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Abstract

The design of discrete, highly distributed spatially averaging sensor systems for intel-
ligent structures is investigated. As a starting point, the functional requirements and
design parameters for such a sensor system are formulated. It is found that certain
spatially averaging strain sensors can be used to satisfy these requirements. The out-
put and transfer function characteristics of spatially averaging sensors with arbitrary
spatial weightings are derived for both sinusoidal and exponential strain fields. Desir-
able spatial weightings are then identified. The performance of nontruncated sensors,
and sensors that have a portion that falls beyond a boundary of the structure is de-
rived. A variety of numerical integration schemes are studied for use in the spatial
integration of discrete strain measurements made by a sensor array. Such spatial
integration is used to estimate the global shape of a structure. Numerical simula-

tions are performed using point, rectangular and Bartlett sensors on a clamped-free

beam under a number of generic static loading conditions. The errors encountered

in a physical implementation are modeled. An experiment was conducted to experi-

mentally correlate with the results of the numerical simulations. The dynamic mode
shapes of pinned-pinned and clamped-free beams are estimated using a variety of

sensor weightings. The rolloff of the observability to the mode shapes as the mode
number is increased is investigated. Using an array spatially averaging sensors, it is
possible to smoothly roll off the observability of the sensor array to the mode shapes of
a pinned-pinned beam. However, it is found that exponential curvature components
in the mode shapes of clamped-free beams make it extremely difficult to smoothly
roll off this observability.
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Notation

e(X) Longitudinal strain

f(X) Spatial weighting function of sensor

f(i)(X) i-th derivative of weighting function, dif/dx'

1 Total length of sensor

k Wave number

y(k) Sensor output

F(k) Spatial fourier transform of sensor weighting

T(k) Sensor transfer function

a Sensor transfer function rolloff wave number

k Ratio of wavenumber to rolloff wavenumber, k/a

Xo Distance between sensor center and strain field origin

n Number of sensors in sensor array

L Length of structure

6(x) Unit delta function

u(z) Unit step function

sgn(x) Sign function

go Standard deviation of tip slope or displacement estimation error due to

optimistic sensor uncertainty levels

a, Standard deviation of tip slope or displacement estimation error due to

realistic sensor uncertainty levels
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PVDF

Tranverse displacement of beam

Estimated tranverse displacement of beam

Tranverse displacement of beam

Slope of beam
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Global Static Shape Function integration scheme

Global Dynamic Shape Function integration scheme

Least Squares Global Static Shape Function integration

scheme using n shape functions

Least Squares Global Dynamic Shape Function integration

scheme using n shape functions

Mode number

Beam displacement at tip of structure, x = L

Error in tip displacement estimate

Sensor array observability

Polyvinylidene Flouride; a piezoelectric film

Zb Notation



Chapter 7

Introduction

1.1 Background and Objectives

Intelligent structures incorporate sets of highly distributed actuators, sensors and

processors [56]. Much work to date has centered on the development of technology for

distributed actuators. However, less work has been performed on distributed sensors,

and only a few pioneering efforts have dealt with distributed processors. All three

of these components must be present in a system in order to implement any closed-

loop shape control scheme. The need for additional work on sensors specifically for

intelligent structures has motivated this work.

The use of piezoelectric materials in intelligent structures has been studied by de

Luis [15] and Anderson [14]. De Luis et al. develop analytical models of piezoelectric

actuators for intelligent structures, and verify these models experimentally. Analytic

models are developed for static and dynamic actuation of segments of piezoelectric

material either embedded in the structure or bonded to its surface. These models

allow the response of the structure to actuation of the piezoelectrics to be predicted.

The models can therefore help in efficient or optimal actuator placement. It is shown

that the experimental response of a structure could be predicted reasonably well us-

ing the models developed. In addition, it is shown that although the stiffness of the
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structure is not strongly affected by the addition of embedded piezoelectric compo-

nents, the ultimate strength of the structure is reduced. Anderson et al. also develop

models for induced-strain actuation of beam-like structures. Two analytical models

and on finite element based model are presented which model extension, bending

and shearing deformations. In addition to this work on piezoelectric materials, elec-

trostrictive and magnetostrictive materials as well as shape memory alloys have been

investigated.

Work has been done on integrating electronic components in intelligent struc-

tures [58]. Warkentin et al. demonstrate that embedding processing and other elec-

tronic components in addition to sensors and actuators within an intelligent structure

simplifies physical implementation, and a technique for embedding silicon chips within

the plies of a graphite/epoxy composite laminated structure is described.

Control schemes suitable for implementation on structures containing distributed

actuators, sensors and processors have been developed by de Luis [40] and How [28].

De Luis et al. develop optimal controllers for intelligent structures by assuming that

the sensors and actuators are so numerous that is can be assumed they are spatially

continuous. Therefore, a functional analysis approach can be used to derive control

algorithms. An experimental implementation of a prototype of an intelligent structure

is presented, and optimal controllers are derived and implemented for this structure.

How et al., on the other hand present a new control architecture specially suited to

intelligent structures with many distributed sensors and actuators. This architecture

is a hierarchic one with many controllers operating at a local level, and a single global

one operating to control overall motions of the flexible structure.

In the area of sensors, work at MIT has been done on a variety of modal, convolving

and wave sensors [13, 42]. Collins et al. [13] have developed piezoelectric film sensors

for the control of a two-link planar flexible robotic manipulator system. The spatial

shape of the sensors is selected such that their output is proportional to a mode

28 Chapter 1. Introduction



1.1. Background and Objectives

of the structure. These sensors make it possible to directly measure the dynamic

states of a flexible structure. Ordinarily, such states must be measured using an

estimator and some inherently inaccurate analytical model of the structure. Miller

et al. [42] investigate sensors which output a single temporal signal by convolving

measurements of structural variables distributed over a finite length of a structure.

The shape of the sensor determines how this convolution procedure takes place. This

shape can be optimized to ensure that the sensors is specially suited for use in the

control of flexible structures, because it can be designed such that the sensor output

rolls off without exhibiting phase lag relative to a point sensor at its center. This

would allow gain stabilization without the accompanying reduction of available gain

margin. Analytical examples and experimental counterparts are presented.

Lee et al. have also worked on modal sensors as well as actuators. Lee and

Moon [38] develop a theory for piezoelectric laminates for sensing and actuation,

in order to develop modal sensors and actuators. Such sensors, designed for one-

dimensional operation are modeled analytically and compared to experimental im-

plementations. If such sensors are manufactured accurately, actuator or observer

spillover will not exist and the modal coordinates of a structure can be measured or

actuated directly. Lee, Chiang and O'Sullivan [39] construct modal sensors and actu-

ators to critically damn a cantilever plate using PVF2 piezoelectric film. Plate theory

is extended to include piezoelectric actuators and sensors. The sensor geometry is

designed such that the sensor signal is proportional to the derivative in time of the

modal coordinate of the structure. This allows a derivative feedback controller to be

implemented. It is shown that critical damping can be achieved using this controller.

The principal advantage of shape sensors is that, relative to a point sensor at

their center, they allow a roll off in amplitude of measurement output without a

change in phase. The rolloff of such sensors is not limited by Bode's Gain-Phase

Theorem [9], because they are not making causal measurements. Bode's integral

29
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defines a relationship between the magnitude and phase of a dynamic system. The

integral holds only for causal dynamics and requires that any magnitude rolloff must

be accompanied by some phase lag. Point sensors are limited by Bode's theorem

because they are causal and only measure present information. However, any sensor

measuring strain over a finite length has access to incoming waves (future information)

and outgoing waves (past information) at the same instant. Thus it has information

which is noncausal with respect to its midpoint: it can sense future events. This

enables it to exhibit magnitude rolloff with no associated phase lag.

One of the shortcomings of the work done to date on modal sensors is the fact

that, to work well, the sensors must be able to sense deformations from all or large

parts of the structure. This means that the sensor must cover a large fraction of the

structure. It therefore becomes problematic to implement several modal sensors on

the same structure. Another problem is that modal sensors are typically implemented

in hardware. This means that the output properties of the sensors as a function of

frequency are constant. Therefore, should the shape or mass of the structure change,

the mode shapes will change, and the modal sensors will not operate correctly. A

third problem with the sensors currently being investigated is it is problematic to

extrapolate their design to more complex structures, such as truss-structures or two-

dimensional plate-like structures.

The purpose of this work is to develop techniques for the design of discrete dis-

tributed sensor systems to accurately estimate the quasistatic and dynamic states of

an intelligent structure for the purposes of closed-loop control or identification.

The remainder of this introductory chapter will propose the functional require-

ments for such sensors, discuss their design parameters, and then preview the contents

of the report.



1.2. Functional Requirements 31

1.2 Functional Requirements

The development of a distributed sensor system for estimating the global shape

of a structure is a design process. Therefore, it is appropriate to formally formulate

the functional requirements of the sensor system. The functional requirements for

distributed sensor systems can be characterized as: those which involve the properties

of individual sensors; those which involve the properties of the system of discrete

distributed sensors as a whole; and those which relate to practical implementation.

The requirements are numbered for ease of reference in the remainder of the document.

The first functional requirements involve the individual sensors.

1. Individual sensors should be able to accurately observe and precisely resolve

modes which are targeted for control.

2. The observability of the dynamic modes should roll off quickly in frequency

beyond the desired bandwidth.

3. The transfer function from the strain at the center of the sensor to the sensor

output, as a function of spatial frequency, should not contain negative regions.

The first functional requirement is required because the sensor system is being

done in order to implement closed loop control on an intelligent structure. The second

requirement is necessary in order to minimize the effect of mismodeled or unmodeled

higher order dynamics and to reduce the effects of aliasing. Aliasing will occur when

the wavelength of the mode shape is less than or equal to the length between two

successive sensors. The third functional requirement is necessary in order to avoid

possible instabilities in a control scheme using these sensor measurements.

The next three functional requirements are for the sensor system as a whole,

including the processing of the sensor output to estimate overall shape.
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4. The sensor system as a whole should resolve the shape of the structure accu-

rately and in detail.

5. Global shape estimates of the structure should roll off quickly with spatial

frequency to avoid aliasing involving static modes of high spatial frequency.

6. The roll off toward zero of the sensor system observability to static modes of

increasing spatial frequency should be monotonic and should not contain any

negatives.

Functional requirement #6 stems from the fact that the static shape typically

contributes significantly to the performance metric in any structural control scheme.

This is because the truncated series of modes used to represent the dynamics of the

structure cannot be superposed to produce an accurate representation of the static

structural shape in order to assure good performance. Numerical spatial integration

will be performed in order to estimate the global shape from the individual sensor

measurements. The next functional requirement means that the observability of the

sensor system to static modes of relatively high spatial frequency must decrease.

Aliasing will occur when the wavelength of the static mode is less than or equal to

the length between two successive sensors. The sixth functional requirement stems

from the fact that negatives appreaing in the roll off of the sensor system observability

would be capable of instigating unstable interactions in a control scheme using these

sensor measurements. Such negatives can be introduced by sensor aliasing.

There are functional requirements concerning the physical implementation of a

distributed sensor system.

7. The sensors must be of finite length to be implementable on any practical struc-

ture.

8. Sensors with partially negative or highly complex weightings should be avoided.
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9. Sensors near structure boundaries must be truncated in such a way as to not

degrade performance.

The seventh functional requirement is evident: the required length of the sensor

cannot exceed the physical length of the structure. Functional requirement #8 ad-

dresses ease of sensor implementation. Ease of implementation is of great concern in

order to assure accuracy and the performance predicted analytically. Thus sensors

whose weighting is everywhere non-negative are desirable, because fabrication of such

sensors is significantly easier than sensors that require regions of negative weighting.

In addition, sensors of other complex shapes must be fabricated very accurately to

ensure that they exhibit the properties predicted analytically. The last functional re-

quirement requirements that sensors that would ordinarily extend beyond a boundary

of the structure must be truncated in some fashion, so that they can be implemented

in a practical setting.

The development of a distributed sensor system that meets, to the extent possible,

the functional requirements is outlined in the objective of this work.

1.3 Design Parameters

The design parameters are: (1) the spatial and temporal derivative sensed; (2)

the sensor weighting; (3) the sensor length; (4) the boundary sensor design; (5) the

integration method; (6) the number of sensors. The investigation of these design

parameters to meet the functional requirements forms the outlint of this report.

The first design parameter that must be considered deals with the spatial variable

of the structure which will be measured by the'sensors. The possible spatial deriva-

tives of a structure that could be sensed are absolute displacement, slope or relative

displcement, or a continuous variable such as strain. The displacement is difficult to

measure without time integration of an inertial acceleration or without a reference
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to a relative frame. The easiest spatial derivative to measure, however, is strain,

since it is continuous, and easily amenable to weighted measurements. True static

shape estimation is best performed using sensors which measure some spatial deriva-

tive of displacement such as strain, rather than temporal derivatives of displacement

such as velocity or acceleration. By using spatially filtering sensors with appropriate

weightings, the observability of such sensors will roll off as the spatial frequency of

the spatial derivative being measured increases. Sensors that spatially average strain

are more easily implemented than ones that average displacement. Thus the sen-

sor system will be composed of spatially averaging strain sensors whose output will

be spatially integrated using a numerical integration scheme in order to obtain the

quasistatic and dynamic states of the structure.

The spatial weighting of the sensor determines the transfer function of the sensor

and how its output will be affected by the spatial frequency of the longitudinal strain

field that acts on it. Chapter 2 deals with the performance and design of individual

spatially filtering strain sensors. The design of the weighting function used for the

sensors is described. These weightings are analyzed and the effect of the sensor shape

on the transfer function and output is derived in detail, for both sinusoidally and

exponentially varying strain fields. The effect of moving the sensors along the length

of the structure on the sensor output and transfer functions is addressed.

All spatially filtering sensors of finite length roll off beyond some spatial frequency

with at least -20 dB/decade. The point at which this rolloff begins is defined as the

point where the transfer function (the output of the sensor relative to the output of a

point sensor at its center) has dropped to 1/4V (-3 dB), and is largely controlled by

the effective length of the sensor. As the sensor is lengthened the spatial frequency

at which rolloff begins decreases. This is because more wavelengths of a strain field

at a fixed spatial frequency can be fitted within the length of a longer sensor, and the

spatial frequency of the strain field becomes considerably higher than the weighting
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of the sensor. The effect of sensor length on the sensor transfer function is discussed

in Chapter 2.

Since the length of the sensors employed is finite, it will be impossible to avoid

having a sensor which would normally extend beyond a boundary of the structure.

The design of such sensors and the method by which the weighting is truncated is very

important as it has a significant effect on the performance of the sensors. Attention is

given in Chapter 2 to the properties of sensors whose weighting partially falls beyond

the boundary of the structure. These properties are derived and analyzed. Two

methods of truncation for sensors near a structure boundary are presented.

Once the design of the sensors has been established, it is necessary to decide what

scheme should be used to estimate the global slope and deflection of the structure

using the outputs of the sensor array. The array of strain sensors will yield curvature

measurements along the length of the structure, in the case of bending. These cur-

vatures can be numerically integrated twice to estimate the global deflections of the

structure. Chapter 3 introduces a selected set of integration schemes which are derived

in Appendix C. The integration schemes include the simple midpoint, trapezoidal and

Simpson rules, and two rules based on cubic interpolating splines and second order

B-splines. In addition, two optimal quadrature rules, the Gauss and Radau methods,

and a conventional interpolation scheme using Chebyshev polynomials are included.

One-dimensional structures, such as beams, are chosen as an example for imple-

mentation. The static shape and dynamic modes of such a structure are sensed by a

sensor array mounted on the surface, along the length of a beam-like structure. The

numerical integration schemes described in Chapter 3 are used to obtain global shape

estimates by numerically integrating the measurements made by the sensor array.

The performance of the integration schemes for quasistatic loadings and a varying

number of sensors in the array is investigated in Chapter 4. Uncertainties in the

gage factor and sensor position are included in an effort to model the errors typically



36 Chapter 1. Introduction

encountered in a practical implementation. It then becomes possible to determine

when is it more beneficial to improve the accuracy of the individual sensors or increase

the number of sensors in order to achieve the best shape estimation possible.

In Chapter 5, the dynamic modes of both pinned-pinned and clamped-free beams

are used to assess the rolloff behavior of the spatial integral of the sensor outputs.

Pinned-pinned and clamped-free beams with an array of nine evenly distributed sen-

sors are simulated. As the mode number is increased, global shape estimation is

performed, and the tip deflection is found. The observability of the sensor system to

the mode shape is computed to determine how this observability rolls off as the mode

number is increased.

The number of sensors distributed along the structure, in conjunction with the in-

tegration rules, is critically important in achieving the estimation accuracy required.

The convergence properties of the integration rules should guarantee that as the num-

ber of sensors is increased, the integrated result should achieve higher accuracy pro-

vided the individual sensor measurements are free from error. In order to determine

the number of sensors which are required to obtain accurate global shape estimates,

the integration rules introduced in Chapter 3 are used to perform simulated static

shape estimation of a cantilevered beam and a cantilevered beam with its midspan

constrained, both with applied tip displacements. The description of the simulations

and the results are presented in Chapter 4.



Chapter 2

Shaped Sensors

In this chapter the output and transfer functions for spatially averaging strain sensors

are derived for strain fields that are spatially sinusoidal and those that are spatially

exponential. Expressions are obtained for both nontruncated sensors and sensors

partially truncated at the boundaries of a structure.

To begin, basic principles of spatially averaging sensors are introduced. Then, a

set of relatively simple sensor weightings are introduced and defined. General ex-

pressions for the output and transfer function of a nontruncated sensor in a spatially

sinusoidal strain field are obtained as a function of the parameters that define the

spatial weighting of the sensor. Specific results for the chosen weightings are then ob-

tained. Finally, expressions for the output and transfer function of truncated sensors

in a sinusoidal strain field are derived, as well as expressions for the output and trans-

fer functions of both nontruncated and truncated sensors in a spatially exponential

strain field.

2.1 Introduction

Spatially averaging sensors can be used in a number of different applications to

measure a variety of signals. In fact, such sensors need not be limited to measuring
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spatial variables in structures. For example, applications in acoustics and optics can

be envisioned. For the purposes of this work, however, it is assumed that the sensors

report measurements of spatially averaged extensional strain signals.

The most important characteristic in the design of spatially averaging strain sen-

sors is their spatial weighting. This weighting determines the way in which the mag-

nitude and phase of the sensor output relative to the strain at the center of the sensor

are affected by the spatial variation of the strain field. Let f(x) define the spatial

weighting of the sensor. Let this weighting be nonzero over a finite region [-1/2, 1/2]

of the structure. The sensor output is then a filtered measurement of the strain of

the form
1/2

Y 1 f(z) E(x) dz (2.1)
-1/2

where e(Z) is the longitudinal strain along the structure and l is the length of the

sensor. The weighting function f(z) is implemented by varying the spatial sensitivity

of the sensor. Depending on the device used as the sensor, this might be done by:

* varying the width of the sensor;

* varying the thickness of the sensor;

* segmenting the sensor and implementing a weighted sum of the measurements
of different sensor segments in the signal processing system;

* varying the distance of the sensor from the elastic axis of a beam in bending.

Note that the weighting function f(z) should be scaled such that

J1/2
f(x) dx = 1 (2.2)

-1/2

to assure that strain signals of zero spatial frequency, or infinite spatial wavelength,

are measured accurately. This is required in order to satisfy the first functional

requirement presented in Chapter 1.



As an example of a physical implementation, take a case where the sensor is made

of a piece of thin Polyvinylidene Flouride (PVDF) piezoelectric film bonded to the

surface of a beam [13]. The weighting function f(x) is implemented by varying the

width of the electrode on the film. The output of the PVDF sensor is a charge

proportional to a filtered measurement of the surface strain. The magnitude of this

charge depends on the area of the electrode. Therefore, the gain of the sensor can be

varied spatially by spatially varying the electrode area. The charge generated by the

sensor is given by

S1/2(t) = dE, f() e(x, t) dx (2.3)

where Ep is Young's modulus for the piezoelectric film, f(x) is the width of the sensor

electrode, e(x, t) is the surface longitudinal strain, and d3 1 is the piezoelectric constant

with units of charge per unit area per unit stress. This constant relates mechanical

stress to electric displacement.

2.2 Filter Theory

In this section, traditional filter theory is used as a starting point in the design

of spatially averaging strain sensors. Classical filter theory has traditionally focused

on the processing of sinusoidal or periodic signals in the time domain. This work

has led to the design of filters that exhibit a variety of magnitude rolloff and ripple

characteristics in the temporal frequency domain. By a transformation from the tem-

poral frequency domain to the spatial frequency domain (the wave number domain),

results from classical filter theory can be applied in the design of sensors that provide

spatially filtered measurements of strain fields.

Filter theory considers signals in the Fourier domain. Fourier transforms of tem-

poral signals defined in terms of temporal frequency, w, are defined classically [50] as:

'(w) = L f(t) e- jw t dt (2.4)

2.2. Filter Theory 39
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Fourier transforms in terms of spatial frequency, a, can be developed in asimilar
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drops out. This means that () can exhibit magnitude rolloff without incurring
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phase lag. However, F(k) can still be negative, indicating a 1800 phase shift. The

third functional requirement presented in Chapter 1 states that the individual sensors

must have transfer functions that are nonnegative for all values of k in order to

avoid possible instabilities in a control scheme which uses spatially averaging sensors.

In Section 2.4.1 it will be seen that such phase uncertainties do exist for certain

weightings, and must be avoided.

2.3 Sensor Weightings

As a starting point for investigating possible spatial weightings of sensors, some

simple ones which are used in temporal windowing of temporal signals were selected.

Such window shapes include rectangular, Bartlett (or triangular) and Hanning win-

dows. In addition, Sinc and Gaussian sensor weightings were also selected because

they possess interesting frequency characteristics. Using these simple shapes, more

complicated ones were created by multiplying the weightings of two or more simple

weightings together. Examples of these include a Sinc weighting multiplied by another

Sinc weighting, a Bartlett weighting multiplied by another Bartlett weighting, a Han-

ning weighting multiplied by another Hanning weighting, and a Gaussian multiplied

by a Hanning weighting. A number of such complex weightings were investigated in

order to get a sense of the spatial properties a weighting must possess so that its

transfer function will have certain desired properties.

In the following sections, the selected sensor weightings are defined. The param-

eter a is used to select the effective length of the sensor. It will be seen later that

this parameter is scaled such that the magnitude response to a sinusoidal field drops

to 1/V2 (-3 dB) exactly, or in the vicinity of k = a. In the following three sections

the spatial definitions of nine selected sensors will be presented. In Section 2.3.1 the

definitions of three spatially finite windows are shown. In Section 2.3.2 the definitions

of three spatially infinite weightings are given. Finally, Section 2.3.3 contains defini-
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-L/2 0 ./2

Figure 2.2: The spatial weighting of the rectangular, or box car weighting.

tions of three compound weightings that were obtained by multiplying two weightings

together.

2.3.1 Finite Spatial Sensor Weightings

Rectangular Weighting

The rectangular, or box car weighting is shown in Figure 2.2, and is defined as

f(X) a<
a!

< (2.6)

Note that the magnitude of f( ) has been chosen such that fJ_/ f(x) dx =1.

The length I and maximum amplitude A of the rectangular weighting are given by

2Vf
(2.7)

........ --------

Chapter 2. Shaned Sensors
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-L/2 0 L/2

Figure 2.3: The spatial weighting of the Bartlett, or triangular weighting.

(2.8)

Bartlett Weighting

The Bartlett, triangular, or Parzen weighting is shown in Figure 2.3, and is defined

2
a

2
<-

a
(2.9)

The length and maximum amplitude of the Bartlett weighting are

A -a
2

(2.10)

(2.11)

A = 2v
2 F

(f(z) = - 1
a-
2
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Figure 2.4: The spatial weighting of the Hanning weighting.

Hanning Weighting

The Hanning weighting is defined by

+ cos (Vax))o v2a -f(x)- a

and is shown in Figure 2.4.

weighting are given by

The length and maximum amplitude of the Hanning

I
V2 7r
Vcr (2.13)

(2.14)

Chaper . Sape Sesor

(2.12)

Chapter 2. Shaped Sensors
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Figure 2.5: The spatial weighting of the Sinc weighting.

2.3.2 Infinite Spatial Sensor Weightings

Sinc Weighting

The Sinc weighting is defined by

f(X) = a sinax)

and is shown in Figure 2.5.

-oo < x < +oo (2.15)

The Sinc weighting extends over the infinite domain

[-oo, +oo], and its maximum amplitude A is given by

a
A =- (2.16)
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00

Figure 2.6: The spatial weighting of the Sinc-Sinc weighting.

Sinc-Sinc Weighting

The Sinc-Sinc weighting is produced by multiplying two Sinc functions together.

The result is shown in Figure 2.6, and is defined by

sin 2a)

V-+1[ 2 Ci X
-oo < X < +oo

As with the Sinc weighting, the Sinc-Sinc weighting extends over [-oo, +oo]. Its

amplitude A is given by

(2.18)+1 a
A

V'2- 7

V + 1
f() = I (2.17)

Chapter 2. Shaped Sensors
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Figure 2.7: The spatial weighting of the Gauss weighting.

Gauss Weighting

The Gauss weighting is defined by

f(X) = 22 In 2 -00 < X < +00oo (2.19)

Figure 2.7 shows the shape of the Gauss weighting. As with the Sinc weighting,

the Gauss weighting extends over the infinite domain [-oo, +oo]. The maximum

amplitude A, of the Gauss weighting, is given by

A- 
V J1P~;1

(2.20)
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-L/2 0 L/2

Figure 2.8: The spatial weighting of the Bartlett-Bartlett weighting.

2.3.3 Compound Spatial Sensor Weightings

Bartlett-Bartlett Weighting

The Bartlett-Bartlett weighting is produced by multiplying two Bartlett weight-

ings together. The resultant weighting is shown in Figure 2.8. It is defined by

3f((X) = 1
27r

7- < <
W n' a a

(2.21)

The length and maximum value of the Bartlett-Bartlett weighting are

3a

A =

(2.22)

(2.23)

Chapter 2. Shaped Sensors
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A.............. ..............................................

0
-L/2 0 L/2

Figure 2.9: The spatial weighting of the Hanning-Hanning weighting.

Hanning-Hanning Weighting

The Hanning-Hanning weighting is constructed by multiplying two Hanning weight-

ings together. The result is a weighting that tapers to zero more smoothly than a

pure Hanning weighting. The weighting is defined by

f(X) = - (1 + cos a), -- < X < (2.24)
37 a a

The Hanning-Hanning weighting is shown in Figure 2.9. The length and maximum

amplitude of the Hanning-Hanning weighting are given by

2r
1 = - (2.25)

A = (2.26)
67r



Shaped Sensors

-L/2 0 L/2

Figure 2.10: The spatial weighting of the Gauss-Hanning weighting.

Gauss-Hanning Weighting

The Gauss-Hanning weighting is produced by truncating a Gaussian weighting by

multiplying it by a Hanning weighting. The Gauss-Hanning weighting is defined by

f(x) = M(a) exp (
(ax)2 1 + cos (vax)1]
21n21 I

7 < < 7r

72=a -/ <Va

and is shown in Figure 2.10 The amplitude parameter M(a) is found by requiring

that Jf/2 f(x) dx = 1. M(a) is given by

7r + jI 21n2
2 1n2

- erf -7r + j 2 In 2
21n2 2

+ 4 erf

(2.28)

0.68985
Mie) i 2a  0.33056 a(

72=7rTl-n2

(2.27)

M(a)
4a

= 2-in2
erf (

Chapter 2.

(2.29)M(a)
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Table 2.1: Spatial properties of selected strain-averaging sensors.

where j = V--_, and erf(z) is the error function given by

2
erf(z)- e -t dt

0
(2.30)

The length and maximum amplitude of the Gauss-Hanning weighting are given

M(a)

(2.31)

(2.32)

2.3.4 Summary of Spatial Sensor Weightings

Table 2.1 summarizes some of the spatial properties of the set of weightings pre-

sented in Sections 2.3.1, 2.3.2 and 2.3.3. The third column shows which of the sensor
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weighting functions contain some negative regions. Clearly, of the weightings selected,

only the Sinc sensor contains regions of negative sensitivity. The fourth column of

the table specifies whether or not the weighting is spatially finite. It is interesting to

note that the Sinc, Gauss and Sinc-Sinc weightings, which will be shown to offer the

best performance, are not spatially finite. The last column of Table 2.1 shows the

total length of the sensor.

The results in Table 2.1 can now be compared to the functional requirements

presented in Chapter 1. The third column of Table 2.1 shows that only the Sinc

weighting must contain negative regions. Functional Requirement #8 stated that

such negative regions should be avoided as they complicate the fabrication process.

Functional Requirement #7 requires that the weighting be finite in x so as to

be implementable in a physical system. Thus, all the spatially infinite weightings

(Sinc, Sinc-Sinc and Gauss) cannot be used without some sort of spatial truncation.

Functional Requirement #9 states that such truncation should be done in such a way

so as not to degrade sensor performance. One such truncation method is implemented

with the compound Gauss-Hanning weighting, where the infinite Gauss weighting is

smoothly truncated using a finite Hanning weighting.

In the following two sections, output and transfer functions for spatially averaging

strain sensors are derived for both sinusoidally and exponentially varying strain fields.

2.4 Transfer Functions for Sinusoidal Strain

At this point, the properties of the weightings of sensors measuring spatially si-

nusoidal strain signals are investigated. The placement of sensors relative to the

point of symmetry in the strain field is important. This point of symmetry or anti-

symmetry is defined as the point about which a sinusoidal strain signal remains an

odd function and a cosinusoidal strain signal remains an even function, no matter
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how the spatial frequency is changed. For example, for the strain fields sin(kx) and

cos(kx), the point of antisymmetry and symmetry, respectively, is simply x = 0. This

point has the additional property that the strain remains independent of the spatial

frequency k.

First, in Section 2.4.1, the properties of a sensor whose center is positioned at

the point of symmetry of the strain field are investigated. Then, in Section. 2.4.2,

the sensor is moved and the properties of a sensor placed with its center at a known

distance x0 from the point of symmetry are derived. Further, some sensors will

inevitably be placed close enough to a boundary of the structure that a portion of their

weighting falls beyond it. In this case the weighting is truncated at the boundary. The

properties of a truncated sensor are therefore investigated in Section 2.4.3. Finally,

in Section 2.4.4, in an effort to satisfy Functional Requirement #9, an alternative

truncation scheme (folded truncation) is introduced and its properties are analyzed.

2.4.1 Centered Sensors

Since a spatially averaging sensor acts as a spatial filter, it is important to in-

vestigate the properties of its output and transfer function. The transfer function is

defined as the ratio of the filtered strain measurement the sensor reports, to the strain

at the center of the sensor. For a spatially constant strain field, the transfer function

should therefore be unity as required by Functional Requirement #1. In the following

discussion it is assumed that the center of the sensor lies at the point of symmetry in

the strain field. Assuming that the weighting function f(z) is non-zero only over the

closed interval [-1/2, 1/2], its output as a function of the spatial frequency k of the

strain field is given by

y(k) = f f() e(k, x) dx (2.33)

where e(k, x) is the extensional strain along the structure as a function of the spatial

variable x and the wave number k. Since e(k, 0) is the strain at the center of the
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sensor, the transfer function of the sensor can be found from

1/2

= 1/2 f(z) E(k, 2) dz
y(k) -_/2

E(k, 00)e(k, 0)

For the case of cosinusoidal strain, where E(k, x) = cos(kx), this expression sim-

plifies to

y(k)= (k) = (f(x) cos(kx) dz (2.35)

since cos(0) = 1.

The strain field has been assumed to be of the form cos(kx) and not sin(kx)

to avoid a zero strain condition at the center of the sensor. It will be shown in

Section 2.4.3 that when the sensor weighting f(x) is symmetric (that is, when f(z) =

f(-x)), the transfer function is the same for both sinusoidal and cosinusoidal strain

fields. This means simply that their sine and cosine transforms are identical.

It is now shown that when f(z) is symmetric, the transfer function (2.35) is also

the spatial Fourier transform of the weighting function f(z). The spatial Fourier

transform of the spatial weighting f(x) is defined as

'(k)= f(x) e-jk" dx (2.36)

Since f(z) is nonzero only over [-1/2, 1/2], we have

(k) /2 f(x) e-jk" dx (2.37)
f-1/2

Expanding the complex exponential e-ike yields

1/2 r 1/2
T(k)= 1f(x) cos(k) dx -j / f(X) sin(kx) dz (2.38)

-1/2 J -1/2
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Since f(x) has been assumed to be symmetric, it is an even function. The product

f(x) sin(kz) is therefore odd, since sin(kx) is odd. The second integral in (2.38) is

therefore zero. Equation (2.38) then equals (2.35):

1/2
F(k) = /2 f () cos(kx) dx = T(k) = y(k) (2.39)

By repeatedly integrating Equation (2.39) by parts, an infinite series solution

for the output of a sensor mounted in the interior of the structure, away from its

boundaries, centered at the point of symmetry in a cosinusoidal strain field can be

written as

y(k) = T(k) = k2i+ [f(2i)(l/2) + f(2i)(-1/2)] sin(kl/2)
i=0

+ k2i+ 2 [f(2i+1)(1/2) - f(2i+)(-1/2)] cos(kl/2) (2.40)

where f(i)(x) represents the i-th derivative of the weighting function f(x) with re-

spect to the spatial variable x, d f(x)/dzx. The derivation of (2.40) is presented in

Section A.1 of Appendix A. In the derivation, it is assumed that f(x) has a continuous

derivative and is integrable over the interval [-1/2, 1/2].

Typically, the weighting function f(x) is symmetric. In this case, we have

f( 2i)(X) = f(2i)(X) (i= 0,1,...,00o) (2.41)

f( 2 i+l)(X) = -f(2i+1)(-x) (i = 0, 1,..., oo) (2.42)

and (2.40) simplifies to

(- 2(1)) 2(-1i)y(k) = T(k) = 1 k2i+ f( 2i)(1/2) sin(kl/2) + k2i2 f (2i)(1/2) cos(kl/2)
i=2.43)

(2.43)



Table 2.2: Summary of rolloff properties of the sensor transfer function T(k) for f(z)
with a continuous derivative.

f(i)( l/2) Rolloff Comments

f(il/2) $ 0 1/k -20 dB/decade Weighting function nonzero at either end.

f(+l/2) = 0 1/k2  -40 dB/decade Weighting function zero at both ends.

f(+l/2) = 0 1/k3  -60 dB/decade Weighting function and slope zero at

f'(il/2) = 0 both ends.

f(+l/2) = 0 1/k4  -80 dB/decade Weighting function, slope and curvature

f'(Il/2) = 0 zero at both ends.

f"(±l/2) = 0

This result shows that the transfer function for a weighting function with deriva-

tive continuity depends only on the value of the weighting function and its derivatives

at the two ends of the sensor, modulated by a sine or cosine function. As higher deriva-

tives are considered, the contributions of the weighting function and its derivatives

decreases faster as a function of k. Further, as the weighting function f(x) is tapered

more smoothly towards zero at the ends, f(i)(±l/2) = 0 for higher and higher values

of i, and rolloff rate increases. Table 2.2 summarizes this behavior, which is critical

to satisfying Functional Requirement #2. When the weighting is nonzero at either

or both ends, as for the rectangular weighting, only 1/k rolloff is possible. When

the weighting goes to zero at both ends, as for the Bartlett weighting, 1/k 2 rolloff

is possible. When the weighting and its slope got to zero at both ends, as for the

Hanning weighting, 1/k3 rolloff is possible. The rolloff increases as more and more

derivatives of the weighting are made zero at the ends.

Since the weighting function f(x) must have a continuous derivative for (2.40) and

Table 2.2 to be valid, the Bartlett (triangular) and Bartlett-Bartlett weightings must

be considered differently. For a weighting function with a derivative discontinuity at

56 Chapter 2. Shaped Sensors
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x = 0, for example, the integral (2.35) must be written

y(k) = T(k) = f(x) cos(kx) dx + f(x) cos(kx) dx
S1/2 Jo+

Equation (2.40) is modified, and the result is

S00

y(k) = T(k) = E
i=0

k2i+1 [(2i)(-1/2) + f(2i)(1/2)] sin(kl/2)

+ k2i+2 f(2il)(0- ) _ f(2i+l)(0+)

+ I- f(2i1)(-1/2) + f'(2i'+)(/2) cos(kl/2)

(2.44)

(2.45)

where x = 0- is a point just before the discontinuity, and x = 0+

after the discontinuity. The derivation of this expression is shown in

Appendix A.

Assuming that f(x) is

simplifies to

y(k) = T(k) =
i=O

is a point just

Section A.1 of

symmetric, and Equations (2.41) and (2.42) apply, (2.45)

S2(-)' [f(2i)(1/2) sin(kl/2) (.

lk2i+2 [ f(2i+l)(0+) + f(2i+l)(1/2) cos(kl/2)] (2.46)

This result shows the appearance of an extra term proportional to the value of the

odd derivatives of f(x) at the point of derivative discontinuity. Table 2.3 summarizes

the rolloff behavior of sensors with weightings containing a derivative discontinuity.

Again, 1/k rolloff is assured for any weighting function f(x). To obtain 1/k 2 rolloff,

we must have f(±l/2) = 0, as for a weighting with no derivative discontinuity. How-

ever, to achieve 1/k3 rolloff, we need not only f(±l/2) = 0 and f'(±l/2) = 0, but also

f'(0+ ) = 0. That is, the slope of f(z) at the point of higher derivative discontinuity
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Table 2.3: Summary of rolloff properties of the sensor transfer function T(k) for f(x)
with a derivative discontinuity.

f( )(1l/2) Rolloff Comments

f(±l/2) $ 0 1/k -20 dB/decade Weighting function nonzero at either end.

f(±l/2) = 0 1/k2  -40 dB/decade Weighting function zero both ends.

f'(±l/2) = 0 1/k 3  -60 dB/decade Weighting function zero at both ends and

f'(0 ± ) = 0 slope zero at discontinuity and both ends.

f(+l/2) = 0 1/k4  -80 dB/decade Weighting function and curvature zero

f'(0 + ) = 0 at both ends and slope zero at

f"(±l/2) = 0 discontinuity and both ends.

must be zero. Since this requirement can only be satisfied when f(x) has no first

derivative (slope) discontinuity, it is clear that no more than 1/k 2 rolloff is obtain-

able for such weightings. In general, for weightings with a discontinuity in the i-th

derivative, only 1/ki+l rolloff is possible.

