] 2= (1 - Pcrit ) Go (1) +
1 - (1 - Perit) G' (1)

where (1 - pcrit), Go (1) and z1 (1 - pcrit) [G' (1)]2 are finite and from the definition of

pcrit 1 - (1 - Pcrit) G' (1) = 0. Hence lim(,p)-(o,pcrt) H (1, P) = .

Proof of Theorem 10

Advertising exhibits decreasing and convex marginal returns

Proof. Returns to advertising are given by Ho (1 - w, P). The rate of change of the

returns with respect to advertising level w is given by dH(1-w,P) - -H" (1 - w, P) where

-HJ' (1 - w, P) < 0 and Ho" (1 - w, P) > 0 because HO' (1 - w, P) is a polynomial in

(1 - w)with positive coefficients. m

Proof of Theorem 11

Assuming pk > 0 for all k the highest return type of individual k* is found as the

solution to:

k* E { Lk**J , [k**] } for P < pCit

where
{ ( 1 Hi(1, P))}

In H, (1, P) H' (1, P)

Proof. The probability generating function of component sizes an individual with k

friends belongs to, conditional on not being in the giant component, is given by H1,(xP)k

The expected component size is 1 + k l 1 (1 P) . Also the proba-

bility a person with k friends is not in the giant component is Hi (1, p)k. Therefore

k* = arg max l + k H (1, P)k

k{0,...} H (1, P) H1 (1, P)

note that for 0 < H (1, P) < 1 b > 0 the function f (k) = (1 + kb) H1 (1, P)k is continuous



in k; has a maximum at k** = maxk>o0 0,

and f' (k) < 0 for k > k**. Hence k* is either the greatest integer below Lk** or the

smallest integer above k**, k**] . Thus

k* E { [k**] , Fk**] } for P < P"rit

Proof of Corollary 5

The optimal target k** is continuous in H 1 (1, P) for H1 (1, P) < 1, limppcrt k** =

00, k** < -1 for P < pcrit
- In(Hi(1,P))

Proof. We have

= - lnH(1,P) +

( 1
In Hi (1, P)

In H( 1 P)
(lnH1 (1, P)

H 1 (1, P)
H' (1, P)

(1 - P) G1 (H

Hi (1, P) (1 -(1 - P)

(1 - P)E kpk

-(1- P) E k (k

(1, P))
G' (H1 (1, P)))

-1)

H 1 (1, p)k- 2

where 1H (,P C '2t ) is finite so immediately

-1
lim = o0

P-pcrt lnH 1 H(1, P)

-> lim k* = 00o
p__ pcrt

For P < pcrit

zl - (1- P) k (k - 1)pkH1 (1, P) k - 2 > 0

For H 1 (1, P) > 0

H 1 (1, P) > 0 and (1 - P) > kpkH1 (1, p)k- 2 > 0 so k* is continuous in H1 (1, P) and

hence P for P < pcrit. Finally (1-P) EkpkH(1,)k_-2 > 0 so lnH P) is an upper
(z -(1-P) Ek(k-1)PkHj(1,P)k2 ) In Hi(1,P)

k**

(InHiiP) + -) and f' (k) > 0 for k < k**

%

- 1) pkHi (1, p)k-2)



bound on k**. *

Proof of Theorem 12

If pj** > p"'it then Ek such that for k k j** = j*k

Proof. If pj** > pcrt then

H1 (1, P j **) = 1

and

H (1, P3" ) = Zpk (1 - P'**) (1 + kHl (1, Pj**))

For any PJ > P *

(1- PJ**) (1 + kH 1 (1, Pi**)) > (1- PJ) (1 + kH1 (1, PJ)) for all k

because H, (1, P) is decreasing in P. For any P3 < Pcrit

Hi(1, pj*k) < 1

because k increases the returns to advertising to a person with k friends and it has the

following properties

H1 (1,P) =0
H, (1, PJ)

and
+ k (1,P) ))

<0

for all k > -
H' (1, P )

H1 (1, PJ)
- (ln H1 (1, P)) - )

which implies that 3k such that

kH (1, P3) for all k > k

- P') (1lim (H1 (1, P3))k (1
k-oo

(1, pj))k (1- PJ)

(1- P) (1 +(1- PJ"**) (1 + kH 1 (1, P3**)) > (Hi (1, PJ)) k



Chapter 2

Signaling in Social Networks

2.1 Introduction

Social networks are important in a variety of environments. The importance of these

networks has been highlighted theoretically and empirically in many areas including risk

sharing (Fafchamps and Lund (2003); Bloch, Genicot and Ray (2005)), diffusion of innova-

tion (Young 2000), adoption/diffusion of behaviour (Glaeser, Sacerdote and Scheinkman

(1996); Jackson and Yuriev (2006)), trust and social capital (Mobius and Szeidl (2006))

and search in labour markets (Calvo-Armengol and Jackson (2004)). These models, for

the most part, have treated the network structure as exogenous and studied how in these

various environments the characteristics of any given network affect individual and social

welfare. Typically these papers have implications for policy for improving aggregate wel-

fare in the form of changes to the social network. Models of network formation are needed

for designing policies and assessing their likely effects.

In this paper I provide a rationale for why individuals may search for and form friend-

ships with individuals with whom they share a friend in common. I present a model

of cooperation in a social network in which the network is growing over time. In this

environment new players decide how to search for new friends. The way in which players

search for and then form friendships reveals how willing they are to engage in cooperation

with a potential friend.



In the model, a friendship allows individuals to interact in two ways. Firstly the two

individuals may derive utility from the friendship by engaging in a low or high stakes

prisoner's dilemma game during each period. Secondly individuals may also communi-

cate with one another, in particular, it allows either individual to pass a warning to the

other if a friend they share in common has not cooperated during an earlier prisoner's

dilemma game. There are two types of people in the population one type which is pre-

pared to cooperate and another who is not, these are modelled through the discount factor

whereby cooperating individuals have a high discount factor and individuals who do not

cooperate have a low discount factor. The equilibrium is semi-separating whereby coop-

erative (patient) agents are able to signal their type through choosing to become friends

with people who know one another. The threat of communication between people who

know one another means that uncooperative (impatient) agents do not choose to form

friendships in the same way. This signaling results in people trusting each other more

when they share a friend in common.

The understanding of how and why social networks form has come from two different

strands of literature. The random graph literature and the economic literature. The

former employs statistical tools to describe the construction of a network according to

some mechanical algorithm and the subsequent properties of the resulting network. This

strand of literature has been successful in showing how characteristics of observed networks

can result from some elementary stochastic or mechanical process. What it often does

not provide is a rationale for why the network forms through a particular process and

not another. This is especially important in the case of social networks when individuals

are making choices about how to find and become friends with other individuals. In a

recent paper Jackson and Rogers (JR) (2007) show how a process of network growth, that

incorporates random and network (meeting friends of friends) based meetings, produces

networks which exhibit many of the stylized characteristics associated with social networks

as the parameters describing the formation process are changed. On the other hand the

economic literature explains network structure from a game theoretic perspective. This

literature allows links to form in a network at the discretion of economic agents who are or

control the nodes of the network. It explicitly incorporates costs and benefits of network



formation to agents and is able to characterize a network as an equilibrium in agents'

actions. This allows one to analyze the networks which form in terms of efficiency and

welfare properties. By explicitly incorporating agents' decisions this literature gives us

a good deal of information about what networks are stable but has thus far generally

stopped short of giving predictions about degree distributions, clustering coefficients etc.

that one can match up to observed data.

This paper is related to both literatures in that the links are formed and broken at

the discretion of economic agents, akin to the economics literature, such that the agents'

actions constitute a process of network formation equivalent to a process from the random

graph literature. The model builds on the algorithm of network formation proposed by JR,

from the random networks literature, where the probability an agent receives a new link is

in part random and in part proportional to the number of existing friends of an agent. The

motivation for the model comes from the observation that people generally "trust" people

with whom they share friends in common. In the model "trust" arises endogenously in

that when two people share a friend in common each believes with probability 1 that the

other will cooperate in a repeated prisoners dilemma. The equilibrium of the model is

one in which players signal that they are willing to cooperate in a repeated prisoner's

dilemma through their choice of friends.

The model illustrates how patient players can avoid an initial period of screening

(playing a low stakes game), when establishing cooperation with another patient player,

by sharing a friend in common with that player. The key to achieving this is that the social

network facilitates communication among connected agents as well as the prospect to

cooperate. In this environment impatient types (who prefer to always defect) would prefer

to defect against multiple players playing in a low stakes game than successfully defect

once in a high stakes game and have all their other friends find out. It is this threat of

communication which allows patient players to credibly signal their type. Patient players

prefer to cooperate, and are thus unconcerned of the threat posed by communication, so

can credibly signal their type by choosing friends who know one another.

The purpose of this paper is to propose a model which firstly provides a motivation for

why individuals choose to become friends with certain people within the social network



and secondly to use this model to explain how observed characteristics of social networks

may change in different environments or change as a result of some policy. Thus far there

are few papers which have been able to do both. One exception is Currarini, Jackson and

Pin (2008) which derives a model of network formation to describe segregation patterns

in a population of heterogenous groups of agents. In this paper the focus is primarily

on the distribution of friendships and clustering aspects of a homogenous population

whereas Currarini, Jackson and Pin (2008) focus on the differences between the various

heterogenous groups in the population in terms of the number of friendships formed, the

relative number of same-type versus other-type friends and the relative same type bias.

2.2 Model

Let time be denoted by t = 0, ..., oo.

2.2.1 Social network

In period t = 0 there is a social network with N players. This network is represented

by an N x N matrix Go where an element of Go, g° = 1 indicates that player i has

established a friendship with player j. Thus the social network is directed.

Each period a new player is added to the social network and forms links with the

existing players. Each successive network is described by an (N + t) x (N + t) matrix Gt.

Players have some knowledge of their local area of the network. Define Q the neigh-

borhood of player i at time t where Q = {jmax {g,g} = 1}. Let K, Kj, Ktk be
K t = {max {gk,,g kk} I (k,k') EQ x Q}, Kj = {max{gk,,gkj} k' EQ} for aj C Q

and Kjk = max (gk, g J} for all (j, k) E Qt x Q . A player i at time t knows UN-z<t'<tQt

and UN-i<t<tKIt .

These assumptions are simply that a player knows the identity of his/her friends and

furthermore if any of his/her friends know one another and the history of the existence of

these relationships since she was born.



