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ABSTRACT

AN OPTIMAL APPROACH TO COMPUTER CONTROL OF A

HIGHLY COUPLED SATELLITE ATTITUDE LOOP

by

William Neil McCasland

Submitted to the Department of Aeronautics
and Astronautics on September 1980 in partial
fulfillment of the requirements for the degree
of Master of Science

Linear-Quadratic-Gaussian optimal control theory provides a uni-
fied approach to controller synthesis. The pitch and array drive loop
of the DMSP Block 5D spacecraft, which represents an interesting control
problem because of actuator coupling, is considered as an example. A
discrete-time optimal feedback control law timed to match the Block 5D's
flight computer is determined. New cross feeds result that are not pres-
ent in the current control laws, derived by classical compensation, which
exploit the array drive motor's reaction torque on the satellite body to
enhance body pointing at the expense of array error. Reaction wheel ac-
tivity can, in certain cases, be reduced by a factor of five.

The requirement of full state knowledge is met by an estimator
developed according to discrete time Kalman filtering theory. Several
measurement-options were considered which included rate integrating gyros
as currently exist on the satellite, a 2-D star mapper sensing catalogued
stars, and the combination of a star mapper and rate gyro measurements.
Although the use of integrating gyros allows extremely accurate short-
term attitude estimation, the star mapper concept presented is able to
show acceptable accuracy. Coupled with the latter's low relative cost
and lack of long-term drift, it appears that a star mapper can be a
good alternative inertial sensor.

Closed-loop results, using an estimator driven by star-mapper
grade measurements, indicates that the optimal control law is able to
meet the tight (0.010) body pointing specification in the presence of



worst case external and internal disturbance torques. In addition, when
compared to the current control law, the optimal controller shows less

sensitivity in terms of mean-square pointing error to measurement noise.
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CHAPTER 1

INTRODUCTION

Attitude control of small satellites, where rigid body dynamics

dominate, has become routine engineering practice. Classical frequency

domain compensation is a mature body of theory that is well suited for

designing such controllers, and is almost universally employed. However,

future large space structures, because of the numbers of modes, actuators,

and sensors, will present problems that are not approachable with class-

ical theory and will require application of modern optimal control theory

characterized by state space modeling. Unfortunately, modern theory

does not have the long history of application that frequency domain

techniques do. It is useful to consider the application of modern

theory to low-order satellite problems where, although classical tech-

niques are proven, the potential for performance enhancement exists.

Such applications also stand to clearly illustrate the differences be-

tween modern and classical theory and advance the maturity of the form-

er. This thesis will take as an example the Defense Meterological Space

Program (DMSP) Block 5D satellite.

The Block 5D, illustrated in Figure 1-1, is an operational earth

observation satellite and is launched into sun syncronous near-circular

orbits of approximately 450 nmi altitude. A large solar array has a

driven rotational degree of freedom along the pitch axis, which signi-

ficantly affects the satellite's inertial properties.

1.1 Control Objectives

Once nearly nominal attitude is established after launch, the

Primary Attitude Determination and Control System (PADACS) assumes
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Figure 1-1. Block 5D spacecraft configuration.



command for the remainder of the mission. Since the mission is earth

observation, the roll and pitch axes must be maintained in a local-

level plane with the roll axis parallel to the velocity vector. To

maintain local level, a near steady state pitch rate, nominally 0.06

deg/s, is required. The solar array is to track the sun, and therefore

should not rotate with respect to inertial space although it will appear

to do so from the satellite.

Specific pointing error limits are

body axes ±0.01 deg

array angle ±3.0 deg

The extremely tight control specification on body pointing is

not common with most spacecraft, and coupled with the inertial proper-

ties of the B5D, make this a fairly unique problem.

To achieve such a level of precision, the controller employs a

digital flight control computer to drive a set of three primary wheels

and one back-up reaction wheel. Other control actuator hardware illus-

trated in Figure 1-1 is not used continuously on-orbit.

1.2 Special Interest

The pitch and array drive control loops are of particular inter-

est since the moments of inertia of the body and array about the pitch

axis are nearly equal. The array drive motor tends to rotate both

masses equally in opposite directions. Although coupled slightly to

roll and significantly to yaw through products of inertia, the low

nominal body rate allows each axis to be considered separately. The

complete coupling of pitch and array dynamics presents a multi-input,

multi-output control problem which will be the primary consideration

of this thesis.

Chapter 2 discusses several possible approaches to the control

problem, the particular attractiveness of Linear-Quadratic-Gaussian (LQG)

optimal theory, and outlines the proposed analysis. Chapter 3 develops



a feedback control law and considers several measurement options avail-

able to drive an estimator. Evaluation of the proposed controller

against expected disturbances and the effects of neglected nonlinearities

are addressed in Chapter 4. Chapter 5 presents conclusions and summa-

rizes the structural differences between controllers designed for this

loop according to a classical approach versus optimal theory.



CHAPTER 2

SURVEY OF APPROACHES AND A PROPOSAL

A variety of solutions are well suited for the control problem

described in Chapter 1. Classical compensation has already been a-

applied, and controllers designed with the philosophy are currently

flying. It is attractive from an engineering viewpoint to consider

the idea of optimal control. Solutions are based on the calculus of

variations, as first noted by Wiener. An important special case,

and one allowable by this problem, is linear optimal control. The

techniques of linear system theory, which are well developed and power-

ful, may then be employed. Each approach has its strengths, and merits

a more detailed discussion.

2.1 Classical Compensation

Although highly coupled, the basic attitude dynamics of the sat-

ellite are of low enough order to permit control based on classical

output feedback frequency domain principles. The method's greatest

strength lies in its ability to produce a fairly low order controller

that is able to handle attitude dynamics which are actually quite com-

plex with higher order effects such as flexible body modes and certain

nonlinearities. Pistner, Tseng, and Muhlfelder (1975) describe how

the controller currently on the satellite was developed with the aid

of a multiloop frequency response simulation illustrated in Figure 2-1.

The simulation was used in the same manner as a forward trans-

fer function. With some iteration, stabilizing compensators were de-

veloped for each loop and evaluated in terms such as phase and gain



Figure 2-1. Four-loop block diagram.

margins. The effects of bending modes, inertial coupling, and compu-

tational lags could be assessed directly.

Note from Figure 2-1 that a key assumption was made at the be-

ginning of the design procedure about the structure of the controller.

Each control input is a direct function of only one output. The possi-

bilities of cross-feeds were not considered largely because of the

difficulty of having to choose gains by an iterative process. Even with

this fairly low order problem, 12 additional paths would be opened.

Performance measurements such as bandwidth, phase, and gain mar-

gins are convenient and useful in the.frequency domain design process.

However, another, perhaps more important, class of measures exists

that describes stochastic performance in terms such as mean square

pointing error. These are not directly available from frequency domain

synthesis techniques although they can be derived from fairly complex

analytic integration of spectral densities or from Monte Carlo simula-

tions. In the end, the final design is largely determined by the engi-

neer's preference of easily available frequency domain parameters.



None are directly related to a measure of optimality, so the resulting

design is not, in general, optimal in any sense. While it is certainly

useful to be able to build a low order controller that is stable and

does work, the tight constraints imposed on a satellite make it logical

to seek a design that is optimal by some relevant definition, rather

than settle for one that simply works.

2.2 Optimal Techniques

The key to all optimal control philosophies is the concept of a

performance index. If the dynamics and control objective can be math-

ematically expressed in terms of a model and performance index to be

extremized, powerful techniques exist to determine an optimal control.

Pontryagin's minimum principle, from the calculus of variations, and

the principle of optimality from Bellman's Dynamic Programming are

typically applied, as discussed by Bryson and Ho (1969).

Mathematical rigor is the strength of optimal control. System

constraints and dynamics are directly incorporated to determine the

best control in terms of the performance index. Optimality is now an

explicit goal. Of lesser but still significant importance is that

optimal techniques are usually applied in the time domain. While fre-

quency domain analysis often gives valuable insights into the problem,

time domain analysis generally is more meaningful.

In reality, the rigorous optimal strategy may be difficult to

determine and impossible to implement. It is not always clear how to

state all control objectives, many of which are qualitative, as a math-

ematical function. Many of the intuitively useful performance measures,

such as bandwidth, do not readily fit such an index. Not all optimal

theory guarantees a solution, let alone one that fits into the frame-

work of generally used attitude control hardware. An important special

case results when system dynamics are linear, disturbances have Gaussian

distributions, and the performance index is a quadratic form.



2.3 Linear-Quadratic-Gaussian Optimal Control

For a linear deterministic system and a quadradic performance

index, the optimal control is easily solvable and turns out to be a

linear feedback of all state variables. However it is usually the case

that not all state variables can be directly measured, and those that

can be are corrupted by noise. If the measurement noises and the dis-

turbances acting on the system are adequately modeled by uncorrelated

Gaussian random processes, then subject to certain constraints, Kalman

(1960) showed that the optimal state estimate in terms of mean square

error is derived with a linear filter. Furthermore, Joseph and Tou

(1961) proved that the minimum mean square error controller is Kalman's

estimator cascaded with the feedback control law based on deterministic

full state knowledge. This unusual and interesting result permits the

design process to be broken into two theoretically independent stages.

Multiple inputs and multiple outputs are assumed in general, which is

an important distinction between this method and classical techniques.

Note that none of the arguments for mathematical rigor have

been lost. The LQG case just admits a most tractible solution. Quad-

ratic performance measures can be physically meaningful when represent-

ing quantities such as mean-square pointing error and control power.

That stochastic performance is directly evaluated is another attraction.

Although implementation of the optimal LQG controller typically requires

more computation than a classical output feedback controller, the dimen-

sion of the linear optimal controller is bounded to no more than the

dimension of the system modeled. In the case of a time invariant system,

and for times sufficiently far from initial and terminal, the optimal

filter and controller gains are fixed allowing simpler inplementation.

Finally, linear system theory is well developed so evaluation of a pro-

posed controller's response, stability, and stochastic performance is

easily done.

Even bounded dimensionality (which is not necessarily the case

for all optimal control techniques) is not the same as easy implementa-

tion. Unlike classical techniques, which can handle high order dynamics



with a low order controller, a rigorously optimal linear controller

generally requires each state to be estimated and fed back. In a

study of optimal control of the three rigid body modes, not including

direct control of array rotation, and several significant flexural

modes of this satellite by Tseng and Tracy (1977), 19 states were re-

quired. This is a good bit higher than desirable for the present flight

control computer. Nonlinear effects are not as directly incorporated

as was done in the classical design. Although it is justified to lin-

earize rotational dynamics about the on-orbit nominal attitude, many

significant nonlinearities are hard discontinuities and must be neg-

lected. The assumption of uncorrelated Gaussian disturbances is diffi-

cult to fit to the true disturbance environment. Despite these draw-

backs, linear optimal theory presents the most attractive approach to

applying an optimal technique.

2.4 Proposal

The pitch and array loops are directly coupled, hence they offer

the most interesting possibilities for exploiting optimal control tech-

niques. It is possible to consider pitch axis dynamics separately so

the control problem becomes linear. The implications of this assump-

tion will be evaluated later. Gaussian assumptions can be made and

justified for the disturbances acting on the satellite'and controller.