At this point the properties of transfer functions of the weightings in a spatially

cosinusoidal strain field can be investigated in more detail. Table 2.4 shows the

predicted rolloff rates of the selected weighting functions introduced earlier. The

rectangular weighting has f(±l/2) $ 0, and should therefore have 1/k rolloff by

Table 2.2. The Bartlett window has f(±l/2) = 0 but also a slope discontinuity

at x = 0, and should therefore have 1/k2 rolloff by Table 2.3. The Hanning window

tapers smoothly to zero and has f'(Fl/2) = 0. This means it should have 1/k 3 rolloff.

All the derivatives of the infinite windows approach zero at foo, which suggests that

their rolloff rate should be 1/k" far above the rolloff frequency. For the compound

weightings, the Bartlett-Bartlett weighting has a slope discontinuity at x = 0, and

should therefore have 1/ k2 rolloff. For the Hanning-Hanning weighting, all derivatives

up to and including the third are zero. This suggests a rolloff rate of 1/k 5 . The Gauss-

Hanning weighting simply tapers to zero as a Hanning weighting, and should therefore
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Table 2.4: Predicted frequency properties of selected strain-averaging sensors.

Sensor Sensor Predicted
type Weighting rolloff

Rectangle 1/k -20 dB/Decade

Finite Bartlett 1/k 2  -40 dB/Decade

Hanning 1/k3  -60 dB/Decade

Sinc 1/k -oo dB/Decade

Infinite Sinc-Sinc 1/k" -oo dB/Decade

Gauss 1/k" -oo dB/Decade

Bartlett-Bartlett 1/k 2  -40 dB/Decade

Compound Hanning-Hanning 1/k 5  -100 dB/Decade

Gauss-Hanning 1/k3  -60 dB/Decade

have the same rolloff rate, 1/k3 .

Analytic expressions for the transfer functions of the weightings presented in Ta-

ble 2.4 will now be derived and discussed in more detail.

Finite Spatial Sensor Weightings

Rectangular Weighting: The simplest weighting function is the rectangular weight-

ing. It simply averages a signal evenly over a certain domain. The transfer function

for the rectangular sensor is a Sinc function [50]. The transfer function is easily de-

rived from (2.40). From a mathematical viewpoint, the weighting function f(x) is

nonzero at the endpoints (X = +1/2), but all the higher derivatives of the rectangular

weighting are zero at the ends of the sensor. Thus only a single term remains from
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the infinite series in (2.40):

F(k) = 1 [f(-1/2) + f(1/2)] sin - (2.47)
k: 2

For the rectangular weighting, f(-11/2) = f(1/2) = a/(2v ) and 1/2 = V2/a as

shown in Equations (2.7) and (2.8). The transfer function then becomes

T(k) = + sin (2.48)

T(k) - sin (2.49)

Using k = k/a, we find

T(k) = (2.50)

Figure 2.11 shows the transfer function and phase for the rectangular weighting.

The transfer function begins to roll off for k slightly less than unity. The rolloff point

is defined as the point where the magnitude of the transfer function goes below 1/ /r,

or about -3 dB. Note that due to the logarithmic scales employed, it is unclear from

the figure that the transfer function is indeed a Sinc function. Equation (2.50) and

Table 2.4 show that the rolloff rate of the rectangular weighting must be 1/k, or

-20 dB/decade, as shown in Figure 2.11. From the phase plot, it is clear that there

are sign reversals at each zero of the transfer function shown in (2.50). The first side

lobe of the transfer function has a height of -13.26 dB [21].

Bartlett Weighting: The Bartlett weighting is used to provide better side lobe

response than the rectangular weighting. This weighting can be expressed as a con-

volution of two rectangular weightings of half the width of the Bartlett weighting [37].

The transfer function for the Bartlett or triangular weighting is the square of a
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Figure 2.11: The transfer function and phase of the rectangular, or box car weighting.

Sinc function. The transfer function can be derived from (2.45) which takes into

account the fact that the Bartlett weighting does not possess first derivative (slope)

continuity over the interval [-1/2, 1/2]. Only f(x) and f'(x) are nonzero for the

Bartlett weighting.

-----;~--------- ----------------.-- -- - - -- --I l- I .. .... I I I I

------------i
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Thus only two terms in the infinite series of (2.45) remain, and we obtain:

= k f(-1/2) sin(kl/2)

+ 1 -f'(-/2) cos(kl/2) + f'(0-)

+ 1 f (l/2) sin(kl/2)]

+ 1 [-f'(O+) + f'(1/2) cos(kl/2)]

T(k) l [f(-1/2) + f(1/2)] sin(kl/2)
( f'() - f'() + f'(/2) + f'(/2) cos(kl/2)

(2.51)

(2.52)

For the Bartlett weighting, f(-1/2) = f(1/2) = 0, f'(-1/2) = f(0-) = a 2/4, and

f'(1/2) = f(0+) = -a 2 /4 as shown in (2.9). In addition, 1/2 = 2/a, from (2.10).

Thus (2.52) simplifies to

T(k)

T(k)

T(k)

1
k2

a2

k2

i 2 + ,2 ,2 2k)

14 4- 4 24

1 cos 2k

(2.53)

(2.54)

(2.55)

using k = k/a. Further, using

tion (2.55) simplifies to

the fact that 1 - cos 20 = 2 sin2 8, the transfer func-

sin 2

T(k) = 2
kc2 (2.56)

Figure 2.12 shows plots of the magnitude and phase of the transfer function for

the Bartlett sensor. In Table 2.4 it was predicted that the rolloff of the Bartlett

weighting would be 1/k2. From Figure 2.12 and Equation (2.56) it is clear that this

is indeed the case. In addition, the transfer function is non-negative for all values of

T(k)
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Figure 2.12: The transfer function and phase of the Bartlett weighting.

k, which indicates that the rolloff

phase flips of ±1800.

shown in Figure 2.12 is not accompanied by any

A convolution in the spatial domain corresponds to a multiplication in the spatial

frequency domain. Thus since the Bartlett weighting is the convolution of two rect-

angular weightings, the transfer function of the Bartlett window is the square of the

transfer function of the rectangular weighting. As can be seen from Figure 2.12, the

side lobes of .the transfer function for the Bartlett weighting have been attenuated

significantly compared to those for the transfer function of the rectangular weighting.

63
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The first side lobe is at -26.52 dB, exactly two times lower than for the rectangular

weighting.

Hanning Weighting: The side lobes of the Bartlett weighting can be attenuated

further by using the principle of superposition [37]. The result is the Hanning window.

Its transfer function is

1 sin((7 /_2 + 1)) +1 sin(7r(k/V - 1)) sin('7rk/s/)
(k) = +- + (2.57)2 r(/ + 1) 2 (k/ - 1) + r/v

Figure 2.13 shows the magnitude and phase of the transfer function for the Han-

ning weighting. The Hanning weighting yields a rolloff rate of -60 dB/decade, as

predicted in Table 2.4, an improvement of -20 dB/decade over the Bartlett weight-

ing. However, from the phase plot in Figure 2.13 is can be seen that there are now

phase reversals at every zero of the transfer function. The first side lobe has a height

of -31.47 dB, a fair improvement over the Bartlett weighting.

Infinite Spatial Sensor Weightings

Sinc Weighting: A Sinc sensor is an example of a sensor which satisfies some, but

not all the functional requirements introduced in Chapter 1. Its weighting is that of a

Sine function, and its transfer function is like a perfect lowpass filter. The magnitude

of this transfer function is unity for all frequencies below the cutoff, and zero at

all frequencies above the cutoff. The magnitude immediately drops from unity to

zero at the cutoff frequency, and no phase lag is introduced. This is seen to satisfy

Functional Requirement #2, but since the weighting is negative for some values of x,

Functional Requirement #8 is not satisfied. In addition, Functional Requirement #7

is not satisfied because the weighting is infinitely long.

The transfer function and phase of the Sine weighting is the perfect lowpass filter
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Figure 2.13: The transfer function and phase of the Hanning weighting.

shown in Figure 2.14. It is defined by

1 + sgn(1 -k)
)= 2

where k = k/a, and where sgn(x) is the sign function, defined by

sgn(x) = { 1, x > 0 (2.59)
-1, x<O0

(2.58)
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Figure 2.14: The transfer function and phase of the Sinc weighting.

The parameter a introduced in (2.15) is used to define the spatial frequency k at

which the sensor rolls off. In this case, rolloff occurs at exactly k = 1, or when k = a.

The transfer function is unity for all wave numbers k less than the cutoff wave

number, and zero for all k above it. The transition from perfect transmission to per-

fect impedance is instantaneous, and no phase lag is introduced. This behavior is only

exhibited by a Sinc weighting that extends over an infinite domain. For implementa-

tion to be possible, the sensor must be spatially truncated at the boundaries of the

structure. Such a truncated sensor can accurately observe modes in the bandwidth

' ' '' " ' ' '

' ' ' ' ' ' ' ' -' '

-

I I r

................................... -

.................................

- ------------ -------------------------- .. ..,-...... ~..~..1....... ~. , ....

.... ..................L........1....

---------------------- ---------- , , , ,
-------------;-- -, , , , , -- ~

, , ,
.... ~..~~....~...., , , , ,.~-r



2.4. Transfer Functions for Sinusoidal Strain 67

and will roll off relatively fast, satisfying Functional Requirements #1 and #2. How-

ever, the magnitude rolloff of the output of the truncated sensor will contain negative

regions, where the sign of the output of the sensor is opposite to that of the strain at

the center of the sensor. In space, truncation is a multiplication of the sensor weight-

ing by a rectangular weighting. In the wave number domain, the Fourier transform

of the truncated sensor is the result of convolving the perfect low pass filter with the

transfer function of the rectangular weighting. The result contains negative regions,

i.e. regions where the phase has shifted by ±1800. Functional Requirement #3 is

therefore violated.

Sinc-Sinc Weighting: Since the Sinc-Sinc weighting is obtained by multiplying two

Sinc functions together, it follows that the transfer function for the Sinc-Sinc weight-

ing must be the convolution of the transfer functions of two Sinc functions. Thus the

transfer function of the Sinc-Sinc weighting is triangular. It is shown in Figure 2.15

and is given by:

1 k <2+V2
T(k) = 2 + V2 (2.60)

0, k 2 +

The Sinc-Sinc weighting was investigated because it does not require regions of

negative sensitivity, and yet yields excellent performance. As with the Sinc weight-

ing, it suffers from the fact that it must be spatially truncated for the purposes of

implementation, violating Functional Requirement #7.

Gauss Weighting: In general, the side lobes can be reduced by having the ends

of the weighting approach zero more and more smoothly [44]. This is shown in

Equation (2.40) and in Table 2.2 in that the rolloff rate is faster as higher and higher

derivatives of the weighting function f(x) are zero at the ends. A Gaussian is infinite

in length and can be shown to approach zero infinitely smoothly as x approaches
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Figure 2.15: The transfer function and phase of the Sinc-Sinc weighting.

+oo. The transfer function of a Gaussian is also a Gaussian:

T(k) = exp In 2 k2 (2.61)

Figure 2.16 shows the magnitude and phase of the transfer function for a Gaussian

weighting. It can be seen from this plot and (2.61), that the transfer function of a

Gaussian sensor has no side lobes at all, and the rolloff becomes increasingly fast. In

fact, at k = oo the rolloff is infinite, as predicted in Table 2.4. As shown in (2.61),
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Figure 2.16: The transfer function and phase of the Gauss weighting.

the magnitude is everywhere nonnegative, implying that the transfer function of the

Gaussian weighting will not exhibit any phase lag. Note again that the Gaussian

weighting must be spatially truncated for implementation purposes.

Compound Spatial Sensor Weightings

Bartlett-Bartlett Weighting: The transfer function of the Bartlett-Bartlett weight-

ing is derived from (2.45). From (2.21) it is clear that all derivatives f(' (x) for i > 2
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are zero. Thus (2.45) simplifies to

T(k) = 1 [f(-1/2) + f(l/2)] sin(kl/2)

+ [f'(O-) - f'(O) + [-f'(-1/2) + f'(1/2)] cos(kl/2)

+ 1 [-f"(-/2) - f"(2)] sin(kl/2)] (2.62)

Knowing that for the Bartlett-Bartlett weighting, f(-1/2) = f(1/2) = 0, f'(-1/2) =

f'(l/2) = 0, f'(0-) = -f'(0+) = 3a2 /7r 2 , f"(-1/2) = f"(1/2) = 3a 3 /?r3 , and

1/2 = 7r/a, the expression for the transfer function simplifies to

1 3a 2  3a 2  1 3a 3a 3  kr
T(k) = 2  3 3 -- - sin- (2.63)

6a 2  6a 3  kr
T(k) = 2 3 sin- (2.64)

7r2k r3k3 a(

Using k = k/a, we find

T(k) = 6 (R - sin( ) (2.65)(-7) 3  ) (2.65)

Figure 2.17 shows the magnitude and phase of the transfer function for the

Bartlett-Bartlett weighting. As with the Bartlett weighting, the Bartlett-Bartlett

weighting provides a rolloff rate of only 1/k 2 , as predicted in Table 2.4. However,

unlike the Bartlett weighting, the transfer function of the Bartlett-Bartlett weighting

approaches zero monotonically as k approaches infinity. Thus it possesses no side

lobes or zeros, and introduces no phase lag.

Hanning-Hanning Weighting: In order to improve the side lobe structure of the

Hanning weighting, the Hanning-Hanning weighting was created by multiplying two

Hanning weightings together. This has the effect of convolving the transfer functions
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Figure 2.17: The transfer function and phase of the Bartlett-Bartlett weighting.

of two Hanning weightings. The transfer function is given by

2
3

2 sin((k + 1))
3 r(k + 1)

1 sin r(k + 2))
+ ( +2)

6 ,(Z + 2)

sin(r(k - 1))
r(k - 1)

1 sin(k - 2))
6 r(k - 2)

The magnitude and phase of the transfer function for the Hanning-Hanning weight-

ing is shown in in Figure 2.18. It can be seen that the rolloff rate has been increased
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Figure 2.18: The transfer function and phase of the Hanning-Hanning weighting.

to -100 dB/decade (or 1/ 5 ), as predicted in Table 2.4. The sign reversals at the

zeros of the transfer function can be seen in the phase plot. The height of the first

side lobe has been decreased to -46.74 dB, an improvement over the simple Hanning

weighting. It can be seen that the improvement in rolloff rate and side lobe height

has come at the expense of a spatially longer weighting.

Gauss-Hanning Weighting: In an effort to obtain a finite weighting with rapid

rolloff, a Gaussian weighting was made finite by truncating it smoothly with a Han-
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Figure 2.19: The transfer function and phase of the Gauss-Hanning weighting.

ning weighting. The result is a weighting that has very good rolloff in the decade

beyond the rolloff point and yet is finite. The magnitude and phase of the transfer

function is shown in Figure 2.19. The analytic expression for the transfer function is

highly complex and is given in Appendix B. As predicted in Table 2.4, the magnitude

eventually rolls off at the same rate as a simple Hanning window, 1/k3 .
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Table 2.5: Frequency properties of selected strain-averaging sensors.

Sensor Rolloff in first Rolloff rate Negatives Several First side lobe
Weighting decade (dB) (dB/decade) in k? zeroes? height (dB)

Rectangle -20 -20 Yes Yes -13.26

Bartlett -40 -40 No Yes -26.52

Hanning -60 -60 Yes Yes -31.47

Sinc -00oo -oo No No

Sinc-Sinc -oo -oo No No

Gauss -300 -oo No No

Bartlett-Bartlett -40 -40 No No -

Hanning-Hanning -100 -100 Yes Yes -46.74

Gauss-Hanning -140 -60 Yes Yes -131.83

2.4.2 Summary

At this point the properties of the transfer functions of the weightings are sum-

marized. Table 2.5 summarizes the actual spatial frequency properties of the selected

weighting functions introduced earlier. In the second column, the rolloff point is de-

fined as the -3 dB point, where the magnitude of the transfer function has fallen to

1/4v, and the rolloff in the first decade is estimated from the magnitude decrease

in one decade beyond the rolloff wave number. The Sinc, Gaussian and Sinc-Sinc

weightings yield the most rolloff within one decade up from the -3 dB point, and

yield infinite rolloff rate far above the rolloff point. The Gauss-Hanning weighting

approaches this performance, and is spatially finite and thus implementable without

further spatial truncation. Thus it satisfies not only Functional Requirement #2, but

Functional Requirements #7 and #8. However, its eventual rolloff rate is that of a

Hanning weighting, as predicted in Table 2.4. The third column gives the rolloff rate
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the transfer function exhibits far above the rolloff point. The fourth column indi-

cates whether the transfer function of the weighting contains any negative portions.

Functional requirement #3 states that such negative regions should be avoided in

order to avoid instabilities in a control system using spatially averaging strain sensor

measurements. The fifth column of Table 2.5 shows whether there are multiple zeros

in the transfer function. Those that do not have multiple zeros have one at k = 0o.

It should be noted that transfer functions of the Sinc and Sinc-Sinc weightings go to

zero at a finite value of k and remain zero for all larger values of k. The last column

of Table 2.5 shows the height of the first side lobe, when such a lobe exists. The

size or height of the side lobes determines the amount of leakage the window suffers

from [47]. It is responsible for ripples in the pass- and stop-bands of the sensor's

transfer function T(c).

The results shown in Table 2.5 indicate that only relatively complex weightings

with stringent weighting continuity requirements at the ends offer high rolloff rates.

In further investigations in this work, Bartlett and Gauss-Hanning sensors will be

used, as well as point and rectangular sensors for reference.

2.4.3 Noncentered Sensors

Being able to center a sensor at the point of symmetry in a strain field represents an

ideal condition. In general, sensors are not placed at such ideal locations. Therefore,

the output of a sensor mounted in the interior of a structure, away from its boundaries,

centered at a distance xo from the point of symmetry in a sinusoidal strain field is

investigated. It is now assumed that the strain field is spatially sinusoidal and of the

form

e(x) = sin(ks) (2.67)
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where k is the wave number. The output of a sensor with weighting function f(x),

centered at x = xo is then given by

y(k) = 1/2+Zo

-1/2+xo
f(x - xo) sin(kx) dz

By repeatedly integrating this expression by parts, an infinite series solution for

the output of a sensor mounted in the interior of a structure, away from its boundaries,

centered at a distance xo from the point of symmetry in a sinusoidal strain field can

be written as

y(k)=
i=O

+

(2i+) [-f(2 )(/2) cos [k(/2 + o)] +( 2i)(-1/2) cos [k(-/2 + xo)]1

(-f() [f +)(1/2) sin[k(1/2 + o)]- f (2+)(-1/2) sin[k(-/2 + XO)]] }
(2.69)

To obtain the transfer function from the strain at the center of the sensor to its

output, (2.69) must be divided by the strain at the center of the sensor, sin(kxo):

()= { (- 1)'-f (2i)(1/2) cos [k(1/2 + o)] + f(2i)(-1/2) cos [k(-1/2 + zo)]

i=0

(1) f( 2i+l)(l/2) sin [k(1/2 + Xo)] - f(2i+l)(-1/2) sin [k(-1/2 + Xo)]i
+ k(2 i+2 ) sin(kxo)

(2.70)

(2.68)
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In Section A.1 of Appendix A, this expression is simplified by expanding sine and

cosine terms, leaving

((-1) 1(/2) ( cos(kl/2)

T(k) k(2isi/2) tan(kol/) )
f(2i)(-1/2) s(kl/) + sin(kl/2)tan(kxo)

+ (21)i f(2i+l)(1/2) tan(ko) + cos(kl/2)

-f( 2il)(-1/2) ( sin(kl/2) + cos(kl/2)

(2.71)

It is now shown that if the sensor if symmetric, (2.71) simplifies to (2.43), showing

that the transfer function between the strain at the center or the sensor and its output

is independent of xo, and hence where the sensor is centered with respect to the point

of symmetry. Using the identities (2.41) and (2.42) that are valid when f(x) is

symmetric, (2.71) is simplified to the form

T(k) = -(2i+ (2i)1/2) cos(k/2) -_ sin(k/2)
i=O I k(2i() (tan(kxo)

(2i)(1/2) cos(kl/2) + sin(kl/2)

\ tan(kzo)

+f( 2i+1)(l/2) ( sin(kl/2) + cos(kl/2)
tan(kzo)

(2.72)
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which further simplifies to

k 2(-1)' 2(-1)' }
T( k(2+) f( 2i)(1/2) sin(kl/2) + kC-i (2i+1)(1/2) cos(kl/2) (2.73)

This expression is clearly the same as (2.40), indicating that the transfer function

is indeed independent of x0 as long as f(x) is symmetric.

This result can also be derived for weightings containing a derivative discontinuity,

such as the Bartlett weighting. For such a weighting, (2.68) is first modified:

y(k) = /+ f( - xo) sin(kx) d+ + f(x - xo) sin(kx) dx (2.74)

where xo is a point just before the discontinuity in f(x), and z + is a point just after

it. Equation (2.74) is integrated repeatedly to obtain:

y() o (2i1)i f(2i)(0-) cos(ko) + f(2i')(-1/2) cos [k(-1/2 + )]

i=o

- f( 2i)(1/2) cos [k(/2 + zo)] + f( 2i)(O+) cos(kxo)

+ f(2i+)(O-) sin(kxo) - f(2i+l)(-1/2) sin[k(-1/2 + o)]

+f(2i+ )(1/2) sin [k(1/2 + xo)] - f( 2i+1 )(O+) sin(kxo)] }
(2.75)
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Assuming f(x)

plifies to

00oo

y(k) =
i=O

is symmetric, and expanding the trigonometric terms, (2.75) sim-

(2(-1l)k(2i+l)

2(-1)'
k(2i+2)

f( 2i)(1/2) sin(kl/2) sin(kzxo)

f(2i+l)(1/2) cos(kl/2) f(2i+1)(0+) sin(kxo)

(2.76)

The transfer function is then obtained by dividing (2.76) by sin(kzo) to obtain

y(k) = T(k) =
i=0

2(-l) f(2i)(-1/2) sin(kl/2)k2i+l -

2(-1)/2) cos(k/2) f(i+)(O+]
+ kI2i+2 f(i"+)(1/2)cos(kl/2)- )

(2.77)

It can be seen that this is exactly the same as (2.46), thus showing that the

transfer function of a weighting with a derivative discontinuity is independent of 0o,

and therefore where it is placed relative to the point of symmetry in the strain field. In

addition, this shows that the sensor transfer function is the same, no matter whether

the strain field is assumed to be spatially sinusoidal or cosinusoidal, proving that the

sine and cosine transforms of a spatially symmetric weighting function are the same.

2.4.4 Sensors Simply Truncated at Structure Bound-

aries

In distributing an array of sensors on a structure, sensors will inevitably have

to be placed in such a way as to cause some portion of the sensor weighting to
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Figure 2.20: Sensor truncated at a boundary of the structure.

fall beyond a boundary of the structure. This portion must be truncated in the

implementation of the sensor. The frequency characteristics of the transfer function

of a sensor are changed dramatically if a portion of the sensor is truncated at a

boundary of the structure. The output of a sensor mounted near a boundary of a

structure, at a distance x0 from the point of symmetry in a sinusoidal strain field is

therefore investigated. It is again assumed that the strain field is of the form

e(x) = sin(kx) (2.78)

where k is the wave number. It is further assumed that the boundary of the structure

is at x = 0. The output of a sensor with weighting function f(x), centered at x = xo

is then given by

(k) = o f(x - xo) sin(kx) dx (2.79)

Figure 2.20 shows a schematic of a sensor truncated at a boundary of the structure.

Such a truncated weighting must be scaled such that low spatial frequency signals
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are measured correctly. This is accomplished by requiring that

1/ f( - Zo) dx = 1 (2.80)

The upper horizontal axis system in Figure 2.20 is the axis system of the structure,

where the boundary has been set at x = 0. The lower horizontal axis system is relative

to the sensor, where x = 0 has been set at the center of the sensor. The distance

between these two points is xo. By repeatedly integrating (2.79) by parts, an infinite

series solution for the output of a sensor mounted in the interior of a structure,

away from its boundaries, centered at a distance xz from the point of symmetry in a

sinusoidal strain field can be written as

y() 0 k(2il) (1/2) cos [k(1/2 + xo)J+ f(2i)(-o)]

(2I+ ) f(2i+1)(1/2) sin [k(1/2 + xo)] (2.81)

The derivation of this expression is shown in Section A.1 of Appendix A. Equa-

tion (2.81) is divided by sin(kxo) in order to obtain the transfer function for a sensor

truncated at a structure boundary in a sinusoidal strain field. The derivation given

in Section A.1 of Appendix A yields

i=O I [tanco)(k) = (1/2) - i(kl/2) + f(2 ) (- so)in(1kso))

(-1)i (1/2) sin(kl/2) + cos(k/2))]+(2+1)()/) tan(ko) (k )

(2.82)

The term f( 2i)(-Xo) is the value of the weighting and all its even derivatives at

the boundary of the structure. Although for a smoothly tapering weighting, the
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Figure 2.21: Transfer functions of Gauss-Hanning sensors as they are more and more
truncated. Solid line: untruncated sensor; dashed line: eighth of sensor
truncated; dotted line: quarter of sensor truncated; dot-dashed line: three
eighths of sensor truncated.

f(2i)(-/2) terms are generally zero for low values of i, the f(2i)(-zo) terms are not.

Therefore, the rolloff of the transfer function (2.82) is limited to 1/k. The presence of

the tan(kzo) and sin(kxo) terms in the denominator means that the transfer function

T(k) is no longer bounded in amplitude, even when f(z) is symmetric. This is simply

because the sensor is no longer symmetric in its truncated state and can report a

nonzero strain even when the strain at its center, z = X0, is zero.

Figure 2.21 shows the effect of sensor truncation on the rolloff behavior of the

sensor transfer function T(k). Figure 2.21(a) shows a series of four Gauss-Hanning

weightings. The first sensor, shown in a solid line, is not truncated at all. The next
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three weightings, shown in dashed, dotted and dot-dashed lines respectively, are more

and more drastically truncated. Figure 2.21(b) shows the transfer functions for the

untruncated and three truncated sensors. It is clear that as soon as the sensor is

truncated by any small amount, the long-term rolloff rate becomes 1/k. As more and

more of the sensor is truncated, the average magnitude of T(k) beyond the rolloff

point increases. Finally, it is clear that the transfer functions of the truncated sensors

are no longer bounded in amplitude. This is because the sensor can report a nonzero

strain measurement even when the strain is zero at the center of the sensor.

In an effort to satisfy Functional Requirement #9, a powerful truncation technique

which improves the rolloff behavior of the truncated sensor is presented in the next

section.

2.4.5 Sensors Folded at Structure Boundaries

In this section an improved sensor truncation technique is discussed. The fre-

quency characteristics are very interesting when the portion of the weighting function

beyond the structure boundary is folded over about the boundary and subtracted

from the remaining interior portion of the sensor weighting. Figure 2.22 shows this

procedure.

The solid line shows the weighting of an untruncated sensor that extends beyond

the boundary of the structure which is assumed to be at x = 0. The dashed line

shows the truncated portion of the sensor after being reflected about the boundary

of the structure and then made negative. This part is then added to the untruncated

part of the original sensor. The resulting truncated sensor weighting is shown by the

dot-dashed line. The frequency characteristics of this modified sensor are investigated



84 Chapter 2. Shaped Sensors

0 x0 LU2-x0 xO+U2

Figure 2.22: Folding over and subtracting the truncated portion of a sensor. Solid
line: untruncated sensor; dashed line: truncated portion once folded and
subtracted; dot-dashed line: resulting sensor with truncated portion folded
and subtracted.

next. The output of the modified sensor is given by

k / 2-o [) f/2--o-)/ik+ °y(k) 1= [f(X - zo)- f(- X - 0)] sin(k) d + 1/2 o f(x - xo) sin(k) dx

(2.83)

Note that we will require that

f 1/2+o

-1/2+=o
f(x - x0) dx = 1 (2.84)

That is, the area of the original, untruncated sensor is unity. Note that no further

scaling of f(x) is performed. The weighting f(-x - xo) is the original weighting

f(x - Xo) reflected about the boundary of the structure at x = 0. The length of the

xO-JU2
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portion of the sensor that extends beyond the boundary of the sensor is 1/2 - xo.

Equation (2.83) can be rewritten

= '/i f(x - xo) sin(kx) dx -Jl/2-

= G(k) - H(k)

f(-x - xo) sin(kx) dx (2.85)

(2.86)

The first integral G(k) in (2.85) was derived in the previous section and is shown

in (2.81). The evaluation of the second integral H(k) is shown in Section A.1 of

Appendix A. By repeated integration by parts, H(k) can be written as an infinite

series in the following manner:

00 (
H(k) = E k( 2i+l) (2i)(-1/2) cos [k(/2 - xo)] + f(2i))

i=O

+ k(2i[2) f( 2 i+l)( -1/2) sin[k(1/2 - xo)] (2.87)

By subtracting this expression for H(k) from (2.81), the output of the modified

sensor as a function of frequency, Equation (2.86) can be found to be

(21) [-I(2i)(1/2) cos [k(1/2 + xo)] + f(2i)(- /2) cos [k(-1/2 + o)]]

f 1) (2+1)(1/2)si [k(1/2 + xo) - f (2i+l)(-1/2) sin[k(-1/2 + xo)

(2.88)

y(k)

y(k)

00

y(k) = E
i=O0
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It can be seen that this expression is the same as (2.69). Therefore, the transfer

function for such a sensor will be the same as (2.71):

T(k) = k( 2 +1) f(2)(1/2) tan(ko) -sin(k/2)

( tan(kxo)
+ +(2i+1)(1/2 )  cos(kl/2) + cos(kl/2)

k(2+2)f (tan(kz) -Fsi/2))

(- 1) (2i+)(-1/ 2 ) sin(kl/2) + cos(kl/2)( tan(kxo)

(2.89)

In addition, the transfer function of an originally symmetric sensor which has been

truncated by this folding approach is the same as (2.73):

T(k) = k(2il)f(2i)(1/2) sin(kl/2) + k(2i2'f(2i+l)(1/2)cos(kl/2) (2.90)

This result shows that sensors truncated with this 'folding' technique enjoy the

same properties as untruncated sensors provided the strain field is assumed to be

sinusoidal. This is true regardless of whether the original weighting f(z) is symmetric

or not.

2.4.6 Summary

For a centered sensor whose center is placed at the point of symmetry in a cosinu-

soidal strain field, its transfer function is the same as the spatial Fourier transform,

provided that f(z) is symmetric; that is, if f(x) = f(-x). In the limit as xo - 0, the

transfer function for a symmetric, centered sensor in a sinusoidal field is also equal
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to the spatial Fourier transform. The rolloff rate of the sensor transfer function is

governed by how smoothly f(x) tapers to zero at the ends (x = f1/2). The more

smoothly f(x) goes to zero the more derivatives of f(z) are zero at the ends, and the

quicker the rolloff. Table 2.2 shows this behavior. Generally, as the weighting tapers

more smoothly to zero, its length must necessarily increase in order to begin to roll

off at the same spatial frequency. In addition, the transition band of the transfer

function increases, and the side lobe structure is reduced in height.

For a noncentered sensor whose center is a distance x0 from the point of symmetry

in a sinusoidal strain field, similar properties hold. As the weighting is tapered more

smoothly to zero, the rolloff rate increases in the same way as for a centered sensor. If

f(x) is not symmetric, the transfer function will not be bounded in amplitude. If f(z)

is symmetric, however, the transfer function is bounded in amplitude and becomes

independent of xo, and equal to the transfer function for a centered sensor.

When a sensor is truncated, its rolloff performance decreases drastically, in pro-

portion to the fraction of the sensor weighting which is truncated. The transfer func-

tion is no longer bounded in amplitude because the truncated weighting is no longer

symmetric. In addition, the rolloff rate decreases to 1/k no matter how smoothly

the weighting tapers to zero at the ends because the value of the weighting at the

structure boundary is nonzero in general.

A truncation technique that involves 'folding' the portion of the weighting that

falls beyond the boundary was introduced to improve sensor rolloff performance in

an effort to better satisfy Functional Requirements #2 and #9. In a sinusoidal strain

field, the transfer function of untruncated sensors and sensors truncated with this

technique are identical whether f(x) is symmetric or not.
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2.5 Transfer Functions for Exponential Strain
The mode shapes of structures are generally composed of sinusoidal and exponential-

like functions. The properties of sensors in sinusoidal and cosinusoidal strain fields

were analyzed above. In this section, the properties of sensors in an exponential strain

fields are investigated.

The exponential strain fields are assumed to have the form e- ks. The origin will

refer to the point where the strain remains the same no matter what the spatial

frequency is. For the strain field e- ke, this point is simply x = 0, where the strain

is unity for all k. It is important to note that k is not a spatial frequency as it

is for the strain field sin(kx) because e- kA is not oscillatory. Rather, k is a scale

length that determines how quickly the strain field tapers toward zero for positive z.

Since the strain field is not oscillatory, the properties of the transfer functions will

not resemble those described for sinusoidal curvature. Further, since mode shapes

are generally spatially oscillatory, it is of limited use to analyze the properties of

the transfer function of sensors in a purely exponential strain field. The form of the

exponential near-field terms in the mode shapes of structures should be considered

when examining the following results.

2.5.1 Sensors Centered at Origin

The output of a sensor mounted on a structure, away from its boundaries, centered

at the origin of an exponential strain field is investigated here. It is assumed that the

strain field is of the form

e(x) = e-kX (2.91)
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where k is the wave number. The output of a sensor with weighting function f(x),
centered at x = 0 is then given by

y(k) 1/2 f(x)e-k d (2.92)
=-1/2

By repeatedly integrating this expression by parts, an infinite series solution for

the output of a sensor mounted in the interior of a structure, away from its boundaries,

at the origin of an exponential strain field can be written as

y(k) = i [-f ')(1/ 2 )e-k'/ + f(i)(-1/2)ekl/2] (2.93)
i=o

Since the strain at the center of the sensor is always unity, the transfer function

for such a sensor is

T(k) = k1 [-f')(l/2)e-k/2 + f()(-1/2)ek1/2 (2.94)
i=O

The derivation of (2.93) and'(2.94) is shown in Section A.2 of Appendix A. It

can be seen that the transfer function has the general form of (2.40), except that the

modulating functions of the f(i)(±1/2) terms are always exponentials, rather than

sinusoidal functions. Due to the definition of the strain field in 2.91, it is clear that

the magnitude of the field increases with wave number k for all x < 0. The sensor will

sense this increase and consequently the output function y(k) increases exponentially.

In addition, since the strain at the center of the sensor is unity for all k, the transfer

function of the sensor also increases exponentially. As f(x) is made smoother at the

ends, the f(')(±l/2) terms are zero for higher and higher values of i, and the first

nonzero term will be attenuated by a smaller and smaller 1/k i+1 term. However,

ekl/ 2 /ki+ - oo as k -+ oo for any value of i because all derivatives of the numerator

ekl/2 increase with k, while the (i + 2)-nd derivative of ki+' 1 is zero.
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2.5.2 Sensors Not Centered at Origin

Now the output of a sensor mounted in the interior of a structure, away from its

boundaries, centered at a distance x0 from the origin of an exponential strain field is

investigated. It is assumed that the strain field is of the form

e(x) = e-kr (2.95)

where k is the wave number. The output of a sensor with weighting function f(x),

centered at x = xo is then given by

I1/2+to
y(k) = / f(x - xo)e-k dx (2.96)

-1/2+xo

By repeated integration by parts of this expression, an infinite series solution for

the output of a sensor mounted in the interior of a structure, away from its boundaries,

at a distance x0 from the origin of an exponential strain field can be written as

y(k) = ~1 [-f(')(1/2)e- 2/ + f()(-1/2)ekl/2] o (2.97)
i=0

This expression is the same as (2.93), the output of a sensor centered at the origin,

attenuated by the factor e- k o. This attenuation arises from the inherent attenuation

in the assumed exponential strain field. It is clear that when x0 < 1/2, the output

of the sensor increases exponentially by the factor ek(1/2 - ,o) because the exponential

strain field is increasing by that factor over part of the sensitive area of the sensor.

When xo = 1/2, the sensor output rolls off due to the 1/k i+' factors. Finally, when

xo > 1/2, the output rolls off due not only to 1/k i+ factors, but by the exponential

factor ek(1/2-o)

In order to obtain the transfer function for a sensor centered at a distance x0 from
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the origin of the strain field, (2.97) must be divided by e- kXo, the strain at the center

of the sensor. The transfer function obtained is:

T(k) = ki -f~')(l/2)e - k/2 + f (' )( - 1/2)e l/2] (2.98)
i=o

This is the same expression as (2.94), as shown in Section A.2 of Appendix A,

indicating that the transfer function of a sensor in an exponential strain field, away

from the boundaries of the structure is constant, no matter where the sensor is cen-

tered with respect to the origin of the strain field. Note that the sensor does not have

to be symmetric for this to be true, unlike the case for a sinusoidal strain field.

