
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2009-061 December 4, 2009

Perfect and General Virtual
Implementation For Perfectly Informed Players
Jing Chen and Silvio Micali

Perfect and General Virtual Implementation For Perfectly Informed

Players

Jing Chen

CSAIL, MIT

Cambridge, MA 02139, USA

jingchen@csail.mit.edu

Silvio Micali

CSAIL, MIT

Cambridge, MA 02139, USA

silvio@csail.mit.edu

December 4, 2009

Abstract

We show that, when the players are perfectly informed about each other, essentially all social-choice
functions can be rationally robustly implemented via an extensive-form public-action mechanism that (1)
is perfectly robust against collusion, (2) requires only a linear number of computation steps and commu-
nication bits, and (3) preserves the privacy of the players' types to a very high extent.

1 Notations

� The set N = f1; : : : ; ng is the set of players;

� For each player i, �i is the space of types of i, and � =
Q

i �i is the space of type pro�les;

� The outcome space is
;

� A perfect-knowledge context is a 4-tuple C = (T;
; u;C), where

- T 2 � is the pro�le of the players true types;

- each ui is the utility function for player i, mapping player i's true type Ti and a state ! to a real
number;

- C is the collusion structure, namely, a partition of N .

Each subset S 2 C of players is called an agent. S, as well as each player in S, is collusive if jSj > 1, or
independent otherwise. S is also called a collusive set if jSj > 1. C is called an independent context if
every player is independent, or a collusive context otherwise. When C is an independent context, C is
typically omitted for simplicity.

 is publicly known to everybody, including the mechanism designer. T , u, and C are publicly known
to the players, and we emphasize that the mechanism designer knows nothing about them.

� A function f : ��
! R is called a (deterministic) numerical social choice function.
Note a (deterministic) traditional social-choice function F maps type pro�les to outcomes, F : �! �(
),
and, given a context C with true-type pro�le T , the goal of a mechanism is to produce the outcome
F (T). But it is clear that this goal can be achieved by considering the numerical social-choice function
f that, on input (
; !) returns 1 if ! = F (
) and 0 otherwise, and maximizing f(T; �).

Our assumptions about contexts C and social choice functions f are the same as [5], namely:

(1) For each player i, ui is not a constant function, and for any two di�erent types
i;

0

i 2 �i, ui(
i; �) is not
a linear transformation of ui(

0

i; �).

(2) For each player i, there exists a function gi : �i !
 such that for any two di�erent types
i;

0

i 2 �i,
ui(
i; fi(
i)) > ui(
i; fi(

0

i)).

1

(3) A mechanism M speci�es the players' strategies, and the outcome function, denoted also by M . Given
a strategy pro�le �, M(�) consists of an outcome ! 2
 and a price pro�le P 2 Rn | that is, M can
impose a price to each player. Given C and (!; P), each player i's utility is Ui(Ti; !; Pi) = ui(Ti; !)�Pi.

We use the solution concept proposed in [3, 4], namely, rationally robust implementation. Our mechanism
is based on that in [2], in particular, it is an extensive-form mechanism with public actions. The setting
considered is �nitely, in particular: the type space is �nite, the outcome space is �nite, and the image spaces
of the social choice function f and gi's for each i are all �nite.

2 Our Mechanism

Notation In the mechanism below,

� � and �ij , for i 2 f2; : : : ; ng and j 2 f1; : : : ; ng, are constants such that
1
5n > � > �21 > � � � > �2n > �31 > : : : > �3n > � � � > �n1 > � � � > �nn > 0.

� Numbered steps are taken by the players, while steps marked by letters are taken by the mechanism.

� Sentences between quotation marks are comments, and could be excised if no clari�cation is needed.

� We denote by nr the number of outcomes (!; P) with revenue r. For all such outcomes, we denote by
0 � fr(!; P) < nr the rank of the outcome (!; P) in the lexicographic order that �rst considers the state
and then the price pro�le (where P1; : : : Pn precedes P 0

1 : : : P
0

n whenever P1 > P 0

1, etc.).

� U = maxT2�;!2
 f(T; !), where f is the given numerical social-choice function.

� L = miniminTi;T 0

i
2�i ui(Ti; gi(Ti))� ui(Ti; gi(T

0

i)).

� �0 is a positive constant such that �0 < L
2nU .

Mechanism M

(1) Player 1 announces a state !? and a pro�le K1 of natural numbers.

\(!?;K1) is player 1's proposed outcome, allegedly an outcome of maximum revenue."

(a) Set ! = ?, and Pi = 0 8i. If
P

iK
1
i = 0, the mechanism ends right now. Otherwise, proceed to Step 2.

