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The investigation of the vortical flow around the F117A Stealth Fighter is presented in

order to demonstrate the capability to resolve leading edge vortices with an adaptive

finite element solver for the Euler equations. The major goal is to capture vortex

breakdown at high angles of attack. This work presents the five main steps involved

in a typical study of the flow characteristics of a complete aircraft : the definition of

the model geometry, the realization of a suitable grid around the discretized model,

the implementation of a flow solver, the subsequent analysis of the flow field and the

comparison to experimental data sets. The computational data are compared to the

lift curves of the aircraft obtained in a subsonic 5' x 7' wind tunnel. The occurance

and location of vortex breakdown is determined by performing flow visualization in the

tunnel. Five cases are computed for this work. Each case is studied at Mach 0.3 and

angles of attack range between 7 and 30 degrees.
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Chapter 1

Introduction

During the last few years, Computational Fluid Dynamics (CFD) has become a very

important tool in predicting fluid flows over bodies. Recent advances in CFD have made

it feasible to perform calculations of the flow around complete aircraft configurations.

The use of unstructured meshes and grid adaptation are two examples of powerful new

approaches. This work was done in order to demonstrate that an adaptive finite element

solver on an unstructured mesh of tetrahedra accurately captures and resolves leading

edge vortices at high angles of attack. Computations of the inviscid flow field around

Lockheed's F117A stealth fighter are performed. This study consists of accurately*cap-

turing vortices for the sharp leading edges of the F117A, observing vortex breakdown

and determining lift and moment curves for a range of angles of attack. The effects

of computational accuracy in relation to grid adaptation and vortex breakdown will

also be analyzed. The results are compared to data from wind tunnel experiments to

understand their accuracy.

1.1 Background

1.1.1 F117 Stealth Fighter

The main reason for choosing Lockheed's F117A stealth fighter for this project is because

of the unusual shape of the aircraft. The design is such that it is optimized to minimize

the radar visibility, i.e. create the smallest Radar Cross Section (RCS). Since most

aircraft have not been designed for low visibility, the F117A engineers were motivated to

consider an unconventional aircraft configuration to achieve the low RCS requirement.

The price paid for low RCS can be seen from its unusual shape [11] : a body made



Figure 1.1: F117A Stealth Fighter

up of a number of flat surfaces, straight line wing and vertical tail leading edges, a

continuous leading edge from nose tip to wing tip, a nearly flat fuselage undersurface,

an extreme sweep angle of the tail surfaces, an unconventional hexagonal airfoil and

flattened exhaust nozzles. Figure 1.1 is a picture of the F117A [8].

These features naturally lead to an interesting and complex vortical flow field. Since

the flow solver used for this work is an inviscid Euler solver, it does not have the ability

to model the separated flow associated with a boundary layer which would occur on an

aircraft with more rounded surfaces.

1.1.2 Vortex Aerodynamics

A top view of the F117A reveals that the aircraft has the same basic geometrical features

as those of a delta wing with a sweep angle of 68 deg. Because of its highly swept

wings and sharp leading edges, flow separation from the leading edge is expected at

moderate and high angles of attack. As a result, a pair of vortices is formed above the

upper surfaces of each of the wings. The size and the strength of the vortices increase

with angle of incidence and at high angles they become a dominant feature of the flow.



Vortical flows have a significant effect on the aerodynamic performance of the aircraft. It

the vortices are both symmetric and stable, a large increase in normal force is observed

which can be used as an aerodynamic advantage. However, phenomena like vortex

breakdown and the occurrence of asymmetric vortices may produce large and sudden

changes in the aerodynamic performance of the aircraft. Since the F117A is a modern

fighter aircraft, its high angle of attack performance is very crucial during combat and

maneuvering [13]. An in depth study of the vortical flow behavior is therefore crucial

to its success.

1.1.3 Vortex Breakdown

At large angles of attack, it is expected that breakdown of the vortices occurs near the

trailing edge. One obvious feature of vortex breakdown is a sudden enlargement of the

vortex core [1]. This rapid increase in vortex diameter can be symmetrical (bubble-ike)

or asymmetrical (spiral-like). There are many theories as to the fundamental difference

between the two forms of breakdown. One theory is that the spiral-like breakdown

appears as a result of instabilities in the bubble form [4]. Figure 1.2 shows a visualization

of the vortex breakdown over a delta wing as found by Lambourne and Bryer [9].

The lower vortex shows the axisymmetric bubble-type breakdown and the top vortex

experiences the asymmetric spiral-type. Measurements of the axial velocity profiles done

by Escudier showed that the breakdown occurs when the flow in the vortex reaches a

stagnation point and forms a region of reversed flow [3]. Downstream of the breakdown,

the flow is turbulent. Wind tunnel experiments by D. Humme1 and P.S. Srinivasan [6]

showed that vortex breakdown has an influence on the aerodynamic characteristics of

the aircraft. Lift, drag and moment coefficients are significantly reduced due to the

effect of bursting. Figure 1.3 shows the effect of breakdown on lift as found by Hummel

and Srinivasan. They also determined that the position of vortex breakdown depends

on the angle of attack. The location of vortex breakdown moves upstream as the angle

of incidence is increased. Eventually, the bursting point crosses the trailing edge and

lies above the wing.



Figure 1.2: Flow visualization of a vortex breakdown

Figure 1.3: Effect of bursting on lift

Figure 1.3: Effect of bursting on lift



1.2 Approach

This work presents the five main steps involved in a typical study of the flow character-

istics of a complete aircraft. These five steps are :

* digital definition of model geometry

* three dimensional computational grid generation

* computational solution of equations of motion

* experimental data acquisition of flow characteristics

* comparison and discussion of results.

The following information on the F117A is known [8]:

* Wing span = 13.20 m (43 ft 4 in)

* Length overall = 20.08 m (65 ft 11 in)

* Height overall = 3.78 m (12 ft 5 in)

* Wing area = 105.9 sq m (1,140 sq ft).

The spatial discretization of the F117A is done by using a 1/32 scaled model of F117A.

The grid generator uses unstructured meshes of tetrahedra in the three dimensional

domain. A solution is obtained by running a three dimensional adaptive finite element

Euler solver on the unstructured grid. Wind tunnel verification is done in a 5' x 7'

subsonic wind tunnel.

1.3 Thesis Summary

This investigation is performed to examine vortex breakdown and to observe the influ-

ence on the aerodynamic performance of the aircraft. The results of this study include

computations of the flow at a range of angles of attack, comparisons with data from

wind tunnel tests, and a detailed analysis of vortex breakdown. The main body of this



thesis consist of six chapters. In chapter two, the governing Euler equations and phys-

ical boundary conditions are described. The numerical solution procedure for the grid

generator and the flow solver are discussed in chapter three. A detailed description of

the advancing wave front method used for grid generation and the algorithms for the

spatial and temporal discretization are described. The implementation of the boundary

conditions and adaptative refinement method are also presented. Chapter four deals

with the digital definition of the model geometry. The logical reasoning behind a simple

surface definition and the geometry data acquisition system is described. Finally, the

method used for mesh control is also presented in this chapter. In chapter five, the

experimental procedure is discussed. Chapter six describes the results. A detailed anal-

ysis of each case is done. The experimental and computational lift and moment curves

are found and the importance of grid adaptation on the solutions is verified. In chapter

seven, conclusions are drawn and suggestions for future work are made.



Chapter 2

Governing Equations

This chapter formulates the governing Euler equations for the compressible flow of

an inviscid ideal gas. This set of equations of motion represent conservation of mass,

momentum and energy in a flow. In addition, the nondimensionalization of the equations

and the physical boundary conditions will be discussed.

2.1 Theoretical Model

For sufficiently large Reynolds numbers, the viscous effects of a flow field are confined

to a thin boundary layer near the surface of a solid boundary. Under these conditions,

it is possible to solve the inviscid portion of the flowfield independently of the boundary

layer, if the interaction between the boundary layer and the inviscid portion of the

flowfield is negligible. This is the case for the computations over the F117A at high

angle of attack. Eventhough they do not represent the physical viscosity of the flow, the

Euler equations are still suitable for modeling separated flow. The sharp leading edges

of the F117A are sufficient to enforce the Kutta condition with the artificial viscosity

introduced into the solution method provides the necessary mechanism for leading edge

separation. Because it is not our interest to model the boundary layer, an inviscid flow

solution scheme is chosen over a Navier-Stokes scheme. CPU time is saved because it

is unnecessary to obtain the high resolution in the viscous region of the flow as would

be the case with the Navier Stokes equations.