2.5.3 Sensors Simply Truncated at Structure Bound-
aries

Now the output of a sensor mounted near a boundary of a structure, at a distance

xo from the origin of an exponential strain field is investigated. This case is extremely

important as it simulates the behavior of a sensor truncated at the boundary of a

structure with an evanescent exponential strain field. Examples of such strain fields

include the mode shapes of clamped-free and free-free beams. For this problem, it is

again assumed that the strain field is of the form

e(x) = e-kx (2.99)

where k is a parameter that depends on mode number. It is assumed that the bound-

ary of a structure is at x = 0. The output of a sensor with weighting function f(z),

centered at x = xo is then given by

y(k) /+= f(x - zo)e - k" dx (2:100)
0() ~l~
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Again, an infinite series solution for the output of a sensor mounted near a bound-

ary of a structure, at a distance x0 from the point of symmetry in an exponential strain

field can be found by repeatedly integrating this expression by parts to obtain:

y()
y(k) = fi -l [f(1/2)ek(/2±o) (i)( xo) (2.101)

i=0

It is assumed that the truncated sensor is centered somewhere in the interior of

the structure. This guarantees that 0 < xo < 1/2. Thus (1/2 + xo) is positive and

the factor e- k(l/2+xo) is an attenuating one. The first term in (2.101) will therefore

roll off quicker than the f(i)(-zo) term, which is the value of the spatial weighting at

the boundary of the structure. It was stated that for the case of truncated sensors

in sinusoidal strain fields that this value is, in general, nonzero. This therefore limits

the rolloff rate of the sensor output to 1/k. This behavior is very similar to the case

of a sinusoidally varying strain field.

The transfer function for a sensor truncated at the boundary of the structure,

in an exponential strain field is simply (2.101) divided by the strain at the sensor's

center:

T(k) = [-f()(1/2)e-k/2 + f(i)( )eko] (2.102)
i= o

This expression suggests that while the first term still decreases in magnitude as

k is increased, for any value of i, the second term instead increases as ekxo/ki+l. This

is simply because the strain at the center of the sensor (e - kxo) decreases more rapidly

than the strain at the boundary of the structure, which is unity. The derivations

of (2.101) and (2.102) are shown in Section A.2 of Appendix A.

2.5.4 Sensors Folded at Structure Boundaries

As for sinusoidally varying strain fields, and effort is made here to improve the

truncation technique for sensors near a structural boundary, in an exponential strain
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field. Figure 2.22 shows the procedure used to fold and flip the truncated part of a

sensor. In this section, the effect of performing this operation when the strain field is

exponential rather than sinusoidal is investigated. The output of the modified sensor

is given by

= l/2-o t/2+-o
y(k) = f(x - xo) - f(-x - o)] d I f( - XO) e- dx (2.103)

fn dl/2-mo

The weighting f(-x - xo) is again the original weighting f(x - xo) reflected about

the boundary of the structure at x = 0. The length of the portion of the sensor that

extends beyond the boundary of the sensor is (1/2 - xo). The above equation can be

rewritten

S1/2+zro L/2-sro

y(k) = f(x - o) e-k dx- (- -xo) e- d (2.104)

y(k) = G(k)- H(k) (2.105)

The first integral G(k) in (2.104) was dealt with in the previous section and the

result is shown in (2.101). The evaluation of the second integral H(k) is shown in

Section A.2 of Appendix A. By repeated integration by parts, H(k) can be written

as an infinite series in the following manner:

H(k) = f(2i)(-XO) _ f(2i)(-i/2)e-k(1/2-xo) (2.106)
i=0

Now G(k) and H(k) are rewritten in slightly different forms:

G(k) = (2i+1 ) [-f(2)(/2)e-k(1/2+xo) + f(2i)(_o)]
) i= o (")

+ 1 f(2i+1)(1/2)e-k(1/2+xo) + f( 2i+l)( X0) (2.107)

k( 2 i +2) I 
217
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1H(k) = k( 2 +i) (2i)(x) f(2i)(-1/2)e-k(1/2-xo)]

+ -( [ f(2i+1) + f( 2 +)(-1/ 2 )e-k(1/2-xo) (2.108)
k k(2i+2 )  

(2.108)

By subtracting the expression for H(k) from G(k) the output of the modified

sensor as a function of frequency can be found:

y(k) = k (2i+l) [-i")(2)e - k(/2+xo) +f(2)(-1/2)e- k(1/2-o)]

+ 1 f(2i+)(l1/2)e-k(1/2+xo) _f(2i+)(-1/ 2 )e-k(1/2-xo) + 2f(2i+1)(_Xo)] }+ (2i+2)

(2.109)

Noting that we have 1/2 > ao > 0, we see that the sensor output (2.109) must

roll off as k is increased, because all the exponential terms are attenuating ones. By

dividing this expression by e- kx o , the transfer function of the sensor is found to be

T(k) = E1 _ 1()(/2)e- (2,)(-1/2)ek(,/2-2zo)
i=O

+ k(2  f(2i+)( /2)e-kl/2 f( 2i+1)(-1/2)e-k(1/ 2- 2 xo) +2f(2i+ 1 )(-xo)e kxo

(2.110)

As with the simple truncation scheme, in the second half of the summation, we

are left with the term 2f(2i+1)( xo)e k / k/k( 2i+ 2), which increases exponentially as k is

increased. However, this term depends on the value of the first spatial derivative of

the sensor weighting at the boundary of the structure, not the value of the weighting

itself. In many ways, this behavior is similar to the corresponding transfer function for

a sinusoidal strain field. The derivation of (2.109) and (2.110) is shown in Section A.2

of Appendix A.
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2.5.5 Summary

For a centered sensor, the rolloff rate of the output and transfer function is in-

creased as the ends of the sensor are tapered more smoothly to zero because the

weighting and its derivatives are made zero at the ends. However, note that both the

output and transfer function actually increase exponentially as a function of k due to

the eki/2 factor in the first term. This is due to the fact that the assumed strain field

e-k is increasing in magnitude for negative x.

For a noncentered sensor, the same rolloff behavior as for the centered sensor

holds. However, note that the output y(k) will decrease when xo > 1/2, that is, when

the entire sensor is placed on the positive x axis. This is because the strain field is

everywhere decreasing with k for x > 1/2. The transfer function will still increase

exponentially, because the strain at the center of the sensor decreases much more

rapidly than the strain at the end of the sensor closest to the structure boundary.

For a truncated sensor, as for a sinusoidal strain field, the rolloff rate of the output

y(k) is reduced to at most 1/k no matter how large xo is because the value of the

sensor weighting at the structure boundary is nonzero. For the transfer function, the

exponential increase with k is made mode severe as xo is increased.

For a folded sensor, the rolloff rate of the sensor output is now only limited to 1/k 2

because the term f(-zo) is made zero. Although the transfer function still increases

exponentially, it does so more slowly than for a simply truncated sensor.
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Chapter 3

Numerical Integration Schemes

In this chapter a selected set of numerical integration schemes are described. The

schemes are used to estimate the global shape of a structure by spatially integrating

the measurements made by an array of spatially averaging strain sensors mounted

along the structure. Details of the derivation of the expressions presented are given

in Appendix C.

3.1 Introduction

An individual sensor provides a single spatially filtered measurement of strain for

a certain area of the structure. In order to estimate the global shape of the entire

structure, an array of sensors must be used, and their individual outputs spatially

integrated. Numerical integration schemes allow accurate estimation of deflection by

spatially integrating strain measurements made by an array of sensors. To choose

a difficult example, the problem of estimating the slope (first integral of curvature)

and displacement (second integral of curvature) of a beam, using an array of spatially

averaging strain sensors, will be investigated. In addition to the weighting discussed

in the previous section, the placement and spacing of the sensors along the beam are

now important and are typically determined by the integration scheme to be used.
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Table 3.1: Important properties of selected numerical integration schemes.

Integration Specific End points Exactness Error

Scheme abscissas? required?

Midpoint No No Linear functions 0(1/n 2)

Trapezoidal No Yes Linear functions f"(~)
(a<e<b)

Simpson's No Yes Cubic functions (b-a) f( 4 )()
(a<e<b)

Cubic Spline No Yes Constant functions O(1/n 3 )

B-Spline No Yes Constant functions O(1/n 2)
Gauss Yes No Polynomials of (22+1(W)' f( 2n)(V)

(2n+1)[(2, )!]3
degree 2n - 1 (-1<<1)

Radau Yes One end Polynomials of 22--  -1)]f2n-1)

degree 2n - 1 (-1<<1)

Chebyshev No Yes Polynomials of

degree 2n - 1

Structural No No Any combination of

Shape the set of

Functions shape functions

Least Squares No No Any combination of

Structural the set of

Shape Functions shape functions

A variety of numerical integration methods exist which integrate a function known

only at a discrete set of points. A restricted set of these was chosen for the purposes

of investigating the performance of strain sensors as estimators of global shape, as

shown in Table 3.1. As a test case in the next chapter, the various schemes will be

applied to the task of estimating the tip slope and deflection of a cantilevered beam

under transverse loading.

The second column of Table 3.1 indicates whether the integration scheme requires

the sensors to be placed at specific locations. It is seen that the optimal Gauss and
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Radau rules are the only ones which have stringent sensor placement requirements.

Note that Simpson's rule is customarily defined for a set of equally spaced abscissas

due to the simplicity of the resulting expression for the integral. However, it is

possible to formulate the rule to accept abscissas which are arbitrarily placed. The

third column of the table shows whether the integration scheme requires that the

function to be integrated be known at the edges of the integration interval. This is

often a difficult requirement for practical implementation. In the case of a beam-

like structure, this requires knowledge of the curvature at the root and at the tip of

the beam. The fourth column indicates the highest order polynomial for which the

integration scheme will yield an exact integral. The parameter n is the number of

points at which the function to be integrated is known. For this work, n is equal to

the number of sensors. It is clear that the Gauss and Radau rules are the ones which

yield the most accurate integrals of polynomials using few sensors. The fifth column

shows the order or form of the remainder or error term that must be considered when

using the scheme. The function f(')(x) is the i-th derivative of the function to be

integrated, and the point is some point within the integration interval. Since this

point is unknown, only an upper bound to the magnitude of the error can be found,

by evaluating max f().
a<e<b

Examining the options in Table 3.1, it is obvious that there is no perfect solution.

Only the simplest, least accurate Midpoint rule, and the rules fitting structural shape

functions to sensor measurements do not require measurements at the endpoints and

do not require specific abscissas. In general, as the degree to which the location

of sensors is constrained (a practical problem), the degree of accuracy increases (a

theoretical advantage). Therefore the trade between practicality and accuracy must

be assessed and the absolute, rather than relative error examined.

The integration schemes presented in Table 3.1 will now be briefly described.
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0II

a+2h a+3h a+4h a+5h

Figure 3.1: The area the midpoint rule calculates. Circles: points at which the argu-
ment function f(x) is known; solid rectangles: areas that are summed to
produce an estimate of the integral; dashed line: the argument function
f(x).

3.2 Integration Schemes

3.2.1 Midpoint Rule

The midpoint rule is a primitive integration rule given by a Riemann sum of the

form n-1l
Mn(f) = h f (a + k + ) h) (3.1)

k=0

where h = (b - a)/n. The interval of integration is [a, b], and f(x) is the function to

be integrated [16]. The area the midpoint rule calculates is shown in Figure 3.1. The

dashed line shows the argument function f(x). The circles show the values f(xz) of

the argument function that are known. The width of each rectangle is h, and their

combined area is the area the midpoint rule calculates.
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3.2.2 Trapezoidal Rule

The trapezoidal rule is also a primitive rule given by a Riemann sum of the form

Tn(f)= h fa) + f(a+h)+ f(a+2h)+ + f(a + (n-1)h)+ f(b)] (3.2)

where h = (b - a)/n. A derivation of the trapezoidal rule is shown in Section C.2

of Appendix C. The trapezoidal rule calculates the area shown in Figure 3.2. The

dashed line shows the argument function f(x). The circles show the values f(zx) of

the argument function that are known. The width of each trapezoid is h, and their

combined area is the area the trapezoidal rule calculates. It can be shown that the

error (or remainder term) for the compound trapezoidal rule is

E- (b - a), a < < b (3.3)
24n 2

when f"(x) is bounded [16].

3.2.3 Simpson's Rule

Simpson's rule was first given by Cavalieri [11], and only later by James Gre-

gory [26] and Thomas Simpson [51, 59]. The formula for Simpson's rule can be

derived a number of different ways, and one such derivation is given in Section C.3 of

Appendix C. The composite Simpson's rule calculates the area shown in Figure 3.3.

The dashed line is the argument function f(x). The circles show the values f(x,) of

the argument function that are known. The solid parabolic segments are fitted to

three successive points. The area under these segments is integrated analytically and

calculated.
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a+h a+2h a+3h a+4h a+5h

Figure 3.2: The area the trapezoidal rule calculates. Circles: points at which the
argument function f(x) is known; solid trapezoids: areas that are summed
to produce an estimate of the integral; dashed line: the argument function
f(x).

The result is given by the composite form of Simpson's rule:

f() dx
S a+2h

a

a+4h

f(X) dx + a
ab

f(x) dx + f(x) dx
a+4h

- I f(a) +4 f(a + h) + f(a + 2h)

+ 2h[f(a + 2h) +4 f(a + 3h) + f(a + 4h)

+ [f(a + 4h)+4f(a + 5h)+f(b) (3.5)

The error in using Simpson's rule is shown in Table 3.1, and shows that the integral

converges as 1/n4 .

(3.4)

102
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a a+h a+2h a+3h a+4h a+5h b

Figure 3.3: The area Simpson's rule calculates. Circles: points at which the argument
function f(x) is known; solid line: segments of parabolas interpolating the
given points f(xi); dashed line: the argument function f(z).

3.2.4 Cubic Interpolating Splines

A cubic interpolating spline can be passed through the discrete set of strain mea-

surements and integrated. A cubic interpolating spline is a piecewise cubic parametric

polynomial that passes through an arbitrary set of points. It does so while maintain-

ing derivative and curvature continuity at the sample points while minimizing the

overall integral of the curvature squared, fa |w"(x)12 dz. This is precisely what a thin

beam made to pass through a series of points does. A beam will change its shape so

as to minimize its strain energy at all times, and this energy is proportional to the

integral of the square of the curvature along the length of the beam. The analytical

integral of a cubic interpolating spline has the form of that for the trapezoidal rule

with an added third order correction. The convergence rate of the spline algorithm

is therefore 1/n3 .
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a a+h a+2h a+3h a+4h a+5h b

Figure 3.4: The area the Spline rule calculates. Circles: points at which the argument
function f(x) is known; solid line: the cubic spline interpolating the data
points; dashed line: the argument function f(x).

Figure 3.4 shows the area the spline rule calculates. The dashed line shows the

argument function f(x). The circles show the values f(xi) if the argument function

that are known. The solid line shows the cubic spline that interpolates the data

points. It is the area under this curve that is calculated by the spline rule.

The spline curve is composed of n -1 polynomial segments, where n is the number

of points the spline passes through. The i-th polynomial segment stretches between

(xi, y ) and (xzi+, y,+l) (two successive points). The curve is forced to pass through

the control points and have slope and curvature continuity at the control points. The

curvature is assumed to be zero at the ends. The x- and y-coordinate values of the

curve are defined separately as parametric equations of an independent parameter

t. The curve of the i-th segment is defined as (Xi(t), Y(t)). The x-coordinates

of the curve Xi(t) can be determined solely from the x-coordinates of the control

points xi and the y-coordinates of the curve Y(t) can be determined solely from the
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y-coordinates of the control points yi. X1(t) and Y(t) are defined as

X (t) = a,1t3 + blt 2 + ct + d1;, (0 < t < 1) (3.6)

Y(t) = a,2 t 3 + b2 t2 + c2 t + d,2 , (0 < t < 1) (3.7)

The process of finding the constants ali, a2i, bi, etc., is shown in Section C.4

of Appendix C. Once the full curve is known, it can be integrated in order to find

the area under it. This is more easily done numerically because Y(t) is not a linear

function of Xi(t).

3.2.5 B-Splines

Cubic interpolating splines and other free-form curves defined using a discrete

number of points have long been in use in the ship building industry [23]. However,

a mathematical analysis of such curves was first attempted only a few decades ago

by such mathematicians as Schoenberg, B6zier, and De Casteljau. A result of this

research was the B4zier curve, defined simply by a control polygon consisting of a

number of discrete control points. These curves use Bernstein polynomials and are of

degree n - 1 if n points are specified, and start and end at the first and last points,

respectively. Pierre B4zier used these curves at Renault to design car bodies. The

problem with cubic interpolating splines, and B6zier curves, is that the number of

computations required to calculate such a curve goes up faster than linearly with the

number of control points. In addition, moving any control point changes the shape

of the entire curve. B-splines, in contrast, are composed of short curve segments that

can be of low order. In addition, moving a control point only affects part of the curve

localized around the moved point.

B-splines, basis splines, or basic splines are composed of polynomial segments, but

unlike cubic interpolating splines, they are not interpolatory and do not pass through
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0 1 I I I I I I
a a+h a+2h a+3h a+4h a+5h b

Figure 3.5: The area the B-Spline rule calculates. Circles: points at which the argu-
ment function f(x) is known; solid line: the second-order B-spline resulting
from the given data points f(xi); dashed line: the argument function f(x).

the specified control points [7]. These control points become the vertices of the control

polygon, which defines the shape of the B-spline. B-splines can be of various orders,

from 1 to the one less than the number of vertices in the control polygon. B-splines

of first order are linear functions which interpolate the data in a trapezoidal fashion.

Second order B-splines are quadratic functions which yield a curve which is tangent to

the midpoint of the line connecting two successive control points. Finally, B-splines

of order n - 1, where n is the number of vertices of the control polygon, are B6zier

curves.

For the purposes of this work, only second order B-splines will be considered.

Figure 3.5 gives an example of the area a second order B-spline would calculate. The

dashed line is the argument function f(x). The circles show the values f(x,) of the

argument function that are known. The solid line shows the second order B-spline

that only interpolates the first and last points. It is the area under this curve that
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the B-spline rule calculates.

It can be seen from Figure 3.5 that the curve becomes tangent at the midpoint

of the lines connecting the vertices of the control polygon. It is at these points that

successive polynomials connect. These polynomials are parametrically expressed as

a function of an independent variable t as follows:

X (t) = Ait2 + Bit + C ,i (3.8)

Y(t) = ANt2 + B 2 t + C2i (3.9)

Typically t is assumed to be in the range [0, 1] for each polynomial in order to

simplify the mathematics, but any range can be used. The procedure for solving for

the constants Ali, A2 , B1 i, etc., is outlined in Section C.5 of Appendix C. As with

the cubic spline, the B-spline is integrated numerically to yield an approximation to

the integral of the argument function f(x).

3.2.6 Gauss Quadrature

The Gauss-Legendre quadrature rule uses optimal abscissa distributions to yield

accurate approximations to integrals using about half as many sample points as sim-

ple Riemann sums such as the trapezoidal rule [30]. In the case of the Gauss rule, the

abscissas at which the argument function is to be sampled are the zeros of the Leg-

endre polynomials [24], and are therefore irrational numbers. Usually the weightings

on the ordinates are also irrational. The Gauss quadrature rule takes the form

n

f f(x) dx=Z if(xi)+ En (3.10)
1 i=1

The sampling points xi are the n zeros of the Legendre polynomial of degree

n, which all lie in the interval [-1, 1]. The argument function and the integration
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interval [a, b] can be linearly transformed to the interval [-1, 1] by the change of

variables

u=2( -a 1 (3.11)

The Legendre polynomials have the form

P,(X) = 2n! d- ( 2
2nn! dsn (3.12)

The wi, the weightings on the ordinates, are computed with any of the following

formulae [32, 30, 35]:

= (n +
2

(1 - X?)[P'(,)]
2 (3.13)

where P'(x) = -P(x).dxd~ n~ For the purposes of calculating values of the Legendre

polynomials, it is useful to use the recursion formula [30]:

Po(x)

P(x)

P2(X)

=1

= x

11 (3x' - 1)
2
2n + 1 m

- Pn(X) - Pn-(X)
n+l m+l

The error incurred by the use of the Gauss rule is

1 n

E. = f() dx - wi f(i)
1 i=1

and is given by [16, 30, 18, 35]:

22" +1 (n!)4

(2n + 1) [(2n)!]3

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)
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where f(2n)(X) is the 2n-th derivative of f( ) with respect to x, d2 (x).

To integrate curvature to yield slope it is necessary to integrate twice. The nu-

merical scheme must allow integration of the curvature over part of the interval in

order to obtain a function for the slope. This slope function can then be integrated

again to yield deflection. Unfortunately, the Gauss quadrature rule gives the integral

for the entire region. Therefore only tip slope can be calculated using this rule. No

deflection predictions can be made.

3.2.7 Radau Quadrature

Radau quadrature is a case of Gauss quadrature for which one of the abscissas

can be placed anywhere in the integration interval [-1, 1]. For this work, the fixed

abscissa will be at x = -1. Radau quadrature was included in this study because the

curvature at the tip of a cantilevered beam with no moment loading can be assumed

to be zero. Therefore the curvature measurement at the beam tip can be thought of

as being at a preassigned abscissa, since the curvature is known there. The equation

for the integral is modified and is given by [30]:

2Sf() d =- f(-1) + Ew f(xi) + E, (3.20)
(n + 1)2 i=1

where n is the number of abscissas not preassigned. Since the abscissa at x = -1 is

preassigned, there remain 2n - 1 variables that can be chosen freely. Thus, for (3.20)

to yield an exact estimate of the integral, f(x) must be a polynomial of degree 2n - 2

or less. The n abscissas located in the interior of the interval [-1, 1] are now the zeros

of the polynomials [30]:

On(X) = P,() + P, ()

= Pn(X) + Pn+ (X) (3.21)
1+x



where the Pi(x) are again the Legendre polynomials. The n weights wi are given by

the expression [30]:

1 1 - 2 1 1
w- (3.22)

(n + 1) 2 [Pn(x)]2  1 - x, [Pn(x2)]2

The error resulting from the use of the Radau quadrature scheme is given by [30]:

22+1 [n!]4
E, = n f(2n+[)(]), -1 < < 1 (3.23)

[(2n +1)!]

As with Gauss Quadrature, Radau Quadrature does not yield a running integral

of the numerical data being integrated. Rather, it gives the integral over the entire

interval in one step, and therefore can only be used to find the slope of a beam given

curvature measurements along it, and not the deflection.

3.2.8 Interpolation by Chebyshev Polynomials

The Chebyshev integration scheme consists of interpolating n data points by a

sum of the first n Chebyshev polynomials. Figure 3.6 shows the area calculated by

the Chebyshev scheme. The dashed line is the argument function f(x). The circles

are the points f(zx) at which the argument function is known. The solid line shows

the sum of the seven (in this case) Chebyshev polynomials that interpolate the 7

given points. It is the area under this curve that the Chebyshev scheme computes.

The Chebyshev polynomials have the form

T,(s) = cos(ncos- 1 (x))

110 Chapter 3. Numerical Integration Schemes
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a a+h a+2h a+3h a+4h a+5h b

The area the Chebyshev rule calculates. Circles: points at which the argu-
ment function f(x) is known; solid line: the sum of Chebyshev polynomials
that interpolates the given points f(xi); dashed line: the argument function

f(X).

The first five Chebyshev polynomials are

To(x) = 1

Ti(x) = x

T2(x) = 2x2 - 1

T3(x) = 4x 3 -3x

T4(X) =

(3.25)

8x4 - 8 2 + 1

For the n given points at which f(x) is known, a set of n simultaneous equations

can be written:
n

f(xi) = I pj T -1 (xi),
j=1

(3.26)

Figure 3.6:
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It is the n weightings pj we wish to find. The following matrix equation is obtained

from (3.26):

f = Tp (3.27)

where Tj = Tj_l(x 1). The solution is immediate when all the xi are distinct, and is

given simply by

p = T-if (3.28)

Once the weightings pi have been solved the following approximation for the func-

tion f(x) is formed:
n

f(x) f(X) = p i T(x) (3.29)
i=1

The approximate argument function f(x) is then integrated analytically over the

interval -1 < x < 1. For a known set of abscissas zx, the tip slope and deflection

can then be expressed simply as a weighted sum of the n discrete argument function

values ft = f(x 1 ).

3.3 Integration Rules as Global Shape Func-

tions

Thus far in this chapter, eight integration schemes have been presented, which

can be categorized as those which integrate by performing spatial interpolation over

part of the domain (midpoint, trapezoidal, Simpson's and B-spline rules), and those

which explicitly or implicitly fit polynomials to all the data in the domain, and then

are integrated (spline, Gauss, Radau and Chebyshev rules). The latter category can

be thought of as global shape functions, which have been fitted to the data. In this

section, it will be shown by example that the rules which interpolate over part of

the domain can also be interpreted as rules that fit global (but discontinuous) shape

functions to the data.
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0 Ax 3Ax

Figure 3.7: The midpoint rule applied to a beam with three sensors.

3.3.1 Midpoint Rule

Here it is shown how the midpoint rule can be represented by a global shape

function fitting procedure. A global, although not spatially continuous shape function

is formulated for each measurement point available in the integration interval. These

shape functions are then fitted to the sensor measurements, and then integrated

analytically.

It is assumed that there is an array of strain sensors distributed along the length

of a structure. In the example presented here, it will be assumed that there are three

strain sensors positioned at the center of three sections of length Az, as shown in

Figure 3.7. The three sensors measure the strains w"', wi' and wi'. The midpoint rule

assumes that the measured strains are constant over the entire region of length Ax

centered around each sensor, then the slope of the structure at the tip can be found

as:

wtip = [ + w' + w"] + wo  (3.30)

where w' is the slope of the structure at its root.

Global shape functions can also be used to obtain this result. The shape functions

are uniform over the interval Ax and zero elsewhere. In the case of obtaining a slope

113
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estimate from curvature measurements, they are:

1
Ax

2

0

0

1
0a

2

0

0

1
Ax

2

These are integrated analytically to yield:

x

A 2

1
Ax

0

1Ax

0

AX2(x - 2Ax)

The global shape functions and their integrals are shown in Figure 3.8. The

measured strains reported by the sensors can be expressed as a linear combination of

the global shape functions by using three generalized coordinates pi:

W'iW 1

II
w 2

II
W

3

,1,(A)
2

2 2a311 ( 5 A )
02

( )/ (AX)3 (2)

03

(3.37)

Pi

P2

P3

which is of the same form as (3.27).

(x)

'/( )

€0( )

=1
0<

Ax <

0

Az

2Ax

0

2Ax

Ax

3Ax

Ax

2Ax

3Ax

2Ax

3Ax

(3.31)

(3.32)

(3.33)

01 (X)

013 (X)
'2(2)

= 0<

AX <

0

AzX

2Ax

0

2Ax

Ax

3Ax

2Ax

3Ax

2Ax

3Ax

(3.34)

(3.35)

(3.36)
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1
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x 2dx 3c

............... .............. ............................
6a2 x 3dx

x x

x x

Figure 3.8: The global shape functions of the midpoint rule: (a) '~'(x); (b) qS(x).

The generalized coordinates pi can be found by matrix inversion:

Ao2

0 1

0 0

3 2 1,1/(3A ) W 113 2 2

w ('w i

w"2U

(3.38)

(3.39)

which is of the same form as (3.28).
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The generalized coordinates can then be used

structure at the sensor locations and at the tip of

wtip

wtip

q!(3Ax) q(3Az)

Pi
1 1 1

a I P2

P3

to find the estimated slope of the

the structure:

I(3A) ] P2 (3.40)

P3

1(3.41)

Equation (3.39) can

curvatures:

[t]ip

tip

now be used to solve for the tip slope in terms of the measured

I1
AX0

1 1 1 0
0

AX AX AX
0

0

1
A20

0

0

0

1

-1 -

2

I/w 3

S[Ax 'W" + AXw" '+AXw]1 2 3

(3.42)

(3.43)

After including the initial conditions at the root of the structure, we have:

w = aX [W' + 2' + w'] + Wo (3.44)

It can be seen that this expression corresponds exactly to (3.30). It has therefore

been shown that the midpoint rule can be derived by fitting the sensor measurements

to a set of simple global shape functions.

3.3.2 Trapezoidal Rule

Similar comparisons can be made between other rules and global shape functions.
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0 Ax 2 Ax

Figure 3.9: The trapezoidal rule applied to a beam with three sensors.

As a second example, the trapezoidal rule is investigated. It is assumed that three

sensors are used: a sensor is placed at each end, and one is placed at the center of

the structure, as shown in Figure 3.9. The strain profile assumed is also shown in

Figure 3.9. The slope of the structure at the tip can be found by the trapezoidal rule:

1
W ip -2 A[w" + 2w/' + wi'] + w~tip --- 2 (3.45)

where w' is the slope of the structure at its root.

As with the midpoint rule, global shape functions are now used to obtain the same

result. The shape functions used are triangular over the domain. For a slope estimate

based on curvature measurements, they are:

3"(X)

"(2) 1

0

0

0 < X < AX

Ax < x < 2Ax

o < X < AX

Ax < x < 2Ax

0<x <AX

Ax <x<2Ax

(3.46)

(3.47)

(3.48)
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A

dx /2 A 3d12 2dx
x
(.a)

, ) , ,

/ dx/2 3dx/2 2dx
x

(a)n ~? ............. .....

0

0 dx/2 dx 3d/2 2dx

2-

0

dx/2 & 3dx/2 2dx
x

(b)
2

0

0 dx/2 dx 3dx/2 2dx
x

. . (b)
2-

U 2 3~ 3dx 2 2dx

Figure 3.10: The global shape functions of the trapezoidal rule: (a) i'(x); (b) S(x).

These are integrated analytically to yield:

1 2( 2

1
2A x

0

0<z<Ax

Ax < x < 2Ax

0 < x < Ax

Ax < x < 2Ax

o < x < 2A

Ax < x < 2Ax

The global shape functions and their integrals are shown in Figure 3.10. The

measured strains reported by the sensors can be.expressed as a linear combination of
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the global shape functions by using three generalized coordinates Pi:

II

Wi
'I

2

11w 3

1"(0))

"1,(2Ax)

'(0)a

"(2Azx)

(o0)

3"(Az)

#"(2Az)

pl

P2

p3

(3.52)

The generalized coordinates pi can be found by matrix inversion:

€'(A)

"(2Ax)

0 1

0 0

"(Ax)

"2,(2Ax)
- -1

0

0

1

1(0)
3"(Ax)

0S(2Ax)

3

W 2

W I3"

I,Wi

1w"w2

I/W 3

(3.53)

(3.54)

The generalized coordinates can then be used to find the estimated slope of the

structure at the sensor locations (and the tip of the structure):

= [ (2Ax) 1 (2Ax) q1(2Ax) ]
Pi

= 1 1 P2

p3

(3.55)

(3.56)

Equation (3.54) can now be used to solve for the tip slope in terms of the measured
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strains:

1 1 - !

0 0 w 1

S0 0 w (3.57)
tzP 2Ax Ax 2Ax Y 2

wip = 1A Wi + A W + A W (3.58)

After including the initial conditions at the root of the structure, we have:

w/ =2 1A [wi + 2w/' + w'] + w1 (3.59)

It can be seen that this expression corresponds exactly to (3.45). It has therefore

been shown that the trapezoidal rule can be derived by fitting the sensor measure-

ments to a set of simple global shape functions. Similar comparisons can be made for

the Simpson and B-spline rules.

3.4 Structural Global Shape Functions

All the previously discussed integration rules can be reduced to a two step process:

fitting the shape function to the data; and integrating the shape function. An open

question remains: what other shape functions might be used in this process, which

would lead to a more accurate or easily applicable integration?

An obvious set of possible shape functions are the set of structural global shape

functions, some combination of the natural modes and static deformations due to

actuator or disturbance input. Such shape functions can incorporate the boundary

conditions appropriate to the structural geometry. Assuming an orthogonal set, we

can write an estimate of the strain as a linear combination of the assumed global
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shape functions '. (x) of the structure by using n constants pj:

) = 1, 3  (2)
j=1

(3.60)

Let the n sensors report curvature measurements w"(xi). For point sensors, centered

at x = x,, we can write

w"( ) = Zpj j(xi),

For sensors with a spatial weighting f(x), we instead write

n L
w"(x) = p- L

j=1

fi(x) $"(x) dz,

where fi(x) is the spatial weighting of the i-th sensor. Equations (3.61) and (3.62)

can both be written in matrix form as:

w" = ~"I p (3.63)

where, for point sensors, we have:

: = q~)(x;) (3.64)

and for spatially averaging sensors we have:

L

i - f X O0 s~ l\~/ Uu
(3.65)

If the number of shape functions is equal to the number of sensors, then the shape

coordinates pj can be determined by inversion:

p = [4"]-1 w"

(3.62)

121

(3.61)

(3.66)
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and the estimated strain W" from (3.60) can be integrated analytically to obtain the

slope and displacement. This will be referred to as the Global Static Shape Function

(GSSF) integration scheme when static shape functions are used as the "F(x), and

the Global Dynamic Shape Function (GDSF) integration scheme when the natural

modes of the structure are used as the 0"(x).

This procedure parallels the process of fitting Chebyshev polynomials, discussed

above in Section 3.2.8. Taking the points of interpolation within the interval to be

the the zeros of the Chebyshev polynomials will produce the best fit to an arbitrary

set of data. The advantage of the Chebyshev scheme is that no knowledge of the

structural deformation modes is required. However, to accurately model boundary

conditions, measurements are required at the structural boundaries. By compari-

son, the structural shape functions do not require end points, they incorporate the

boundary condition and potentially nonhomogeneous load introduction information

automatically, but require some (usually available) information to derive a priori.

Two global shape function integration schemes will be investigated. The first is

the Global Static Shape Function integration scheme (GSSF), which uses as many

global static shape functions as there are sensors. These static shape functions are the

deflection shapes of the structure for the seven static loads shown in Figure 4.2. When

more than seven sensors are used, and more than seven shape functions are required,

the natural dynamic mode shapes of the structure are used. The second global shape

function integration scheme is the Global Dynamic Shape Function integration scheme

(GDSF), which uses as many global dynamic mode shapes of the structure as there

are sensors.

A last alternative occurs when the number of assumed structural shape functions

is smaller than the number of sensors. In this case, the estimated shape is still given
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by (3.60), but the evaluation at a discrete location is, for point sensors:

W"( x,) p= j ), i = 1,... (m < n) (3.67)
j=1

and for spatially averaging sensors:

W"I(xi) =ZP I jf 1 (x W (x) dx, i = 1,.. n (m < n) (3.68)
j=1

For both these cases, the coordinates can be solved for by

p = ((T 4 )1 w (3.69)

the solution to which can be substituted into (3.60) and integrated analytically to

obtain slope and displacement information. Two integration schemes of this type are

investigated. The first is the Least Squares Global Static Shape Function integration

scheme using two shape functions with two or more sensors (LSGSSF-2). The two

shape functions used are the deflection shapes of the structure for the first two static

loading conditions shown in Figure 4.2. The second integration scheme is the Least

Squares Global Static Shape Function integration scheme using four shape functions

with four or more sensors (LSGSSF-4). The four shape functions used in this case

are the deflection shapes for the first four loadings shown in Figure 4.2

Ten methods for integration of strain sensors have been presented. The errors in-

troduced by these in estimation of static displacements will be presented in Chapter 4

and dynamic displacements in Chapter 5.
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Chapter 4

Accuracy of Integration Schemes
for Static Shape Estimation

In order to study the accuracy of the integration schemes described in Chapter 3,

for the estimation of the static deformations of a structure, a series of transverse

static loadings were applied to a clamped-free beam in a number of simulations.

It was assumed that the beam had an array of spatially averaging strain sensors

distributed along its length. The number of sensors as well as their spatial weighting

was varied in order to determine the number and type of sensors required to obtain

good displacement estimation performance. In order to calculate the displacement of

the beam, the curvature measured by the array of sensors was spatially integrated to

estimate the slope of the beam, and integrated once again to obtain an estimate of

the transverse displacement. Gage factor and sensor position errors were introduced

to model errors that would be observed in an experimental implementation. Finally,

a simple experiment was carried out in an attempt to verify some of the results of

the simulations.
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0 L/8 L/4 3L/8 L/2 5L/8 3L/4 7L/8 L

Figure 4.1: An array of 7 sensors mounted on a beam.

4.1 System Description

4.1.1 Beam Description

The beam was modeled as a uniform, clamped-free Bernoulli-Euler beam undergo-

ing small transverse displacements. A sensor array consisting of a varying number of

sensors was modeled. Different numbers of sensors were used to study the convergence

performance of the integration schemes. For Simpson's rule, 3, 5, 7, 9 and 11 sensors

were used to yield an even number of subdivisions of the integration interval. For all

other rules, 2, 4, 6, 8 and 10 sensors were employed. As an example, Figure 4.1 shows

how the sensors would be placed along the interior of the beam to form an array of 7

sensors.

The location of the center of the i-th sensor is then xi = iL/(n + 1) where n is the

number of sensors and L is the length of the beam. The single strain measurement

each sensors reports is used to calculate the lbcal beam curvature. The measured

curvature for each of sensors is assigned to the center of the sensor, located at xi.

All schemes except the Midpoint, Gauss, Radau and structural shape function



fitting rules require measurements at the end points of the integration interval, as

shown in Table 3.1. The end points of the interval correspond to the root and tip

of the beam. Since a complete sensor cannot be centered at the root of the beam,

the root curvature was extrapolated by fitting a parabola through the curvatures

measured by the first three sensors outboard of the root. This parabola was then

extrapolated to the root, and the curvature estimated there. The tip curvature was

simply assumed to be zero, as the beam force boundary conditions require.

Three types of sensors, of two different lengths were considered. In order to

compare the effect of measuring curvature at a discrete point with finite area av-

eraging sensors, point, rectangular and Bartlett (triangular) spatial weightings were

employed. Due to the low spatial frequency of the static loadings, it is expected that

Gauss-Hanning sensors will exhibit similar performance to Bartlett sensors. The point

sensor is modeled as having a delta function weighting, and extracts the value of the

curvature at the point where it is placed. The rectangular and Bartlett sensors are

assumed to be long enough to extend over the entire subdivision of length L/(n + 1).

4.1.2 Loading Functions

In order to induce transverse displacements to be estimated using the sensor array,

a set of seven representative loading functions was selected in order to model a generic

quasistatic loading situation. These seven loadings are shown in Figure 4.2

The first two loading functions ((a) and (b)) are a point load at the tip, and a

point load at the tip with another point load at the midspan, in the opposite direction.

