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Abstract

This paper presents a method of determining
appropriate functions to be used as amplitude character-
istics of networks when certain ideal behaviors are to be
approximated within specified tolerances. This method is
based on the use of suitable transformations in the
complex plane which, by simplifying the geometry of the
problem, permit the direct determination by inspection of
the desired functions. In the simplest cases of practical
interest, this method has the only advantage of presenting
results already known in a more intuitive form. On the
other hand, it yields also alternative solutions satisfy-
ing additional and less conventional requirements and, at
the same time, it indicates an approach likely to be
fruitful in the solution of more complex pproximation
problems.
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A NOTE ON THE SOLUTION OF CERTAIN APPROXIM!ATION PROBLEMS

IN NETWORK SYNTHESIS

1. Introduction

The first step in the design of a network is the selection of an

appropriate function to represent the particular frequency characteristic of

interest. Such a function must, first of all, satisfy some necessary and

sufficient conditions to insure the physical realizability of the network.

In addition, it must meet whatever requirements are imposed by the design

specifications. In many practical cases for instance, these design specifi-

cations require the function representing the behavior of the network at

real frequencies* to approximate some simple step function within specified

tolerances.

The approximation procedure described below has been developed1

in connection with functions representing the behavior of the magnitude of

the transmission coefficient of a two-terminal-pair network terminated, on

both sides, by pure resistances. However, it can be easily applied, with

obvious modifications, to other types of mplitude responses, such as, for

instance, the magnitude of a reflection coefficient or of a driving-point

impedance. For the sake of implicity, the discussion will be limited to

the case of transmission coefficients, leaving to the reader the extention

of the approximation procedure to other similar cases.

Any function representing the transmission coefficient t of a

passive two-terminal-pair network must satisfy the following necessary and

sufficient conditions of physical realizability:2'3

(1) It must be a real rational function of the complex

frequency variable X = a-+ w.

(2) Its magnitude must satisfy the inequality tSl 1 in the
right half and on the w-axis of the complex plane.

It can be shown that the second condition is always satisfied if the poles

of t are in the left half-plane and tkl 1 on the imaginary axis.

The square of the magnitude of the transmission coefficient

on the imaginary axis is seen to be equal to the value of the analytic

function T() = t(N)t(-X) for X = w. The distribution of the zeros and

poles of this new function T(N) must be symmetric with respect to the

imaginary axis as well as to the real axis, and for physical realizability,

the inequality T(jw): 1 must be satisfied. It can be shown that, if T(X)

meets these requirements, it is always possible to find at least one cor-

responding function t(X) which satisfies conditions (1) and (2) above. The

i When the complex variable X = +jw is used, "at real frequencies" means
over the imaginary axis of the X-plane.

-1-



determination of an appropriate function T(X) is ust the problem with which

this paper is concerned. The reader is referred to the literature1'2 t3 for

the rest of the design procedure, namely, obtaining t(X) from T(X) and

synthesizing the corresponding network. It must be pointed out, however,

that considerations arising from these later stages of the design often

play an important part in the selection of the function T(X). On the other

hand, these considerations do not alter the main idea in the approximation

procedure presented in this paper, and therefore will be disregarded in the

following discussion.

2. The Electrostatic Potential Analogy

The formal analogy between static field theory in two dimensions

and complex function theory was recognized by the early workers in these

fields. As a matter of fact, functions of a complex variable are commonly

used in the solution of field problems. The reverse process has also been

used successfully in the solution of network problems,4 '5'6'7 because the

field analogy provides convenient experimental techniques for the study of

networks, and because the physical feeling for electrostatic fields can be

very helpful as a guide in the selection of appropriate functions. This

physical point of view will form the basis of the approximation procedure

presented below.

The analogy between static fields in two dimensions and functions

of a complex variable can be stated briefly as follows. The lines of

constant real part and the lines of constant imaginary part of a function

of a complex variable form in the complex plane two orthogonal families of

curves, which can be identified with the equipotential lines and the lines

of force of an electrostatic field. In particular, if one is interested

in the magnitude of a function F(M), the real part of n F(X), that is

ln IF(X)I, is identified with the potential; the constant phase lines become

then the lines of force. If one turns his attention to the critical points

(zeros and poles) of the type of function F(X) encountered in network theory

(that is, the ratio of two finite polynomials), it is seen that these

critical points become the sources of the corresponding electrostatic field.

