

Computer Science and Artificial Intelligence Laboratory Technical Report

MIT-CSAIL-TR-2009-061

December 4, 2009

Perfect and General Virtual
Implementation For Perfectly Informed Players
Jing Chen and Silvio Micali

Perfect and General Virtual Implementation For Perfectly Informed Players

Jing Chen CSAIL, MIT Cambridge, MA 02139, USA jingchen@csail.mit.edu Silvio Micali CSAIL, MIT Cambridge, MA 02139, USA silvio@csail.mit.edu

December 4, 2009

Abstract

We show that, when the players are perfectly informed about each other, essentially all social-choice functions can be rationally robustly implemented via an extensive-form public-action mechanism that (1) is perfectly robust against collusion, (2) requires only a linear number of computation steps and communication bits, and (3) preserves the privacy of the players' types to a very high extent.

1 Notations

- The set $N = \{1, ..., n\}$ is the set of players;
- For each player i, Γ_i is the space of types of i, and $\Gamma = \prod_i \Gamma_i$ is the space of type profiles;
- The outcome space is Ω ;
- A perfect-knowledge context is a 4-tuple $C = (T, \Omega, u, \mathbb{C})$, where
 - $T \in \Gamma$ is the profile of the players true types;
 - each u_i is the utility function for player i, mapping player i's true type T_i and a state ω to a real number;
 - \mathbb{C} is the collusion structure, namely, a partition of N.

Each subset $S \in \mathbb{C}$ of players is called an agent. S, as well as each player in S, is collusive if |S| > 1, or independent otherwise. S is also called a collusive set if |S| > 1. C is called an independent context if every player is independent, or a collusive context otherwise. When C is an independent context, \mathbb{C} is typically omitted for simplicity.

 Ω is publicly known to everybody, including the mechanism designer. T, u, and \mathbb{C} are publicly known to the players, and we emphasize that the mechanism designer knows nothing about them.

• A function $f: \Gamma \times \Omega \to \mathbb{R}$ is called a (deterministic) numerical social choice function. Note a (deterministic) traditional social-choice function F maps type profiles to outcomes, $F: \Gamma \to \Delta(\Omega)$, and, given a context C with true-type profile T, the goal of a mechanism is to produce the outcome F(T). But it is clear that this goal can be achieved by considering the numerical social-choice function f that, on input (γ, ω) returns 1 if $\omega = F(\gamma)$ and 0 otherwise, and maximizing $f(T, \cdot)$.

Our assumptions about contexts C and social choice functions f are the same as [5], namely:

- (1) For each player i, u_i is not a constant function, and for any two different types $\gamma_i, \gamma_i' \in \Gamma_i$, $u_i(\gamma_i, \cdot)$ is not a linear transformation of $u_i(\gamma_i', \cdot)$.
- (2) For each player i, there exists a function $g_i : \Gamma_i \to \Omega$ such that for any two different types $\gamma_i, \gamma_i' \in \Gamma_i$, $u_i(\gamma_i, f_i(\gamma_i)) > u_i(\gamma_i, f_i(\gamma_i'))$.

(3) A mechanism M specifies the players' strategies, and the outcome function, denoted also by M. Given a strategy profile σ , $M(\sigma)$ consists of an outcome $\omega \in \Omega$ and a price profile $P \in \mathbb{R}^n$ — that is, M can impose a price to each player. Given C and (ω, P) , each player i's utility is $U_i(T_i, \omega, P_i) = u_i(T_i, \omega) - P_i$. We use the solution concept proposed in [3, 4], namely, rationally robust implementation. Our mechanism is based on that in [2], in particular, it is an extensive-form mechanism with public actions. The setting considered is finitely, in particular: the type space is finite, the outcome space is finite, and the image spaces of the social choice function f and g_i 's for each i are all finite.

$\mathbf{2}$ Our Mechanism

Notation In the mechanism below,

- ϵ and ϵ_j^i , for $i \in \{2, \dots, n\}$ and $j \in \{1, \dots, n\}$, are constants such that $\frac{1}{5n} > \epsilon > \epsilon_1^2 > \dots > \epsilon_n^2 > \epsilon_1^3 > \dots > \epsilon_n^3 > \dots > \epsilon_1^n > \dots > \epsilon_n^n > 0.$ Numbered steps are taken by the players, while steps marked by letters are taken by the mechanism.
- Sentences between quotation marks are comments, and could be excised if no clarification is needed.
- We denote by n_r the number of outcomes (ω, P) with revenue r. For all such outcomes, we denote by $0 \le f_r(\omega, P) < n_r$ the rank of the outcome (ω, P) in the lexicographic order that first considers the state and then the price profile (where $P_1, \ldots P_n$ precedes $P'_1, \ldots P'_n$ whenever $P_1 > P'_1$, etc.).
- $U = \max_{T \in \Gamma, \omega \in \Omega} f(T, \omega)$, where f is the given numerical social-choice function.
- $L = \min_i \min_{T_i, T_i' \in \Gamma_i} u_i(T_i, g_i(T_i)) u_i(T_i, g_i(T_i')).$
- ϵ' is a positive constant such that $\epsilon' < \frac{L}{2nU}$.