These loadings give rise to displacements expressed as third order polynomials. These

loadings can be written as

pa(x) = P6S(-L), O<z<L (4.1)

Pb(x) = P6(-L)-PS(xz-L/2), O<x<L (4.2)
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P/L

0

P/L

0

0 L/2 L

(g)

P/L

0

0 L/2 L

0 L/2 L

--- -----

Figure 4.2: The set of 7 generic quasistatic beam loadings used to induce transverse
displacements to be estimated by a sensor array mounted on a clamped-free
beam.
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The third and fourth loadings ((c) and (d)) are uniform distributed rectangu-

lar loadings acting over either the entire beam or over the inner half of the beam.

These loadings give rise to displacements expressed as fourth order polynomials. The

loadings are given as

pc(X) =
P
L O<x<L

O<x<L0 < x < LPd(x)

(4.3)

(4.4)

where u(x) is the unit step function

1,
U(Z>) =

x>O

x<O
(4.5)

The fifth and sixth loadings ((e) and (f)) are distributed triangular loadings that

taper off linearly, ending at zero force per unit length either at the tip or at the

midspan of the beam. These loadings give rise to displacements expressed at fifth

order polynomials. The loadings are given by

p,(X)

p(x)

O<x<L (4.6)

(4.7)

The last loading (g) is

imum value and point of

displacement expressed as

a distributed symmetric parabolic loading with its max-

symmetry at the midspan. This loading gives rise to a

a sixth order polynomial. The loading is given by

4P ( (1- -, 0 < < L (4.8)Pf( ) =
L \, \ 1
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The curvature and displacement for these seven loadings are given by:

Ka(x)

Wa(x)

P
P (L - z)EI

1P= 6 EI (3 L - x)
6 El

/Ib(X)

Wb(X)
- 8x3 - 6L 2 x + L3

0 < x < L/2

L/2 < x < L

0 < z < L/2

), L/2 < x < L

1P1 2 (L - X)2

2 El
1P1 P__ 2 (6L2 - 4Lx + x2)

24 EI

0 < x < L/2

L/2 < x < L

0 < x < L/2

L/2 < x < L

1P
SE(L - x) 3

6 El

1 P 2(5LX2 - 10LL2 + 10L 3 - x3 )120 El

= i(x - L/2) 2 (2L - x),

0,

0 < x < L/2

L/2 < x < L

(4.9)

(4.10)

(4.11)

(4.12)

WC(x)

1d(X)

Wd(X)

(4.13)

(4.14)

(4.15)

(4.16)
8 22(22 - 4Lx + 3L 2 ),

1 P L 3 (8x - L)8_4 F

we(x)

1Xf( )

(4.17)

(4.18)

(4.19)

P(L - ),

'P(x - L/2) 2 ,



P 2( -2x $+ 10L2 - 15L 2 + 10L'), 0 < x < L/2
Wf(X) = (4.20)

1 PL (25x - 3L), L/2 < x < L

1 P
g() = 3L 2 E-(L - X)3 (L + x) (4.21)

1 P
wg(X) = 90L 2  (- 4 + 3Lx3 - 10L 3X + 15L 4 ) (4.22)

90L2 E

4.2 Simulation of Experimental Errors

There are two potential sources of inaccuracy in a physical implementation where

strain measurements are spatially integrated using a numerical integration scheme

to estimate deflection. The first is the absolute error introduced by the numerical

integration scheme itself, even when the outputs of the sensors are nominally perfect.

The other source of inaccuracy in the estimated shape is due to inaccuracies in the

measurements made by the sensors. In an effort to model the latter type of inaccuracy,

the numerical simulation of the measurement and spatial integration process included

simulated measurement uncertainties.

Such measurement uncertainties can be of two general types. The first type are

uncertainties that directly affect the magnitude of the measured strain, through un-

certainties or changes in the gain or gage factor of the sensors. The second type of

uncertainties are those that affect the integrated measurement due to uncertainties

in the effective location of the strain measurement. The modeling of these types of

error is now described.

4.2.1 Gage Factor Uncertainties

Gage factor uncertainties are introduced when the gain of the sensor is not ac-

curately known. Uncertainties in gage factor and distance of the sensor from the

4.2. Simulation of Experimental Errors 131
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centerline of a beam in bending affect the magnitude of the reported strain in a linear

manner. Angular misalignment of the sensor with respect to the longitudinal axis of

the structure affects the sensor output in a nonlinear manner.

Optimistic and more realistic uncertainty levels for this class of errors were consid-

ered and introduced in the numerical simulations. For the optimistic uncertainty level,

gage factor errors of up to +1% were used, while for the more realistic uncertainty

level, gage factor errors of up to ±5% were used. A uniform random distribution of

such uncertainties was assumed for each sensor. For example, in the case of +1%

gage factor uncertainty, each sensor was assigned a random gage factor in the interval

[0.99, 1.01] (±1%). The outputs of the sensors was then computed by multiplying the

actual curvature each sensor should measure by the random gage factor.

4.2.2 Sensor Placement Uncertainties

Uncertainties in the effective location of the strain measurement occur when the

longitudinal position of the sensor or its sensitive region is not accurately known.

These uncertainties can be introduced as fabrication errors, or by having a com-

plex sensitive grid, as in the case of a conventional strain gage. As with gage factor

uncertainties, optimistic and more realistic uncertainty levels were defined. For the

optimistic uncertainty level, sensor position uncertainties of up to ±0.2% of the length

of the beam were used. For the more realistic uncertainty level, sensor position uncer-

tainties of up to ±1% of the length of the beam were used. Again, a uniform random

distribution of such uncertainties was assumed for each sensor. For example, in the

case of the -0.2% sensor position uncertainty, each sensor was 'moved' longitudinally

from its original position by a random distance in the interval [-0.002L, 0.002L],

where L is the length of the beam. The outputs of the sensors were then computed

for the new positions of the sensors.



4.2.3 Error Computation

To quantify the first source of inaccuracy (the absolute error due only to the

integration scheme), an array of perfect sensors was simulated, and their outputs were

numerically integrated to estimate the tip slope and deflection. The absolute error of

the integration scheme is then the difference between the estimated tip deflection or

slope, and the theoretically calculated tip deflection or slope. Then; a Monte Carlo

scheme of hundreds of iterations was run for each of the two types of uncertainties

at both the optimistic and realistic levels. This was done for each integration scheme

and for each loading distribution. In this manner the standard deviation of the error

in estimated tip slope and deflection could be computed.

Values of both tip slope and deflection could be generated for 5 numbers of sen-

sors, 3 sensor types, 7 loadings and 6 integration rules, each for perfect sensors and

four types and levels of uncertainty. This amounts to over 6,000 values of tip slope

and displacement. In light of this, it was necessary to somehow reduce this wealth

of information and present it in a more compact manner. Thus, for each integration

scheme, sensor type and number of sensors, the absolute errors due only to the in-

tegration from the 7 individual loadings were combined as a root mean square error.

In addition, two different standard deviations of the error in estimated tip slope and

displacement were defined and computed. The first was representative of optimistic

sensors, with gage factor uncertainties of up to +1% combined with sensor position

uncertainties of up to +0.2% of the beam length. The second represented a more re-

alistic situation with sensors having gage factor uncertainties of up to +5% combined

with sensor position uncertainties of up to +1% of the beam length. Gage factor and

position uncertainties were combined by computing the square root of the sum of the

squares of the individual standard deviations, due only to gage factor uncertainty and

only sensor position uncertainty [12, 8].
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4.3 Performance of Integration Schemes

In the following sections, the performance of the integration schemes described in

Chapter 4 in estimating the quasistatic slope and deflection of a clamped-free beam

is presented. In Figures 4.3-4.26, the tip slope and tip deflection estimation error is

plotted as a function of the number of sensors employed in the interior of the beam.

The error is expressed as a percentage of the actual tip slope and tip deflection. Note

that deflection estimates cannot be obtained using the Gauss and Radau rules.

The performance of point, rectangular and Bartlett sensors are shown for all

integration schemes. The circles represent the absolute error incurred purely due to

the numerical integration scheme, with no gage factor or sensor position uncertainties

included. The two error bars above and below these points represent one standard

deviation for the optimistic and realistic error levels, respectively. In all cases the

smaller error bars indicate the optimistic uncertainty level, which will be referred to

as oo, and the larger error bars the more realistic, and higher uncertainty level, which

will be referred to as oa,.

4.3.1 Midpoint Rule

Figures 4.3(a), 4.4(a) and 4.5(a) show tip slope estimation errors observed with the

midpoint rule as the integration scheme, when using point, rectangular and Bartlett

sensors, respectively. It can be seen that when using 2 sensors, the tip slope estimation

errors are largest when using point sensors. Bartlett sensors yield slightly lower

errors, and rectangular gages yield the lowest errors. As the number of sensors is

increased, the error using the point sensors decreases rapidly, at about 1/n3 . In

fact, for 4 sensors, the point sensors give a lower tip slope estimation error (1.2%)

than the rectangular or Bartlett sensors. The error when using the Bartlett sensors

converges to zero more slowly, at about 1/n2 . Finally, the rectangular sensors yield

the slowest convergence rate: approximately 1/n. Thus, although the point sensors
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Figure 4.3: Accuracy of slope and displacement estimation using the Midpoint rule and
point sensors; (a) slope estimation error; (b) displacement estimation error.
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Figure 4.4: Accuracy of slope and displacement estimation using the Midpoint rule and
rectangular sensors; (a) slope estimation error; (b) displacement estimation
error.

give the highest errors for a small number of sensors, they make up for it with a faster

convergence rate. For 10 sensors, the point and rectangular sensors give the lowest

errors, at 0.38% and 0.33% respectively. The Bartlett sensors yield a larger tip slope

deflection error of 0.47%.

For the standard deviation of the tip slope estimation error, the point sensors

consistently give larger standard deviations than the rectangular and Bartlett sensors.

It will be shown that this is the case no matter what integration scheme is being used.
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Figure 4.5: Accuracy of slope and displacement estimation using the Midpoint rule and
Bartlett sensors; (a) slope estimation error; (b) displacement estimation
error.

The strain-averaging properties of the rectangular and Bartlett sensors filter out the

relatively high spatial frequency gage factor and sensor position uncertainties. It

can be seen that for the point sensors, the absolute error in tip slope estimation

is within a, of zero when using 4 or more sensors. With rectangular and Bartlett

sensors, 8 or more sensors need to be used.

Figures 4.3(b), 4.4(b) and 4.5(b) show tip deflection estimation errors obtained

with the midpoint rule as the integration scheme, when using point, rectangular and

Bartlett sensors, respectively. For tip deflection estimation, the point sensors give the

largest errors for 2 sensors, while rectangular sensors yield the highest errors for 4

and 6 sensors, and Bartlett sensors give the highest errors for 8 and 10 sensors. The

smallest errors for 4, 6 and 8 sensors are obtained by using point sensors, whereas

the lowest errors for 10 sensors are observed when using rectangular sensors. It can

be seen that in general, the absolute error due only to the integration rule converges

to zero relatively quickly, and is on the order of 1% for all three sensor types when 6

sensors are employed.

The standard deviation of the estimation error follows the same trend as for the
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slope estimation problem: it is largest for the point sensors, and up to 0.5% smaller

for the rectangular and Bartlett sensors. The standard deviation of the rectangular

sensors is slightly smaller than that of the Bartlett sensors, for all but 4 sensors.
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Figure 4.8: Accuracy of slope and displacement estimation using the trapezoidal rule
and Bartlett sensors; (a) slope estimation error; (b) displacement estima-
tion error.

4.3.2 Trapezoidal Rule

Figures 4.6(a), 4.7(a) and 4.8(a) show the tip slope estimation errors observed

with the trapezoidal rule as the integration scheme, when using point, rectangular

and Bartlett sensors, respectively. It can be seen that the best performance for 2

sensors is obtained when using rectangular sensors. Also, when using 10 sensors,

the rectangular sensors yield the best results. However, for an intermediate number

of sensors, the point sensors yield the best results. The error for the point sensors

exhibits approximately 1/n3 rolloff, while the Bartlett sensors yield only 1/n 2 rolloff,

and the rectangular sensors only 1/n rolloff. It is seen that using point sensors, the

tip slope estimation error is below 1% for 6 or more sensors. In contrast, 8 or more

sensors are needed to achieve less than 1% error when using rectangular or Bartlett

sensors.

For the standard deviation of the estimation error, it is larger for the point sensors,

and smaller and approximately the same for the rectangular and Bartlett sensors.

For the case of realistic uncertainties, the standard deviation of the error using point

sensors is about 0.2% higher than when using rectangular or Bartlett sensors.
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Figure 4.9: Accuracy of slope and displacement estimation using the Simpson's rule
and point sensors; (a) slope estimation error; (b) displacement estimation
error.

Figures 4.6(b), 4.7(b) and 4.8(b) show the tip deflection estimation errors obtained

with the trapezoidal rule for point, rectangular and Bartlett sensors, respectively. As

for slope estimation, for 2 sensors, the best performance and smallest estimation error

is obtained with rectangular sensors. Again, for 10 sensors, rectangular sensors yield

the lowest error. For an intermediate number of sensors along the structure, point

sensors again yield better results than Bartlett or rectangular sensors. The deflection

estimation error with point sensors exhibits approximately 1/n 4 rolloff, while Bartlett

sensors have 1/na rolloff and rectangular sensors 1/n 2 rolloff. These rates are exactly

1/n more than for slope estimation using the trapezoidal rule.

As expected, the standard deviation of the estimation error is consistently smaller

for rectangular and Bartlett sensors than for point sensors. However, this difference is

less pronounced than in the case of slope estimation. This could be due to the filtering

property of a second integration step used to obtain deflection estimates from slope

estimates.
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Figure 4.11: Accuracy of slope and displacement estimation using the Simpson's rule and
Bartlett sensors; (a) slope estimation error; (b) displacement estimation
error.

4.3.3 Simpson's Rule

Figures 4.9(a), 4.10(a) and 4.11(a) show the tip slope estimation errors exhibited

by Simpson's rule, when using point, rectangular and Bartlett sensors, respectively.

The best performance for few sensors is obtained with rectangular sensors, while point

sensors yield the best results for 7 or more sensors. Note that to use Simpson's rule,

an even number of subdivisions of the integration interval (the length of the structure
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in this case) must be used. Therefore, an odd number of sensors is required. For 10

sensors, the error in tip slope estimation with point sensors is a fraction of the error

obtained with rectangular and Bartlett sensors. All sensor types yield errors under

1% for 5 or more sensors, and for point sensors, the error is under 0.1% for 7 or more

sensors. The point sensors seem to yield an estimation error rolloff of 1/n4 , while the

rectangular sensors yield approximately 1/n 2 rolloff, and Bartlett sensors 1/n s5 rolloff.

It can be seen that the standard deviation of the error is smallest for rectangular

and Bartlett sensors due to their spatial filtering properties. This is more evident

as the number of sensors is decreased as this in turn increases the length of the

rectangular and Bartlett sensors in the array.

Figures 4.9(b), 4.10(b) and 4.11(b) show the tip deflection estimation errors ob-

served with Simpson's rule as the integration rule for point, rectangular and Bartlett

sensors, respectively. As with other integration rules, the rectangular sensors give the

lowest errors for few sensors. The error with point sensors decreases more rapidly and

yields the lowest errors for 7 or more sensors. For all sensor types, the error is below

0.5% for just 5 or more sensors. The standard deviation of the estimation error is

greater than 0.5% for any number of sensors, and reaches 1% or more for few sensors.

This indicates that while the performance of the sensors is excellent when no gage

factor or sensor placement uncertainty is included, it is overwhelmed by the standard

deviation of the estimation error when such uncertainties are included. It is clearly

more beneficial to improve the quality of the sensor manufacturing process, as well

as the accuracy of the measurement electronics in order to achieve an optimistic un-

certainty level in the sensors. For 11 or more sensors, even the optimistic uncertainty

level should be improved.

The standard deviation of the estimation error is higher for point sensors than for

rectangular or Bartlett sensors. For the optimistic uncertainty level, however, this

difference is not as marked, and is reversed in a few cases.
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Figure 4.12: Accuracy of slope and displacement estimation using the Cubic Spline inte-
gration scheme and point sensors; (a) slope estimation error; (b) displace-
ment estimation error.
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4.3.4 Cubic Spline Integration Scheme

Figures 4.12(a), 4.13(a) and 4.14(a) show the tip slope estimation errors exhibited

by the cubic interpolating spline rule, when using point, rectangular and Bartlett

sensors, respectively. As expected, the rectangular sensors yield the lowest errors

when employing few sensors. For an intermediate number of sensors, the lowest

errors are obtained with point sensors. However, for 10 sensors, it is actually the
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Figure 4.14: Accuracy of slope and displacement estimation using the Cubic Spline in-
tegration scheme and Bartlett sensors; (a) slope estimation error; (b) dis-
placement estimation error.

rectangular sensors that yield the lowest error, under 0.023%. This is due to the

very fast convergence of the scheme beyond 6 sensors. As the number of sensors is

increased from 6 to 8, the error drops by a factor of 5, and drops by another factor

of 4 as the number of sensors is increased to 10. The Bartlett sensors yield the best

performance for 4 sensors, but the error does not converge to zero quickly as the

number of sensors is increased. The errors are less than 1% for 4 sensors or more,

however.

It is clear that very few sensors are required before the accuracy of the integration

scheme is masked by the uncertainties present in a physical implementation. The

realistic standard deviation of the estimation error, a,, is more than 0.5% for all

three sensors types, for any number of sensors in the array. This standard deviation

is significantly smaller in the strain-averaging sensors than in the point sensors.

Figures 4.12(b), 4.13(b) and 4.14(b) show the tip deflection estimation errors

obtained with the spline rule, when using point, rectangular and Bartlett sensors,

respectively. The same trend as for slope estimates does not hold: rectangular sensors

yield the lowest errors for 2 sensors, but for 6 or more sensors, the point sensors exhibit
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Figure 4.15: Accuracy of slope and displacement estimation using the B-Spline integra-
tion scheme and point sensors; (a) slope estimation error; (b) displacement
estimation error.

the lowest errors. There is no rapid decrease in the tip deflection estimation error

between 8 and 10 sensors, like there is between 6 and 8 sensors, where the error

decreases by a factor of 6.5. As for slope estimation, the errors for all three sensor

types are less than 1% for 2 or more sensors. The point and Bartlett sensors yield an

improvement in estimation error of a factor of approximately 12.5 as the number of

sensors is increased from 2 to 4. In the case of slope estimation, the corresponding

improvement was by a factor of about 14.

The standard deviation of the estimation error is again larger for point sensors

than for rectangular or Bartlett sensors, but this difference is not as large as for some

of the other integration schemes.

4.3.5 B-Spline Integration Scheme

Figures 4.15(a), 4.16(a) and 4.17(a) show the tip slope estimation errors found

by using the B-spline integration rule with point, rectangular and Bartlett sensors,

respectively. It is immediately evident that while errors for few sensors are slightly

lower when using the B-spline rule than when using the cubic spline scheme, the
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Figure 4.17: Accuracy of slope and displacement estimation using the B-Spline integra-
tion scheme and Bartlett sensors; (a) slope estimation error; (b) displace-
ment estimation error.

convergence of the error for the B-spline rule is much slower. For example, 8 or more

sensors are required to obtain errors smaller than 1%, while only 4 are required with

the cubic spline rule. For 2 and 10 sensors, the lowest errors occur for rectangular

sensors, and for 4, 6 and 8 sensors, the point sensors yield the lowest errors.

The lowest standard deviation of the estimation errors occur for rectangular and

Bartlett sensors. The standard deviation of the point sensors is up to 0.3% larger
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Figure 4.18: Accuracy of slope estimation using the Gauss integration scheme and point
sensors.

than for rectangular or Bartlett sensors when employing only 2 or 4 sensors.

Figures 4.15(b), 4.16(b) and 4.17(b) show the tip deflection estimation errors that

the B-spline integration scheme yields for point, rectangular and Bartlett sensors,

respectively. The rectangular sensors give the lowest error for 2, 8 and 10 sensors.

For 4 and 6 sensors, it is the point sensors that yield the best results. However, as

with the slope estimates for the B-spline rule, the convergence of the error even for

the rectangular sensors is very slow. For comparison, the error for 10 point sensors is

0.53% for the B-spline integration rule, while it is only 0.02% for Simpson's rule. This

difference of a factor of 26 can be explained by noting that the B-spline curve does not

interpolate its control points. The curve is merely tangent at the midpoint of the lines

connecting two successive data points. This means that accurate representation of

the actual strain field in the structure is, in general, only possible when then number

of the sensors along the structure is large. In this case, it is more advantageous to

use a more accurate integration scheme. The B-spline rule also produces standard

deviations of the estimation error which are larger than for the cubic spline rule.
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Figure 4.20: Accuracy of slope estimation using the Gauss integration scheme and
Bartlett sensors.

4.3.6 Gauss Integration Scheme

Figures 4.18, 4.19 and 4.20 show the tip slope estimation errors observed with the

Gaussian quadrature integration scheme when using point, rectangular and Bartlett

sensors, respectively. It is interesting to note that the best performance is seen when

using point sensors, for any number of sensors distributed along the structure. The

Bartlett sensors yield the next lowest error, except for 10 sensors, where rectangular

sensors provide the next lowest error. It is also evident that the general error levels

144

4.

4.3. Performance of Integration Schemes 147

. ................ I ----. ----.. ...- ........ . ...---................ ------------------



148 Chapter 4. Accuracy of Integration Schemes for Static Shape Estimation

14

12

lo

S6

4

00 -------- .. .. ....... .. .... -----. -----------.. -------... ------... --- -------... ---. I .------ --------.-.

-2
2 4 6 8 10 12

Number of sensors

Figure 4.21: Accuracy of slope estimation using the Radau integration scheme and point
sensors.

are very low compared to other integration schemes. This is especially evident for the

point sensors, where the error for 2 or more sensors is below 1%. For point sensors,

the absolute error due only to the integration rule is less than the standard deviation

of the estimation error, for 2 or more sensors. For rectangular and Bartlett sensors, 4

or more sensors are required for this to be true. This shows that it is more beneficial

to improve the accuracy of the sensors in order to lower the standard deviation of the

estimation error, than to lower the absolute error introduced by the integration rule

by increasing the number of sensors.

As for the other integration rules, the standard deviation of the estimation error

is higher for point sensors than for rectangular and Bartlett sensors.

4.3.7 Radau Integration Scheme

Figures 4.21, 4.22 and 4.23 show the tip slope estimation errors exhibited by the

Radau quadrature rule using point, rectangular and Bartlett sensors, respectively. For

Radau quadrature, the lowest estimation errors are again obtained using point sensors.

The next to lowest errors are obtained using Bartlett sensors. The absolute errors

due only to the integration rule are approximately the same as for Gauss quadrature.
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Figure 4.23: Accuracy of slope estimation using the Radau integration scheme and
Bartlett sensors.

As with Gauss quadrature, the absolute error obtained with point sensors is smaller

than the standard deviation of the estimation error for the realistic uncertainty level,

even for just 2 sensors. Again, the accuracy of the individual sensors should be

improved before using a large number of sensors in the sensor array. For rectangular

and Bartlett sensors, this occurs for 4 or more sensors.

The standard deviation of the estimation error for the realistic uncertainty level

is largest for point sensors, and approximately the same for rectangular and Bartlett
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-
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Accuracy of slope and displacement estimation using the Chebyshev inte-
gration scheme and point sensors; (a) slope estimation error; (b) displace-
ment estimation error.
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Figure 4.25: Accuracy of slope and displacement estimation using the Chebyshev
tegration scheme and rectangular sensors; (a) slope estimation error;
displacement estimation error.
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sensors. However, the standard deviations for all three sensor types are smaller for

the Radau quadrature scheme than they are for the Gauss quadrature rule.

4.3.8 Chebyshev Integration Scheme

Figures 4.24(a), 4.25(a) and 4.26(a) show the tip slope estimation errors exhibited

by the Chebyshev interpolation integration rule when using point, rectangular and
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Figure 4.26: Accuracy of slope and displacement estimation using the Chebyshev inte-
gration scheme and Bartlett sensors; (a) slope estimation error; (b) dis-
placement estimation error.

Bartlett sensors, respectively. For 2 sensors, rectangular sensors yield the lowest

errors, while for intermediate and large numbers of sensors, point sensors give the

lowest estimation errors. The estimation error is less than 1% for 4 sensors or more

for all three sensor types. The estimation error is also less than the standard deviation

of the error for realistic uncertainty levels. Thus, to improve the performance of a

real system with 4 sensors, the accuracy of the sensors should be improved before

additional sensors are added.

The standard deviation of the estimation error is smaller for the rectangular and

Bartlett sensors than for the point sensors. Also, for all three sensor types, the

standard deviation of the estimation error is larger for 10 sensors than for 8 sensors.

This could be due to the fact that the interpolating polynomial is of such high order

that its shape is very sensitive to small changes in the positions of the data points it

interpolates.

Figures 4.24(b), 4.25(b) and 4.26(b) show the tip deflection estimation errors ob-

served by the Chebyshev integration rule when using point, rectangular and Bartlett

sensors, respectively. As for the problem of slope estimation, when employing 2 sen-



152 Chapter 4. Accuracy of Integration Schemes for Static Shape Estimation

sors, the lowest errors are found to occur when using rectangular sensors. However,

for nearly all other cases, it is the Bartlett sensors that give the lowest errors. Con-

vergence for the integration scheme is fast, and the absolute error due only to the

integration scheme is smaller than the standard deviation of the estimation error,

~., for 4 or more sensors. This standard deviation is higher for point sensors than

for rectangular or Bartlett sensors. It is interesting to see the marked increase in

the standard deviation of the estimation error as the number of sensors is increased

from 8 to 10. As for the case of slope estimation, this is probably due to the high

sensitivity of the high order interpolating polynomial to the position of the data point

to be interpolated.

4.3.9 Global Static Shape Function Rule

Figures 4.27 and 4.28 show the tip deflection estimation errors observed when using

the Global Static Shape Function integration rule with point, rectangular and Bartlett

sensors. As with most of the other schemes, for 2 sensors, the lowest tip deflection

estimation error, which is less than 1%, is observed using rectangular sensors. This

error decreases rapidly as the number of sensors is increased, and is identically zero

for 8 or more sensors. This is because the shape functions used correspond exactly

to the 7 deflection shapes exhibited by the beam under application of the 7 static

loadings shown in Figure 4.2. For 4 or more sensors, the next to lowest errors are

obtained with Bartlett sensors, which exhibit errors which are higher than those for

point sensors, but lower than those for rectangular sensors.

In general the standard deviation of the tip deflection estimation error is much

lower than for all the integration schemes introduced earlier, for all three sensor types.

This indicates that the Global Static Shape Function integration scheme is much more

robust to uncertainties in sensor gage factor and placement. The standard deviation

of the error generally decreases as more sensors are added, indicating that sensor
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Figure 4.27: Accuracy of displacement estimation using the Global Static Shape Func-
tion integration scheme with point and rectangular sensors.
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Figure 4.28: Accuracy of displacement estimation using the Global
tion integration scheme with Bartlett sensors.

Static Shape Func-

uncertainties impact the displacement estimate less as more sensors, and consequently

more shape functions, are used.

4.3.10 Global Dynamic Shape Function Rule

Figures 4.29 and 4.30 show the tip deflection estimation errors observed when

using the Global Dynamic Shape Function integration rule with point, rectangular

and Bartlett sensors. The general trends in the tip deflection estimation error are

similar to those for the Global Static Shape Function integration rule. For 2 sensors,

10 12
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Figure 4.29: Accuracy of displacement estimation using the Global Dynamic Shape
Function integration scheme with point and rectangular sensors.
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Figure 4.30: Accuracy of displacement estimation using the Global Dynamic Shape
Function integration scheme with Bartlett sensors.

the lowest error can be obtained with rectangular sensors. This error, although larger

than for the GSSF integration scheme, is less than 2%. For more than 2 sensors,

the lowest estimation errors are obtained when using point sensors. The errors are

very low, and show that even the dynamic beam mode shapes can be used to fit to

sensor measurements obtained under static beam loading. In fact, the first dynamic

clamped-free beam mode is very similar to the static beam deflection shape for a

tip or distributed load. As with the GSSF scheme, the standard deviation of the

tip displacement estimation error for the Global Dynamic Shape Function scheme is
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Figure 4.31: Accuracy of displacement estimation using the Least Squares Global Static
Shape Function integration scheme with point and rectangular sensors, and
two shape functions.
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Figure 4.32: Accuracy of displacement estimation using the Least Squares Global Static
Shape Function integration scheme with Bartlett sensors, and two shape
functions.

much lower than for any of the other integration schemes. For 2 sensors, the lowest

standard deviation in the error is obtained with rectangular sensors, while for more

than 2 sensors, the standard deviations for the three sensor types differ little.
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4.3.11 Least Squares Global Static Shape Function Rule

Figures 4.31 and 4.32 show the tip deflection estimation errors observed when

using the Least Squares Global Static Shape Fu:nction integration rule with point,

rectangular and Bartlett sensors, and two shape functions. For 2 sensors, the Least

Squares Global Static Shape Function 2 scheme yields exactly the same tip displace-

ment estimation error as the GSSF scheme since both fit the same two global static

shape functions to the outputs of two identically placed outputs. However, for more

than two sensors, the LSGSSF-2 scheme fits the same two shape functions to the

outputs of the sensors in a least squares sense. Although this means that the scheme

has limited flexibility in trying to fit the two shape functions to the sensor outputs,

we find that it offers very good performance for 4 or more sensors. Rectangular sen-

sors yield the lowest errors, which are less than 1% for 4 or more sensors. Point and

Bartlett sensors also yield errors less than 1%, but require 6 or more sensors to do so.

The LSGSSF-2 scheme also shows increased robustness to sensor uncertainties, com-

pared with integration schemes that do not fit structural shape functions to sensor

outputs.

Figures 4.33 and 4.34, show the tip deflection estimation errors observed when

using the Least Squares Global Static Shape Function integration rule with point,

rectangular and Bartlett sensors, and four shape functions. For 4 sensors, the Least

Squares Global Static Shape Function 4 scheme yields exactly the same tip displace-

ment estimation error as for the regular GSSF scheme. For point sensors, excellent

performance is achieved with this scheme. Performance is slightly worse when rect-

angular or Bartlett sensors are used, but the estimation errors are less than 1% for

any number of sensors. The standard deviations of the estimation errors are compa-

rable to those obtained with the other structural shape function fitting schemes, and

significantly smaller than for the other integration rules.
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Accuracy of displacement estimation using the Least Squares Global Static
Shape Function integration scheme with point and rectangular sensors, and
four shape functions.
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Accuracy of displacement estimation using the Least Squares Global Static
Shape Function integration scheme with Bartlett sensors, and four shape
functions.

4.4 Conclusions

In general, relatively few sensors are required to obtain good estimation perfor-

mance with the selected set of integration schemes. It is to be noted, however, that

the static shapes being estimated have long wavelengths compared to the length of

the structure. All of the schemes have the property that the estimation error con-

verges quite quickly towards zero. Table 4.1 shows the minimum number of sensors

14.
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Table 4.1: Minimum number of sensors required to insure that the absolute error due
only to the integration rule error is less than 1%. Note that the Gauss and
Radau rules cannot be used to obtain deflection estimates.

Slope Estimation Deflection Estimation

Integration Point Rectangular Bartlett Point Rectangular Bartlett
Rule Sensors Sensors Sensors Sensors Sensors Sensors

Midpoint 6 8 8 8 8 8

Trapezoidal 6 8 8 6 6 4

Simpson's 5 5 5 5 5 5

Spline 4 4 4 4 4 4

B-Spline 8 8 10 8 8 8

Gauss 2 4 4 N/A N/A N/A

Radau 4 4 4 N/A N/A N/A

Chebyshev 4 4 4 4 4 4

GSSF - - - 4 2 4

GDSF - - - 4 4 4

LSGSSF-2 - - - 4 2 4

LSGSSF-4 - - - 4 4 4

required for the absolute error due only to the integration schemes to decrease be-

low 1%. It is seen that the GSSF and LSGSSF-2 schemes exhibit tip displacement

estimation errors less than 1% using only 2 sensors. As more accurate schemes are

used and their convergence rates increase, the minimum number of sensors required

to make the absolute error due only to the integration scheme less than the standard

deviation of the estimation error, decreases dramatically. This is seen in Table 4.2

for the standard deviation of the error due to realistic uncertainty levels, a,.

The Gauss and Radau schemes have good accuracy, but they both require exact
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Table 4.2: Minimum number of sensors required to insure that the absolute error due
only to the integration rule error less than one standard deviation due to
realistic uncertainty levels. Note that the Gauss and Radau rules cannot
be used to obtain deflection estimates.

Slope Estimation Deflection Estimation

Integration Point Rectangular Bartlett Point Rectangular Bartlett
Rule Sensors Sensors Sensors Sensors Sensors Sensors

Midpoint 4 8 8 6 8 8

Trapezoidal 6 8 8 4 6 6

Simpson's 5 5 5 5 5 5

Spline 4 4 4 4 4 4

B-Spline 8 8 10 6 8 8

Gauss 2 4 4 N/A N/A N/A

Radau 2 4 4 N/A N/A N/A

Chebyshev 4 4 4 4 4 4

GSSF - - - 4 8 8

GDSF - - - 8 10 8

LSGSSF-2 - - - 10 4 8

LSGSSF-4 - - 4 10 6

placement of sensors, and cannot be used to obtain a second integral, as they do not

provide running values of the integral. In addition, the extrapolation of these schemes

to more complicated domains is problematic. Thus the Gauss and Radau rules are

excluded from further consideration as practical integration schemes.

The second order B-spline rule in general has lower accuracy than the cubic in-

terpolating spline. Since the only advantage it offers is that it is simpler to compute

than the cubic spline, it will also be excluded from further consideration.

4.4. Conclusions 159
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The trapezoidal rule is noticeably better than the midpoint rule on the second

integration step, for displacement estimation, although they both offer similar perfor-

mance for slope estimation. Therefore, we retain the trapezoidal rule as the favored

of the two, but do not discard midpoint from further consideration.

Simpson's rule outperforms the trapezoidal rule in slope and deflection estimation.

However, Simpson's rule has constraints on the number and placement of sensors

which make generalization problematic. Thus Simpson's rule is also excluded from

further consideration.

The global shape function fitting integration schemes offer excellent performance

because they fit displacement shapes that correspond to actual beam deformation

shapes, and thus incorporate the root and tip boundary conditions automatically. In

addition, there are no sensor placement requirements, and root and tip measurements

are not required.

The exclusion of some of the integration schemes leaves the trapezoidal, cubic

interpolating spline, Chebyshev and global shape function fitting rules. For these

remaining rules, only about 4 sensors are required for the absolute error due only to

the integration scheme to fall below 1% for both slope and deflection estimation.

For the sensor uncertainty, it is seen that in general, it affects all the ordinary

integration rules in approximately the same manner. For the global shape function

schemes, however, the effect on the tip deflection estimation error is reduced signif-

icantly. In general there is a very slight decrease in the standard deviation of the

estimation error due to optimistic and realistic uncertainty levels as the number of

sensors is increased. However, there is no consistent or noticeable change in the

standard deviation of the error from rule to rule.

For the trapezoidal, cubic spline and Chebyshev integration schemes, only about 4

sensors are required to guarantee that the estimation error due only to the integration



rule is comparable to the standard deviation of the estimation error due to realistic

uncertainties in the sensors.

It can be seen that there is some sensitivity of the standard deviation of the

estimation error to the spatial weighting of the sensors. The standard deviation

of the error is in fact smaller when using the rectangular and Bartlett (triangular)

sensors than when using the point sensors. The strain-averaging properties of the

rectangular and Bartlett sensors filter out the relatively high spatial frequency gage

factor and sensor position uncertainty effects.

To achieve the best accuracy, for small numbers of sensors (2), it is advisable to

use rectangular sensors. For an intermediate number of sensors (4 or 6), the accuracy

is approximately the same for all three sensor types. At higher numbers of sensors

(8 or 10), the point sensors offer the best accuracy, although they suffer from higher

standard deviations in the estimation error due to sensor uncertainties.

In summary, 4 sensors are in general enough to achieve good performance, with

tip slope and deflection estimation errors well under 5%. In fact, the estimation errors

for 4 sensors are actually under 1% for the cubic spline, Gauss, Radau, Chebyshev

and all global shape function fitting schemes. Thus the estimation error quickly drops

below ,, one standard deviation of the estimation error due to realistic uncertainty

levels.

4.5 Beam Experiment

An experiment was conducted to experimentally correlate with the results of the

simulations conducted and discussed above. Sets of distributed, surface mounted re-

sistive foil strain gages were used to provide discrete curvature measurements along

the length of two cantilevered aluminum beams. The performance of various numer-

ical integration algorithms in predicting the tip displacement was investigated. In

1614.5. Beam Experiment
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addition, theoretical curvature values with simulated measurement uncertainties are

calculated and used to estimate tip displacement and the standard deviation of the

tip displacement error due to measurement uncertainties. It is then possible to see

whether the experimental errors encountered fall within one standard deviation of the

absolute estimation error due only to the integration rule as found by numerical sim-

ulation. The more realistic assumptions of 5% gage factor uncertainty and 1% gage

position uncertainty were assumed. This corresponds to the more realistic uncer-

tainty level described earlier. Midpoint, trapezoidal, Simpson, spline, and Chebyshev

integration methods were used to process both the simulated measurements and ex-

perimental curvature data since they were identified in Section 4.4 above as the ones

to continue to examine.

Two thin beams of 2024 aluminum were fabricated for these tests. The beams were

33.35 cm long (13.2 inches), 2.54 cm wide (1 inch), and 0.787 mm thick (0.031 inches).

They were divided into five sections of equal length, and each had a strain gage

mounted at the center of each section. Gages were mounted symmetrically on both

sides of the beams. One beam used very short gages which simulated point measure-

ments. These gages were WA series 500 GB resistive foil gages with a grid 15.75 mm

long (0.62 inches). The other beam used much longer gages which simulated measure-

ments made by a rectangular sensor. These gages were 20 CBW resistive foil gages

with a grid 2.25 inches long.