More precisely, one writes the function n F(X) in the form:

oi)m n
In F(X) = n n A + E In 1 - ln (1)

m X X pi 1 oi
IT (x pi)
1
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where the oi and the pi are, respectively, the zeros and the poles of

F(X), and A is a constant. It is clear then that the potential represented

by the function lnlF(k)I is produced,apart from n A, by positive and nega-
tive line charges of unit density located, respectively, at the poles and

at the zeros of F(W). Consider now the approximation problem stated in the

preceding section from this potential-theory point of view. This problem

becomes that of determining a set of unit line charges hich produces over

an axis (the imaginary axis of the -plane) a potential distribution

approximating a given function within a prescribed tolerance. An experi-

mental technique for solving this problem has been developed by Hansen4

using an electrolytic tank. A general theoretical solution, however, is

not available at present and the procedure presented below should be con-

sidered as an attempt to fill this gap in a number of very simple but

important cases. Because of the lack of generality of such a solution,

the main idea can be best explained by means of specific examples. The

following sections are devoted to such special cases.

3. Uniform Pass-Band Approximation

Suppose it is desired to determine a function T(X) (representing

the square of the magnitude of a transmission coefficient) which approxi-

mates a constant within a specified maximum deviation over the fraction

of the imaginary axis corresponding to -l- w cl, and which approaches zero

monotonically when w approaches infinity. The reader will recognize these

specifications as typical of low-pass filters from which corresponding high-

pass, band-pass, and band-elimination filters can be obtained without

difficulty.

Let then T(X) be the F(X) of the preceding section. Since T(jw)

is, by definition, real and positive, n T(jw) is real. It will be

remembered that T(X) is related to the transmission coefficient t(x) by

T(X) t(X)t(-X). Following the line of thought discussed in the previous

section, the problem at hand becomes that of determining a distribution

of line charges which produces a potential function meeting the above

specifications. The solution of this problem is made difficult by the

fact that the potential is supposed to approximate a constant over only a
portion of the imaginary axis. The problem would be quite simple, on

the other hand, if the region of approximation extended over the whole

axis.

The above remarks suggest immediately a method of approach which
is currently used in field problems, namely that of simplifying the

geometry of the problem by means of an appropriate transformation of the

complex -plane. More specifically, in the case being considered, one

wishes to find a function X = f(Z), where z = x + y, which transforms

-3-
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the segment -14 w <l of the imaginary axis of the -plane into the whole

imaginary axis of the z plane. It is readily recognized that the function

X = sinh z satisfies ust this requirement. The straight lines x = constant

become in the A-plane a family of confocal ellipses, and the lines

y = constanta family of confocal hyperbolas. Figures 1 and 2 illustrate

Fig. 1. The transformation X = sinh z in the -plane. The points
indicated with crosses correspond to the points indicated
in a similar manner in the z-plane (Fig. 2).

this transformation. It must be carefully noted, in this regard, that z

is a multivalued function of X, so that the whole A-plane corresponds in

the z plane to an infinite number of regions, each one of which is limited

by the straight lines y = k/2 and y = (k+2)r/2, where k is any positive

or negative odd integer. The heavy lines in Fig. 1 are the branch lines

of the function.

The solution of the approximation problem in the z-plane does

not present any difficulty. Any uniform distribution of critical points over

lines parallel to the imaginary axis will yield a function T with the

desired type of oscillatory behavior over the y-axis. One must note,

however, that, since T(X)sl for = w, no pole can be placed on any of

the lines y = k/2, (k is again any positive or negative odd integer),

-4-
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Fig. 2. The z-plane corresponding to the A-plane of Fig. 1.

because these lines are transformed, in the -plane into the part of the

imaginary axis corresponding to 1w! 7 1. The simplest type of uniform dis-

tribution of critical points consists of two rows of simple poles parallel

to the y-axis and symmetrically located with respect to it. If n is the

number of poles in each row between any pair of lines y = k/2 and

y = (k+2)ir/2, one obtains, for n even:

_V= a + a + J (1+2m z a + nJ + ) =
T(z)) 2n 2n(2)

(2)

= cosh n(z+a) cosh n(z-a) - sinh2na + cosh2nz

and for n odd:

0 +A =- T (z + a + )(z-a+j P-T

-5-
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= - sinh n(z+a) sinh n(z-a) = sinh2na - sinh2nz (3)

in which A is an arbitrary constant and a is the distance of the two rows

of poles from the imaginary axis. The special case of n = 4, a = /8 is

illustrated in Figs. 1 and 2.