Prisoner's Dilemma

If a friendship exists between two players (max f{g'{, gi } = 1) these players participate

in a high or low stakes s, = H, L prisoners dilemma (PD) game during each period

t = 0, 1...oo of play. The stakes of the games a player i participates in during period t is

S = { s'lj E Qt }. The stake of the game is chosen by one of the players which I assume

to be min {i, j } which is the older of the two players. A player i then chooses an action

a = {C, D} when facing player j during period t, the set of actions a player uses during

a period t is given by A a" Ij Q }. The row player payoffs for this game are:

C D

C Z, -ys

D x, 0

The payoffs of the game are all increasing in the stake and the dominant strategy of the

one shot game is to play D (xs > z, and y, > x, > 0). Also define Az = ZH - ZL

AX = XH - XL and Ay = yH -Y L-

Communication

A friendship also allows two players to communicate with one another about the behavior

of players whom they both know for i and j this set of players is Q n Q . In the context of

this model I limit communication to player j sending player i a verifiable message about

all players k E Q1 n Qt reporting wijt = 1 if player k played D when j played C during

period t. I assume that upon receiving this information a player can then pass it on to

any other friend i' E Q' that also knows k, k E Q n Q",. The set of communications a

player i receives in period t is denoted by W t.

Types of players

There are two types of players patient and impatient. The discount factor 6 of patient

players is 6p _ 1 and for impatient players 61, 0.



Choice of friends

Each period a new player is born and enters the social network. When a player enters

the social network she forms M << N links with the existing network. A proportion

7 E [0, ] of these connections are chosen by the player and the remaining (1 - 7) M

connections are established at random. For simplicity imagine the following two stage

procedure:

Stage 1 A player joining the network, randomly meets (1 - -y) M individuals. Figure

2.2.1 shows stage one for the parameter values M = 3 and y = :

Stage 1

New Player

O Existing Player

Friendship

Existing Network

Stage 1

Stage 2 In stage 2 the player has a choice. A player can either connect to 'yM

additional individuals, where each one of these additional individuals is a friend of one

of the (1 - 'y) M individuals met in stage 1 (network-based meetings); or, alternatively, a

player can connect to -yM randomly chosen individuals from the population (who may or

may not be friends with the original (1 - -) M individuals, again I assume that if they

are met randomly the probability that any two are themselves friends is approximately

0) (random meetings). I assume that if player j was met during stage 1 amongst his/her



friends only those for whom gjk = 1 (not those for whom gkj = 11) can be met in stage 2

each with equal probability (-) if the player chooses to connect through network-based

meetings. Figure 2.2.1 shows a new player with the choice of connecting to a friend of a

friend or another randomly chosen individual.

Stage 2

New Player

O Existing Player

Friendship

Existing Network

Stage 2

The existing players in the network do not observe whether or not it was possible for

the new player to choose to connect to one of their friends, they only know that the new

player will have the opportunity to do this with -yM individuals out of the (1 - y) M

original individuals that the new player initially met randomly. In particular they don't

know if they were part of the -yM players whose friends the new player could have chosen

to connect to. Therefore, when an existing player meets a new player and that new player

does not also connect to one of her friends, she does not know whether the new player

chose not to do so, or whether she never had the chance to. Looking ahead in the model

patient types can signal their type by choosing to connect to yM friends of some of the

people she met in the network, while short lived types will choose to connect to random

individuals.

Finally I assume that a player with no connections is removed from the social network.

This allows one to focus on the signaling incentives of new players when choosing whether

1A similar assumption is needed in JR so that the alogirthm of network formation is sufficiently
tractible to derive the characteristics of the social network and is maintained here for the same reason.



or not to search for friends or friends. If impatient players remain in the social network

then by searching for friends of friends this has an additional benefit of potentially identi-

fying individuals who do not have any friends and are therefore an impatient type. This

may be a realistic reason for doing so however here I would like to focus on the signaling

achieved through the choice of friends. By removing these impatient types, a new player

believes that when it is born and forms friendships any player it finds is patient. If the

new player is patient she is therefore only concerned about convincing their friends of this

through their choice of random versus network based meetings.

Sequence of play

There is an infinite number of periods of play. During each period, play proceeds as

follows:

1. A new player i = N + t is born and connects to the network as described above,

and all players j < i update their knowledge of the network Q, Kt

2. Links are ordered randomly.

3. On the first link the oldest player min {j, k} (of the two, one at either end) chooses

whether to play a game for high or low stakes these players update St .

4. The prisoner's dilemma stage game is then played, players update At.

5. Communication takes place.

6. Repeat steps 3-5 for the second, third ... links until every game has taken place.

Players update their personal history ht = UN-i<t<tt (At', Si', Wt ', Q', K t ') as events

occur.

2.3 A sequential equilibrium of the model

In this section I present a semi-separating sequential equilibrium of the model where

patient players signal their type through choosing network-based meetings during stage



2 of the joining process. In the equilibrium a patient player is able to gain the trust of a

proportion y of friends by choosing to share friends in common. This proportion 7 of the

friends then believe the player is patient with probability - 1 and is willing to cooperate

and therefore agree to play a game for high stakes in the first period of interaction.

Theorem 13 Suppose XH + ZH < 2 XL, then 3 6 < 1 and 6 > 0 such that if 6p E

(6, 1) and 61 E (0, 6) there exists a sequential equilibrium in which patient players choose

network based meetings and an existing player i has beliefs, upon meeting, a new player j

limt,, Pr(6j = 6pIQ n Qt - 0) = 1.

I will relegate the proof and the description of equilibrium beliefs and strategies to an

appendix. Instead I will give a sketch of the equilibrium and intuition for the result.

When two players meet and share a friend in common they play a high stakes game

from the first period of interaction. If the two players do not share a friend in common

then a low stakes game is played in the first period and if cooperation occurs a high stakes

game is played thereafter. In the equilibrium patient players choose to make network based

connections when joining the network to avoid playing a low stakes game in the first period

of interaction. On the other hand impatient players choose to make random connections

when joining the network and defect in the low stakes game offered during the first period

of interaction in all the friendships which they form. The threat of communication between

two players who know one another prevents impatient types making network connections.

The choice of how to form friendships by incoming players results in existing players

in the network holding beliefs Pr(Patient) ? 1 when they meet a player with whom they

share a friend in common and beliefs Pr (Impatient) = )(1-2 when they do not.

Players update their beliefs to Pr(Patient) = 1 if a player cooperates in the first period

of interaction. If a player receives a warning about another player then they will update

their beliefs to Pr (Impatient warning) = 1.

A patient player chooses to make network based connections because it signals to the

other player that they are patient. This allows the patient player to avoid playing a low

stakes game with the players with whom they share a friend in common. An existing

patient player will choose to cooperate with a player when they do not share a friend in



common provided:

6 PZH A 6 PZH

1 - 6p A+(1-A)(1-2- ) ( 1I-p 6 >0

which will be the case for 6p sufficiently close to 1.

Impatient players choose random based connections because this type of connection

prevents communication between two players who will play the impatient player. In the

event that the impatient player did make a network based meeting the best she could do

during the subsequent period of game play would be to cooperate with the first of the

two players and defect on the second. Mimicking the patient players' friendship strategy

is not better than the strategy of impatient types when defecting on two opponents in

a low stakes game is better than cooperating and defecting in a high stakes game. This

is the condition in the theorem, 2 tL > XH + ZH. Impatient types will always defect on

equilibrium when they are sufficiently impatient. Off equilibrium for a sufficiently large

number of people (* > M who all know the impatient player and each other, the impatient

player will in fact choose to cooperate because the threat of punishment facilitated by

communication amongst this entire group is very large. Of course the impatient player

would have to cooperate for a long period of time to acquire this number of friends so it

does not occur on equilibrium.

The sequential equilibrium is one in which patient players can signal their type through

sharing friends in common with their friends. The intuition for the result is that the threat

to impatient players of communication and group sanctioning provided by the social

network allows patient players to credibly signal their own type. This signaling motive

influences the patient players pattern of friendships which they choose and is revealed

in the characteristics of the network itself such as degree distributions and clustering

coefficient.

The incentives which influence a player's choice of friends have implications for the

dynamic process of network growth. The incentives which govern the choices of the patient

players (who are the only types which remain in the network beyond the age of 1 period)

determine the evolution of the social network. I consider the implications of the model



as the network becomes very large. The growth process that results as an equilibrium is

such that all players have an equal probability of getting a random link and a probability

proportional to their in-degree of receiving network based links.

Corollary 6 In each period the probability an existing node has of obtaining a new link

to a patient player is approximately (1 - A) ((1--y)M + d) 2

Proof:

Note

Pr (New link from a patient player)

= Pr (Patient player) x Pr (New link Patient player).

Now

Pr (Patient player) = (1 - A);

and
yMa (1 - 7) M (1 - 7) Mdi (t) (1-)M

Pr (New link|Patient player) 1 +
t+N t+N M

where the first term is the probability of being selected at random and the second term is

the probability that a new player chooses to link to the node. The second term consists of

two parts, the first is (1--)Md(t) which is the probability that one of the node's neighborst+N

is found at random and the second part is M which is the probability that the node

is then chosen to be linked to. This then simplifies to (1-Y)M+ d+(t).

QED

The growth process specified here has the same characteristics of network formation as

JR. That is all individuals can meet new friends through two channels: randomly meeting

people which occurs with equal probability (independent of the number of friends) over

all individuals; and meeting people through other friends which occurs with a probability

2 The probablity in the theorem is approximate because it ignores the posszbility some of the randomly
met players are in each others' neighbourhood, or that a player could be met more than once. It is very
accurate when we assume that the network is large compared to the out-degree of players N >> M because
the adjustments for these eventualitzes go to 0.



proportional to the number of friends the player has. This combination of randomness

and network based meetings which enables JR to explain many of the stylized facts about

social networks and arises, in this model, as a consequence of people trusting others with

whom they share friends in common.

The process described in JR incorporates several parameters to give it the flexibility to

be fitted to data on a wide variety of existing social and physical networks. JR allow four

parameters mR, PR, mN, PN where mi is the number of friends identified in each stage of

the joining process (R corresponds to a random meeting in stage 1 and N corresponds to

a network meeting made during stage 2) and pi is the probability each of the people met

during stages 1 and 2 then becomes a friend. The equilibrium presented here encompasses

the case where PR = PN = 1 - A and (1 - 7) M > 1 M.

2.4 Characteristics of the social network

In this section I present how the distribution of friendships and amount of clustering,

in the social network which forms in the equilibrium of the previous section, relative to

the primitives of the micro-foundation in this paper. This is done to illustrate how the

primitives of the model can affect these characteristics.