The beams were clamped in a machined block, and in the first case a tip dis-

placement was applied using a micrometer. A schematic for this test is shown in

Figure 4.35 for the beam with short sensors. In the second case a tip displacement

was again applied, but the midspan of the beam was constrained to have zero deflec-

tion. A schematic for this test is shown in Figure 4.36 for the beam with long sensors.

Tip displacements of 7.62 mm (0.3 inches), 15.24 mm (0.6 inches), and 22.86 mm

(0.9 inches) were applied to the beams for both configurations. Each gage on the top
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Figure 4.35: Beam with short gages, under applied tip deflection.

Figure 4.36: Beam with long gages, under applied tip deflection with midspan constraint.

4.5. Beam Experiment
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Table 4.3:

Table 4.4:

Experimental error, simulated absolute error and standard deviation of the
error in tip displacement estimation for a cantilevered beam with point
gages for an applied tip displacement.

Experimental error, simulated absolute error and standard deviation
error in tip displacement estimation for a cantilevered beam with
gages for an applied tip displacement with midspan constraint.

of the
point

surface and the corresponding one on the bottom surface were wired in a half bridge

configuration.

The experimental outputs of the strain gages yielded measurements of curvature

along the length of the beam. This data was integrated twice numerically in order to

Tip Displacement

Integration Simulated Simulated Experimental
Scheme Absolute Standard Error

Error Deviation

Midpoint 1.44% 2.06% 3.08%

Trapezoidal 0.84% 1.82% 2.46%

Simpson 0.00% 1.76% 1.65%

Spline 0.01% 1.87% 1.66%

Chebyshev 0.01% 1.82% 1.67%

Tip Displacement
with midspan constraint

Integration Simulated Simulated Experimental
Scheme Absolute Standard Error

Error Deviation

Midpoint -8.37% 3.74% -10.45%

Trapezoidal -0.49% 2.83% -1.99%

Simpson -10.84% 3.10% -12.29%

Spline -5.07% 2.63% -6.89%

Chebyshev -3.93% 2.84% -6.49%



4.5. Beam Experiment 165

Experimental error, simulated absolute error and standard deviation of the
error in tip displacement estimation for a cantilevered beam with rectan-
gular gages for an applied tip displacement.

Experimental error, simulated absolute error and standard deviation of the
error in tip displacement estimation for a cantilevered beam with rectan-
gular gages for an applied tip displacement with midspan constraint.

Table 4.5:

Table 4.6:

Tip Displacement

Integration Simulated Simulated Experimental
Scheme Absolute Standard Error

Error Deviation

Midpoint -0.08% 2.40% -3.42%

Trapezoidal 0.76% 2.68% -0.21%

Simpson -0.03% 2.57% -1.30%

Spline -0.01% 2.54% -1.38%

Chebyshev -0.02% 2.74% -1.66%

Tip Displacement
with midspan constraint

Integration Simulated Simulated Experimental
Scheme Absolute Standard Error

Error Deviation

Midpoint -25.81% 3.85% -29.51%

Trapezoidal 5.88% 3.56% 19.15%

Simpson 0.76% 3.18% 9.14%

Spline 2.49% 2.98% 10.68%

Chebyshev -3.38% 4.00% 13.24%

4.5. Beam Experiment 165
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estimate the tip displacement. The experimental error is defined as the error between

this estimate and the actual applied tip displacement.

The theoretical outputs of the gages were calculated by knowing the applied tip

displacement and the beam configuration. Simulated gage factor uncertainties of up

to ±5% and gage placement uncertainties of up to ±1% of the length of the beam

were used. The errors due to gage factor and gage position uncertainties are combined

with the theoretical outputs of the gages. These were integrated numerically and the

simulated tip displacement was calculated. The simulated error is defined as the error

between the simulated experimental tip displacement and the actual tip displacement.

Results comparing displacement prediction errors of integrating the experimental

curvature data to the error bounds simulated theoretically are shown for the beam

with point gages in Table 4.3 for the simple cantilevered beam, and in Table 4.4 for

the cantilevered beam with its midspan constrained to have zero deflection. Tables 4.5

and 4.6 show the corresponding information for the beam with rectangular gages.

The experimental errors are compared with the simulated error bounds to see

whether the experimental errors actually encountered fell within one standard devia-

tion of the modeled absolute error. It can be seen from Table 4.3, that for point gages

and tip displacement, this is the case for all integration schemes. In Table 4.4, we see

that for point gages and tip displacement with midspan constrained, the experimental

errors are again bounded by the simulated errors.

For the rectangular gages and tip displacement, we see in Table 4.5 that the

simulated errors bound the experimental ones for all but the Midpoint rule. For

rectangular gages and tip displacement of the beam with its midspan constrained, we

see from Table 4.6 that the experimental errors are bounded by the simulated ones for

the Midpoint rule only. The simulated errors badly underestimate the experimentally

observed errors for the other four rules.



Since the beams are very thin (0.787 mm), it is very difficult to accurately estimate

the distance between the elastic axis of the beam and the foil of the gage. In fact,

an error of one thousandth of an inch in distance from centerline generates an error

of approximately 6.5% in measured curvature. Errors of this magnitude are easy

to introduce because of the uncertainty concerning the height of the adhesivd layer

between the surface of the beam and the gages. Additional errors can be introduced

due to uncertainty about the distance between the bottom surface of the gage and

the location of the foil.

In conclusion, it has been shown that the observed experimental tip deflection

estimation errors are in most cases within one standard deviation of the absolute

estimation error due only to the integration rule used. This absolute estimation error

was calculated by integrating the theoretical outputs of the sensors and introducing

gage factor and sensor position uncertainties. These uncertainties model those which

are likely to be present in any physical implementation.

4.5. Beam Experiment 167
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Chapter 5

Estimation of the Dynamic
Mode Shapes of Beams

In this chapter, the performance of an array of spatially averaging strain sensors in

estimating the dynamic mode shapes of a pinned-pinned and a clamped-free beam is

investigated. This is accomplished by simulating the theoretical strain measurements

made by the sensors. In all the simulations it is assumed that there are 9 sensors

equally spaced in the interior of the beam, such that the i-th sensor is centered

around the point iL/10 where L is the length of the beam. Additional sensors near

the root are employed for the clamped-free beam in order to perform more accurate

root curvature estimation.

5.1 Simulation Results for a Pinned-Pinned

Beam

The performance of a sensor array mounted on a pinned-pinned beam with purely

sinusoidal mode shapes is investigated first. A typical sensor array is shown in Fig-

ure 5.1. It is assumed that there are 9 equally spaced sensors in the array, and that

boundary sensors are truncated by the folding method described in Chapter 2. It was

169
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Figure 5.1: A typical array of 9 sensors mounted on a pinned-pinned beam.

shown that sensors truncated in this fashion retain the properties of the correspond-

ing untruncated sensor because the strain field for any mode of a pinned-pinned beam

is purely sinusoidal and the point of symmetry of the strain field is at the root of the

beam. The lengths of the sensors are all equal and set such that they begin to roll

off at the spatial frequency corresponding to the third dynamic mode of the beam,

except the Gauss-Hanning sensor, whose length was set such that it began to roll off

at the fourth mode.

The displacement, slope and curvature fields for the dynamic modes of a pinned-

pinned beam are given by:

L m7x
w() = sin (5.1)x/L L

dwl(r) .m M

where m is the Gauss-Hamode number, L is the beam length, w(z) is the deit bection, d()roll offd

is the slope, and x(x) is the curvature of the beam. The slope is normalized to be

unity at the root of the beam for any mode number m.

The trapezoidal, Simpson, cubic spline and Chebyshev integration schemes were
The trapezoidal, Simpson, cubic spline and Chebyshev integration schemes were



used to integrate curvature measurements made by the sensors in order to estimate

the tip deflection, which should be zero for all modes. It is assumed that the curvature

is zero at the root and tip of the beam. The initial slope of unity at the root of the

beam is supplied to each integration scheme as an initial condition. The error between

the estimated tip deflection and the actual displacement (zero) is found. This error

is given by:

Lt (5.4)
L

where Cvtip is the estimated tip deflection. This error should be as close to zero as

possible for low mode numbers indicating that accurate shape estimation is being

performed. As the mode number is increased, however, this error should approach

100%. This is because as the mode number of the beam is increased, the outputs

of the sensors should approach zero because their outputs should be rolling off with

the increasing spatial frequency. Thus each integration scheme will only integrate the

unity initial slope condition given at the root of the beam, and it will obtain itip = L.

The effective observability of the sensor array is defined as:

0 = 1 - E = 1 - Wtip (5.5)
L

The observability should be unity for low mode numbers m, and approach zero as

the mode number is increased, due to the rolloff exhibited by the sensors.

5.1.1 Point Sensors

Figure 5.2 shows the tip deflection estimation error as a percentage of the length

of the beam for an array of point sensors, using the trapezoidal, Simpson, cubic spline

and Chebyshev integration schemes to integrate the sensor measurements to obtain

an estimate of the tip displacement. Figure 5.3 shows the observability as defined

in (5.5) for the case of trapezoidal integration.

5.1. Simulation Results for a Pinned-Pinned Beam 171
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Figure 5.2: Tip deflection estimation error for pinned-pinned beam using point sensors
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For trapezoidal integration, for low mode numbers, the tip deflection estimation

error is very close to zero, for all the other integration schemes. This behavior satisfies

Functional Requirement #4 by accurately observing the low order dynamic mode

shapes. The observability is correspondingly near unity for low mode numbers. As the

mode number is increased, the error approaches 100% and the observability decreases.

When the mode number is increased to 10, spatial aliasing of the sensors occurs,

and they each exhibit zero output. Thus the observability drops to zero, and the

error is 100%. As the mode number is increased beyond this aliasing frequency, the

error increases dramatically to approximately 2000% at mode 19. At mode 20, twice

the aliasing frequency, aliasing again occurs, and all sensor outputs are zero. This

behavior is exhibited at every mode number which is an integer multiple of the aliasing

mode number.

For Simpson's rule, the low order modes are again estimated accurately. As the

mode number is increased, however, the estimation error begins to decrease. For

mode 9, the error is less than -200%, and for the aliasing frequency of mode 10,

it is exactly 100% because all sensor outputs are identically zero. Beyond the local

maximum of 490% in the error at mode 11, the error decreases slightly, reaching

a local minimum at mode 13. The error then rises steeply, reaching about 2000%

at mode 19, as with trapezoidal integration. For higher mode numbers, the error

envelope increases, and the swings between positive and negative errors that occur at

multiples of twice the aliasing frequency become more severe.

For the cubic spline integration scheme, the low mode number behavior seen with

trapezoidal and Simpson integration is detected. For larger errors, the behavior is

similar to Simpson's rule, except that the sharp swings at modes 9 and 11, and

modes 29 and 31 have been smoothed. The error envelope is practically identical to

the trapezoidal and Simpson schemes.

For the Chebyshev scheme, we see good estimation for modes 1 through 5, with

1735.1. Simulation Results for a Pinned-Pinned Beam
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the error falling to about -25% at mode 5. As the mode number is increased to 7,

the error increases to about 650%. For even higher modes, the error swings wildly

about zero, clearly yielding the most unstable output of the four integration schemes

investigated.

In comparing the four integration schemes, it is clear that the most stable error

behavior is obtained with the trapezoidal scheme. It can also be seen that the long-

term behavior of the observability envelope shows an increase in magnitude which is

linear with mode number. Equation (5.3) shows that the maximum curvature also

increases linearly with mode number m. It is therefore clear that the outputs of the

individual sensors are not decreasing as the spatial frequency of the strain field is

increased. This behavior violates Functional Requirements #5 and #6.

5.1.2 Rectangular Sensors

Figure 5.4 shows the tip deflection estimation error for an array of rectangular

spatially filtering sensors, using the trapezoidal, Simpson, cubic spline and Chebyshev

integration schemes. Figure 5.5 shows the observability of the sensor array for the

trapezoidal scheme only.

For the trapezoidal integration scheme, as in the case of point sensors, the error is

close to zero for low mode numbers, but increases more rapidly, reaching 100% at only

mode 5. Beyond this mode number, the error overshoots 100% slightly, but returns

to approximately 100% by mode 10. This is shown in the plot of observability, as it

decreases to about 10-3 at mode 10. In contrast to the point sensors, the observability

does not drop to zero at this aliasing frequency because the sensors are reporting a

filtered strain measurement from a wider area of the structure. However, unstable

behavior can be seen in the error at modes 21, 39 and 40, where the magnitude of

the error is very large.

For Simpson's rule, we see behavior similar to that obtained with the trapezoidal
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error, but many swings above and below the 100% line are magnified by up to a factor

of 2. It is evident that aliasing again occurs for mode numbers that are a multiple

of 10, and that performance is not acceptable.

The error obtained with the cubic spline integration scheme shows behavior similar

to that obtained with trapezoidal and Simpson integration. The swings in the error

are larger in magnitude than for trapezoidal integration, but less than those exhibited

by Simpson's rule.

For Chebyshev integration, we see unstable behavior similar to that obtained

with point sensors. The swings in the error are much larger than for the other three

integration schemes.

In comparing the four integration schemes, it is again clear that the most stable

error behavior is obtained with the trapezoidal scheme. It can also be seen that the

long-term behavior of the observability envelope for shows that the magnitude re-

mains approximately constant with mode number. The trend of the error is clearly

not monotonic towards 100% for any integration scheme, and so Functional Require-

ment #6 is violated. In addition, Functional Requirement #5 is also violated because

the observability does not roll off as the mode number is increased. However, the re-

sults are an improvement over the performance of an array of point sensors.

5.1.3 Bartlett Sensors

The array of Bartlett (triangular) sensors used is shown in Figure 5.6. Figure 5.7

shows the error in tip deflection estimation for this sensor array, with trapezoidal,

Simpson, cubic spline and Chebyshev integration schemes used to estimate beam

displacement. Figure 5.8 shows the observability of the array in the case of trapezoidal

integration.

In the case of trapezoidal integration, as with point and rectangular sensors, the
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Figure 5.6: Sensor weightings for Bartlett sensors mounted on a pinned-pinned beam.

error is small for low mode numbers. It then increases for larger mode numbers, and

reaches 100% at mode number 10. However, this increase in error is significantly

slower than for rectangular sensors and trapezoidal integration. This is shown in the

behavior of the observability, which is seen to drop off to below 10-6 at mode 10.

Beyond mode 10, the error remains reasonably close to 100%, exhibiting smooth

variations except at mode numbers 20 and 40.

For Simpson's rule, we see very similar behavior to that obtained with trapezoidal

integration. For mode numbers up to 10 behavior is nearly identical. For larger

mode numbers, the deviations of the error above and below the 100% line are slightly

larger for Simpson's rule. In addition, the slope of the error is now discontinuous at

modes 10 and 30.

For the cubic spline integration scheme, the increase in error to 100% between

mode 1 and mode 10 is slightly less rapid than for the trapezoidal and Simpson

schemes. Beyond mode 10, the smooth behavior of error found using the trapezoidal

rule has been retained, but the swings above and-below 100% are similar in magnitude

to those found when using Simpson's rule.

For the Chebyshev scheme, we again see highly non-smooth variations in the tip
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estimation error. In fact, the monotonic increase in the error between mode 1 and

mode 10 that is seen in the other three integration schemes is not present for the

Chebyshev scheme. In addition, for higher mode numbers, the swings in the error are

of much greater magnitude than for the other integration schemes.

The observability for the trapezoidal scheme contains local minima at all the

multiples of the aliasing frequency, i.e. modes 10, 20 , 30, etc. In general, the

observability is seen to decrease approximately linearly with mode number. Since

the maximum value of the curvature increases linearly with mode number m, the

observability actually rolls off at 1/k 2 with respect to the curvature. This is to be

expected, since the transfer function of a Bartlett sensor rolls off at 1/k 2, as shown

in Chapter 2.

It is clear that the most stable error behavior is obtained with the trapezoidal

scheme for Bartlett sensors. The long term behavior of the observability envelope for

the trapezoidal rule shows that the magnitude decreases approximately linearly with

mode number. Although the observability is seen to possess a decreasing trend with

mode number, satisfying Functional Requirement #5, the nonmonotonic trend in the

error violates Functional Requirement #6.

5.1.4 Gauss-Hanning Sensors

The array of Gauss-Hanning sensors used is shown in Figure 5.9. For this array, the

error in tip deflection estimation, as a function of percentage of the length of the beam,

is shown in Figure 5.10, for the trapezoidal, Simpson, cubic spline and Chebyshev

integration schemes. In the case of trapezoidal integration, the observability for the

same array is shown in Figure 5.11.

Not surprisingly, the error behavior for mode numbers between 1 and 10 for the

trapezoidal rule is much like that obtained using Bartlett sensors. The error starts

near zero, satisfying Functional Requirement #4, and reaches 100% by mode 10. The

1795.1. Simulation Results for a Pinned-Pinned Beam
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Figure 5.9: Sensor weightings for Gauss-Hanning sensors mounted on a pinned-pinned
beam.

overshoot of the error beyond mode 10 is very small, and can be decreased by increas-

ing the length of the sensors, and thus rolling the sensors off sooner. No other sig-

nificant variations in the error are visible for higher mode numbers. Thus Functional

Requirement #6 is satisfied, as the error approaches 100% virtually monotonically.

For Simpson's rule, we see a monotonic increase in the error until mode 8, where

a local maximum is seen. The error for mode 9 is slightly lower, and then jumps

to 100% for the tenth mode. A significant overshoot of more than 10% is then seen for

mode 11. For higher modes, the error is seen to decrease monotonically towards 100%

from above.

In the case of the cubic spline integration scheme, we see a relatively linear increase

in the tip deflection estimation error, which reaches 100% at mode 10, as expected.

Beyond this point, however, we see an overshoot of approximately 3.7%. For higher

mode numbers, the error decreases monotonically, approaching 100% from above, as

with Simpson's rule.

For Chebyshev integration, error behavior is acceptable until mode 6, where a

sudden swing to about 120% is observed. At mode 7 the error is 240%, and at

mode 8 a downward swing to -45% is observed. The error swings once more between
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modes 9 and 11, going through 100% at mode 10. The behavior in the error is clearly

unacceptable and violates Functional Requirement #6.

The observability starts near unity at low mode numbers, and decreases more

and more rapidly as the mode number approaches 10. For the aliasing frequencies

of mode 10 and 20, the observability drops far below 10-6. The envelope of the

observability decreases steadily for mode numbers above 20, falling below 10- 6 by

mode 45, and satisfying Functional Requirement #5.

It is clear that the most stable error behavior is obtained with the trapezoidal

scheme for Gauss-Hanning sensors. The long term behavior of the observability en-

velope for shows that the magnitude decreases quickly with increasing mode number.

This decreasing trend in the error satisfies Functional Requirement #6, and the mono-

tonic increase in the error satisfies Functional Requirement #5.

5.1.5 Summary

In general it is seen that the only integration scheme to yield consistently the

most acceptable trends in the tip displacement estimation error is the trapezoidal

integration scheme. This is especially evident when nearing the first aliasing frequency

associated with mode number 10. For low order modes, the change in the outputs of

the sensors along the length of the beam is relatively smooth. Therefore, the estimate

of the tip deflection will be very similar no matter which integration scheme is used.

For mode numbers slightly below or above the aliasing mode number, however, the

outputs of the sensors are seen to alternate in sign in a sawtooth fashion. Clearly,

the trapezoidal integration scheme is most apt to deal with such high frequency

oscillations in the sensor measurements. Simpson's rule will attempt to fit parabolas

between three successive points and typically overestimate the area. In the cubic

spline rule, a spline will be fit to the spatially oscillating sensor outputs, and the area

estimate will be highly inaccurate. Finally, the Chebyshev scheme will attempt to
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fit a single polynomial to all the sensor outputs. Typically this is a highly unstable

process for polynomials of high order. Such unstable behavior is clearly visible in the

change in tip error for modes 9, 10 and 11, for all sensor types.

As more complex sensor weightings are used, and their rolloff rates increase, it is

seen that the error behavior becomes more controlled. Although this is true for all

integration schemes, it is only in the case of Gauss-Hanning sensors and trapezoidal

integration that a good tip deflection estimation error trend is obtained. This com-

bination of integration scheme and sensor weighting yields good results because the

rolloff of the sensors is very high and the trapezoidal integration scheme integrates

the spatially oscillating sensor measurements found near the aliasing mode numbers

(which are multiples of 10) in a stable fashion.

5.2 Simulation Results for a Clamped-Free

Beam

The performance of a sensor array in shape estimation of the dynamic modes of a

clamped-free beam is investigated here. The exponential components of the clamped-

free mode shapes at the root and tip of such a beam makes tip deflection estimation

a much harder problem than for a pinned-pinned beam with purely spatially periodic

mode shapes. Specifically, good knowledge of the strain at the root is required for

good estimation of the tip deflection for low order modes. However, for higher order

modes, measurements of the root strain should roll off as quickly as measurements of

strain in the interior of the beam.
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The deflection, slope and curvature of the dynamic modes of a clamped-free beam

are given by:

w(x) = Am[Ci(sin3mx - sinh,,x) + C2(cos 3x - cosh,mx)] (5.6)

dw() [= mA (cos - coshlmx) + C2(- sinmx - sinhQmx)] (5.7)
dx

.(x) = Am [C (- sin mx - sinh ,mx)+ C2(- Cos mZ - cosh,mx)] (5.8)

where

C 1 = sinL - sinh ,mL (5.9)

C2 = cos m ,L+cosh L (5.10)

and where the constant Am is set such that the tip displacement is unity: wtip =

w(L) = 1. The spatial frequencies i are found from numerical solutions to the

transcendental equation

cos PL cosh PL = -1 (5.11)

which are

01 = 1.87510

P2 = 4.69409

P3 = 7.85476

2n- 1
n 2 - r (n > 3) (5.12)

2

A variety. of integration schemes are used to integrate the curvatures reported

by the array of sensors, in order to estimate the beam deflection, which is normal-

ized to be unity. The error between the estimated tip deflection and the actual tip
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displacement (unity) is found:

9 = 1 - Wtip (5.13)
L

where ?ztip is the estimated tip deflection. This error should be as close to zero as

possible for low mode numbers. As the mode number is increased, this error should

approach 100%. This is because as the mode number of the beam is increased, the

outputs of the sensors should approach zero. The effective observability of the sensor

array is defined as:

0 1 E = 1 -( 1 - P (5.14)

S Wtip (5.15)L

The observability should be unity for low mode numbers m, and approach zero as

the mode number is increased, due to the rolloff exhibited by the sensors.

Since Bartlett sensors are simple to implement and yield 1/k2 rolloff, shape es-

timation simulations for an array of Bartlett sensors were conducted. In addition,

simulations were performed using arrays of Hanning-Hanning and Gauss-Hanning

sensors, since their transfer functions exhibit high rolloff rates.

5.2.1 Bartlett Sensors

The array of Bartlett (triangular) sensors used is shown in Figure 5.12. The

lengths of the sensors have been set such that the -3 dB point of their transfer

functions correspond to the spatial frequency of the fourth mode of the beam. A half

sensor is centered at the root, and nine sensors are equally spaced in the interior of

the beam. The sensors at x/L = 0.1 and x/L = 0.9 are simply truncated at the root

and tip, respectively. All sensor weightings fi(x) are scaled such that fo' fi(x) dx = 1.

The output of the sensor centered at the root is taken to be the root curvature, and

the curvature at the beam tip is assumed to be zero. Figure 5.13 shows the error in
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Figure 5.12: Sensor weightings for Bartlett sensors mounted on a clamped-free beam.

tip deflection estimation for this sensor array using the trapezoidal integration scheme

to estimate beam displacement. Figure 5.14 shows the observability of the array.

It can be seen from the error plot that the tip deflection estimation error is rea-

sonably small for modes 1-3. For these modes the trapezoidal scheme manages to

approximate the theoretical deflection, even though the measured root curvature is

slightly underestimated. By mode 4, the measured root curvature is only 43% of

the theoretical curvature. This causes the tip deflection estimation error to drop to

nearly -90%. The alternating error pattern seen for higher modes is due to the fact

that the root curvature is of the same sign as the tip deflection for odd modes, but of

the opposite sign for even modes. Thus, since the integration scheme is most sensitive

to the root curvature, the estimated tip deflection tends to alternate sign in accor-

dance with the measured root curvature. Figure 5.15(a) shows the measured and

theoretical curvature for the fifth dynamic mode of the beam. It is evident that the

interior sensors are beginning to roll off. However, the root curvature measurement is

underestimated by the half sensor centered at the root. The resulting effect is visible

in Figure 5.15(b), which shows the theoretical and estimated beam deflection for the

fifth mode. The estimated deflection has the same characteristics as the theoretical

deflection with an added linear negative drift, caused by the low measurement of the
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Figure 5.15: Measured and theoretical curvature, and estimated and theoretical displace-
ment for the fifth dynamic mode of a clamped-free beam using Bartlett
sensors with trapezoidal integration.

close to the distance between the sensors, and spatial aliasing occurs. The result is

that the average curvature measured will no longer be close to zero because most or all

the sensors report measurements of the same sign. These measurements accumulate

in the numerical integration algorithm, and the estimated deflection will deviate more

and more strongly from the theoretical deflection as the beam tip is approached.

It was shown in Chapter 2 that in a sinusoidal strain field, the transfer function

of a complete Bartlett sensor rolls off at 1/k 2 , and for a simply truncated sensor,

at 1/k. The sensors centered at x/L = 0, z/L = 0.1 and x/L = 0.9 are simply

truncated, and should therefore roll off at 1/k, while the interior ones will roll off

188



5.2. Simulation Results for a Clamped-Free Beam

10

8

d 6

< 4

2

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/L

Figure 5.16: Sensor weightings for Hanning-Hanning sensors mounted on a clamped-free
beam.

at 1/k 2 . In spite of this, no distinctive rolloff trend is visible in Figure 5.14, which

shows the observability of the sensor array. However, there is a decrease of a factor

of four in the tip displacement estimation error at the two aliasing mode numbers 20

and 40. This indicates that the sensor array observability is bounded, and rolls off

with mode number. However, this rolloff is clearly not quick enough to satisfy Func-

tional Requirement #5, and the nonmonotonic trend in the error violates Functional

Requirement #6.

5.2.2 Hanning-Hanning Sensors

The array of Hanning-Hanning sensors used is shown in Figure 5.16. The lengths

of the sensors have been set such that the -3 dB point of their transfer functions

correspond to the spatial frequency of the second mode of the beam. From Chapter 2,

we find that 1, the length of the sensor weighting is equal to L, the length of the beam.

A half sensor is centered at the root, and nine sensors are equally spaced in the

interior of the beam. The output of an additional sensor centered at x/L = -0.1 is

used to estimate the root curvature. The tip curvature is again assumed to be zero.

Any part of a sensor extending beyond the root of the beam is simply truncated at the
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root. In contrast, any sensor which would normally extend beyond the tip is modified

as follows: the outboard half is shortened such that the smoothly tapering end is at

the tip, while the inboard half is lengthened to restore the sensor's original length.

This is done in an attempt to preserve the rolloff properties of the Hanning-Hanning

sensors.

The outputs of all the sensors, except the one used to estimate the root curvature,

are assigned at their centroids when spatial integration is performed. The centroid of
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a sensor weighting is given by:

Xcentroid - L f(x) dx

JL f(x) dx

(5.16)

Figure 5.13 shows the error in tip deflection estimation for the sensor array using

the trapezoidal integration scheme to estimate beam displacement. Figure 5.14 shows

the observability of the array.

It is seen that the tip displacement estimation error is within ±25% of the theoret-
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ical value for modes 2 and 3, and within 2.5% for the first mode. Beyond this point,

however, underestimated root curvature estimates cause the deflection estimate to

drift in accordance with the sign of the root curvature. This causes the alternating

pattern in the error. Figure 5.19 shows this situation clearly, in that the estimated

tip deflection is opposite in sign to the theoretical tip displacement. This situation

deteriorates as the mode number is increased further.

It can be seen in Figure 5.19 that the magnitude of the curvature measured by the

last two sensors is unusually high, compared to the outputs of the remaining sensors.

This is due to poor rolloff of these sensors. The effect is to cause the deflection

to begin to swing upward towards the end of the beam. As the mode number is

increased further, it is found that the two outer sensors begin to register even higher

measurements. This forces the deflection estimate to swing upwards towards the tip

of the beam, and causes the increasing trend of the error between modes 5 and 22.

Between mode 22 and 32, the last two sensors measure negative curvature, forcing

the deflection to swing downward near the tip, and causing the error to begin to

drift downward, toward 0%. It is evident that this effect is responsible for most of

the tip deflection estimation error. The drift in estimated deflection resulting from

improperly estimated root curvature is only responsible for the high frequency jitter

in the error. As the mode number is increased from 30 to 50, we see that the low

frequency oscillations are decreasing in magnitude and centered about 100%. This

means that as the mode number is increased, the observability of the sensors to the

beam mode shapes rolls off. Thus the observability 0, should approach zero.

Figure 5.18 shows the rolloff trend in the observability of the sensor array as the

mode number is increased. This rolloff is approximately 1/k, but is limited by the

simply truncated sensors at the root. This is due to the fact that it is impossible

to construct sensors that: (a) accurately measure curvature relatively close to the

boundary of the beam; (b) begin to roll off at a low order mode (c) and roll off
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quickly with frequency. This is because accurate measurement of curvature near

the beam boundary requires the sensor to be centered in the vicinity of the beam

boundary. To ensure that the sensor begins to roll off at a low order mode, it is

necessary to make the length of the sensor a significant fraction of the length of

the beam. It will therefore be forced to extend beyond the beam boundary, and

will therefore require spatial truncation. This spatial truncation guarantees that the

resulting sensor's transfer function for a spatially sinusoidal strain field will not roll

off quickly in frequency. The rolloff exhibited by the observability is clearly not quick

enough to satisfy Functional Requirement #5 , and the nonmonotonic trend in the

error violates Functional Requirement #6.

5.2.3 Gauss-Hanning Sensors

In Chapter 2, Gauss-Hanning sensors were shown to exhibit excellent rolloff char-

acteristics. In this section, results using three different arrays of Gauss-Hanning

sensors are presented. These arrays will be referred to as the first, second and third

iterations.

First Iteration

The array of first iteration Gauss-Hanning sensors used is shown in Figure 5.20.

The lengths of the sensors have been set such that the -3 dB points of their transfer

functions occur at the spatial frequency corresponding to the fourth mode of the

beam. As with the Bartlett sensors, a sensor is centered at the root, and is used

to estimate the root curvature. Nine more sensors are equally spaced in the interior

of the beam. Sensors extending beyond the root are simply truncated, and sensors

extending beyond the beam tip have the outboard half of their weighting shortened

such that the end of the sensor weighting falls at the beam tip. Their inboard half

is left unchanged. The curvatures measured by the interior sensors are treated as if

they were point measurements, and are assigned at the centers of the sensors for the
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Figure 5.20: Sensor weightings for first iteration Gauss-Hanning sensors mounted on a
clamped-free beam.

purposes of spatial integration. A Least Squares Global Dynamic Shape Function

integration scheme with 4 shape functions is used to estimate beam deflection.

Figure 5.21 shows the error in tip deflection estimation for the sensor array, using

the LSGDSF-4 integration scheme. The error is only 1.5% for the first mode, but

drops to -26% for the second mode. The high frequency alternation in error is a

result of the alternation of the sign of the root curvature when the tip displacement is

normalized to be unity. The sharply increasing trend in error between mode 16 and

mode 20 is due to abnormally large measurements of negative sign made by the last

two sensors. This causes the integration scheme to create a deflection estimate which

swings down sharply near the beam tip. The decrease in error between mode 20 and

mode 30 is caused by the same phenomenon, when the last two sensors measure high

curvature of positive sign. It can be seen that this low frequency oscillation in error is

damped, and that the steady-state error will be 100%, indicating a zero observability

state is eventually achieved. Figure 5.22 shows the observability for the array of

sensors. It shows that no rolloff trend is visible until beyond mode 40. Clearly,

this rolloff is not quick enough to satisfy Function Requirement #5. In addition,

Functional Requirement #4 is not satisfied because good estimation of several low
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Figure 5.21: Tip deflection estimation error for clamped-free beam using
Gauss-Hanning sensors with LSGDSF-4 integration.
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Figure 5.22: Sensor array observability for clamped-free beam using first
Hanning sensors with LSGDSF-4 integration.

order modes is not guaranteed. Finally, Functional Requirement #6

because the decrease in observability is not monotonic.

iteration Gauss-

is not satisfied

Second Iteration

The array of second iteration Gauss-Hanning sensors used is shown in Figure 5.23.

The lengths of the sensors have been set such that the -3 dB points of their transfer

functions occur at the spatial frequency corresponding to the fourth mode of the
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Figure 5.23: Sensor weightings for second iteration Gauss-Hanning sensors mounted on
a clamped-free beam.

beam. A sensor is centered at the root and nine more sensors are equally spaced in

the interior of the beam. A sensor centered at x/L = -0.1 is used to estimate the

root curvature. Sensors extending beyond the root are simply truncated, and sensors

extending beyond the beam tip have the outboard half of their weighting shortened

such that the end of the sensor weighting falls at the beam tip. Their inboard half

is left unchanged. The curvatures measured by the interior sensors are used as if

they were point measurements, and are assigned at the centroids of the sensors. The

centroid location was calculated using Equation (5.16). All sensors except the one

used to estimate root curvature are scaled such that fJo f(x) dx = 1. The weighting

of the root-measuring sensor was reduced in an attempt to reduce the high frequency

oscillation in the error due to the oscillation in sign of the root curvature with respect

to tip displacement. A Least Squares Global Dynamic Shape Function integration

scheme with 6 shape functions is used to estimate beam deflection.

Figure 5.24 shows the tip displacement estimation error for the sensor weightings

shown in Figure 5.23. Low order mode estimation is accurate for the first four modes,

where the tip displacement estimation error is under 15%. It can be seen that beyond

mode 14, the error is nearly completely smooth. Between mode 4 and mode 14,
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Figure 5.24:
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Tip deflection estimation error for clamped-free beam using second itera-
tion Gauss-Hanning sensors with LSGDSF-6 integration.

0 5 10 15 20 25 3'

Mode number m

0 35 40 45 50

Figure 5.25: Sensor array observability for clamped-free beam using second iteration
Gauss-Hanning sensors with LSGDSF-6 integration.

however, high frequency oscillations in the error are still observed. The low frequency

deviations of the error are still present, because they are caused by abnormally high

measurements of curvature reported by the last two sensors. Attempts to reduce these

oscillations for high modes reduces the estimation accuracy for low order modes. As

these deviations in the error dampen out for higher modes, it can be seen that the

error will reach a steady-state value of 100%, indicating that very high modes are

unobservable to the sensor array. Figure 5.25 shows this observability. Functional
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Figure 5.26: Sensor weightings for third iteration Gauss-Hanning sensors mounted on a
clamped-free beam.

Requirement #5 is violated because the observability does not roll off quickly with

frequency.

Third Iteration

The array of third iteration Gauss-Hanning sensors used in shown in Figure 5.26.

The sensor layout is exactly the same as for the second iteration array, except that

the sensor at x/L = -0.1 has been removed. In addition, the sensor measurements

are not assigned to a specific point. Rather, the Global Dynamic Shape Function

integration scheme using as many shape functions as sensors (10) is employed in beam

displacement estimation. Equation (3.62) is used to form the system of equations that

is used to solve for the 10 shape coordinates pj .

Figure 5.27 shows the tip displacement estimation error for the third iteration

Gauss-Hanning sensor array. It shows that for the first ten modes, perfect tip dis-

placement estimation performance is accomplished. This is due to the fact that ten

sensors and ten shape functions are employed, and because for the first ten modes,

the system of equations (3.62) extracts only the shape function corresponding to the

measured mode. As soon as displacement estimation of mode 11 is attempted, large
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Tip deflection estimation error for clamped-free beam using
Gauss-Hanning sensors with GDSF integration.
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Figure 5.28: Sensor array observability for clamped-free beam using third iteration
Gauss-Hanning sensors with GDSF integration.

errors are immediately observed. Figure 5.29(a) shows the measured and theoretical

curvature for this case. Since mode 11 is of a higher spatial frequency than any of

the ten shape functions available to the integration scheme, the fitting procedure is

hard-pressed to produce a convincing fit to the measurements. Figure 5.29(b) shows

the theoretical and estimated displacement for mode 11. It is seen that underestima-

tion of the root curvature introduces a linear drift in the estimated deflection, and

accounts for most of the resulting error.
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Figure 5.29: Measured and theoretical curvature, and estimated and theoretical dis-
placement for the eleventh dynamic mode of a clamped-free beam using
third iteration Gauss-Hanning sensors withGDSF integration.

Tip displacement estimation errors reach a maximum at mode 15. As the mode

number is increased, an exponential decrease in the error is visible. However, high

frequency oscillations are still present, and are caused by the alternation of the sign of

the root curvature. Reducing these oscillations would require reducing the observabil-

ity of the root curvature, which is required for good estimation performance for low

order modes. Figure 5.28 shows the observability of the sensor array to the dynamic

mode shapes of the beam. Although limited rolloff is exhibited by the observabil-

ity, it is clearly not enough to satisfy Functional Requirement #5. In addition, the

nonmonotonic nature of the error violates Functional Requirement #6.
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5.2.4 Summary

It is seen that the worst tip deflection estimation errors are obtained using Bartlett

sensors with the trapezoidal integration scheme. Since the trapezoidal rule was shown

to yield the most well-behaved error trends for the case of estimation of the dynamic

mode shapes of a pinned-pinned beam, the poor tip estimation performance must

be a result of the sensor weighting used. In Chapter 2 it was shown that the rate

of rolloff of the transfer function for a Bartlett sensor in a sinusoidal strain field

is 1/c 2 . The curvature for the mode shapes of a clamped-free beam go as c2 when

the displacement is held constant. It is therefore necessary for the transfer functions

of the sensor weightings to roll off at 1/k3 or faster, in order to assure a rolloff in the

observability of the sensor array. It was seen in Figure 5.14 that the observability for

an array of Bartlett sensors does not seem to roll off as the mode number is increased.