\Whenever the mechanism ends, ! and P will be, respectively, the �nal state and price pro�le."

(2,: : : ; n) In Step i, 2 � i � n, player i publicly announces a pro�le �i of natural numbers such that �i
i = 0.

\By so doing i suggests to raise the current price of j, that is K1
j +
Pi�1

`=2�
`
j , by the amount �i

j ."

(b) For each player i, publicly select bipi and P ?
i as follows. Let Ri = fj : �j

i > 0g.

If Ri 6= ;, then bipi is highest player in Ri, and P ?
i = K1

i +
Pbipi

`=2�
`
i . Else, bipi = 1 and P ?

i = K1
i .

\We refer to bipi as the best informed player about i, and to P ?
i as the provisional price of i."

(n+ 1) Each player i such that P ?
i > 0 simultaneously announces YES or NO.

By default, each player i such that P ?
i = 0 announces YES, and player 1 announces YES if bip1 = 1.

\Each player i announces YES or NO to !? as the �nal state and to P ?
i � � as his own price.

(By default player 1 accepts his own price if no one raises it.) At this point the players are done
playing, and the mechanism proceeds as follows. If all say YES, the updated proposal (!?; P ?) is
implemented with probability 1. Else:

� With very high probability the null outcome is chosen, except that the best-informed players
of those saying NO are punished.

2

� With small probability the null outcome is chosen

� With very small probability, proportional to the number of players saying YES, we implement
(!?; P ?) as if all said YES.

Importantly, as we shall see, all get a small reward at the end for their knowledge."

(b') Publicly
ip a biased coin c0 such that Pr[c0 = Heads] = 1 � �. If c0 = Heads then proceed to Step c.
Otherwise do the following:

(n+2) Each player i simultaneously announces a type
i 2 �i.

(c') If !? = argmax!02
 f(
; !
0), then let v = f(
; !) and reset P1 to P1 � �0v; otherwise reset P1 to

L
2n .

(d') Choose a random player i uniformly, reset ! to be gi(
i), and HALT.

(c) Let Y be the number of players announcing YES. If Y = n, then reset ! to !? and each Pi to P ?
i � �,

and go to Step g. If Y < n, proceed to Step d.

(d) Publicly
ip a biased coin c1 such that Pr[c1 = Heads] = 1� �.

(e) If c1 = Heads, reset Pbipi to Pbipi + 2P ?
i for each player i announcing NO.

(f) If c1 = Tails, letting B =
P

i announces NO

P ?
i ,
ip a biased coin c2 such that Pr[c2 = Heads] = Y

nB
.

If c2 = Heads, reset ! to !? and each Pi to P ?
i � �.

If c2 = Tails, ! and P continue to be ? and 0n.

(g) Reset P1 to P1 � �� 2�
P

j K
1
j + �

fr(!?)
nr

and each other Pi to Pi � ��
P

j �
i
j�

i
j.

\Although players' prices may be negative, we prove that the mechanism never loses money, and
that in the unique rational play the utility of every player is non-negative. For clarity, our rewards
are proportional to prices and raises."

3 Statement of Our Theorem

Theorem 1. For every numerical social choice function f , every context C = (T;
; u;C), and every ratio-
nally robust play � of (C;M), letting (!; P) =M(�), then, with probability � 1� �:

! = argmax!02
 f(T; !
0).

In a forthcoming paper we shall extend the above mechanism in a simple way (e.g., by introducing
envelopes to the mechanism) to (virtually) implement also all probabilistic numerical (and thus traditional)
social choice functions.

References

[1] D. Abreu and H. Matsushima. Virtual Implementation in Iteratively Undominated Strategies: Complete
Information. Econometrica, Vol. 60, No. 5, pages 993-1008, Sep., 1992.

[2] J. Chen, A. Hassidim, and S. Micali. Robust Perfect Revenue From Perfectly Informed Players. To
appear at ICS'10.

[3] J. Chen and S. Micali. A New Approach to Auctions and Resilient Mechanism De-
sign. Symposium on Theory of Computing, pages 503-512, 2009. Full version available at
http://people.csail.mit.edu/silvio/Selected Scienti�c Papers/Mechanism Design/.

3

[4] J. Chen and S. Micali. Rational Robustness for Mechanism Design. Submitted to STOC'10, full version
available at http://people.csail.mit.edu/silvio/Selected Scienti�c Papers/Mechanism Design/.

[5] J. Glazer and M. Perry. Virtual Implementation in Backwards Induction.Games and Economic Behavior,
Vo.15, pages 27-32, 1996.

4