2.4.1 Distribution of friendships

To derive characteristics of the underlying social structure I now ignore the entry of low

types because these do not survive in the social network longer than 1 period. Denote

time by t and a player which enters at time t by i = t. I rescale the time intervals from

the previous model so a high type enters in each time period t and ignore the entry of low

types since they do not survive in the social network. The probability that an existing

node i with in-degree di (t) gets a new link (in the next period when a High type enters)

is approximately:
(1 - 7) M di (t) 7

+t+N t+N



Theorem 14 The degree distribution from a mean field approximation of the network

formation process is limto Ft (d) = 1- -( d+ )

Proof:

JR provide a proof that a process where the degree of a node born at time i has initial

degree do and evolves according to

dd- (t) ad (t) b
+ --+C

dt t t

when a > 0 and c = 0 or a - 1, then the complementary cdf is

1 - F (d) =
do +d -at 1/a

a 
1-a

d 1-a

In the setting of this paper do = 0, a = y, b = (1 - 'y) M and c = 0. So treating this

as a continuous process then we have the differential equation:

ddi (t) di (t) - (1 - 7) M
dt t+N t+N

we can solve this equation to get:

di (t) = 1 MP7
t+N) -7 M

At time t 1 - Ft (d) is the fraction of individuals with in-degree greater than d. If we solve

the above expression for i such that d, (t) = d this then corresponds to the number of

individuals who have a greater in-degree than d. If i* (d) is such that di*(d) (d) = d then

1 - Ft (d) = for all d such that
t+N

we can then derive the in-degree distribution as:

M

Sd+ M

i* (d) > N

for all d such that i* (d) > N

1

Ft (d)= 1 - (



The fraction of individuals not described by this distribution N - 0 as t -+ 00.

QED

To see how this relates to a scale free distribution we write this as the complimentary

cdf:

1- Ft (d) =

If I now take logs of both sides we can see that this exhibits scale free properties for

d's which are large relative to 1- M
'Y

log (1- Ft (d)) = [log (M) -log d + M .)]

The most important property to note is that decreasing y results in a second order

stochastic dominant shift in the degree distribution. Intuitively this is because it puts

additional weight on the network meetings process which in turn biases the probability of

gaining an additional connection towards those with more existing connections. This has

the effect of spreading out the distribution, giving it fatter tails, relative to a distribution

derived from purely random meetings.

2.4.2 Clustering

I present results for three common measures of clustering. The first is the fraction of

"transitive triples." This represents the fractions of times in a network where given that

i knows j and j knows k that then i also knows k. The fraction is given by

TT (g) -i;:i;k:cj,i gjg3kgik
Zi;)i;kfj,i gij 9jk

A second standard measure ignores the directed nature of the above relationships

between individuals. This is a setting in which 'j = max {gi 3, gji}. A measure where

only the existence of the relationship rather than the directed nature of it is important is

C (g) z;#;k=j 9jkk

Ez;jfi;kA3,z ijjk



A further variation is one in which the above C (g) is calculated on a node by node

basis and the average is taken across all nodes. This measure is calculated as

Avg (g) Ei;ji;k j,i g93gjkgik

n i Ei;j i;kff,i gijgjk

This puts relatively less weight on nodes with high degrees and more weight on low degree

nodes compared with the first two measures.

Theorem 15 The Fraction of Transitive Triples, CTT (g) tends to:

M

Total Clustering, C (g) tends to:

672
5M - 2 - 2 y (4M - 2)

and Average Clustering, CAvg (g) tends to:

- M (-y d+ M

((27M + 4 (1-2) ( ) Mlog ( )M + ) + 2d)

(d+M)(d+M- 1)

Proof:

The growth process which describes this model is for a subset of possible parameter

values from the process in JR.

JR prove that CTT tends to:
PR

m(1 + r)

if P-_ < 1. C(g) tends to:

6pR
(1 + r) [(3m - 2)(r - 1) + 2mr]



if r > 1. C A
vg (g) tends to:

J" [(rm)" (r + 1)1 1 )o (d + rm)r + 2  (d+M)(d+M-1)/2}

+rm [log (d + 1)] (2? + PR - 2CTTm (1 + r))

In terms of the parameters in this model PR = 1 m = M and r = 1-2 > 1 since 7 < 1

Making these substitutions the result follows.

QED

The most important property to observe is that the first two measures of clustering

CTT and C are monotone increasing in the number of network based connections 7. The

intuition for this is that increasing -y increases the proportion of people met during stage

one for whom an additional friend is met which increases the number of triads (three

people who all know one another) in the network.

2.4.3 Number of non-random connections

In this section I allow the players to choose the fraction of non-random connections through

costly search effort. One interpretation is that players must expend additional effort to

systematically navigate/search to find individuals with whom a friend is shared. The cost

of this effort C (QM) is balanced against the gains from being able to establish a high

level of cooperation in the first period of interaction.

I assume the marginal cost of this effort is increasing and convex C', C" > 0 and at

some point exceeds the net signaling benefit of another friend of a friend limi C' (QM) =

oo. In this section I define the value of signaling in terms of three underlying parameters,

6j, 6 p and Az and describe how each effects the number of non-random connections y.

This provides a framework to study the impact of proposed policies which may affect the

social network and allows one to formulate testable hypotheses of how network character-

istics should vary across different environments. Throughout this analysis I am holding

M (the number of friendships a new player makes) constant.



I will illustrate how the benefits from signaling that you are a patient type are in-

creasing in 6I, 6 p and Az. In the equilibrium described in the previous section the value

of signaling is the additional benefit a patient player receives by avoiding the period of

screening Az. For impatient players to prefer to defect initially, rather than wait one

period to defect in a high stakes game, it was assumed that

XL > ZL + 6 IXH

which is true for 61 -+ 0. If however the discount factor of impatient types (6,) is too

high this is no longer true. To maintain a signaling equilibrium where there is screening

of impatient types the number of periods for which players play the low stakes game is

increased. I assume that the existing players in the network can commit to the stake of

games in future periods conditional on cooperation in prior periods. If this is the case

then for an impatient type to defect in the first period the value of defecting immediately

exceeds the value of waiting until a high stakes game is offered and defecting then. So

the number of periods in which a low stakes game is offered must be at least large enough

such that

XL > 1  ZL + XH1 - 5I

where the value on the left is the utility from defecting immediately and the value of the

right is the value from cooperating for n periods before defecting in the first high stakes

game. Now defining n (6j) implicitly by3 :

1 - 6"
XL =1 + 6----

then n (6,) is increasing in 6, and goes to oc as , -+ 1 - . Therefore for a value of 6I,

3In principle the right hand side of this expression should include a term incorporating the probability
of obtaining an additional friendship, which becomes increasingly likely as n becomes large. However I
will assume that the frequency of the arrival of new players decreases as 6 L increases. That is in effect the
rate of time preference is not changing but rather the frequency of interaction increases as 6 increases.



the value of signaling Vsignal is:

1 - 6n
Vsigna -= 2 Az

1 - 6P

where the 2 comes from having an additional friend of a friend signals to both friends one's

own type. If the marginal cost of obtaining friends of friends is convex then patient players

will include as many friends of friends amongst the M friendships they establish, when

they are born, such that the marginal cost of doing so is less than 21- Az. Assuming an

interior solution (this number is greater than 0 and less than M) then y (6,, 6 p) is given

by:
1 - 60

2 P Az = C' (M)
1 - 6P

The main theorem in this section describes the comparative statics of this relationship.

Theorem 16 The number of network meetings a patient type chooses, y (6I, 6p) M, is

increasing in Az, 6, and 6p.

Proof:

It suffices to show y is increasing in Az, 6, and 6p. First note that Vsignal is increasing

in 6j, since:

dn 0Vsignal> 0; > 0
d6, On

OVs10 al dn dVsignalt, > 0;
On d6j d6,

Furthermore note that VSignal is increasing in both Az and 6p; and MCearch is increas-

ing in y. Now defining:

1 - 6"
F(-y,Az,6,6p) = 2 Az - (M)

1 -np

and noting



dVsgnal dVsignal dVsignal > C > 0
> 0; >0 O ; d-->--

d6j d6p dz

we can sign d, d, _ by:
d6I d6p ' dAz

sign = -sigg s (i > 0
d6j QF sign (C" (-YM))

OdF sign (C" (ds))
d__ _ 6p = > 0

dpz sign (C" ( > M))

(dVsigna)

d7_ _ AO sign ( dAz J
dAz OFI- sign (C" (-yM))

O-y

QED

This allows one to analyze how a broadbased policy designed to affect the social

network will impact it through the changes it has on Az, 61 and 6 p. It also gives one

a basis for predicting in which settings networks with higher -y's will exist compared to

others.

2.4.4 Policy analysis

The purpose of this section is to illustrate how the signaling motive provided by the

model can be used to analyze policies designed to alter the structure of a social network.

Specifically we are interested in how a policy will affect a new player's choice of y. Pro-

vided that the policy change is not so great that the conditions required for the signaling

equilibrium to exist are not violated. The effect of a new policy can be inferred from its

impact on Vsignal through the underlying parameters Az, 6p, and 6j. If the impact is

positive then from Theorem 16 the impact is also positive on -y and the resulting social

network will SOSD (Theorem 14) and have greater clustering (Theorem 15) than a social

network absent the policy change.

For example in a given network consider a policy which enables more frequent inter-

action among agents. The effect of this can be interpreted as a shift in the discount rate
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of both patient and impatient agents. Now from Theorem 16 this will increase y which

increases both the level of clustering and the fat tailed nature of the degree distribution.

2.4.5 Comparison of networks

The model also permits one to compare different social networks on the basis of the

relative proportion of network meetings y and infer the relative value of signaling in

each network. That is assuming the costs of searching are similar across networks, a

network with a greater amount of network based meetings is one in which the value of

signaling is greater as well. This may then allow one to make inferences about the relative

frequency of interactions or the value derived from cooperation. Furthermore it gives a

number of testable hypotheses about the correlation between social network characteristics

(clustering coefficients and degree distributions) and a number of potentially observable

parameters of relationships (frequency of interaction, benefits from cooperation, incentives

for defection).

2.4.6 Welfare

Inefficiently low network based meetings

The utilitarian social welfare maximizing level of signaling is less than optimal in equilib-

rium. In the model agents only incorporate one half of the benefits from signaling into

their choice of meeting friends of friends. That is they ignore the benefit that the old

player gets from meeting a new player through a network based meeting compared to a

random meeting. The benefit to society of one additional network based meeting is in

fact 2 Vsignal since the new player and older player avoids a period(s) of screening.

Trade-off between efficiency of network and equality

To the extent that inequality is a concern, increases in the efficiency of the social network

through greater levels of signaling will also result in greater inequality across the society.