In Chapter 2 it was found that the rolloff rate of the transfer function of the

Hanning-Hanning sensor is 1/ic5 . This should guarantee a rolloff rate of 1/k3 in the

observability shown in Figure 5.18. It is evident that such rolloff is not observed.

It was also shown in Chapter 2 how the truncation of sensors at the boundaries of

structures reduces their rolloff rate to 1/k for simple truncation, and 1/k 2 for 'folded'

truncation. Thus, even though the interior and untruncated sensors provide fast

rolloff, the truncated ones do not. This effect is exacerbated by the fact that the

tip displacement is often most sensitive to the measurements reported by the sensors

closest to the root.

The high frequency jitter seen in the error is a result of root curvature estimates

which do not roll off with frequency quickly enough. As mentioned earlier, the sign of

the root curvature alternates with respect to the tip displacement. Since integration

schemes integrate from the root out to the tip of the beam, tip displacement estimates

are most sensitive to the root curvature. When the interior sensors roll off for high

frequency modes, most of the tip displacement estimate is generated by the measured
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root curvature. For high frequency modes, root curvature measurements do not roll

off quickly enough because they are typically made by truncated sensors which have

reduced rolloff. Accurate root curvature measurements are necessary in order to

accurately resolve low frequency mode shapes.

The low frequency oscillations in the error are caused by poor rolloff of the last

few sensors. This was shown in plots of estimated displacement for specific modes.

As with root curvature, measurements of curvature near the beam tip are neces-

sary for accurate estimation of the shape of low frequency modes. However, such

measurements are made by sensors close enough to the beam boundary to require

spatial truncation. The rolloff of the sensors is therefore significantly reduced, and a

significant oscillation in tip displacement estimation error is typically observed.

The results for the shape estimation of the dynamic mode shapes of a clamped-

free beam contrast with the excellent results obtained for the pinned-pinned beam.

The presence of evanescent exponential strain fields at the beam boundaries, and the

difficulty in obtaining quick rolloff of root curvature observability make it impossible

to obtain results which satisfy the functional requirements. It is clear that no combi-

nation of sensor weighting, truncation method and integration rule produced results

which satisfy the functional requirements.
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Conclusions

6.1 Shaped Sensors
It was shown in Chapter 2 how traditional temporal sampling window design

techniques can be used to design the spatial weighting shapes of strain averaging

sensors. Since the mode shapes of beam-like structures generally contain spatially

sinusoidal and exponential components, the performance of sensors is analyzed for

spatially sinusoidal and exponential strain fields.

The spatial filtering performance of a shaped sensor is contained in its transfer

function. The transfer function of such a sensor describes the behavior of the sensor

output for strain fields of different spatial frequencies. The transfer function is defined

as the sensor output divided by the point value of the field at the center of the sensor.

The transfer function for any sensor of finite length rolls off at least as fast as 1/k,

whereas the transfer function for a point sensor does not roll off at all.

It was shown that the smoother the sensor weighting is at its ends, and therefore

the more derivatives are zero at these points, the higher the eventual rolloff rate of

the sensor is, and the longer the sensor needs to be. It is seen that the spatially

infinite weightings offer the best performance due to their infinite smoothness at the
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ends, and infinite length.

Among the finite weightings considered, the Bartlett sensor is the simplest and

can be manufactured easily. It satisfies Functional Requirements #1-3 and #6-8,

although it only exhibits second order rolloff. The best performance for a spatially

finite sensor is obtained with the Gauss-Hanning weighting. The weighting is positive

everywhere, satisfying Functional Requirement #8, and finite, satisfying Functional

Requirement #7. The transfer function rolls off quickly, satisfying Functional Re-

quirement #2 while accurately sensing low frequency modes. Although the trans-

fer function of the sensor is negative in some regions, violating Functional Require-

ment #3, the magnitude of the transfer function at these points is less than -120

dB.

At the boundaries of a structure, the sensor weightings must be truncated in

some fashion. It was shown that simple truncation at the structure boundary leads

to a change in rolloff rate, reducing it to -20 dB/decade. This is because the taper

of the weighting at the structure boundary is no longer smooth. In addition, the

sensor weighting is no longer symmetric, and the transfer function will no longer be

bounded. This is because the sensor can report nonzero strain even though the strain

at its center is zero.

To obtain better rolloff performance from sensors that must be truncated at the

boundary of a structure, the truncated outboard portion should be "folded over" the

boundary and subtracted from the remaining inboard weighting portion, as described

in Section 2.4.5. This guarantees that the sensor weighting drops to zero at the

boundary, thus allowing the sensor transfer function to roll off at -40 dB/decade. In

addition, for a spatially sinusoidal strain field, the performance of a sensor truncated

in such a fashion is the same as for an untruncated sensor.

For strain fields which are spatially exponential, we are no longer dealing with

a strain field that is spatially periodic. Therefore, traditional ideas of rolloff and a
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transfer function which maps a periodic input to a periodic output are no longer valid.

However, some parallels can still be drawn.

6.2 Numerical Integration Schemes

As mentioned in Chapter 3, there is no perfect integration scheme. Generally, in

order to increase accuracy, more constraints must be imposed on the location of the

sample points, and more information about the function to be integrated is required.

Of the numerical integration schemes studied, only the midpoint and structural

shape function fitting schemes do not require end point data, and do not have pre-

scribed abscissas (points where the function to be integrated must be known). The

structural shape function fitting schemes in general offer much better performance

than the midpoint rule. For static integration purposes, structural shape function

fitting schemes are therefore recommended as good candidate integration rules when

structural shape functions of the structure are available.

For other integration rules that do not make use of structural information, as the

locations of the sensors are more and more constrained, the accuracy of the integration

scheme typically increases. In addition, for all rules, the accuracy generally increases

as structural displacement information is used over a larger area of the structure when

producing a sensor measurement. This is seen in the high level of accuracy exhibited

by the cubic spline, Chebyshev, Gauss, Radau and structural shape function fitting

schemes.

6.3 Accuracy of Numerical Integration Schemes

It was shown in Chapter 4 that two or three sensors are typically not enough to

guarantee good tip deflection estimation performance for a statically loaded clamped-

free beam. It is possible, however, to obtain a tip deflection estimation error under 1%
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by using 2 rectangular sensors and the Global Static Shape Function integration

scheme. When four or five sensors are used, however, tip deflection estimation errors

are below 2% for all but the midpoint and B-spline integration schemes. In addition,

and many of the more accurate integration schemes yield errors under 1%. This shows

that the convergence rate is generally quite quick.

It is shown that the trapezoidal rule performs well and is very simple to imple-

ment. The integration rules that fit structural shape functions to the sensor measure-

ments, either exactly (the GSSF and GDSF schemes), or in a least squares sense (the

LSGSSF-n and LSGDSF-n schemes), offer a number of advantages over the trape-

zoidal rule. Measurements can be made anywhere in the interval, and end point

measurements are not required. In addition, the boundary conditions the structure

is subject to are incorporated automatically, as are the possible deformation patterns

it could exhibit. Finally, all integration is done a priori, and only a curve fitting

algorithm is required.

The standard deviation of the tip deflection estimation error due to uncertainties

in the sensor gain or placement are approximately the same for all the integration rules

that do not fit structural shape functions. For the structural shape function fitting

algorithms, however, the standard deviation of the error is found to be significantly

smaller. In addition, it is seen that for all integration schemes, the standard deviation

found using rectangular or Bartlett sensors is slightly smaller than that exhibited by

point sensors. This is due to the inherent filtering properties of rectangular and

Bartlett sensors.

As the number of sensors is increased, the absolute error due only to the integration

scheme decreases with a convergence rate that depends on the accuracy of the scheme.

At some point the standard deviation of the error will exceed the integration scheme

error. How quickly this point is reached is an important consideration in the selection

of an integration rule and sensor weighting for static shape estimation.
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6.4 Estimation of the Dynamic Mode Shapes

of Beams

From the simulation results for a pinned-pinned beam it is clear that the error

trend is well-behaved when the sensors used in the array have transfer functions for

sinusoidal strain fields that roll off quickly. Point sensors do not offer any rolloff, and

it can be seen that the observability increases steadily with frequency. Rectangular

sensors only offer enough rolloff to keep the observability bounded, whereas Bartlett

sensors allow the observability to roll off. Only by using an array of Gauss-Hanning

sensors is it possible to obtain an observability which rolls off quickly with frequency.

The 'folding' truncation of the Gauss-Hanning sensors at the boundaries of the beam

is critical to the performance of the array. Without this truncation, the rolloff of the

sensors would be reduced, and the monotonic error trend would not be guaranteed.

The simulations for the pinned-pinned beam also demonstrate that out of the four

integration schemes selected, the trapezoidal rule generates the most well-behaved

tip displacement estimation errors. This is because the measured curvature for high

frequency modes appears as a sawtooth pattern along the beam. An array of Gauss-

Hanning sensors in combination with the trapezoidal rule allows accurate estimation

of the first few mode shapes of a pinned-pinned beam, and exhibits quick rolloff in the

observability of higher modes by a monotonic increase in error from 0% to 100%. The

sensor system accurately resolves the beam shape for low frequency modes, and thus

satisfies Functional Requirement #4. This means that Functional Requirement #1 is

also satisfied because each sensor is accurately measuring curvature for such modes.

The observability of each sensor and the system as a whole rolls off quickly in fre-

quency, satisfying Functional Requirements #2 and #5. As discussed in Chapter 2,

Functional Requirement #3 is not strictly satisfied, because the transfer function of

the Gauss-Hanning sensor contains negative regions. However, due to the fact that

over -140 dB of rolloff occurs before the first negative region of the transfer functions,

207



208 Chapter 6. Conclusions

uncertainties inherent in any physical implementation will introduce more significant

errors. Functional Requirement #6 is satisfied because the behavior of the error is

virtually monotonic. Finally, Functional Requirements #7, #8 and #9 are satisfied

by the design of the Gauss-Hanning sensor array.

As mentioned in Chapter 5, it seems impossible to construct an array of sensors for

the shape estimation of a clamped-free beam that satisfy the functional requirements.

For low frequency modes, accurate measurements of curvature close to the root and

tip of the beam are required. For high frequency modes, such measurements should

roll off quickly with frequency. Since boundary curvature measurements must begin

to roll off at relatively low frequency, a sensor whose length is a significant fraction

of the length of the beam is required. Long sensors placed near the boundaries will

require spatial truncation, and such spatial truncation is detrimental to the rolloff

characteristics of the untruncated sensor.

Although displacement estimation performance does not appear to be satisfactory,

it must be noted that the set of functional requirements introduced in Chapter 1

are very demanding. Since beam curvature goes as k2 relative to the displacement,

it becomes increasingly difficult to roll off the sensor array observability for high

frequency modes. Although the error may appear to be significant, it is relative to the

tip displacement at that frequency. In a physical implementation, the beam curvature

is likely to be constant as the mode number is increased, because it is limited by the

system energy. Tip displacement will therefore drop off as 1/k 2, and displacements

for high frequency mode shapes will be dwarfed by those for low frequency modes.

Similarly, tip displacement estimation errors for high frequency modes will seem less

significant when they are combined with tip displacement estimation errors for low

frequency modes.
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Appendix A

Derivation of Sensor Output
and Transfer Functions

In this appendix, the output and transfer functions for spatially averaging strain

sensors are derived in detail. These were discussed in Chapter 2. The behavior

of sensors in strain fields that are spatially sinusoidal and spatially exponential are

considered. Sensors centered at the point of symmetry or origin of the strain field

are first investigated. The sensors are then assumed to be at a known distance x 0

from the point of symmetry or origin of the strain field. Derivations are then given

for both nontruncated sensors and sensors that must be partially truncated at the

boundaries of a structure.

A.1 Sinusoidal Curvature

In this section the output and transfer functions for sensors that are centered,

noncentered, simply truncated and truncated by the 'folding' technique are derived

when the strain field is spatially sinusoidal or cosinusoidal. In the following analysis,

the exponential strain field is assumed to have the form sin(kx) or cos(kx). The point

of symmetry will refer to the point where the strain remains the same no matter what

the spatial frequency is. For these strain fields, this point is simply x = 0, where the
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Appendix A. Derivation of Sensor Output and Transfer Functions

strain is zero or unity for all k.

A. 1.1 Centered Sensors

Assuming that the spatial weighting function f(z) of the spatially averaging sensor

is continuous, has first derivative continuity, and is nonzero over the region -1/2 <

x < 1/2, its output can be found from

y(k) = /2f(x) cos(kx) dx (A.1)

Integration by parts of this expression yields

1 1/2

y(k) f(z)sin(k)

,1/2 1
S11 kf'(x) sin(kx) dx (A.2)
J-1/2 k

y(kc) -f~t [f(i/2) sin(kl/2) - f(-1/2)sin(-kl/2)]

y(k) = 1 [f(1/2) + f(-l/2)] sin(kl/2)

,1/2 1
1- f'(x) sin(kx) dx (A.4)

J-1/2 k
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Integration by parts three more times yields

y (k) = f(/2) + f(-i/2)] sin(kl/2)

k+ 1 [f'(1/2) - f'(-1/2)] cos(kl/2)

+ [-f"(1/2) - f"(-1/2) sin(kl/2)

+ [-f'"(/2) + f"'(-/2)] cos(kl/2)

1+ 1 f""(x) cos(kx) dx (A.5)
-1/2 k

A pattern can be identified in the resulting expression, and an infinite series

solution for the output and transfer function of a sensor mounted in the interior

of the structure (away from its boundaries), centered at the point of symmetry in a

cosinusoidal strain field can be written as

y() = T(k) = k2 f(2)(/2) + f(2i)(-1/2)] sin(kl/2)

+ (-1)[f(2i+1)(1/ 2 ) - f(2i+)(-1/2) cos(kl/2) (A.6)2i+2 (A.6)

where f(n)(x) represents the n-th derivative of the function f(z), d f/dx' .

Typically, the weighting function f(x) is symmetric. In this case, we have

f(,) = f(-x) (A.7)

f'(x) = -f'(-z) (A.8)

f"(z) = f"(-x) (A.9)

f"'(x) = -f"'(-x) (A.10)

A.1. Sinusoidal Curvature 219



Appendix A. Derivation of Sensor Output and Transfer Functions

Or, in general,

= f( 2i)(_X)

_f(2i+l)(_X)

f( 2 i)(x)

f(2i+l)(X)

(A.11)

(A.12)

By using Equations (A.11) and (A.12), Equation (A.6) can be simplified to

y(k) = T(k) = k2+ 1 (2i)(1/2) sin(kl/2)+ (2i)(/2)cos(k/2)
{2())ifCT(l/)2i+) +2i+2i=0

(A.13)

Since the weighting function f(x) must have a continuous derivative for (A.6)

to be valid, the discontinuity in the Bartlett and Bartlett-Bartlett weightings must

be taken into account. For example, for a weighting function with a discontinuity

at x = 0, the integral (A.1) becomes

y(k) = f(x) cos(kx) dx + f() cos(kx) dx
f1/2 1o+

(A.14)

Equation (A.6) is therefore modified, and the result is

y(k) = (k) =
i= 0 I 12i+l If()(-1/2) sin(kl/2)]

k2i+2I -

(-) [-_f(2i+1)(_./2) cos(kl/2) + f(21+1)(0-)]

+ (i;1 [f(2i)(1/2) sin(kl/2)

li+2 [-f(2i+1)(0+) + f(2i+ l)(1/l2) cos(kl/2)] (A.15)

where x = 0- is a point just before the discontinuity, and x = 0+ is a point just after
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the discontinuity. By grouping similar terms, this expression further simplifies to

y(k)= T(k)=
i=O

k2i+1 (2i)( -1/2)+ f(2i)(1/2)] sin(kl/2)

+ k2i-2 [f (2i+1)(O-) - f(2i+l)(O+ )

+ [_f (2i+1)(-1/2) + f(2i+1)(1/2)] cos(kl/2)

(A.16)

If it is assumed that f(x) is symmetric, (A.16) simplifies to

00

y(k) = T(k) =
i=0

k2(-+xf(2i)(-1/2) sin(kl/2)
2(-1)+

+ k2i 2 f(2i+1)(1/2) cos(kl/2) - f(2il)(+)]

(A.17)

A.1.2 Noncentered Sensors

Here the output of a sensor mounted in the interior of a structure (away from its

boundaries), centered at a distance xo from the point of symmetry in a sinusoidal

strain field is investigated. It is assumed that the strain field is of the form

E(x) = sin(kx) (A.18)

where k is a parameter that depends on mode number. The output of a sensor with

weighting function f(z), centered at x = xo is then given by

y(k)= /+o f( - o0) sin(kz) dx (A.19)
-~)f1/2+xo

A.1. Sinusoidal Curvature 221



Appendix A. Derivation of Sensor Output and Transfer Functions

Integration by parts of this expression yields

y(k) kf(x - o) cos(kx) I/-2+o

k /12+2 1
+ 1/2+o f'(x - xo) cos(kx) dx (A.20)

y(k) = [-f (1/2) cos [k(1/2 + Xo)] + f(-1/2) cos [k(-1/2 + xo)]Y(k) =

+ 1/ f+=  '(x - xo) cos(kx) dx (A.21)
J-lla+o 0

Integration by parts three more times yields

y(k) = - f(1/2) cos [k(-1/2 + o)] + f (-1/2) cos [k(l/2 + zo)

+ [f'(1/2) sin[k(-1/2 + o)]- f'(-1/2) sin[k(l/2 + o)]]

+ [f"(/2) cos [k(-1/2 + xo)]- f"(-1/2) cos [k(/2 + xo)]

+ I [-f'"(1/2)sin[k(-l/2 + xo)] + f"'(-/2) si[k(1/2 + o)]

+ -- f'"'(x - zo) sin(kz) dx (A.22)
-1/2+ o lV

A pattern can be clearly seen in the resulting expression, and an infinite series

solution for the output of a sensor mounted in the interior of a structure (away from

its boundaries), centered at a distance zo from the point of symmetry in a sinusoidal

strain field can be written as

y(k) = { 2 f(2 i)(1/2) cos [k(1/2 + o)] + f(2i)(-1/2) cos [k(-l/2 + xo)]]

+ ('- +1 [(2' )+(1/ 2 ) sin [k(1/2 + o) - f( 2i+l)(-1/2) sin [k(-1/2 + xo)]

(A.23)

To obtain the transfer function from the strain at the center of the sensor to its
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output, (A.23) must be divided by the strain at the center of the sensor, sin(kco):

Tr(k) =
i=O

-f )(1/2) cos [k(1/2 + o)] + f (2i)(-1/2) cos [k(-/2 + xo)
sin(kxo)

(-_ )i f(2i+1)(1/2) sink(1/2 + xo)1 - f( 2i+1)(-1/2) sin [k(-1/2 + xo)1 1
k( 2i+2) sin(kxo)

(A.24)

This expression can be simplified by expanding the sin[k(xo 1/2)] and cos[k(xo +

1/2)] terms. The four identities

sin(9 + ) = sin 0 cos + cos sin

sin(9 - ) = sin 8 cos 0 - cos 0 sin

cos(9 + ) = cos 8 cos - sin 0 sin

cos(9 - ) = cos 9 cos 0+ sin 0 sin 4

(A.25)

(A.26)

(A.27)

(A.28)

are used, and (A.24) simplifies to

00
T(k) =

i=O
f( 2i)(l/2) (cos(kxo) cos(kl/2) - sin(k o) sin(kl/2)

Ssin(kxo)

+f(2i)(-1/2) 
c OS(k o) co s ( k l / 2 ) + sin(kxo) sin(kl/2)

sin(kxo) cos(kl/2)+ cos(kxo) sin(kl/2)
sin(koo)

-f(2 i+)(-/2) (sin(kxo) cos(kl/2) + cos(kxo) sin(kl/2)

(A.29)
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T(k) = E f, _f (2i)(12 n( o ) sin(kl/2)

Scos(k l/2) '(k") ( tan(kx1o)-

+f( 2i)(-1l/2) tc(k2)zo + sin(kl/ 2)
Stasin(kol/2)

+ k(f+) f(2i+1)(1/2) asin(k/2) + cos(kl/2)

-f(2i+)(-1/2) - sin (k l/2) + cos(kl/2)}
tan(kzo)

(A.30)

It is now shown that if the sensor if symmetric, (A.30) simplifies to (A.13), showing

that the transfer function between the strain at the center or the sensor and its output

is independent of where the sensor is centered and what x0 is. The identities in (A.11)

and (A.12) are used and (A.30) simplifies to:

0 (- 1 )i ('_ cos(kl/2)
T(k) = k( ) (2i)(1/2) tan(ko)- sin(kl/2)

1. [ tan+kxo) --co(kl/2)

+f( 2i)(l/2) (cos(kl/2)+ sin(k/2)
tan(kbo)

(-1)i f(2i+l)(1/2) sin( ) + cos(kl/2)
si) ( tan(kz) + o s(l/2))

+f (2ifl) (1/2) sin(kl/2) + cos(kl/2) (A.31)
tan(kxo)

which immediately simplifies to

y(k) = T(k) = 0 2-' ( 2 i)(1/2) sin(kl/2) + (-if( 2 i+l)(1/2) cos(kl/2)

(A.32)

which is exactly the same as (A.13). Note that although the expressions (A.13)
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A.1. Sinusoidal Curvature

and A.32 the same, the analysis for centered sensors was done assuming a cosinusoidal

strain field, and the analysis for noncentered sensors was done assume a strain field

of sinusoidal form. It therefore does not make a difference which of the two strain

field forms is assumed. Since the above analysis assumes that f(x) has no derivative

discontinuities, we now show that the same property holds for a weighting with a

discontinuity at its center, such as a Bartlett weighting. To begin, the integral (A.19)

is modified:

y(k) = f(x - xo) sin(kx) dx + +  f(x - xo) sin(kx) dx (A.33)
f1/2+o I+

where xo is a point just before the discontinuity in f(z), and x+ is a point just after

it. (A.33) is integrated repeatedly to obtain:

y(k) = { () f(2i)() cos(kxo) + f( 2i)(-1/2) cos [k(-1/2 + o)]

Sf( (i)(1/2) cos [k(1/2 + xo)] + f( 2 i)(O+) cos(kxo)

+ 2) f(2i+1)(O-)sin(kx o)- f( 2 i+l)(-1/2)sin[k(-1/2 + xo)]

+f( 2i+l)(1/2) sin [k(1/2 + xo)] - f(2i+l)(0+) sin(kzo) }
(A.34)
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Since f(x) is symmetric, this simplifies to

00

y(k)=
i=0

k(2i+1) f(2)(l/2) cos k(-1/2 + xo) - cos k(1/2 + Xo))]

+ (-1)i f(2i+1)(1/2) sin[k(-1/2 + xo) + sin [k(1/2 + zxo)]

-2f( 2i+1)(0+) sin(kxo)] } (A.35)

By expanding the trigonometric terms, we are left with

y(k) = 1 k2 1+l) f(2i) (1 kl/ sin(kl/2) sin(kxo)
i=O

2(-1 f(2i+1)(/2) cos(kl/2) _ f(2i+l)(O+) sin(kxo)
I(2i+2)

(A.36)

To obtain the transfer function, we simply divide the output (A.36) by the strain

at the center of the sensor, sin(kxo), to obtain

00

T(k) =
i=o

2( )i f(2i)(-1/2) sin(kl/2)

+ k2i+ 2 I(2i+1)(I/2) cos(kl/2)- f(2i+ l)(O+)

which is clearly the same as (A.17), thus showing that the transfer function of a

weighting with a derivative discontinuity is independent of xo, and therefore where it

is placed relative to the point of symmetry in the strain field.

(A.37)
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A.1.3 Sensors Simply Truncated at Structure Bound-

aries

Here the output of a sensor mounted near a boundary of a structure, at a dis-

tance xo from the point of symmetry in a sinusoidal strain field is investigated. It is

again assumed that the strain field is of the form

E(Z) = sin(kz) (A.38)

where k is a parameter that depends on mode number. It is assumed that the bound-

ary of a structure is at x = 0. The output of a sensor with weighting function f(x),

centered at x = xo is then given by

y(k) = f(x - xo) sin(kx) dx (A.39)

Integration by parts of this expression yields

y(k)= -kf(x- o)cos(kx)

+ /2o f'(x - x) cos(k) dx (A.40)

y(k) = [f (1/2) cos [k(l/2 + zo)] + f (-xo)

/2+0 1
+ ] f'(x - xo) cos(kx) dx (A.41)

A.1. Sinusoidal Curvature 227



Appendix A. Derivation of Sensor Output and Transfer Functions

Integration by parts three more times yields

y(lk) = [-f (1/2) cos [k(/2 + Zo)] + f (-.o)

2 4f'(1/2) sin[k(1/2 + xo)]]

+ [f"(1/2) cos [k(/2 + xo)] - f"(-xo)]

+ -f'"(1/2)sink(/2 +o)

/+ - ) sin() d+ k4 f.(x - o) sin(ks) dx (A.42)

A pattern can clearly be seen in the resulting expression, and an infinite series

solution for the output of a sensor mounted in the interior of a structure (away from

its boundaries), centered at a distance so from the point of symmetry in a sinusoidal

strain field can be written as

00oo

y(k) = E
i=O

k(2i+l) [- (2 )(1/2) cos [k(1/2 + xo)] + f (2i)(-o)

(-+ (2) f(2i+1)(/2) sin [k(/2 + o)] }
2+ 2 1 1-,-

(A.43)

To obtain the transfer function from the strain at the center of the sensor to its

output, (A.43) must be divided by the strain at the center of the sensor, sin(kxo):

T(k)= .
i=O

(-1)' -f( 2i)(1/2) cos [k(-1/2 + xo)] + f(2i)(-_o)

k(2i+l) sin(kxo)

(_1)i f( 2 '+ 1 )(1/2) sin[k(-1/2 + 'o)]
+ (2i+ 2) sin(kxo)

This expression can be simplified by expanding the sin[k(xo 1/2)] and cos[k(xo ±

(A.44)
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1/2)] terms using Equations (A.25) and (A.28). Then (A.44) simplifies to

00

T(k)=E
i=O

(-1) (2i)(/2) cos(kxo) cos(kl/2) - sin(kxo) sin(kl/2))
k( 2i + 1) -Jf ( sin(kxo)

sin(kxo)

(-1)i
k(2i+2)

f(2i+) (1/2 (sin(ko) cos(kl/2) + cos(kxo) sin(kl/2) 1
n(ko)(A45)

(A.45)

f( 2 [)(1/2)

f( 21+il)(1l/2)

cos(kl/2) 1
tan(kxo) n(k/2sin()z o)

sin(k/2)+ coml2)o1

tan(k ). + cos(kl/2))

(A.46)

A.1.4 Sensors Folded at Structure Boundaries

In Figure 2.22 a procedure used to fold and flip the truncated part of a sensor was

shown. In this section, the effect of performing this operation when the strain field

is sinusoidal is investigated. As discussed in Chapter 2, the output of the modified

sensor is given by

y(k) = o1/2-xo 1/2+ o
[f(x - 2o)- f(-x - o)] sin(k6s) d + -1o f (x - xo) sin(ks) d

(1/2-4o
(A.47)

The weighting f(-x - xo) is the normal weighting f(x - xo) reflected about the

boundary of the structure at x = 0. The length of the portion of the sensor that

extends beyond the boundary of the sensor is 1/2 - xo. The above equation can be

i=00

I .=

+
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rewritten

11/2+zo [1/2-mo

(k) = o f(x - xo) sin(kx) dx - f(- - xo) sin(kz) dz (A.48)

y(k) = G(k) - H(k) (A.49)

The first integral, G(k), in (A.48) was dealt with in the previous section and the

result is shown in (A.43). The second integral, H(k), is integrated by parts to obtain

/1 1/2-so
H(k) I - f(- - o) cos(kx) l/2-xo

_ 1/2-o f'(-x - xo) cos(kx) dx (A.50)
o k
-1

H(k) = [-f (-1/2) cos [k(1/2 - xo)] + f (-zo)

11/2-xo kf'(-x - zo) cos(kx) dx (A.51)
Jo

Integration by parts three more times yields

H(k) = ' [-f (-1/2) cos [k(1/2 - zo)] + f (-xo)

+ -f'(-1/2) sihk(1/2 - xo)]1
+ [f"(-1/2) cos [k(l/2 - o)]- f"(-xo)

IC [f"'(-1/2) sin [k(1/2 - o)]

+ f'/ 2 - -f""(-x - x0 ) sin(kx) dx (A.52)

230



A pattern emerges from this expression, and H(k) can be written as an infinite

series in the following manner:

00

H(k) =
i=0

f( 2 )(-1/2) cos [k(l/2 - o)] + f(2)(.)]

(-1)+ k(2i+2) f(2i+1)(1/2) sin [k(1/2 XO)] (A.53)

By subtracting this expression for H(k) from G(k), which is the output y(k) in

(A.43) the output of the modified sensor as a function of frequency can be found.

[f(2i)(1/2) cos k( 1/2 + xo)] + f ( 2 )(Xo)

+ f(2i)(-/2) cos [k(/2 o) -)] -f(2i)(X)]

+ k(2i+2) f(2i+)(/ 2 ) sin [k(1/2 + o)]

(A.54)

+ k(2i+2) [f(2 )(l/2) sin [k( 1/2 + xo)] + f(2'+1)(-1/2) sin[k(1/2

(A.55)

By setting

cos[k(1/2 - XO)]

sin[k(1/2 - xo)]

=co [sk(-1/2 + xo)]

=- sin[k(-1/2 + xo)]

y(k)= 0
i=0

(-1)'
k( 2 i+l)

00

y(k) =
i=0

1/2) cos [k(1/2 + xo)] + f( 2i)(-1/2) cos [k(1/2 - Xo)]]

(A.56)

(A.57)
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Equation (A.55) becomes

Derivation of Sensor Output and Transfer Functions

cos [k(1/2 + o)] +

+ [f(2i+1)(1/ 2 ) sin [k(1/2 + zo)]
Sk(2i+2)I

f(2i)(-1/2) cos [k(-1/2 +

- f( 2i+l)(-1/2) sin [k(-1/2

It can be seen that this expression is the same as (A.23). Therefore, the transfer

function of the sensor will be the same as (A.30):

(2)(1/2) ( cos(kl/2)
(tan( k xo)

- sin(kl/2))

+ f(1/2 tancos(kl/2)
( tan(kxo)

)(1/2) sin(k2))(/) tan(kx0)

+ sin(kl/2))

+ cos(kl/2))

(2i+)(-1/2) sin(kl/2) +
tan(kxo)

If f(z) is symmetric, A.59 simplifies to A.13 and A.32:

y(k) = T(k) = w + f(2i)(1/2) sin(kl/2) +
i=0

f(2 +l)(1/2) cos(kl/2)}

(A.60)

A.2 Exponential Curvature

In this section the output and transfer functions for sensors that are centered,

noncentered, simply truncated and truncated by the 'folding' technique are derived

oo

y(k)=
i=O

+ Xo)] }
(A.58)

T(k) = E
i=O

(-)i
k(2(i+l)

cos(kl/2))

(A.59)

f(-1)' (1t/2)k(2i+) I- )

+ f [(2i+
-F k(2i+2)



when the strain field is spatially sinusoidal or cosinusoidal. In the following analysis,

the exponential strain field is assumed to have the form e-k,. The origin will refer

to the point where the strain remains the same no matter what the spatial frequency

is. For the strain field e-k2, this point is simply x = 0, where the strain is unity for

all k.

A.2.1 Centered Sensors

Here the output of a sensor mounted in the interior of a structure (away from its

boundaries), centered at the origin of an exponential strain field is investigated. It is

assumed that the strain field is of the form

e(Z) = e-k=  (A.61)

where k is a parameter that depends on mode number. The output of a sensor with

weighting function f(z), centered at x = 0 is then given by

1/2

Integration by parts of this expression yields

1 1/2
y(k) = f(z)e-k/k -1/2

+ 1/2 1 f'(x)e-k" dx (A.63)

y(k) = [-f(1/2)e-k/2 + f(-1/2)ekl/2

+ f 1/ k f(~-c x(.4

A.2. Exponential Curvature 233



Appendix A. Derivation of Sensor Output and Transfer Functions

Integration by parts three more times yields

y(k) = [-f_(1/2)e-kl/2 + f(-1/2)ek/2]

+ [-f'(1/ 2 )e-k/2 + f(-1/2)ekl/2]

+ 1 [f"(1/2 )e-kl/2 + f"(-1/ 2 )ek/2]

S1 [- f'"(1/ 2 )-kl/2 + fi(-1/2 )ekl/2]

1l/2 1
+ I f"(X)e-k3 dx (A.65)

SJ-12 k

A pattern can clearly be seen in this expression, and at this point an infinite series

solution for the output of a sensor mounted in the interior of a structure (away from

its boundaries), at a distance xz from the origin of an exponential strain field can be

written as

y(k) = ki+1 [-f(i)(l/2)e-k/2 + f()(-1/2)ekl/2] (A.66)
i=0

To obtain the transfer function for this sensor, (A.66) is divided by the strain at

the center of the sensor, which is simply unity. Therefore

01
T(k) = E k~ [-f()(1/2)e-kl/2 + f(i(-1/2)ek/2] (A.67)

i=0

A.2.2 Noncentered Sensors

Here the output of a sensor mounted in the interior of a structure (away from its

boundaries), centered at a distance xo from the origin of an exponential strain field

is investigated. It is assumed that the strain field is of the form

e(x) = e-' (A.68)
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where k is a parameter that depends on mode number. The output of a sensor with

weighting function f(x), centered at x = xo is then given by

y(k) = /2+o f(x - xo)e-kr dx (A.69)
-1/2+xo

Integration by parts of this expression yields

y(k) = f(x -xo)e-k/
k -1/2+xo

p/2+xo 1
+ 1/2+o f'(x - xo)e-k = dx (A.70)

-1/2+zo k

y(;) = [- (1/2)e-k(1/2+o) + f(-1/2)e-k(l-1/2+o)y(c) =

1/2+o f'( - xo)e-km dx (A.71)
+ J-1/2+zo k

Integration by parts three more times yields

y() = 1 [-f(l/2)e-k(1/2+o) + f(-1/2)e-k(-1/2+o)]y(c) =

+ 1 f'(1/ 2 )e-k(1/2+o) + f'(-1/ 2 )e-k(- 1/2+o)]

+ 1 f[-"(l/ 2 )e-k(1/2+xo) + f"(l1/2)e-k(-1/2+xo)

+ 1 [-f"(l1/2)e-k(1/2+o) + f,,(-1/2)e-k(-1/2+o)]

1/2+ao 1
+ I 'f""(X - Xo)ek- dx (A.72)

-1/2+zo 0

A pattern can clearly be seen in this expression, and an infinite series solution

for the output of a sensor mounted in the interior of a structure (away from its

boundaries), at a distance xo from the origin of an exponential strain field can be
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written as

y(k) = 1 [-f(i)(I/2)e-k(1/2+o) + f(i)(-1/2)e-k(-1/2+xo) (A.73)
i= o

To obtain the transfer function for this sensor, (A.73) is divided by e-kxo, the

strain at the center of the sensor. Equation (A.73) is first rewritten as

01
y(k) = J ,1 [-f'i)(1/2)e-/2+ f(')(-1/2)ekl/2] e-k o  (A.74)

i=0

By dividing this expression by e-kXo, it is seen that the transfer function is

T(k) = k1 - f (i')(1/2)e-k/2 + f(i)(-l/ 2 )ek/2] (A.75)
i=0

Note that this is precisely the same transfer function as for sensors which are

centered at the origin of the exponential strain field. The transfer function of a

sensor in an exponential field is then independent of the distance of the sensor from

the origin.