The objective of this thesis is to synthesize a realizable optimal con-

trol law for the pitch and array loop, and address the important imple-

mentation issues such as estimation, closed loop performance, and con-

troller complexity. Neglected nonlinear effects must also be consider-

ed. Since the proposed approach is an optimal technique, improved per-

formance is expected where direct comparisons can be made to the existing

control design.

Although much of this thesis is involved with the LQG design pro-

cess, contrasting the results of this approach to those derived by class-

ical techniques is also an important objective. Such comparisons are a

means to further the practical understanding of modern control. Both

techniques result in linear feedback filters that operated on the same



satellite. It is possible to model the current controller as a gain

matrix allowing it to be analyzed with the vector-matrix algebra nor-

mally employed by modern theory. The optimal controller, on the other

hand, can be illustrated in the block diagrams of classical theory

which clearly illustrate structural differences. Such comparisons can

be more meaningful than purely quantitative performance measures for

accomplishing this less direct goal of the thesis.



CHAPTER 3

THEORETICAL LINEAR SYNTHESIS AND ANALYSIS

An important practical result of the theorem derived by Joseph

and Tou (1961) is that the optimal deterministic controller and state

estimator can be designed separately. A model is derived and an opti-

mal control law and optimal estimator are specified in this chapter.

Several measurement schemes, using gyros or star mappers or a combina-

tion of both are evaluated. Practical concerns as illustrated by

eigenvalue locations, dictate that although filter and control law

designs are done separately, they should not be done independently.

Finally, the complete closed-loop linear system is evaluated under

linear assumptions.

3.1 Deterministic Control

Under the assumption of perfect state knowledge, the optimal

control in terms of minimizing a quadradic performance index in state

and control turns out to be a linear feedback of current state. In

general, the optimal gains are time varying. If plant parameters are

fixed, and the terminal time is indefinitely in the future, which is

the case for this on-orbit controller, the feedback gains become con-

stant. The primary synthesis task, for a given model, is accurately

stating control objectives as a performance index and calculating feed-

back gains.



3.1.1 Model

A linear model is assumed of the form

x+ 1 = x. + Au. (3-1)

where D is the state transition matrix and A is the control effectiveness

matrix. The state, x, and control, u, vectors are defined as follows:

q Integral of attitude error (rad-s)i

Pitch error (rad)

W Pitch rate (rad/s)
x =

8 Solar array angle error (rad)

6 Solar array rate (rad/s)

h Reaction wheel momentum (in.-lb-s)

[ ul Command voltage to reaction wheel (volts)

u = u2  Command torque to SAD motor (in.-lb)

Detailed model development specifying 0 and A is contained in

Appendix A. Key assumptions are that the satellite and array are rigid

bodies, the reaction wheel dynamics are first order, and the array

motor is a perfect torque transducer.

3.1.2 Performance Index

A scalar cost function is defined in the form

L-l
= x.Q x + u.R u. + x QL (3-2)

-1 xx-1 -1 uu-1 L L-Li=l

Widnall (1968) suggests that this cost should include a term of

the form x Su.. Such a term becomes important in suppressing hidden
-i -

oscillations that may arise if closed-loop poles have frequencies near



the Nyquist limit. Since the closed-loop dynamics desired for attitude

control are much less than 1 Hz, which is half the computer sample rate,

the cross weighting will be ignored and the cost left in the form of

Eq. (3-2).

Choosing the symmetric weighting matrices in Eq. (3-2) deter-

mines the closed-loop performance for a particular plant. Since the

terminal time is not relevant, QL, the weight placed on the terminal

state, may be arbitrary, but 24 free parameters are still left in Qxx

and R . A common approach in optimal control design is trial and
uu

error, proposing weighting matrices and evaluating time responses and

pole locations until an adequate design is reached. While there is no

reason such an approach cannot converge to a good design, the number

of permutations for even this low-order system is enormous. It also

seems that this defeats some of the advantages of optimal control by

forcing the response to conform to some predetermined idea of what a

good response should be and fitting a performance index to that rather

than in reverse order.

The control objective of Section 1.2 can be restated in the fol-

lowing manner: satellite attitude stabilization requires that body

rotation energy be controlled, angular errors nulled, and that finite

control power is expended in the process.

The rotational energy of the body is 1/2Ib 2, and the energy
2

of the array is 1/21 (w + 6) , so the performance index should contain
- a

the following terms penalizing kinetic energy,

2 2
1/2(I b + I )w + I WO + 1/2Ia

Penalties on angular errors will insure the controller works to

null these errors. Widnall (1968) notes that penalty terms of the form

1/2Ib b 2 and 1/2Ia w 2 will result in closed-loop mode frequencies near

Wb and wa, respectively. To make integral feedback effective, the cost



must also include a term of the form Wq2 . There is little a-priori

motivation for choosing W, so it will be determined experimentally.

Reaction wheel speed should not be penalized since it should absorb

all undesirable momentum and, in general, spins continuously.

As it turns out from the scaling of the system, SAD commands have

about 10 times the control authority as a numerically equal reaction

wheel command. It is desirable to keep wheel speed changes a minimum,

so the diagonal elements of R will be set equal, and their values
uu

experimented with until the loop response speed is fast enough but does

not saturate actuator limits.

3.1.3 Solution of Optimal Control

Kalman and Koepcke (1958) originally proposed a solution to a

class of control problems represented by Eq. (3-1) and (3-2), but with

scalar control u, by dynamic programming.- Extending their work to the

case of a vector control, Widnall derived a recursion that minimizes

Eq. (3-2). The optimal control turns out to be a linear feedback of

the state vector in the form

u. = -F.x. (3-3)
- 1-1

where the feedback gain matrix F. is found by the backwards recursions1

i = L,L-l,... ,i,o (3-5)

with PL initialized to QL. A derivation of Eq. (3-4) and (3-5) is in

Appendix B.



3.1.4 Results

With some experimentation, a choice of weighting matrices as

follows:

5 0 0 0 0 0

0 44.6 0 0 0 0

0 0 884 0 439 0

xx 0 0 0 22 0 0

0 0 439 0 440 0

0 0 0 0 0 0

0.1 0
R

uu 0 0.1

resulted in an attractive closed-loop system. Values of Qxx correspond

to a choice of wa = 0.05 rad/s and wb = 0.1 rad/s as discussed in
a b

Section 3.1.3. Elements of R were adjusted until overall response
uu

speed was on the order of the current control law.

As was noticed by Tseng and Tracy (1977) in a study of optimal

control of the flexible modes of this spacecraft, the response showed

greatest sensitivity to the integral penalty. Increasing integral cost

resulted in a faster but more oscillatory response.

The closed-loop eigenvalues for the specific weightings selected

are plotted in Figure 3-1. NOte that one closed-loop pole appears

directly at z = 1. This is a result of the fact that the system is

not fully controllable. All angular momentum along the pitch axis

must appear as body rate, array rate, or in the reaction wheel. Since

external torques are not available to the controller, the total angular



momentum cannot change, but eventually ends up in the reaction wheel.

A closed-loop pole at z = 1 is the mathematical indication that one

state will in steady state be non-zero, depending on initial conditions.

x
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UNIT CIRCLE
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x

SOLAR ARRAY"

Figure 3-1. Closed-loop eigenvalues.

The body modes have a closed-loop natural frequency of 0.217

rad/s, and the array frequency is 0.0457 rad/s, which are quite close

to the frequencies used to formulate array and body deviation penalty

terms.
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The optimal gain matrix is

F = 1.247 40.30 962.8 14.31 456.6 0.01378
-6.204 -69.58 -296.7 2.701 36.12 0.0001018

Although an exact comparison of gains is not possible because the

current SAD compensator has dynamics, if state feedback is chosen that

approximates dominant array behavior, then the current control law is

represented by the following gain matrix. Body gains are exact.

F 17.57 350.46 2336.4 0 0 0

0 0 0 265.0 418.9 0

Figure 3-2 is the response of the satellite under optimal control

to an initial pitch error of 10. Notice how the control law uses the

solar array drive to twist the satellite in a manner like a cat in free-

fall throwing its hindquarters one way to turn its head and forlimbs

the other.

Contrast this response with Figure 3-3 which is the response to

the same conditions but operating under the current control law. Note

that even though the response speed is slower, since the reaction wheel

alone must reorient the entire spacecraft, peak wheel momentum is ap-

proximately five times higher. Under the current control law the array

drive is used only to maintain array orientation, and is not able to

assist in controlling the satellite body.

The primary job of the on-orbit control system is to maintain

attitude in the face of disturbance torques. Worst-case external

torques are estimated by the manufacturer to be as follows, acting on

the array

Td [0.0906 + 1.21 sin 28] 10- 3 in.-lb
a I I

(gravity gradient)
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acting on the body

Td = -0.22 sin 8 + 0.212 sin (8 - 26.60) x 10 3 in.-lb

solar magnetic residual
pressure

where 8 is the orbit anomaly, and for circular orbits is nominally given

by

(t) w 0t o = 0.060/s

Figure 3-4 is the loop response under optimal control to worst-

case external disturbances over a full orbit, and Figure 3-5 illustrates

the response under the existing control law. Important differences in

the responses are that under optimal control pitch error peaks at 0.07

arc-sec while the current controller allows peak errors of 0.4 arc-sec.

Such a result is not free. The optimally controlled solar array devi-

ates up to 180 arc-sec, while the current control system keeps array

errors under 1 arc-sec, however this produces no real benefit, since

the solar array only has to point to within 3 degrees of the sun line.

Optimal control is able to produce a superior response in the

pitch loop. The non-zero gains of the current law are all significantly

higher than the corresponding optimal gains, however, the lower, but

optimally distributed, gains actually produce tighter control and

faster response of body orientation than the current law. Control

authority is shifted away from the reaction wheel onto the array drive.

Exploiting the multi-input nature of the loop is the most powerful

feature of optimal control, and is done automatically in a way that

would not be the result of a classical approach to the problem.

While the classical approach operates only on directly measurable

quantities, full state knowledge is required to implement an optimal

controller. Either all state variables must be instrumented, or an

estimator developed to operate with available measurements.
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3.2 Stochastic Estimation

3.2.1 Approach

Most of the state variables defined in the previous section are

directly instrumented by sensors on the satellite. Changes in inertial

orientation are measured by a set of rate integrating gyros, updated by

a star sensor to bound gyro drift, which also produce attitude rate in-

formation. The solar array orientation is reported directly, although

its rate is not. Reaction wheel speed (a measurement differing from

actual momentum only by a scale factor of wheel inertia) is monitored,

so excess momentum can be dumped via magnetic torquing coils. With

this nearly complete set of measurements, an obvious approach is to cal-

culate the two remaining states, by back-differencing array angles and

numerically integrating attitude error, then using the measurements

directly with appropriate feedback gains. Why bother with more sophis-

ticated estimation techniques if the requirement for full state feed-

back can be met so directly?