Each additional friendship between two patient types benefits both agents and so the
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agents with the greatest number of friendships are also the agents that derive the greatest

level of utility in the society. So from this point of view there is a trade off between

improving equality in the population and improving the level of trust. It is important

to note at this point that exogenously changing the network through targeted addition

and/or deletion of friendships is not an instrument available to a benevolent social planner.

Rather, when the social planner is restricted to manipulations to the network through the

parameters affecting the value of signaling then there is necessarily a tension between

improving efficiency and reducing inequality. Reducing inequality comes at the expense

of efficiency and vice versa.

2.4.7 Renegotiation of the stake of the game

When two players do not share a friend in common we may be concerned that in the

previous section the sequence of stakes offered may not be renegotiation proof. Specifically

that after the first period, when patient types reveal themselves by cooperating, then the

two players share a common belief that the other is patient. If this is the case then both

players will prefer to switch to a high stakes game in the second period. However if it

is not possible to commit to the sequence of stakes which will be offered then it is not

an equilibrium for the impatient type to defect for sure in the first period. Rather they

would strictly prefer to cooperate and renegotiate a high stakes game in the second period

in which they would subsequently defect. In this section I demonstrate that there exists

a renegotiation proof sequential equilibrium of the two player relationship which exhibits

the qualitative features of the equilibrium in the commitment case. That is the expected

payoff for the impatient new player is the same, XL, the expected payoff for the patient

new player is 'L + Az6p'3() and the comparative statics of Vsignai in Theorem1-6p (1-6p)(1-6p(1-f(3i)))

5 continue to hold in the renegotiation setting.

I implement a renegotiation procedure closely related to one used in Watson (1999)

whereby the renegotiation is limited to a local escalation or de-escalation in the timing

of the current regime. As is standard in the literature on renegotiation I assume players

vote on whether to abandon one regime in favour of another. The renegotiation criterion
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considers jump alterations and stall alterations. In a jump alteration at a time t players

agree to continue the current regime as if they were continuing from a time s > t. In a

stall alteration players agree to resume the current regime as planned after a delay until

time s > t. These jumps and stalls are incentive compatible provided that the new regime

is an equilibrium (incentive-compatible) continuation of the game.

Definition 4 An equilibrium regime is called alteration proof if for every t > 0 every

incentive compatible alteration is defeated.

For simplicity suppose we focus on a simple two player friendship where the players do

not share any friends in common and one of the players can be either patient or impatient.

The ex ante probability of this player being impatient is A - In this setting the[(1-2A)(1--y)+A] I

only way to learn that a player is impatient is if the player defects and thereby ends the

friendship. Consider the following characteristics of a conjectured equilibrium:

1. A low stakes game is offered in the first period

2. Impatient types mix in the first period between defecting and cooperating with

probability A

3. In period 2 the older player mixes with probability / between offering a high and

low stakes game

4. From period 2 onwards if a high stakes game is offered the impatient type defects

and if a low stakes game is offer the impatient type cooperates.

5. From period 3 onwards the older player either offers a high stakes game if a high

stakes game was played previously or mixes with probability / if only low stakes

games have been offered.

Theorem 17 Suppose A > (1-y)z 1 (X-zL) p- L), satisfies
- zL+yH(1-bp)+2Az(1--y) (XH- LL) I

(1-2A)(1-y) ZH +A H____Izte

[(1-2A)(1-y)+Ap] 1 -6p [(1-2A)(1-y)+Az] (-YH) 16p ' xL H then

3E such that there is an alteration proof equilibrium of the two person repeated prisoners

dilemma for 6p E [_, 1] which satisfies the above characteristics.
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I will leave the proof for the appendix but will give an informal description of why the

equilibrium is renegotiation proof. It satisfies alteration proofness because, in the case

of delays, this sequence of stakes is weakly increasing and neither agent would like to

delay the revelation of information. In the case of jumps, the only jump which is weakly

preferred from the older players point of view is a jump to playing high stakes game. This

is not incentive compatible because it requires all impatient types to have defected by the

previous period which is not incentive compatible for impatient types when 61 > XL-Z

In this equilibrium the expected payoff of the impatient new player is XL because the

equilibrium is such that the impatient player is indifferent between defecting in the first

period and continuing with the relationship by cooperating. The payoff of the patient

new player is ZL+ A6p3(6)) and the value of signaling is
1- 6 p (1-p)(1- 6p(1- 3 (6 l)))

S ZH L AZ6P (61)
VSignal 1 - 6 1 - 6 (1 - 6 (1 - (1 - ((I)))

Az

(1 - 6p (1 - (61)))

where (6S) is decreasing in 6, so the payoff to the patient player is also decreasing in 6,

and we can conclude that the comparative statics in Theorem 5 are unchanged for SI, 6 p,

and Az.

I claim without proof that modifying the commitment equilibrium from the previous

section, by having players play the renegotiation equilibrium presented here in the in-

stances where players do not share a friend in common, will not qualitatively change any

of the predictions of the model. The difficulty in doing this explicitly is that the values

of p and M must necessarily include the probabilities of obtaining further friends through

maintaining the friendship since despite these terms approaching zero as N - oo / and p

are set to keep the two players indifferent along the on-equilibrium path where low stakes

games are being offered. For expositional simplicity the analysis here effectively ignores

these small adjustments and presents the equilibrium of the repeated interaction when

there is no prospective of gaining additional friendships.
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2.5 Conclusion

This paper begins with the observation that sharing a friend in common can be valuable

in establishing trust, especially early on in a relationship. It builds on this observation to

develop a model of network formation as an equilibrium in individuals' actions, whereby

players' believe players with whom they share a friend will be prepared to cooperate

in a prisoner's dilemma game. Furthermore it shows that this equilibrium is equivalent

to a process of network formation derived by JR which can explain a number of the

characteristics of real world networks.

There are a number of advantages to nesting a process of network formation in an

equilibrium. First it allows key characteristics of social networks, degree distributions and

clustering coefficients, to be related to underlying properties of the environment. Second it

provides a framework for understanding how potential policies can change the underlying

social structure or more importantly how to design policies to achieve certain policy

objectives through changing the social network. Finally on an empirical note it gives a

number of testable hypotheses about the correlation between social network characteristics

(clustering coefficients and degree distributions) and a number of potentially observable

parameters of relationships (frequency of interaction, benefits from cooperation, incentives

for defection).

2.6 Appendix A: Proofs

Proof of Theorem 13 and description of equilibrium

Before giving the proof I will describe the strategies and beliefs which support the

equilibrium. It will be useful to define a partition IIf over the friends of player i at time

t. This partition groups individuals together if a warning about player i can spread from

anyone of them to the rest. Define the group of player j in the partition of player i's
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neighbors by

I (j) = {j} U
max g g j k1)} = 1, max gkk,+ ,g9kw+ 1k = 1 for all w < n

The following strategies and beliefs constitute a sequential equilibrium.

Patient player i strategy

* Choice of friends {Network,Random}

- Player i chooses Network based meetings.

* Choice of stake st E {High, Low} in period t against a player j.

- Player i specifies a high stakes game in period t with player j:

-t>N+j

* Warnings - wkt' = 0 : for all t' < t and k E 7ri (j); and

* Stakes - Stakes have been on-equilibrium for all t' < t; and

* Actions - (a tk a) = (C, C) for all t' < t and k E 7r, (j); and

* Connections - No changes in connections Ktj not accompanied by a warn-

ing.

- t=N+j

• Warnings - wikt' = 0 : for all t' _t and k 7ri (j); and

" Stakes - No history of past stakes S; and

SActions - (a t', ar') = (C, C) for all t' < t and k e 7 (j); and
* Connections - 3k CQ : max 9gk, gk,j } = 1;no changes in connections K tj

not accompanied by a warning.

- Player i chooses a low stakes game otherwise

* Choice of strategy at {C, D} against a player j in period t.
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- Player i plays C when:

* Warnings - w kt' = 0 and wVkt = 0 : for all t' < t and k E , (j); and

" Stakes have been on equilibrium; and

" Actions - (ac , ati) = (C, C) for all t' < t; and

* Connections - No changes in connections K ti Kt, not accompanied by a

warning.

- Player i plays D otherwise.

* Choice of sending warning about player j

- If player j deviated player i always sends a warning

Impatient player i strategy

* Choice of friends {Network,Random}

- Player i chooses to connect to random players.

* Choice of stake in each period t against a player j for which 1, si E

{High, Low} .

- Player i specifies a high stakes game in period t with player j:

-t>N+j

• Warnings- kt' = 0 and w kt ' = 0: for all t' < t and k E 7, (j); and

" Past stakes have been on equilibrium; and

* Actions - (aj, aj) = (C, C) for all t' < t ; and

* Connections - No observed changes in connections for Ki3 not accompanied

by a warning.

- t=N+j

• Warnings - wkt' = 0 and wikt' = 0: for all t' < t and k E 7r, (j); and

* Stakes - No history of past stakes; and
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* Actions - No history of past actions; and

* Connections - 3k e Q : max {g3k, gk,3 = 1;no changes in connections K t

not accompanied by a warning.

- Player i chooses a low stakes game otherwise

SChoice of strategy a G {C, D} against a player j in period t.

- Play C:

* Warnings - wjkt' = 0 and w kt ' = 0 : for all t' < t and k E wi (j)

* Past stakes have been on equilibrium;

* No changes in connections K t not accompanied by a warning; and

* i is yet to play j' in period t; or

* Ixi (j) > (* (t) > M

- Play D otherwise

* Choice of sending warning about player j

- If player j deviates player i always sends a warning

Player's Beliefs

Observing network structure:

* The belief of a player with degree d at time t when that player meets a new player

k who is not a friend of a friend (stranger) and I have not received a warning about

is

Pr (Sj = 6, wj= 0; k' e Q : max {gkf, ',k} 1)

A (1 - M- 1  N-d-i
= N+t-l-i

N-d-i (1 - A) (1 - 2 ) II -02)M-1 ( Ntl-i
-Y) (N+t-l-i
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* where

A
lim Pr (S6 = 6| w, = 0; k' Q : max {f, 9",kt
t--oo A + (1 - A) (1 - 27)

* The belief of a player with degree d at time t when that player meets a new player

k with whom a friend is shared and they have not received a warning about is:

Pr (Sk ,lwj = 0; 3k' E Q : max gk ,k, gk',k =
A IJM - 1 ( N-d-i )

I-i=o \N+t-l-i] "'( -A

where

lim Ni=o  = 0
t--+oo N+t- 1 -i

Receiving warnings:

* A player's belief about another player j in any history when he/she receives warning

about them w kt = 1:

Pr (6j = 6Iw kt =1 for some k ) = 1

* A player's belief about another player j in any history when he/she receives warning

from them w' t = 1 :

Pr (6j = 61 wij t = 1 for some k c Q) = 1

Observing actions:

* The belief about another player after she has cooperated at least once and there has

been no warning received about that player

Pr (6i = 6ja , = C for all t = ) = 0.