2.2 Conservation Equations

The general expression for the conservation of a property B can be written as follows :

dt(B dt pdV)c + (] p((. )dA)cs

where 3 = .dB Since no mass is created inside the control volume and using the

first law of thermodynamics, the conservation of mass, momentum and energy are as

follows:

dt= (  pdV) + ( p(. -it)dA) = 0dt =t ffkJJ)J
(2.2)

(2.3)
d(m') d///

dt dt ( UpdV) + (ff p(U -n)dA) = F

where F are the forces acting on the body

(2.4)dE dQ dW d (dt - dt dW = dt( epdV) + ( ep( - )dA) = 0

where E, e, Q, W are energy, energy per unit mass, heat into the system and work

by the system respectively. By using the divergence theorem, these equations can be

written in the differential form and they become :

Op
O + V (p) = 0at

(2.1)

(2.5)



O- + U -V(Pi) + VP = 0o

9(pE)
) + .V(pE + p) = 0.

at

(2.6)

(2.7)

2.3 Euler Equations

The compressible Euler equations in Cartesian coordinates without body forces or ex-

ternal heat addition can be written in vector form as :

S_ OF OG OH
Ot Oa Oy Oz

(2.8)

where the state vector U is :

and the Cartesian components of

pu

pu2 + p

F = puv

putw

puh

P
pu
Pu

U = pv

pw

pE

the flux vector

pv

puv

G= pv 2 +p

pvw

pvh

(2.9)

F are:

P)pw

puw

pvw

pw2 +p

pwh

(2.10)



The system is solved by using the equation of state for a perfect gas :

p = (7 - 1)pe (2.11)

and by the definitions

e = E - (u + + w2) (2.12)

(2.13)

where p, u, v, w, E, p, h, e and 7 are the density, Cartesian components of veloc-

ity, total energy per unit mass, pressure, total enthalpy per unit mass, internal energy

per unit mass and ratio of specific heats, respectively.

2.4 Physical Boundary Conditions

Since we have a set of equations which are differential equations, a physically possible

solution of the problem can only be found if appropriate boundary conditions are spec-

ified. For the solution of the Euler equations, three types of boundary conditions are

specified. The implementation will be discussed in section 3.2.3.

2.4.1 Solid Wall Boundary Conditions

Since the F117A body is the only boundary to the fluid region, a solid wall boundary

condition is needed on the F117A surface. Because the aircraft can be modeled as a

solid wall, no fluid may pass through the boundaries. In this frame of reference, the



boundaries are at rest, and therefore, the boundary condition becomes :

fin= 0 (2.14)

where Ui is the velocity of a fluid particle next to the wall and n' is the unit normal to

the wall surface. Since the calculation is only done on a half geometry, this condition is

also imposed at the symmetry surface.

2.4.2 Kutta Condition

Because the Euler equations produce a set of more than one solution, extra conditions

are needed to isolate a single solution to the differential equations. The Kutta condition

is therefore enforced at the leading and the trailing edges of the body to fix the lift and

to ensure a smooth flow over the trailing edge.

2.4.3 Farfield Boundary Condition

In the farfield the solution is forced to approach the conditions at free stream. Therefore,

the following condition is enforced :

= ,. (2.15)

2.5 Nondimensionalization

It is convenient to non-dimensionalize the governing equations. It clarifies which scales

are important to the problem and it makes the solution independent of the choice of

units. In addition, it often helps reduce the sensitivity of a numerical solution to round

off errors. Table 2.1 gives the nondimensionalization of the flow quantities as used by

Modiano [12]. It can be seen that the most important nondimensional parameters are

the freestream Mach number, M. and 7.



_Quantity Reference Freestream Value

u,v,w ao Mx I, MY0o, Mzo

P Poo 1

p paoo 1

2 2
E,h ao M /2 + 1/7(7- 1), M /2 + 1/(7 - 1)

x,y,z L --

t L/a. --

Table 2.1: Nondimensionalization of flow quantities

2.6 Auxiliary Quantities

The following is a list of relevant auxiliary quantities that can be defined in terms of

primitive variables :

Quantity Definition Freestream

Local speed of sound a = 7 1

Local flow speed q = u 2 + 2 + w 2  M

Local Mach number M = Mo
¢1,-

Total pressure po = p(1 + 2M2
)  '(1 +

Total pressure loss Apo = 1 - 0

Entropy a = logy 0

Table 2.2: Nondimensionalization of flow quantities



Chapter 3

Numerical Solution Procedure

The grid generator used for this research work is part of the FELISA system which was

developed by J. Peraire, J. Peiro and K. Morgan [14]. The inviscid flow solver used

was written by D. Modiano at the Massachusetts Institute of Technology [12]. This

chapter will first give a detailed description of the FELISA grid generation system and

the advancing wave front method will be be discussed. Next, algorithms and methods

for the spatial discretization, temporal discretization, implementation of the boundary

conditions and adaptive refinement method will be discussed.

3.1 Grid Generation

3.1.1 The FELISA system

FELISA is made up of a set of five computer programs which allow the computation and

simulation of three dimensional compressible steady inviscid flows using unstructured

meshes of tetrahedral elements. FELISA consists of the following five main modules :

* a surface triangulator : SURFACE

* a three dimensional volume generator : VOLUME

* a flow solver preprocessor : PREPO

* an unstructured mesh flow solver : SOLVE

* a mesh adaptation procedure : ADAPT.

The modules used for this thesis work are SURFACE and VOLUME. The program

SURFACE creates a triangular mesh on the boundaries of the three dimensional do-



New nodes and New nodes and
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Figure 3.1: The Advancing Front Method- .. ... z. .Third Frprogram VOLUME uses the dinalta file, the background file and and front file fromFigure 3.1: The Advancing Front Method

main. These boundaries are specified by the user with a surface definition file. Inthis

file, the user defines support points and intersection segments of the surfaces which

make up the body. Every surface is represented by four support points which determine

the orientation and location of the plane. Intersection segments are the intersection

lines between two adjacent surfaces. They are defined by two support points. The user

also has the ability to specify the spatial distribution of the mesh parameters which are

interpolated from a background grid made up of tetrahedral elements. The spatial pa-

rameters or sources define the spacing and the stretching of the tetrahedral elements in

specific areas of the mesh. A more detailed description of the method for mesh control

is given in section 4.5.1. The surface mesh is stored in a front file.

The program VOLUME uses the data file, the background file and and front file from

SURFACE to create tetrahedra using the advancing wave front method in the three

dimensional domain between the specified boundaries and creates a grid file.



3.1.2 FELISA : Algorithmic Details

The tetrahedral mesh generation method used in FELISA is the advancing wave front

method [15]. A brief description of this method is given here. The triangular mesh

generator SURFACE discretizes the boundaries which are specified in the first data file.

This is the initial front. Next, by using the mesh spacing parameters as specified by

the user in the background grid, a new node is created for each discretized segment

and a triangle is formed. In some cases, an existing node is used if it satisfies the

spacing parameters. Every new edge serves as a part of a new front. This continues

until the complete 2-D space is discretized into triangles and a front file is created.

The advancing front method is demonstrated in Figure 3.1. The tetrahedron volume

generater VOLUME applies exactly the same technique in three dimensions. The front

file created by SURFACE serves as the initial front. In the next step, a new node is

created for every triangle and a tetrahedron is formed. Every new triangle serves as

a new front. This is continued until the complete computational field is filled with

tetrahedra. Figure 3.2 is an example of a surface grid created by FELISA with the

advancing wave front method.

3.2 Flow solver

3.2.1 Overview

The solver for the Euler equations used for this research work was written Modiano [12].

It is a finite element Euler solver with an adaptive refinement by mesh point embedding.

The method used to solve the governing equations is a Galerkin finite element discretiza-

tion method. A four stage Runge-Kutta time-stepping scheme is applied for temporal

discretization. Artificial dissipation is controlled by second and fourth difference terms.

A pressure switch determines the amount of dissipation added. The second difference

damping is turned on at sharp edges to enforce the Kutta Condition. In order to capture

the important flow features, one level of adaptation by mesh point embedding is done.



Surface grid on F117A geometry

Figure 3.2: Surface grid on F117A by FELISA

Entropy is used for the adaptation parameter so that mesh points are added in regions

where flow features have created entropy as for example in vortices.