Transforming back into the X-plane, one obtains from Eqs. (2)

and (3),

T(X) = 2 for n even (4)
sinh2na + cosh2 (n sinh)

T(X)= A for n odd. (5)
sinh2na - sinh2 (n sirnd7)

Both of these expressions yield on the imaginary axis of the h-plane:

(j) sin a+A A (6)
sinh na + oos (n cos-lw) sinh 2na + Tn (W)

where Tn(w) = cos(n cos-lw) is the Tchebycheff polynomial8 of the first

kind and of order n. It is clear from this equation that T(jw) oscillates

n times between the extreme values A/sinh2na and A/cosh2na when w varies

from -1 to 1, and approaches zero when wJ approaches infinity. The

constants A and a are so selected as to make these values agree with the

design specifications. The order n of the function depends on the desired

sharpness of cut-off and on other design considerations that are beyond the

scope of this paper.

The location of the poles of T(X) in the -plane is obtained from

the location of the poles in the z-plane. One has

sinh a + J (2n n even

xp = sinh z (7)

s inh a + J mn n odd

where m is any integer of a consecutive series of n integers. It is clear

that the Xp are located on an ellipse centered at the origin and of semi-

axes equal to sinh a and cosh a.
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The distribution of poles discussed above is the simplest distribu-

tion of critical points which yields an oscillatory behavior over the imaginary

axis of the z-plane. The corresponding approximation function T(X) of Eq.(6),

has been used by Darlington2 and others1'3 as the magnitude squared of the

transmission coefficient of low-pass filters. The function -10 loglOT(Jw)

is plotted in Fig. 3 for n = 4, A = sinh 4a, and a = 0.275.

i

2f

,2
12

0.2 0.4 0.6 0.8 1.0 1.2 L4 1.6

W

Fig. 3. The insertion loss of a filter with
uniform pass-band approximation.

Approximation functions suitable for representing other network

characteristics as well as reflection coefficients can be obtained by means

of more complex distributions of critical points. One could use, for instance,

more than one pair of rows of simple poles or multiple poles, and, in

addition, one or more pairs of rows of zeros. Each pair of rows in the

z-plane will transform, of course, into an ellipse in the -plane, so that

all the critical points in the -plane will be located on confocal ellipses.

The type of distribution of critical points that is to be selected in each

particular case depends on the design specifications, on the form of network

desired, and on the network characteristic that F(X) has to represent. For

instance, if F(X) is to be the magnitude squared pl2 of the reflection

coefficient of a low-pass filter, the number of zeros must be equal, at

least, to the number of poles because F(N) must not vanish at infinity.

Such a function can be obtained readily from the T(jw) of Eq. (6) by means

of the well-known relation1'2'3

-7-

12L _
IaC ___ _

I I I

C \

�� �II..�.� II-·-·------- ---- ------------ --- �--- ---- ------ I



2 1 - Itl2 = 1 - T(J). (8)

One has then

2 - A - sinh2 nb + cos"(n cos w) (9)sinh 2na + cos2 (n cos 1 w) sinh2na + cos2(n cos w)

where Asinh2na, and sinh2nb = sinh2 na - A. The zeros of Ip12 are located

on an ellipse of semiaxes equal to sinh b and cosh b.

The use of several rows of poles or of multiple poles is indicated

when the desired behavior of a lossless network has to be predistorted to

counterbalance the effect of incidental dissipation.2,3 The amount of

dissipation for which such a predistortion is possible is limited by the

distance from the imaginary axis of the pole closest to it. (The same

reasoning applies to zeros when they are required to lie in the left half-

plane as in the case of impedance functions.) This limitation results, in

turn, in a limitation on the number of singularities on each ellipse, as

indicated by Figs. 1 and 2. When such a situation arises the required

pass-band tolerance of approximation and the required sharpness of cut-off

can be obtained by increasing the multiplicity of the poles or the number

of rows instead of the number of poles in each row. It must be noted,

however, that this procedure results in a less effective use of the degrees

of freedom available.