Observing choice of stakes by an older player:
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* An off equilibrium increase in the stake

Pr (6, = 6s. = High;j < i; t = i;Qin Qj = ) = 1

* An off equilibrium decrease in the stake does not affect beliefs.

Observing off equilibrium changes in KK:

* Observing changes in Ki without receiving a warning results in beliefs

Pr (6 = 6,I K k for some t' < t; wlkt' = 0 and wJ' = 0 for all t' t) = 1.

Theorem 13 Suppose XH + ZH < 2XL, then 3 6 < 1 and 6 > 0 such that if 6p E

(6, 1) and 6, E (0, 6) there exists a sequential equilibrium in which patient players choose

network based meetings and an existing player i has beliefs, upon meeting, a new player

j limt-oo Pr(6j = 6p Q n Q 0) = 1.

Proof:

Patient Player i

Choice of action in stage game (against player j)

* Playing C occurs when:

- Warnings - wkt' = 0 and wqkt' = 0: for all t' < t and k Tri (j); and

* Stakes - no off-equilibrium increase in the stake; and

* Actions - (a , a') = (C, C) for all t' < t; and

* Connections - No changes in connections K t not accompanied by a warn-

ing.

Case 1:

If t > N - j then the patient players beliefs are

Pr (6j = 61b' a = C for all t > j - N;w kt = 0) = 0
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and the game is a high stakes game. Thus provided

ZH

1- XH1 -6p -

is satisfied then this is the best action the agent can take.

Case 2:

If t = N - j and the players share a friend in common, the older players beliefs are

Pr (impatientlwk = 0; 3k' E Q : max (gk,k', 9k',k =) 1 ( N+t-l-i

and the game is a high stakes game. Thus provided

( N+t- 1 -iH

(1 M-1 (N+t-d-i))

is satisfied then this is the best action the agent can take. For the younger player beliefs

are

Pr (impatientlwk = 0; 3k' E : max {gk,k' k',k} = 1,j < i) = 0

Thus provided
ZH

1- XH

is satisfied then this is the best action the agent can take.

Case 3:

If t = N - j and Q1 n Q = 0 then the older players beliefs are

A
Pr (impatientlwk = ; k' c Q:i max {g ,k, gt } )) A+ (1- A) (1- 27)
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Thus provided

- A) (1PZH

A + (I - A) (I - 2-y)) ( - 6p
+ L)

A
A + (1 - A) (1 - 2 ) YL

> (1- L
S A + (1 - A) (1 - 27 )

is satisfied then this is the best action the agent can take. If the player is the new player

then the belief it has is

Pr (impatient wk = 0; 3k' E Q : max {g,k ,} = 1 i) = 0

and the strategy is optimal provided:

A) (6pzH
( 1- 6P +ZL) - AYL > (1 - X)XL

3S such that 6p E [, 1] satisfies all of the above conditions.

* Play D otherwise

- Means at least one of the following has occurred

SWarnings - wkt' 0 or wkt' 0 : for a t' It and k i (j); or

* Stakes - An off equilibrium increase in the stake;

* Actions - either i or j has played D previously; or

* Connections - A change in connections K or not accompanied by a

warning.

In all instances the updated beliefs of at least one of the individuals are

Pr (impatient) = 1

and the other player knows this so the optimal action is D.

o Choice of stake in game
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- An off-equilibrium choice of a high stake game results in the new player believ-

ing Pr (impatient) = 1 and in the subsequent game the new player will play

defect. The most the patient player can get is therefore 0. This is not optimal

since the patient player can receive at least this by choosing an on-equilibrium

low stake game and an on-equilibrium action, an on-equilibrium defect also

results in a payoff of 0 but an on-equilibrium cooperate has a positive expected

payoff. An off-equilibrium choice of a low stakes game will not change the other

players choice of action so is worse.

* Choice of links

- For a patient player choosing to signal that they are patient by establishing

links with friends of friends is beneficial because it avoids the low stakes screen-

ing game in the first period. Thus gains a benefit Az on each relationship.

* Choice to send warning

- Sending a warning is costless and does not affect a player's payoffs so is always

optimal.

Impatient Player

* Choice of action in stage game

- Play C:

* Warnings - wkt' = 0 and w 0kt = 0 : for all t'< t and k E ri (j)

* Past stakes have been on equilibrium;

• No changes in connections Kj not accompanied by a warning; and

* 3j' E 7ri (j) who player i is yet to play in period t; or

* 1ri (j) > (* (t) > M
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2 cases.

1) 3j' E 7ri (j) who player i is yet to play in period t.

The times when the impatient player chooses to play C against a player j are when

there is another j' 7ri (j) who would receive a warning, in which case the impatient

player is better of choosing to cooperate with j and then play D later in the period.

ZH

1 - 6

2) The other time an impatient player i will cooperate is if the shared neighborhood

r i (j) is sufficiently large. For any 65 there will exist a shared neighborhood i7r (j) such

that the player will prefer to cooperate. The key to the proof is to show that the size

of this neighborhood is > M and will therefore never eventuate on the equilibrium path.

The impatient player will destroy all of her initial friendships so even if by chance these

individuals know one another the player will still choose to defect on one of them in the

first period.

For any 6 > 0 there is a size of neighborhood * = Ir* (j)l such that the payoff from

cooperating forever exceeds the payoff from defecting. Ignoring the increased probability

of meeting future players from maintaining connections today this would be:

) 6 + ZH = XH
1-6

including the payoffs from future meetings increases the left hand side. Hence there is a

range of neighborhoods IWi (j) > (* where the impatient player will prefer to cooperate

with players k E 7ri (j). The remainder of the proof is to show that 36 > 0 such that a

neighborhood of size M is not sufficiently large to induce the impatient player to cooperate.

This is the largest possible neighborhood an impatient player may have in the first period it

is born. Given on-equilibrium actions the impatient player will not gain more connections

than this because it will be removed from the network after 2 periods.

A player may obtain future benefits from meeting incoming patient players in the

future if it maintains a friendship today. This effect lowers the threshold size (*. Provided
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that the threshold is never < M then this will never eventuate on-equilibrium. The

expected number of future in-degree friendships a player will obtain over time as the

population grows is:

dd? (t) di (t) 7 (1 - 7) M=+
dt N+t N +t

with solution
1-7 M(N+t)' 1-7M

di (t)= M M

The largest number of in-links at time t is therefore 1 M ((1 + ) - 1)

The expected profits from future connections if the player cooperates is then

M . -  = E t 1 + 1)

t=1 1 01Y60.(( tn

for 6, 7 < 1 this is finite and lim~ .oMl-z ZH -t=1 t ((1 + -- - 1) = 0. Hence if an

impatient player i is facing a player j and has 1r7 (j)I = M then payoff from cooperating

is at most
6MzH M1 - 7t 1)1 6 + zH + M ZH --

t=1

and in the limit as 6 -+ 0 is ZH. Hence for 6 : 61 E [0, 6] the impatient player will prefer

to play D.

* Choice of stake in game

- When facing a new player j where Q, n Q, = 0 choosing a high stakes game

instead of a low stakes game will result in

Pr (6, = 6 Off equilibrium stake choice) = 1

and the new player will play D. This is optimal for will not effect any of j's

other relationships because On the other hand an off-equilibrium decrease

* Choice of links
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- If impatient players choose to mimic patient players by connecting to two

players who know each other in the first period of interaction in the stage game

they will cooperate with the first player and defect on the second player. In the

second period of interaction they will only have the opportunity to interact with

the first of the players since the relationship with the second player is destroyed

when the impatient player defects in the first period. However by the start of

the second period this first player will hold beliefs Pr (impatient) = 1 about the

impatient player because they will have received a warning about him/her in

the previous period from the second player whom the impatient player played

defect against. In the second period of interaction the impatient player and

the first player will both play defect. Therefore the most an impatient player

can obtain by mimicking a patient player is ZH + XH. It will not be optimal

for the impatient player to do this if the following signaling condition holds

2 XL > ZH + XH.

The left-hand side is the payoff from successfully deviating on two opponents

in a low stakes game and the right is the payoff from cooperating with the first

and deviating on the second in a high stakes game.

* Choice of whether to send a warning

- Sending a warning is costless and does not effect a player's payoffs so is also a

best response.

QED

Proof of Theorem 17 and description of renegotiation equilibrium

I will first describe the renegotiation concept which is similar to the renegotiation

concept used in Watson (1999). Define the sequence of stakes offered by the probability

a high stake game is played a (t). Also define the probability that the new player has

defected by time t as 0 (t). A jump alteration ', 0 prescribes from period t what the
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original regime prescribed from t + A. Thus 0 and & are specified such that 0 (w) =

0 (w + A) and & (w) = a (w + A) for all w > t. Note that ' must be such that the right

probability mass betrays at time t - 1 so that 0 (t) = 0 (t + A). If such a - exists then

the new regime is an equilibrium (incentive-compatible) continuation. A stall alteration

at t defined by 6 and 0 prescribes from t + A what the original regime prescribed from

time t. In between times t and t + A, a is set to preserve the current beliefs of the players

about each other over the intervening period. Thus a and 0 satisfy i (w) = a (w - A)

and 0 (w) = 0 (w - A) for every w > t + A, also 0 (w) = 0 (t) for every w E [t, t + A - 1].

a on [t, t + A - 1] is arbitrary however for it to be incentive-compatible no type assigned

positive probability at time t can now have an incentive to defect during [t, t + A - 1].

Before the start of each period players may reconsider the continuation of their regime.

Players decide by voting for or against an exogenously given incentive-compatible alter-

ation. The players simultaneously vote for or against the alteration. Additionally I assume

that no information is revealed in the renegotiation process about players' types. A regime

is abandoned in favour of another if in the case of a jump both players accept it or in the

case of a stall at least one player accepts it.

Now consider the following strategies for two friends and suppose they do not share

a friend in common. I will assume player 1 is the older player and is patient. Player 2

however is a new player and may be patient or impatient.

Player 1

* Choice of stake

- First period of interaction offer a low stakes game.

- Second period of interaction mix with probability 3 of a high stakes game.

- Thereafter mix if in all previous periods the stake was low and (C, C) has been

the history of play.