3.2.2 Spatial Discretization

The conservation form of the Euler equations is used to perform the spatial discretization

and it is written as

OU -0 OF OG OH
= - A y =

Ot OX Oy Oz
(3.1)

where U is the state vector and F, G and H are the flux vectors. Spatial discretization is

done by the Galerkin finite element method based on tetrahedral cells. In this method,

the spatial variation of the state and flux variables is defined in terms of the nodal

values of the quantities within each element, Uj(t), F(t), Gi(t) and Hi(t), and the local



interpolation functions Ni(t)(x, y, z), so that

U(x, y, z, t) = Ni(z, y, z)U (t) (3.2)

F(x, y, z, t) = Ni(x, y, z)Fi(t) (3.3)

G(x, y, z, t) = Nj(Xy, z)Gi(t) (3.4)

H(x, y, z, t) = Ni(x, y, z)Hi(t) (3.5)

where i indicates a sum over the nodes of the element. The interpolation functions

Ni are set to have a value of unity at the node i, and a value of zero at all other nodes.

Modiano defines the local interpolation functions of each tetrahedron in terms of a set

of four volume coordinates each one associated a node of the tetrahedron : 1, (, 3

and 4. To define the volume coordinates, each tetrahedron of the mesh is arbitrarily

divided into four smaller subtetrahedra. The four volume coordinates, are defined as the

ratios of the volume of each subtetrahedron to the volume of the complete tetrahedron.

As a result, since

1 2 3 6 4 - 1 (3.6)

4 can be replaced by 1 - 31 - (2 - (3 and the volume coordinates each can be given

a value of unity at the node with which they are associated and a value of zero at the

remaining nodes of the tetrahedron. Since this is a property desired by the interpolation

functions, Modiano takes the interpolation functions to be exactly equal to the volume

coordinates as described above.

For the spatial discretization of the Euler equations, the interpolated quantities of 3.2-

3.5 are substituted in the Euler equations. The formulas for the derivatives in each

element as a function of its nodal values are as follows :



OU N dU (3.7)
at dt

OF IN-= 2 F• (3.8)ox - z

8G aNi
= E & Gi (3.9)

oy Z y

8H ON-
O Z ' Hz (3.10)

When summing over all the elements in the domain, the following equation is obtained :

N dUi ONF ON - ON Hi (3.11)
Nd x F11H (3.11)

dt ax By Oz

where Ni is the sum of the interpolation functions of node i of each element that con-

tains node i.

Since it is unlikely that assuming this form of a solution will satisfy the Euler equations

at every point in the field, the weak form of the equations is found [20]. Instead of

working with an equation that holds for each point, we need an equation that holds

for a volume of the domain weighted by some function. This is done by projecting the

equation onto the space of test functions Nj and integrating them over the domain.

For the Galerkin approach, these test functions are chosen identical to the interpolation

functions at each node. The set of equations now looks as follows :



dU INNidV= -F -NidV - Gi NdV -H ONiNdV
dt J - 'OX ) 8y 3 2 Oz

(3.12)

in which the repeated index i indicates summation over the set of nodes and the non-

repeated index j space the set of the equations. Equation 3.12 can be rewritten as

(3.13)Mi dU = -Rx,ijF - Ry,ijGi - Rz,ijHi
dt

where Mid is the consistent mass matrix and Rx,ij , Ry,i and Rz,ij are the resid-

ual matrices. These matrices are defined by integration over the entire domain. Since

the test functions and the interpolation functions are defined piecewise with respect to

each cell, Modiano breaks up the integrals by summing over the individual cells. ,

= Jc NiNidV

Rxi 3 = - NIdV

t N~
R ,44 = ae NjdV

R ,i ale NjdV
aiiv = OfVC9z

(3.14)

(3.15)

(3.16)

(3.17)

and the following equation is found



C dU.
)dt - -( xi)F - (E Rly )Gi - (C Rij)H

cells cells cells cells

(3.18)

where the range of summation is over the group of cells that contain node i.

Modiano calculates the above matrices by performing a coordinate transformation into

the local coordinate system (61, 2, 3) by applying the chain rule. The spatial deriva-

tives of the volume coordinates are evaluated by representing the spatial coordinates

x, y and z in the same way as the state quantities , i.e. via interpolation between the

nodes. For example, for the x-coordinate in the local coordinate system :

C(61,2, 66) = xiNc( , (2, )3) = z1 l + 22 2 + X33 + 24(1 - 2 - 2 - 3) (3.19)

Now, the Jacobian matrix of transformation and its inverse are found

(3.20)

(3.21)

S (z,,y, z)

i9(616 63)

j-1 = (,,z)

8(z, y, z)

As a result, dedydz translated into natural coordinates becomes

dzdydz -==- J I dld(2d 3 . (3.22)

A more detailed description of the above procedure can be found in Appendix A.

The evaluation of the mass matrix then is fairly simple. When performing the coordinate

transformation onto 3.14, the following is obtained



M = fvc N(z, y, z)Nj(z, y, z)dV

= Ni(~1 , 2, 63 )Nj(l, 2, 3) J d 3 df 2ddl. (3.23)

Modiano determined that J 1= 6V c in which Vc is the volume of the cell (Ap-

pendix A). Because of geometrical symmetry, diagonal entries of the mass matrix are

identical and off-diagonal entries are identical. The diagonal terms are

M = MC = 6VC 1 J-1 -j1-2

16Vc 1 1- 1-O1-d2dd

= VC
10

and the off-diagonal terms become

M t3 -M = 6VC J 1' f- 4-

6VC J 01 0 2

=6 Vc 1-41 fl-41-42 1 2df-
0 0 0

(3.25)1 VC
20

The residual matrices are also evaluated by performing the same coordinate transfor-

mation.

In order to obtain a solution using this method, one needs to find the inverse of the

mass matrix. To simplify this process, Modiano forms a lumped mass matrix which

(3.24)

N 2( 2, 3 1)d 3d(2dl



is essentially is a diagonalized mass matrix. This can then be inverted trivially. The

lumped matrix is created by summing up all the terms of a row of the original mass

matrix. This causes no loss of accuracy for this research work since only a steady-state

time-asymptotic solution is desired.

It is now possible to combine all pieces and obtain the semidiscrete form of the Euler

equations which is used for the solution procedure. The following equation is obtained.

[12]

dUi
Vi = -Ri (3.26)

dt

where Vi is the volume of the supercell of node i and Ri is the residual.

3.2.3 Numerical Boundary Conditions

The implementation of the boundary conditions is now described [12]. At a solid bound-

ary, two boundary conditions are necessary. First, a restriction on the fluxes is imposed

such that the non-pressure terms normal to the solid wall vanish. Modiano implements

this condition by constructing a correction flux term to be added to all nodes which

lie on a solid wall face or a symmetry face. Second, the velocity vector is forced to be

tangent to the wall at every boundary face. Because of the inviscid nature of the flow,

the boundary conditions at the symmetry surface are identical to those applied at a

solid wall.

Modiano prescribes some special boundary conditions at edge boundaries and corner

boundaries. An edge boundary is defined as " the intersection of two solid surfaces in the

case that the solid body protrudes into the fluid, such as the trailing edge of a wing" [12].

At such a point, the flow has a tendency to become infinite. Numerically, artificial dis-

sipation is sufficient to prevent this from happening and to enforce the Kutta condition.

For sharp edges however, Modiano added a switch which turns on the second-difference

smoothing at the edge nodes. A corner boundary on the other hand is described as



"the intersection of a symmetry surface with a solid surface , in the case that the fluid

protrudes into the solid body" [121. The boundary condition applied to such a corner is

that the flow cannot h'ave a normal component to either of the two intersection surfaces.

The farfield boundary conditions are based on the one dimensional characteristic the-

ory. The Euler equations in three dimensions are transformed into a system based on

coordinates normal and tangential to the boundary (n,b,t). The equations are then

linearized and the assumption is made that the derivatives in the normal direction are

much larger than those in the tangential direction. As a result, a one-dimensional par-

tial differential equation is obtained. The system is diagonalized by assuming that the

flow is locally isentropic. Landsberg [10] found that for vortex flows, this results in a

good approximation and decouples the equations. The following characteristic equation

is found

ac A acit an

where

C, J+ Un + -Y-

C 2  J_ u, 2ay-1

C3  Ut = ( - ).t (3.27)

C 4  Ub ( - un ).b

C5  ef

where J+ and J_ are the Riemann invariants and s is the entropy.

The characteristic variable J+ is convected normal to the boundary at a velocity un + a

and J_ is convected normal to the boundary at velocity un - a. In order to avoid the

necessity of computing the tangential coordinate directions, the tangential velocity is

kept as a vector, u't. The characteristic wave speed associated with ut and e' is un.

The sign of the wave speed determines whether the characteristics are convected out-

ward from the domain or inward from outside of the domain. It is then clear whether

they are calculated from the internal quantities or the external boundary conditions



prescribed. If 0 < u, < a the boundary represents an inflow which is subsonic, there-

fore, J+, eS and ut' propagate into the domain while J_ propagates out of the domain.

