
ON THE EVALUATION OF INTEGRALS OF THE TYPE

f (l, 2 . . , T) =
1i F

F (s) eW(s, Ti, . .T r,) ds

AND THE MECHANISM OF FORMATION OF

TRANSIENT PHENOMENA

Series 55- Part 2a

AN ELEMENTARY INTRODUCTION TO THE THEORY OF

THE SADDLEPOINT METHOD OF INTEGRATION

MANUEL V. CERRILLO

TECHNICAL REPORT NO. 55: 2a

MAY 3, 1950

RESEARCH LABORATORY OF ELECTRONICS
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

CAMBRIDGE, MASSACHUSETTS

-c·



The Research Laboratory of Electronics is an interdepart-
mental laboratory of the Department of Electrical Engineering
and the Department of Physics.

The research reported in this document was made possible
in part by support extended the Massachusetts Institute of Tech-
nology, Research Laboratory of Electronics, jointly by the Army
Signal Corps, the Navy Department (Office of Naval Research),
and the Air Force (Office of Scientific Research, Air Research
and Development Command), under Signal Corps Contract
DA36-039 sc-100, Project 8-102B-0; Department of the Army
Project 3-99-10-022.

.4

·1 - - - - -



MASSACHUSETTS INSTITUTE OF TECHNOLOGY

RESEARCH LABORATORY OF ELECTRONICS

Technical Report No. 55 May 3, 1950

ON THE EVALUATION OF INTEGRALS OF THE TYPE

f(T 1 , T2 ... *Tn ) = lr f F(s)e ds

AND THE MECHANISM OF FORMATION OF TRANSIENT PHENOMENA

Part 2a

ELEMENTARY INTRODUCTION TO THE THEORY OF THE

SADDLEPOINT METHOD OF INTEGRATION

Manuel V. Cerrillo

Abstract

This report is a member of a group of reports that are to be published under the

generic number 55. It is primarily concerned with the ideas that serve as a foundation

for the Saddlepoint Method of Integration. This method is also known by other names;

particularly, as the Method of Steepest Descent and the Method of The Points of

Stagnation.

The method and ideas presented here will serve as an introductory presentation to

a more complete theory of integration which will be discussed in subsequent reports of

this series.

The material covers the following condensed description:

(a) Definition and properties of saddlepoints of different orders.

(b) Basic procedure of integration through saddlepoints of the second order.

(c) Definition of the family of integral approximations of the resonant type. The

pole, zero, and dipole solutions.

(d) Integration in the case of composite behavior.

(e) Introduction to the idea of "Generating Function" associated with second-order
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saddlepoints. The Fresnel solid.

(f) The case of saddlepoints of higher order and the theory of transition for

saddlepoints of the third order.

(g) Zero, pole, and dipole types of integral.

(h) The Airy-Hardy type of "Generating Function." The corresponding gener-

ating solid.

(i) The mixed type of integral and composition of solutions.

(j) A few comparative typical solutions for transitions of higher order corres-

ponding to the pole, zero, and dipole cases.

Note: The manuscript was originally written for use in certain applications in

circuit theory. Because of this objective some specific terminology was used: "reso-

nant transients, " "transitional transients, " etc. This nomenclature is, of course, not

quite suitable for other applications of the method of integration. We therefore advise

the reader to disregard the terms "resonant and transitional transients" and use instead

the terms "second-order, third-order solutions."
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ON THE EVALUATION OF INTEGRALS OF THE TYPE

f(T 1 , TZ...., T) = d F(s) e (S ' n)s

AND THE MECHANISM OF FORMATION OF TRANSIENT PHENOMENA

Part 2a Elementary Introduction to the Theory of the Saddlepoint Method of Integration

INTRODUCTION

The present report, Technical Report No. 55:2a, is a member of a general group

of reports which is to be published under the generic number 55.

Report No. 55 is in general concerned with

1. the particular theories which have been evolved in connection

with the approximate integration of a large family of integrals,

whose prototype is described by

W(s, T1, T2. Tn)
f(T 1 .. Tn) =2 i J F(s)e ds

YSs
where s is a complex variable,

Ys denotes the contour in the s plane along which

the function f(T1, ... ,Tn) is defined by the integral,

F(s) and W(s, T1,... Tn) constitute integrand

functions whose analytic characterizations are not

given here, t and

T1 , T2 , ... , Tn are a set of variable parameters

which are all independent of s.

2. the production of a theory which attempts to unify several of the

methods of integration, such as the stationary phase method,

the saddlepoint method, the cliff and the pocket methods. These

methods have proved to be quite suitable for obtaining constructive

integral solutions of a large number of integrals which are con-

tained in the prototype integral given above.

In the original manuscript for Report No. 55, the present report, No. 55:2a, was

contained as a single chapter. This chapter was intended as an elementary introduction

to the basic ideas, aims, procedure, and results of the saddlepoint method of inte-

gration.t As the material contained in this chapter was rather voluminous it was

decided to publish it as a separate report.

tSee Report No. 55:1 and subsequent reports in the 55 series, in which such charac-
terizations are made.

tThis method is also known by other names: the method of steepest'descent, the
method of stagnation points.
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We will give a brief outline of this report:

1. An elementary definition of saddlepoints, their orbits, and the

lines of steepest descent in the neighborhood of the saddlepoints.

2. Typical expansions of the integral functions around the saddle-

points.

3. A typical procedure of integration for saddlepoints of the first

order, when the saddlepoints move far away from other singu-

larities of the remaining integrand.

4. Typical procedures of integration, when the saddlepoints move

in the vicinity of poles, zeros, and dipoles.

5. Introductory discussion concerning saddlepoints of higher order,

particularly in connection with transition and confluence of saddle-

points.

6. Elementary discussion of integrals which can be reduced to second-

order saddlepoints; transition solutions; definition of the function

Ah 1 , 2, 3
7. Mixed transitional transients.

Since the aim of this report is to give an elementary illustration of the saddlepoint

method of integration, we have omitted the general theory of saddlepoint transition in

the presence or absence of poles, branch points, and the like. The general theory is

carefully discussed in other parts of Report No. 55. Also, the question of measure of

approximation is omitted here because it is more suitable to treat this question in con-

nection with the general theory.

Report No. 55:1 contains a discussion of the requirements of a general character

which a method of integration has to satisfy. The requirements serve as a basis for

the definition of the so-called constructive methods. The ideas may be difficult to visu-

alize for persons with no previous experience with approximate integration. Therefore,

the discussion and the results of this report are intended to show that, by means of

particular cases, it is possible to design methods of approximate integration along the

lines indicated in Report No. 55:1.
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CHAPTER I

INTEGRATION THROUGH SADDLEPOINTS OF THE SECOND ORDER

SECTION I. 1 SADDLEPOINTS. CONTOURS OF INTEGRATION.

