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ABSTRACT

An autonomous landing system is designed to land a helicopter-type Unmanned Aerial
Vehicle (UAV) on a target on a sloped surface. The UAV is a Radio Controlled (RC)
model helicopter. In flight, a Linear Quadratic Gaussian (LQG) compensator is used to
stabilize the helicopter in hover.

The landing system lowers the helicopter to the target from directly above the target by
following a collective command input which reduces the thrust of the helicopter. A
multiple model adaptive controller (MMAC) is activated when the helicopter is in hover
and adds an additional cyclic input proportional to the collective command when the
residuals of the rate gyro states in the estimators indicate that the helicopter is probably
landing on a slope to prevent reaction torques that would drive the helicopter into the
slope.

Comparing the landing accuracy of the MMAC landing system to the landing accuracy of
the LQG hover compensator following the same collective command input over a variety
of slopes, the MMAC reverts to the LQG hover compensator on slopes less than 20 in
magnitude and performs about the same as the hover compensator on slopes less than 60.
For slopes greater than or equal to 120, both the hover compensator and the MMAC
saturate the cyclic command. The MMAC lands closer to the desired target position than
the LQG hover compensator on slopes ranging from 60 to 120 in magnitude. So if only
slopes less than 60 are encountered, the LQG hover compensator is recommended
because it yields the same performance and is easier to implement. If implemented
properly, the MMAC yields better performance at the steeper slopes while maintaining
the performance of the LQG hover compensator at the slopes under 60.
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1 Introduction and Motivation of Thesis

Unmanned aerial vehicles (UAV's) have been developed for missions deemed too

hazardous for human pilots because UAV's are considered disposable. Therefore, UAV's

should be expected to handle more rugged conditions than human piloted vehicles can.

Both human piloted and autonomous vehicles have difficulty landing on uneven surfaces.

Human pilots can remotely land radio controlled (RC) helicopters on hills with a ±120

slope; however, in a hazardous situation the range of the radio system and/or the

monitoring system may be too short for the safety of the human operator. Consequently,

a completely autonomous UAV which is able to land successfully in such conditions is

desired.

The helicopter project at the Artificial Intelligence lab at MIT is developing

relatively low cost platforms (compared to Canadair's CL-227 Sentinel@ and Sikorsky's

CypherTM) for testing learning algorithms. The vehicle is a hobbyist radio controlled

(RC) model helicopter under computer control. This thesis studies different strategies for

autonomously landing the helicopter on slopes ranging from 0"- 12" using standard control

techniques.

1.1 Dynamics of a Sloped Landing

Figure 1 shows four different phases when landing a helicopter on a sloped

surface. The hover phase is when the helicopter is hovering above the target. During the

descent phase, the helicopter moves from the hover position above the ground down into

ground effect until the helicopter just touches the ground. The next phase is the settle

phase which covers the time from when the helicopter first touches the ground until the

helicopter completely rests on the ground. When landing on level ground, ideally all

points of the gear touch at about the same time and the settle phase is relatively short.

However, when landing on a sloped surface, one part of the gear touches the high side of
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the slope before the rest of the gear comes into contact with the slope. In the case of a

sloped surface, the settle phase begins when any part of the gear initially touches the

ground and ends when the entire gear is in contact with the ground. Even when the gear

is in full contact with the ground, the helicopter blades are still spinning but they are not

producing enough lift to overcome the weight of the vehicle. During spin down, the

thrust is reduced until the motor is shut off.

a) Hover- Maintain b) Descent
Position

c) End of Descent - Beginning of Settle

d) Settle e) Spin Down
Figure 1

Landing Phases

During the descent, there are a variety of ways the vehicle can approach the

ground for a landing. One possible approach is that the helicopter approaches the desired

target from a downhill location with predominately a horizontal velocity and very little

vertical velocity. Figure 2a shows that the ground would touch the gear from the side
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with a reaction force equivalent to the force with which the helicopter hit the slope. Since

the velocity of the helicopter was predominantly horizontal, the reaction force is also

predominantly horizontal and acting at the point of contact and not through the center of

mass of the helicopter. This produces an external torque on the helicopter about the point

of contact which brings the helicopter closer to the slope. Figure 2b shows that if the

rotation of thehelicopter is too large, the force due to gravity no longer acts through the

base of the helicopter. The helicopter tips over, and this situation is known as dynamic

rollover. Dynamic rollover happens anytime the net torque acting on the vehicle forces

the helicopter to tip over, and it is not limited to a horizontal approach. However, the

horizontal approach creates a torque in a undesirable direction and aggravates an already

delicate balance.

T
v T

a) Horizontal Approach b) Dynamic Roll Over

Figure 2
Horizontal Approach and Dynamic Roll Over

The RC helicopter used in this study can not statically take a hill from the side

any larger than 45* without the blades hitting the ground and destroying the vehicle.

However, the limitations preventing a dynamic rollover situation depend on the geometry

of the landing gear. The original gear that comes with the X-Cell 60 can take a

maximum attitude roll angle of 45", but the modified gear (see chapter 2) can take an

attitude angle of 600. Too much overshoot in a controller using a side approach can cause

dynamic roll over and thus destroy the vehicle.

In a different approach shown in Figure 3, the helicopter descends with virtually

no horizontal velocity so that the bottom of the gear touches the ground first. If the
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helicopter were landing on a sloped surface, the gear would touch the high side of the

ground first and the resulting torque would lead to a rotation of the vehicle and a

horizontal component of the thrust vector. With preservation of the vehicle being a

higher priority than maintaining target position, the vertical landing strategy is used in

this study because the natural tendency is to move away from the hill preventing possible

damage.

mg R

a) Reaction Force Causes b) Loss of Target Position
Torque Downhill

Figure 3
Vertical Approach

Assuming a robust hover controller, the helicopter is able to maintain position

over its target given typical disturbances. When the vehicle touches the ground during

the settle phase, the external torques applied to the helicopter create angular accelerations

that are not predicted by the model of the helicopter in hover. These angular

accelerations tilt the thrust of the helicopter. The component of the thrust in the

horizontal direction accelerates the helicopter in the horizontal direction which integrates

twice to a loss of desired position. Once the skids of the vehicle are in full contact with

the ground, the controllability of the x and y position of the vehicle is severely attenuated.

This study focuses on making corrections to achieve the desired final target position

during the settle phase of landing.

The velocity with which the helicopter descends onto the slope, the characteristics

of the ground, and the helicopter suspension system determine whether the helicopter

bounces, slides or comes to a rest on the slope. If the collision between the helicopter and
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the slope upon landing is perfectly elastic, a bounce-free landing would be virtually

impossible. However, the collision is not perfectly elastic, so some energy is absorbed in

the landing. The kinetic energy of the helicopter just prior to landing is
1 2

KE = - mve,, [1]

Reducing the descent velocity reduces the bouncing effect of the landing of the

helicopter. A harder surface such as concrete has a more elastic quality than a softer

surface such as grass, so it is important to descend more slowly upon a harder surface

than necessary for a softer surface.

On a sloped surface, the helicopter may also slip down the hill depending on the

friction characteristics between the ground and the helicopter gear. Figure 4 shows the

forces acting on a mass resting on a slope. When a helicopter lands on a slope (during the

spin down phase), normal force acting on the helicopter is changing as the thrust vector of

the helicopter is reduced.

N = mg cosa - Tcos [2]

where ot is the angle between level ground and the slope and 0 is the angle of the rotor

plane with respect to the helicopter vertical (see Figure 5). As long as the frictional force

is greater than the force due to the acceleration pulling the helicopter down the hill

pN 2 mg sin a - Tsin 0 [3]

where t is the coefficient of friction, no slip occurs. The helicopter should not try to land

on slopes with low coefficients of friction (like ice, wet grass or mud) on which it cannot

sit at rest.
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a) Bounce

av mg

d) Restc) Bounce and Slide
Figure 4

Ground Interaction

During the settle phase, the dynamics between attitude rates and angles differ

from the dynamics in the air. Figure 5 shows that an angular acceleration to the right

does not carry the vehicle to the right as it would in the air because the helicopter hits the

slope. Angular accelerations away from the hill still correspond to a translation in

position away from the hill, but the helicopter simply cannot fly through the ground.

Trying to maintain the vehicle's position, a controller (human or computer) tends to steer

into the slope. As the collective pitch is reduced, the vehicle tends towards a resting

point on the slope. To prevent loss in position, roll cyclic is increased to compensate for

the rotating thrust vector. However, the cyclic command is physically limited to prevent

the separation of the rotor head from the body of the vehicle. When the cyclic is held at

this limit, a condition known as mast bumping or droop stop pounding1 results which

causes severe vibrations on the vehicle. When this situation occurs, the collective should

1 Raymond W. Prouty. Helicopter Performance. Stability, and Control, p. 653.
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be increased and a more suitable landing location with a less severe grade should be

found.
Tsin0

0T

mgsina

S mg

a is the angle of the slope
0 is the maximum angle of
the rotor wrt the helicopter body

Tsine < mgsina

Figure 5
Mast Bumping

1.2 Specialization of the Problem

Given the dynamics of landing on a sloped surface, this thesis specializes the

problem into landing on smooth, sloped surfaces without wind disturbances using a

vertical approach. The intent is to study the effects of a grade on the ability of the vehicle

to land on its target. Smooth is a necessary requirement since an uneven surface may

mask the direction of the slope by initially perturbing the helicopter in a direction

different than that of the slope. Also, since the experimental setup is in a controlled

indoor environment, effects due to wind gusts are not considered.

As discussed in section 1.1, the loss of position is the result of the unaccounted for

external forces due to the ground interaction during the settle phase of landing. There are

a wide variety of possible solutions to correct this loss of target position. One possible
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dynamic solution is if the slope and friction of the slope are known, the helicopter targets

a position slightly uphill of the desired position during the descent phase and slide into

the target position during the settle phase of the landing. Since the specific characteristics

of the terrain are generally unknown, this study has limited its scope to strategies which

can land the helicopter on a variety of slopes without prior knowledge of the terrain.

Another, simpler solution is to simply shutoff of the collective at the beginning of the

settle phase thus eliminating the thrust which gives rise to the horizontal accelerations.

The problem with this method is when the thrust is cut off, the helicopter on a sloped

surface drops abruptly to the ground which may cause the vehicle to bounce or may

damage the helicopter or its sensors.

Another strategy is to identify a new model that takes into account the ground

interaction of the vehicle on a slope. Ideally, this model characterizes the dynamics from

cyclic and collective inputs to attitude rates through attitude angles, velocities and

position states. The vehicle in this regime is highly non-linear and uphill motions do not

mirror downhill motions. Using a compensator based on this model, multiple model

techniques can generate the appropriate commands based on the probability of the vehicle

being in the valid region of a particular model. The advantage is that the model would

take into account the interaction of the helicopter with the ground and better performance

would be expected. The disadvantage is the overhead involved in identifying this model.