The answer to this question is that the measurements are cor-

rupted to widely varying degrees by noise, and direct feedback would

amplify the effect of sensor errors. Most of the noise would originate

from the wheel and array sensors, with angular errors several orders of

magnitude higher than gyros or star mappers. However, the value of

high-quality inertial measurements is lost if they are mixed directly

with much noisier signals. In addition, it is often the case that a

state can be estimated better than it can be directly measured.

Athens (1971) discusses another justification for an estimator

based on the implications of assuming a linear model for a process that

is not linear. The error statistics used in estimation theory enable

an engineer to account for nonlinear and higher-order linear effects by

modeling them as random, and to be able to quantify the level of uncer-

tainty in the model. As a result, the state estimate presented to the

control law follows a trajectory that is appropriate for the feedback

gains, having unmodeled modes attenuated.



Linear optimal filtering theory is applied to estimate the state

vector from available measurements. For a linear stochastic system

modeled by

x+ = fx. + Au. + rw.-i -- i -- i -- i (3-6)

which is Eq. (3-6) but including a random forcing function, w., charac-

terized by

E [i] = 0 E w.w.] Qij[-1- ij

where r, the disturbance weighting matrix, is calculated in Appendix A,

and measurements corrupted by noise

(3-7)y. = IHx. + v.
S -1 -1

E v] =

E [v.vT =

r TE w.v. =

0

R6..
13

0

The optimal estimate x, in the sense of mimimum mean-square

estimation error, and the covariance of the estimation error, P, is

propagated between sample times by

x. =4 x + Au
-1 Pi-i +-1-1

p_ )p T + rQr
1 1-1

(3-8)

(3-9)



At sample times, the estimate and error are updated by

-+ +-
-- X i + i

(3-10)
+ T T

P. = (I - K.H)P. (I - K.H) + K.RK.
1 1 1 1 1 1

where the Kalman gain matrix, Ki, is calculated each interval by

K. = P.HHT HP.HT +R (3-11)
] -1

Derivation of Kalman's equations in this form is not presented,

but are as found in Gelb (1974) or Jazwinski (1970).

3.2.2 Stochastic Modeling

Given a particular model, the behavior of the filter is shaped

entirely by the disturbance matrices Q and R. In this case, external

disturbances enter the system as random torques acting on the satellite

body, solar array, and reaction wheel. Measurements fall into two

classes, internal and external, the former including the wheel and solar

array, while the latter determine inertial orientation. This distinc-

tion is made because external pointing accuracy is the control objective,

requiring the best knowledge of sensor error, while the internal modes

are not particularly important. Fortunately, measurement error is well

known on all of the proposed external sensors, so meaningful results

are possible. Little is known about array and wheel sensor accuracy

because they were not intended to be used in an attitude estimator. A

conservative approach will be used in modeling these sensors, that is,

the ratios of disturbance to sensor noise will be chosen to run the fil-

ter as slow as possible without interfering with the controller eigen-

values. A slow filter has low gains, which implies at each sample time

less of any random error is able to enter the system. As long as the



filter eigenvalues are faster than the desired closed-loop eigenvalues,

the response should be satisfactory, and in fact, the filter really

doesn't need to run any faster.

External sensors of interest are the existing rate integrating

gyroscopes, a 2-D star mapper (such as a charge-coupled device (CCD)),

and pure rate sensing gyros.

Truncale, Koenigsberg, and Harris (1972) conducted tests on sev-

eral gyros including a Nortronics K7G-3C which is the same type of in-

strument as the K7G-3K used on the spacecraft. The linearized power

spectral density of gyro noise is plotted in Figure 3-6.

10-6
1000)1 0.1 1.0

Hz

Figure 3-6. Gyro noise power spectral density.

The major difference in the K7G-3C tested and the K7G-3K is the

former's wheel momentum is 180,000 gm-em 2/s while the latter's is

60,000 gm-cm2/s, and consequently has a lower scale factor and higher

sensitivity to torque disturbances. Since the test environment was re-

ported to be a major source of the noise, it is certain that Figure 3-6

is pessimistic and will be taken to represent the 3K gyro as well.



A linear system driven by white noise of indicated spectral

densities is used to model gyro noise, and is diagrammed in Figure 3-7.

4 PITCH ANGLE

nl(t) - (Oa )

n2(t) - (08)

MEASUREMENT

Figure 3-7. Gyro noise model.

Parameter "a" is the high frequency spectral intensity of the

gyro noise and Wc is the break frequency of the low frequency portion

of the spectrum.

However, a continuous time model does not fit into the filter

structure, so the sample data representation of the system in Figure 3-7

must be determined. Let x(t) be the output of the integrator, modeling

gyro drift. At discrete sample intervals, the following difference

equations model the continuous process

xi+l xi + nli

xy. = x. + n

Yi = i + n2i

(3-12)

(3-13)

yi is the sampled measurement, and nli and n2i are white random

sequences. nli is given by the integral

AT
n l i = f nl(T) dT

0

E[n (t)n (t + T)] = N 6(T)

2
N = raw
1 c



which is equivalent to the simple Ito integral

AT 2
nli= f d8 E[d82 ] = N dt

0 1

The mean of any Ito integral is zero, so n1i = 0, and the auto-

correlation is calculated by

ti+l tj+l

E[n lilj] = f d f d

t. t.

i+l

SN 1 dt i= j

= t

0 i# j

E[nlinlj] = q 6.. = aw T 8. (3-14)
li lj g j13 c 1j

using the cross correlation properties of two Ito integrals.

n 2i is not as clear since it is an attempt to model a directly

measured white continuous process with a white random sequence. One

approach might be to determine the spectral density of a random sequence

and match it to the high frequency spectral density of the gyro. Unfor-

tunately, a random sequence like n2i with fixed change times is not sta-

tionary but has an auto correlation function as shown in Figure 3-8. A

power spectral density is defined only for stationary random processes.

If, however, the random sequence had a random phase, by allowing the

start time to be uniformly distributed over (0,AT), the auto correlation

of the process would be a function only of time difference between t1



and t2, and the process would be stationary. Defining T = t - t2 , the

autocorrelation function may be plotted as in Figure 3-9.

E[n 2(tl)n2 (t2 )]

2t1

Figure 3-8. Fixed phase random sequence correllation.

E[n2 (t)n2 (t + )]

Figure 3-9. Random phase random sequence correllation.

A power spectral density may now be calculated, and adopting

Laning and Battin's (1956) convention is given by,



(22 ( ) f E[n (t)n2 (t + T)]e dT

2r
= g [1 - cos wAT]

Figure 310 plots 22).
Figure 3-10 plots 22 ( ) ."

(3-15)

D22(w)

r AT

--------------

IT--- 0
AT

w rad/s

Figure 3-10. Random phase random sequence power
spectral density.

Although this spectral density is not exactly applicable to the

random sequence used in modeling, it seems reasonable that since the

fixed start time sequence is a special case of the uniform start time

sequence, the two would have similar effects over the long run on the

system they were driving. To finish specifying the stochastic gyro

model, r is chosen so that the low frequency limit of the random

sequence spectral density matches the flat portion of the gyro noise

spectral density.



va
r = (3-16)
g AT

Note the different way w and AT appear in Eq. (3-14) and (3-16).

Sequence nli directly simulates a white noise, while n2i models the

increasing uncertainty of an integrator driven by white noise. The

latter is upon much firmer mathematical ground.

A second external sensor of interest is a 2-D star mapper. The

proposed device is a 324 x 324 pixel CCD with an 80 x 8o field of view.

In its primary mode, the star mapper tracks a cataloged star, and by

comparing known location with the image location, the star mapper di-

rectly calculates inertial attitude. Alternately, the star mapper could

track unknown stars and derive body rates, an idea that is studied by

Gai, et al. (1980) but will not be considered here.

Each pixel has an 88.8 arc-sec field of view. If a star's image

is defocused over a 3 x 3 block of pixels, the centroid of the image

can be calculated to considerably better than one pixel's resolution.

Gray and Youmans (1979) derived estimates of the measurement error of a

CCD type star mapper using optical components similar to that currently

installed on the spacecraft. For the case of one known star and one

image sample, their results are summarized in Table 3-1.

Table 3-1. Image centroid error.

Star Magnitude Standard Deviation

0 0.13 (arc-sec)

+1 0.32

+2 0.79

+3 2.00

+4 4.99

+5 12.56

+6 31.40



Since 5t h magnitude stars are near the lower limit of sensitivity,

the 12.56 arc-sec error for such stars will be considered to be the worst-

case error when considering star mapper measurements in the estimator.

Both the gyro and star mapper are able to supply data faster than

the 2-Hz rate the estimator in the flight computer requires. It may be

useful to directly calculate body rates by differencing an attitude

measurement taken in a short time, say 0.1 second, before a major com-

puter cycle with the attitude measurement taken at the sample and

command time. The error in such a derived measurement is now calculated.

Define an attitude measurement at t., a major computer cycle, and

at t! taken At earlier, where is the pitch angle
1

i = ' + n E[n] = 0

= i + n. E[n.n.] = r6..
1 1 1 1] 1j

At = t. - t!
1 1

Then a direct estimate of body rate is

. = -[- (3-17)

Assume that a random constant zero mean acceleration, a, of vari-
2

ance a acts over At. Given the true rate w and attitude p at t!, then
a 1

the true rate and attitude at t. is
1

m. = w! + aAt (3-18)
1 1

i = ! + w!At + 1/2aAt 2  (3-19)
1 1 1



The mean of w is

E[M] At E[. - ' + ni - n1 F

1 1 1l 1/2t2 i

= - E! + w!At + 1/2aAt - + n. - n
At 1 11 1

= E[w. - aAt]
1

= W. (3-20)
1

so the estimate is unbiased. Assuming a, ni, and n', are uncorrellated,
i1

the covariance of w is

E[(W - )] = E - (w'!At + 1/2At2 + n. - n!) - w!
At I I 1 1

1 2 2 2r
- a At +- (3-21)
4 a At

The random acceleration, a, is actually a process noise, so the

back-difference rate measurement error introduces a correlation between

measurement and process noise when it is used. Typical worst-case torque

disturbances are on the order of 1 in.-lb, standard deviation. For star-

mapper measurement errors of 12.56 arc-sec and a hold time of 0.1 second,

the rms error introduced by the random torque is 11.6 arc-sec/s, while

the sensor noise itself introduces an error of 178 arc-sec/s into the rate

estimate, so the correlation is not too significant. Such is not the case

if gyro measurements are used. Two gyro samples taken 0.1 second apart

could estimate rate to 0.04 arc-sec/s if no disturbing torques were pre-

sent. One approach to determining the effect of process/measurement

correlation is to rederive the filter equations retaining this assumption.