- Offer a high stakes game when the previous period the stake was high and

cooperation has been the history of play.

* Choice of strategy
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- Play C

Patient Player 2

* Choice of strategy

- Play C

Impatient Player 2

* Choice of strategy

- When the stake of the game is high

* Play D

- When the stake of the game is low

* Mix with probability p of cooperating in the first period

• Play C in all subsequent periods

Beliefs

* The belief of the new player is always

Pr (Patient) = 1

* The belief of the older player before the first period is

A
Pr (Impatient) = [(1 - 2A) (1 - y) + A]

* The belief of the older player when the history includes at least one high stakes

game is

Pr (Patient) = 1
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* The belief of the older player after a history of only low stake games is

Pr (Impatient) =
[(1 - 2A) (1 - y) + jiA]

Theorem 17 Suppose A > zL+yH(1 () y)'3 -x_ - XL, , p sat-

(1-2A)(1-y) ZH AA ZL L H > zL-ZL[(1-2A)(1-7)+A.] 1-6p [(1-2A)(1-y)+Ap] (-YH) 1-6p' zL, X H HL-z

then 36 such that these strategies are an alteration proof equilibrium of the two person

repeated prisoners dilemma for 6p C [6, 1].

Proof of equilibrium:

There is always a 6 close enough to 1 such that it is optimal for the patient player to

cooperate provided there is a positive probability the other player is also patient. To see

this note that lims 6 of the left hand side of the following equation

Pr (Patient) ZL (1 - Pr (Patient)) YH > Pr (Patient) x1-6

is oo provided Pr (Patient) > 0. Where the left hand side is a lower bound on the payoff

from cooperation and the right hand side is the payoff from defecting.

The only way an impatient type is revealed given the equilibrium strategies is through

playing defect and thereby destroying the friendship. After the first period this only occurs

when a high stakes game is played since both patient and impatient players cooperate in

low stakes games from period two onwards. It is only when the players interact in a high

stakes game that the older player finds out if the other player is patient or impatient.

In periods t = 1, ..., c the impatient player is indifferent between cooperating and

defecting when the stake of the game is low. The payoff from defecting this period is the

same as cooperating and waiting until the following period

XL = ZL + 6 [/3 XH + (1 - 3) XL

S (Z- - z _,)

(TH (XL) L 6X

0 < / < 1 when 6i > xL-z. The impatient player will not prefer to cooperate providedXH
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that
ZHXH>

1 - sI

In periods t = 2,..., oo the older player who chooses the stake of the game will be

indifferent between offering a high or a low stakes game provided that

Pr (Patient) ZH 
+ (1 - Pr (Patient)) (-YH) =1 L

1-6 1- 6 P

where
(1 - 2A) (1 - 7)

Pr (Patient) = ( - 2A) ( -
[(1 - 2A) (1 - y) + At]

if the impatient player mixes in period 1 with probability p of cooperating and (1 - t)

defecting

(1 - 2A) (1 - ) ZH +A ZL
+ (-yH) =

[(1 - 2A) (1 - -) + Ap] 1 - 6p [(1 - 2A) (1 - 7) + Ap] 1 - 6p

Also if p satisfies (1-2A)(1--y) + 1-X (-H) = then the older player

[(1-2A)(1--y)+Ap] 1-Jp [(1-2A)(1-y)+/] (-YH) -- then the oe

is indifferent between offering a high and low stakes game in the second period and any

future period as long as only low stakes games have been offered previously. For pt E [0, 1]

to exist then A > (1-P)2A(1
ZL+YHH(1--6p)+2iz(1--y)"

I will now prove the equilibrium is alteration proof.

Delays

Given the repetitive nature of the equilibrium the only times a delay is meaningful

is between the first and second period and in the instance when a high stakes game has

been played and information has been revealed about the type of the unknown player.

Firstly consider the incentives for the unknown player to delay. The sequence of stakes is

weakly increasing so both types of the unknown player never want to delay an increase

in the stake of the game as both benefit from this. Now consider the incentives of the

older player for a delay alteration. A delay between the first and second periods is not

strictly preferred since in the second period the older player is indifferent between a low

or high stake game. In the sequence of stakes, which are offered by the older player, the
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first high stakes game which arises as a result of mixing induces information about the

unknown player to be revealed. A delay after this high stakes game has been played is

not preferred by the older player, since the player knows for sure that the other player

is patient since the relationship survived the high stake game in the previous period and

will prefer to play high stake games.

Jumps

In this equilibrium only three different jumps can occur from a low stake to the mixed

stake, from a low stake to a high stake, and from the mixed stake to a high stake. Jumps

ahead from the low stake offered in the first period are not preferred by the older player

if the payoff from offering a high stake are worse than a low stake. This will not be

the case if p E [0, 1] since the only difference between the first and second periods is

that the older player places a lower probability on the unknown player being impatient.

z > (1-P)2Az guarantees that E [0, 1]. The only jumps which are possible
ZL-+YH (1--p)+2Az(1--y)

are jumps from periods in which the older player is required to mix to periods in which

he/she offer a high stake for sure. For this type of jump to be incentive compatible the

impatient type must defect for sure in the period immediately prior which is not incentive

compatible when 6I > XLZL because the impatient type will prefer to wait.XH
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Chapter 3

Government Support for

Intermittent Renewable Generation

Technologies

3.1 Introduction

This paper analyzes the effects of government support for intermittent electricity gen-

erating technologies on the long-run incentives for investment and use of dispatchable

(non-intermittent) electricity generation technologies. Currently there are a broad range

of policies supporting a number of intermittent renewable technologies (e.g. wind, solar)

by governments to deal with the prospect of climate change. I analyze how and when

support for a clean intermittent technology is likely to be effective at reducing greenhouse

gas (GHG) emissions from electricity generation. For instance proponents of wind gen-

eration argue that they promote investment in a clean source of electricity and therefore

reduce greenhouse gas emissions. I derive the conditions under which this may or may

not be true.

I find that, in the long run, intermittent generating technologies are not pure substi-

tutes for dispatchable technologies. Rather the relationship between the intermittency of

the energy resource associated with the technology (i.e. wind or sunlight) and demand for
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electricity determines the substitutability of output from an intermittent technology for

dispatchable technologies. If the energy available from the intermittent resource is high

when electricity demand is low, then increased output from an intermittent technology

may be complementary with output from peaking and intermediate dispatchable technolo-

gies in the long term and in the with output from existing generators (as opposed to new

technologies) in the medium term. In this case the net effect on carbon emissions from a

government policy supporting the intermittent technology is ambiguous. It will be deter-

mined by the relative carbon intensities of the various technologies peaking/intermediate

vs baseload and new vs old, and the electricity offset by the intermittent resource.

Absent government intervention, the long run mix of technologies in deregulated elec-

tricity markets will reflect the variability of electricity demand. That is, if demand is

highly variable then the mix of generation will consist of a greater fraction of peaking and

intermediate generation than it will if demand is less variable. When an intermittent tech-

nology with low variable costs is introduced, it will operate whenever the power source is

available. In this case investment in technologies other than the intermittent technology

will reflect the shape of electricity demand minus intermittent generation. Both electricity

demand and intermittent generation exhibit variability over time. When the intermittent

generation is not too positively correlated with electricity demand the difference between

the two will exhibit a greater variance than either one individually. This increase in vari-

ability will be reflected in the pattern of investment and will lead to a greater amount

of peaking and intermediate investment relative to baseload investment. In the long run,

the entire mix of generating technologies which supply electricity will be affected. The

flow on effect to carbon emissions of support for the intermittent technology through the

change in the mix of investment may be positive or negative.

This paper gives a characterization of the long run impact on emissions of government

support for intermittent renewable technologies on the investment mix of other technolo-

gies. There is work that has aimed to do this empirically. DeCarolis and Keith (2006)

look at the economics of wind power for reducing GHG emissions by employing a green-

field optimization model that determines the optimal mix of wind, gas, turbine, storage

and transmission capacities in a hypothetical electricity system under a carbon tax, using
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data from 5 sites in the mid-west. Lamont (2008) determines the long-term system value

of intermittent electric generation and in particular the marginal value of an intermittent

resource as a function of the correlation between the intermittency and system marginal

cost. A number of other papers have also looked at some of the relative costs and benefits

associated with intermittent renewable technologies, such as wind and solar power, for

various jurisdictions around the world. For instance Borenstein (2008) calculates the net

social return from investment in solar photovoltaic to include benefits from its availability

at times of peak demand and avoided transmission losses as well as the social benefits

it may provide through avoided GHG emissions. Strbac (2002) calculates the additional

system operation costs associated with a policy to increase the amount of electricity gen-

erated by renewables in Great Britain from 10% to 20% or 30% by 2020. Holttinen and

Tuhkanen (2004) simulate the effects of large-scale wind production on CO 2 abatement

in Nordic Countries. Denny and Malley (2006) consider a "forecasted" approach to sys-

tem dispatch to estimate the emissions impact from the introduction of wind generation

through its effects on power system operation due to ramping and reliability issues. Keith

et al. (2004) evaluates a number of methodologies for estimating the amount emissions

displaced by new investments including intermittent sources. There are also a range of

methodologies and analyses which analyze the effects of wind energy projects on not only

GHG emissions but also ecological and human development, the National Research Coun-

cil (2007) reviews the literature on these broader environmental impacts of wind energy.

In contrast to this previous work the approach of this paper theoretic. It focuses on

the long-run impact on GHG emissions from the support for intermittent technologies

through their effect on the mix of investments and their subsequent use in an electricity

system. A theoretic approach offers the advantage that it provides a framework for un-

derstanding the conditions under which an intermittent technology will be more or less

effective at reducing GHG. This is particularly important when there is little experience

with large-scale deployment of intermittent generation in electricity system as is the case

today.

The mechanism for the change in investment analyzed in this paper is the change in

the annual profile of electricity demand met from dispatchable technologies. Borenstein
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(2005) also considers the change in investment through this same mechanism as a result

of a change from uniform to real-time pricing.

Section 2 introduces a model of a competitive electricity market with long run in-

vestment in different generating technologies, Section 3 & 4 analyze the effects on in-

vestment from supporting an intermittent technology on the mix of baseload vs peak-

ing/intermediate technologies and old vs new technologies respectively, Section 5 discusses

the impact on emissions of greenhouse gases and Section 6 concludes.

3.2 Models

In this section I introduce two models to analyze the effect on long run incentives for

investment in generation in an electricity market, when there is government policy sup-

porting an intermittent technology. The first model addresses the effect of these policies

on the efficient long run mix of generating technologies. The second model addresses

the effect of these policies on the scrapping/investment decision between old and new

technologies.