A subsonic outflow exists when -a < u, < 0 in which only J+ is convected from the

exterior into the domain. For un > a which represents a supersonic outflow, all char-

acteristics enter the domain as specified by the boundary conditions and for an inflow

(un < -a) all characteristics propagate out of the domain and no conditions need to be

specified.

3.2.4 Artificial Dissipation

Artificial dissipation or smoothing is necessary to stabilize the numerical scheme and

to damp out the disturbances in the background [12]. The dissipation at a node i is a

combination of second- and fourth-difference terms and can be written as follows

Di = D(Ui) = D(Ki2DVi - r 4 D( 2 Ui)) (3.28)

where D and D 2 are first and second difference operators respectively and the second-

and fourth difference terms are defined by

V
K2 Se2 . (3.29)

K4 = (1 - s)e 2. (3.30)
Atmax

The amount of second and fourth difference dissipation is determined by a pressure

switch which is calculated at each node



si (3.31)
Pi

The Kutta condition is imposed by using only second difference smoothing. This is done

by setting the switch si to unity at the sharp edge where the Kutta condition is required.

The quantities e2 and e4 are empirical coefficients which control the second- and fourth

difference dissipation. They are needed to achieve a rapid convergence without corrupt-

ing the solution.

3.2.5 Temporal Discretization

A four-stage modified Runge-Kutta time-stepping scheme is used :

U )  U"(

U - U(O) At.(- ARo1) + D(o))

U(4) +) ( 3)
U =U) + a4 (-AR + DI

Uato (-(R) + D))

U U (3.32)

where a, = , a2 = as = , 4 = 1, At is the time step, D!0) is the artificial

dissipation and R(o) is the residual at stage zero. Note that Modiano [12] separates the

CFL number A from the time step At . This was done to prevent the dissipation from

being scaled by the CFL number. In this manner, similar stability characteristics will

be observed with changing CFL number. In this scheme, the residuals are recalculated

at every stage. The fourth difference dissipation can be frozen at the first stage but the



second difference dissipation must be evaluated at the second stage also. The time step

is evaluated at each node and each Runge-Kutta stage. Local time stepping is used to

accelerate the convergence, so that Ati varies for each node.

3.2.6 Adaptive Refinement Method

Adaptation is used to increase the resolution of certain flow features and at the same

time to save computational costs by refining the grid only in specific areas of the mesh.

First, a solution which roughly captures the important features of the flow is found

on a coarse grid. After the solution has evolved to some point on the coarse grid, an

adaptation parameter is calculated at the mesh nodes.

In order for adaptation to be relevant, the chosen adaptation parameter needs to reflect

the nature of the expected flow features. By doing this, one can easily locate the regions

in the computational domain where the grid requires refinement. In the case of vortex

flows, as for the F117A geometry, entropy may be used as the adaptation parameter.

The fact that entropy is uniform in a steady irrotational flow but leading edge vortices

include significant entropy production allows the user to locate the nodes associated

with extreme values of entropy inside the vortex and indicate them for adaptation.

Adaptation is done by mesh-point embedding. With this node-based method, the nodes

from the coarse grid are kept in their original locations and new nodes are added at the

centers of the edges of which both nodes were indicated for adaptation. The refinement

of the triangles can by done in several ways. The choice of method as used by Modiano

depends on the number of nodes of the triangle which were marked by the adaptation

indicator [12]. The refinement of the tetrahedral cells depends on the structure of the

mesh in a similar way, except more complicated.



Chapter 4

F117A Digital Definition

Computing the Euler equations over a complex configuration requires a detailed de-

scription of the aircraft geometry. Since no CAD data for the F117A were available,

a simple surface definition was developed and the aircraft geometry data were taken

manually with the help of a micrometer and a milling machine.

4.1 Simple Surface Definition

In order to write the surface definition file for the modules SURFACE and VOLUME,

the spatial coordinates for the aircraft need to be specified. A 1/32 scale model of the

F117A was used to obtain them. The engine inlet and outlet have been replaced by

solid surfaces. To simplify the complex geometry, it is assumed that the aircraft consist

of 78 support surfaces with 76 nodes connecting them. Each of the support surfaces is

defined by at least three node points. Figure 4.1 shows the simple geometry description.

4.2 Data Acquisition

The spatial coordinates for each of the corner points were measured with the help of a

milling machine and a micrometer. These allow the user to determine the relative 3-D

coordinates of points on a body. The set up is shown schematically in Figure 4.2. Since

the F117 is a perfectly symmetric airplane, only half of the necessary nodal points are

measured. The location of a total of 38 points is determined and then projected about

the symmetry plane.



Figure 4.1: Simple Geometry Description
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Figure 4.2: Set up for acquisition of spatial coordinates



Figure 4.3: Farfield Boundary

4.3 Farfield Boundary

The farfield boundary which represents the outer edge of the computational domain

consists of a rectangular prism. It is located three span lengths away from the symmetry

plane, one length of the aircraft distance in front of the aircraft and three lengths behind

the F117A. Figure 4.3 shows the farfield boundary used for all calculations.

4.4 Error Correction by FELISA

Because the data for the geometry of the F117A are measured manually, there are small

errors in the spatial coordinates of each of the measured points. When defining the

intersection segments and the support points for the surfaces in the surface definition

file, the four nodes which are representing a surface are not correctly defining a flat plane

due to a measurement error. The module SURFACE corrects this error by calculating

an average surface and projecting the four nodes on the new surface.

__



Figure 4.4: Simple Surface Grid

Figure 4.4 shows a simple grid as it was created by SURFACE. It is obvious that this

particular triangulation was not very successful : the grid is very coarse and the triangles

on the wings and vertical tails show very sharp angles. This can be corrected by setting

the mesh spacings for certain areas in the computational grid. As described in the next

section, it is done by specifying a number of sources in the background grid.

4.5 Background Grid

The background grid used to produce Figure 4.4 contains no specific mesh parameters.

The grid is a very simple one. It consist of four grid nodes which make up one tetrahedral

element. As shown in Figure 4.5, the nodes of the element are specified far away from

the computational domain, such that the background tetrahedral element completely

encloses the F117A and the farfield domain.
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Figure 4.5: Farfield Overview
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Figure 4.6: Point, Line and Triangular Sources

4.5.1 Mesh Spacing Parameters

The background grid also allows the user to specify three types of mesh spacing speci-

fications ; point sources, line sources and triangle sources as represented in Figure 4.6.

For a point source, one specifies the 3-D location of the source and three parameters :

sl, dl and d2. S1 sets the spacing of the grid right at the source. The variation of the

spacing with distance from the source is given by parameters dl and d2. As shown in

Figure 4.7, dl represents the distance from the source within which the spacing is con-

stant and equal to sl. D2 is the distance from the source for which the spacing is twice

the spacing at the source. Between dl and d2, the spacing varies exponentially between

sl and 2 x sl. Line and triangular sources are shown in Figure 4.6. A line source is

defined by two point sources and a triangular source is defined by three point sources.

The spacings are specified in a similar manner. Linear interpolation of sl, dl and d2

is used between each of the points defining the lines and triangles and the distances

are the distances perpendicular to them. This results in an isotropic distribution of the
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Figure 4.7: Parameters used to control spacing

mesh spacing.

4.5.2 Location of Sources

The locations of the point, line and triangle sources in the background grid are shown

in Figure 4.8. In order to create a grid which is finer on the surface of the aircraft

and coarser in the far field of the computational domain, a point source is defined in

the middle of the F117A and a triangular source is wrapped around the edge of the

aircraft geometry. As can be seen in Figure 4.1, the support surfaces which represent

the vertical tail and the wing tip are very small in size relative to the other surfaces.

In order to obtain a grid fine enough for these support surfaces, four line sources are

placed on the fin and one on the wing tip. The grid on the sharp leading and trailing

edges is refined by defining a total of five line sources. The final grid obtained from this

background grid is shown in Figure 4.9.
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Figure 4.8: Location of the sources for F117A
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Chapter 5

Wind Tunnel Testing

In order to verify the computational results for this research work, wind tunnel tests

are done to obtain experimental lift and moment curves for the F117A. Smoke and

laser technique visualization are also performed for high angles of attack in order to

determine the location of vortex breakdown. The location of breakdown is compared

to the location obtained through computations. Force data are obtained using a wire

balance force measurement system and a 1/32 scale model of the F117A in the subsonic

5' x 7' wind tunnel at MIT. In this chapter, a general description of the experimental

set up is given. The construction of the model, the installation in the tunnel and the

data acquisition system will be described in detail.