Jazwinski (1970) presents two such cases, but assumes a different timing

convention than that of Eq. (3-6). A simpler solution, and one that allows



use of filter Eq. (3-8) through (3-11), is to augment that state vector

and redefine the measurement. Without taking the expectation in Eq. (3-20),

the direct rate estimate may be written as

S1 2
W = [w!At + 1/2aAt + n. - n']

At 1 1 i

n. - n!
1 1

= w. - aAt + 1/2aAt + At

n. - n!

w = w. - 1/2aAt + 1 (3-22)
1 At

The acceleration that acts from t! to t. is
1 1

dbi
1

a(t!,t.) = (3-23)
1 1 b

Since the random torque introduced at t. is modeled as constant over
1-1

the interval (ti. ,t i ). Define a state variable

i+ = T db. (3-24)

1

Elements of Eq. (3-22) are now all state variables and measure-

ment noises-that are uncorrelated with the process noise. The variance

of the noise in Eq. (3-22) is

n. n2
E I 23 (3-25)

At At



Note also that the noise in Eq. (3-22) is correlated with the

attitude measurement noise at time t.

(n. - n!,

E[[1 - E [,)][i - E(WI) E EniiAt

r
- r(3-26)

At

The solar array angle is measured by a sixteen pole resolver to

an accuracy that is not well known. For this application, a random

measurement error of 0.1 degree standard deviation will be assumed, and

is certainly pessimistic.

Reaction wheel speed is continuously monitored via the commutation

electronics that powers the wheel. Like array measurement, its accuracy

is poorly known as it was not originally intended to be included as an

input to the on-orbit controller. The reaction wheel was modeled as a

first-order process that satisfies the following differential equation

K
1 w

h = h - V (t) + w(t) (3-27)
TW TW C

Where K = 75 in.-lb-s/V, T = 600 seconds, and w(t) is a white
w w

noise of spectral intensity q. The sample data representation of

Eq. (3-27) for a 2-Hz rate is

h.i+ = ah. + bV. + gw. (3-28)

where
AT
a e Twa = e = 0.99917



AT

b = - w f we
w

AT

g = e

0

Tw 
d

= -0.06247

= 0.4998

w. is a white Gaussian random sequence of variance qk

AT 24
2 f Tw

g qk = q e d

qk = 2q

The wheel measurement is modeled by

yi = h. + n.1 1
E[n.]

1

E[n.n.]1 3

= 0

= r6.13 (3-29)

A Kalman filter may be specified for the wheel speed according

to Eq. (3-8) through (3-11). As time proceeds, the estimation error

covariance a~id filter gains reach steady-state values that have closed

form solutions, and the gain is only a function of the ratio of process

to measurement noise. The steady-state Kalman gain is

2 2 /- 2 22 2
(a - 1) + g p +V[(1 - a ) - g p] + 4g p

(2 2 / a _ a 2 2 +42(a 2 + 1) + gp + [(1 - a2) - g p] + 4g p

where

p = qk/r

(3-30)



For a fixed estimator gain, the mean estimator error, e., decays

according to the following first-order difference equation

ei+
1+1

= (1 - k)ae.
1

(3-31)

Table 3-2 presents numerical results for the Kalman gain k, and

the estimation error eigenvalue for several values of p.

Table 3-2. Wheel-speed estimation parameters.

p Gain Eigenvalue

0.001 0.001488 0.9843

0.01 0.0480 0.9512

0.1 0.1454 0.8539

1 0.3899 0.6096

10 0.7654 0.2344

100 0.9629 0.03709

1000 0.9960 0.00397

Given that little is known about the measurement quality, a filter

will be chosen in line with the reasoning presented earlier in this sec-

tion, that is, as slow as possible but still faster than the controlled

plant poles. For the reaction wheel, a process to measurement noise of

one to one is suitable.

The dominant disturbance on the reaction wheel is a motor cogging

torque. In the manufacturer's System Analysis Report (1976), the cogging

torque is modeled as

T = 0.25 sin [96fFw dt] in.-oz (3-32)



where wFw is the reaction wheel speed in rad/s. Cogging torque will be

modeled as a white random sequence with a standard deviation that matches

the rms value of the sinusoid, which is 0.011 in.-lb. With the process

noise specified, the measurement noise is then set to an rms value of

0.011 in.-lb-s.

All unmodeled internal and external disturbances and higher-order

dynamics such as flexible modes are lumped together and modeled as two

white Gaussian sequences acting externally on the solar array and satel-

lite body. The dominant body disturbances about the pitch axis are the

array cogging torques, and approximately 1 percent of the torque generated

by a large telescope scanning in the roll plane that inertially couples

into the pitch axis.

The combined rms of the body disturbances is 0.7 in.-lb and is

chosen as the value of that process noise. Major solar array disturbances

include cogging torque, flexing of the array, and low frequency external

torques, predominately gravity gradiant effect. High-frequency array

disturbances are not as well documented as body internal effects, so

selecting a process noise is not as clear. A torque range of 1 to 10

in.-lb is reasonable for filter synthesis, and will be varied with the

estimator objectives discussed earlier.

3.2.3 Evaluation and Results

Given that a number of measurement options exist, specifying an

attitude filter is not as straightforward as specifying an optimal

controller. In addition, it is useful to consider suboptimal filter

structures such as artificially isolating certain states for the pur-

poses of reducing computation requirements, or to eliminate undesirable

cross-coupling of modes.

The questions to be addressed include the following. What filter

structure makes sense for this application? What is a good choice of

measurements? Do filter gains reach steady state fast enough to jus-

tify a fixed gain estimator, or is the additional computational burden

of time varying gains necessary?



Answering these questions will be .done by assembling appropriate

stochastic model elements as described in Section 3.2.2, and propagating

the estimation error covariance and Kalman gain equations, Eq. (3-9),

(3-10), and (3-11).

Should steady-state gains result, the estimation error eigen-

values indicate whether or not the filter is fast enough to not inter-

fere with the desired closed-loop response. Estimation error is de-

fined to be

e. = x. x. (3-33)

Substituting Eq. (3-6), (3-8), and (3-10) into Eq. (3-33) and taking

the expectation, the mean estimation error propagates according to

E[e i+ = (I - KH)4E[e. ]  (3-34)
-i+l -1

The eigenvalues of [(I - KH)D] determine the speed of error decay.

Because the amount of data generated by covariance analysis is volu-

minous, general results and conclusions are first presented followed by

numerical results of certain interesting cases.

One initial result is that the system defined in Appendix A is not

completely observable. A definition of observability is that given a linear

system such as

-xi = Ox. + Au.+ -1 -1

.i = Hx.
-1

and knowing a finite sequence of output and control vectors, yl, y2, ...

yn, ' u 2, ... , un , it is possible to calculate the initial state, x0 .

This condition is violated on the integral state, xl, since it cannot be

measured and knowing inputs does not allow estimation of the initial con-

dition. As a result, the estimation error covariance of the state is not



reduced from its initial value, but grows slowly as the system covariance

propagates. However, unobservability is not a real constraint because the

purpose of the integral state is to sum attitude errors, so the "open-loop"

estimate derived by integrating the attitude is sufficient.

After considering all of the external measurement options discussed

in Section 3.2.2, the use of star mapper attitude measurements only at 2 Hz

and an isolated estimator for wheel speed is the proposed filter structure.

Numerical values of process and measurement noise are

0 0

1.0 0 (in.-lb)2

0 0.000121

(12.56 arc-sec) 2

R = 0

0
L~

0

(0.1 deg) 2

0

0

(0.011 in.-lb)2

Within 30 seconds, the full-order covariance matrix

with the exception of the integral state, to the following

values of estimation error standard deviation;

converged,

steady-state

Pitch

Pitch Rate

Array

Array Rate

Wheel

0.0033 deg

0.015 deg/s

0.066 deg

0.059 deg/s

0.0065 in.-lb-s

(12 arc-sec)

Estimation error eigenvalues are plotted in Figure 3-11.

0.54

Q = 0
0



Figure 3-11.
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Full-order filter eigenvalues, star mapper.

The Kalman gain matrix for the full-order filter is, in steady

state

I--

0.2303

0.9128

1.9899

-0.4798

-1.7484

0.335 x 10-3
0.335 × I0

-3
0.190 x 10

-3
-0.584 x 10

-2
-0.213 x 10

0.4347

0.2477

-6
-0.390 x 10

-0.563 x 108
-7

0.103 x 10
-6

0.147 x 10 - 6

-8
-0.983 x 10

-0.146 x 10 - 6

0.3899

Note that from the steady state gains, pitch and pitch rate are

estimated almost entirely by star mapper measurements, array and array

rate by combinations of star mapper and array measurements, and wheel

momentum almost entirely by its measurements. It is clear that the imple-

mentation of this filter would logically isolate the wheel from the rest

of the system, and that other near zero gains could be set to zero as

follows

K =



0.2303 0 0

0.9128 0 0

1.9899 0 0
K =

-0.4798 0.4347 0

-1.7484 0.2477 0

0 0 0.3899

From the eigenvalue plot, it can be seen that this proposed fil-

ter is faster than the closed-loop modes plotted in Figure 3-1. It also

turns out that the dominant filter gains settle to within 10% of their

final values within the second or third iteration, so a time invariant

estimator is justified.

It is reasonable to predict that if a direct measurement of rate

information were available, an attitude estimator would perform better

than if no rate information is available.- The measurement quality re-

quired before filter improvement is useful is not obvious, but can easily

be experimented with. Two approaches to obtaining rate information are

applicable in this case, from gyros or from preprocessed star mapper

measurements. It may be possible to use less accurate, and consequently

less expensive, rate gyros than currently exist on the spacecraft. The

effects of varying qualities of direct rate information, such as obtained

from gyros, on an estimator for pitch and array states only are presented

in Table 3-3. Filter performance to a derived rate estimate by back-

differencing-two 0.1-second star mapper measurements with measurement

and process correlations as discussed in the previous section is also

listed.' Process noise remains unchanged.

Steady-state estimation error eigenvalues for the filters that pro-

duced these results are plotted in Figure 3-12.

Judging from the variances listed in Table 3-3 it seems that the

best rate information, of a quality which is easily superceded by the

current gyros, should be used because of the good reduction in estimation

error. However, the eigenvalues of this filter, Case 4 in Figure 3-12



Table 3-3. Star mapper filter variances with direct rate
information.

CASES 1,2

CASE5 -

0
x

Im(z)

CASE 3 CASE

x x

1X
x x

ARRAY

BODY

e(z)

Figure 3-12. Star mapper filter eigenvalues with
direct rate information.

illustrate that error statistics alone are not good performance measures.

Good rate measurements allow a near dead-beat rate error response, but

the optimal filter slows down the attitude estimate to an unacceptable

level. Back differenced rate measurements offer an attractive candidate

for enhancing filter performance with only a slight computational burden.

The improvement, however, is also slight, and it is not clear that any

Rate Measurement Steady-State Error Variances

Noise Pitch Pitch Rate Array Array Rate
Case (deg/s)2  (deg)2  (deg/s)2  (deg)2  (deg/s)

1 c (no measurement) (0.00333)2 (0.0152)2 (0.0659)2 (0.0589)2

2 (0.1)2 (0.00332)2 (0.0151)2 (0.0659)2 (0.0588)2

3 (0.01)2 (0.00282)2 (0.00826)2 (0.0659)2 (0.0575)2
2 (0.00126)2 (0.000997)2 (0.0659)2 (0.0569)2

4 (0.001) (0.00126) (0.000997) (0.0659) (0.0569)

back difference 2 (.2)2 2 2
5 5) (0.00270) (0.0147) (0.0659) (0.0588)

z(0.05)2

C Y'
> ,



better performance is required. Star sensor noise was assumed to be

that of the dimmest usable stars with an rms error of 12.6 arc-sec, and

filter performance appears to be adequate. Since estimation accuracy is

so closely tied to sensor accuracy, the presence of brighter stars stands

to reduce estimation errors in line with Table 3-1, and minor improvements

with rate information have even less to offer.