Let

F(s) eW(sI t) ds; W(s, t) = st - '(s)

F(s) is supposed to be free from terms of exponential behavior. For the moment let us

assume that F(s) is a rational or algebraic function.

I. 10 DEFINITION OF A SADDLEPOINT OF THE SECOND ORDER.

dW = 0 or t = '(s)
ds

2(I. 1)

The solutions of 2(I. 1) are called saddlepoints of W(s, t). Let them be expressed by the

symbol

Ss = S(t) 3(1. 1)

I. 11 ORBITS. Consider one of the saddlepoints of W(s,t):

Ss = sS(t)

defines a curve, the orbit of s s , in the s plane.

jectory as t changes.

The saddlepoint describes this tra-

See Fig. 1(I. 1).

I. 12 LINES OF STEEPEST DESCENT OF s .
s

saddlepoint is indicated by W(s s , t).

Let the difference

The value of the function W(s, t) at a

W(s, t) W(s, t) = M = P(a, , t) + i Q(o, , t)

Let t be fixed. The line, or lines, defined by

P=O

are called lines of steepest descent of the saddlepoint corresponding to this particular

value of t. Take for example

P(-, , t) = 0 6(I. 1)

The equation may have one or more solutions. Let us designate them by

= K(, t)

Similarly, from Q = 0

= K(h, t)

Equation 7(1. 1) explicitly defines the lines of steepest descent.

K= 1, 2, 7(. 1)

37(I. 1)

-3-
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SPLANE , Fig. 1(I. 1)

THEOREM I. The lines of steepest descent, corresponding to a given saddlepoint, pass

through the saddlepoint. The proof is simple.

I. 13 BEHAVIOR OF W(s, t) IN THE VICINITY OF A SADDLEPOINT OF THE

SECOND ORDER. For the moment, we shall not consider the possibility that W(s, t)

possesses poles in the vicinity of s s. The case of poles will be considered later, when

we describe more advanced methods of integration (pocket, substitution, essential

methods).

Under the assumption given above, W(s, t) can be expanded in Taylor series in the

vicinity of s s .

(s - s ) 2 (s-s s
W(s, t) = W(s s , t) + s WIIS't)+ 3! WIII(s, t) 8(I. 1)wII(s 3! Sst...

In the immediate vicinity of s s we can use

(s -s) II
W(st) - W(s s , t) 2' W (s , t) 9(1. 1)

Momentarily let

WI(ss, t) ia2

2! 10(I. 1)

and use the transformation

i0z = s - = re 11(I. 1)

Then

W(s, t) - W(s s , t) = P + iQ A r 2 cos(20 + a 2 ) + iA r2 sin(20 + a) 12(1. 1)

The lines of steepest descent are given by

P lines Q lines

cos(2 + a) = 0 sin(20 + a) = 0

Therefore

ag a2

13( 1) 14(I. 1)-+
K integer 13(0 1) Q3 K integer 14(I.0 1)

K; integer 0 < K-< 3 K: integer 0 < K < 3

��I

�PEIIT
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Fig. 2(I. 1) Fig. 3(I. 1)

In general, a2 is a function of time; therefore the lines rotate accordingly (see Fig. 2(1.1)).

I. 14 CONTOUR OF INTEGRATION. In the saddlepoint methods of integration, the

contour of integration is deformed along the lines Q = 0 of steepest descent and such

that P attains the largest possible negative values. A simple computation shows us

where such a line is placed. See Fig. 3(1. 1).

Along the lines Q = 0 the value of the exponential function is given by

W(s, t) - W(s s,t) = A A r 2 K 15(I. 1)

It will be negative for K = 1, K = 3.

SECTION I. 2 SADDLEPOINT METHOD OF APPROXIMATE INTEGRATION THROUGH

A SADDLEPOINT OF THE SECOND ORDER.

I. 20 BASIC REQUIREMENTS ON THE CONTOUR OF INTEGRATION. In the saddle-

point method of integration, the contour ys must be deformed along the lines of steepest

descent with maximum negative P. Since the deformed contour must be equivalent to

the original contour as in 1(I. 1), one must proceed as follows:

1. Find the corresponding situation of the lines of steepest descent on the

different saddlepoints of W(s, t).

2. In each saddlepoint find the lines Q = 0 for which P is maximum nega-

tive. Shadow the corresponding areas in which the real part of W(s, t) -

W(sS, t) is negative.

3. Use only those saddlepoints for which the negative areas overlap in such

a way that we can deform the original contour s into the lines Q = 0

of steepest descent which lie continuously in shaded areas. The saddle-

points so selected are called primary saddlepoints.

If these requirements cannot be met, then the saddlepoint method of integration cannot

be used. We will assume that such deformation is possible and consider momentarily

that the reader is acquainted with the procedure given above.

I. 21 BASIC REQUIREMENTS ON WII(ss, t). ASYMPTOTIC CHARACTER OF THE

SOLUTION. Let us assume that

1. W II(s s , t) does not vanish in the interval ta t tb.

-5-
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2. IWII(ss, t)l is sufficiently large in the vicinity of s s and for ta - t < tb .

The term "sufficiently large" has a rather vague meaning since we do not establish

a lower bound of comparison. For the moment, we will settle this situation as follows.

Let us plot the value of

W(s, t) - W(ss , t) -r 1s
E=e e 2! (I. 2)

where r is the distance along the chosen Q = 0 line of steepest descent. For very large

values of

WII(s s t)

2'

the function 1(I. 2)has the appearance of curve 1 in Fig. 1(I. 2). In a small interval of

r, say ZAr, the function E changes suddenly from one to almost zero. Curves 2 and

3 show this behavior when

WII(s, t)

2!

is small. For small values of

WII(s t)

2!

as in curve 3, E is practically constant in the interval 2Ar.

One will require that E show a pronounced behavior, as in curve 1, Fig. (I. 2).

For the moment we are unable to deduce a quantitative criterion

Q.0 for this situation.t The point will be touched later.

If the function E suffers a large variation in the vicinity of

s s , then the main contribution of the contour in the integral

1(I. 1) comes in the vicinity of s s . This is the basic idea of the

saddlepoint method.

The asymptotic character of the solution comes from the

requirement that WII(ss, t) must be large. The second deriva-
tive must be large, but it does not necessarily follow that

t must also be large.