5.1 Experimental Procedure

5.1.1 Construction of F117A Model

The model used for the wind tunnel tests is a 1/32 scaled model of the F117A stealth

fighter identical to that described in section 4.1. It is a fragile plastic toy model, not

designed to meet the demands of wind tunnel testing. It is therefore necessary to increase

the weight and the strength of the model. This is done by bracing the plane internally

with wood and then filling it up with epoxy and foam. Increasing the mass makes the

model more stable and therefore allows measuring the data in more reliable fashion. At

the same time, the addition of hard points ensures that the model can withstand the

forces exerted during high wind speeds and high angles of attack.
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Figure 5.1: Experimental Set Up in Acoustic Wind Tunnel

5.1.2 Experimental Set Up

The strengthened 1/32 scaled model is placed upside down in a open jet wind tunnel of

dimensions 5' x 7' feet. The tunnel has the capacity to produce winds up to 80 miles

per hour (Mach 0.1). The forces on the model are measured with a wire balance and a

computerized force measurement system. Figure 5.1 shows the experimental set up.

As shown, the wire balance system consists of a set of thirteen wires. Each of them has

a very specific location and function for the measurement of the aerodynamic forces on

the aircraft. The locations are determined based on the ability of the chosen set up to

keep the model steady in the tunnel during a run. The function of each wire becomes

clear when studying Picture 5.1. The lift on the model is represented by the total strain

in wires 3, 4 and 5. When subtracting the strain in wire 6 from the total strain in wires

1 and 2 one can determine the total drag on the aircraft. By suspending the model

upside down, the weight of the plane and the lift force point in the same direction. This

makes the model more stable and consequently makes the read out of the data more

wire 6



reliable.

Strain gauges or load cells are the primary tools used in determining the strain in

each the wires. Each cell is connected to a controller which includes a power supply,

sensitive voltmeters and potentiometers to control the sensitivity and the balance of the

cells. Each strain gauge is calibrated individually and a conversion factor of pound force

per volt is calculated and assigned to the location. The calibration of each wire is done

as follows : first, the sensitivity dials for each wire were set according to preliminary

estimations for lift and drag forces. Then, a number of weights are suspended and the

voltage corresponding to each weight is recorded. The slope of the volt versus force curve

corresponded to the conversion factor. This is automatically done by a computerized

data acquisition system equipped with the necessary software to take the readings from

the strain gauges during each run. The specialized software package, when supplied

with the conversion factor for each wire, reads about 1000 sample measurements of the

tunnel speed and the voltage of each cell. It then calculates the average forces for each

wire and subsequently it determines the total lift and drag on the F117A.

5.1.3 Visualization

In order to observe the vortex and the angle of attack at which vortex breakdown first

occurs, flow visualization is done. A smoke nozzle is placed in front of the aircraft model

in such a way that it is easily adjustable. To provide a better view of the breakdown

and its location, a laser beam pointing at the smoke is diffracted into a planar sheet

normal to the flow direction. This technique is very suited for the visualization of the

vortex in the breakdown region. Both the smoke nozzle and the laser beam are placed

at several locations in order to achieve an optimum visualization.



5.2 Test Matrix

Table 5.1 is a summary of wind tunnel tests done. The tunnel is at three tunnel velocities

in order to determine the Reynolds number effects on the lift and the pitching moment

slopes at high angles of attack. Pope reports that in general, pressure distributions at

low angles of attack and the slope of the lift curve seem almost unaffected down to

Reynolds number down to 200,000 [17]. Since the tunnel is operated at a Reynolds

number exceeding 200,000, see Table 5.1, Reynolds number independence is expected.

Mach Number Reynolds Number Wind Speed Angle of attack (deg)

0.04 6 x 105  13 m/sec 7-10-15-20-25

0.06 9.26 x 105  20 m/sec 7-10-15-20-25

0.08 1.23 x 106 27 m/sec 7-10-15-20-25

Table 5.1: Test matrix for wind tunnel verification



Chapter 6

Results

This chapter presents the final results of the computational and experimental work

for this research. It deals more in depth with the computations and the adaptation

criteria used. An overview of all cases and the grids associated with them is given.

Additionally, a detailed analysis of the computed solutions is discussed. A comparison

of lift and moment curves obtained though CFD with the experimental curves serves as

a verification for the accuracy of the computations. Finally, the effects of adaptation

on the solutions will be discussed.

6.1 Introduction

Since our main interest is to compare solutions at a variation of angles of attack and

to observe vortex breakdown, all calculations and wind tunnel tests are for zero yaw.

Figure 6.1 [16] shows the conditions under which vortex breakdown occurs on a delta

wing for incompressible conditions. A is the sweep angle and a is the angle of attack.

Since the planform of the F117A is basically a delta wing of A 68 degrees, Figure 6.1

shows that there will be no vortex asymmetry. Therefore, to save CPU time, the

solutions are found on half of the geometry and projected around the symmetry plane.

All calculations are done on a CRAY X-MP EA/464. Calculations in this thesis con-

sumed up to 12 hours of CPU processing time. The RMS of error is calculated in the

following manner :

RMS = s- (6U + 6U2 + 6U3 +U + U)
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Figure 6.1: Vortical behavior over delta wing in incompressible flow

where N is the number of nodes in the grid and 6U2 is the change of component i of

the state vector at each node between to consecutive iterations. Convergence of tle un-

adapted solution is reached when the RMS errors have reached 10- or smaller. Since

solutions at high angle of attack on an adapted grid result in vortex breakdown, con-

verged solutions were not obtained. This does not mean that the calculation diverges,

but it is simply a result of localized vortex instabilities due to vortex breakdown. Since

the breakdown location is not fixed, these calculations are assumed to be unsteady, and

no steady state can be obtained. The unsteadiness is therefore observed in the RMS :

it quickly drops to a minimum which is much larger than machine precision, and then

it settles into a cycle of oscillations where the RMS oscillates between a minimum and

a maximum value.

Visualization is done with a three-dimensional visualization package VISUAL3, an in-

teractive package developed by Haimes [5]. The results presented in the next sections

are visualized for the reader by orienting cutting planes at several locations along the

symmetry axis of the aircraft as shown in Figure 6.2. The resultant two-dimensional

data mapped onto the planar cut will be shown. Also, streamlines which are curved

3D lines parallel to the local velocity field are used to determine whether or not vortex



x=0

x=0.85 x=0.78 x=0.58

Figure 6.2: Location of cutting planes

breakdown has occurred.

In order to observe the vortical behavior of the flow, contour plots of total pressure

loss are mapped onto planar cuts oriented at various stations in the computational

domain. Total pressure is a reasonably good measure of the vortex structure, strength

and location. It is usually expressed as total pressure loss, defined as :

Apo = 1- P (6.1)
Poo

It is clear that total pressure loss far away from the vortex is 0 and the maximum pos-

sible total pressure loss is 1.

Solutions are found for seven angles of attack in the range of zero to 30 degrees. Calcu-

lations are performed on both an unadapted and adapted grid for each case.

6.2 Grid Adaptation

Table 6.1 gives a summary of the computational grid used for each of the cases. Before

producing a finer and more regular grid, a solution must first be found on the coarse



Surface grid on F117A geometry

Slice at x=0.58 through unadapted tetrahedral grid

Figure 6.3: Surface grid, symmetry plane and slice for coarse grid created by FELISA
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Case Nodes Cells Cell/Node

7 deg 45,271 222,234 4.91

10 deg 44,764 220,322 4.92

15 deg 49,531 244,973 4,94

20 deg 48,518 240,122 4.95

25 deg 48,724 241,400 4.95

30 deg 47,036 233,135 4.95

Table 6.1: Matrix of grids for computations

grid which is shown in Figure 6.3. This original grid, created by FELISA contains 9,396

nodes and 48,316 cells. On the left is the surface mesh of the F117A. The grid density

on the symmetry plane is shown in the next picture. Additionally, the mesh ;n a planar

cut sliced at 58% of the length of the aircraft is represented in the final picture. Using

the results from this unadapted grid, one level of adaptive refinement is performed for

all angles of attack. As described in section 3.2.6 fluid entropy is used as the adaptation

parameter, with the criterion that approximately 30% of the nodes be chosen for adap-

tation. Figure 6.4 shows the effect of adaptation on the grid. Clearly, when comparing

it to the coarse grid, the adaptation procedure has allowed for a refinement of the mesh

along the leading edge of the aircraft and above the wing where the vortex has formed.