Incorporating gyro measurements are considered in a similar manner.

Two filter structure options are considered; using attitude increments

only at 2 Hz, or including a rate measurement derived by differencing

two attitude increments 0.1 second apart.

The gyro based attitude filter does not ever reach a steady state

because gyro errors are modeled as a random walk plus uncorrelated errors.

After the initial covariance matrix is reshaped with the first few seconds

of data, the pitch variance closely followed a random walk increasing

(0.013 arc-sec)2 per iteration. However,_the variances of pitch rate

and array states did stabilize in only a few seconds, as did all of the

elements of the gain matrix. Table 3-4 presents the results of using

gyro measurements in a four-state filter estimating body and array modes,

and stopping the filter at 15 seconds. Process noise is unchanged from

previous cases.

Table 3-4. Gyro filter variances.

Pitch Pitch Rate Array Array Rate

Case Measurements (arc-sec)2  (arc-sec/s)2  (deg)2  (deg/s)2

2 - )2 2 )2
1 Attitude (0.0735) (7.75) (0.0659) (0.0569)2

2 Attitude (0.0612)2 (0.0406)2 (0.0659)2 (0.0569)2
and Rate

Estimation error eigenvalues are plotted in Figure 3-13 for these

two cases.
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Figure 3-13. Gyro filter eigenvalues.

From the error covariances listed in Table 3-4 it is clear that

gyro measurements can allow much faster filtering and still produce vastly

higher quality estimates than any of the measurement combinations relying

on star mapper attitude information. Although attitude covariance increases

linearly with time, over the time span the gyro's spectral density is valid,

which is under 1000 seconds, it is clear that the error will not reach the

worst-case error resulting from using a star mapper.

Estimator performance is significantly enhanced by using a direct

rate measurement. If attitude increments alone are measured at 2 Hz,

the rate error eigenvalue is placed at z = -0.9899 resulting in a curi-

ous slow exponential decay with alternating signs that is unique to

discrete time systems. Incorporating back-differenced rate information

shifts that pole to z = 0.3355, moving the decay time constant lower

than all closed-loop plant time constants.

Including the reaction wheel state in the model with gyro atti-

tude and rate measurements illustrates an interesting characteristic of

linear estimation. All other filter schemes, when wheel momentum was

added to the model, calculated the same optimal gain as was presented

for the wheel alone in Eq. (3-30) and set the gains on other measure-

ments essentially to zero for that state. With pitch and pitch rate

both accurately measured, the Kalman gain matrix, at t = 15 seconds, for

the five state model, ignoring the integral of attitude error is



Measurement
Estimate

Pitch Pitch Rate Array Wheel
-10 -7

0.6544 0.09600 0.2 x 10 -0.2 x 10 Pitch
-8 -7

0.9013 0.8607 -0.1 x 10 -0.2 x 10 Pitch Rate
-8

K = -0.3328 -0.06471 0.4343 0.5 x 10 Array
-7

-0.7260 -0.8412 0.2457 0.1 x 10 Array Rate
-6

-212.9 59.15 0.2 x 106 0.3899 Wheel

Knowing pitch and its rate accurately allows the estimator to

"think" it has enough sensitivity to improve the wheel momentum esti-

mate through the weak coupling introduced by the long exponential decay

model assumed for the wheel. Implicit in the theory of linear estima-

tion is the assumption of perfect modeling, and this case shows a poten-

tial problem from such an assumption. Since the reaction wheel is

actually very complex, with inner compensation loops and the full range

of dynamics of an electromechanical system, a first-order model, while

adequate for modeling its effect as an actuator, is not suitable for

providing an accurate weak correlation suitable for exploiting in an

estimator to the degree the calculated gains indicate. A number of

solutions are available, the simplest being to merely remove the wheel

from the model and run a separate estimation loop for it. Other pos-

sibilities include increasing the order of the gyro model, or propor-

tionally reducing the wheel process and measurement noise until the

direct wheel measurement becomes the dominant input to wheel estimate

as engineering judgement indicates it should be.

It is clear that gyro data, -either from the existing rate

integrating gyros, or in the form of direct rate measurements with star

mapper attitude measurements will produce superior eptimation results

than can be had if star mapper attitude only measurements drive the

filter. The justificaton for recommending that the filter should rely

on 2-Hz star mapper measurements as its only inertial attitude input is

that such a structure produces adequate results. The additional cost



and computational burden introduced by requiring gyros or deriving

direct rate information does not seem necessary. In addition, the pro-

posed filter has been evaluated under pessimistic assumptions. Star

mapper error will almost always be lower, and the disturbance model is

definitely severe. All further simulation and analysis will use this

proposed filter.

3.3 Combined Filter/Controller

With a Kalman filter to estimate the state, the optimal feedback

gains calculated under the assumptions of perfect state knowledge are

used to determine control commands to the reaction wheel and solar

array drive. Figure 3-14 diagrams the complete loop and illustrates the

mix. of continuous and discrete time processes.

3.3.1 Deterministic Response

A useful evaluation is to repeat the transient responses of

Section 3.1.4 with no random inputs, since this also illustrates the

mean trajectory of the real process. Figure 3-15 plots the response

to an initial pitch error of 1 degree and no initial estimation error.

As expected, response is identical to that of Figure 3-1. The esti-

mator is able to track the state perfectly. If the initial pitch

estimate is set to zero, the response changes as can be seen in Figure

3-16. Although estimation errors decay fast; large controls are com-

manded during the error transient, which would saturate both actuator

input limits. This is a severe test, however, since the optimal estima-

tor gain matrix for a high initial uncertainty has a significantly differ-

ent structure than the steady-state gains based on an accurate previous

knowledge of state. Time varying filter gains would diminish the effect

of large initial errors, but a simpler approach for implementation would

be to run the estimator for a few seconds before allowing control com-

mands to be issued instead of turning both on at once.
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Figure 3-15. 2-Hz filter/controller; no estimation
error, no noise.

3.3.2 Stochastic Response

The ability to easily evaluate effects of random disturbances is

a powerful feature of linear system theory, and is important for this

application. At sample times, the process diagrammed in Figure 3-14

may be represented by a 2n order set of difference equations, where n

is the ordef of the state vector. Changing variables to use estimation

error as a partition of the state, these equations may be written as

.... [ v-+- - (3-35)
---- +----- + ----- +- - (-5e. 0 (1 -H)(D e. (KH - )r K v.

where

e. = x. -x.
1--i --
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The zero partition of the homogeneous term in Eq. (3-35) illus-

trates the classic result of full-order estimated state feedback that

the eigenvalues of the closed-loop system are the eigenvalues of [D - AF],

identical to the deteministic state feedback case and the eigenvalues of

[(I - KH)D], estimate error decay. The timing discrepancy in the com-

bined driving vector is a result of the fact a Kalman filter uses meas-

surements immediately. Since w. and v. are modeled as uncorrelated

sequences, it is as matter of notation and not of physical significance.

Equation (3-35) represents a linear system driven by an uncorrelated pro-

cess, and the covariance propagation is given by

T T
i+1 

(3-36)

where

P' = E i x[T eT]

- -AF

o [ (I - KH)

r 0

( I - I)r K

i T T

Si j +1 0 IR j

An initially obvious choice for Q and R is the same value used in

the filter design. There are, however, some doubts on the validity of

the process noise for predicting closed-loop errors. Actual disturb-

ances acting on the spacecraft are all nearly pure sinusoids, and the



high-frequency internal disturbances that have the largest magnitudes

cannot change total system momentum. An uncorrelated external disturbing

torque of similar intensity, while a useful approximation for filter syn-

thesis, will cause the mean-squared value of total system momentum to

increase with time, which is a significant difference from physical

reality.

Uncorrelated sensor noise is a close approximation to real uncer-

tainties, and since the system is linear, the contribution to pointing

error from sensor noise alone can be calculated. Furthermore, sensor

noise in no way affects total angular momentum so avoids the physical

problems associated with external torque noise. Table 3-5 lists the root

mean square pitch and array errors for several combinations of measure-

ment noises and intensities. Filter gains are the reduced order gains

specified in Section 3.2.3.

Table 3-5. Steady-state rms errors under optimal control.



The lower case of pitch measurement noise corresponds to a star

of magnitude 1 in the field of view, while the higher case represents

the dimmest usable star of 6th magnitude. From these results it is

clear that star mapper noise will not contribute significantly to point-

ing when a bright star is available. Most of the pointing error is a

result of the noisy array measurement.

It is interesting to calculate the effect of similar noises on

the present control law. The estimator will not be changed, since body

and array rates must be derived some way, but instead of using an optimal

feedback gain matrix the sparce matrix introduced in Section 3.1 will be

used. Table 3-6 contains the results.

Table 3-6. Steady-state rms errors under present control law.

Measurement Noise Intensities rms Pointing Errors

Pitch Array Wheel Pitch Array
2 2  2

(arc-sec) (deg) (in.-lb-s) (arc-sec) (deg)

(12.56)2 0 0 6.42 0.0028

O (0.1)2  O 117.5 0.0609
(0.011~2-6

0 0 (0.011)2 0.00128 0.178 x 106

(12.56)2 (0.1)2 (0.011)2 117.7 0.0609

Notice that sensitivity to star mapper noise is increased somewhat.

Array noise causes a severe problem in this case, driving body pointing

out of its 36 arc-sec limit if in fact, the noise model is good. Since

the full state feedback approximation to array control is not rigorously

correct these results should be interpreted only in comparison to the

results of Table 3-5.



The conclusion drawn from covariance analysis is that the proposed

optimal controller shows less sensitivity to estimation errors than the

present feedback gains. In addition, under optimal control and worst

case assumptions, measurement noise alone will not drive the pointing

error out of limits, so the feasibility of this scheme is not invalidated.

The effects of the many but well known nonlinear torque disturbances is

the topic of the next chapter.



CHAPTER 4

EVALUATIONS

Linear theory provides a powerful method to synthesize a control

system and evaluate its response to random disturbances that are either

"white" or modeled by a linear network driven by an uncorrelated process.

For this case, many important disturbances fit neither into the category

of linear dynamics, includable in the model, or the special class of

random disturbances mentioned. Without convenient rigorous mathematical

tools to apply, numerical simulation provides a iseful although case-

specific means to analyze nonlinearities.

4.1 Disturbances

Three important classes of disturbances must be considered; rel-

atively strong high frequency internal torques, low frequency weak ex-

ternal torques, and inertial cross-coupling. Almost no purely random

torque disturbance exists.

4.1.1 Internal Torques

Lumped into this category are the effects of all on-board mechanisms

that disturb attitude. Only very small amounts of angular momentum can be

stored in any of these devices, so none can cause a significant rate drift.