The solution studied is to correct for loss of position during the settle phase when

landing with a predominantly vertical velocity on an unknown slope. However, it is

assumed that the slope is capable of being landed on which means that it can have a grade

less than ±120. Only slopes to the left or right of the helicopter are studied since any

algorithms developed for roll cyclic control can be extended to the pitch cyclic control as

long as the pitch cyclic controller has an additional constraint which prevents a tail boom

strike.
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2 Experimental Setup and Hover Compensator

An overall view of the helicopter testing area is shown in Figure 6. In the center

of the area is the RC model helicopter. A tether carries power from the ground up to the

helicopter while a data tether carries information from on board sensors to processors on

the ground which handle all control calculations of the helicopter. A steel safety cable

attached to the floor prevents the helicopter from hitting the ceiling should it ever go out

of control. This setup requires two people to operate it: one person is the test pilot who

has a manual override and operates the power switch to the motor while the second

person issues commands like take-off, land, and record data to the computer and monitors

the sensor operation.
Test Pilot m

PCM
Transmitter

Computerqoj Operator

uman Interface
(Sun 3)

Off Board Control
Processors

(Vxworks System)

Batteries for
Motor

RC Helicopter

X and Z
Positioning

System

Y Postioning
System

Figure 6
Top View of Experimental Setup
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2.1 Landing Platform

The landing platform has an adjustable slope and enough friction for the

helicopter to sit on the slope without sliding when no external accelerations other than

gravity are acting on the vehicle. The landing platform is a 4' x 8' x 3/4" piece of

plywood reinforced with a framework of 2" x 4" boards to add stiffness to the platform.

The low end of the slope is created by a hinged attachment to two floor panels on one

side of the plywood. The other side rests on two adjustable posts hinged to two more

floor panels. The length of the rods adjust the slope of the landing platform.

When the test pilot attempted to land the helicopter on the plywood platform, the

helicopter slid to the bottom of the hill on slopes more than about 5". Carpeting was

added to the plywood to increase the friction of the platform so that the helicopter at rest

remains still at the upper slopes of the platform. The safety cable for the helicopter is

attached to the floor and runs through a hole in the platform to the helicopter.

2.2 RC Helicopter and Sensor Platform

The vehicle for this thesis is a radio controlled model helicopter, the Custom X-

cell-60. The X-Cell has a 1.4 m rotor diameter and comes with a 2 hp, two cycle engine.

The gas engine has been replaced with a 2 kW DC electric motor by Hecktoplekt. An

Astroflight Speed Controller is used to maintain a constant rotor rpm during steady state

hover conditions. A human pilot can fly the electric setup the same as he/she flies a gas

setup. In addition, a fan has been added to cool the motor.

The landing gear of the standard RC helicopter is replaced with the sensor

platform shown in Figure 7. The sensor platform is a section of plywood with non-stress

bearing sections removed to reduce the weight. The plywood is reinforced with

1 Ben Weintraub provided this information as he implemented much of the modifications to the helicopters
in the AI Lab. More details can be found in his master's thesis: Learning Control Applied to a Model
Helicopter, MIT: Feb. 1994.
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fiberglass and mounted to a 35.56 cm (14 inch) wider base. The wider base gives the

helicopter a larger margin to avoid dynamic rollover. The sensor platform is shock

mounted to the helicopter to reduce structural vibrations of the sensor platform which

would appear in the sensor output.

Mounted to the sensor platform are three JMWIII Gyrosensor rate gyros oriented

to measure angular rates about the roll, pitch and yaw axes. A Humphrey VG24-3301-1

vertical gyro used in actual aircraft measures the roll and pitch attitude angles. The roll

and pitch range of vertical gyro are ±60" pitch and -90" roll.

The KVH Heading Sensor ROV-1000, an electromagnetic compass, measures the

heading angle which is the yaw angle in level flight. The analog output of the compass

has a wrap point when it goes from 3590 to 00 in heading. Since heading is maintained

constant in this experiment, the analog offset was adjusted so that the wrap point was at

the rear of the vehicle. This sensor must be mounted at least 12 inches forward of the

electric motor to minimize interference from the magnets in the motor.

The flight computer, also mounted on the sensor platform, is a Motorola 68332

which collects sensor information and sends it to the ground computer via a data tether.

The power junction box routes power from either batteries or the power tether to all the

components on the sensor platform as well as the radio receiver and servos on the

helicopter.

The center of mass of the helicopter should be aligned with the shaft that spins the

main rotor blades. The helicopter was suspended from the ceiling by its blades, and the

sensors were placed, given the 12 inch forward requirement on the compass, so that the

helicopter platform was as level as possible thus indicating that the sensor weight is

equally distributed. Figure 7 shows the layout of the platform.
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jVG A/D

JMW
rate gyros

ic~t)
S SwitchFlight

Computer

sensor Platform
I......................... . . . . .

a) Side View

b) Top View
Figure 7

Schematic of Sensor Platform Layout
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2.3 Ground Based Equipment

Due to the vehicle payload limit of 12-15 lb., the power for the vehicle and sensor

platform components are supplied by tether cables. The electric motor is supplied with

42 volts DC power. A power tether connects the electric motor to the car batteries on the

ground (three 12 volt batteries and one 6 volt battery in series) which can supply the

necessary voltage for extended periods of time without recharging. The components on

the sensor platform are supplied through a second tether with +5v and + 15v from a DC

power supply located on the ground.

The flight computer, a 68332 processor, collects the sensor information from the

platform and sends the information to the off board co atrol processors via a data tether

cable. All three tethers (2 power and 1 data) are depicted in Figure 6.

Commands to the helicopter use the standard PCM transmitters used with radio

controlled hobby vehicles. The PCM transmitter is connected to the off board control

processors via analog to digital and digital to analog converters on a 6811 board. The

PCM radio has been modified with a switch which allows the test pilot to manually

override the computer control. To eliminate radio interference, this transmitter is

connected via trainer cord to a second transmitter which contains the transmitter module

and active antenna. Without this setup, the servos on the helicopter receive noisy radio

signals because the wire connecting the transmitter to the computer system was acting as

an additional antenna and interfering with the desired signals.

The off board control processors are a Vxworks real time operating system which

gathers information through its serial ports from the onboard flight computer, the PCM

radio transmitter system, and the two ground based positioning systems. The off board

control processors then process the information and calculate the commands which are

sent to the PCM transmitter. A Sun 3 workstation is connected to the off board control

processors for human interaction and for recording data files.
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The ground based positioning system is a color vision tracking system which

tracks a bright orange canopy covering the helicopter platform. Figure 8a shows a

schematic of the setup of the positioning system. The video camera image is thresholded

to show only orange objects in the image and a schematic of the image is shown in

Figure 8b. The helicopter canopy is the largest and usually the only object in the image.

The pixel location of the centroid of the largest object is used as the position of the

helicopter. 1 The pixel location is converted to x, y and z coordinates by the off board

control processors.

Video Camera

Y Positioning
System

x

7 z

RC Helicopter

Figure 8a
Schematic of Positioning System Setup

'igure 8b
Schematic of Thresholded Image of Positioning System

1More details can be found in the paper by Anne Wright titled "A High-speed, Low-latency Portable Visual
Sensing System", 1993 SPIE Proceedings, 1993.
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3 Design of the LQG Hover Compensator

The landing strategy in this thesis starts from a stabilized hover. Computer

control of hover is achieved on this experimental setup using a Linear Quadratic Gaussian

(LQG) estimator and controller. Since the LQG compensator is a model based

compensator, a model of the helicopter in hover was identified using knowledge of the

dynamics and system identification techniques.

3.1 Explanation of Controls

The controls of the RC helicopter are referred to as roll cyclic, pitch cyclic, rudder

and collective. The roll and pitch cyclic commands change the pitch of the main blades

as a function of the blade's position in a revolution. The cyclic commands control the tilt

of the rotor plane and thus the tilt of the thrust vector of the helicopter. 1

The rudder command controls the collective pitch of the tail rotor. The rudder

command is mixed in the transmitter with the collective command to cancel out the

torque on the body due to the spinning of the main rotor blades. The rudder command

adds or subtracts from this collective blade pitch of the tail rotor to produce a torque on

the body about the z axis and hence allow the vehicle to change it's heading.

The collective command controls the total lift on the helicopter by controlling the

pitch of both main rotor blades.

3.2 Dynamics of Helicopter in Hover

For the purposes of model identification, the controls are assumed to decouple as

roll (or roll cyclic) controlling roll and y motion of the vehicle, pitch (or pitch cyclic)

controlling pitch and x motion of the vehicle, rudder controlling yaw motion of the

vehicle, and collective controlling z motion of the vehicle.

Since cyclic commands create a differential in the force acting on the blades, a net

torque acts on the body of the helicopter which is related to an angular acceleration on the

vehicle by

1Wayne Johnson. Helicopter Theory. Princeton: Princeton University Press, 1980. p. 159.
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z = I6 [4]

where I is the moment of inertia of the helicopter about the axis of rotation. This means

that the cyclic commands should integrate into an angular rate. The commands are

known and the rate gyros provide a measurement of the angular rate of the vehicle, so an

input-output relationship can be found by fitting a controlled autoregressive model

(ARX) model to the data. 1

Angular rates integrate to an angle and an input-output relation can be found by

comparing the angular measurement to the angular rate measurement. Any non-zero

body angle tilts the thrust vector which then has a horizontal component of force. This

horizontal force is related to the horizontal acceleration by the mass of the vehicle (F =

ma) and integrates to the horizontal velocity of the vehicle. Only horizontal position is

measured, but since the system identification is not in real time, the horizontal velocity is

estimated by taking the difference in position measurements and scaling by the sample

time. An input-output relation is determined again by fitting an ARX model to the body

angle measurement and the velocity estimates. The relationship between the velocity

estimates and the position data is known.

Rudder commands create a torque on the body which is related to the yaw angular

acceleration by the inertia of the vehicle. The angular acceleration is integrated to a yaw

rate which is measured by the yaw rate gyro. The yaw rate integrates to yaw position

which is measured by the compass heading sensor. Input-output relations from command

to rate gyro and from rate gyro to compass form the yaw model.

The collective command creates a force on the blades (thrust) which is related to

the vertical acceleration acting on the vehicle by the mass of the vehicle. (In hover, the

thrust exactly cancels the force due to gravity acting on the vehicle.) This acceleration

1The system identification process is described in more detail in the Appendix. The Appendix also gives
the form of the ARX model.
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integrates to vertical velocity of the helicopter. Again the vertical velocity is created as

the horizontal velocities were by taking differences of the vertical position measurements.

3.3 Parameter Identification

Since the helicopter is an inherently unstable vehicle, the standard system

identification method of driving the plant with an impulse command and recording the

response is not feasible since the helicopter might be damaged in the response. An

alternative method is used where a test pilot flies the helicopter in hover and the computer

adds pseudo-random inputs to the pilot's commands. ' These pseudo-random inputs are

scaled so that the pilot can recover the vehicle from the worst command generated. The

pilot can only compensate for very slow offsets and does not react to the quick series of

pulses, which prevents identification of the dynamics of the test pilot.

After taking several perturbation data sets for each of the commands, means of

each measured state are removed for system identification. For each input-output

relation, first compare the spectral frequency analysis of the data sets. In this

experimental setup, data is sampled at 50 Hz. The main rotor blades spin at 1800 rpm

which results in a 30 Hz noise source. The data is not sampled fast enough to eliminate

aliasing of this frequency so models identified cannot be accurate around 30 Hz - 188

rad/sec. This is seen in the spectral analysis plot for the relationship for the roll cyclic

and the rate gyro of Figure 9 as the roughness of the data plots above 20 rad/sec. A

useful model captures the low frequency dynamics, so the data from which the model is

identified should be consistent through at least 1.5 Hz = 10 rad/sec. When searching for

the model structure, post-processing the data with a zero phase, 5 Hz cutoff low pass

filter attenuates high frequency information in the data so that the model doesn't attempt

to fit high frequency data (above 20 rad/sec) which is inconsistent from data set to data

set.