Mechanism \mathcal{M}

- (1) Player 1 announces a state ω^* and a profile K^1 of natural numbers.
 - " (ω^{\star}, K^1) is player 1's proposed outcome, allegedly an outcome of maximum revenue."
- (a) Set $\omega = \bot$, and $P_i = 0 \ \forall i$. If $\sum_i K_i^1 = 0$, the mechanism ends right now. Otherwise, proceed to Step 2. "Whenever the mechanism ends, ω and P will be, respectively, the final state and price profile."
- $(2,\ldots,n)$ In Step i, $2 \leq i \leq n$, player i publicly announces a profile Δ^i of natural numbers such that $\Delta^i_i = 0$. "By so doing i suggests to raise the current price of j, that is $K_i^1 + \sum_{\ell=2}^{i-1} \Delta_i^{\ell}$, by the amount Δ_i^i ."
 - (b) For each player i, publicly select bip_i and P_i^{\star} as follows. Let $R_i = \{j : \Delta_i^j > 0\}$. If $R_i \neq \emptyset$, then bip_i is highest player in R_i , and $P_i^{\star} = K_i^1 + \sum_{\ell=2}^{bip_i} \Delta_i^{\ell}$. Else, $bip_i = 1$ and $P_i^{\star} = K_i^1$. "We refer to bip_i as the best informed player about i, and to P_i^{\star} as the provisional price of i."

 - (n+1) Each player i such that $P_i^* > 0$ simultaneously announces YES or NO. By default, each player i such that $P_i^{\star} = 0$ announces YES, and player 1 announces YES if $bip_1 = 1$.
 - "Each player i announces YES or NO to ω^* as the final state and to $P_i^* \epsilon$ as his own price. (By default player 1 accepts his own price if no one raises it.) At this point the players are done playing, and the mechanism proceeds as follows. If all say YES, the updated proposal (ω^*, P^*) is implemented with probability 1. Else:
 - With very high probability the null outcome is chosen, except that the best-informed players of those saying NO are punished.

- With small probability the null outcome is chosen
- With very small probability, proportional to the number of players saying YES, we implement (ω^*, P^*) as if all said YES.

Importantly, as we shall see, all get a small reward at the end for their knowledge."

- (b') Publicly flip a biased coin c_0 such that $\Pr[c_0 = Heads] = 1 \epsilon$. If $c_0 = Heads$ then proceed to Step c. Otherwise do the following:
 - (n+2) Each player i simultaneously announces a type $\gamma_i \in \Gamma_i$.
 - (c') If $\omega^* = \operatorname{argmax}_{\omega' \in \Omega} f(\gamma, \omega')$, then let $v = f(\gamma, \omega)$ and reset P_1 to $P_1 \epsilon' v$; otherwise reset P_1 to $\frac{L}{2n}$.
 - (d') Choose a random player i uniformly, reset ω to be $g_i(\gamma_i)$, and HALT.
- (c) Let Y be the number of players announcing YES. If Y = n, then reset ω to ω^* and each P_i to $P_i^* \epsilon$, and go to Step g. If Y < n, proceed to Step d.
- (d) Publicly flip a biased coin c_1 such that $Pr[c_1 = \text{Heads}] = 1 \epsilon$.
- (e) If $c_1 = Heads$, reset P_{bip_i} to $P_{bip_i} + 2P_i^*$ for each player i announcing NO.
- (f) If $c_1 = Tails$, letting $B = \sum_{i \text{ announces NO}} P_i^{\star}$, flip a biased coin c_2 such that $\Pr[c_2 = Heads] = \frac{Y}{nB}$.

If $c_2 = \text{Heads}$, reset ω to ω^* and each P_i to $P_i^* - \epsilon$.

If $c_2 = Tails$, ω and P continue to be \perp and 0^n .

(g) Reset P_1 to $P_1 - \epsilon - 2\epsilon \sum_j K_j^1 + \epsilon \frac{f_r(\omega^*)}{n_r}$ and each other P_i to $P_i - \epsilon - \sum_j \epsilon_j^i \Delta_j^i$.

"Although players' prices may be negative, we prove that the mechanism never loses money, and that in the unique rational play the utility of every player is non-negative. For clarity, our rewards are proportional to prices and raises."

3 Statement of Our Theorem

Theorem 1. For every numerical social choice function f, every context $C = (T, \Omega, u, \mathbb{C})$, and every rationally robust play σ of (C, \mathcal{M}) , letting $(\omega, P) = \mathcal{M}(\sigma)$, then, with probability $\geq 1 - \epsilon$:

$$\omega = \operatorname{argmax}_{\omega' \in \Omega} f(T, \omega').$$

In a forthcoming paper we shall extend the above mechanism in a simple way (e.g., by introducing envelopes to the mechanism) to (virtually) implement also all probabilistic numerical (and thus traditional) social choice functions.

References

- [1] D. Abreu and H. Matsushima. Virtual Implementation in Iteratively Undominated Strategies: Complete Information. *Econometrica*, Vol. 60, No. 5, pages 993-1008, Sep., 1992.
- [2] J. Chen, A. Hassidim, and S. Micali. Robust Perfect Revenue From Perfectly Informed Players. To appear at ICS'10.
- [3] J. Chen and S. Micali. A New Approach to Auctions and Resilient Mechanism Design. Symposium on Theory of Computing, pages 503-512, 2009. Full version available at http://people.csail.mit.edu/silvio/Selected Scientific Papers/Mechanism Design/.

- [4] J. Chen and S. Micali. Rational Robustness for Mechanism Design. Submitted to STOC'10, full version available at http://people.csail.mit.edu/silvio/Selected Scientific Papers/Mechanism Design/.
- [5] J. Glazer and M. Perry. Virtual Implementation in Backwards Induction. *Games and Economic Behavior*, Vo.15, pages 27-32, 1996.