In the extended saddlepoint method of integration the peak

configuration of E is forced artificially by means of the so-

Fig. 1(I. 2) called condensation process. The solutions, then, are not

tThe following criterion will be established later: Let k be the percentage of
error which we can admit in the integral approximation. The interval of time in which
this is true is given by

k/100 WIII(ss, t) /3 ZrWII(ss, t )

The values of t, on using the equality, mark the limits of the interval.

-6-



necessarily asymptotic. In the extended saddlepoint methods (ESPM) the criterion given

in the footnote is not necessarily valid.

I. 22 THE BASIC INTEGRAL IN THE SADDLEPOINT METHOD. The integral

s e ds i > -1 Z(I.)

FML v .as L us asm 2(t. 2)p a\ P )

is called the basic "substitution" integral, or the integral of comparison. (The denomi-

nation "substitution" comes from some more advanced and powerful methods of inte-

gration.)

All that we do is to reduce 1(I. 1) by a pertinent method of approximation, to one or

more integrals of the type 2(I. 2).

SECTION I. 3 THE RESONANCE FAMILY.

I. 30 FIRST TRANSIENT CLASSIFICATION. DEFINITION OF THE RESONANCE

FAMILY. Let us assume that

a. WII(s s , t) is "sufficiently large" in the interval

t a _<t _<tb

b. The function W(s, t) can be expressed approximately as

(s -s s
W(s,t) W (s, t) = W(s s , t ) + z! W(s t) 1(I. 3)

Then, under the requirements given above, one approximates the integral (I. 1)

f(t) = 1 s F(s) eW ( s t) ds 1(. 1)

s

by

f(t) = F(s) eW (s, t) ds 2(I. 3)

Is

DEFINITION. If F(s) is a rational function of s and W*(s, t) is at most a polynomial of

second degree in s, then the family of transients whose mathematical expression is

given by 2(I. 3) is called THE RESONANCE FAMILY.

In the general case of the integral 1(I. 1) one says that the transient has a resonant

behavior in the interval ta _ t •< tb, if 1(I. 1) can be reduced to 2(I. 3) in the same inter-

val.

I. 31 PRINCIPAL MEMBER OF THE RESONANCE FAMILY (order 2). Let us plot

the orbits of the saddlepoints of W(s, t) and the position of the poles and zeros of F(s),

which we assume to be a rational function. See Fig. 1(I. 3).

-7-
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..itb
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a

-ZERO OF F(s)
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Fig. 1(I. 3)

The following cases are of special interest.

The next definitions are associated with the time interval t a t < tb, which will be

indicated by [a, b].

FCase A1

Pole

Case A2

Case B1

Zero

Case B2

I

Dipole Case C1

Case C2

These

a.

A primary saddlepoint passes exactly over a pole of F(s) at some

time inside the interval [a, b]. Coinciding pole transient.

A primary saddlepoint passes close to but not necessarily over a

pole of F(s) at some time inside [a, b]. Deviated pole transient.

A primary saddlepoint passes exactly over a zero of F(s) at some

time inside [a, b]. Coinciding zero transient.

A primary saddlepoint passes close to a zero of F(s) at some time

inside [a, b]. Deviated zero transient.

A primary saddlepoint passes in the vicinity of a pole and a zero

of F(s) at some time inside [a, b]. Dipole transient.

The pole and zero of Case C 1 coincide. Pure resonance transient.

classifications are important because:

More complicated cases can be reduced to them.
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b. They play an important role in the "composition of transient waves."

c. They show the combined effect on f(t) of F(s) and W (s,t).

d. They justify the procedure of computation.

I. 32 COMPOSITION OF TRANSIENTS IN SUCCESSIVE ZERO COMPONENTS. Let us

assume in this paragraph that in the neighborhood of s s, and for t inside [a, b] there

are no poles of F(s). Then it can be expanded around s s as a Taylor series as

00 F(v)(s s )
F(s) = E v! ( - SS) 3(I. 3)

0

Substitution of 3(1. 3) and 8(1. 1) in 1(I. 1) leads to

W(s t) 0 F(V)(s ) (1 s e ) 4(2 3)
fn(t)= v! Zri S ds

v=O

This expression is only valid, in general, in the vicinity of a given saddlepoint. It is

then necessary to obtain a similar expression for each primary saddlepoint. The index

n means the number of the needed primary saddlepoints through which the original

contour must be deformed; fn(t) denotes the contribution to f(t) as supplied by the

segment of ys in the neighborhood of the n primary saddlepoints. The complete solu-

tion for f(t) is the sum of fn(t). There are just a few primary saddlepoints and they may

appear quite often in conjugate pairs, and therefore the whole situation is very simple

to handle. Since f(t) must be real, then we can easily understand why primary saddle-

points appear frequently in conjugate pairs.

The prototype integral in 4(1. 3) is given by

v 2i WII (ss, t)(s )2

sI= 2S * J )(s s) e ' ds 5(1. 3)

The integration can be performed as follows:t

One can write (see Fig. 2(I. 3))

= | _ 6(I. 3)

s s 

tWe will perform the integration in the s plane. However, it is advisable, in
general, to introduce in 1(I. 1) a pertinent convenient transformation, which guarantees
the fulfillment of the requirements needed for a good second-order saddlepoint integra-
tion. We will describe these transformations in the "Extended Saddlepoint Method of
Integration."

-9-
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P'o

In the first integral: K = 1.

Let

s - s =s

ieo i
re = re

and

Fig. 2(I. 3)

i( a 2 + I
2 2'

a 2

dr = ie 2 dr

See Eq. 14(I. 1).

In the second integral: K = 3. See 14(. 1).

. 31T _ a.
1\2 -2

s -s = re
s

= -re

.( ra2) -a2
ds = -e dr =-ie dr

Then

*v (1 e(v+1)iL- 22
v ZWiJ

I~ ~ ~
V

r e

IWII(ss, t)[

2! rI~
2

dr

- 7(I. 3)

+l (v+l) 

0

rye

or

a2 r

I* ivi -i(v+l)y- i(1) Cv = -~e -(- 1 1
V 2rr -J .)/0) f

| II (s s , t) 
r

2!