However, several are strong, and can cause large cyclic attitude errors.

For the pitch axis, major disturbances are solar array drive cogging

and, through misalignments and inertial coupling, about 1 percent of the

torque generated about the roll axis by a scanning telescope.



The array drive is a 96-pole direct drive motor that exhibits

noticeable cogging effects at its nominal rate of one revolution per

orbit. Both viscous and dry friction are also present but initially

neglected. Actual motor torque is given by

TS = KT(V - Kb) + 0.18 sin (968) - 1.25 .{ 1 } in.-lb
SAD T a b 6

cogging torque coloumb
friction

(4-1)

where

KT = 0.138 in.-lb

Kb = 1.03 V-s/rad

If the control law developed in Chapter 3 operates, with appro-

priate scaling for KT , directly through the real SAD motor, the response

is severely degraded as shown in Figure 4-1. Note that the array rate

is being driven to the desired 0.06 deg/s, but dry friction introduces

a constant drag and prevents array error from being nulled. The steady-

state periodic shape of the response is not exactly sinusoidal since

cogging torque is spatially determined, not temporally. Peak pitch error

is 0.17 degree, clearly unsatisfactory.

A number of options exist to correct the cogging problem. . On the

current satellites a high-gain position loop controls the array. This

approach would prevent most of the attractive features of optimal con-

trol from being exploited though. New optimal gains, with high penalties

on array and perhaps pitch errors, could be derived. The drawback is

that the resulting high bandwidth loops require higher control activity

and show greater sensitivity to estimation noise. The nonlinear nature

of the cogging and coloumb torques prevent direct inclusion in the model.

While a linearized model can be derived, the resulting feedback gains

are time varying.
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An attractive approach for this case is to locally compensate the

array drive so cogging is suppressed, but the motor "looks" like a true

torque transducer to the optimal controller. From the model equations

derived in Appendix A, array rate is given by

t J K
*-1 w 1 1

(t) = (t) dt h(t) V (t) + + T (t) dt
b Ib (w C b ca

(4-2)

if in fact the array drive was perfect. The terms in Eq. (4-2) are all

known to the controller, so Eq. (4-2) can represent a reference signal

for a rate loop to track. The resulting closed loop is diagrammed in

Figure 4-2.

a RATE r
h MODEL c
h

Figure 4-2. Array rate loop.

G(s) is the motor voltage to array rate transfer function, and G (s)c

is a forward compensator. Appendix C develops and evaluates the loop in

detail. Including array rate compensation results in an overall response

as illustrated in Figure 4-3. Note that peak steady state pitch errors

are 6 arcseconds, and although a steady state array error still exists,

it is down to just under 0.2 degree. Plots in Appendix C also show that

the rate compensator does not degrade initial condition response from the

ideal case.
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One might ask why similar results could not have been obtained

with appropriate state augmentation and penalty weightings in the opti-

mal framework. It is certainly possible that they could, but it is not

clear how an engineer would get the insight to choose additional dynamics.

With single input, single output, and a torque rejection requirement over

a specific band of frequencies, the array drive presented a well posed

classical control problem. In addition, the overall dimension of the

control problem has not been increased by as much as state vector aug-

mentation and optimal control would require.

The second particularly strong high frequency internal torque

results from the 6-Hz scanning of a large telescope in the yaw-pitch plane.

Most of the reaction torque acts against the large roll moment of inertia

but about 1 percent appears on the pitch axis through inertial coupling,

and is modeled by

-0.45
540

0 I I I I I I I I I I I I I I I I I



Td = (0.01) (82.1) cos wt in.-lb

w = 12ff rad/s

Without any control action, peak pitch deflection should be limited

to 0.13 arcsecond by pitch inertia. Since 6 Hz is well over the sampling

rate, a short simulation was run to see if aliasing effects were noticed.

Figure 4-4 shows pitch response to scanning torque superimposed on resid-

ual cogging torque, and additional error is on the order predicted.

Cogging torque is also noticeable on the reaction wheel drive.

The disturbance, transmitted equally to the wheel and satellite body, is

modeled by

T = 0.016 sin 6 w dt) in.-lb

0

Fw = angular velocity of wheel, rad/s

Wheel speed varies over ±900 rad/s,..so the cogging frequency is

almost always out of the bandwidth of the control systems. At a constant

wheel speed of 1 rpm, which is certainly a lower limit on the validity

of the cogging model, peak pitch deflection is 0.036 arcsecond. Error

magnitude falls off as the inverse square of wheel speed, so for normal

operations wheel cogging effects are negligable. Wheel reversal does

introduce a transient disturbance, largely from stiction, but it is pos-

sible to put a bias momentum on the pitch wheel to prevent this.

The smallest known disturbance-about the pitch axis is caused by

a tape recorder driver. Torquiepulses appear as shown in Figure 4-5.

The pattern repeats for 60 cycles, then the order of torque signs

reverses for 60 cycles. Peak deflection occurs at the center of a pulse

input as the torque sign changes and is limited to 0.001 arcsecond by

body inertia alone.



0.40

0.30
x

- 0.20

0.10

0.00-
0

0.35

I' I I I I l II I I I I I I I I I I I I I I I I
40 80 120 160 200 240 280 320 360

TIME (s)

Figure 4-4. 2-Hz filter controller and SAD rate loop, response to
cogging, external, and telescope scanning torques.

0.50

40 80 120 160 200 240 280 320 360

I I I I I I I I II I I I I

0.25

X
0.15

I-

S 0.05

-0.05
-0.05

-0.15
0

m B m E I m E m m E m E m m m m m



1/16 s

+0.032

S 0

I-

-0.032
1/16s

Is

Figure 4-5. Tape drive disturbance.

4.1.2 Low Frequency External Torques

Worst case external torque magnitude is much lower than all inter-

nal disturbances, and dominant effects are modeled by

-3
T = [0.0906 + 1.21 sin 8] x 10 in.-lb
db

-3
T = [-0.22 sin B + 0.212 sin ( - 26.6)] x 10 in.-lb
da

where a = w0t for circular orbits. Body torques are caused by solar

pressure and magnetic residuals, while gravity gradient effects act

largely on the solar array. Although these torques are comparatively

low, since they act over a long period of time and are external, total

system momentum can be significantly changed as was seen in Figure 3-4.

The addition of an estimator and array drive compensation does not alter

the momentum-accumulation in the reaction wheel, nor increase pitch point-

ing error contribution, which remains under 1 arcsecond as previously

illustrated.

The secular accumulation of angular momentum cannot continue in-

definitely so to dump excess momentum magnetic torquing coils can be

switched on when the satellite is in certain regions of the earth's

magnetic field. Since the torque of the coil is known, a bias is intro-

duced into the controller to drive the wheel and ideally not introduce

attitude errors. In effect, the control law only has to handle the



transient difference between the coil's torque and the wheel's biased

torque, which in worst case is under 0.0004 in.-lb for the pitch axis.

The ability to resist torques of this magnitude has already been demon-

strated.

4.1.3 Inertial Cross Coupling

Pitch motion is not fully decoupled from the other axes, as was

initially assumed. Furthermore, the total spacecraft inertia is not

fixed but varies with array position as listed in Table 4-1.

Table 4-1. Flight inertial values (in.-lb-s ) as function of
solar panel angle.

Panel
Angle 0 45 90 135 180 225 270 315
(deg)

Ix  7973 7539 7233 7538 7973 7539 7233 7539

IY 7234 7668 7973 7668 7234 7668 7973 7668

Iz  1683 1683 1683 1683 1683 1683 1683 1683

IXY +1.3 -362 +1.3 +365 +1.3 -363 +1.3 +365

IXZ -803 -786 -758 -729 -713 -729 -758 -786

Iy Y-43 -77 -88 -77 -43 -9 +1.5 -9

Pitch-yaw coupling is quite high for all array positions, although

roll motion is nearly

is ideally restricted

effects should not be

decoupled. In the on-orbit case, satellite motion

to a low steady-state pitch rate so cross-coupling

a difficulty. As a worst case test of stability

satellite transient responses to initial errors in each axis were run on

a four-degree-of-freedom simulation developed for this satellite at CSDL.



Existing control law gains were used on the yaw and roll axes, while the

proposed pitch and array estimator/controller was implemented on the third

axis. Figures 4-6 through 4-8 plot each case. Notice that pitch and yaw

are quite coupled, and an error in one axis excites the other, while roll

motion is almost independent. It is also interesting that the pitch

response drives the yaw reaction wheel to nearly twice the level the

pitch wheel reaches. The entire loop is stable, and although errors

do not remain in their initial axes, all transients decay as fast as

a single axis alone.

One approach to solving the cross coupling problem would be to

incorporate the motion of all three axes into the model and determine

an optimal control law that "knows" the nature of the coupling. No

longer a linear problem, a linearized model can be derived for small

deviations. Since array position determines much of the coupling,

such a linear model would also be time-varying, although cyclic.

Whether or not the additional computational burden is better than

the performance demonstrated in Figures 4-6, 4-7, and 4-8 is a matter

of judgement.

4.2 Summary

Anticipated worst-case pitch and array peak errors for the various

disturbances discussed are summarized in Table 4-2.

All of the steady state disturbances are significantly less than

the 8.6 arcseconds rms pointing error introduced by star mapper measure-

ment noise. If current gyros were used for sensors, estimation error,

as summarized in Table 3-4, is then not the dtminant cause of mean-square

pointing error.

The results of torque disturbance in Table 4-2 would be a good

worst-case representation.
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Table 4-2. Peak pointing errors.

Peak Error

Disturbance Pitch (arcsecond) Array (degree)

SAD cogging 6 0.18 ± 0.002

6-Hz telescope scanning 0.13 insignificant

RW cogging at 1 r/min 0.036 insignificant

Recorder drive 0.001 insignificant

External torques 0.072 0.05

10 yaw error 166.0 0.46

10 roll error 10.1 0.029

The disturbance model assumed in filter design was a white, Gaussian

random sequence of rms 0.73 in.-lb of the body and 1 in.-lb on the solar

array. It is interesting to compare the mean-square pointing error pre-

dicted for these random disturbances with the results calculated in this

section. Closed-loop system covariance, as discussed in Section 3.3,

temporarily stabilizes to rms errors of 0.15 degree pitch and 0.2 degree

array before rms momentum accumulation exceeds the wheel limit. The

disparity in the two results indicates that the white torque noise inten-

sity chosen is a severe model. However, the rationale for choosing the

disturbance model involved more than simulating with a white noise a

different class of processes. A major consideration in selecting a pro-

cess intensity was to ensure that estimation errors decayed faster than

the control law could follow so, control power would not be expended

tracking an erroneous estimate. In this case it may be possible to improve

pointing accuracy by reiterating filter design in light of the results

derived in this chapter.