A.2.3 Sensors Simply Truncated at Structure Bound-

aries

Here the output of a sensor mounted near a boundary of a structure, at a dis-

tance x0 from the origin of an exponential strain field is investigated. It is again

assumed that the strain field is of the form

e(x) = e-k" (A.76)

where k is a parameter that depends on mode number. It is assumed that the bound-

ary of a structure is at x = 0. The output of a sensor with weighting function f(x),
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centered at x = xo is then given by

(k) = f(X - xo)e - kx dx (A.77)

Integration by parts of this expression yields

1 1/2+ao
y(k) = k f(x - o)e-kx '

1/2+xo kx+ 1 + f'(x - Xo)e-k dx (A.78)

y(k) = -[-f(1/2)e- k(1/2 +xo) + f(-zo)]

1/2+xo 1
+ k f'(x - zo)e - k dx (A.79)

Integration by parts three more times yields

y(k) = 1 [f(1/2)e-k(1/2+xo) + f(-xo)]

+ [-f'(1/ 2)e-k(1/2xo) + f'(-0o)]

+ 1 [-_f,(1/2)e-k(1/2+xo) + f(-_o)

+ 1 [- f"'(l/2 )e-k(1/2+xo) + f"(-Xo)

+ /2+xo If(x - xo0)e - kx dx (A.80)

A pattern can clearly be seen in this expression, and an infinite series solution for

the output of a sensor mounted near a boundary of a structure, at a distance xo from

the origin of an exponential strain field can be written as

y(k)= ki+1 [-f(i)(1/2)e-k(1/2+xo) + f(i)(-o)] (A.81)
i=O

To obtain the transfer function of the sensor, (A.81) is divided by e - k o , the strain
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at the center of the sensor:

T(k) k [- f (')(l/2)e- k1/2 + f(i)(x0)eko]

i= o
(A.82)

A.2.4 Sensors Folded at Structure Boundaries

In Figure 2.22 a procedure used to fold and flip the truncated part of a sensor was

shown. In this section, the effect of performing this operation when the strain field

is exponential rather than sinusoidal is investigated. As discussed in Chapter 2, the

output of the modified sensor is given by

y(k) = -o f( - O) - f(-x - o) ekd + f(Z - xo) e- kx dx (A.83)

The weighting f(-x - xo) is the normal weighting f(x - zo) reflected about the

boundary of the structure at x = 0. The length of the portion of the sensor that

extends beyond the boundary of the sensor is 1/2 - xo. The above equation can be

rewritten

= 1/2+o f (x - xo) e dx - 1/2-xo

= G(k)- H(k)

f(-x - 0x) e-k= dxy(k)

y(k)

(A.84)

(A.85)
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The first integral, G(k), in (A.84) was dealt with in the previous section and the

result is shown in (A.81). The second integral, H(k), is integrated by parts to yield

H(k)

H(k)

1 1/2-to
- k f(-X - xo)e - k /2-

k 0
1
Sf'(-2 - Zo)e-km dx (A.86)

= [f(-xo) - f(-1/2)e-k(1/2-o)

1/2-xo
0

1
1f'(- - Zo)e-kx dzx (A.87)

Integration by parts three more times yields

H(k) = [f( - z o) - f ( - /2)e - k(1/ 2 - xo)

1 [-f'(-xo) + fI"(-/2)e-k(1/2-o)]

=- f"(-xo) - f"(-1/2 )-k(1/2-o)

1 [- f"'(-xo) + fI(-1/2)e-k(1/2-o)

+ 11/2-o
0

1 IIII
-f""(-z - zo)e -k z dz (A.88)

A pattern emerges from this expression, and H(k) can be written as an infinite

series in the following manner:

00

H(k) = E
i=0

(A.89)(-)i [f (2i)( - X) - f( 2i)(-1/2)e-k(1/2-xo)]

Now G(k) and H(k) are rewritten in slightly different forms:

00

G(k) = E
i=0 k(2i+) [ (2i)(1/2)e-k(1/2+o + (2i)( _o)

+ [_ f (2i+l)(1/2)e-k(1/ 2+o) 2 + l"')(-o)]k( 2i+2) L
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00

H(k) = E
i=0

1
k(2i+l) [f(2i)(_o) f(2i)(-1/2)e-k(1/2-o)]

+ k - f(2i+l)(o) + f(2i+1)(-1/2)e-k(1/2-o) (A.91)

By subtracting the expression for H(k) from G(k), the output of the modified

sensor as a function of k can be found:

k(2+1) [ f(2i)(l/2)e-k(1/2+ o) + f( 2i)( _Xo)

f(')(-) - f(i)(-1/2)e-k(1/2-o)

1+ (2 _f2)[ f(2i+l)(l/2)e-k(1/ 2+xo) + f( 2i+l)(_o)

_f (2i+) ) (2i+ )(-1/2)ek(1/2-o)

-f (2(/2)e-k(1/2+xo)+f(2i(_1/2)e-k(1/2-xo)
oo

y(k)= E
i=O

+ [-f(2+l)(1/2)e-k(1/2+zo) _f (2i+l)(-1/2)e-k(1/2-o)+2 f(2i+ 1)(_o) )t k(2i+2)I

(A.93)

This expression is divided by e- kx o, the strain at the center of the sensor, in order

to find the transfer function:

00

T(k) = E
i=o

k(2i+1) [ f (2i)(1/2)e-kl/2 +f (2i)(-1/2)e-k(1/2-2 o)

+ -f (2i+l)(1/2)e-kl/2 _f (2i+1)(-1/2)e-k(1/2-2xo) +2 f (2i+l) (-o)ek ok(2i+2)I

(A.94)

(A.92)

oo
y(k) = E

i=O
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Appendix B

The Transfer Function of the
Gauss-Hanning Weighting

As discussed in Section 2.3.3 of Chapter 2, the Gauss-Hanning weighting is produced

by truncating a Gaussian weighting by multiplying it by a Hanning weighting. The

transfer function of the Gauss-Hanning weighting is given here:

2r n 2 M(a)

8a

In 2k2
exp 2a 2

erf 
7r + j(k

' + a'))
a//

k1

- erf ( - ra+ j ( k' + a ' ) )

+exp (2k)

+4 exp (-
(k C

erf

erf

ra + j(k' - a'))
all

!

ra + Jk')

- erf (- 7r a + j(k' - a ' ) )
- erl

- erf 7ar
a"

where j = ,- and

k' = V Iln2 k

'a = 2 In 2 a

T(k)

(B.1)

(B.2)

(B.3)
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a" = 2'IP a

The error function erf(z) is given by

erf(z) e-te dt

and the parameter M(a) is given by

erf r 2 In 2
21n2

- erf (-7r +j 21n2
21n2

+ 4 erf

(B.6)

M(ci) , 0.33056 ci

(B.4)

M(a)

(B.5)

4a
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Appendix C

Derivation of Numerical
Integration Schemes

C.1 Elementary Quadrature Formulae on a

Finite Interval

We can construct a general formula to numerically estimate the value of any

integral of the form

bg(x) f(x) dz (C.1)

where f(x) is the argument function and g(x) is an arbitrary weighting function [25].

In this work g(x) is typically assumed to be unity over the interval [a, b]. We

call L[a, b] the class of functions which are Lebesgue-integrable (summable) in [a, b],

and ACk[a, b] the class of functions whose k-th derivative is absolutely continuous

in [a, b]. It is assumed that the weighting function g(x) and the argument func-

tion f(x) satisfy the hypotheses

g(x) E L[a,b], (C.2)

f(x) ACm-1 [a, b]. (C.3)
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Within the region [a, b] we fix some number n > 1 of points x 1, X2,..., x,n where

the function f(x) will be evaluated. These points are called nodes. These nodes have

the property that

x0 = a < zx < 22 < ... < Xn _ b = n+l. (C.4)

A linear differential operator E of order m is now introduced, of the form

m dm-k

E = E ak(x)dm-k (C.5)
k=O

along with its adjoint operator, which has the form

m m-ck
= (-1)m-kak() -k (C.6)

k=O

The order m of these operators is the same as in (C.3). We then have an elemen-

tary quadrature formula for the evaluation of the general integral (C.1):

g(L)f(x) _ Ahif(h)(xi) + R[f(x)] (C.7)
a h=O i=1

where the constant coefficients Ah, are independent of f(z) and R[f(z)] is a remain-

der term accounting for the error inherent in the numerical approximation. This

remainder term is zero when f(x) is a solution to the differential equation

E[f(z)] = 0. (C.8)

In many practical applications, especially when dealing with numerical data rather

than a specified analytic function, R[f(z)] cannot be determined and the integral is
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approximated by
b m-1 n

g(x)f(x) dx = E ZAhif(h)(xi) (C.9)
a h=0 i=1

where f(h)(x) denotes the h-th derivative of f(x). R[f(x)] is then used as an ap-

proximation of the error incurred in using the integration scheme. An example of a

differential operator E which yields exact results for any polynomial of degree m - 1

is
dm

E - d (C.10)
dxm

Another operator, one which is exact for trigonometric polynomials of order v is

d d 2

E = d d2 (C.11)

where m = 2v + 1. Now, we consider the non-homogeneous differential equation

E*[p(x)] = g(x) (C.12)

where E* is the adjoint operator, defined in (C.6). We then find n - 1 solutions of

the form

(z), W2 (),..., W-,_l(x) E ACm-1[a, b] (C.13)

Two more solutions, p0(x) and cp,(x), are determined by the initial conditions

at the points a and b. It can be shown that when deriving a numerical integration

formula of closed type, i.e. when xz = a and x, = b, it is not necessary to consider the

two boundary solutions Wo(x) and n,(x), and they can be assumed to be zero [25].

Further, it can be shown that the coefficients Ah defined in (C.9) can be determined

from the following expression:

Ahi = Em-h-l[Woi(x) - i-1()] , 1 (C.14)
""' i= 1,2,...,n
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In addition, the remainder term R[f(x)] is expressed as

R[f(x)] = E j pi(x)E[f(x)] dz,
i=0 Ji/b

= j (x)E[f(x)] dx. (C.15)

It can be seen from (C.14) that the coefficients Ahi are indeed independent of the

argument function f(z). It can also be immediately seen from (C.15) that when f(z)

satisfies the differential equation given in (C.8), that the remainder R[f(z)] will be

zero. In these cases, the integration formula is exact.

In summary, the following scheme is used to derive elementary quadrature formu-

lae of the type given in (C.7):

1. The number of nodes n which will be used is selected;

2. The order m and form of the operator E is selected. This choice may be influ-

enced by any knowledge of the argument function f(x) which will be integrated;

3. The linear differential equation E*[p(x)] = g(x) is considered and the solutions

cpo(x) and ~,(x) are found, if necessary (when xo 7 a and x,, $ b, respectively);

4. The other n - 1 arbitrary solutions Wp(x), p2 (x),..., W,onl(x) of the same differ-

ential equation E*[cp(x)] = g(x) are then found;

5. The constant coefficients Ahi are determined from (C.14);

6. Finally, the remainder term R[f(s)] is determined from (C.15) when f(x) does

not satisfy the differential equation (C.8).

For convenience, the three fundamental formulae for deriving elementary quadra-

ture formulae are summarized here:

b m-1 n

Sg(x) f(x) dx = Er n Ahif(h)(xi) + R[f ()], (C.16)
h=O i=1
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Ah = [E* h_1 (%i(x) - 1(x))] = , (C.17)

R[f(x)] = p 1(x)E[f(x)] dx = j (x)E[f(x)] dx. (C.18)
i= 0 xi

C.2 Trapezoidal Rule

Here we derive the trapezoidal formula using the techniques given in Section C.1.

To start, we have n = 2. Since the formula will be exact for polynomials or order 1

(linear polynomials), we have m = 2. We therefore select [25]:

d2
E- d=2 . (C.19)

The n (2) nodes to be used are x1 = a and X2 = b. Since the formula is of closed

type, the boundary solutions po(x) and p2(x) can be ignored. Clearly only a single

solution, cp(x) needs to be chosen. It must satisfy the nonhomogeneous differential

equation

E*[p(x)] = g(x),

E*[Si(x)] = 1. (C.20)

The adjoint operator here is equal to - and we have

d2

d2 1(z) = 1. (C.21)

By integrating (C.21) twice , we obtain

Z
2

pi(X) = + C1X + C2  (C.22)
2
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where C1 and C2 are integration constants which are determined later. At this point,

the integration formula is [25]:

b 1 2

L f(x) dx = Ahif(h)(i) + R[f(x)] (C.23)
h=0 i=1

There are always (n - 1)m arbitrary parameters, and in this case there are two, C1

and C2. These are determined by applying some condition to the constants Ahi. These

constants are:

Ao1 = E*[Wi(x) - o(Z)].=,i
d

-- z- + C1X + C2

= [-X - C =

-a - C1  (C.24)

A02 S*[W(X) - 0(2)x=b
Adz 2 ==

= b+ C (C.25)

All = E [plX() - Wo()].=

2

2

S 2

-+ a + C22 2 = b

- - Cb - C2 . (C.27)
2



Using these results we can write the approximate expression for the integral:

,b
f(x) dx Aoif(a) + Ao2f(b) + Aiif'(a) + A 12f'(b)

= (-a - Cx)f(a) + (b + C)f(b)

f'(a) +(-b2
f '(a) + b-2

- Cib - C2) f'(b)

Since values of the first derivative f'(x) are not available, All and A12 must be

zero. This gives a way to solve for the arbitrary constants C, and C2:

All
a 2

= 2 +Ca+C2 = 0,2
(C.29)

(C.30)A12 --- b- C2 = 0.
2

Solving for C1 and C2 from these two equations yields

a+b
2

ab
C2-

2

(C.31)

(C.32)

Using this result we find

Aol = A0 2

A11 = A 1 2

b-a

2

= 0.

(C.33)

(C.34)

Thus (C.26) now becomes [25]

J b - af(x) dx -a 2
[f(a) + f(b)]

+ Ca + C02) (C.28)

249
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and cpl(x) is

X2  a+b ab
P1(x) = + -

2 2 2
1
1(x - a)(x - b) (C.36)

We are now in a position to calculate the remainder R[f(x)] for the trapezoidal

integration formula. Using (C.15) and (C.36), we find R[f(x)]:

R[f(x)] = 4(x)E[f(x)] dx,

= (x) f(Z) dz,

- 2 (x - a)(x - b)f"(x) dx. (C.37)

If we assume that f"(x) is continuous in [a, b], and since pl(x) is continuous and

does not change sign in [a, b], we can write, using the mean value theorem [25]:

R[f(x)] = f"() 1(x) dx,

= f 1"() -( - a)(x - b) dx,

(b - a) (.38)
= - f"(l). (C.38)12

where a < ( < b. The value of 4 is not known, but since it lies within [a, b] it is possible

to calculate the maximum possible value of the remainder R[f(x)] by choosing 6 such

that f"(4) is maximized. It is clear from (C.38) that the error increases dramatically

as the spacing (b - a) is increased. Note from (C.35) that this assumes that only one

trapezoid is fitted between the limits a and b. That is, h = b - a in this case. If the

compound trapezoidal rule is employed, and as more trapezoids are used, the error

will decrease as 1/N 2 where N is the number of subdivisions of the interval [46, 30, 16].
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C.3 Simpson's Rule

Here Simpson's rule will be derived using the three fundamental formulae, (C.16),

(C.17) and (C.18). Since the formula uses values of f(z) at three points, n = 3. The

rule can also be derived using m = 4 since it is exact for cubic polynomials [25, 16].

However, it is simpler to derive using m = 3. Therefore, we have

E dx3' (C.39)

and
d d2  d3

E* = 1, E = -- E = , E*= E = (C.40)Sdzx' 2 dX3  3 dZ3

The non-homogeneous differential equation (C.12), where g(x) = 1 must be satis-

fied:

E*[p(s)] = 1,
d3

dX [(X)] = 1,

- W"'(X) = 1. (C.41)

Since n = 3 (rather than 2 as in the trapezoidal rule), we will have two arbitrary

solutions to the differential equation (C.41), p1(x) and p(2 ():

3 C 11 22
c(X) = 2 +C + C 13 , (C.42)

23 C21 2

P2(X) = +  2 + C + 22 + C2 3 . (C.43)
6 2
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By using (C.42) and (C.43) in (C.17), we obtain

Ao, = -a+ C 11  (C.44)

Ao2 = C21 - C11  (C.45)

A03 = b-C 21  (C.46)
a2

All = - C a - C12  (C.47)
2

A 12 = (C 11 - C21)x 2 + (C1 2 - C22) (C.48)

b2
A 13 = + C21b + C22  (C.49)

2
a3  C11a2

A 21 = a + C 2a +C 13  (C.50)
6 2

A 22  (C21 - 2  + (C 2 2 - C 2) + (C2 3 - C13 ) (C.51)

b3  C21 b2

A 23 = C22b - C23 (C.52)6 2

where it is assumed that xl = a and 3a = b. Typically it is assumed that 22 = I(a+b).

To maintain generality, x2 has not yet been specified. The expression for the integral,

(C.16) now becomes

Sf(x) Aof (a) + A 2 f (x 2 ) + Ao0 f(b)

+ Allf'(a) + A 12 f'( 2 ) + A13f'(b)

+ A 21f"(a) + A22f"(X 2 ) + A 23f"(b). (C.53)
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Again, assuming we cannot evaluate values of f'(x) or f"(x), we must specify that

the six constants A11 , A 12, A13 , A 21, A 22 and A 23 be zero. This requires solving the

six simultaneous equations:

a 2

-2 - a-C12 = 0 (C.54)

(C 11 - C21 )X2 + (C1 2 - C22 ) = 0 (C.55)

b + C2b 22 = 0 (C.56)

a3  Clla2

- + 2 +12 +C 13 = 0 (C.57)6 2
(C2 - C11)X2

2 2 + (C22 - C12 )X2 + (C23 - C13 ) = 0 (C.58)2
b3  C21b 2

- C22 b -C23 = 0 (C.59)
6 2

Solving these yields:

S3 2(a + b) - 4a 2 - ab - b2
(C)1 (C.60)

6(z2- a)

2 a(a2 + ab + b2 - 3bx 2)
6(X1 - a)

C13  a2 (x2(3b - a) - b2 - ab)
12( 2 - a)

C21  3 2(a + b) - a 2 - ab - 4b2

6(X 2 - b)

C2 .2  = b(a 2 + ab + b2 - 3ax2)
6( 2 - b)

C23  b2(x2(3a - b) - a2 - ab) (C.65)
C23 =n r (C.65)

1z2 - 0)
. o
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Using (C.60)-(C.65) we find

10a 2 + ab + b2 - 3 2 (3a + b)

6(X 2 - a)

(b - a)3

6(x2 - a)(X2 - b)
a2 + ab + 10b2 - 3z 2 (a + 3b)

6( 2 - b)

For convenience, it is typically assumed that x2 = 2

(C.68) simplify to

Ao1 = A 03

Ao0 2

In this case, (C.66)-

1
- (b - a)

6
4

- (b- a)
6

(C.69)

(C.70)

(C.71)

leading to Simpson's formula [25, 16, 30]:

b0 (b - a)
f(x) dx , 6 f (a)+4f

a+ b
2 )

Now the remainder term R[f(z)] is computed. We have

R[f (x)] = lb (x)E[f (x)] dx

R[f(x)] = b

(x - a)2 (a + b - 22)
12

(x - b) 2(a + b - 2x)
12

a< < (a + b)
2

(a + b) <<b<z<b
2 -

Aol

Ao2

A03

(C.66)

(C.67)

(C.68)

(C.72)

where

4(x)(f"') dx

( ) = {

(C.73)

(C.74)
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+ f (b)).
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so that

R[f(x)] = f"'() d

+ lb (x - b)2 (a + b - 2x) f dx (C.75)
f "( ) dz (C.75)

2 12

It can be shown that when f"'(x) is a constant, i.e. when f(x) is a cubic poly-

nomial, the remainder R[f(x)] always goes to zero, showing that Simpson's formula

exactly integrates polynomials of order 3 or lower [30, 16]. This is because pl(x)

and 2(x) are antisymmetric about the point x2 = !-b. Mathematically, this means

pi(x) + 2 (a + b- x) = 0.

CA.4 Cubic Interpolating Splines

A cubic interpolating spline can be passed through a discrete set of measurements

and then integrated. A cubic interpolating spline is a piecewise cubic parametric poly-

nomial that passes through an arbitrary set of points. It does so while maintaining

derivative and curvature continuity at the sample points while minimizing the overall

integral of the curvature squared. The spline curve is composed of n - 1 polynomial

segments, where n is the number of points the spline must pass through [52, 2]. The

i-th polynomial segment stretches between (xi, yi) and (xi+i, yi+i) (two successive

points). The x- and y-coordinate values of the curve are defined separately as para-

metric equations of an independent parameter t [52]. The curve of the i-th segment

is defined as (Xi(t), Y,(t)). The x-coordinates of the curve X1(t) can be determined

solely from the x-coordinates of the control points xi and the y-coordinates of the

curve Yi(t) can be determined solely from the y-coordinates of the control points

y1 [46, 52]. Since the solution procedure is the same for both X1 (t) and Yi(t), only
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Yi (t) will be dealt with here. Yi(t) is defined as:

Y(t) = at 3 + bit2 + Cit + di, (0 < t < 1) (C.76)

If a spline is to be passed through n points, n - 1 polynomials will be required

to solve for all Yi(t) completely. Therefore, 4(n - 1) constants need to be found.

However, it suffices to find the derivatives . or Yi'(t) of the spline at each controldt

point yi [46, 52]. Knowing these derivatives and the yi, it is possible using the four

Hermite cubic polynomials to find Y,(t). These four Hermite polynomials are:

H,(t) = (2t + 1)(t- 1)2  (C.77)

H2(t) = t2(3 - 2t) (C.78)

H3 (t) = t(t - 1)2 (C.79)

H4(t) = t 2(t - 1) (C.80)

These polynomials are shown in Figure C.1. Knowing the amplitude yi and the

derivative Di at the start of the i-th curve segment, and the amplitude yi+l and

derivative Di+ at the end of it, Y(t) for that segment would be expressed as

Yi(t) = H,(t)yi + H 2(t)yi+1 + H3 (t)Di + H 4(t)Di+l (C.81)

Since there are n control points, there are n derivatives Di that need to be found.

Since we have

Y'(t = 1) = Y+i'(t = 0) = Di+j, (i = 1,2,...,n- 1) (C.82)

derivative continuity for both X1(t) and Y(t) across control points is guaranteed.

This means that we also have slope continuity of the curve, . The way to obtain n
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0L
0

0.15 r-

0 1

The four Hermite polynomials:
t = 1, H3 (t) has unity slope at

Hi(t) is unity at t = 0, H2(t) is unity at
t = 0 and H 4(t) has unity slope at t = 1.

equations to

points. This

solve for the D. is to enforce curvature continuity at the interior control

means that:

"(t = 1) = (t = 0), (i=1,2,. n - 2) (C.83)

This yields n - 2 equations. Two more equations are needed in order to solve for

all the Di. These are generally found by enforcing some condition on the spline at

the two ends. For a natural cubic spline, the curvature is made to go to zero at the

free ends [46]. Thus we have:

Y1
1(t = 0) = 0

S-(t = 1) = 0

(C.84)

(C.85)

-0.15

Figure C.1:

257C.4. Cubic Interpolating Splines
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Another possibility is to actually specify the slopes D 1 and D,-1, at the start and

end. A further possibility is to construct a closed spline by requiring that Y"(t =

0) = Y" 1(t = 1), and by making D1 = Dn-1.

Using the fact that bi = 0 from (C.76), we can derive expressions for the amplitude

and derivative of Y,(t) at the start and end points:

Y(t = O) = y, = di (C.86)

Y(t = 1) = yi+l = ai + b1 + ci + di (C.87)

Y'(t=0) = D =ca (C.88)

Y,'(t = 1) = D,+1 = 3a, + 2b, + c (C.89)

We can solve (C.86)-(C.89) for the curve segment constants ai, bi, ci and di:

ai = 2(y - yi+j) + Di + Dj+1 (C.90)

bi = 3(yi+l - yi) - 2Di - Di+l (C.91)

c = Di (C.92)

di = yj (C.93)

Now we require that the curvature at the very start of the spline be zero. Thus

Y"(t = 0) = 2b = 0 (C.94)

Using (C.91), we find

2D, + D+1 = 3 (yi+1 - yi)

258
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For the n - 2 interior points, we have

S"(t = 1)

6ai + 2b

= ",(t = o),

3a + b% = b+l

(i = 1,2,...,n- 2)

(C.96)

(C.97)

Now using (C.90) and (C.91), we find

[6(y - yi+1) + 3D + 3Di+1 ] + [3(y+ 1 - yi) - 2Dj - D+1]

= [3(Yi+2 - Yi+1) - 2D+l - Dj+2]

Di + 4Di+1 + D1 +2 = 3 (yi+2 - Yi), (i = 1,2,..., n - 2) (C.100)

At the far end, we have the zero curvature condition

Y"-I(t = 1) = 6an 1 + 2b-1_l = 0

Again using (C.90) and (C.91), we have

3anl + b-1 = 0

= 3(y, - yn-1) - 2Dn-~ - D.

D-,_+ 2D, = 3 (y, - Yn-1)

(C.98)

(C.99)

(C.101)

C.4. Cubic Interpolating Splines 259

6(yn-1 - yn) + Dn-1 + D.

(C.102)
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This can be conveniently put in a simple matrix form [46, 52, 53]

1 4

1

3 (Y2

3 (y3

3 (y4

3 (ys

3 (yn

3 (yn

- y1)

- Y1)

- Y2)

- Y3)

Yn-2)

Yn-1)

(C.103)

The matrix is of a familiar form, and is positive definite. Thus it has full rank,

and simple Gaussian elimination and back substitution can be used to efficiently solve

for the Di [46, 53]. Once the Di are known, (C.81) is used on each interval to plot

the curve segment. Simplifying (C.81) or using (C.90)-(C.93) in (C.76) yields

Y(t) = [2(y - y,+) + D, + D,+l]t3

+ [3(yi+1 - yi) - 20 - Di+l]t2

+ Dt + y (C.104)

A similar procedure is used to solve for the x-coordinates of the curve segments, Xi(t).

C.5 B-Splines

B-splines, basis splines, or basic splines are composed of polynomial segments, but

unlike cubic interpolating splines, they are not interpolatory and do not pass through

the specified control points [7]. B-splines can be of various orders, from 1 to the one

less than the number of vertices in the control polygon. B-splines of first order are

linear functions which interpolate the data in a trapezoidal fashion. Second order B-
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splines are quadratic functions which yield a curve which is tangent to the midpoint

of the line connecting two successive control points. Finally, B-splines of order n - 1,

where n is the number of vertices of the control polygon, are Bezier curves. Some of

the properties of B-splines are given here [23]:

* The convex hull formed from the vertices of the control polygon will always

contain the B-spline curve. The convex hull is the closed convex polygon formed

by stretching a loop of elastic around all the control vertices.

* A B-spline of order m is differentiable m - 1 times when there are no repeated

control vertices. The number of times the curve is differentiable goes down by

one to m - 2 when a double vertex exists, and down to m - p when a single

vertex is repeated p times. This means that for a B-spline of second order, there

will be a slope discontinuity at a repeated vertex.

* B-spline curves are transformable by linear translation and rotation operations.

This means that the curve computed after a translation and rotation of its control

polygon yields the same curve as the same translation and rotation applied to

the original curve.

* Moving a control vertex only affects n curve segments, when the order of the

curve is n - 1 and the control polygon is composed of n vertices.

* Any infinitely long line cannot intersect the B-spline curve without also inter-

secting the control polygon.

It can be seen from Figure 3.5 in Chapter 4 that the curve becomes tangent at

the midpoint of the lines connecting the vertices of the control polygon. It is at these

points that successive polynomials connect.

261C.5. B-Splines
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Figure C.2: A very simple third order B-spline.

These polynomials are parametrically expressed as a function of an independent

variable t as follows;

X,(t) = A1,t 2 + Blit + Cli (C.105)

Y(t) = At 2 + B 2 t + C 2i (C.106)

Typically t is assumed to be in the range [0, 1] for each polynomial in order to

simplify the mathematics, but any range can be used. In order to solve for the six

unknown constants, six conditions must be specified so as to uniquely define the curve.

We start by examining the simplest case: a B-spline formed of a single polynomial.

An example of such a spline is shown in Figure C.2. This spline is defined by a single

curve:

X(t) = At 2 + Bi t+ C, (C.107)

Y(t) = A 2t2 +B 2t + C 2 (C.108)

(x2,y2)

(x3,y3)

(xl,yl)
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We will find the six coefficients as a function of the location of the three vertices

shown in Figure C.2, xi, yi, X2, Y2, Z3, and y3. The six equations are:

X(t = 0) = Cl = (C.109)

Y(t =O) = C2 y (C.110)

X(t= 1) = A1 + B1 + C = 3  (C.111)

Y(t=l1) = A 2 +B 2 +C 2 =y 3  (C.112)

Y' B2 _2 YY1x(t = B2 0) Y2 - (C.113)X' B1 X2 -2X1
Y' 2A2 B2  Y3 - Y2

(t =1) = = (C.114)X'( 2A, + B1 X3 - X2

The solution to these equations is

A1 = (x 3 - x 2 ) - (x 2 - 1 ) A 2 = (Y3 - Y2) - (Y2 - Yl)

B 1 = 2(x 2 - X1) and B 2 = 2 (y2 - l) (C.115)

C 1 = x 1  C2 Y1

and thus the polynomial is defined as

X(t) = (x1 - 2x 2 + x 3 )t 2 + 2(x 2 - x)t + x 1  (C.116)

Y(t) = (y - 2y 2 +y 3)t 2 + 2(y 2 - y1 )t + Y1 (C.117)
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This result is now used to write the polynomials for a B-spline defined by a polygon

having n vertices:

Xi(t) = i - 2ix+ + xi+1 + ZXi 2 t2 + 2(xi+i - x1)t + X2 /(i =)

Y(t) = yi - 2 yj+j + Y1 + Yi+2 t2 + 2 (y,i+ - y,)t + y J
(C.118)

Xi(t) = + + - 2xj+1 + 2x+ + t
2 + 2(xi+i - Xi)t + 2

( Yi) = + Y+1 -2yi+ + 2 t 2 + 2(yj 1 - yi)t + Yi+Yi+12 2 2 J
(i = 2, 3,..., n - 3)

(C.119)

() = 2 + - 2x,- + x t 2 + 2(xi+ - )t + ( = - )S/ (i( = n-2)

S(t) = (Y-2 Y- 2yi-1 + y t2 + 2 (y+ - y)t + y

(C.120)

C.6 Gauss Quadrature

The Gauss Quadrature rule uses optimal abscissa distributions to yield accurate

approximations to integrals using about half as many sample points as simple Rie-

mann sums such as the trapezoidal rule [30]. Such optimal spacings generally yield

abscissas that are specified by irrational numbers [36]. Usually the weightings on the

ordinates are also irrational [36].

We assume we have a weighting function w(x) defined over the integration inter-

val [a, b]. Then the inner product of two functions f(s) and g(x) over the interval [a, b]
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with respect to the weighting function w(x) is given by [16]:

(f,g) = w(x) f(2) g(x) dx (C.121)

When f(x) and g(x) are orthogonal to each other over the interval [a, b] with

respect to the weighting w(x), we have

(f,g) = w(x) f(x) g(x) dx = 0 (C.122)

The functions f(x) and g(x) can be replaced by two polynomials out of a sequence

of polynomials that are all orthogonal to each other. Such a sequence can be found

for a given weighting function w(x). This sequence is defined as p0(x), pi(x), ... ,

and the n-th polynomial p,(x) is of degree n. Thus we have

(Pm,pn) = w(x) pm() p,(x) d = 0, m n (C.123)

A set of orthonormal polynomials p(zx), p(z), ... , can be produced by multiplying

each p*(x) by a special constant [16]. This set of orthonormal polynomials has the

property that

0, m n

Common sets of orthogonal polynomials are the Legendre, Chebyshev (first and

second kind), Gegenbauer and Jacobi polynomials [16]. The zeros of real orthogonal

polynomials are real, simple, and all lie in the interior of the interval [a, b]. This

is a key property that is used in the derivation of the Gauss quadrature rules. In

addition, the orthonormal polynomials p*(x) satisfy a three-term recurrence relation

C.6. Gauss Quadrature 265
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of the form

p*(x) = (aix + bi)p*_ (x) -cip*_ 2(x), i = 1,2,3,... (C.125)

where ai, ci 0, p*-l() = 0, and p* = fb'w() d.

Now, given a set of n nodes xl, X2, ... , x, located in the interior of [a, b], a

sequence of weightings wl, w 2, ... , w,, can be found such that the integral

w(x) f (x) dx E wi f (xi) (C.126)
i=1

will be exact when f(x) is a polynomial of degree n - 1 or less [18, 16]. However,

if the nodes and weights can both be chosen freely, there are 2n choices, and there

is a combination of them that allows the rule to be exact for polynomials of degree

2n - 1 or less. To accomplish this, the nodes need to be chosen as the zeros of the

set of polynomials p*(z) that are orthonormal to the weighting function w(x) on the

interval [a, b]. Thus we have that the xz are the zeros of p*(x):

a < x1 < z2 < .. < n, < b (C.127)

A sequence of weights wi can be found such that

w(x) f(x) dx = Zwi f(xi) (C.128)
i=1

if f(x) is a polynomial of degree 2n - 1 or less. In fact, the weights wi are positive

and can be found from [16]:

kIc P 1w - C, PR+i p*'(x,) (C.129)
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where k is the leading term of the i-th orthonormal polynomial p(x):

p*(x) = kz' +.., ki > 0 (C.130)

and ki is taken to be positive.

For the Gauss-Legendre quadrature rule, the weighting function w(x) is simply

taken to be unity, and the rule has the form

1 n

f(x) dx = Z-wi f(x) + En (C.131)
=1

The orthogonal polynomials pi(x) are taken to be the Legendre polynomials.

These polynomials have the form

P() n!) ( 2 - . (C.132)
2nn! I dz

The sampling points xz are the n zeros of the Legendre polynomial of degree n,

which all lie in the interval [-1, 1] [24]. The argument function and the integration

interval [a, b] can be linearly transformed to the interval [-1, 1] by the change of

variables

S= 2 -a) - 1 (C.133)

The wi, the weightings on the ordinates, are computed with any of the following

formulae [32, 30, 35]:

2 2 2
wi = - - (1 - X)[PI(X,) 2 (C.134)= (n + 1)P,+1(xs)P(,) nPs- 1 (xs)P(x) (1 - )[P()] (.134)

where P'() = P,,(x). For the purposes of calculating values of the Legendre
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polynomials, it is useful to use the recursion formula [30]:

Po(x) = 1 (C.135)

Pi(x) = x (C.136)
1

P2() 2(321 - 1) (C.137)2

P+ 1() = n + P,) (C.138)
n+1 m+l

The error incurred by the use of the Gauss rule is

1n
En= f(x) dx - w, f (x) (C.139)

-1 i=1

and is given by [16, 30, 18, 35]:

E= 22n+ (n!)4  f( 2n)(), -1 < < 1 (C.140)
(2n + 1) [(2n)!]3

where f( 2 n)(z) is the 2n-th derivative of f(s).

C.7 Interpolation by Chebyshev Polynomi-

als

As an alternative to the method presented in Chapter 4, the interpolating poly-

nomial for p(x) that passes through the points fi = f(xi) can be found from the

Lagrange interpolation formula [16]. We begin by assuming that the abscissas xi are

distinct and ordered and in some interval [a, b]:

(C.141)
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We have n data points fi = f(x%) that need to be interpolated. This can be accom-

plished by a unique polynomial p, 1( (x) of degree n - 1 that has the property

pn-l(xz) ft (C.142)

The polynomial pn-1 can be written in the following way. We define n fundamental

polynomials 1l(x) of degree n - 1 that are given by

( -(XXI) ... (X - X,-l)( - X+i) ... (X - Xn)
( ) =... ...

The 1(x) can also be written in the form

l(Qx) = (x)
(x - xj) 7r'(x,)

where

T () = (2 - 1)(Z - Z2) ...( - n)

The polynomials li(x) have the property that

li(z) = = 1, i J
0O, j 4j

i= 1, 2,. .. ,n (C.143)

(C.144)

(C.145)

(C.146)

We can now write the interpolating polynomial Pn,_1(z) in terms of the fundamen-

tal polynomials li(x) as
Pn-1(X) f (%) (T)

pni(X) = f(x t ) I4(x) (C.147)

The desired integral can then be written as

pb n

a i=1

b
f(x%) l1(x) dx

*
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Appendix D

Results of Static Shape Estimation

D.1 Midpoint Rule

Table D.1: Results of static shape estimation using the midpoint rule and point sensors.

Slope Estimation Deflection Estimation

Number Absolute 0'o U, Absolute ,o o,
Gages Error (%) (%) (%) Error (%) (%) (%)

2 9.8137 0.3324 1.6632 10.0406 0.4017 2.0096

4 1.2318 0.2965 1.4833 1.8177 0.3360 1.6807

6 0.8515 0.2829 1.4155 1.2408 0.3129 1.5652

8 0.5517 0.2500 1.2503 0.7955 0.2677 1.3391

10 0.3825 0.2323 1.1620 0.5484 0.2418 1.2098
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Table D.2: Results of static shape estimation using the midpoint rule and rectangular
sensors.

Slope Estimation Deflection Estimation

Number Absolute 1 o a, Absolute o or,.
Gages Error (%) (%) (%) Error (%) (%) (%)

2 6.1463 0.3029 1.2463 6.6683 0.3434 1.4390

4 2.1281 0.2697 1.1329 2.7653 0.3098 1.3361

6 1.2381 0.2472 0.9987 1.6096 0.2829 1.1770

8 0.5899 0.2257 0.9027 0.8073 0.2548 1.0591

10 0.3304 0.1967 0.8206 0.4751 0.2183 0.9578

Table D.3: Results of static
sensors.

shape estimation using the midpoint rule and Bartlett

Slope Estimation Deflection Estimation

Number Absolute ao a, Absolute ao ar
Gages Error (%) (%) (%) Error (%) (%) (%)

2 7.8422 0.3241 1.2493 8.2755 0.3599 1.4472

4 1.5248 0.3078 1.1466 2.2073 0.3474 1.3282

6 1.0696 0.2509 1.0619 1.4715 0.2864 1.2212

8 0.6822 0.2149 0.9468 0.9299 0.2441 1.0813

10 0.4688 0.1901 0.8511 0.6360 0.2160 0.9688
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D.2 Trapezoidal Rule

Table D.4: Results of static
sensors.

shape estimation using the trapezoidal rule and point

Slope Estimation Deflection Estimation

Number Absolute go a, Absolute go o~
Gages Error (%) (%) (%) Error (%) (%) (%)

2 9.8137 0.2838 1.4209 11.2107 0.3220 1.6111

4 1.2318 0.2986 1.4935 1.0984 0.3261 1.6312

6 0.8515 0.2609 1.3054 0.5072 0.2880 1.4405

8 0.5517 0.2318 1.1596 0.3354 0.2605 1.3031

10 0.3825 0.1961 0.9811 0.2364 0.2202 1.1017

Table D.5: Results of static shape estimation using the trapezoidal rule and rectangular
sensors.

Slope Estimation Deflection Estimation

Number Absolute go a, Absolute o or,
Gages Error (%) (%) (%) Error (%) (%) (%)

2 6.1463 0.2755 1.1696 7.8229 0.2876 1.2579

4 2.1281 0.2602 1.1296 1.3096 0.2829 1.2670

6 1.2381 0.2376 0.9908 0.7440 0.2648 1.1162

8 0.5899 0.2185 0.8917 0.3045 0.2449 1.0203

10 0.3304 0.1940 0.8086 0.1548 0.2171 0.9208
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Table D.6: Results of static shape estimation using the trapezoidal rule and Bartlett
sensors.

Slope Estimation Deflection Estimation

Number Absolute ,o a, Absolute ao ar
Gages Error (%) (%) (%) Error (%) (%) (%)

2 7.8422 0.2995 1.1539 9.3881 0.3011 1.2364

4 1.5248 0.3095 1.1355 0.9956 0.3296 1.2639

6 1.0696 0.2437 1.0319 0.6093 0.2692 1.1648

8 0.6822 0.2077 0.8994 0.4049 0.2326 1.0339

10 0.4688 0.1903 0.8197 0.2847 0.2132 0.9318

D.3 Simpson's Rule

Table D.7: Results of static shape estimation using Simpson's rule and point sensors.