A last remark is in order regarding high-pass, band-pass, and band-

elimination approximation problems. The well-knowm transformations from

low-pass behavior to high-pass, band-pass, and band-elimination behavior can

be used in these cases to obtain the desired functions. However, these

transformations are more conveniently performed directly on the network

rather than on the function.3

4. Uniform Approximation in the Pass-Band

and in the Rejection Band

In many filter-design problems the requirements on the sharpness

of cut-off and on the minimum rejection-band attenuation cannot be

efficiently met by approximation functions of the type discussed in the

previous section. In these cases, it is desirable to use, for the magnitude

squared of the transmission coefficient T(Jw), a function which approximates

in an oscillatory fashion a small constant in the rejection band, in addition

to approximating a larger constant (smaller than unity) in the pass band.

In most cases these two constants are made equal respectively to zero and one.

-8-
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One has now to distinct regions of approximation on the imaginary axis of

the -plane. The pass-band region corresponding to whly I and the rejection-

band region corresponding to Iwl2l/k, rhere the constant k l is specified

by the requirement on the sharpness of cut-off. The change of complex

variable X = f(z) desired in this case must transform the pass-band and the

rejection-band regions of the w-axis into parallel straight lines in the

z-plane. Closer consideration of this situation indicates that the trans-

formation function X = f(z) must be periodic with respect to both x and y,

while in the previous case sinh z was periodic only with respect to y. It

is clear then that the whole -plane will correspond, in the z-plane, to an

infinite number of equal rectangular regions such as the one limited by the
I !

two pairs of straight lines x = K and y = K , EK and K being two

constants. It is convenient in this case to make the pass-band region of

the imaginary axis of the -plane correspond to the real rather than to the

imaginary axis of the z-plane. In this way the imaginary unit disappears

from many equations. (The same situation would have occurred in Sec. 3 if

the notation sinh z were not in common use and the notation sin(-jz) had

to be used instead.) It will also be convenient for the same reason to

use the variable w = u + Jv = - JX instead of A.

The solution of the transformation problem stated above can be

found in the literature or can be obtained without difficulty by means of

the Schwarz-Christoffel transformation. The desired function w = f(z)

is the Jacobian elliptic function9 ' l0' l l of modulus k:

w = sn(z,k) = sin (10)

where

X - k2 in 2 J 1 11)
o 1 -k2sin2~ o t2 1 - k2 t 2

The constants K and K are the complete elliptic integrals

K 3= . (12)

0 11 - k2 sin2 ,

and 2

K J d (13)

o - (k)2 iin 2

-9-
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where the complementary modulus k is given by

t
k = 1 - k2 (14)

This transformation is illustrated in Figs. 4 and 5. The heavy lines in

Fig. 4 are the branch lines of the function.

b

y=O

K'

k=0.414
.4 K= 1.64

K' = 2.33

Fig. 4. The transformation w = sn(z,k) in the w-plane. The points
indicated with crosses and circles correspond to the points
indicated in the same manner in the z-plane (Fig. 5).

By following a reasoning similar in principle to that used in Sec. 3,

it can be seen that the critical points in the z-plane must be distributed

uniformly along straight lines parallel to the axis or axes over which

oscillatory approximation is desired. In this case, however, one has to

use an infinite number of rows of poles and zeros because the transforma-

tion w = sn z is doubly periodic. It will be noted that zeros as well as

poles are required because the function T(X) must approximate zero or a

small positive constant for wl ~ l/k. The simplest type of distribution of

critical points satisfying these requirements consists of an infinite number

of rows of poles and of zeros located in pairs at distances a and b,

respectivel{y from the straight lines y = 2mK . In most filter designs one

makes b = K in which case the zeros of T(X) will be located on the imaginary

axis of the -plane. The poles of T(X), on the other hand, must not lie on the

Jw-axis and therefore must not lie on the lines x = (2m+l)K in the z-plane

I__ _ _
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Fig. 5. The z-plane corresponding to the w-plane of Fig. 4.

where m is any integer. Figure 5* illustrates the case in which the critical

points in the same row are spaced a distance equal to 2K/4. Figure 4 shows

the location of the corresponding critical points in the w- and -planes,

obtained from the relation

w = -Ji = sn(zi,k) (15)

where zi, wi, and i are the critical points in the z-, w-, and X-planes,

respectively.