1 See Torsten Soderstrm. System Identification. New York: Prentice Hall, 1989. pp. 96-112. for more
information of pseudo-random inputs for system identification.
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Figure 9
Spectral Analysis of Roll Command to Roll Rate Gyro

Both one step and multi-step simulations were used to judge the quality of the

model. Figure 10a shows a simulation of the identified relationship between roll

command and rate gyro on the same data from which the relationship was identified. The

first plot shows a single step ahead prediction where the match is almost exact. The

second plot is the identified relationship driven only by the command compared to the

measurement, and this shows that the although the model is not exact it still gives a

reasonable prediction of the measurement. Since this is the data from which the model

was identified, a close fit is expected. Figure 10b shows a cross validation by running the

same simulation of the same identified model driven by a different set of data. Since the

multi-step simulation still reasonably predicts the measurements, the relationship is

considered valid.
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Simulation of Command to Rate Gyro Model on ID Data
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Simulation of Command to Rate Gyro Model Cross Verification
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Once a structure and its associated parameters were identified for each input-

output relation, a state space description of the system was assembled. The state space

description of the roll controller is as follows:
cmdl 0 00000000 0 0 0O-cmdl 1

cmd2 1 0 0 0 0 0 0 0 00 0 0 cmd2 0

cmd3 0 1 0 0 0 0 0 0 00 0 0 cmd3 0

cnui4 00 1 0 0 0 0 0 00 0 O cmd4 0

cmd5 0 0 0 1 0 0 0 0 00 0 0 cmd5 0

cmd6 0 0 0 0 1 0000 0 0 0 cmd6 0
= + u.

cmd7 0 0 0 0 0 1 0 0 0 0 0 0 cmd7 0

S 0 0 0 0 0 a b c d 0 0 0 0 0

1 0 0 0 0 0 0 0 1 0 0 0 01 0 [5]

0 0 0 0 0 0 0 0 e 0 f 0 0 0

y O O O O g h 0 y 0

Y +1 0 0 0 0 0 0 0 0 0 0 dt 1 _ y 0

where the numbered command and angular rate states indicate delays and the dotted

states indicate rates. The delayed command states represent the time delay from when the

command is issued from the computer until the effect is first visible in the measurements.

More details on the system identification of the LQG hover compensator can be found in

the Appendix.

3.4 LQG Controller and Estimator Gains

Using these state-space descriptions and the recursive Ricatti equation algorithm 1,

controller gains for full-state feedback are determined. Since the matrices Q and R define

the cost equation of the linear quadratic regulator (LQR), R, the penalty on the command

was identity and Q, the state weighting matrix, had only a value for the position state

since the goal is to maintain position. All of the command states are penalized in R and

non zero values in the other states create a non zero value in the position state anyway.

The values of Q (or R) are varied because the exact noise of the sensors and the

frequencies of the unmodeled dynamics are unknown.

1Gene F. Franklin, J. David Powell, Michael L. Workman. Digital Control of Dynamic Systems. Reading,
MA: Addison-Wesley Publishing, 1990. p. 427.
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The translational velocities were created in post processing, so a Kalman filter

using the model identified above is used to estimate this state. It also smoothes existing

measurements. Kalman filter gains are created by estimating the noise on each sensor to

determine how much to trust it.

The LQG controller and estimator parameters Q and R and hence the controller

and estimator gains were experimentally determined to achieve a balance between

position drift and excitation of unmodeled dynamics. A description of the process as well

as the actual gain values are given in the Appendix.

3.5 Standardized Collective Input

Since many factors are involved in how accurately the helicopter can land on a

target, the same standardized collective input is flown by each of the controllers and the

difference between the final position and the targeted position serves as a measure for

how well each controller performed. The helicopter lands so that the heading is

perpendicular to the gradient of the slope. Since only roll cyclic is modified in this

experiment, the heading perpendicular to the gradient implies that the downhill motion of

the helicopter can be completely characterized by the y position measurement of the

helicopter (see Figure 11).

Gradient of Slope

RC Helicopter

Figure 11
Heading of Helicopter Relative to the Slope Gradient

Each of the controllers modified the cyclic command if they modified anything

at all, but slight variations in the collective command can drastically change the outcome
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of the landing by causing the helicopter to bounce or slide regardless of the applied cyclic

command. To eliminate this uncertainty, the collective command is generated by the

state machine shown in Table 1. Since the collective to z dynamics are stable, an open

loop collective command is used for take off and landing the helicopter. The first three

states take the helicopter to hover which serves as the starting point of this experiment.

Table 1
Z State Machine

State Tasks State Change Conditions

ON GROUND Collective off Operator gives take off cmd

SPIN UP Increase collective pitch Collective can lift vehicle

Decrement collective cmd

TAKE OFF Increase collective pitch Collective at hover level

Decrement collective cmd

HOVER Maintain altitude Operator gives land cmd

LAND Decrease collective pitch Helicopter touches down

Increment collective cmd

SETILE Decrease collective pitch Collective can't lift vehicle

Increment collective cmd

SPIN DOWN Decrease collective pitch Collective off

Increment collective cmd Switch to ON GROUND

Shutoff

Figure 12 shows an example of the collective command used in the experiments.

The standardized collective input starts from when the helicopter is in hover and the data

storage mechanism and the landing trajectory are triggered at the same time so that

information from the data sets may be compared. The first part of the standardized

collective input is given by the land state in the z state machine and corresponds to the

descent phase illustrated in Figure 1. The descent of the vehicle from the hover altitude

to the ground which can be seen in the z position measurement in Figure 12 as an

increase in the z position since z is positive downward. The rate of descent (i.e., the
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slope of the collective command) is chosen so that the helicopter does not bounce when it

touches down. Also notice the spike in the roll rate gyro measurement which indicates

when the helicopter first touched the ground. The second phase is the settle phase in both

the state machine in Table 1 and the landing phases in Figure 1 which is the area of

decreased slope in the collective command of Figure 12. Note that the vertical roll gyro

measurement moves from a zero altitude to the slope of the hill during this phase. The

third phase seen in the standardized collective command input is the spin down phase

which has a steeper slope and finally a cutoff in the collective command. The cutoff is

delayed slightly to ensure that the vehicle skids are in full contact with the ground. A

premature shutoff leads to the vehicle dropping abruptly to the ground if the changeover

point between settle and spin down was inappropriately chosen. The shutoff is necessary

to reduce the amount of low frequency vibration on the helicopter as the blades are

spinning down. The roll rate gyro in Figure 12 shows some vibration even though the

collective command is shutoff.
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3.6 Measurement of Landing Accuracy

The landing accuracy defined as the difference between the final landing position

and the desired landing position is used to judge how each of the controllers achieves the

final goal of landing on a specified target. Each controller is compared to the LQG hover

compensator following the standardized collective input. Controllers performing

significantly worse than the LQG hover compensator are eliminated from further

consideration. The helicopter using the LQG hover compensator is capable of landing on

the hill without sliding to the bottom for slopes less than 120. Controllers which cannot

keep the helicopter on the hill are considered significantly worse than the LQG hover

compensator. Those that can keep the helicopter on the landing platform fly each hill

under consideration four times.

For each flight, the desired target position is considered the steady-state position

that the helicopter hovers over prior to starting the standardized collective input. The

desired target position is calculated as an average of the horizontal position of the first

100 data points before the helicopter has interacted with the ground. The final position

for each data set is calculated similarly using the last data points of the data set when the

helicopter has come to full rest upon the slope. The landing accuracy for a flight is

simply the difference between the final position and the desired position of the flight.

Since each controller makes 4 flights on each slope, the mean landing accuracy of

a particular controller at a particular slope is calculated as the average over the four

flights.

The sample standard deviation is calculated as follows:
4

(Yi - Y) 2
c. = i=41 [6]

where Yi is the landing accuracy of a particular flight and Y is the sample mean accuracy

of a particular slope for each controller. The sample standard deviations of the landing
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accuracy are presented in the result tables, and the error bars in the presentation of the

final results indicate the minimum and maximum flight landing accuracy at each slope.
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4 Experiment

Three strategies are compared to the LQG hover compensator. Since the LQG

hover compensator focuses on maintaining position, the first strategy, the altered weight

LQG hover compensator, adds penalties to the roll rate and attitude states in the LQR

controller cost function. The second strategy, the open loop cyclic controller, attempts to

mimic the human test pilot's cyclic input which is proportional to the standardized

collective input. The final strategy, the multiple model adaptive controller (MMAC), is a

combination of the LQG hover compensator and the open loop cyclic controller

strategies. The design and performance of each of these strategies follows.

4.1 LQG Hover Compensator

4.1.1 Design of LQG Hover Compensator

This strategy required no modifications since it is assumed that the

helicopter has an existing hover controller. The standardized collective input is used to

land the helicopter. Since the LQG hover compensator is robust enough to handle some

disturbances, the dynamics of the ground are simply treated as an external disturbance

and the LQG hover compensator attempts to recover from an external torque applied by

the ground. The control law is given by

u = -Khoverhover [7]

where Khover are the roll cyclic LQG hover compensator gains used to maintain roll and

y position in hover (acutual values are given in the Appendix) and ^hovr,, are the estimated

states of the LQG roll cyclic control axis. Since no adaptation of the control from a

hovering vehicle is needed, experiments using this controller serve as the "control"

experiment to which the other strategies are compared.

This method succeeds in landing the vehicle on slopes with sufficient

friction, but experiences some loss in landing accuracy due to the fact that the LQG

controller is a model based compensator which has no knowledge of the existence of the

ground which produces external forces on the helicopter. The controller only corrects
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for errors in position after the fact and does not produce enough of a command to fully

counteract the torque generated by the external input.

4.1.2 Performance of the LQG Hover Compensator

Table 2 shows the mean and the standard deviation of the landing

accuracy for the given ground slopes. Since a greater slope allows for a greater rotation

and thus a larger horizontal component of the thrust leading to a larger position loss, the

results in Table 2 reflect that the steeper the slope, the greater the magnitude of the mean

landing accuracy. A negative mean landing accuracy on a positive ground slope indicates

that the helicopter landed downhill of the desired target and vice versa for a negative

ground slope. The vehicle does remain on the hill because once the lift is reduced

enough to generate enough frictional force (via the Normal force) the motion is stopped.

Looking at Figure 12, the roll command applies a command into the slope based on the

displacements in the roll angle and y position states, and this stops the loss of position

down the slope. However, this method does not anticipate the slope, so it cannot prevent

the loss of position, but it can stop further loss.

Table 2
Mean Landing Accuracy of the LQG Hover Compensator

Slope Mean Landing Accuracy Standard Deviation of

Landing Accuracy

-40 0.0367 m 0.1216 m

00 -0.0566 m 0.0055 m

20 -0.2025 m 0.0325 m

50 -0.3793 m 0.0461 m

60 -0.4804 m 0.0375 m

80 -0.8044 m 0.0869 m

100 -0.9060 m 0.1090 m

120 -0.9358 m 0.1447 m
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4.2 Attitude Weighted LQG Hover Compensator

Interviewing the test pilot revealed that when the helicopter is in contact with the

ground, he concentrates on maintaining a level attitude while throttling down to keep

from losing position. When the LQG hover compensator was created, the focus was on

maintaining position, and so the penalties in the cost function were applied primarily on

the position states. Incorporating the human pilot's strategy, increasing the cost on the

attitude angles and rates during the settle phase can yield better performance. Some

penalty on position is necessary to maintain the target position achieved by the original

LQG hover compensator. This method still has no knowledge of the ground interaction,

but it should respond sooner than the LQG hover compcnsator because it does not have to

wait for attitude errors to integrate into position errors. The control law is given by

u = -KAWLQGchover [8]

where KAWLQG is similar to Khover except with higher gain values on the attitude

rate and angle states.