2
v -arr e dr

Since for very large values of r the integrand becomes negligibly small,

can write

-10-
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ds = e

a2)
_ _

dr

8(I. 3)

one then

n=n _

Z



v -i(v+l)2 )v+l r e-ar r

iv -i(v+ 1) 2{r (v 

=2|2 ! )

i - (-1) } 1/+l \

Ti s 2 rl(T W (ss, ti 2

This last result was obtained by using 2(1. 2) and

./ +)1\ a2

e

II v +l 
1W (ss, t) z

1
v+l

By substitution in 4(1. 3) one finally gets

f*(t) =eW(ss t) 1 E

v=O

(i) {1 - (-,)v+} 1 ( ) F()(s
_ _ _ _ _ _ _ _

1
v+l

(-!iW"(5 5i·t)) 2

f*(t) = e s I{ E (-i)lr(. + )

sL=O
n~~~~~~~o

5 11F(2)(S ) 1 

21! (ss, t)) I J
since the term {1 - (-1)V+l} vanishes for v odd and 2 = v.

The final result is usually written in a more convenient form

W(ss, t) 1 1 (1) 1 r( + L) F((s 1 l
fn*(t) = e 1 2 !

(Z TwlI(s s , t))i ¢=0 z ( T!- 

10(I. 3)

The requirement that I WII(s, t) must'be large produces a fast convergence of 10(I. 3).

Practically, few terms of the series are needed. By appropriate transformation in the

integral 1(I. 1), it is possible - by the introduction of the so-called condensation process -

to make so rapid a convergence of 10(I. 3) that only the first term (and the second for

very accurate results) are needed to obtain a good degree of approximation. For large

WII(ss, t) one gets the very simple expression

W(s , t)
f *(t) e

n V /2rrW I I (s ,t)
S

11(I. 3)
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The terms of 10(I. 3) for . > 1 are called, for reasons which appear later, "coinciding

zero transient components of order p.." That is why we say that the solution 10(I. 3) is

given in "terms of successive zero components."

Four main features of the solution 10(I. 3) must be noted.

a. The exponential term gives the instantaneous transient oscillation and

main decay.t The instantaneous frequency of the transient is given by

the position of the saddlepoint.

b. The bracket term of 10(I. 3) multiplied by

1

(rWII (s t))2

gives the envelope function.

c. The solution diverges, and consequently is meaningless, if W II(ss, t) = 0

at some point or points in the interval t a < t t b. t Except at these

points, the solution is convergent. The number of terms needed to get

a good approximation clearly depends on WII(ss, t)l.

d. By simple reasoning of a physical nature, we shall show that the points

for which IWII(s, t)l=0 must be associated with points of maxima of the

envelope wave. A more advanced method of integration reveals that

it is the case.ttt We have, therefore, a simple criterion for locating

the maxima of the amplitude wave: Find the values of t which make

WII(s, t) = 0 or very small

for time in the interval ta t < tb. If the above equation does not have

a solution in t a t < t b, then the transient envelope is monotonic inside

this time interval.

I. 33 COINCIDING POLE SOLUTION. POLE RESONANCE. In this paragraph, we

will start with the discussion of the effect of the poles of F(s) upon the transient waves.

tLet W(s s , t) = Real W(ss, t) + i Imag W(s s , t)

Then

W(s s , t) Real W(s s , t) i Imag W(s s , t)
e -=e *e 

decay oscillations

ttLater we shall produce solutions which are free of this handicap. Transients in
which WII(s, t) = 0 at certain points of t belong to the so-called class of transitional
transients. We do not now undertake the solution for more complicated cases because
serious confusion may appear in the understanding of the mechanism of transient forma-
tion.

ttIn fact, at the points WII(ss, t) = 0 the transient wave changes from one state of
oscillation to another. The proof is given in the chapter on transitional transients.

The maxima of the envelope are somewhere in the vicinity of these values of t which
make WII( s, t) = 0.

-12-



The problem will be tackled in its simplest elements in order to illustrate more clearly

some typical mathematical steps needed frequently in the theory of approximation.

Let s k be a pole of first order of F(s) which, by hypothesis, is not a pole of W(s, t).

In the vicinity of s = s k, F(s) can be expanded in Laurent series and W(s, t) in Taylor

series.

R k
F(s) s k + +(s) +(s) analytic at s =s

s - Sk 

W (sk, t)
W(s,t) = W(sk, t) + WI(sk, t)(s - s k ) + 2! (s - s k ) +. .

12(I. 3)

We will now assume that: At a certain value of t, inside the interval ta < t - tb, the

saddlepoints pass close to, or exactly over, s k. See Fig. 3(I. 3).

The contribution of the integral 1(I. 1) in the vicinity of s k, can now be written as

R W(sk' t) ea(s -sk) +b(s - k)2 +..

fn(t) = i s - sk

I wheW(s,.
where a = W '(skt); b = 1 W (st)

Wsk ' Z! k

W(sk, t)
ds + e

Z-ri .1
a(s - sk) +b(s - sk)2 +

0c(s) e

13(1. 3)

The second integral of 13(I. 3) will not be considered, since we have dealt with this type

in subsection I. 3 2.t We will concentrate our attention on the integral

a(s
T _ 1 re
k 2iri d

- k) + b(s - Sk )2

ds 14(1. 3)

It can be noted that the prototype integral

for v > -1. Here v = -1.

Sk POLE

,Ittb

0

: I ORBIT OF s

tPLANE

S PLANE

Fig. 3(1. 3)

Z(I. 2) cannot be used because it is valid only

IN

Fig. 4(1. 3)

a future paragraph in the case in which

-13-
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Let us introduce the transformation

z
s - s =

and let
a =X

Tb;

One gets

Xz + z
e dz

z
coinciding pole integral

The integral 16(I. 3) can be expressed in terms of error functions of complex argument.

We have

ZX 1 zxe dx =- ez

X

I 1 zX 1
= -e

z z

1
, +iRf0X

k 2i
'-iR

2z + zx
e dxdz +

2 rr

,+iR 2zf + e dz
z

-iR

Along the contour shown in Fig. 4(I. 3) one gets for the second integral (pole at z = 0)

+iR 2
I e d

w i = , as R - oa

-iR

19(I. 3)

In the first integral one can reverse the order of integration, so that one gets, by

letting z = ir,

2 irx /X
er e dr dx = 

2·0

dx 

-oo

since for very large values of r, e

00 2-r + irx
e

dx:
J-r

2-r + irx
e dr

2-r + irx
e dr

-r 2
is negligible and

dr r
2

-r
e dr --zero for large r

Consider now the integral

-14-

I 15(I. 3)

Ik = 1i
ZwTi

z

16(I. 3)

x

J0

Hence

17(I. 3)

18(1. 3)

oX2 I

20(I. 3)

21(I. 3)