The calculations were approached as follows. First, calculations at 7, 10, 15 and 20

degrees were performed on the unadapted grid. Adaptation was next performed on

the 20 degree case and vortex breakdown was observed. Because the breakdown region

appeared just at the trailing edge of the wing, it was clear that 20 degrees was the lower

range of angles where breakdown occurs. With the goal of observing breakdown at a

more upstream location, two more adapted calculations at higher angles of attack, i.e.

25 and 30 degrees were performed. Finally, to obtain a better resolution, adaptation

was also done for the 7,10 and 15 degree case. A summary of the adapted grid for each

case is presented in Table 6.1. The effect of the adaptation on the solutions will be

reported and analyzed in section 6.3.3.
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Figure 6.4: Surface grid, symmetry plane and slice for adapted grid
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6.3 Results

All cases are at a free stream Mach number of 0.3. The speed was chosen in order to

minimize the CPU time and the compressibility effects when comparing experimental

and computational data. In the next few sections, a discussion of the lift coefficient,

type of breakdown and location of breakdown will be given. Because so many data

were acquired, only the interesting flow features for each of the computed cases are

emphasized .

6.3.1 General Features of Solutions

Figures 6.5, 6.6 and 6.7 respectively show streamlines through the leading edge vortex

for a=7, 10, 15, 20, 25 and 30 degrees and total pressure loss across contours for a=7

and 20 degrees are shown in Figure 6.8.

For a below 15 degrees, the streamlines above the wing show only a very weak, barely

discernible. The streamlines appear to be almost parallel to one another which suggests

a practically smooth flow over the body. For a of 15 degrees and above, the calculated

results show a much stronger vortical behavior above the wing. The streamlines are

twisted around one another, reflecting the local streamwise angular rotation rate or

vorticity which has developed in the fluid flow. In order to illustrate this better, Fig-

ure 6.8 shows total pressure loss contours for a=7 and 20 degrees respectively. A note is

made that the jagged appearance of the total pressure loss contours is introduced by the

interpolation procedure in the visualization software and does not represent inaccuracies

in the calculation [12]. Figure 6.9 shows a total pressure loss profile across the vortex.

It is clear that total pressure loss is localized to that part of the computational domain

where the vortex has formed : the loss is highest at the core and is approximately zero

outside of the vortex. The contours of total pressure loss should therefore clearly show

a vortex if it has formed. Again, as can be seen from Figure 6.8 the vortex at a=20

degrees is much stronger and better defined.



Figure 6.5 : Streamlines through vortex at 7
and 10 degrees



Figure 6.6 : Streamlines through vortex at 15 (top)
and 20 (bottom) degrees



Figure 6.7 : Streamlines through vortex at 25
and 30 degrees



Adapted Grid at 7 degrees
Defined Cut 0 x=0.58
total press loss from 0.0000 to 0 1000 in core of vortex

Adapted Grid at 20 degrees
Defined Cut 0 x=56
total press loss from 0.0000 to 0.1200 in core of vortex
I . \I

Adapted Grid at 7 degrees
Defined Cut 0 x= 0.77
total press loss from 0.0000 to 0.1000 in core of vortex

Adapted Grid at 20 degrees
Defined Cut 0 x=0.76
total press loss from 0.0000 to 0.1400 in core of vortex

Figure 6.8: Total Pressure Loss for a=7 deg and a=20 deg
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Figure 6.9: Typical total pressure loss profile across vortex

6.3.2 Vortex Breakdown : 20, 25 and 30 degrees angle of attack

For angles exceeding 15 degrees, there appears to be a sudden enlargement of the vortex

core which suggests that vortex breakdown has occurred. As can be observed from the

streamlines in Figure 6.6 and 6.7, breakdown clearly is of the bubble-type for a=20

degrees and the a=25 and 30 degree cases seem to show a rather spiral behavior. Fig-

ure 6.10 shows a visualization and a schematic representation of an axisymmetric or

bubble vortex breakdown as found by Sarpkaya [19]. Figure 6.11 is a magnification of

the breakdown region found from the computations at 20 degrees. Clearly, the structure

of the breakdown is similar to the bubble found by Sarpkaya. Figure 6.12 shows two

stream lines as they move through the breakdown region at a=25 degrees. A spiral

type behavior is obvious. A close-up view for breakdown at a=30 degrees is presented

in Figure 6.13. There appears to be a bubble followed by a spiral behavior. Break-

down has been observed by Sarpkaya as an intermediate structure in between the spiral

and bubble-type breakdown [19]. Because the streamlines inside the bubble follow a

path which is mostly of spiral behavior, breakdown at a=30 degrees is classified as the

asymmetric spiral type in this thesis. Figure 6.14 shows surface pressure contours and

streamlines through the vortex core for a=20, 25 and 30 degrees. Blue signifies the

region of lowest pressure on the surface and red represents high surface pressure. The



Figure 6.10: Photograph of bubble type breakdown

Figure 6.11: Bubble type vortex at 20 degrees



Figure 6.12: Spiral type vortex at 25 degrees

Figure 6.13: Spiral type vortex at 30 degrees
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Figure 6.14 : Pressure Contours for 20(top)
25(middle) and 30(bottom) degrees



IsoSurface showing region of reverse flow in computational domain

Figure 6.15: Region of reverse flow for a=20 degrees

effect of the acceleration of the flow due to the presence of the leading edge vortex can

be seen by the low pressure region underneath the vortex. When no breakdown occurs,

this region of low pressure is expected to stretch on the wing all along the vortex and

provide high lift for the aircraft. However, for a=20, 25 and 30 degrees the low pressure

region suddenly disappears where the streamlines indicate breakdown. For aircraft with

a continuous leading edge, this effect of breakdown on the surface pressure increases with

increasing angle of attack as the breakdown region moves upstream. This can clearly be

observed from Figure 6.14 where the area of intense low surface pressure gets smaller as

the angle of attack is increased. As a result, a loss of lift is expected and a decrease of

nose down pitching moment occurs because vortex breakdown influences the rear part

of the wing.

Figure 6.15 shows the region of reverse flow in the computational domain for a=20

degrees. The region of reverse flow is represented in gray and forms a bubble inside the

burst. Upstream of the breakdown, the axial velocity is not reversed. Figure 6.16 shows

the profiles of axial velocities across the vortex in front of breakdown and inside the

breakdown region. The jet profile in front and the wake profile inside the burst suggest

the stagnation of the vortex when breakdown occurs. The same results were verified for
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Figure 6.16: Axial velocity profiles across vortex

a=25 and 30 degrees.

6.3.3 Effect of Adaptive Refinement on Solutions

Figures 6.17 and 6.18 both show a vortex at 20 degrees on an unadapted grid (top

picture) and adapted grid (bottom picture). Figure 6.17 shows several cutting planes

along the F117A axis and Figure 6.18 is a close up of one cutting plane location. The

contours are of total pressure loss, red being high and blue low. For both cases, the

computations result in a vortex. However, the importance of adaptive refinement for the

solution is clear. On the unadapted grid, the vortex is very diffused and lies right on top

of the wing. When looking at the embedded grid, the total pressure loss contours show

a vortex with an improvement of resolution and separated vortical flow above the wing.

When looking at the streamlines, no vortex breakdown was observed at any angle of

incidence on the unadapted grids while the adaptation resulted in vortex breakdown at

angles of attack of 15 degrees and higher. This becomes apparent from Figure 6.19. The

lift curve for both the unadapted and adapted grids is shown. For low angles of attack,

when breakdown does not occur, the unadapted grid generally results in a lower lift

coefficient. This agrees with the discussion in section 6.3.4. However, the observation

__ _ _ __
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Figure 6.17 : Vortex on an unadapted(top) and
adapted(bottom) grid at 20 deg



Figure 6.18 : Cutting plane through vortex on an
unadapted(top) and adapted(bottom) grid at 20 deg
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Figure 6.19: F117A CL-a curves

is made that at angles of attack exceeding 20 degrees, where breakdown has moved

a significant amount upstream, the unadapted grid over predicts lift as compared to

the adapted grid. This is due to the fact that no breakdown occurs in the unadapted

calculations.

6.3.4 Lift and Moment Curves

The wind tunnel is operated at 27 m/sec. This corresponds to a Reynolds number of

1.23 x 106 (based on the length of the model). Experiments were performed at other

velocities and results were insensitive to Reynolds numbers in the range of 6 x 105_

1.23 x 106 except at the highest angle of attack as shown in Figure 6.20. At the highest

Reynolds number, the experiment was repeated, and both sets of data are shown in the

subsequent plots.