In reality, this method encounters problems with the accuracy of the model. The

original LQG hover compensator gains were chosen to be as high as possible without

significantly exciting high frequency unmodeled dynamics. The end result is that the

gains for the attitude weighted LQG hover compensator cannot be raised much from the

values of the original LQG hover compensator without exciting these dynamics which

cause severe oscillations of the helicopter (shown in the region between the dotted lines

on Figure 13), and so this method is eliminated from further consideration.
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Figure 13
Attitude Weighted LQG Hover Compensator on 5 o Slope
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4.3 Open Loop Cyclic Controller

Observing how the test pilot landed on the slope revealed that once the helicopter

was in contact with the ground, the test pilot applied a cyclic command in the uphill

direction proportional to the collective command. Since the test pilot achieved a better

target position than the LQG hover compensator, a controller of the form

u = k collective_cmd [9]

based on a model of how the collective command affects the attitude and position of a

helicopter should improve the target landing performance.

4.3.1 Design of the Open Loop Cyclic Controller

Although it is desirable to identify a complete model of both the cyclic and

collective inputs to the behavior of the attitude and position of the helicopter while it is in

contact with the ground using the system identification methods that were used to identify

the model of the helicopter in hover, this is impractical since the helicopter on the ground

undergoing pseudo-random inputs large enough to identify a model might damage the

helicopter. Therefore, instead of perturbations, observations of the human test pilot is

used to create a model of how the cyclic command is related to the collective command.

The test pilot controlled the cyclic and rudder control axes while the computer ran the

collective trajectory.

An 80 slope was used because the slope was as different from the level

surface as possible without the human pilot saturating the roll cyclic. Taking a linear

regression between the cyclic command and collective command during the settle phase

to identify k in equation [9] showed that the pilot was consistent in the gain applied on

the collective command to generate a cyclic command on the same slope. Figure 14

shows the roll command in a dashed line versus a roll command produced by the

identified gain on collective command in a solid line for three different data sets taken of

the test pilot landing on an 80 slope to the right of the helicopter.
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The method is an open loop roll command applied once the helicopter is in

contact with the ground. This method only works if the helicopter is stable in roll during

this phase. The model used in the LQG hover compensator is unstable (the plant is

unstable), and the ground probably does not stabilize roll motions until the skids are in

full contact with the ground and the thrust is less than the weight of the vehicle. This is

not an effective landing method as discussed in the next section.
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Figure 14
Open Loop Cyclic Controller Simulated vs. Measured Roll Cyclic on 80 Slope

4.3.2 Performance of Open Loop Cyclic Controller

Figure 15 shows data from a flight using open loop cyclic controller.

Although the roll command was applied in the correct direction, the helicopter as seen in
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the y measurement ended up at the bottom of the hill approximately 1.0 m to the left of

the desired position (corresponding to a downhill motion). This loss in position can be

attributed to slight errors in the state when the controller switched from the LQG hover

compensator to the open loop cyclic controller. The open loop cyclic controller cannot

correct for these errors without feedback. Since this strategy is considered significantly

off target, it is eliminated from further consideration.
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Figure 15
Open Loop Cyclic Controller on 80 Slope
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4.4 Multiple Model Adaptive Controller (MMAC)

The final strategy considered combines the LQG hover compensator, which

corrects for position errors, with the open loop cyclic controller, which accounts for the

constant disturbance in the attitude rate due to the ground. This method is more powerful

than the LQG hover compensator because the reaction force due to the ground is

included. It also works better than the open loop cyclic controller because it has a

feedback component which allows for corrections to errors in the roll attitude rate and

angle and y position states.

4.4.1 Design of Multiple Model Adaptive Controller

Part of the cyclic command is generated by the LQG hover compensator

and part of the command is related to the collective input as in the open loop cyclic

controller. Since the sign of the component of the roll cyclic control from the open loop

cyclic controller depends on the direction of the slope, multiple model adaptive controll

is used to determine the sign of the additional cyclic command.

Multiple model adaptive control (MMAC) uses the model residuals and

prior probabilities to determine the probability that the vehicle is in the regime predicted

by that particular model and then uses the probability times the control generated by each

individual compensator to generate the total command. In this application three models

were used for the roll cyclic controller: uphill to the right of the helicopter, level, and

uphill to the left of the helicopter.

Using the information discussed in section 4.3, the open loop cyclic

command was obtained by adding a gain times the collective value to the cyclic

command to compensate for a hill on the right. This implies that a helicopter without this

compensation behaves as it does in hover except that a component equivalent to the gain

times collective value is subtracted from the roll cyclic command value. Similarly, the

1Multiple model adaptive control has been used with sensor and actuator failures as explained in paper by
Peter S. Maybeck and Donald L. Pogoda, "Multiple Model Adaptive Controller of the STOL F-15 with
Sensor/Actuator Failures," Proceedings of 28th IEEE Conference on Decision and Control. Dec. 1989. pp.
1566-1572.
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model for a hill on the left was created by reversing the appropriate signs in the hill on

the right model. The level model is exactly the model of the helicopter in hover.

The difference between the models can be seen in the residuals of the roll

rate gyro state where the residual is the difference between the measured rate gyro and

the estimated rate gyro state before the observation update. Since all other states involve

at least one integration from the rate gyro state, the corresponding residuals of those

states contain little information regarding the probability of the model because the

estimates have already been updated by the measurements during the integration process.

The calculation of the control uses the probabilities that the helicopter is

described by a particular model based on the measurements and probability history. The

probability density function that the current measurements indicate a particular model

given the previous measurements is given by

f (zi am, zi 1 ) r exp [10]-2- %exp 2 2

where z is the rate gyro output, a indicates which model describes the helicopter, m

indexes the models, arg is the standard deviation of the rate gyro measurement in hover,

rm is the rate gyro residual of the mth model and ti indicates the current time. The

variable z can be expanded into a vector to include other measurements if the model

changes in other states are known.

The probability that the helicopter is described by a particular model given

the measurements and previous probability is calculated from

f (zilam, zil) Pm (ti- )
pm (ti) 3[11]

Sf(zi aj,zi- ) P j(ti-1)
j=1

where f is the probability density function described in equation [10]. The probabilities

are bounded from below by 0.01 to prevent the MMAC method from fixating on a

particular model. As seen in equation [11], this situation occurs once a probability

becomes zero because no future probabilities for that model can be non-zero. Also in the
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implementation it is necessary to ensure that the denominator of equation [11] does not

go to zero causing the function to be undefined, if this situation occurs, the previous

probability is maintained as the current probability. The probability is then used to

compute the MMAC cyclic control by
3

UMMAC(ti) = U(ti) Pm(ti) [12]
m=l

where um is the cyclic command generated by each of the models as shown in Table 3.

Table 3
Cyclic Command Generated by Individual Models

Model I Cyclic Command

Level Ground u, = -Khover Xhover

Hill on Right u2 = -Khover "hill_right + k collective_ cmd

Hill on Left u3 = -Kover 'Xhill_le - k -collective cmd

The k in Table 3 indicates the gain found for the open loop cyclic controller. Khover are

the LQG hover compensator controller gains given in the Appendix. The i's in Table 3

indicate the state estimates given by the respective models. This collective gain is

multiplied by a processed version of the collective command which is zero before the

helicopter comes in contact with the ground and is maintained constant at the level when

collective cannot raise any part of the gear off of the ground. The zeroing is done to

ensure that an additional command is not inadvertently added while the helicopter is in

the air. The clipping of the collective when the helicopter is heavy limits the additional

command due to the collective input to prevent the additional value from saturating the

roll cyclic command for an extended period of time. If the roll cyclic is held at its

maximum value for an extended period of time while the blades are still producing lift,

the head mechanics of the helicopter may be damaged.

Since the MMAC is intended to make corrections during landing, this

compensator is turned on once the helicopter has enter the HOVER state in the Z State

Machine (see Table 1). The model probabilities are initialized as the level/hover model

having a probability of 0.90 while each of the hill models have a probability of 0.05 since
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it is known that the helicopter is in hover. One difficulty with this method is that when

landing on level ground, any slight disturbance which causes one side of the gear to hit

before the other may cause the helicopter to choose one of the hill models instead of the

level model. The only effect this has is exerting more cyclic than necessary to prevent

further loss of the targeted position.

Figure 16 shows the residuals of each of the models and the corresponding

probabilities as the helicopter is landing on an 100 slope to the right. Note that the model

for the hill on the right has the smallest residuals which implies that the model is the most

accurate predictor of the given models. By equation [10], the smaller residual has a

larger probability density function which increases the probability associated with that

model. In all trials of the MMAC the controller settled to a probability of 0.98 on one of

the models without difficulty which indicates that the dynamics of these three models are

different enough to reliably select one of the models 1.
Hover Residuals Hover Probability
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0 0
0 5 10 0 5 10

Time [sec]
Hill Right Residuals

400 r

Time [sec]
Hill Right Probability

200 0.5

0 0
0 5 10 0 5 10

Time [sec] Time [sec]
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Figure 16

MMAC Residuals and Probabilities for Three Models on 100 Slope

IMaybeck paper discusses possible solutions if the adaptation mechanism has difficulty in determining
which controller to weigh most heavily.
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4.4.2 Performance of Multiple Model Adaptive Controller

Table 4 shows the mean and standard deviation of the landing accuracy for

the given ground slopes. As with the LQG hover compensator, note that the farther away

from level the slope is, the greater the position loss is. Figure 17 shows that the roll

command does apply a command into the slope based on the displacements in the roll

angle and y position states as well as the collective command, and this stops the loss of

position down the slope.

Table 4
Mean Landing Accuracy for MMAC

Slope Mean Landing Accuracy Standard Deviation of

Landing Accuracy

-40 0.0153 m 0.0641 m

00 -0.0580 m 0.0459 m

20 -0.1454 m 0.0273 m

50 -0.3433 m 0.0333 m

60 -0.4746 m 0.0374 m

80 -0.5385 m 0.0494 m

100 -0.4923 m 0.0486 m

120 -0.7996 m 0.1929 m
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Figure 17
Multiple Model Adaptive Controller (MMAC) on 100 Slope
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Figure 18 shows the MMAC controller landing on a 120 slope to the right

compared to the LQG hover compensator landing on the same slope. The roll cyclic

command generated by these two methods are at the limit of the roll cyclic command

authority but the slope of the cyclic during the settle phase of the MMAC controller is

steeper than that of the LQG hover compensator. Since both controllers are at the edge of

the authority, neither controller has a very good performance as can be seen by the loss of

position of nearly -0.6 m for both controllers. If there is a discernible difference between

the performance of the controllers, the MMAC should do slightly better because it stops

the loss of position sooner than the LQG hover compensator due to the faster cyclic

control input.
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Figure 18
Comparison of LQG Hover Compensator and MMAC on 120 Slope

Figure 19 compares the performance of the LQG hover compensator with

the performance of the MMAC controller using the mean landing accuracies. The error
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bars indicate the maximum and minimum valued flight landing accuracies. The ideal

performance is if the landing accuracy is zero across all ground slopes, so by looking at

the best fit lines through the averages, the shallower MMAC line indicates better

performance. Note that in the region less than 60, the error bars overlap and the mean

landing accuracies are nearly equal. The MMAC compensator only reverted to the level

(hover) model for slopes less than or equal 20 in magnitude, so not much improvement is

gained by the MMAC compensator in this range. Improvement in the MMAC

compensator over the LQG hover compensator is seen for slopes between 60 and 120;

however, the cyclic command is saturated for 120 slopes and both compensators perform

poorly and again the error bars overlap. For this setup, the MMAC controller landed the

helicopter approximately 41 cm closer to the target than the LQG hover compensator on a

100 slope and approximately 26 cm closer to the target on an 80 slope.
Comparison of Landing Accuracy with Min/Max limits

0.4

0.2

0-0.4 ...