I _

t-r AX
1

2 Tr



+ oo

J-oo

2-r + irxdre dr

and introduce the new transformation

2 2 12r - irx =u + x4

(r - iX)
z

2

ix
U =r -z Z

+00

10o
e

2-r + irx
dr = e

ix1 +0 oo
4x -

f x

substituting 23(I. 3) and 19(1. 3) in 16(I. 3) one gets

x

ik = 
1X2 x}

1
x=V

1 2

e dx =
v,

1
J7

e dV = erf X2

By using 15(I. 3) and the values of a and b in 13(I. 3), one gets

I = 1 + erf X)

Then the first integral of 13(I. 3), which gives the effect of the pole, is given by

I w(s kW(st)eW(S t) ds R e
- k

2(1 + erf X)Z~~~

'S

W (sk, t)
-X= 2 

V2W I(s k't)

-15-
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Then

22(I. 3)

du = dr

2-u
e

1 2-x4
du = e 23(I. 3)

Now let

24(I. 3)

x

25(I. 3)

26(I. 3)

27(I. 3)
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I.34 THE ERROR-FRESNEL SOLID. FIRST NOTION OF GENERATING FUNCTIONS.

The function X is, in general, a complex quantity. Consequently, the function defined

by

Ik = G(X) = 2(1 + erf ) 28(I.3)

is an extension of the so-called error function, which is classically defined for real

values of X. In general, G(X) is a complex quantity and is called, as far as this investi-

gation is concerned, the Error-Fresnel "Generating Function." The name of Fresnel

is given, since, for X = IXI e , the G(X) coincides with the so-called Fresnel

function. If we construct the surfaces defined by Real G(X), Imag G(X), I G(X) , and

the phase angle of G(X), and these functions are measured along the perpendicular line

to the X plane at the point X, then we obtain the so-called Error-Fresnel solids. These

solids are important because they contain all possible transients (envelopes, etc. ) cor-

responding to the transient family, which can be approximated in the way already shown.

Figure 5(I. 3) shows some typical cross sections of the amplitude solid

12 ( + erf ) for X =X ei 4 = 0 ° , 10 °, 20 ° , 30 ° , 40 ° , 45 ° , 50 °

It is important to note the strong effect of the value of on the overshoot of the wave.

The 45 ° and 225° cross section produces the so-called Fresnel behavior. This behavior

is associated with a nondissipative system.

Figure 6(I. 3) shows the 45°-225°cross section of

12 (1 + erf X) = (X)

Figure 7(1. 3) shows the corresponding argument function (cross section 45°-225°).

arg[ (1 + erf X)] = (X)

G(X) = (X) ei '(X) 29(I. 3)

The function +(X) is called the phase deviation function.

Figure 8(1. 3) shows the polar plot of G(X) for the 450-225 ° cross section, that is,

Real G(X) versus Imag G(X). The result is the so-called Cornu's spiral. The values

of the IX are plotted along the spiral. (The spirals are important because they contain

a visual relationship of the amplitude and phase deviation function. ) Finally, from the

amplitude solid, it can be noted that for the cross section beyond 45 ° (and less than

135 ° , not shown) the overshoot wiggles start increasing very rapidly (regions of insta-

bility).

-16-
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Fig. 8(I. 3)

I. 35 PARTICULAR TRANSIENTS. TRANSIENT TRAJECTORY. LONGITUDINAL

DEFORMATION. COMPLETE TRANSIENT WAVE. A BRIEF OUTLINE OF THE

MECHANISM OF THE GENERATING FUNCTIONS.

Suppose we have at hand a transient of the family which is characterized by the

passage of a saddlepoint over a certain pole at some time in the interval t a < t < tb , and

that W(s, t) can be approximated up to the second-degree term of the Taylor expansion.

A. A particular transient is now completely defined by X = X(t).

The computation of the function X can be made immediately, without

a new process of integration, since

X = [I/ WI(sk, t/WII(sk, t) 30(. 3)

B. In general, X is a complex quantity. Equation 30(1. 3) defines the para-

metric equation of a line (trajectory) in the X plane in terms of the

variable time. This trajectory is, of course, different from the saddle-

point orbit. (That is why we prefer to use different names for these lines:

the transient trajectory and the saddlepoint orbit. )

C. Once the trajectory X(t) is determined for a particular transient, the

expression in brackets in 27(1. 3) is then completely determined as a

function of t. The complete particular transient is now obtained by

the multiplication of the factor

W(sk , t)
Rk e 31(1. 3)

as required by 27(1. 3). This represents the contribution of a primary

saddlepoint. If there is more than one saddlepoint, the final expression

-18-
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can be obtained by the sum of the terms of the form 27(1. 3).

D. Once the trajectory X(t) is determined in the X plane, for a particular

transient, the function G(X(t)) = 1/2(1 + erf X(t)/2), now in terms of

time, can be extracted from the generating solid (or corresponding

numerical tables). What we have to do is to plot in the X plane of the

solid the corresponding X(t) trajectory, marking along the trajectory

the values of time (as indicated in Fig. 9(I.3)). Then we draw the

cylindrical surface generated by the per-

pendicular lines to the X plane, at every

TRAJECTORY point of the trajectory. The intersection
PLANE t=t3> of this cylindrical surface and the surface
x =Xl (t) of the generating solid gives a line along

REAL (X)- which the particular transient is contained

in the corresponding solid. By picking up

Fig. 9(1.3) the amplitude, phase, etc., in the solid, we

can obtain the corresponding function of

G(X(t)) as a function of the time. The trajectory is the same in every solid.

E. We can regard the function X(t) as a transformation. In fact it defines

a continuous transformation with respect to time. In a particular tran-

sient we continuously transform the generating function G(X) by means

of X = X(t). The effect of the transformation X(t) upon G(X) is simply

one of stretching, or compressing, along the direction of the indepen-

dent variable. In general, this stretching effect is linear. Now, since

X(t) defines a line on the X plane, what we really stretch or compress

is only the line of intersection of the generating solid which corresponds

to the particular transient.

Since X(t) acts only upon the independent variable of G(X), the

vertical scales remain invariant. THE MAXIMA AND MINIMA OF

G(X) ARE THUS RETAINED; they are only displaced from their

original positions. This property is of basic importance in connection

with design problems.

The longitudinal stretching or contraction of G(X) is called longi-

tudinal deformation. By extension of these ideas, G(X) is called

the "Longitudinal Generating Function" of the Error-Fresnel type. (In

a later discussion, we shall introduce the theory of "orthogonal deforma-

tions.")