Except for the array drive, the proposed controller is capable of

dealing effectively with the disturbance environment that the satellite

operates in. Although a scheme of controlling array cogging is presented,



if an optimal controller were to be implemented it would be desirable to

replace the current motor with a more linear actuator. These results

also place a lower bound on attitude estimation accuracy. It does not

seem necessary to know attitude as well as rate integrating gyros

allow, since internal disturbances become the dominant source of steady

state mean-square error. In the worst case, the proposed star mapper can

introduce most of the error. Fortunately estimation error can be lowered,

if desired, while not much can be done about the disturbance environment.



CHAPTER 5

CONCLUSION

A linear time invariant controller is suitable for on-orbit at-

titude control of this satellite. The task of the engineer can be re-

duced to choosing a structure and the associated gains. Classical

compensation is a powerful tool for deriving gains, but it does not

always offer good hints on structure, particularly for a multi-input,

multi-output problem. This thesis shows that LQG optimal control

theory directly accomplishes both tasks. In addition, the introduction

of an estimator allows rigorous handling of noisy data. The benefit of

this approach is an improvement in both deterministic and stochastic

performance, while the primary drawback is an increase in required

computer operations.

The structural difference between the controllers arrived at via

classical theory versus modern theory for the pitch and array loops is

illustrated in Figure 5-1. All of the system outside the heavy dashed

lines represents satellite dynamics and the current controller, while

the feedback paths inside the center block represent those introduced

by optimal theory. A number of interesting insights into this problem

can be seen. The coupling introduced by the effect of array drive

torque on the satellite body and by measuring relative array position

is obvious. One of the new cross-feed paths, using gains [f21 ' f2 2 ' f2 3]

bypasses the reaction wheel and commands array drive torque to null

body errors. The negative sign of these gains is a result of the torque

sign covention, and can also be seen by tracing through the loop.



Another cross-feed path, through gains [f 4' f15, commands reaction

wheel torque as a function of array error to oppose the disturbance

created on the body by the array drive. The effect of these cross feeds

is illustrated by the transient responses in Section 3.1. It is pos-

sible to arrive at these new feedbacks simply by requiring full state

feedback but the problem of selecting gains still remains. By requir-

ing the controller to optimize a quadratic performance index, a unique

set of gains results. Of course most of the signal flow in Figure 5-1

is not as direct as indicated. All the quantities transmitted through

control gains are the outputs of some form of estimator, which creates

the greatest increase in controller complexity.

Full state estimation is not entirely detrimental. A second

important advantage of LQG theory is the manner noisy data is used.

While knowledge of measurement and disturbance statistics may not be

precise, the ability to quantitatively weight good data more than poor

data is much more rigorous than treating all outputs as noise-free

sources. Frequency domain stochastic techniques are well developed and

useful for analyzing the effect of noise on controller design. They

do not, however, offer much help with attempting to reduce the effect of

noise, unless one wishes to enter the realm of Wiener filtering and

compensation. A separate estimator allows.the effects of measurement

noise to be approached without a specific control law in mind. The

framework of linear optimal estimation provides a basis for selecting

a set of measurements or determining quality limits as is done for the

star map-gyros tradeoff study in Section 3.2.

The issue of complexity needs to be addressed. For this example,

satellite attitude error, rate, and integral and array error are deter-

mined anyway for the present controller. With those quantities, the

on-board computer performs 3 multiplies and 2 adds each 1/2 second for

pitch control, while array control is actually implemented by an analog

circuit within the motor. If a full state feedback control law is

desired for the pitch loop, an array rate and wheel momentum estimate



would also be needed. The extra computation required using portions of

the estimator developed in Section 3.2 is 14 multiplies and 11 adds.

To calculate the controls, given a state estimate, 12 multiplies and 10

adds for a total computational increase of 23 multiplies and 19 adds,

are required. Proportionally this seems to be a major increase. Using

arithmetic execution time estimates for the Block 5D computer (RCA 1976),

these extra calculations would require at most 2 milliseconds. In

normal operation, the computer uses 20.5 milliseconds of the 500 milli-

second cycle in the "ACS" mode for attitude control, but not including

estimation, processing. By comparison, the computational increase to

support an optimal controller is not at all severe.

Performance gained from this increase in complexity was seen in

two ways. Deterministically, the new cross feeds allow array drive

torque to be a useful control instead of a disturbance. Stochastically,

reduced sensitivity to measurement noise was demonstrated in Section 3.3.

Although not dramatic improvements, the ability to improve pointing and

reduce wheel activity is significant in light of the rigid performance

specifications the current controller already meets.

Certain hardware changes, in addition to the sensor options dis-

cussed in Section 3.2, would enhance implementation of an optimal con-

troller. The array drive mechanism is a source of particular difficulty.

Improving measurement accuracy, perhaps including direct rate estimation,

would be profitable. The direct drive nature of the motor could be

changed to reduce the cogging effect eliminating the need for local

compensation. A smooth linear reduction gear train driven by a faster

motor offers an attractive replacemen't. The current reaction wheel

commutation electronics were not designed for frequent low-noise speed

monitoring, so the addition of a tachometer may be helpful.

Useful insights into the kinematics of this particular satellite

have been gained by a different approach to controller synthesis. By

understanding how the two bodies of theory interplay, a control engineer

is better able to exploit the strengths of each, and should be able to

approach new problems without the artifical limitations imposed by what

is mathematically convenient according to one.
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Figure 5-1. Functional block diagram.



APPENDIX A

MODEL DEVELOPMENT

To derive the rotational equations of motion, split the satel-

lite into two bodies at the array drive motor as shown in Figure A-1.

SAD MOTOR

z

\PITCH
PITCH
REACTION
WHEEL

YAW x

BODY SOLAR ARRAY

Figure A-1.

Define the parameters:

Tcb - Control torque applied to spacecraft body

T - Control torque applied to solar array
ca

Tda - Disturbance torques acting on body

T - Disturbance torques acting on array

- Inertial pitch angle

w- Inertial pitch rate



0 - Relative solar array angle

Ib  - Body moment of inertia about pitch axis

I - Array moment of inertia about pitch axisa

Figure A-2 illustrates the coordinate convention adopted for

the array and body orientations with respect to an inertial reference

frame. The view is along the pitch axis.

SOLAR AF

VELOCITY ANGLE,0

VECTOR

'b ' ARRAY FIXED AXES

PITCH /
ANGLE

"I

INERTIAL REFERENCE
SOLAR ARRAY

BODY FIXED AXES-.. Xb

XI

- Figure A-2. Coordinate convention.

Writing laws of motion for the array and body separately

= T - T + Tdb = I
cb ca db b

= T + Tca da
= I ( + )a

SBODY

ETARRAY

(A-l)

(A-2)



Solve (A-1) for w

S 1 1 1
= T T + -- T (A-3)

I cb I ca I db (A-3)
b b b

Substitute (A-3) into (A-2)

T + T = I T T +- T + e (A-4)
ca da a\Ib cb Ib ca Ib db

Solve (A-4) for 8

S= + T T + -L T T (A-5)
a I b ca I b b I da Ib dbca I b Tcb a T Ib

Command torque to the satellite body is developed with a reaction

wheel that has the following transfer function:

T cb(S) K s K = 75 in.-lb-s/V
=s ww(A-6)

V (s) T s + 1c w. T = 600 s
w

The long time constant models the buildup of back-emf as the

wheel speeds up under a constant demand. For low wheel speeds and over

times short in comparison to T the reaction wheel acts as a dc gainw

of magnitude K /T = 0.125 in.-lb/volt to a step command.w w

Define h(t) to be the momentum of the reaction wheel. The torque

applied to the spacecraft is exactly°-d/dt h(t), so the transfer func-

tion of wheel momentum to command voltage is the integral of Eq. (A-6)

-K
h(s) w (A-7)

V (s) T s +1
c w



Equation (A-7) corresponds to the differential equation:

t h(t) + h(t) = -K V (t)
w w c

Kwh(t) = - h(t) - -V (t) (A-8)
T T C

w w

Since Tcb = -h, the torque output of the wheel is

1 w
T - h(t) + -- V (t) (A-9)
cb T T c

w w

The array drive motor is actually a very nonlinear device with

coloumb friction and prominant cogging effects. However, it will be

modeled as a pure torque transducer and T considered a controllableca
input. Implementation issues of this assumption are discussed elsewhere.

Substituting (A-9) into (A-3) and (A-5)

1 1 w 1 1
L = I-h+- V -- T +-TI T T cI I ca I db

b w w b b

S 1 Kw 1 1

ITh IbT c Ib ca I b db
b w b w b b

= ++-- T h(A-h)V 1
I ca I T T I da I db

a b b  )w )w C a Ib

1 w 1 1 1 1 (A-ll)S = h- V + 1+ T T + -T
Ib' T IbT c I I ca I db I da



Define q to be the integral of attitude

q(t) = (t) dt

so

q = (A-12)

"q" will provide a state variable that can be fed back to implement

integral compensation, which is necessary to null out the effects of near

steady-state disturbance torques.

Define the state vector

x = [q c e 0 h] T

Equations (A-8), (A-10), (A-11), and (A-12) are a set of state

differential equations, which can be written in the familiar form

x = Ax + Bu + Gw (A-13)

where the control vector u is defined

u =

T (t)

and the disturbance vector w is defined

STda



The matrices A, B, and G are defined as follows:

A =

0

K
w

Ib w

0

-K
w

IbT wbw

-K
w

Tw

1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1/IbTw

0 0 0 0 1 0

0 0 0 0 0 -1/IT bw

0 0 0 0 0

0

0

-1

Ib

0

(+1)

0

-1/T
w

i/Ib

-1/Ib 1/I
a

Numerical values of the model parameters are:

I = 877 ift.-lb-s 2

a

I = 891 in..-lb-s
2

K = 75 in.-lb-s/V
w

T = 600 s
w

B =



Since the control law is to be implemented in a digital computer

sampling at a rate of 2 Hz, a set of difference equations that models

the pitch dynamics only at the sample times may be used instead of the

differential equations represented by (A-13). If the control input is

held constant between sample intevals, and the disturbance input varies

slowly enough that a piecewise constant function is an accurate approxi-

mation, the model may be written as

x = x. + Au. + Pw. (A-14)

ti+ - t. = 0.5 s
i+l 1

The state transition matrix, (D, the control effectiveness matrix,

A, and the disturbance weighting matrix, F,. are given by

S= exp (AT] (A-15)

T

A = f Q(T - T)B dT (A-16)

0

T

r = (T - T)G dT (A-17)

0

T = 0.5 s

Evaluating A-15, A-16, and A-17 with a control theory software

package developed at the Charles Stark Draper Laboratory, 'numerical

values are:



1 0.5 0.125 0 0 3.8962 x O-8
1 0.5 0.125 0 0 3.8962 x 10

0

0

0.5

1

0

-2.3382

-1.4029

-5.6117

2.8282

1.1313

O

0
-4

1.4253 x 10

-4
5.7012 x 10-

0

2.3375

9.3489

-2.3375

-9.3489

9.9917

o-710

-7i0

10-7

10-7

10-7

0.5

1

0

0

0

10-6

0-5

10-5
10-5

10-5

0-5
1-2

2.9221

1.7532

7.0117

-1.7532

-7.0117

-6.2474

2.3382

1.4029

5.6117

-1.4029

-5.6117

0

F=



APPENDIX B

DERIVATION OF OPTIMAL GAIN RECURSION

Given the linear discrete time system

i+l
-i+l

= dx. + Bu.
--1 -

and the quadradic cost function c(x, u)

L-1

c x= + u.
i= 1 X1 -1

i=0

T
+ x P x

-L L-L
(B-l)

The control u. that minimizes c is of the form

u. = -F.x.
-I 1-1

where F, the feedback gain matrix is found from the following backwards

recursion from i = L to i = 0

TT
F [BiPi+B i Ruu i i+lF. = i+ BP ~ (B-2)

P. = [ - BF ]T [ - B.F.] + Q + FTR F. (B-3)
1 i i i+l Bi1 Qxx i uu i



Proof:

Define the minimum cost to complete function at interval i to be

the result of applying the optimal sequence of controls, u. ,..., uL such

that the quadradic cost, c, incurred from time i to final time L is

minimum.