-1.2
-5 0 5 10 15

Slope [deg] -x Hover --o MMAC

Figure 19
Performance of LQG Hover Compensator and MMAC vs. Slope
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5 Conclusions

A model RC helicopter modified with a wider landing gear to increase the

dynamic rollover margin landed on a series of slopes on an indoor platform. The goal

was to land the helicopter on an unknown slope less than 120. Since the specific

characteristics of the slope are unknown, all strategies considered maintained the LQG

hover compensator until the helicopter came into contact with the ground (i.e., no

anticipatory strategies were considered). The helicopter descended upon a target position

on the slope from directly over the target position such that its heading was perpendicular

to the gradient of the slope. This means that all downhill movement of the helicopter is

limited to the y-z body axis plane; therefore, each strategy only modified the roll cyclic

command.

When attempting to land on a smooth, sloped surface without wind disturbances,

the open loop cyclic command controller strategy was eliminated from consideration

because it failed to stabilize the plant. The attitude weighted LQG hover compensator

was eliminated because it excited unmodeled dynamics which caused oscillations. The

two remaining strategies were either to adapt nothing and use the LQG hover

compensator or to create a multiple model adaptive controller (MMAC) which uses the

LQG hover compensator with an additional cyclic input proportional to the standardized

collective input.

For the standardized collective command input with the descent rate adjusted to

prevent the helicopter from bouncing upon touchdown, the LQG hover compensator and

the MMAC compensator land approximately the same distance from a desired target on

unknown slopes between ±60. When the unknown slope is 120 or greater in magnitude,

both the hover and the MMAC controller have saturated the roll cyclic. However, the

MMAC compensator yields improvement in the mean landing accuracy on unknown

slopes between 60 and 120 which is approximately 41 cm improvement on a 100 slope in

this experimental setup.
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Therefore, if it is known that all slopes encountered by the helicopter will be less

than 60 in magnitude, then only the LQG hover compensator is necessary. However, if

the slopes encountered are less than 120 in magnitude, then the MMAC compensator will

provide improved performance at the steeper slopes (greater than 60) while maintaining

the hover compensator performance on slopes less than 60.
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Appendix Hover Model System Identification

The model of the RC helicopter in hover is decoupled into four single input

models. The roll cyclic controls the roll rate and attitude and the translational velocity

and position along the helicopter's body y-axis. Similarly, the pitch cyclic controls the

pitch rate and attitude and the translational velocity and position along the helicopter's

body x-axis. The rudder controls the yaw rate and attitude of the helicopter while the

collective command controls the altitude rate and position of the helicopter. The

following describes the model identification and gain selection process and includes the

scripts for MatlabTM used in this process.

A.1 Spectral Analysis

The controlled autoregression model (ARX) assumes the input-output relationship

is linear with a white noise disturbance. The identified model will be of the form

y(t) + a y(t - 1)+...+a,,ay(t - na) =
[13]

bhu(t - nk) + b2u(t - nk - 1)+...+bbu(t - nk - nb + 1) + e(t)

where na is the number of past output states used to calculate the output y(t), nb is the

number of control terms used, and nk indicates the number of delays before the input

u(t-nk) effects the output y(t). The identification process needs to identify the order of

the model and the number of delays in the model as well as the actual parameter values.

Four different sets of pseudo-random perturbations filtered at 10 Hz were fed into

each command input as the test pilot attempted to hold the helicopter in a hover. These

ascii data sets were loaded into MatlabTM by scripts like the excerpt from load_roll.m

shown here:
LOAD_ROLL.M
% ******* WARNING - the index numbers used here are 1 higher than the number
% in vxworks
%*** Data files""""********
datal = 'j00052'
data2 = 'j00053'
data3 = 'j00054'
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data4 = 'j00051'

%%%%%%%%%% Load first datal set %%%%%%%%%
n channels = 200;
%file_name = input( 'Type file name to load:','s' );
filename = datal

open_err = sprintf( 'Could not fopen file %s', file_name );
file_size = 1000*n_channels;

fp = fopen( file_name, 'r');

if fp == -1 I fp = 2
open_err

end

% Now load in datal set

[datl, count] = fread( fp, [n_channels, 1000], 'float');
datl = datl';

if count -= file size
read_err = sprintf( 'Error reading file %s, count = %d', file_name, count )

else
check = sprintf( 'File %s read successfully', file_name )

end

fclose(fp);

% **""""* COMMANDS
rcl = dtrend(datl (:,6)) ;

%*......... MEASUREMENTS

vgl = dtrend(datl(:,53));
rgl = dtrend(datl (:,14));
yv1 = dtrend(datl (:,43));
raw_vgl = dtrend(datl(:, 17));

clear datl

%% This process repeats for each data set loaded.

The identification process starts with a spectral analysis of the data which shows

the consistency of the data and if filtering is necessary. Figure 20 shows a spectral

analysis of four different data sets for the roll cyclic command to roll rate gyro. Note the

low frequency consistency between the data sets and the resonance at 1.5 rad/sec. Also

note that above 50 rad/sec both the magnitude and phase plots are no longer consistent.

This is because there was very little information available in the data at these frequencies

(almost none since the input was filtered at 10 Hz). To keep the model from attempting
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to identify these higher frequency characteristics that may not be accurate due to the lack

of data, a 5th order, zero phase filter is used to remove this information from the data.
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Spectral Analysis of Roll Cmd to Roll Rate Gyro
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Figure 20
Spectral Analysis of the Roll Command to the Roll Rate Gyro

Figure 21 shows a comparison of the spectral analysis of the filtered data

compared to the unfiltered data. Note that the high frequency information has been

removed (indicated by the flat region at 0 dB at the higher frequencies). The rcg_spa.m

script follows which peformed this analysis and generated the spectral analysis plots.

Similar scripts were written for each input-output relationship identified, and Table 5

shows the filtering frequencies used for each of the input-output relationships.
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Spectral Analysis of Fft Roll Cmd to Roll Rate Gyro
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Figure 21
Spectral Analysis Comparing Filtered to Unfiltered Data

RCG_SPA.M
% Matlab script which performs spectral analysis

% Setup output- input vectors
zl = [rgl rcl];
z2 = [rg2 rc2];
z3 = [rg3 rc3];
z4 = [rg4 rc4];

% Spectral Analysis on unfiltered data
spal = spa(zl,128,-1,-1,0.02);
spa2 = spa(z2,128,-1,-1,0.02);
spa3 = spa(z3,128,-1,-1,0.02);
spa4 = spa(z4,128,-1,-1,0.02);

% Filter Data with Zero Phase Filter
filt_ord = 5;
%wn = [1 6]/25; %cutoff frequency in fractions of Nyquist freq
wn = 6/25; %cutoff frequency in fractions of Nyquist freq

cfl = idfilt(rcl ,filtord,wn);
cf2 = idfilt(rc2,filtord,wn);
cf3 = idfilt(rc3,filt_ord,wn);
cf4 = idfilt(rc4,filt_ord,wn);

gfl = idfilt(rgl ,filtord,wn);
gf2 = idfilt(rg2,filord,wn);
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gf3 = idfilt(rg3,filt_ord,wn);
gf4 = idfilt(rg4,filt_ord,wn);

% Setup output- input filtered vectors
zf 1 = [gf 1 cf 1];
zf2 = [gf2 cf2];
zf3 = [gf3 cf3];
zf4 = [gf4 cf4];

spaf 1 = spa(zf1,128,-1,-1,0.02);
spaf2 = spa(zf2,128,-1,-1,0.02);
spaf3 = spa(zf3,128,-1,-1,0.02);
spaf4 = spa(zf4,128,-1,-1,0.02);

% do some plotting
figure(1)
bodeplot([spal spa2 spa3 spa4])
subplot(211)
title('Spectral Analysis of Roll Cmd to
ylabel('Magnitude [db]')
xlabel ('Frequency [rad/sec]')
grid on
subplot(212)
grid on
ylabel('Phase [deg]')

Roll Rate Gyro')

figure(2)
bodeplot([spafl spaf2 spaf3 spaf4])
subplot(211)
title('Spectral Analysis of Filt Roll Cmd to Roll Rate Gyro')
ylabel('Magnitude [db]')
xlabel ('Frequency [rad/sec]')
subplot(212)
grid on
ylabel('Phase [deg]')

Filtering Frequencies
Table 5

for Each Input-Output Relationship

Input-Output Relation Cutoff Frequency of Low Pass Filter

cOn

Roll Cmd-Roll Rate 6 Hz

Roll Rate-Roll Angle 7.5 Hz

Roll Angle-Y Velocity 3 Hz

Pitch Cmd-Pitch Rate 3 Hz

Pitch Rate-Pitch Angle 5 Hz

Pitch Angle-X Velocity 3 Hz

Rudder Cmd-Yaw Rate 5 Hz

Yaw Rate-Yaw Angle 1 Hz

Collective Cmd - Z Velocity 5 Hz
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The following are the full series of filtered spectral analysis plots for each

identified input-output relationship.

-2 Spectral Analysis of Filt Roll Rate Gyro to Roll Vert Gyro
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Figure 22
Spectral Analysis of Roll Rate to Roll Angle
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Spectral Analysis of Roll Vert Gyro to Y Velocity
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Spectral Analysis of Roll Angle to Y Velocity
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Spectral Analysis of Pitch Command to Pitch Rate
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Spectral Analysis of Filt Pitch Rate Gyro to Pitch Vert Gyro
............... ........ , ......... .......... , ................. ....... •....

. . . . . . . . . . . . . . . . . . . . . . ... . . . . . . .... . . .. . ... . .. . . *.' *. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . ... ........... .............. . ..... .. .... .. .J..,J...I. I.

.. . . . . . . . . . . .. . . . . . . . . . . . . . . . : . . . ... . . . . . . . . . . . . . .. . . . . . . . .. . . . . . . . . . . . .. ,. . . . . . . . .. . . . .. . . . . . . . . . . . . : . . . . . . . . . . .. : . . . . .. . . ... . . . .
. .. . . . . . . . .i. . . . . . . . . . . . . ..i . . . . ... ..... .. " ! i i... . . . . . . . . . . . . .: . . . .......... . ... ........ ......... ...... ........... .. ........ : ........... ...S ~......................... ........... ..... ...... ... .... ............... ........~~~ -

............ :11 :1***:*,,, ''-''-*''':*''--

W-o1

-0 -44 10
COm
Cu

10-51
10

102

mi
-0

9 100

10-

-500

0 101

Frequency [rad/sec]

100 101
Frequency [rad/sec]

Figure 25
Spectral Analysis of Pitch Rate to Pitch Angle

Spectral Analysis of Filt Pitch Vert Gyro to X Vel

. . " ::.'.. ........

.. . ... .. .. .. ... .. ... .. .. ... .. .:. . ...: . ..... . .. .. . -. .. . . . . .. .. ... i

0
°  

10O 1

Frequency [racVsec]. . .- . . . . . . . .7 . . .. .... .. . . .7 - . ': : :0 0 1 0
Frequency [radtsec]

Frequency [rad/sec]

Figure 26
Spectral Analysis of Pitch Angle to X Velocity
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Spectral Analysis of Filt Yaw Cmd to Yaw Rate Gyro
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Figure 28
Spectral Analysis of Yaw Rate to Yaw Angle
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Spectral Analysis of Filt Collective Cmd to Z Velocity
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Figure 29
Spectral Analysis of Collective Command to Z Velocity
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A.2 Model Structure

The next step in the system identification process is to select a model structure

which is the number of delays and number of input and past output terms that will

satisfactorily predict the behavior of the system. The script rcg_model.m shows part of

the model structure selection procedure for the roll command to roll rate gyro model.