F. Graphical methods of transformation are very suggestive and they

simplify considerably the amount of labor needed in the computations

of a particular transient, when the required accuracy is more than,

say, two percent. The methods for obtaining this graphical trans-

formation are well known and they will not be discussed at the present

-19-
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moment. Illustrative examples are given in Fig. 10(1. 3), which is

drawn for a 45 ° straight line trajectory through the origin and in the

solid of Fig. 5(1. 3). Figure 11(I. 3) shows the effect of different laws

of transformation, say X1 (t), X2 (t), X 3 (t), indicated by the dotted

lines. Since Figs. 10 and 11(I. 3) are almost self-explanatory, no

more details are given.

SECTION I. 4 TRANSIENT COMPOSITION. SATELLITE SADDLEPOINTS.

I. 40 FIRST INTRODUCTION TO THE IDEAS OF TRANSIENT COMPOSITION. THE

RESONANT FAMILY. BASIC MEMBERS. Except in very simple and unimportant

cases, it is almost impossible to obtain for a given transient a single approximate

solution which is valid for all values of t in the whole range 0 < t < o0. Approximate

solutions are valid only in a specific interval of time. It is not possible, at least in the

beginning of the transient theory, to preassociate time intervals and the corresponding

solutions in a one-to-one correspondence. Although this basic problem has been solved

in our theory of transients, we omit a discussion on this matter because the proofs are

involved and may lead to some confusion at this point. We shall assume that this cor-

respondence exists. Following a step-by-step method we shall be able to develop the

ideas which are needed in the solution of this problem.

In what follows, when we speak of a transient solution, or simply of a transient, we

refer implicitly to the solution, or to the part of the transient, which is valid in a speci-

fic interval of time, say ta t < t b

I. 41 THE RESONANCE FAMILY. The resonance family appears as a sort of generali-

zation of the above results. This generalization is not yet complete. The asymptotic

character of the solution is still assumed.

The resonance family is defined as those transients which are expressed (in a given

interval of time) by the integral

f(t) + A(S - + A(s -s c ds 1(. 4)

s

in which F(s) is a rational function of s; Ao, Al A are parametric functions of time

and independent of s; s is a contour of integration which is topologically equivalent to

the line joining c - i oo to c o + i oo; and c o is the abscissa of uniform convergence

(Laplace transforms). Finally, s c is a fixed or time-variable point in the s plane.

In the cases already discussed, s c was either the saddlepoint or a pole at sk which lay

in the vicinity of the orbit of the saddlepoint.

I. 42 TRANSIENT REDUCIBLE TO THE RESONANCE TYPE. SATELLITE SADDLE-

POINT. If a transient given by

_ F(s)eW(S't) ds 1(I. 1)

s

21-
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can be approximated in a given interval of time by one or more integrals of the type 1(I.4),-

then one says that the transient is resonant-reducible (in the same interval of time).

From the previous discussion of the saddlepoint integration, we can observe that the

point sc must be a sort of saddlepoint of W(s, t) or some point in the vicinity of its orbit.

Let s s be a primary saddlepoint of second order of W(s, t). By definition, ss is a

solution of

d W(s, t) = WI(s, t)0 2(. 4)
ds

Suppose that W(s, t) is expanded in Taylor series around the point sc. One gets

W II(sc, t)
W(s, t) = W(s c , t) + W (sc,t)(s - s + s - s + 3(1. 4)(s sc z!c (s -c .. .

It is then clear that

Ao W(s c , t)

A1 WI(sc, t) 4(1.4)

1 WlI(sct)

The following notation will be used:

By W (s, t) we shall denote a function which approximates the function W(s, t) inside

a given interval of time.

DEFINITION OF SATELLITE SADDLEPOINT. A solution of

d W (s, t) = W *I(s, t) = 5(1. 4)

is called a satellite saddlepoint of W(s, t) in the given interval of time. A satellite

saddlepoint will be denoted by s = s (t). The name satellite was chosen because the
* s

points s are attached to, and somehow follow, within the given interval of time, the

corresponding saddlepoints s of W(s, t).t

In the resonance family, s(t) are given by

* A1

s =c s 2A2

or also

* WI(sc, t)
s S - t)
s c wII(sr, t)

6(I. 4)

tSatellite saddlepoints follow only the primary saddlepoints of W(s, t) which control
the integral in a given interval of time. The satellite saddlepoint plays an important
role in the theory of approximate integration.
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If one choses sc = S s , then WI(ss, t) = 0, by definition of the second-order saddle-

point of W(s, t), and hence we have

= S
s s

for all t in the interval

Otherwise s # s s in general. Note from 6(I.4)that for the points for which WII(s ,t) = 0,

wII
and W (sc, t) are rather large, so SS is close to sC

The satellite saddlepoints will be used in a future discussion.

I. 43 BASIC MEMBER OF THE RESONANCE FAMILY. In the study of the resonance

transients it is convenient to introduce the transformation

z = ( - c ) /iA IA21* 0 7(I. 4)

Hence, the integral which defines the family becomes

A

f(t) = e 1Zii A2

2
F(z) eVz + dz

where V = A 1/\/A, and yz is the corresponding transformed contour of integration

in the z plane. The transformation 7(I. 4) transforms the point sc into the origin of the

z plane.

Instead of using the complete integral 8(I. 4), we shall study the integral

2i F(z) eV z + z
z

dz 9(I. 4)

We shall consider three cases which have a basic importance:

F(z) = Z

z - Zz -z
F(z) a

\/z -Z
z - z

F(z) = a
Z - Zb

Pole resonance transientt

Zero resonance transient 10(I. 4)

Dipole resonance transient

tThe factor v/2 appears in the expression for F(z) because a pole transient in the s
plane will look like F(s) = l/(s - Sb). Now using the transformation 7(I. 4) one gets

F(z) = - s ) z z b
S 

5 c b- - - Z - Zb

-23-
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with the assumption that Izb and IZal are simultaneously small.

I. 431 THE POLE TRANSIENT. The pole transient is given by

A
I =
p 2Tri

1 Vz + z
e dz

z - zb

Let z - z b = u. Then we have

I = e
P

VZb + Zb 2
2ri JU

Xu + u2
e du

uU

where X = V + 2 zb.