To express in closed form the function whose critical points satisfy

the above requirements, one observes first that the distribution of critical

points for the function sn2(Clz,kl), where C1 is a constant, consists of a

rectangular array of double zeros and a rectangular array of double poles.

Both arrays have spacings along the Clx and Cly axes equal, respectively, to

* The values of the parameters used in this figure (k = 0.414, a = K /4,
b = 3K /4) are not representative of a practical design but lead to
simpler and clearer graphical representations.
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2Kand 2K1 , one zero being located at the origin and one pole at the point

Clz = JK1 . The constants K1 and K1 are the complete elliptic integrals

of modulus equal respectively to k and kl= - k1 . This distribution

of critical points is illustrated in Fig. 6. One observes further that the

-4

- 4

l_

K, -3

-.

(, -2K, I

jyCe

-)

2K, 3K, 4

-i

(, X 1

* DOUBLE ZERO
* DOUBLE POLE

Fig. 6. Zeros and poles of the function sn2 C zkl).

function considered has imaginary values over the lines Clx = mK1, where m

is any integer. It follows that the function

- sn2 (JCla,kl) + sn2 (C1z,kl
) , (16)

where a is a positive constant smaller than K1 , has the distribution of

critical points illustrated in Fig. 7. It will be noted that the addition of

a positive constant splits the rows of double zeros parallel to the real

axis into rows of simple zeros displaced a distance Cla along the imaginary

axis on both sides of the original position. The location of the poles, on

the contrary, does not change.

Considet finally the function

F [N A- on(ji )k +on(Clzk 1 ) (17)
T[ M A' sn2 (jClbkl) + sn2 (Zklll- sn (jCla,kl) + sn (lz,kl

vhere A is a constant. The poles of the numerator cancel with the poles of

the denominator and the zeros of the numerator are arranged in pairs of rows

-12-
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I
:CI

O SINGLE ZERO
* DOUBLE POLE

Fig. 7. Zeros and poles of the function (23).

parallel to the real axis and displaced a distance Clb from the lines

Cly = 2mK where m is any integer. This distribution of critical points is

similar to that illustrated in Fig. 5, for a = K1 /4 and b = 3K'/4. To

identify completely these two distributions one must make

K K1
n C1

(18)

-
1

and in addition,if the number n of singularities in any length 2K of each

row is odd, the variable z must be changed into z + K/n. The computation

of Cl and k1 (K1 and K1 are given by tables1 1 as functions of kl) from

the known values of K, K , and n is carried out as follows, by using the

relations1 2

-wK/K1 -nnK/K
1 = e = e (19)

2 192 = ,2 + q1
6 + . .12

3 +2q 1 + 2q + 2ql + 

-13-
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K!. E1C1 = , - n K (21)

where J2 and 43 are theta functions.

The next task is the determination of the tolerances of approxima-

tion in terms of the constants a,b, and A. For this purpose, one considers

first the behavior of TX(zj on the real axis of the z-plane which corre-

sponds to the segment - 1l w <l of the imaginary axis of the \-plane. One

observes that the function sn(%lx,k l) is real and oscillates between the

values 1 and -1, and that, if b 7a, -sn2 (Clb,kl)7 -sn2(JCla,kl) . Therefore

the function T(xJ oscillates between the maximum value

sn2 K1 bk)

(Tmax)wl< 1 = A (22)

sn (jn akl)

and the minimum value

K

i - sn2jnIkl) 
(Tmi ,w,< 1 k A

- sn2(jn-a,kl1)

(23)

where cn(z,kl) = cos cp, being given by Eq. (11). Standard trigonometric

relations can be used to transform the above expressions into expressions

more convenient for actual computations. It is to be noted in this regard

that the tabulations availablell give z as a function of for real values

of .