First, the data is filtered at the frequencies selected in spectral analysis, but note that this

entire process is iterative and that if a suitable model is not attained, the filter cutoff

frequency may be changed and the spectral analysis and model structure selection

processes repeated. The MatlabTM command arxstruc creates a series of ARX models

based on one set of data and calculates a sum of the squared prediction errors (a loss

function) generated in cross-validation. The MatlabTM command selstruc selects the

"best" model structure based on minimization of the prediction errors and the order of the

model 1.
RCG MODEL.M
% this code creates the arx model
% run rcg_spa first to specify variable names

filt_ord = 5;
wn = 6/25; %cutoff frequency in fractions of Nyquist freq

cfl = idfilt(rcl,filt_ord,wn);
gfl = idfilt(rgl,filt_ord,wn);

zf 1 = [gf 1 cf 1];

% testing use of arxstruc
na = 1:4;
nbl = 1:4;
nkl = 1:8;

NN = make_nn(na,nbl,nkl);

V1 = arxstruc(zfl ,z2,NN);
nnl = selstruc(V1,0)

V1a = arxstruc(zl,z2,NN);
nnla = selstruc(Vi a,O)

V2 = arxstruc(zfl ,z3,NN);
nn2 = selstruc(V2,0)

V2a = arxstruc(zl,z3,NN);
nn2a = selstruc(V2a,O)

1For details on the MatlabTM commands, see the System Identification Toolbox for Use with MatlabTM,
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V3 = arxstruc(zfl,z4,NN);
nn3 = selstruc(V3,0)

V3a = arxstruc(zl,z4,NN);
nn3a = selstruc(V3a,0)

% create other arx models for comparison
thi = arx( zfl, nnl);
thl = sett(thl,0.02);

th2 = arx( zfl, nnla);
th2 = sett(th2,0.02);

th3 = arx( zfl, nn2);
th3 = sett(th3,0.02);

th4 = arx( zfl, nn2a);
th4 = sett(th4,0.02);

th5 = arx( zfl, nn3);
th5 = sett(th5,0.02);

th6 = arx( zfl, nn3a);
th6 = sett(th6,0.02);

% Generate frequency response
fthl = trf(thl);
fth2 = trf(th2);
fth3 = trf(th3);
fth4 = trf(th4);
fth5 = trf(th5);
fth6 = trf(th6);

figure(2)
clf
bodeplot([spal spa2 spa3 spa4 fthl fth2 fth3 fth4 fth5 fth6]);
grid on
subplot(211)
grid on
title('Spa and ARX Frequency Response')
ylabel('Magnitude [dB]')
xlabel('Frequency [rad/sec]')
subplot(212)
title(")
ylabel('Phase [deg]')
xlabel('Frequency [rad/sec]')

For each of the structures, the frequency response of the each of the selected

models is compared to the spectral analysis of the data sets as shown in Figure 30. Note

that some of the models do not capture the desired frequency characteristics. Since

selstruc only selects one model, it is sometimes useful to skim off structures generated by

the arxstruc command that are close to the loss function value of the "best" model

selected and look for a structure that is consistent across all three cross-validations. A

model that may be the best on one cross-validation may not perform as well on a different
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cross-validation, and so it is better to choose a model structure that appears consistently

through all of the cross-validations.

Spa and ARX Frequency Response
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Figure 30
Spectral Analysis and ARX Frequency Response of Roll Command to Roll Rate

The time simulations generated by rcgsim.m for the roll command to roll rate

gyro relationship aid in the model selection process. Since it is difficult to tell the

difference in performance based on a single step ahead prediction with output (rate gyro

measurement) corrections at each time step, the MatlabTM command compare.m is used to

obtain the pure simulation based on the input (roll command) vector only. The difference

between the measured output (roll rate gyro) and the predicted output is used to calculate

the fit1. The first plot shown in Figure 31 shows three different model structure

simulations with the filtered measured output from which the models were created. The

1 See Matlab TM documentation for details.
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fits of each model are indicated above the plot. The three remaining plots compare how

these models work on different data sets in cross validation. Although the [2 2 6] model

structure may not give the best fit across the data sets, this structure has been selected for

the command to attitude rate relationship since it consistently appears close in the sense

of fit and loss function values but is generally discounted by the selstruc command

because of its higher order. During implementation, the [ 2 2 6 ] model structure for the

command to rate gyro on both the roll and pitch axes has proved to consistently work

where some of the lower order structures have failed. Table 6 shows the structures

selected for each of the input-output relationships.

Roll Cmd -> Roll Rate meas - thl -- (th2 -. [2 2 6]) th3 .
1000 - -

0

-1000
0 100 200 300 400 500 600 700 800 900 1000

thl fit 25.21 th2 fit 3.881 th3 fit 25.8
meas- thl -- th2-. th3 .

1000

0

-1000
0 100 200 300 400 500 600 700 800 900 1000

thl fit 26.38 th2 fit 4.37 th3 fit 27.05
meas- thl -- th2 -. th3 .

500
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-500
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thl fit 24.06 th2 fit 3.759 th3 fit 24.64
meas - thl -- th2 -. th3.

500

0

-500,
0 100 200 300 400 500 600 700 800 900 1000

thl fit 19.54 th2 fit 3.124 th3 fit 20.32

Figure 31
Time Simulations of Roll Command to Roll Rate Gyro
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Table 6
Model Structures for Each Input-Output Relation

Input-Output Relation [ na nb nk]
Roll Command - Roll Rate [2 2 6 ]

Roll Rate- Roll Angle [1 111 ]
Roll Angle - Y Velocity [1 111 ]
Y Velocity- Y Position 1 1 1 ]

Pitch Command - Pitch Rate [2 2 6]
Pitch Rate - Pitch Angle [ 1 1 1 ]
Pitch Angle - X Velocity [ 1 1 1 ]
X Velocity - X Position [ 1 1 1 ]

Rudder Command - Yaw Rate [ 2 1 8 ]
Yaw Rate - Yaw Angle [ 1 1 1 ]

Collective Command - Z Velocity [ 1 1 10 ]
Z Velocity- Z PositionI [111]

RCG_SIM.M
% Choose models for comparison
% Roll Command to Roll Rate Gyro Model
thl = arx( zfl , [1 3 6]);
th2 = arx( zf 1, [2 2 6]);
th3 = arx( zfl , [1 1 7]);

thl = sett(thl,0.02);
th2 = sett(th2,0.02);
th3 = sett(th3,0.02);

figure(4)
clf
subplot(411)
% Time Simulation and Fit Calculation
[yhl,fitl] = compare(zfl,thl,1);
[yh2,fit2] = compare(zfl 1,th2,1);
[yh3,fit3] = compare(zfl 1,th3,1);

plot(zf 1(:,1),'y-')
hold on
plot(yhl ,'m--')
plot(yh2,'c-.')
plot(yh3,'g:')
title('Roll Cmd -> Roll Rate meas - thi -- (th2 -. [2 2 6]) th3. ');
xlabel(['thl fit ',num2str(fitl),' th2 fit ',num2str(fit2),' th3 fit ',num2str(fit3)]);
hold off

subplot(412)
[yhl,fitl] = compare(zf2,thl,1);
[yh2,fit2] = compare(zf2,th2,1);
[yh3,fit3] = compare(zf2,th3,1);

plot(zf2(:,l),'y-')
hold on
plot(yhl,'m--')
plot(yh2,'c-.')
plot(yh3,'g:')
title('meas - th1 -- th2 -. th3 .');
xlabel(['thl fit ',num2str(fitl),' th2 fit ',num2str(fit2),' th3 fit ',num2str(fit3)]);
hold off
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subplot(413)
[yhl,fitl] = compare(zf3,thl,1);
[yh2,fit2] = compare(zf3,th2,1);
[yh3,fit3] = compare(zf3,th3,1);

plot(zf3(:,1 ),'y-')
hold on
plot(yhl,'m--')
plot(yh2,'c-.')
plot(yh3,'g:')
title('meas - th1 -- th2 -. th3 .');
xlabel(['thl fit ',num2str(fitl),' th2 fit ',num2str(fit2),' th3 fit ',num2str(fit3)]);
hold off

subplot(414)
[yhl,fitl] = compare(zf4,thl,1);
[yh2,fit2] = compare(zf4,th2,1);
[yh3,fit3] = compare(zf4,th3,1);

plot(zf4(:,l ),'y-')
hold on
plot(yhl,'m--')
plot(yh2,'c-.')
plot(yh3,'g:')
title('meas - thi -- th2 -. th3 .');
xlabel(['thl fit ',num2str(fitl),' th2 fit ',num2str(fit2),' th3 fit ',num2str(fit3)]);
hold off

figure(3)
cl
fthl = trf(thl);
fth2 = trf(th2);
fth3 = trf(th3);

bodeplot([spal spa2 spa3 spa4 fth1 fth2 fth3 ]);
grid on
subplot(211)
grid on
title('Spa and ARX Frequency Response')
ylabel('Magnitude [dB]')
xlabel('Frequency [rad/sec]')
axis([1 e0 1 e2 1 e-2 1 e2])
subplot(212)
title(")
ylabel('Phase [deg]')
xlabel('Frequency [rad/sec]')
axis([1 e0 1 e2 -720 0])

The entire series of time simulation plots is shown here.

Page 72



Roll Rate -> Angle meas - (thl -- [1 1 1]) th2 -. th3.

I I I I I I i 1 

0.5

0

-0.5(

meas- thl --th2-. th3.
5

100 200 300 400 500 600 700 800
thl fit 0.0009063 th2 fit 0.0009061 th3 fit 0.001158

900 1000

meas- thl -- th2-. th3.

100 200 300 400 500 600 700 800 900 1000
thl fit 0.001086 th2 fit 0.001086 th3 fit 0.001185

meas- thl -- th2 -. th3.
0.2

0-

-0.2
0 100 200 300 400 500 600 700 800

thl fit 0.0008489 th2 fit 0.0008493 th3 fit 0.0009985
Figure 32

Time Simulation of Roll Rate to Roll Angle
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Roll Angle->Y Vel. meas - thl -- th2 -. (th3 .[ 1 11])

0 100 200 300 400 500 600 700
thl fit 0.02273 th2 fit 0.02301 th3 fit 0.02271

800 900 1000

meas- thl -- th2-. th3.

100 200 300 400 500 600 700
thl fit 0.01165 th2 fit 0.01198 th3 fit 0.01165

meas- thl -- th2-. th3.

800 900 1000

100 200 300 400 500 600 700 800 900 1000
thl fit 0.01176 th2 fit 0.01228 th3 fit 0.01172

meas- thl -- th2-. th3.

0 100 200 300 400 500 600 700 800 900 1000
thl fit 0.03036 th2 fit 0.03064 th3 fit 0.03031

Figure 33
Time Simulation of Roll Angle to Y Velocity

Page 74

-11
0

I I I I I I I I I

"t

O

I I I I I I I I

I I I I I I I I I

1 1 1 r



Pitch Cmd -> Rate meas - thl -- (th2-. [2 2 6 ]) th3.

I

0 100 200 300 400 500 600 700
thl fit 69.9 th2 fit 2.236 th3 fit 10.06

800 900 1000

meas- thl -- th2-. th3.

100 200 300 400 500 600 700
thl fit 30.22 th2 fit 5.366 th3 fit 10.63

meas- thl --th2-. th3.

800 900 1000

1000300 400 500 600 700
thl fit 17.72 th2 fit 2.818 th3 fit 10.09

meas- thl --th2-. th3.