Mm L-1Mino FT T u T
c (x i. i) = u.,..., u x + u.R u + xP x (B-4)

1 1 L ] xjx] -- 3 ur-j -L L-L
j=i

When i = L, the cost-to-complete is not dependent on u, and is

given by

c (x) = x P x
L -L L-L

The solution by dynamic programming asserts that given that the

cost to complete is minimum from i+l to L, the optimal control at i is

not a function of the later controls, ui+l,..., u, but is that which

minimizes only the additional cost incurred by transitioning from x. to

xi+l

min 1  c (x
co(x., i) = u. xQ x. + u.Ruu + co(x i+l) (B-5)

11 L2X1 -l u-1+

o o
Suppose the optimal control sequence ui+1 ,..., uL-1 is known that

produces co(x ,i). Note that co(x ,i) is not entirely determined
e i+1 (i+ 1

by i+l..., - since xi+ 1 is a function ui., i+ = x i + Bu.i , buti+1' - 1  +1 1+1=
co(xi+I ' i+l) is the lowest possible value that controlling from i+l to

L-1 can produce.

Starting at i = L

o T
c (x L , L) = xx

L -L L-L



Os always of the formc is always of the form

o T
c (x., i) = x.P.x.

1 -1 1--1

The optimal control, UL_-1 is found by substituting c (xL, L) into

Eq. (B-5), and searching over all possible controls to find the one that

minimizes c(xL-1 , L-l)

o T min T T
c (x , L-) = x P x = u [x Q x +u RuL-1 -L- L-1-L-l UL-1 -L- xx-L- +-L-1 uu-L-1

+ (x + Bu )TP (x + B L_ )  (B-6)

To minimize x _PLXL , differentiate with respect to uL ,

and set the result to zero

d T T
0 - d ( PL- xL- ) = 2Ru - + 2BP (T x + Bu L)

du 1 L-1L-1uu-+L- 2 L -L- -L-
L-1

Collecting terms of x and u
-L- 1 -L- 1

[BTP B + R ]u 1  = -BTP x
L uu -L-l L -L-l

If R is specified positive definite, and PL positive semi-

definite, uL 1 can be solved for

uL- = -[ LB + Auu- BT L xL-1 (B-7)

and P must now be solved for.
L-1



Define

T -T
F = [BP B +R ]I BP

L-1 L uu L

u = -F xL
-L-1 L-l-L-1

(B-8)

Substituting (B-8) into (B-6), dropping the L-1 subscript on x

and u

T T xTT T TL
xP x = xTQ x + xTF R Fx + x (~ - BF) P (4 - BF)x

-L-1-- xx- - uu- -L

All forms are quadradic in x, so for equality

P = Q + F T R F + (D - BF)T L(P - BF)
L-l xx uu L

which is Eq. (B-3) for i = L-1. The control uL-2 is solved with the

same approach, and the recursion for F. and P. propagated backwards
1 1

until i = 0.

This approach to the optimal controller was developed by Widnall

(1968), and differs from the original solution by Kalman and Kopke (1958)

in that u. is a vector, and P. is symmetric.
-i -- 1



APPENDIX C

SAD COMPENSATION

The array drive motor currently used on the satellite is a 96 pole

direct drive motor, which nominally rotates exactly once per orbit.

Two undesirable nonlinear effects, couloumb friction and cogging,

disallow the use of a linear model for control synthesis. The output

torque of the motor is modeled as

T = K T(Va - Kb ) + 0.18 sin (968)

Cogging Torque

- 1.25 6/6 in.-lb

Couloumb
Friction

= 0.138 in.-lb/V

= 1.03 V-s/rad

= solar array angle (rad)

= solar array rate (rad/s)

= motor voltage

As can be seen from the magnitudes of the cogging and friction

torques, for on-orbit array control these effects become the primary

disturbances the loop must counter.

where

(C-l)



It is desirable that the SAD motor act as a pure torque trans-

ducer. If this is the case, then the array rate will be described by

the following differential equation derived in Appendix A.

S 1 w 1
" - h- V + + T (C-2)

ITw IbTw c I I ca
bw bw \±a Ib

where

h = reaction wheel momentum

V = wheel command voltage
c

T = array command torque
ca

I = moment of inertia of arraya

I b  = moment of inertia of body

K , T = reaction wheel parameters
w w

Ogata (1970) points out that a useful approach to controlling non-

linear systems is model-following. If the array were to match the dynamics

predicted in Eq. (C-2), then the motor could be considered a pure torque

producer. Once integrated, Eq. (C-2) produces an array-rate time function

that can be generated by quantities known to the controller

t K
* [-1 w (1 1 T(t) = - h(t) w Vc(t) + -- + T (t) dt (C-3)r - IbT w  Tw a b ca

Since the controller issues commands only at discrete time points, the

actual reference signal will be a continuous series of ramp functions,

without any jump discontinuities.



The proposed local compensation for the SAD motor is diagrammed

in Figure C-l.

Td
DISTURBANCES

h T---' / +
S RATE r ERROR + + + +

V 3 MODEL G (s) 1 lb)
cq +

Figure C-1. SAD local compensation.

The compensator G (s) should satisfy several conflicting objectives.

Since the nominal on-orbit array rate is a relatively constant 0.06 O/s,

the cogging torque appears at a frequency of 0.1 rad/s. The array loop

should have high gain at this frequency to minimize the effects of cog-

ging torque. However, it is not desirable that the SAD compensator be

sensitive to orbit rate disturbances. One of the attractive features of

optimal control of the pitch loop is the use of the solar array to absorb

some cyclic momentum. A rigid local compensator would not allow the

array to wander and would pass all external disturbances to the reaction

wheel. Finally, the response time of the loop needs to be short compared

to the 0.5 s sampling rate in order not to invalidate the overall discrete

time model assumed for the combined pitch and array loops. Satisfying

the first and last objectives is done with a high gain, however the

second objective is best satisfied with a slight negative gain to null

out the rate damping term. A sophisticated frequency selective compensator

is not practical, so the second objective will be met as well as possible

with a low order compensator while not compromising the first and third

goals.



Ignoring the small viscous damping term, Kb, the open loop trans-

fer function is

1 1 1\
GOL(s) sGc (s) KTI -- I

GOL a bcL

(C-3)

and the transmission from disturbance torque to array angle is

(C-4)

1 1 1S + -
e(s) s a + b
T d(s) 1+ GL (s)d OL

Setting a limit of max = 0.010 on the response to cogging

torque, the necessary loop gain can be calculated and is found to be

47 dB. The principle external torque the array responds to is caused

by gravity gradient effects, and is nominally modeled by

-3 in.
T G(t) = [0.0912 + 1.21 sin (2w ot)] x 10 in.-lb (C-5)

where

WO = Orbit rate = 0.06 O/s

If the array is to be free to respond to gravity gradient torques,

the open-loop gain must be less than is necessary to suppress the cog-

ging response. Listed in the table below are the maximum open-loop

gains allowable for several array deviation limits.

Table C-1. Open-loop gain limits.

Array Response to IGOL(jW) I
Gravity Gradient

0.10 51 dB

10 31 dB

50 17 dB



Figure C-2 plots the uncompensated (G (s)= 1.0) open-loop
c

frequency response and illustrates the gain requirements discussed

for cogging and external torque response.

A double lead compensator will very nearly fit the open-loop

gain requirements, with a lower dc gain than would be required for gain

only compensation. The proposed compensator transfer function is

K s + 1)2

G (s) =
(72 s +

where

T = 500 s
1

T = 10 s
2

K = 56.2
c

Figure C-3 illustrates the compensated open-loop frequency

response. Loop stability is assured with an infinite gain margin

and a 900 phase margin.

Closed-loop transmission of disturbance torques to array angle

as shown in Figure C-4. At cogging frequency, the attenuation is -60 dB

which will result in a peak deflection of 0.0103 degrees. At twice

orbit rate, gravity gradient torque will cause a peak array deflection

of 0.78 degree, which still allows some momentum storage in the array.

Although step inputs will not be applied to the SAD loop, response

to such an input illustrates the speed of the loop, and is a useful

evaluation. In this particular case, the motor torque response to a

step commanded torque is exactly proportional to the rate response to

a step rate command. Torque is proportional to the derivative of rate

and a commanded rate is the integral of a commanded step torque, the

integration and differentiation cancel as is shown in Figure C-5.

100
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Figure C-2. Open-loop frequency response.
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Figure C-3. Compensated open-loop frequency response.
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Figure C-4. Disturbance torque transmission.



T a (s)-b MOTOR TORQUE

Figure C-5. Closed-loop torque response.

6(s) GOL (s)

5c(S) 1 + GOL(s)

T (s) K GOL (s) Sa sr OL s
T (s) s 1 + GOL (s) 1 1ca OL -1

a 'b

S Kr () (C-7)
--- + -- (S)

In closed loop, the rate to rate command transfer function is

6(s) 44.491(s + 0.002)2 (C-8)
Sc(s) (s + 0.00144)(s + 0.00277)(s + 44.69)

1

With a time response to step input of (s) - 1
c s

(t) = 1 - 0.1636e- 0 .0 0 1 4 4t + 0.1592e-0.00277t - 0.9956e - 44.6 9 t

(C-9)

A plot of 6(t) to a unit step input for one sample interval is

shown in Figure C-6.
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e(0.5) = 0.995

O(t)
0.5

0.1 0.2 0.3 0.4 0.5 t
(s)

Figure C-6. Rate-step response.

A short response time with respect to the 0.5 s sample time means

that the optimal controller will "see" the SAD motor as an almost perfect

torque transducer. A final evaluation is-to compare two pitch-loop

responses under optimal control. The first response, Figures C-7a, b,

plot the results of the ideal model. The second simulation incorporated

the SAD motor modeled by Eq. (C-l) with the proposed rate compensator

and the driving model of Eq. (C-2). Figures C-8 a and b show this re-

sponse, which differs only slightly from the ideal response. Note the

effect of coloumb friction as array rate goes through zero and that

the array is now driven to the nominal rate of 0.6 deg/sec.
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Figure C-7. Deterministic optimal control.
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Figure C-8. Optimal control with SAD nonlinearities and
compensation.
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