Slope Estimation Deflection Estimation

Number Absolute ao a, Absolute go ar
Gages Error (%) (%) (%) Error (%) (%) (%)

3 3.2982 0.2779 1.3907 3.8291 0.3150 1.5758

5 0.3345 0.2631 1.3161 0.3349 0.2935 1.4683

7 0.0936 0.2269 1.1355 0.1034 0.2547 1.2742

9 0.0734 0.2051 1.0257 0.0650 0.2300 1.1505

11 0.0185 0.1784 0.8927 0.0204 0.2013 1.0071

274 Appendix D. Results of Static Shape Estimation



Table D.8: Results of static shape estimation using Simpson's rule and rectangular
sensors.

Slope Estimation Deflection Estimation

Number Absolute 'o a, Absolute go o,
Gages Error (%) (%) (%) Error (%) (%) (%)

3 1.7098 0.3371 1.0810 2.2955 0.3565 1.2284

5 0.5773 0.2503 1.0492 0.4902 0.2785 1.1955

7 0.2070 0.2005 0.9084 0.1638 0.2268 1.0424

9 0.4509 0.1903 0.8192 0.4237 0.2104 0.9454

11 0.1221 0.1704 0.7272 0.1015 0.1880 0.8406

Table D.9: Results of static shape estimation using Simpson's rule and Bartlett sensors.

Slope Estimation Deflection Estimation

Number Absolute ao a, Absolute o o,.
Gages Error (%) (%) (%) Error (%) (%) (%)

3 2.5446 0.2931 1.0743 3.1120 0.3155 1.2224

5 0.2360 0.2506 1.0354 0.2401 0.2789 1.1749

7 0.1439 0.2040 0.9502 0.1191 0.2291 1.0817

9 0.0979 0.1864 0.8094 0.0825 0.2096 0.9374

11 0.0781 0.1675 0.7487 0.0655 0.1885 0.8566
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D.4 Cubic Interpolating Spline Rule

Table D.10: Results of static
sensors.

Table D.11: Results of static
gular sensors.

shape estimation using the Cubic Spline rule and point

shape estimation using the Cubic Spline rule and rectan-

Slope Estimation Deflection Estimation

Number Absolute go a, Absolute go 1 r
Gages Error (%) (%) (%) Error (%) (%) (%)

2 6.9190 0.2510 1.0806 7.7763 0.2811 1.2270

4 0.8780 0.2399 1.0499 0.8536 0.2704 1.2011

6 0.4446 0.2237 0.9483 0.3839 0.2548 1.0956

8 0.0884 0.1958 0.8557 0.0586 0.2219 0.9852

10 0.0224 0.1761 0.7624 0.0613 0.2011 0.8843

Slope Estimation Deflection Estimation

Number Absolute ao ,r Absolute 'o gr
Gages Error (%) (%) (%) Error (%) (%) (%)

2 10.4176 0.2706 1.3546 11.0719 0.3246 1.6243

4 0.7399 0.2710 1.3555 0.8839 0.3027 1.5142

6 0.1212 0.2445 1.2227 0.1293 0.2756 1.3786

8 0.0500 0.2263 1.1320 0.0519 0.2546 1.2735

10 0.0280 0.1872 0.9362 0.0286 0.2123 1.0619
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Table 0.12: Results of static shape estimation using the Cubic Spline rule and Bartlett
sensors.

Slope Estimation Deflection Estimation

Number Absolute o a Absolute I o 'r

Gages Error (%) (%) (%) Error (%) (%) (%)

2 8.5834 0.2874 1.0379 9.3482 0.3117 1.2103

4 0.5879 0.2834 1.0488 0.7376 0.3114 1.2044

6 0.2854 0.2268 0.9568 0.2576 0.2573 1.1088

8 0.1742 0.1957 0.8560 0.1559 0.2220 0.9824

10 0.1165 0.1809 0.7700 0.1041 0.2039 0.8885

D.5 B-Spline Rule

Table D.13: Results of static shape estimation using the B-Spline rule and point sensors.

Slope Estimation Deflection Estimation

Number Absolute o a, Absolute ,o cr
Gages Error (%) (%) (%) Error (%) (%) (%)

2 9.4405 0.3100 1.5518 10.5734 0.3704 1.8532

4 2.1695 0.3044 1.5227 1.8412 0.3392 1.6967

6 1.4134 0.2780 1.3905 1.1908 0.3116 1.5587

8 0.8988 0.2369 1.1848 0.7657 0.2698 1.3496

10 0.6197 0.2212 1.1067 0.5299 0.2506 1.2539
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Table D.14: Results of static shape estimation using the B-Spline rule and rectangular
sensors.

Slope Estimation Deflection Estimation

Number Absolute 0o o, Absolute ao r,.
Gages Error (%) (%) (%) Error (%) (%) (%)

2 5.6711 0.2919 1.2253 6.8473 0.3137 1.3371

4 3.0959 0.2721 1.2290 2.4807 0.3017 1.3904

6 1.7865 0.2601 1.0960 1.4708 0.2945 1.2493

8 0.9243 0.2310 0.9435 0.7318 0.2625 1.0826

10 0.5587 0.2058 0.8452 0.4297 0.2334 0.9847

Table D.15: Results of static
sensors.

shape estimation using the B-Spline rule and Bartlett

Slope Estimation Deflection Estimation

Number Absolute ao a, Absolute ao a,
Gages Error (%) (%) (%) Error (%) (%) (%)

2 7.3124 0.3203 1.2238 8.4894 0.3295 1.3562

4 2.4633 0.3283 1.1831 1.9574 0.3580 1.3439

6 1.6170 0.2605 1.0992 1.3307 0.2926 1.2654

8 1.0197 0.2266 0.9867 0.8498 0.2564 1.1341

10 0.6992 0.1956 0.8720 0.5852 0.2219 1.0068
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D.6 Gauss Rule

Table D.16: Results of static shape estimation using the Gauss rule and point sensors.

Slope Estimation Deflection Estimation

Number Absolute ao ar Absolute o a',

Gages Error (%) (%) (%) Error (%) (%) (%)

2 0.9874 0.2864 1.4334 -

4 0.2042 0.1976 0.9885

6 0.0949 0.1589 0.7950

8 0.0549 0.1456 0.7286

10 0.0358 0.1328 0.6640

Table D.17: Results of static shape estimation using the Gauss rule and rectangular
sensors.

Slope Estimation Deflection Estimation

Number Absolute ao a, Absolute ao a
Gages Error (%) (%) (%) Error (%) (%) (%)

2 2.5721 0.3772 1.1163 - - -

4 0.3461 0.1887 0.7723

6 0.2602 0.1429 0.6472

8 0.3962 0.1345 0.5671

10 0.0492 0.1146 0.5137
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Table D.18: Results of static shape estimation using the Gauss rule and Bartlett sensors.

Slope Estimation Deflection Estimation

Number Absolute Co cr Absolute ao or,
Gages Error (%) (%) (%) Error (%) (%) (%)

2 1.3107 0.2926 1.0817 -

4 0.2072 0.1829 0.7893

6 0.1289 0.1513 0.6439

8 0.0960 0.1362 0.5717

10 0.0598 0.1244 0.5113 -

D.7 Radau Rule

Table D.19: Results of static shape estimation using the Radau rule and point sensors.

Slope Estimation Deflection Estimation

Number Absolute ao ar Absolute oo ar

Gages Error (%) (%) (%) Error (%) (%) (%)

2 1.3632 0.2732 1.3666

4 0.2398 0.1975 0.9878

6 0.0846 0.1574 0.7875

8 0.0400 0.1437 0.7190

10 0.0223 0.1265 0.6328
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Table D.20: Results
sensors.

of static shape estimation using the Radau rule and rectangular

Slope Estimation Deflection Estimation

Number Absolute ,o oa, Absolute cao r
Gages Error (%) (%) (%) Error (%) (%) (%)

2 2.3704 0.2244 1.0476 -

4 0.6173 0.2062 0.7517

6 0.3709 0.1597 0.6119

8 0.1936 0.1456 0.5656

10 0.1600 0.1350 0.5005

Table D.21: Results of static shape estimation using the Radau rule and Bartlett sensors.

Slope Estimation Deflection Estimation

Number Absolute ao ra Absolute oo 0r

Gages Error (%) (%) (%) Error (%) (%) (%)

2 2.3241 0.2529 1.0251 - -

4 0.1330 0.1785 0.7478

6 0.0883 0.1443 0.6143

8 0.0642 0.1306 0.5409

10 0.0383 0.1198 0.4979
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D.8 Chebyshev Rule

Table D.22: Results of static shape estimation using the Chebyshev rule and point sen-
sors.

Slope Estimation Deflection Estimation

Number Absolute go a, Absolute Jo Ur
Gages Error (%) (%) (%) Error (%) (%) (%)

2 10.7948 0.2537 1.2701 11.2871 0.3110 1.5564

4 0.9159 0.2726 1.3636 0.8671 0.3166 1.5835

6 0.1382 0.2481 1.2412 0.2761 0.2966 1.4839

8 0.1006 0.2353 1.1774 0.1710 0.3190 1.5959

10 0.0822 0.2435 1.2180 0.2985 0.4305 2.1532

Table D.23: Results of static
sensors.

shape estimation using the Chebyshev rule and rectangular

Slope Estimation Deflection Estimation

Number Absolute a, a, Absolute ao ,r

Gages Error (%) (%) (%) Error (%) (%) (%)

2 7.3894 0.2430 1.0207 8.0600 0.2725 1.1718

4 0.7108 0.2405 1.0202 0.7428 0.2794 1.2080

6 0.3336 0.2321 0.9667 0.1555 0.2830 1.1652

8 0.0714 0.2228 0.9188 0.1412 0.2926 1.2151

10 0.1124 0.2448 0.9322 0.2800 0.4068 1.6098
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Table D.24: Results of static
sensors.

shape estimation using the Chebyshev rule and Bartlett

Slope Estimation Deflection Estimation

Number Absolute 0,o a, Absolute Co or
Gages Error (%) (%) (%) Error (%) (%) (%)

2 9.0180 0.2700 1.0156 9.6050 0.2973 1.1848

4 0.6355 0.2769 1.0297 0.6832 0.3151 1.2077

6 0.1785 0.2363 0.9562 0.1114 0.2825 1.1650

8 0.1404 0.2098 0.9252 0.2524 0.2777 1.2433

10 0.1186 0.2410 1.0195 0.1881 0.4113 1.7304

D.9 Global Static Shape Function Rule

Table 0.25: Results of static shape estimation using the GSSF rule and point sensors.

Slope Estimation Deflection Estimation

Number Absolute o a, Absolute ,o ,.
Gages Error(%) (%) (%) Error (%) (%) (%)

2 - 5.5045 0.1449 0.7417

4 - 0.1155 0.0731 0.2886

6 - 0.0062 0.0494 0.2857

8 - 0.0000 0.0498 0.2354

10 - 0.0000 0.0521 0.2491
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Table D.26: Results of static shape estimation using the GSSF rule and rectangular
sensors.

Slope Estimation Deflection Estimation

Number Absolute Cro a, Absolute ao r

Gages Error(%) (%) (%) Error (%) (%) (%)

2 - - 0.9432 0.1137 0.4070

4 - - 0.9282 0.0899 0.2973

6 - - 0.4130 0.1094 0.2032

8 - - 0.1874 0.2422 0.2056

10 - - 0.1313 0.1803 0.2861

Table D.27: Results of static shape estimation using the GSSF rule and Bartlett sensors.

Slope Estimation Deflection Estimation

Number Absolute ao, a Absolute ao Ur
Gages Error (%) (%) (%) Error (%) (%) (%)

2 - 3.2060 0.1431 0.7385

4 - 0.5176 0.1448 0.3601

6 - 0.2359 0.1072 0.2553

8 - 0.1139 0.0713 0.2194

10 - 0.0862 0.0545 0.2302
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D.10 Global Dynamic Shape Function Rule

Table D.28: Results of static shape estimation using the GDSF rule and point sensors.

Slope Estimation Deflection Estimation

Number Absolute ,o a, Absolute ao o,.

Gages Error (%) (%) (%) Error(%) (%) (%)

2 - 4.8842 0.1543 0.7420

4 - 0.4163 0.0936 0.2886

6 - 0.2150 0.0733 0.2782

8 - 0.0919 0.0477 0.2056

10 - 0.0628 0.0418 0.1969

Table D.29: Results
sensors.

of static shape estimation using the GDSF rule and rectangular

Slope Estimation Deflection Estimation

Number Absolute ao u, Absolute ao Ur
Gages Error(%) (%) (%) Error (%) (%) (%)

2 - - - 1.3698 0.0925 0.3436

4 - - - 0.7950 0.0659 0.3050

6 - - - 0.3133 0.1572 0.2182

8 - - - 0.2137 0.2287 0.2025

10 - - - 0.1279 0.1638 0.2186
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Table 0.30: Results of static shape estimation using the GDSF rule and Bartlett sensors.

Slope Estimation Deflection Estimation

Number Absolute ao a, Absolute ao r,
Gages Error(%) (%) (%) Error (%) (%) (%)

2 - - 2.6726 0.1295 0.6482

4 - - 0.4282 0.0870 0.3014

6 - - 0.1756 0.0544 0.2422

8 - - 0.1265 0.0550 0.1997

10 - - 0.0763 0.0352 0.1977

D.11 Least Squares Global Static Shape Func-

tion Rule With 2 Sensors

Table D.31: Results
sors.

of static shape estimation using the LSGSSF-2 rule and point sen-

Slope Estimation Deflection Estimation

Number Absolute ao a, Absolute Co ar
Gages Error(%) (%) (%) Error (%) (%) (%)

2 - - - 5.5045 0.1455 0.7743

4 - - - 1.1976 0.1369 0.5211

6 - - - 0.5241 0.1062 0.3234

8 - - - 0.2933 0.0931 0.2639

10 - - - 0.1873 0.0821 0.2089
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Table D.32: Results of static shape estimation
sensors.

using the LSGSSF-2 rule and rectangular

Slope Estimation Deflection Estimation

Number Absolute co a Absolute ro ar
Gages Error(%) (%) (%) Error(%) (%) (%)

2 - - - 0.9432 0.1089 0.4127

4 - - - 0.1811 0.1384 0.2598

6 - - - 0.1266 0.2392 0.2479

8 - - - 0.0738 0.2433 0.2503

10 - - - 0.0635 0.1922 0.2462

Table D.33: Results of static shape estimation using the LSGSSF-2 rule and Bartlett
sensors.

Slope Estimation Deflection Estimation

Number Absolute ao or Absolute ao a
Gages Error(%) (%) (%) Error (%) (%) (%)

2 - - - 3.2060 0.1431 0.7082

4 - - - 0.6748 0.1388 0.4104

6 - - - 0.2948 0.1071 0.2845

8 - - - 0.1655 0.0737 0.2151

10 - - - 0.1052 0.0530 0.2079



Results of Static Shape Estimation

D.12 Least Squares Global Static Shape Func-

tion Rule With 4 Sensors

Table D.34: Results of static shape estimation using the LSGSSF-4 rule and point sen-
sors.

Slope Estimation Deflection Estimation

Number Absolute go a, Absolute ao o,

Gages Error (%) (%) (%) Error (%) (%) (%)

4 - - 0.1155 0.0716 0.3038

6 - - 0.0230 0.0493 0.2902

8 - - 0.0115 0.0437 0.2432

10 - - 0.0071 0.0455 0.2341

Table D.35: Results of static shape estimation using the LSGSSF-4 rule and rectangular
sensors.

Slope Estimation Deflection Estimation

Number Absolute go a, Absolute go 0r
Gages Error(%) (%)(%) Error(%) (%) (%)

4 - 0.9282 0.0878 0.3162

6 - 0.4029 0.1122 0.2004

8 - 0.2286 0.1947 0.2003

10 - 0.1370 0.1391 0.2309
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Table D.36: Results
sensors.

of static shape estimation using the LSGSSF-4 rule and Bartlett

Slope Estimation Deflection Estimation

Number Absolute -o oa, Absolute o Orr
Gages Error(%) (%) (%) Error (%) (%) (%)

4 - - - 0.5176 0.1345 0.3759

6 - - - 0.2386 0.0949 0.2556

8 - - - 0.1339 0.0839 0.2135

10 - - - 0.0862 0.0564 0.1815
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Appendix E

Source Code

E.1 Midpoint Integration: midpoint.m
function [integral,tip] = midpoint(x,y,initial)
%MIDPOINT

X Midpoint integration.

% MIDPOINT computes the running integral of the curve (x,y) using

% the midpoint rule. It is assumed the interval of integration

% begins at x=O.

% integral: Running integral of the curve (x,y).

% tip: Value of the integral at the end of the interval.

% x: Horizontal abscissae of curve.

, y: Vertical values of curve.

% initial: Initial value of integral at the start of the interval.

% Author: Mark S. Andersson.

% Date: January 10, 1992.

% Copyright (c) 1992

if nargin < 3,
initial = 0;

end

[mx,nx] = size(x);

[my,ny] = size(y);

if((mx -= 1) & (nx -= 1))
error('The x vector must be a column or row vector.')
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end

if((my -= 1) & (ny M= 1))
error('The y vector must be a column or row vector.')
end

% Check that x and y are the same size:

x = x(:)';
y = y(:)';

if (length(x) -= length(y))
error('x and y must be the same size.');

end

% Initialize the integral vector:

integral = O*ones(mx,1);

% Set the initial condition at the start of the interval:

integral(1,1)=initial + (x(1,1)-0)*y(1);

7 Sum up the areas of the rectangular areas:

for i = 2:mx,
integral(i,1) = integral(i-1,1) + ...

((x(i,1)+x(i-1,1))/2 - x(i-1,1)) * y(i-1) + ...
(x(i,1) - (x(i,1)+x(i-1,1))/2) * y(i);

end

% Find the tip deflection:

tip = integral(mx,l) + (x(mx,l) - (x(mx,1)+x(mx-1,1))/2)*y(mx);

E.2 Trapezoidal Integration: trapezoidal.m
function [integral] = trapezoidal(x,y,initial)
%TRAPEZOIDAL

% Trapezoidal integration.

% TRAPEZOIDAL computes the running integral of the curve (x,y)
% using the Trapezoidal rule:

% integral = trapezoidal(x,y,initial)

% integral: Running integral of the curve (x,y).
% x: Horizontal abscissae of curve.
% y: Vertical values of curve.
% initial: Initial value of integral at the start of the interval.
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% Author: Mark S. Andersson.
% Date: February 7, 1991.
% Copyright (c) 1991

if nargin < 3,
initial = 0;

end

Emx,nx] = size(x);
Emy,ny] = size(y);

if((mx -= 1) & (nx -= 1))
error('The x vector must be a column or row vector.')
end

if((my -= 1) & (ny ~= 1))
error('The y vector must be a column or row vector.')
end

% Check that x and y are the same size:

x = x(:)';

y =y(:)';

if (length(x) -= length(y))
error('x and y must be the same size.');
end

% Initialize the integral vector:

integral = zeros(length(x),1);

% Set the initial condition at the start of the interval:

integral(i) = initial;

% Sum up the areas of the trapezoids:

for i = 2:mx,

integral(i,1)=integral(i-1,1)+(x(i,1)-x(i-1,1))*(y(i) + y(i-1))/2;
end

E.3 Simpson's Rule Integration: simpson.m
function [integral] = simpson(x,y,initial)
%SIMPSON

% Simpson integration.
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SIMPSON computes the running integral of the curve (x,y)
using Simpson's rule:

% integral = simpson(x,y,initial)

integral:
x:

y:
initial:

Running integral of the curve (x,y).
Horizontal abscissae of curve.
Vertical values of curve.
Initial value of integral at the start of the interval.

Author: Mark S. Andersson.
Date: January 10, 1992.
Copyright (c) 1992

if nargin < 3,
initial = 3;

end

[mx,nx] = size(x);
Emy,ny] = size(y);

if((mx -= 1)
error('The x
end

if((my -= 1)
error('The y
end

& (nx -= 1))
vector must be

& (ny -= 1))
vector must be

a column or row vector.')

a column or row vector.')

% Check that x and y are the same size:

x = x(:)';
y= y(:)';

if (length(x) -= length(y))
error('x and y must be the

end

if (mod(length(x),2) -= 1)
error('x and y must contain an odd
end

same size.');

number of entries.');

% Initialize the integral vector:

integral = O*ones(mx,1);

% Set the initial condition at the start of the interval:

integral(1) = initial;
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% Sum up the areas under each of the parabolic segments:

for i = 1:2:mx-2,
. Solve for the parabolic segment.

. Governing equations:

% a * x1^2 + b * x1 + c = yl
% a * x2^2 + b * x2 + c = y2
. a * x3^2 + b * x3 + c = y3

% Construct matrix and compute coefficients a, b, c:

% [ x1^2 xl 1 [ a ] [ y1 ]
% [ x2^2 x2 1 ] b ] = [ y2 ]
% [ x3^2 x3 1 ] [ c ] [ y3 ]

A = [ x(i)*x(i) x(i) 1
x(i+l)*x(i+l) x(i+l) 1
x(i+2)*x(i+2) x(i+2) 1 ];

Y = C y(i)
y(i+1)
y(i+2) 1;

abc = A \ Y;

a = abc(1);
b = abc(2);
c = abc(3);

integral(i+1) = integral(i) + ...
(1/3) * a * (x(i+l)^3-x(i)^3) + ...
(1/2) * b * (x(i+l)^2-x(i)^2) + ...
(1/1) * c * (x(i+1)-x(i));

integral(i+2) = integral(i) + ...
(1/3) * a * (x(i+2)^3-x(i)^3) + ....
(1/2) * b * (x(i+2)^2-x(i)^2) + ...
(1/1) * c * (x(i+2)-x(i));

end

E.4 Computation of Open Natural Cubic Splines:
spline.m

function [xout,yout] = spline(xin,yin,pts)
%SPLINE

% Open Cubic Spline Interpolation

SPLINE computes the coordinates of open natural parametric
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% cubic splines, for the control vertices specified by the xin
% and yin vectors.

S [Exout,yout] = spline(xin,yin,pts)

% xout: output x coordinates
% yout: output y coordinates
% xin: input x coordinates
% yin: input y coordinates
% pts: number of points to be used for each curve segment
% (optional: 10 points are assumed)

% Author: Mark S. Andersson.
% Date: September 30, 1991.
% Copyright (c) 1991

% Handle cases where optional arguments are not given:

if nargin == 2,
pts = 10;

elseif nargin < 2,
error('Too few arguments given.');

elseif nargin > 3,
error('Too many arguments given.');

end

% 1. First create the basis curves that will form the spline. These
% are the four Hermite polynomials given in Appendix C.

% Create the parametric variable t:

t = linspace(0,1,pts);

h = 0*ones(4,pts);

h(1,:) = (2*t + 1) .* (t - 1).^2;
h(2,:) = t.^2 .* (3 - 2*t);

h(3,:) = t .* (t - 1).^2;
h(4,:) = t.-2 .* (t - 1);

7 2. Construct the A matrix to solve for the derivatives of the
% x-coordinate and y-coordinate parametric functions of t. These
% are Dx = dX/dt and Dy = dY/dt. (Di in Appendix C).
St
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% The matrix equation (C.104) will be in the form:

% E A ] { Dx } = { Bx } (for the x-coordinates)
% [ A ] { Dy } = { By } (for the y-coordinates)

% Make sure input vectors are in row vector form:

xin = xin(:)';
yin = yin(:)';

% Check to see whether they have the same number of elements:

if length(xin) -= length(yin),

error('Input vectors must contain the same number of elements.');
end

% Find length of input vector:

n = length(xin);

% Create the A matrix:

A = zeros(n,n);

% Specify the first row:

A(1,1) = 2;
A(1,2) = 1;

% Specify rows 2 up to and .including row n-1.

for i = 2:n-1,
A(i,i-1) = 1;
A(i,i) = 4;
A(i,i+l) = 1;

end

% Specify the last row:

A(n,n-1) = 1;
A(n,n) = 2;

% Create the BEx and By matrices:

Bx = zeros(n,i);
By = zeros(n,l);

% Specify the first row:

Bx(1,1) = 3 * (xin(2) - xin(1));
By(1,1) = 3 * (yin(2) - yin(i));
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A Specify rows 2 up to and including row n-1.

for i = 2:n-1,

Bx(i,1) = 3 * (xin(i+l) - xin(i-1));

By(i,1) = 3 * (yin(i+l) - yin(i-1));

end

% Specify the last row:

Bx(n,i) = 3 * (xin(n) - xin(n-1));

By(n,i) = 3 * (yin(n) - yin(n-1));

% 3. Solve for the derivatives of the x- and y-coordinates with respect

% to the parametric variable t and the control points, Dx and Dy.

Dx = A \ Bx;

Dy = A \ By;

% 4. Compute the number of curve segments in the entire spline:

n = length(xin) - 1;

% Allocate space for the output vectors:

xout = O*ones(1,n*pts);

yout = O*ones(1,n*pts);

A 5.
'A
'A

'AX.
X

Sum the first Hermite basis vector multiplied by the beginning

coordinate, the second Hermite basis vector multiplied by the
ending coordinate, the third Hermite basis vector multiplied by
the beginning slope, and the fourth Hermite basis vector multiplied
by the ending slope, over the domain of the spline. This is
equation (C.105) in Appendix C.

for i=l:n,
xout(pts*(i-1)+i:pts*i)
xout(pts*(i-1)+l:pts*i)
xout(pts*(i-1)+1:pts*i)
xout(pts*(i-i)+l:pts*i)

yout(pts*(i-1)+l:pts*i)
yout(pts*(i-1)+l:pts*i)
yout(pts*(i-i)+l:pts*i)
yout(pts*(i-i)+l:pts*i)

xout(pts*(i-l)+l:pts*i)
xout(pts*(i-1)+1:pts*i)
xout(pts*(i-1)+i:pts*i)
xout(pts*(i-1)+i:pts*i)

yout(pts*(i-i)+l:pts*i)
yout(pts*(i-1)+l:pts*i)
yout(pts*(i-i)+l:pts*i)
yout(pts*(i-i)+l:pts*i)

xin(i)*h(1,:);
xin(i+l)*h(2,:);
Dx(i)*h(3,:);
Dx(i+l)*h(4,:);

yin(i)*h(1,:);

yin(i+l)*h(2,:);
Dy(i)*h(3,:);
Dy(i+l)*h(4,:);
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end

% --------------------------------------------------------

E.5 Computation of Open B-Splines: bspline.m
function Exout,yout] = bspline(xin,yin,order,pts)
%BSPLINE

% Open B-Spline Approximation

% BSPLINE computes the coordinates of open B-splines of
% order 2, 3, 4 and 5, for the control vertices specified
% by the xin and yin vectors.

% Exout,yout] = bspline(xin,yin,order,pts)

% xout: output x coordinates
yout: output y coordinates
y xin: input x coordinates

% yin: input y coordinates
% order: B-spline order (optional: order 2 is assumed)
% pts: number of points to be used for each curve segment
% (optional: 10 points are assumed)

% Author: Mark S. Andersson.
% Date: September 30, 1991.
% Copyright (c) 1991

% Handle cases where optional arguments are not given:

if nargin == 2,
order = 2;
pts = 10;

elseif nargin == 3,
pts = 10;

elseif nargin < 2,
error('Too few arguments given.');

elseif nargin > 4,
error('Too many arguments given.');

end

A 1. First create the basis curves that will form the B-spline.
%------------------------------------------------------------------------

, Create the parametric variable t:
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t = linspace(0,1,pts);

if order == 2,
% Create basis curves for B-splines of order 2:

b2 = 0*ones(3,pts);

b2(1,:) = (1/2) * (t.^2);
b2(2,:) = (1/2) * (1 + 2*t - 2et.^2);
b2(3,:) = (1/2) * (1 - 2*t + t.^2);

elseif order == 3,
% Create basis curves for B-splines of order 3:

b3 = O*ones(4,pts);

b3(1,:) = (1/6) * (t.^3);
b3(2,:) = (1/6) * (1 + 3*t + 3*t.^2 - 3et.^3);
b3(3,:) = (1/6) * (4 - 6*t.^2 + 3et.^3);
b3(4,:) = (1/6) * (1 - 3*t + 3*t.^2 - t.-3);

elseif order == 4,
% Create basis curves for B-splines of order 4:

b4 = O*ones(5,pts);

b4(1,:) = (1/24) * (t.^4);
b4(2,:) = (1/24) * (1 + 4*t + 6*t.^2 + 4*t.^3 - 4*t.^4);
b4(3,:) = (1/24) * (11 + 12*t - 6*t.^2 - 12*t.^3 + 6*t.^4);
b4(4,:) = (1/24) * (11 - 12*t - 6*t.^2 + 12*t.^3 - 4*t.^4);
b4(5,:) = (1/24) * (1 - 4*t + 6*t.^2 - 4*t.^3 + t.^4);

elseif order == 5,
% Create basis curves for B-splines of order 5:

b5 = O*ones(6,pts);

bS(1,:) = (1/120) * (t.^5);
b5(2,:) = (1/120) * (1 + 5St + 10*t.^2 + 10*t.^3 + 5St.^4 - 5*t.^5);
b5(3,:) = (1/120) * (26 + 50*t + 20*t.^2 - 20*t.^3 -20*t.^4 + 10*t.^5);
b5(4,:) = (1/120) * (66 - 60*t.^2 + 30*t.^4 - 1Ot.B^);
b5(5,:) = (1/120) * (26 - 50*t + 20*t.^2 + 20*t.^3 - 20*t.^4 + 5*t.-5);
b5(6,:) = (1/120) * (1 - Set + 10t.^2 - 10*t.^3 + 5*t.^4 - t.^5);

end

% 2. Extend the xin and yin vectors to include enough copies of
% the starting and ending coordinates so that the B-spline curve
% will explicitly connect to the starting and ending coordinates

% - - - - -- - - - - - -- - - - - - -- - - - - -- - - - - - -- - - - - -

% Make sure input vectors are in row vector form:
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xin = xin(:)';
yin = yin(:)';

% Check to see whether they have the same number of elements:

if length(xin) -= length(yin),
error('Input vectors must contain the same number of elements.');

end

% Find length of input vector:

n = length(xin);

% Extend the input vectors:

if (order == 2) & (n > 2),
xx = C xin(1) xin xin(n) ];
yy = C yin(1) yin yin(n) ];

elseif (order == 3) & (n > 3),
xx = C xin(1) xin(1) xin xin(n) xin(n) ];
yy = C yin(1) yin(1) yin yin(n) yin(n) ];

elseif (order == 4) & (n > 4),

xx = [ xin(1) xin(1) xin(1) xin xin(n) xin(n) xin(n) ];
yy = C yin(1) yin(1) yin(1) yin yin(n) yin(n) yin(n) ];

elseif (order == 5) & (n > 5),
xx = C xin(1) xin(1) xin(1) xin(1) xin xin(n) xin(n) xin(n) xin(n) ];
yy = C yin(1l) yin(1) yin(1) yin(1l) yin yin(n) yin(n) yin(n) yin(n) ];

else
error('Order too high for number of points given.');

end

% 3. Compute the number of curve segments in the entire B-spline:

n = length(xx) - order;

% Allocate space for the output vectors:

xout = O*ones(1,n*pts);
yout = O*ones(1,n*pts);

% 4. Sum the basis vectors over the domain of the B-spline:

for i=l:n,
for j=1:order+1,
if order == 2,
xout(pts*(i-1)+i:pts*i) = xout(pts*(i-1)+1:pts*i) + xx(i+j-1)*b2(4-j,:);
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yout(pts*(i-1)+l:pts*i)
elseif order == 3,
xout(pts*(i-1)+l:pts*i)
yout(pts*(i-1)+l:pts*i)

elseif order == 4,
xout(pts*(i-1)+l:pts*i)

yout(pts*(i-l)+1:pts*i)
elseif order == 5,

= yout(pts*(i-l)+1:pts*i) + yy(i+j-1)*b2(4-j,:);

= xout(pts*(i-1)+l:pts*i) + xx(i+j-1)*b3(5-j,:);
= yout(pts*(i-l)+l:pts*i) + yy(i+j-l)*b3(5-j,:);

= xout(pts*(i-1)+1:pts*i) + xx(i+j-l)*b4(6-j,:);
= yout(pts*(i-1)+l:pts*i) + yy(i+j-l)*b4(6-j,:);

xout(pts*(i-1)+l:pts*i) = xout(pts*(i-l)+i:pts*i) + xx(i+j-1)*bS(7-j,:);
yout(pts*(i-l)+l:pts*i) = yout(pts*(i-l)+l:pts*i) + yy(i+j-l)*b5(7-j,:);

end
end

end

E.6 Chebyshev Integration: chebyshev.m
function [integral] = chebyshev(x,y,n,initial)
%CHEBYSHEV

% Integration by interpolation by Chebyshev polynomials.

% CHEBYSHEV computes the running integral of the curve (x,y)
% using the Chebyshev integration rule:

% integral = chebyshev(x,y,n,initial)

% integral: Running integral of the curve (x,y).
% n: Number of polynomials to use.
% x: Horizontal abscissae of curve.
% Y: Vertical values of curve.
% initial: Initial value of integral at the start of the interval.

% Author: Mark S. Andersson.
% Date: January 10, 1992.

X Copyright (c) 1992

Emx,nx] = size(x);
Emy,ny] = size(y);

if((mx "= 1) & (nx "= 1))
error('The x vector must be a column or row vector.')

end

if((my -= 1) & (ny ~= 1))
error('The y vector must be a column or row vector.')

end

% Check that x and y are the same size:
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x = x(:)';
y = y(:) ;

if (length(x) -= length(y))
error('x and y must be the same size.');

end

m = length(x);

if (n > m)
error('Number of polynomials must be less than or

end

% First must fit n polynomials to the m values.

% a Ti(xi) + b T2(x) + c T3(x) + ... y Tn-1(xi)
% a T1(x2) + b T2(x2) + c T3(x2) + ... y Tn-1(x2)
% a Tl(x3) + b T2(x3) + c T3(x3) + ... y Tn-1(x3)

% a Tl(xn) + b T2(xn) + c T3(xn) + ... y Tn-l(xn)

% etc.

% Form the T matrix:

T = zeros(m,n);

equal to the number of abscissae.');

+ z Tn(xl) = yl
+ z Tn(x2) = y2
+ z Tn(x3) = y3

+ z Tn(xn) = yn

for i = 1:m,
for j = 1:n,

T(i,j) = cheby(x(i),j-1);
end

end

% Solve for the coefficients (a, b, c, etc.):

c = T \ y;

% Compute the length of the interpolated curve:

len = 10 * (m - 1) + 1;

% Create the interpolated curve:

xx = linspace(x(1),x(m),len);

yy = O*xx;

% Sum up the Chebyshev polynomials used to create the curve:

for i = 1:len,
for j = 1:n,
yy(i) = yy(i) + c(j) * cheby(xx(i),j-1);

end
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end

% Integrate the interpolated curve:

i = trapezoidalr(xx,yy,0);

% Sample the running integral where we need values:

integral = samplevec(x,xx,i);

E.7 Computation of Chebyshev Polynomials:
cheby.m

function [t] = cheby(x,n)
%CHEBY

% Evaluate Chebyshev polynomials using recurrence relation.

% t = cheby(x,n)

7 x: points at which to evaluate the nth Chebyshev polynomial, Tn(x)
% n: order of Chebyshev polynomial

7 Author: Mark S. Andersson.
% Date: May 28, 1992.
% Copyright (c) 1992

% Ensure that x is a row vector:

x = x(:).';

% Find number of points at which to evaluate Tn(x)

m = length(x);

% Allocate space for the output vector of Chebyshev polynomials:

t = ones(1,m);

7 Handle trivial cases:

if n == 0,
return;

end

if n == 1,
t = x;

end
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X Use Chebyshev polynomial recurrence formula to compute values of Tn(x)
% for n > 1:

tO = ones(1,m);
ti = x;

for i=2:n,
t = 2.*x.*tl - tO;

tO = ti;

ti = t;

end

E.8 Global Dynamic Shape Function Fitting:
gdsf.m

function wtip = gdsf(x,weightings,curvature,shapes);
.GDSF

% Fits a number of global curvature shape functions to the outputs
% of an array of sensors, integrates them, and returns an
% estimate of the deflection.

% wtip = gdsf(gagex,gages,k,wt)

S vwtip: Tip deflection

% x: Horizontal abscissae for sensor weightings

% weightings: Sensor weightings as a function of x (there is one

% row for each sensor)
% curvature: Curvature of the beam

% shapes: Shape functions to fit sensor outputs to (there is

% one row for each shape functions)

% Author: Mark S. Andersson.

% Date: November 11, 1992.

% Copyright (c) 1992

X Find n, the number of sensors:

[n,p] = size(weightings);

A Find the outputs of the sensors by performing the n integrals:

% /L
% 1
% outputs = I weighting(x) curvature(x) dx

% /0



% for each sensor in the array.

for i = 1:n,
outputs(i) = trapezoidal(linspace(O,1,p),weightings(i,:) .* curvature);

end

% Find the number of shape functions to fit to the sensor output data:

Em,p] = size(shapes);

% Perform shape function fitting by constructing the phi matrix for the
% matrix equation:

% [ phi] [ coefficients ] = [ outputs ]

phi = zeros(n,m);

for i = 1:n,
for j = 1:m,

phi(i,j) = trapezoidal(x,weightings(i,:) .* shapes(j,:));
end

end

% Solve for the coefficients in the matrix equation. If the number of
% sensors n is the same as the number of shape functions m, the column
% vector [coefficients] is determined by inversion of [phi]. If the
% number of sensors n is less than the number of shape functions m,
% the vector Ecoeffivients] is computed in a least squares sense.

coefficients = phi \ output;

% Now add up the tip deflection of each of the shape functions given,
% multiplied by the coefficient:

wtip = 0;

for i = 1:n,
wtip = wtip + coefficients(i) * trapezoidal(x,shapes(i,:));

end
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