0 100 200 300 400 500 600 700 80
thl fit 45.17 th2 fit 3.128 th3 fit 11.51

Figure 34
Time Simulation of Pitch Command to Pitch Gyro
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Pitch Rate -> Angle meas- thl -- th2 -. (th3 -.[1 1 1])

I I I I I I I I I

100 200 300 400 500 600 700 800 900 1000
thl fit 0.0007406 th2 fit 0.0007459 th3 fit 0.0007925

meas- thl --th2-. th3 .

100 200 300 400 500 600 700 800
thl fit 0.0009498 th2 fit 0.0009066 th3 fit 0.0009452

900 1000

meas- thl --th2-. th3 .

100 200 300 400 500 600 700 800 900 1000
thl fit 0.0007349 th2 fit 0.0007315 th3 fit 0.0008202

meas- thl --th2-. th3 .
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thl fit 0.000718 th2 fit 0.0007282 th3 fit 0.0008161

Figure 35
Time Simulation of Pitch Rate to Pitch Angle
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Pitch Angle -> X Velocity meas - thl -- th2 -. (th3. [1 1 1])

100 200 300 400 500 600 700
thl fit 0.01679 th2 fit 0.01794 th3 fit 0.01713

meas- thl -- th2 -. th3.

100 200 300 400 500 600
thl fit 0.01793 th2 fit 0.03679 th3

700
fit 0.01682

800 900 1000

800 900 1000

meas- thl -- th2-. th3.

0 100 200 300 400 500 600 700 800 900 1000
thl fit 0.01774 th2 fit 0.02065 th3 fit 0.01832

meas- thl -- th2 -. th3.

0 100 200 300 400
thl fit 0.01721 th2

500 600 700
fit 0.01778 th3 fit 0.01754

800 900 1000

Figure 36
Time Simulation of Pitch Angle to X Velocity
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Rudder Cmd -> Yaw Rate meas - thl -- th2 -. (th3. [2 1 8])
' .....

50

-50(
800 900 1000

meas- thl -- th2-. th3.

300 400 500 600 700
thl fit 16.92 th2 fit 17.4 th3 fit 3.231

meas- thl -- th2-. th3.

100 200 300 400 500 600
thl fit 17.54 th2 fit 16.69 th3 fit

meas- thl --th2-. th3.

700
15.86

800 900 1000

100 200 300 400
thl fit 9.809

500 600 700
th2 fit 9.978 th3 fit 2.06

800 900

Figure 37
Time Simulation of Rudder Command to Yaw Rate
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meas- thl -- th2 -. th3.

100 200 300 400 500 600 700 800 900 1000
thl fit 0.3513 th2 fit 0.3776 th3 fit 0.02294

meas- thl -- th2-. th3.

0 100 200 300 400 500 600 700 800 900 1000
thl fit 0.3634 th2 fit 0.3333 th3 fit 0.02712

meas- thl -- th2-. th3.

) '" ,.,.., . _.... - - .

100 200 300 400 500 600 700 800 900 1000
thl fit 0.4018 th2 fit 0.3702 th3 fit 0.04837

meas- thl -- th2-. th3.

100 200 300 400 500 600 700 800 900 1000
thl fit 0.4695 th2 fit 0.4701 th3 fit 0.02939

Figure 38
Time Simulation of Yaw Rate to Yaw Angle
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Collective Cmd->z Velocity - thl -- th2 -. (th3. [1 1 10])

I I I I I I II

2

0

-2
800 900 1000

0 100 200 300 400 500 600 700 800 900 1000
thl fit 0.03318 th2 fit 0.01594 th3 fit 0.03335

meas- thl -- th2-. th3.

1 I I I I I I I

0 100 200 300 400 500 600 700
thl fit 0.03328 th2 fit 0.01553 th3 fit 0.03395

meas- thl -- th2-. th3.

I I

800 900 1000

0 100 200 300 400 500 600 700 800 900 1000
thl fit 0.03336 th2 fit 0.01578 th3 fit 0.03321

Figure 39
Time Simulation of Collective Command to Z Velocity
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A.3 State Space Description

Once the model structure and parameters have been identified, a state space

description of the control axis is compiled of the form:
xk+ 1 = A k +Buk + Gwk

[14]
Yk := Cx + Duk + Vk

Where x is the state vector, y is the measurement vector, w is the process noise and v is

the measurement noise. The script make r_abcd.m shows how the state space description

was generated for the roll control axis. The MatlabTM command polyform pulls the

parameter values of the a's and b's of equation [13] out of each of the input-output

relationships identified above. Since the y velocity was estimated from the y position by

differences of the y position data, the relationship between the y velocity and y position is

set as a discrete time forward Euler integration instead of using values identified in the

identification process. (Actually, the values generated by the identification process

should be very close to those used in the forward Euler integration, and this can be used

to check if the identification procedure is being performed properly.)

MAKE R ABCD.M
% creates the A,B,C,D matrices for the roll model
% uses thrcg and thrvxd
% currently assumes that vision yd is taken at 50 Hz.

%echo on
% Model structures
nnrg = [ 2 2 6];
nnvg=[1 1 1];
nnyd=[1 1 1];
nny = [ 1 1 1];

% Parameters of current roll model
nc = nnrg(3) + nnrg(2) - 1;
ng = max([nnrg(1) nnvg(2) nnvg(3)]);
nr = max([nnvg(1) nnyd(2) nnyd(3)]);
nyd = max([nnyd(1) nny(2) nny(3)]);
ny = nny(1);

state_length = nc + ng + nr + nyd + ny;

gnc = nnrg(3) + nnrg(2);
gng = nnrg(1);

rng = nnvg(3) + nnvg(2);
rnr = nnvg(1);
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ydnr = nnyd(3) + nnyd(2);
ydnyd = nnyd(1);

ynyd = nny(3) + nny(2);
yny = nny(1);

% crank on A,B,C,D

[gg,cg] = polyform(thrcg);

[rr,gr] = polyform(thrgr);

[ydyd,ryd] = polyform(thrvyd);

[yy,ydy] = polyform(thydy)
% perfect integration:
yy = [ 1.0000e+00 -1.00 ];
ydy = [ 0 0.0200 ];

A = zeros(state_length);

for i = 2:state_length,
A(i,i-1)= 1;

end

%gyro equation:

% takes out delayed term
A(nc+l,nc) = 0;

for i = 2:(gnc),
A(nc+l,i-1) = cg(i);

end

for i = 2:(gng + 1),
A(nc+l,nc+i-1) = -gg(i);

end

%roll equation:

%takes out delayed term
A(nc+ng+l,nc+ng) = 0;

for i = 2:(rng),
A(nc+ng+l,nc+i-1) = gr(i);

end

for i = 2:(rnr + 1),
A(nc+ng+l,nc+ng+i-1) = -rr(i);

end

% for now just use this for gyro -> rollv
%A(10,10) = 1;
%A(10,9) = -7.0109e-05;

%yd equation:

%takes out delayed term
A(nc+ng+nr+l ,nc+ng+nr) = 0;

for i = 2:(ydnr),
A(nc+ng+nr+l ,nc+ng+i-1) = ryd(i);

end
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for i = 2:(ydnyd + 1),
A(nc+ng+nr+l ,nc+ng+nr+i-1) = -ydyd(i);

end

%Y equation:

% takes out delayed term
A(nc+ng+nr+nyd+l ,nc+ng+nr+nyd) = 0;

% ydy(i-1) is questionable - ydy was only a 1 x 1
if ynyd < 2
for i = 2:(ynyd),

A(nc+ng+nr+nyd+l,nc+ng+nr+i-1) = ydy(i-1);
end

else
for i = 2:(ynyd),

A(nc+ng+nr+nyd+l ,nc+ng+nr+i-1) = ydy(i);
end

end

for i = 2:(yny + 1),
A(nc+ng+nr+nyd+l ,nc+ng+nr+nyd+i-1)= -yy(i);

end

B = zeros(state_length, 1);
B(1) = 1;

C = zeros(1 ,state_length);
%gyro version: C(nc+l) = 1;
%Y version:
C(nc + ng + nr + nyd + 1) = 1;

D =[0];

The first 6 to 8 states of each of the models indicate delayed command states

which correspond to the time delay from when the command is issued until it is seen in a

measured state. There are two rate gyro states in the roll and pitch models because the

model structure selected to predict the rate gyro state uses two back states. The A

matrices for each of the control axes follow. All of the B matrices are a vector of zeros

the length of the A matrix except that the first entry is a one. All of the C matrices pull

out the states that are measured and each of the D matrices are zeros. The G matrices are

discussed in the next section.

Page 83



A MATRICES
A roll =

0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0.1270 0.2622 1.7613 -0.8761 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0.9947 0 0
0 0 0 0 0 0 0 0 0 0.2300 0.9947 0
0 0 0 0 0 0 0 0 0 0.02 1

Apitch =
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 -0.1625 0.0479 1.8593 -0.8911 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 -0.0000 0.9956 0 0
0 0 0 0 0 0 0 0 0 -0.1869 0.9963 0
0 0 0 0 0 0 0 0 0 0 0.02 1

A_yaw =
0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 -0.2315 1.7960 -0.8601 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 -0.0001 0 1

A z=
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0.0013 0.9807 0
0 0 0 0 0 0 0 0 0 0 0.02 1
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A.4 Linear Quadratic Controller and Estimator Gain Selection

Since each of the A matrices above are singular, the standard MatlabTM lqr.m and

lqe.m commands cannot be used to calculate optimal controller and estimator gains. The

LQG gains are computed using the recursive Ricatti equation outlined in Franklin, Powell

and Workman p. 427 implemented in the script ric_lqr.m which follows and the estimator

gains are calculated similarly using the principle of duality.

RIC_LQR.M
% Called by [K1,K, S] = ric_lqr(A,B,Q,R);
% where K is a 1000 x # of states matrix

% K1 returns the Iqr results
% K can be plotted to check convergence of gains
% format of K is: K = [ ..
% kul ku2 ku3 .. (ith run)
% kul ku2 ku3 ... ((i-1)th run)
% .. ]
% If the gains do not converge, copy ric_lqr.m over and increase
% the number of iterations N.
% S is the steady state solution to the Ricatti equations

% This function Computes "optimal" time-varying feedback gains
% according to Ricatti equations. Q1 and Q2 are weighting matrices
% chosen by the designer but must be nonnegative definite.
% from p. 427 of Dig Cont. Sys - Franklin et al.
% Capable of handling a singular A matrix - handy for delays!

function [K1,K, S] = ric_lqr(A,B,Q1,Q2)

% determine the number of control's (u) in B
u = size(B,2);

states = length(A);

N = 1000;

S = Q1;
Kk = zeros(u,states);
K = zeros(N,u*states);

for i= N:-l:u+l

M = S - S * B * (inv(Q2 + B'*S*B)) * B' * S;
Kk = (inv(Q2 + B'*S*B)) * B' * S * A;
for j = 1:u

K(i,[1 +(j-1 )*(states):j*states]) = Kk(j,:);
end
S = A' * M * A + Q1;

end

K1 = Kk;
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Estimator gains L of the discrete Kalman filter
X k = k + L(k - Ck) [15

Xk+l = A + k B1k

were selected to minimize the estimation error with respect to the process (w) and

measurement (v) noise of the of the system represented in [14]. Although the exact

noises are not known, an estimate of the variances (and possibly covariances) as well as

the matrix G is necessary to compute the estimator gains. Since the computer generates

the commands, it is a fair assumption that there is no process noise in the command or

delayed command states. Process noise will be accounted for in the initial rate gyro state

but not in any delayed states. Therefore, the G matrix for each of the control axes are
0 0 0 0- 00

0 0 00 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
Groll.pitch 0 0 0 0 Ga = 0 0 =coll 0 0

1 000 00 00

0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 1 0 1

When estimating the process covariance matrix Q and the noise matrix R to

determine the estimator gains, a good starting point is to normalize all of the

measurements which is what the xxx_scale factors in the roll_obs.m script are intended to

do. Then, the xxx_noise factors can be estimated as a percentage of the full measurement

scale of the average magnitude of the noise during a typical hover flight. For example,

the full scale of the y measurement is about a meter, but "noise" on the y position is on

the order of 1 cm during an average hover flight, so an estimate for y_noise is 0.01 while

the y_scale = 1.0 m. To get an estimate of the xx_proc scale factor, let the xxx_proc be a

scale on how much trust to place in the identified input-output relationship identified in
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section A.1. For example, the relationship between velocity and position is known to be

a direct integration, while the relationship between the roll angle and y velocity is more

susceptible to other unaccounted for factors like roll-pitch coupling that are not accounted

for in the relationship. Therefore, the y_proc factor was selected to be 0.004 and the

yd_proc factor indicating the process noise in going from the roll angle to the y velocity

was selected to be 1 indicating much less trust in this relationship.