Visualization in the tunnel shows an enlarged vortex core at a = 20 and higher. This

agrees very well with the computational results as described above. The angle at which

O Unadapted Grid

o Adapted Grid
/

/ -

aij
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Figure 6.20: Experimental CL-a curves for several Reynolds Numbers
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Figure 6.21: F117A CL-a curve
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Figure 6.22: F117A CM-a curves

vortex breakdown first occurs over the wing is also confirmed by the actual operation of

the F117A. The aircraft is not allowed to fly at an angle of attack exceeding 18 degrees

because of the effects of vortex breakdown [2].

Figure 6.21 shows the lift curves (CL-a) obtained from both the calculations and exper-

imental data. Error bars for a represent the uncertainty in setting the geometrical angle

of attack. The two sets of data indicate the uncertainty in the measured lift coefficient.

The general trend is that the numerical results under predict the experimental curve.

The Euler solution for lift shows a very good agreement with the experimental results

for a of 15 degrees and higher. In this range, the two curves are almost parallel. For

a below 15 degrees, however, the experimental results are significantly higher than the

numerical results. In the next few paragraphs, three reasons for the under prediction of

the lift curve are discussed and two explanations for the more significant discrepancies

at low angles of attack are suggested.

The overall shift of the experimental lift curve may be caused by the angular flow

variation in the jet of the wind tunnel. Wind tunnels are known to exhibit an angular

ii a1m



variation of 0.75 degrees or even 1.0 degree [17]. It is very hard to correct the effect of

angularity since the variation of flow angle may change with the tunnel speed. The tun-

nel used for this work has an unknown angularity. For future work, it is recommended

that the measurement of the effect of angularity in the wind tunnel is done.

Another source of error could be the differences between the tested and the computed

geometries. The theoretical model of the F117A was modified to simplify the generation

of a grid. As described in Chapter 4, several assumptions about the geometry are made

and the engine exhaust area is completely removed and replaced by a slanted plane.

This could be a likely source of error.

Finally, it is possible that other vortices are present in the experiments which the cal-

culations cannot pick up. Because of the faceted geometry of the F117A, one expects

to observe more than one vortex in the flow field, for example a vortex coming off the

sharp edges of the canopy. However, since the initial unadapted grid is very coarse on

the main body, it is not possible to capture such a vortex without refining the initial

grid. Because of storage requirements this was not done. As a result, the computed lift

could be lower than the experimental results.

For angles of attack below 15 degrees, discrepancies between the computational and

experimental results are more significant than for higher angles. As can be seen from

the total pressure loss contours in Figure 6.8, the vortex found for 7 degrees is very

weak and lies right on the wing surface all along the wing. The same vortex structure

is found for the 10 degree case. For the experimental tests at 7 and 10 degrees, smoke

visualization clearly showed a leading edge vortex. Two possible explanations for these

differences at low angles of attack are suggested.

One possibility is that even the adapted grid is too coarse in the region where the vortex

is forming and therefore is not able to resolve the vortex properly. Because the vortical

behavior is very weak at low angles of attack, adaptation of the grid using entropy

as the adaptation parameter is not as effective as it is for higher angles of incidence.



Figure 6.23: Adapted grid for 7 degrees(left) and 20 degrees(right)

As a result, new grid points are added in areas away from the vortex, and the.grid

is therefore still pretty coarse in the vicinity of the expected vortex. This becomes

apparent when looking at Figure 6.23. The left picture shows the adapted grid at 7

degrees and the right picture shows the grid at 20 degrees. It is clear that for 7 degrees,

new nodes were added in areas where no vortex is expected, for example below the

F117A body. Since it is set that 30% of the nodes are adapted, the grid will be coarser

above the wing. Consequently, the vortex cannot be properly captured and the lift is

lower than expected. A more efficient way to cluster nodes above the wing might be

to add extra sources using the grid generator FELISA instead of performing adaptation.

In order to estimate the effect of grid density on the lift curve, adaptation for 7 de-

grees was performed with a larger percent of the nodes to be adapted. This results in

a slightly higher lift coefficient. Rizzi also found that it is a general trend with Euler

codes that as a grid is refined more, pressure coefficients decrease and the lift coeffi-

cients increase [18]. Even though it is unlikely that grid density is the only source for

the significant discrepancy at low angles, it is our expectation that as the grid is refined

more, the lift coefficient will increase.



Another possible reason for the under prediction of lift at low angles of attack is that

the Euler equations may not be an appropriate model for vortex flows at low Mach

number and small angles of incidence. The boundary layer due to viscous effects which

can not be modeled by the Euler equations my affect the formation of the vortex. This

might be a possible reason why a vortex is clearly observed in the wind tunnel but not

in the computations. It was not possible to perform viscous calculations to investigate

this possibility.

As can be seen from Figure 6.21, the influence of vortex bursting on the slope of the lift

curve is not very significant for both the experimental and the computational results.

Kegelman and Roos found in an experimental investigation that for a delta wing of 70

degree sweep and less, the coupling between the vortex burst and lift is not strong [7].

This could also apply to the F117A since its simple planform is basically a delta wing

with a sweep angle of 68 degrees.

Figure 6.22 shows the pitching moments curves for both the experimental and com-

putational results. For simplicity, the moments are calculated around the canopy of the

F117A. For the 1/32 scaled model used in the experiments, the canopy is located 15

and 5.8 centimeter behind and above the nose respectively. In the theoretical model for

which the length of the body is 1, the canopy is located .3 and .12 behind and above

the nose respectively.

When comparing the moment curves, it is clear that the theoretical curve under predicts

the experimental curve. Possible explanations for this general trend are the same as

for the lift curves. However, the discrepancies between both moment curves are more

drastic than for the lift curves. This is due to the fact that the moment curve is a lot

more sensitive to inaccuracies, especially in those areas where the moment is large as

for example the trailing edge of the aircraft. Also, flow angularity in the wind tunnel

generally affects the pitching moment tests more than lift [17]. In contradiction with the

results for lift, the moment curves show a better comparison at angles of attack below

15 degrees and the discrepancy is more significant at high angles of attack. One possible
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Figure 6.24: Location of Breakdown

explanation for this behavior is that the effect of the modified engine outlet area in the

computational model becomes significant in determining the moment at high angles.

Because the outlet is replaced by a slanted plane, separation at the trailing edge ig not

as likely for the computations as for the experiments. As a result, the pressure on the

back end of the aircraft is higher than expected. Since the moment arm is very large

there, this area of high pressure decreases the nose down pitching moment.

It is also clear that there is a drop in the slope of the computational moment curve

due to vortex breakdown. In the pitching moment curve, the effect of vortex breakdown

is more distinctive than for the lift curve. The same observation was made by Hummel

and Srinivasan for their calculations over slender delta wings [6]. As a result of vortex

breakdown, the F117A is not allowed to fly over 18 degrees because above that range,

the airplane starts to assume a rapidly increasing pitch-up [2]. One can imagine that

from the results as the pressure over the aft part of the wing increases as breakdown

moves forward, causing a nose-up pitching moment.
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Figure 6.25: Location of breakdown

6.3.5 Location of Breakdown

Figure 6.24 shows a top view of the F117A for a=20, 25 and 30 degrees. Streamlines

reflect the location of vortex breakdown in each of the pictures. It is obvious that the

location of breakdown indeed depends on the angle of incidence. At low angles of at-

tack, the breakdown is located far downstream of the aircraft and therefore, it does

not appear in the calculations. As a is increased, the breakdown moves upstream and

crosses the trailing edge.

Figure 6.25 shows how the breakdown location varies with a for the computational

data. X is the distance from the nose and the length of the aircraft is 1. For this

thesis, breakdown is defined as the point where reverse flow in the core of the vortex

first occurs. As can be seen, at 20 degrees, the breakdown has crossed the trailing edge

of the wing (located at X approximately 1) and lies above the wing. As the angle of

incidence is increased, breakdown moves upstream and at 30 degrees, it has moved up

close to the leading edge. It is our expectation that at 15 degrees, breakdown occurs

right behind the trailing edge of the wing. Because the grid has not been sufficiently



refined downstream of the aircraft, it does not show up in the computations.



Chapter 7

Conclusions

The goal of the research work described in this thesis was to determine whether an

adaptive finite element Euler solver on an unstructured mesh of tetrahedra has the ca-

pability to accurately resolve leading edge vortices and in particular to capture vortex

breakdown at high angles of attack. The importance of these powerful solution methods

was illustrated by performing a typical computational study of the flow characteristics

of Lockheed's F117A stealth fighter. Wind tunnel tests were also done to compare with

the computational results. Once grid generation and computations were performed, lift

and moment coefficients were obtained and compared for a range of angles of attatk in

order to verify the solutions.

