Selected Conversion Factors

Dimension	SI	=	multiplier	×	Other Unit		
Density	kg/m³	=	16.018	×	lbm/ft ³		
	kg/m ³	=	10 ³		g/cm³		
Diffusivity (α, ν, D)	m ^{2/s}	=	0.092903	×	ft²/s		
	m ² /s	=	10 ⁻⁶	×	centistokes		
Energy	J	=	1055.04	×	Btu ^{<u>a</u>}		
	J	=	4.1868	×	cal ^b		
Flow rate	m³/s	=	6.3090×10 ⁻⁵	×	gal/min (gpm)		
	m³/s	=	4.7195×10 ⁻⁴	×	ft ³ /min (cfm)		
Heat Flux	W/m²	=	3.154	×	Btu/hr·ft²		
Heat transfer coefficient	W/m ² K	=	5.6786	x	Btu/hr∙ft ² °F		
Length	m	=	0.0254	×	inches		
	m	=	0.3048	×	feet		
Power	W	=	0.022597	×	ft·lbf/min		
	W	=	0.29307	×	Btu/hr		
	W	=	745.700	×	hp		
Pressure	Pa	=	248.8	×	inH₂O (@60°F)		
	Pa	=	6894.8	×	psi		
	Pa	=	101325	×	atm		
Specific heat capacity	J/kg·K	=	4186.9	×	Btu/lbm∙°F		
	J/kg·K	=	4186.8	×	cal/g·°C		
Temperature	K	=	5/9	×	°R		
	K	=	°C + 273.15				
	K	=	(°F + 459.67)/1.8				
Thermal conductivity	W/m·K	=	1.7307	×	Btu/hr∙ft.F		
	W/m·K	=	418.68	×	cal/s·cm.C		

<u>Dimension</u>	<u>SI</u>	=	<u>multiplier</u>	×	Other Unit
	Pa·s		47.8803	×	lbf·s/ft²
	Pa∙s	=	1.4881	×	lbm/ft⋅s
Viscosity (dynamic)	Pa·s	=	10-3	×	centipoise

 $^{^{}a}$ The British thermal unit, originally de.ned as the heat that raises 1 lbm of water 1^{o} F, has several values that depend mainly on the initial temperature of the water warmed. The above is the International Table (i.e., steam table) Btu. A "mean" Btu of 1055.87 J is also common. Related quantities are: 1 therm = 10^{5} Btu; 1 quad = 10^{15} Btu $^{\sim}$ 1 EJ; 1 ton of refrigeration = 12,000 Btu/hr absorbed.

More on conversion factors

^bThe calorie represents the heat that raises 1 g of water 1°C. The above is the International Table calorie, or IT calorie. A "thermochemical" calorie of 4.184 J has also been common. The dietitian's "Calorie" is actually 1 kilocalorie.