After a set of estimator gains are produced, simulation of the estimator using

inputs and measurements from an actual flight is used to determine the feasibility of the

gains. If the estimator does not produce estimates close to the measurements, the gains

are discarded and the xxx_proc and xxx_noise factors are adjusted accordingly and the

process is repeated. If the estimates seem feasible, another check is to integrate the

velocity estimate and see how close it comes to the position measurement. Finally, the

estimator is implemented in the actual helicopter flight controller and the helicopter is

flown under the test pilot's control while the estimator runs off of the test pilot's

command and the measurements in real time. If the estimates follow the desired

characteristics of the measurements with the desired smoothing, the next step is to

calculate the controller gains.

The final estimator gains and estimator Q and R matrices as well as the code used

in the roll estimator gain design process is included here.
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Table 7
Hover Compensator Estimator Gains L and Covariance Matrices Q and R

ROLL_OBS.M
% Creates the pitch observer gain matrix according to
% sensor and plant noise parameters.

% load up the model
%load hover_ r

% make correct C and D for creating observer gains
%CC = [ eye(1 0) zeros(1 0,2)
% zeros(1,11) 1];
%DD = zeros(1 1,1);

% Output sensor rate gyro,vertical gyro, y position
CC = zeros(3,12);
CC(1,8) = 1;
CC(2,10) = 1;
CC(3,12) = 1;

% from these equations, create the 'noise covariance matrices for the system.
% x[n+l] = Ax[n] + Bu[n] + Gw[n] {State equation)
% z[n] = Cx[n] + Du[n] + v[n] {Measurements)
% E(ww') = Q -> process noise, E(w') = R -> measurement noise;

% noise must be scaled - following scales represent max range
% of each sensor

y_scale = 1;
yd_scale = 1;
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Roll Pitch Yaw Collec-
tive

Q* 0.6000 0.1320 60.0000 10.000
0.0003 0.0001 0.1000 0.050
1.0000 0.0022
0.0040 0.0009

R* 0.6000 0.2100 750 1
0.0001 0.0001 700
0.2000 0.0050

L 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0.7335 0.0168 -0.0000 0.6998 -0.0155 -0.0000 0 0 0
0.2791 0.0289 -0.0000 0.3082 -0.0234 -0.0000 0.4377 -0.0000 0
0.0000 0.8282 0.0000 -0.0000 0.5951 -0.0000 0.2979 -0.0000 0
-0.0000 0.0389 1.8262 -0.0000 -0.0743 0.4694 -0.0000 0.0119 2.2706
-0.0000 0.0001 0.2784 -0.0000 -0.0005 0.3583 0.3318

*Only the diagonal elements of the Q and R matrices are presented here.



r_scale = 0.15;
rd_scale = 300;
comm_scale = 150;

% for now, assume process noise Q, looks like a command disturbance
%G = B;
%Q = 1;

% In this case, assume process noise looks like 1/2 a state vector
G=[ 0000

0000
0000
0000
0000
0000
0000
1000
0000
0100
0010
0001];

% process noises
%rdproc = 0.1;
rd_proc = 0.002;
r_proc = 0.002;
%yd_proc = 25.0;
ydproc = 1;
y_proc = 0.004;

% Q is then 4x4
Q = eye(4);
Q(1,1) = rd_proc*rd_scale;
Q(2,2) = r_proc*r_scale;
Q(3,3) = yd_proc*yd_scale;
Q(4,4) = y_proc*y_scale;

% noise must be scaled
% These numbers represent noise magnitudes relative to full scale
% Sensor noise
y_noise = 0.02;
yd_noise = 0.01;
r_noise = 0.0005;
rd_noise = 0.002;
comm_noise = 0.001;

R = eye(3);
R(3,3) = (yscale*y_noise);
R(2,2) = (r_scale*r_noise);
R(1,1) = (rd_scale*rdnoise);

mu = lel;
R = mu*R;

% create Kalman Gain Matrix L
L= ric_Iqe(A,G,CC,Q,R)

% NOTE, if two WARNING's of singularity will be displayed,
% you can ignore them since they result from a calculation of the estimate
% error covariance, and do not affect L.

% display Q and R
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for i = 1:length(Q)
q(i) = Q(i,i);

end

for i = 1:length(R)
r(i) = R(i, i);

end

%1=[ L(8,8)
% L(9,9)
% L(10,10)
% L(12,11) ];

q=q
r= r'
%1 = I'

/osim

L2 = L;
L = zeros(size(A));
L(:,8) = L2(:,1);
L(:,10) = L2(:,2);
L(:,12) = L2(:,3);

SIM.M
% Create estimator
dt = .02;

known = 1;
sensors = [1 2 3];
[Ae,Be,Ce,De] = destim(A,[B G],CC,zeros(3,5),L,sensors,known);

[yl,xl] = dlsim(Ae,Be,Ce,De,[rcl rgl vgl yvl]);
[y2,x2] = dlsim(Ae,Be,Ce,De,[rc2 rg2 vg2 yv2]);
[y3,x3] = dlsim(Ae,Be,Ce,De,[rc3 rg3 vg3 yv3]);
[y4,x4] = dlsim(Ae,Be,Ce,De,[rc4 rg4 vg4 yv4]);

figure(1)
clf
subplot(411)
plot(rcl )
title('roll command')

subplot(412)
plot(rgl)
hold on
plot(y1 (:,1),'m')
hold off
axis([0 1000 -450 450])
title('roll rate gyro')

subplot(413)
plot(vgl)
hold on
plot(yl (:,2),'m')
hold off
title('y- vgr m-- roll estimate ')
axis([0 1000 -.2 .2])

subplot(414)
plot(yvl)
hold on
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plot(yl (:,3),'m')
hold off
title('y- y vision m-- y estimate ')
%axis([O 1000 -.2 .2])

figure(2)
clf
subplot(411)
plot(rc2)
title('roll command')

subplot(412)
plot(rg2)
hold on
plot(y2(:,1 ),'m')
hold off
axis([O 1000 -450 450])
title('roll rate gyro and est')

subplot(413)
plot(vg2)
hold on
plot(y2(:,2),'m')
hold off
title('y- vgr m-- roll estimate')
axis([O 1000 -.2 .2])

subplot(414)
plot(yv2)
hold on
plot(y2(:,3),'m')
hold off
title('y- y vision m-- y estimate')
%axis([O 1000 -.2 .2])

figure(3)
clf
subplot(411)
plot(rc3)
title('roll command')

subplot(412)
plot(rg3)
hold on
plot(y3(:,1),'m')
hold off
title('roll rate gyro and est')
axis([O 1000 -450 450])

subplot(413)
plot(vg3)
hold on
plot(y3(:,2),'m')
hold off
title('y-vgr m- roll estimate ')
axis([O 1000 -.2 .2])

subplot(414)
plot(yv3)
hold on
plot(y3(:,3),'m')
hold off

Page 91



title('y- y vision m- y estimate ')
%axis([O 1000 -.2 .2])

figure(4)
cif
subplot(411)
plot(rc4)
title('roll command')

subplot(412)
plot(rg4)
hold on
plot(y4(:,1 ),'m')
hold off
title('roll rate gyro')
axis([O 1000 -450 450])

subplot(413)
plot(vg4)
hold on
plot(y4(:,2),'m')
hold off
title('y- vgr m-- roll estimate')
axis([O 1000 -.2 .2])

subplot(414)
plot(yv4)
hold on
plot(y4(:,3),'m')
hold off
title('y- y vision m-- y estimate')
%axis([O 1000 -.2 .2])
L2 = L;
L = zeros(size(A));
L(:,8) = L2(:,1);
L(:,10) = L2(:,2);
L(:,12) = L2(:,3);
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Controller gains K of the control law

11k = -Ki k  [16]

were generated for the cost function

J= J [x'QX + UTRu]dt [17]

using a unit penalty on the command (R = 1) and varying the penalty on the state. Since

the goal of this experiment is to maintain position, the controller Q matrix is zero

everywhere except in the position state. (In the yaw model, the Q is zeros everywhere

except in the yaw angle state.) Since only the ratio of Q to R matters in minimization of

the cost function, either the Q or the R value may be varied to change the gain values.

Several gains were generated and gains that would reach the limiting values of the control

input for a nominal disturbance in the state are discarded from further consideration. For

example, the roll cyclic range is 400 units. If the gain on the y position state is 2000, a 10

cm offset in y position will saturate the command. The final selection of gains comes

from flying estimator and controller gains (the estimator needs to be on to get a position

velocity state). Each axis is checked individually by having the test pilot fly the

remaining control axes. During the flying phase of gain selection, low controller gains

were used initially. These low controller gains stabilize the helicopter as expected

because the LQR gains must stabilize the modeled plant. Although these low controller

gains stabilize the plant, the helicopter still drifts in position. Increasing the controller

gains will eliminate this drift but may excite the higher frequency unmodeled dynamics

of the plant. This can be seen when the helicopter begins to shake.

After gains are selected for each controller axis, the roll and pitch controllers are

flown together while the test pilot flies the other two control axes. The gains selected

when observing the single computer controlled axis may need to be reduced if the

helicopter's behavior is not acceptable. For instance, in this setup the roll and pitch

controller gains needed to be reduced to eliminate a "wobbling" effect which was the
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result of the roll-pitch coupling which is not accounted for in the decoupled controller

axis model used here. Once the roll and pitch controller work together, the yaw

controller is activated, and finally, the Z State Machine with the z hover controller is

activated. Table 8 shows the final values of Q and R and the corresponding controller

gains used for each control axis in the hover controller.

Table 8

Hover Compensator Control Gains K and Penalty Values Q and R
Roll Pitch Yaw Collective

Q* le4 le4 1 1
R* I 1 le-4 le-5
KT 0.0716 0.0694 0.0219 0.0677

0.0742 0.0717 0.0219 0.0698
0.0767 0.0742 0.0220 0.0719
0.0793 0.0766 0.0219 0.0740
0.0820 0.0791 0.0218 0.0760
0.0846 0.0816 0.0216 0.0780
0.0582 -0.0337 0.0214 0.0800
0.2291 -0.7252 0.0212 0.0819

-0.1946 0.6265 -0.0906 0.0837
629.4341 618.1067 0.0787 0.0856
97.3054 -109.3495 98.9107 69.1003
96.4816 -96.5905 136.7137

*Only non-zero value in Q and R is given.
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