The tolerance of approximation on that part of the imaginary axis

of the -plane corresponding to wl> 1/k can be obtained by considering the

behavior of T over the line y = K . Then, using the relation9

sn(z+ Jn(z,k) (24)

one obtains immediately that the function T oscillates between a maximum

value

I-kl22 ( , k l
(Tma=x)wl l /k = A 1 n ( n ,l (25)

1 mx) lsn aK11 - kl2n 2 n--a,k1 )

-14-
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and a minimum value

(Tmin)l l1/k
= A. (26)

If one wishes to make (Tmin)iwI l/k = 0 as is usually the case, the above
formulas lead to a confusing limiting process which can be avoided by

simply setting the numerator of Eq. (17) equal to one. This modification

amounts to using the double poles of the denominator as zeros of the function.

Equation (17) becomes then, for n odd,

~T [X ( =:
A

2 K1 2 K1
-sn2(n y-a,kl) + sn (i-Z,kl )

(27)0

For n even, z is changed into z + K/n. The limits of the to oscillations

become

(T ma)lwi1 =
A

-
2 K1

- sn (,--k1 )

(Tmi lw lc - 2 K1
1 - sn (jn-a,kl)

k12A

(Tmax)lwFl/k = -
1 n2( K ,

k1sn2(jn- a, k1 )

-1

= -17A 1 I

= 0 .

The zeros and poles of

critical points in the

poles

T(X) are obtained directly from the corresponding

z-plane by means of Eq. (15). One has then for the

Xp = sn2m + 1)n+ Ja],k

7Xp i s 2 ±+2 J k--

-15-
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and for the zeros

No - en{[2m + 1 l b k n even 

X0 I snl2m i+ JbiK kt n odd. J

where m is any integer of a consecutive series of n integers. when

(Tmin)lwl;l/k = 0, b = K' and therefore, using Eq. (24),

N o= k n even
° 3k snI2m+)Kk n

No _ j n odd
k n [2,k]

The function T(X) can be written in terms of its critical points

as follows:

T(X)( 2 ol 2 o2 on2) (35)
(x2- X 1p 2)( 2 X_ p2 2)...pn

where each factor represents two critical points with opposite signs. The

value of B is determined by considering the behavior of the function when X

approaches infinity and therefore z approaches + K . One obtains without

difficulty

B = (Tmi4Il i)Wl/k n odd

(36)

B = (Tmax)lw1 l/k n even

where the T's are given by Eqs. (25) and (26) or (30). However, for n odd

and b = K Eq. (36) is meaningless because T(N) vanishes at infinity. One

observes then that T(N) vanishes as B/N2 when X approaches infinity (because

one of the factors of the numerator of Eq. (35) is missing) and that

sn(z+JK',k) approaches infinity as l/kz when z approaches zero. A little

manipulation of Eq. (27) shows that

-16-
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lim T(X) =
Vw~d

lim B -
2 - lim k. 1[ + 2])wK 

I
IEi1 (38)

It can be shown that Eq. (27) (for n even substitute z + 1 for z)

together with the transformation = J sn(z,k) yields the approximation

function used by many authors, for instance by Drlington.2 Figure 8

I
m -- 2 3 4 w
k

Fig. 8. The insertion loss of a filter with uniform approxi-
mation in the pass band and in the rejection band.

illustrates the behavior of the function -10 log10 T(jw) when n = 4,

(Tmiw1 il/k= 0, (Tmax)wl< 1< 1, and (Tmi-lwll= O.8. To the knowledge
of the author, the ore general function of Eq. (17) has not been previously

presented. Other more complex functions involving critical points of higher

order or additional arrays of critical points can be constructed as in the case

discussed in the previous section. It is felt that a detailed analysis

of these functions will not add materially to the understanding of the

design procedure.

-17-
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5. Conclusions

The examples presented in the preceding sections should be

sufficient to make clear the ideas on which the approximation procedure is

based. The field of application of such a procedure, on the other hand, is

not limited to the examples discussed above although other cases have not

been worked out in detail by the author. The usefulness of certain uncon-

ventional types of approximation functions in connection with the compensation

of the effects of incidental dissipation were pointed out in Sec. 3.

A discussion of the synthesis procedure following the selection of

the approximation function is beyond the scope of this paper. The reader

is referred to Refs. 2 and 3 for such a discussion, and to Ref. 1 for a

practical application of the approximation procedure presented above.
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