3.2.1 Demand

I assume that consumers have a perfectly inelastic demand for electricity. This analysis

may be extended to include more elastic demand, the inelastic case is a standard as-

sumption in many empirical analyses of electricity markets and will provide a transparent

exposition of how government support for intermittent technologies affect investment in

other types of generation.

Electricity demand x varies over time. I describe the distribution of electricity demand

by the cdf Fd (x) and associated pdf fd (x) where x is the ratio of actual demand to average

demand and normalize average demand for electricity to 1 such that f xdFd (x) = 1. I

denote peak demand inf {x Fd (x) = 1} by T.
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3.2.2 Intermittent generating technology

There is an intermittent renewable energy resource located at a number of different places

denoted by g = 1, ..., G. The investment decision w = (w, .. , , w) E [0, 1]G for the inter-

mittent technology is whether to exploit each of these locations by building a generating

facility, w9 = 1 indicates 100% exploitation of the resource at location g. I assume that

the intermittent technology has zero variable costs, but relatively high fixed costs KW and

creates no emissions EI = 0. The available energy at each location ag changes over time.

The distribution of energy at a site is given by cdf Fag (ag) with associated pdf fag (ag).

The joint distribution of electricity demand and availability of the intermittent resources

is denoted by Fda (x, al, ..., aG), and fda (x, al, ... , ac). The state of the world in this

model is described by the vector of electricity demand and availability of the intermittent

(x, al, ..., aG) which I will denote by s. Thus the relative frequencies of different states is

given by fda.

3.2.3 Net load

For a given set of investments w in the intermittent technology the joint distribution

of electricity demand and intermittent output is denoted by Fdw (x, a) , fdw (x, a) where

a = Eg wgag.1 For this set of investments the the net load may be found. I denote the

shape of net load b by F"n (b) , fnw (b). Where

b=x-a

so that

f"" (0) is a mass point = fdw (x, a) dadx for b = 0

f"" (b) = fdw (b + a,a)da for b> 0

1This can be calculated as Fdw (x, a) = f , a - = wgag, a2, ., a da2.da
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and

F"n (b) = j f dw (y + a, a) dady + fn (0)

Note that at the mass point b = 0 wind output is greater than total electricity demand

and must be curtailed.

3.2.4 Conventional generation

I assume there is a set of dispatchable technologies denoted by i = 1, 2...B characterized

by a constant marginal cost of production ci ($/MWh increasing in i), per year capital cost

Ki ($/MW decreasing in i) and carbon emission intensity El (tonnes of CO2 equivalent

emissions per MWh). I assume that these technologies are dispatchable (not intermittent)

and may produce output less than or equal to their total capacity at any point in time.2

Also I assume no two technologies have identical marginal and capital costs and that

K 1 = 0 where cl can be thought of the marginal costs of demand side management or the

value of lost load.

Amongst the set of potential investments the least cost technology(s) to build if it is

utilized a fraction u of the time is H (u) where

H (u) = arg miin Ki + uci

The lower and upper bounds of utilization for a technology i by ui, h such that [ul, u] =

H -1 (i) which is a closed interval of rates of utilization over which the technology i is

least cost. The set of least cost technologies are G* = {ili E H (u) for some u E [0, 1]}. I

describe the technology B = H (1) as a baseload technology (H-1 (B) = [ut, 1]) and the

set of technologies G*/H (1) as peaking/intermediate technologies.

2The analysis does not consider start up costs or ramping rates of different technologies.
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3.2.5 Market design

I assume that the market is such that the incentives for investment result in the least

cost mix of generation investment to meet electricity demand subject to any constraints

imposed by government policy. The least cost mix of investment is given by the solution

to:

mm (KCapi + J ciMWi (s) dFda (s)) + WgKw
w,MW (s)Capt

i 9

subject to the energy balance constraint

x < MWi (s) + Ewa,
Sg9

capacity constraint

Capi > MW, (s)> 0

where MWi (s) is the level of output from technology i when the state of the world is s. If

there is a government policy in place to support the intermittent technology an additional

constraint on the amount of intermittent output:

Target < min { w9 ag, x dFda (s)

Where "Target" is the minimum fraction of total electricity which the policy states must

come be generated from an intermittent source.

Lemma 9 Suppose the shadow price on the energy balance constraint is given by A (s)

and there is no government policy supporting the intermittent technology. Then the least

cost operation {MWi* (s)} and set of investments Cap* and w* satisfy:

Merit Order Dispatch

MWi* (s) = Cap,* if A (s) > ci

MWj* (s) = 0 if A (s) < ci (3.1)

MW* (s) E (0, Cap*) if A (s) = ci
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Efficient investment

Capf = Fnw*-l (1 - ul) - Fn"" - (1 - u)

w= 1

w= 0
Wg 1
w E (0,1)

(3.2)

(3.3)

if f A (s) ag (s) dF (s) > K,

if f A (s) ag (s) dF (s) < K,

if f A(s) a, (s) dF (s) = K,

Proof. The Lagrangian for the least cost means of meeting electricity demand is given

by:

1 = (KiCapi + J cjMWj (s) dF (s)) + E wgK

+A (s) x - MW, (s) - E wga]

+7i (s) [Capi - MW (s)] + 7_ (s) [MW (s)]

+iCapi + 7 [1 - wg] + 7w,9

First order condition with respect to MW (s) gives

ci - A (s) - 7 (s) + 2, (s) = 0

which implies

A (s) = ci if 0 < MW (s) < Capi

A (s) > c, if MW, (s) = Cap,

A (s) < c if MWj (s)= 0

which is satisfied by merit order dispatch. The first order conditions with respect to Capi :

Ki - (s) dF (s) = 0J IY

which implies that:

K = max { A (s) - c,, O} dF" * (s)
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holds at the optimum. To see this is satisfied by merit order dispatch and efficient invest-

ment

max {A (s) - ct, O} dF"L " (s)

i-1

3=1

i-I i

= Cj [u + 1 - U = Z u4 [Cjl - Cj]

j=l j=2

C Kj - Ij_I- Ki

j=2

where the first step follows from merit order dispatch equation 3.1 and the efficient in-

vestment condition equation 3.2. The second step follows from u = u +1 . The third step

follows from [cn-1 - c,] u = K, - Kn- 1 and K 1 = 0.

First order condition with respect to w9 :

Kw - A (s) adF (s) - 1 + q = 0

which implies

Kw = A (s) agdF (s) if 0 < w< 1

Kw < f A (s) agdF (s) if wg = 1

K, > f A (s) agdF (s) if wg = O

Merit order dispatch states that each technology is dispatched in order of their respec-

tive marginal costs up to the installed capacity of the technology. Efficient investment

for dispatchable technologies ensures that a unit of capacity which is used as much or

as little as possible within the scope of efficient dispatch will have a level of utilization

ui G[u, u']. Efficient investment for the intermittent technology ensures that given spot

prices equal to the shadow price on the energy balance constraint A (s) = c, where i is the

marginal generation unit then the intermittent investment does not make a loss. With the

inclusion of the government policy supporting the intermittent technology the condition
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for investment in the intermittent technology changes to

K, =f(A(s) + X)adF(s) if 0 <w, <1

K, < f (A (s) + X) adF (s) if wg = 1

Kw > f (A (s) + X) agdF (s) if wg = 0

where x is the shadow price on the policy constraint. The quantity X has the natural

interpretation as the price of renewable energy certificates if the policy is a renewable

portfolio standard or the level of a feed-in tariff to induce investment to meet the policy

target. The only changes to the operation and investment of the dispatchable technologies

comes through the change in the investment in the intermittent technology w* which

affects investment through the change in the distribution of net load Fn"* which in turn

affects the amount of output from each technology.

3.3 Baseload vs peaking/intermediate technologies

In this section I present results on the impact of a government policy supporting the

intermittent technology on investment and output in baseload and peaking/intermediate

technologies. Provided government support for the intermittent technology does not dis-

courage investment at locations g then investment in baseload technologies will decrease.

On the other hand investment in and output from peaking/intermediate technologies may

increase or decrease with government support. I will denote investment and output vari-

ables by - if there is a policy in place. Hence investment in the intermittent technology

is given by w* with no policy and w with a policy.

Proposition 1 Suppose w > w* for all g then CapB > CapB and f MWj (s) dF (s) >

f MWj (s) dFda (s).

Proof. When iw* > w*, Fw* first order stochastically dominates F i *. The total

capacity investment in the baseload technology is determined by the cumulative distribu-

tion of net load F n"' (b) and the utilization rate above which the baseload technology is
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the most efficient uB. The efficient level of investment in baseload capacity CapB satisfies

F""* (CapsB) = 1 - UB

Similarly investment in the baseload technology under government support for an inter-

mittent technology is determined by the cumulative distribution of the residual demand

Fn * (CapB) and uB.

Fn* (CaB) = 1 - B

When i* > w* F n"* first order stochastically dominates Fn"*. This immediately implies

CapB CapB and so the total capacity of baseload technology will weakly decrease under

government support for an intermittent technology. Output without the policy is given

by

fnw* (Fnw* -1 (1 - u))

output with the policy is given by

fB du
SUfnZ* (Fn* -1 (1 - u))

Output decreases as an immediate consequence of Fnw* first order stochastically domi-

nating Fn"*. 0

These results show that under relatively weak assumptions on the availability of the

intermittent resource the intermittent technology is substituted for the baseload technol-

ogy when there is a government policy supporting it. The same is not necessarily true

for peaking/intermediate technologies which may be complements or substitutes for the

intermittent technology.

Proposition 2 For technologies other than the baseload technology a government policy

supporting the intermittent technology may lead to an increase or decrease in capacity

Capi Capi and output f MW (s) dF (s) < f MW- (s) dF (s) for i B.

I will give an example of capacity/output increasing and an example of it decreasing.

Assume G = 1 and K, is large such that without the government policy w* = 0. Assume
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fd (X) = 1 for x c [0.5, 1.5] and fa (al) = 5 for al E [0, 0.2]. I consider the two cases where

the correlation p between x and a, is 1 and -1. Assume the target of the government

policy is 0.1 such that wU = 1.

Example 1 p = 1

In this case net load is f (b) = f (x - a) = 1.2 for b E [0.5, 1.3].