The F117A was chosen for this project for very specific reasons. The unconventional

features of the F117A would suggest a complex vortical flow field. Since the Euler solver

used for this work does not model the separated flow which would occur on bodies with

more rounded surfaces, the F117A is very suitable for this study. At the same time, the

faceted surface geometry of the F117A greatly simplifies the digitizatal definition of the

model and ,therefore, allows a manual data acquisition of the spatial coordinates.

To digitize the model, a simple geometry definition of the aircraft was developed. The

grid generation system created both a surface and a volume grid in the computational

domain using the advancing wave front method. An Euler solver with Galerkin finite

element spatial discretization and four stage Runge-Kutta time-stepping was used to

perform the computations. In order to capture the important flow features, one level of

adaptation based on entropy was done on the grid.

Results which reflect the capability of the solution methods used were presented. Cal-

culations on adapted grids were done for the range of angles of attack between 7 and



30 degrees. By looking at streamlines and total pressure loss above the wing for each

case, strong leading edge vortices were observed at angles of attack of 15 degrees and

higher. At 7 and 10 degrees, a clear vortex is not present but a total pressure loss is

observed above the wing. By determining the region of reverse flow in the vortex and

by looking at surface pressure contours, vortex breakdown was found at a of 20 degrees

and higher. At 20 degrees, the streamlines through the vortex core clearly showed a

bubble-type breakdown. On the other hand, for 25 and 30 degrees, a spiral breakdown

was observed. Visualization in the wind tunnel also showed breakdown for angles ex-

ceeding 15 degrees. This agrees with the actual limitation criteria of the F117A aircraft

which is an angle of attack of 18 degrees[2].

Grid resolution was found to have a very significant effect on the accuracy of the solu-

tion. The computations for all angles of incidence showed an insufficient resolution of

the vortex on the coarse grid. No vortex breakdown occurred at any angle of attack

using this grid. The vortical behavior for all solutions on the coarse grid was alsowery

weak. From the results, it is clear that the accuracy of a computed solution to the Euler

equations is directly related to the number of grid points. By looking at the solutions,

one may conclude that least one level of adaptation of the grid is necessary in order to

capture a vortex vortex at a exceeding 15 degrees. For a below 15 degrees, a second

level of adaptation might be necessary to accurately capture the weak leading edge vor-

tex. It is our expectation that adding more grid points in the region of total pressure

loss, a vortex will be captured at the lower angles. A second level of adaptation was not

performed because of the storage requirements for such a computation.

The accuracy of the computations was determined by comparing the slopes of the com-

putational and experimental lift curves. Overall, the computations showed to be consis-

tent with the experiments. However, the computational lift curve showed a significant

discrepancy with the experimental data at low angles of attack(below 15 degrees) and

the moment curves at high angles of attack (above 15 degrees).

Additional studies are needed to understand whether angularity plays an important role

in the under prediction of the computational lift curve to the experimental data. One

way to check this would be to flip the model in the wind tunnel (in other words, test it



right side up). However, since a wire balance system was used for this project, it would

not be practical to do this. A suggestion to correct angularity would be to find an

average value of the angle by measuring the flow angle at several downstream stations.

This study has focussed on the performance of a finite element Euler solver with adap-

tive refinement on an unstructured mesh of tetrahedra. The results justify the usage

of these solution methods to calculate the flow around complex three dimensional ob-

jects with sharp leading edges (to provide flow separation). The use of a mesh which is

completely unstructured simplified the generation of a grid in the complex 3-D compu-

tational domain and,at the same time, allowed for grid adaptation in a straight forward

manner. The flow solver also demonstrated the power of the solving Euler equations in

capturing the important flow feature of vortex breakdown.
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Appendix A

Calculation of Matrices for Spatial

Discretization

The integration of Equations 3.14 - 3.17 is carried out in the local coordinate system

(1 2, 63) of natural coordinates, as defined in section 3.2.2. The spatial derivatives

of the interpolation functions are evaluated by a projection onto the new coordinate

system. The chain rule is used and the following are obtained :

8M _Ni 496 O Ni N 2  ONi 8 3+ - Y + (A.1)

Oy -x 86 O i 12 + 3 (A.2)
ONa ON 8 ON 2 ON 3 (A.3)

Oz 81 Oz N2 Mz 4~3 Oz

The interpolation functions for spatial discretization were chosen by Modiano as follows

as described in section 3.2.2:

N1 = , 1

N 2 = (2

N3 = 3

N4 = 4 =1- -1 2- 3 (A.4)



This was a good choice since :

8N/ 1 = 1 aN/d2 = 0 oNj/a63 = 0

N2/1 = 0 N 2/8 = 1 8N 1 /0a 0 (A.5)

N3/8al = 0 N 3 / 2 = 0 aN 3 /1a =- 1

4,/~1= -=-1 aN4 / 2 = -1 N 4 /~9 3=-1.

When combining the equations above the following is obtained:

o9 N_ 
_ o a a l

Ox - Ox Oy - Oy Oz Oz

O= 2_a O2-!2 O ON

a x aay a (A.6)

N3 N 3 3  - N3

ax OX ay y a Oz

iN N 21 C 23 ONA O!2_41 _ s 2L _A - _ 22 _9O3

0x ajx O x O)y Oy Oy Oy Oz a Oz Oz

In order to evaluate the spatial derivatives of the volume coordinates in the previous

equation, the spatial coordinates are evaluated as the state quantitiesdescribed in Chap-

ter 3, i.e. via interpolation between the nodes, so that :

c(ix, 2, E3 ) = zi 61 C(~,~2, 3) = Z~1 + z22 + s36 + z4(1 - - -2 3) (A.7)

yc (,12, 6) = yiN(C(,jj 6 ) = Y16 + Y2+ +Y36 + 4( 1- - ~2 -~3) (A.8)

zc (6, = N, 6) = N 1C ( 6, , is) = z + Z2~ 2 + ( + z4(1 - - - ). (A.9)

In order to calculate the Jacobian from 
Equations A.7- A.9, a more indepth 

discussion

of the mesh geometry is needed. Figure A.1 shows the a tetrahedral cell. The outward-

pointing area normal to each cell face is constructed by taking the cross product of two

edge vectors of the face. The only requirement is that it points outward.

Using this method and referring to Figure A.1,

1
S = -(32 X X42)

-. 1
S = - (X 41 x 31)

S = -(X21 x X41)
2
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-4
S 4

Node 2

Node 4

Node 1

Figure A.1: Tetrahedral Cell Nomenclature

S1
S4 =- (X31 X X21)2

where zij=zi-zj, yij=yi-yj and zij=zi-zj and where 'ij = xi - xj is the edge vector

between the ith and jth nodes of the terahedron as shown in Figure A.1. °

The volume of a tetrahedral cell is :

VC

221
1

6 231

241

Y21

Y31

Y41

Z2 1

Z31

Z41

(Z= 2 1 Y3 1 Z4 1 + Y21Z31lz41 + Z21 31Y41
6

- Z21Y31 41 - X21 Z31 41 - Y21 31 Z41

(A.11)

(A.12)

(A.13)

The Jacobian matrix of the coordinate transformation can now be calculated.

a(= , y,z)
J=

X14

Y14

Z14

224

Y24

Z24

234

Y34

Z34

(A.10)

(A.14)



Inverting this Jacobian matrix :

J-1 ( 1
(x, y,z)

Y24Z34 - Z24Y34 Z24 X 34 - X24 Z34 X24Y34 - Y24134

z14 Y34 - Y14Z 34 X14 z34 - 14X 34 Y14X34 - X14Y34 (A.15)

Y14Z24 - z14 Y24 Z14X24 - X14Z2 4 214024 - Y14X24

by using Equation A.13, the inverse Jacobian can be rewritten :

SX, Syl Sz,

-1 3V S2 S,2 Sz2 (A.16)

Sx3 Sy3 Sz3

where Vc is the volume of the cell, and Saj,Syj and Szj are the Cartesian components

of the area vector of the jth face. The final step can now be satisfied by substituting

Equation A.16 into Equation A.6.

aN S aN 1  S
- 3V y 3V Oz 3V

ON 2  S N 2  S N2  _
3V -y 3VaZ - 3V

_ 3_ _ ___ _ ___ ___s (A.17)
8O 3V' ay z3V z 3V

ON 4  S,1 + S +S S3 N 4  Syl+S2+Sy3 N 4  Szl +Sz2 +Sz3
8X 3VV Oy 3VC Oz 3 VC

3 - -32V+

Using these definitions, the transformation and evaluation of the mass and residual

matrices is straightforward [12].