From 16(1. 3) and 26(1. 3), one gets

I
P

VbZb + Zb 2=e 22 (1 + erf X ) 13(1. 4)

Then, for a pole transient, the complete integral 8(1. 4) becomes

f(t) =
Ao + Vz + Zb 1

Ae o b (1A 1X = V + 2z b = +
b A2

+ erf X)

2Zb

Using 7(1. 4), one gets

n~A vz + = Ao A(b A Ao +zb zb A0 A(sb Sc) + AZ(sb C w*(sb t)

14(I. 4)

15(I. 4)

So, finally, we have

Ao + A(sb - Sc) + A2(S b -
f(t) = e

W (sb, t)
= e

1 1x =- + b

I (1 +erfX2 )

Wi(sc , t)

II

Sc )2c
2 ( +erf X )

2~~~

+ b- Sc) / I(st)

If zb = 0, then we say that we have the coinciding pole transient. This

the pole is now at z = 0 or, by using 7(I. 4), the pole is at s c .

means that

It can be observed that if zb = 0, 16(I. 4) is equivalent to 27(1. 3) if one sets

24-
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Sc = sk t Then, 27(I. 3) is the solution corresponding to the coinciding (with sc) pole.

By means of 16(I. 4) we can establish a basic property of pole resonant transients.

We shall discuss the effect of the pole shift (from the coinciding position) only in the

factor

2 (1 + erf X )

The effect on W*(sc, t) is simply a change in frequency and attenuation due to the positior

of the shifted pole. Momentarily, let us call

WI(s, t)

/2W (s c,t)

Then

/wII(s , )
AX = X - X = (s b - S) C 17(I. 4)

17(I. 4) shows that the shift of a pole is equivalent to a displacement of the wave, which

is produced by the generating function. The displacement is proportional to the pole

shift. i t

Figure 1(I. 4) shows, for example, the effect of a pole shift in the 45° cross section

of the generating solid in Fig. 5(I. 3) when the pole deviation is also directed in the 45°

direction. Note that in this case the overshoot of the

wave remains the same. The whole effect is simply

a shift of the whole wave. When the pole deviation is

made in other directions than the 45 ° line, slight

FOR+Zk 0 2% Xzmodification of the overshoot may result, as can be
FOR~z FORzb

___ __ _ /observed by looking at the solid in Fig. 5(I. 3).

ta ax 'AX=(bSc) Similar shift effect is observed in the corres-

ponding phase deviation function, see Fig. 7(1. 3), as
Fig. 1(I. 4) well as in the other associated functions of G(X).

The wave shapes indicated in Fig. 1(I. 4) are not

the final transient waves. In accordance with 16(I. 4) it is still necessary to multiply

the envelopes by the factor eW (sb' t) Consequently, a damping factor and a constant

change of the instantaneous oscillation will appear. Since the effect of this exponential

function is well known, it is omitted in Fig. 1(I. 4) in order to show clearly the principal

effect of the pole deviation on the envelope function.

tRemember that sc represents an appropriate point of expansion.

t"This effect does not necessarily take place in other families of transients; the
reader must not conclude that this property is true for all possible transients.
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The corresponding transients for poles of higher order can be studied in a similar

way. Solutions of these cases are of no importance for the following sections.

1.432 THE ZERO TRANSIENT. FIRST EXTENSION OF THE INTEGRAL

The integral which corresponds to this case is given (see 8 and 10(I. 4)) by

A
t) _ e 4Vz + z

t) -2iA 2 (z- z ) e dz

Let us introduce the transformation

- =Ua

and consider only the integral factor of 18(1. 4)

PROCEDURE.

18(I. 4)

19(I. 4)

1 1^ Vz+z 1 za a2 Vz + z (z - z ) e v z + dz = 1e
uX + udue du

where X = V + 2z .
a

The integrals 18 and 20(I. 4) are alternative forms of the zero transient expression.

We can now proceed with the integration by using the saddlepoint method already

described. In this case one has to use the satellite saddlepoint for the exponent. Let,

for instance,

I= ueXu +u 2

u

du 21(I. 4)

Since in the saddlepoint the first

if the transformation

derivative is zero, the saddlepoint can be obtained,

2 X2 2Xu +u + -

is introduced; that is

X
u +-= ip2

or

I 2i ueXu

u

2Tr 
2

+ U2 1 e-X 2 / 4

p

pe X2/4p e p dp e 2 X e-P d p

p

-26-
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Now it can be seen that p is equivalent to the integration from -oo to +oo, so that finally

we get

e-X2/4 0xI = _e2 XZTr

e X e - X 2 / 4

e- d p = -4 -r

00 2
pe - p dp 0 0

By using 20(I. 4) the zero-deviated transient becomes

(A + Vz + z 2 )
e ° a a V + Zza -(V

A2

W (s a , t) WI(s ,t) ( a -
e . .. ..

ZA 2I \/ZWII(s , t)

I(s ct) (sa - S) /

G /Z w1II( s cJt ) 
d

WII Z
Sc)/W (s c , t)) _(X/z)2 27(.4)

JT

11(s c , t) )
c ) 28(I. 4)

If s = s the solution 27(I. 4) vanishes identically. If s is the saddlepoint of W(s c , t),
then WI(s, t) - 0. This means that:

"If a primary saddlepoint of the second order of W(s, t) passes exactly over a zero

of firstt order of F(s), then the corresponding transient is zero (or almost zero,

since the integration is an approximate one) in the interval of time in which the approxi-

mation is valid."

It is convenient to refer the deviation of the zero of F(s) with respect to the saddle-

point of W(s, t). In that case the zero-deviated transient is given simply by

W*(s t) (s -a s ) II t
f(t) -e S a s e

a ( =IW"(s ,t)s
29(I. 4)

This equation shows that the disappearance of the zero transient becomes very

tThe cancellation of the transient is also true for zeros of odd order, but is not so
for zeros of even order. This is a consequence of the cancellation of 8(1. 3) for zeros
of odd order.
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f(t)

t --- -- (t)

to 

TIME OF COINCIDENCE

Fig. 2(I. 4)

pronounced, when the exponent in the equation becomes real. A typical wave configu-

ration of a zero transient is shown in Fig. 2(I. 4). When W(s, t) has the typical form

(Laplace transform)

W(s, t) = st - +(s) 30(I. 4)

then the time of coincidence is simply given by

WI(s, t) = 0
3 1(I. 4)

S-S
a

or

ta = (Sa) 332(I. 4)

This expression shows that if s a is moved along the orbit of the saddlepoint, the time

of coincidence in Fig. 2(I. 4) becomes correspondingly displaced. Since all expansions

are usually made around the primary saddlepoint, 29(I. 4) is commonly used. If, for

convenience, the expansion is made around some other point in the neighborhood of the

saddlepoint, say at s c , then 27(I. 4) must be used. The main shape of the transient,

however, remains the same.