Capf - Cap = (u4 - u) - 0.8 (u' - > 0

and the change in output is given by:

I MW (s) - MW (s) dFd h 2 d[('i - U) - 0.8 (u - u')] > 0

Example 2 p = -1

The density of net load is f (b) = f (x - al) = 0.8 for b E [0.3, 1.5]The change in

capacity is therefore given by:

Capf - Capi = (u' - u ) - 1.2 (u -u) < 0

and the change in output is given by:

S(MWi* (s)- M-W (s)) dF (s)= (u2 u [(4-)- 1.2 (u4 - u')] <0

These two examples highlight the correlation between the availability of the intermit-

tent resource and electricity demand in determining whether the peaking/intermediate

technology is a substitute or complement for the intermittent technology. Figure 3-1 il-

lustrates the change in output of peaking/intermediate technologies from the introduction

of a government policy supporting the intermittent technology. The vertical axis is MW

and the horizontal axis is a fraction. The figure shows the load duration curve (demand

ordered from highest to lowest) and net load duration curve (net load ordered from highest

to lowest) when there is a government policy. The dark shaded area is a decrease in output

from the peaking/intermediate technology and the lighter area is an increase. The net of
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Figure 3-1: Change in output by peaking/intermediate technologies from the introduction
of a government policy

the two is the total change as a result of a government policy. The scenario as illustrated

in the figure is one in which a significant amount of intermittent output occurs during

the lowest hours of demand. In this case a combination of the intermittent technology,

during offpeak hours and peaking/mid merit technology, peak hours, replaces baseload

output. This may have adverse effects for greenhouse gas emissions if the baseload plant

that would have been invested in is cleaner than the combination of peaking/intermediate

and intermittent technology.

3.4 Old and new generation

In this section the usage/scrapping decision of the existing stock of old generators is

incorporated into the framework. The stock of these old generators is given by Capold

which is fixed. The capital costs associated with the existing stock of old generators

is assumed to be sunk. The on-going fixed costs of these generators is small and for

the purposes of the analysis are assumed to be zero. Further for illustrative purposes

I assume there is one dispatchable technology other than the technology i = 1 with

zero fixed costs and the intermittent resource which has zero variable costs. I assume

133



that the variable costs of the new technology cnew are less than the old technology, thus

C1 > Cold > Cnew > Cintermittent = 0. The minimum cost to meet demand is the solution to:

mmin
w,MWold(s),

MWnew (s),Capnew

KnewCapnew + J (cnewMWnew (s) + cozldMWold (s)) dF (s) + Z w9Kw
g

subject to the energy balance constraint

x < MWnew (s) + MWod (s) + wga for all (x, al,...aG)

capacity constraint

CapNew

CapNew

MWNew (s) > 0

MWNew (s) > 0

and if there is a government policy in

is an additional constraint:

place to support the intermittent technology there

Target J m{in wgag, x dF (s)

Define a function u* (ul) : [0, 1] -- IR by:

K new C1 - Cnew
U* (U) = K7e -- U 1  

-C

Cold - Cnew Cold - Cnew

The function u* returns the fraction of the time the old technology must be marginal for

the new technology to break even if technology i = 1 is marginal for a fraction ul of the

time. This function is useful to pin down efficient investment in the following lemma.

Lemma 10 Suppose u* < 1 and the shadow price on the energy balance constraint is

given by A (s) for each state of the world and there is no government policy supporting the

intermittent technology the least cost operation {MWi* (s)} and set of investments Cap*ew
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and w* satisfy:

Merit order dispatch

MW,* (s) = Capf

MW,* (s) = 0

MWj* (s) E (0, Cap*)

if A (s) > ci

if A (s) < ci

if A (s) = ci

Efficient investment

Cap*

Cap *ew

(3.5)

(3.6)

SFnw* - (1) - F n w - 1 (1 - u*)

SF"" -' (1 - u* (u*))

where u* satisfies

F 1
nw* - 1

if Fnw*- (1) - Fnw*- (1 - u* (0)) > Capold

(1 - ut) - Fnw* - 1 (1 - u* (uT)) = CaPold otherwise

w* =19

w* = 0O9

wE (0,1)

f (s) agdF (s) > Kw

f A (s) agdF (s) < Kw

f A (s) agdF (s) = Kw

(3.7)

Proof. The proof is the same as for Lemma 9 except for the condition for investment

in capacity for the new technology. The first order condition with respect to Capnew

Knew = /max { (s) - Cne, 0} dF (s)

If A (s) = ci (s) where c, (s) is the marginal generation unit in the merit order, then:

I max {A (s) - cnew,0} dF (s)

= Cold max 1 - Fn~ (CaPnew) , Capold + c1 (1 - Fnw" (Capnew + CapId))

= ciu; + old (u* (ut) - uT)

= Knew
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where the first step follows from merit order dispatch and the second and third steps

follow from the definitions of Cap*,,, u* and u*. n

In the lemma there are two cases, one where some capacity of the old technology is

never used, which one could consider as being scrapped (u* = 0), and another case where

all of the old technology is used and there is some demand side management through

technology i = 1 (uT > 0) This lemma illustrates that the old technology is similar to a

peaking/intermediate technology in that it has small ongoing fixed costs and high variable

costs relative to the new technology and is thus utilized relatively infrequently compared

to the new technology which is more similar to the baseload technology from the previous

section. Indeed similarly to peaking/intermediate technologies the output from the old

technology may increase with the introduction of a policy supporting the intermittent

technology. This is shown in the following result.

Proposition 3 Output from the old technology may increase or decrease with the intro-

duction of a policy to support the intermittent technology

I will give an example of output increasing and an example of it decreasing. Assume

G = 1 and Kw is large such that without the government policy w* = 0. Assume

f (x) = 1 for x E [0.5, 1.5] and f (al) = 5 for a, E [0, 0.2]. I consider the two cases where

the correlation p is 1 and -1. Assume the target of the government policy is 0.1 such that

i = 1. Finally assume Capo d> Fd - 1 (1) - Fd - 1 (1 - u* (0)). When this is the case the

capacity investment for the new technology is Fn"* -1 (1 - u* (0)).

Example 1 p = 1

The density of net load is f" (b) = f (x - a,) = 1.2 for b E [0.5, 1.3]. The change in

output is given by:

Su* (0)[u (0)- 0.8u* (0)] >

MWd (s) - MWod (s) dF (s) = [u* (0) 0.8u* (0)] > 0

Example 2 p = -1
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The density of net load is fn (b) = f (x - al) = 0.8 for b E [0.3, 1.5]. The change in

output is given by:

(MWi* (s) - MW (s)) dF (s) = U [u* (0) - 1.2u* (0)] < 0

It is the cost characteristics of the old technology, low fixed and high variable costs

which make it an attractive option for supplying electricity relatively infrequently during

times of peak electricity demand. When the availability of the intermittent resource is

such that there is a great deal of capacity required to operate relatively infrequently,

when there is significant intermittent investment, then output from this older technology

increases in the presence of government support.

3.4.1 Carbon emissions

In this section I derive the conditions under which government support for an intermittent

technology will increase carbon emissions. It is informative to discuss carbon emissions

in terms of the relative carbon intensities of the mix of dispatchable (non-intermittent)

technologies with and without government support for the intermittent technology. The

carbon intensity is the amount of emissions per unit of demand met by dispatchable

technologies. Denoting the emission intensity by A this is:

Emissions
Output

f (E, E, MW (s)) dFda (s)

f (EZ MW WI (s)) dFda (s)

I will use ANoPoli as the emission intensity with no government policy and APoli" with a

government policy.

Comparing the emissions outcomes with and without government support amounts

to determining whether the carbon intensity per MWh ANoPoli from the mix of tech-

nologies when there is no support for the intermittent technology is larger or smaller

than (1 - Target) times the emissions intensity per MWh with support for the intermit-

137



tent technology APol"". Government support for an intermittent technology will increase

carbon emissions when:

Target x ANoPolicy < (1 - Target) (APoli _ ANoPolicy)

This highlights the two potential opposing effects from supporting a clean but inter-

mittent technology. The first is the direct effect from having a carbon free technology

generate s% of electricity (the left-hand side), the second and potentially adverse effect

comes through changing the efficient mix of non-renewable technologies over the remaining

(1 - Target) % of electricity (the right hand side). If the intermittent generation results

in a shift towards technologies with relatively high EIi then the increase in emissions due

to this substitution can more than offset the gains from the direct effect.

Currently there is insufficient experience with large scale deployment of intermittent

technologies to empirically identify an effect on investment behavior in a region from

an increase in intermittent investment. However the message from the theory is that

policies supporting intermittent technologies are inconsistent with or costly approaches

to addressing climate change objectives when:

1. the availability of the intermittent resource is higher when electricity demand is

lower; and,

2. new baseload technologies are less carbon intensive than the existing stock of tech-

nologies and new peaking/intermediate technologies.

The first of these conditions can be tested in different regions of the world through

measurement of the resource (hourly wind speeds and hourly intensity of sunlight in the

case of wind and solar) and electricity demand over time. The second condition calls

for a scenario-based analysis as there is considerable uncertainty about the future costs

associated with various technological options for supplying electricity.
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3.5 Conclusion

The contribution of this paper is to highlight that policies which explicitly support in-

termittent technologies, over other technological options, may have effects beyond the

electricity that is displace by the intermittent output in the short run. In particular

the results highlight that when considering GHG emissions the short run effect from the

electricity displaced may be offset by long run investment changes. Thus extrapolating

short run benefits for calculating long term effects can be misleading. This effect comes

through the effect on the investment decisions of new generators which are not covered

by the government policy. The variability of both electricity and the availability of the

intermittent resource may result in some technologies being complementary in the long

run to the intermittent technology. A policy which supports the intermittent technology

may therefore increase the amount of investment and output from these technologies.

These technologies aren't covered by the government policy and hence need not have low

GHG emissions.

In the first part of the paper the focus is on the type of technological investment

which takes place. Here I contrast peaking/intermediate technologies with baseload tech-

nologies. I find that baseload technologies are, under mild conditions, substitutes for an

intermittent technology. No such distinction is true for peaking/intermediate technologies

which may be complements or substitutes. If the availability of the intermittent resource

is sufficiently negatively correlated with electricity demand then investment/output from

peaking/intermediate technologies may increase.

In the second part of the paper I focus on the amount of investment in new technologies

when there is an existing stock of old technologies. Here I find that if the availability of

the intermittent resource is sufficiently negatively correlated with electricity demand then

output from the old technology may increase when there is a policy which supports the

intermittent technology.

When peaking/intermediate and/or older technologies are relatively carbon intensive

compared to new baseload technologies it raises concerns about the effectiveness of these

types of policies for addressing climate change objectives. In particular one may be
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concerned that the support for an intermittent technology reduces the investment in and

output from nuclear and/or coal with carbon capture and sequestration by amounts even

greater than the electricity included in the policy.
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