A comparison of Figs. 1 and 2(I. 4) shows the different behavior of the pole and zero

transient waves.

I. 433 THE DIPOLE TRANSIENT.

A dipole transient is given (see 8 and 10(I. 4)) by the integral

A 2A z z -
0 f e zdz 33(I. 4)

L2 zri z -Zb

We can write

z-z a -z + - z z - z
a b b a 1 + a b 34(1. 4)

z Zb z - Zb z - Zb

Let 6 = za - b . Then we have
a b
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A

f(t) =e
2 I i2 e Vz + z

Z' i e dz +t

¥z
Z·r ·r

Vz + z2

1 4 dz 

Yz J

The first integral represents the envelope wave of a pure resonant transient. The

second integral represents a pole resonance transient. If za - zb = 0, the pole transient

disappears, leaving only the pure resonant wave. For this reason we consider a pure

transient as a limiting case of the dipole transient when za - zb.

The solution of the second integral in 35(I. 4) is already known. It is given by 11(I. 4)
to 16(I.4) or

W (sb t) 
f2(t) = e b 1 ( + erf X) 6

A2

x 2W (sct) + c

C~~f

36(1. 4)

37(1. 4)

The factor (6//Ai) changes the scale of the envelope magnitude.

To obtain a solution of the first integral in 35(1. 4) one sets

2 V 2Vz + z + z p

(, + 2) =ip

38(1. 4)

39(1. 4)

i J Vz + z2

z

e-V2 /4
dz =

2/:i

Hence, finally,

WII(s, t) 2
W(sb,t) - W(s, t)(sb ) - c ( )

f(t) e e t)(Sb c

|2nrwI(s c , t)

[W (sc, t)] z

2W (sc, t)
e + e (s b -a) (1 + erf X)$-e (S~b - a ) 2 
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where

W I(SC t ( w (S t)

2-- + ( - Sc) 2
/2WII(s c , t)

If the expansion is made around the saddlepoint, then s c = s s and WI(ss, t)

W ( b' t) K
f(t) = e " e

WII(s, t)
2

+ s (S )a (1 + erf )+ (s b - Sa)Z-1 x)

W ( s, t)

- Ss) 2
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INTEGRATION THROUGH SADDLEPOINTS OF HIGHER ORDER. THE THEORY

OF TRANSITION. TRANSITIONAL TRANSIENTS.

SECTION II. 1 DEFINITIONS. DOMINANT TERMS. TRANSITION.

II. 10 INTRODUCTORY REMARKS. The theory of integration through saddlepoints

of the second order has been outlined in the previous notes. Now we shall give a basic

and brief discussion of the theory when saddlepoints are of an order greater than two.

The second-order theory certainly considers and includes the main curvature of the

function W(s, t) or, let us say, of the phase function. The reason is that we consider

the terms up to the second derivative in the Taylor expansion. Besides, it was assumed

that the magnitude of this derivative was large enough to guarantee a good approximation

in the asymptotic range of the variables. The second-order theory is meaningless when

(WII (s, t)) vanishes.

The integration through saddlepoints of higher order permits us to consider rapid

changes in the curvature of the function W(s, t). We shall also be able to investigate

what happens when W II(s, t) vanishes or becomes small.

We shall still assume that the function W(s, t) is analytic in a certain domain, inside

of which is found the main contribution to the integral in question. Poles, branch points,

and essential singularities of W(s, t) are in the outside of the needed domain in the s

plane. In other words, W(s, t) can be still expanded in Taylor series.

Suppose that the required domain contains one or several saddlepoints. Let s be

a point of the s plane which is inside the given domain.t The Taylor expansion of W(s, t)

around s is
C

w(n)(sc' t)
W(s,t) = W(s ,t) + W(sc, t)(s - ) +. .. + n (s- c)... 1(II. 1)

In the approximation process, one has to consider only a certain number of terms, say

n, and neglect the terms after n + 1. We shall designate by W*(s, t) the polynomial of

n degrees in (s - sc) which is obtained by this process of syncopation.

A question naturally arises. "What is the criterion for knowing how many terms of

1(II. 1) must be taken?"

This question is of fundamental importance in the theory of approximate integration.

The answer leads to the production of the theorems of existence of the approximate solu-

tion inside of definite frames of tolerances.

Unfortunately, the production of these theorems of existence is a very involved and

difficult task. Only through a step-by-step procedure along this method of integration

will the reader be in a position to grasp the needed basic criterion on which we base the

proof of the existence theorems.

tThe point sc may, or may not, be a saddlepoint. For the following explanation the
unique determination of s c is of no consequence.
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The integration through saddlepoints of higher order cannot be properly conducted

without setting some basic principles and ideas regarding the way in which we must

approximate the function W(s, t). The ideas are found in these notes.

II. 11 PRIMARY AND DOMINANT TERMS.

Let

w(n)(s, t)
W (s, t) = W(s t) + W(s c, t)(s - sc) + n (s - sc)n 2(II. 1)

be the approximate function W (s, t) which is valid inside a domain, say G, of the s plane.

We shall assume that the approximation is valid inside the interval t a t < tb, where

ta and tb are now unspecified.

The domain G is, by hypothesis, one that yields a predominant part of the contri-

bution of the integral, for t a < t t b,

f(t) F(s) eW(s t) ds 3(11. 1)

1se s )ds

If there is more than one G region, the following discussion may be extended to the rest.

The original contour of integration must be deformed, in these methods of integration,

so that it will run inside of G. Figure 1(II. 1) shows one such region G and the contour

o

of integration running through it. The exact position of the contour ys inside G is of no

consequence in this explanation.

In order to simplify the following discussion we shall assume that the function F(s)

plays an unimportant role in the integration inside G. We shall concentrate our discus-

sion on W (s, t), which approximates the function W(s, t), as we stated above.t

We now are confronted with a two-fold condition problem:

A. To approximate W by W in such a way that the last function represents

the first, within certain tolerances, inside of G and for t a < t _< tb .

tThis restriction imposed on F(s) is, in fact, not a serious one, for if F(s) would
become important, then similar conclusions drawn for W(s, t) may be applied to a func-
tion, say F*(s), which approximates F(s) inside G and in the same interval ta < t tb.

32-
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B. Let

f(t) - 1 F(s) eW (s,t) ds 4(11. 1)

G

and W (s, t) be such as to comply with the requirement: fG(t)

must approximate f(t) inside the interval t a t < tb 

It can be seen at once that the fulfillment of A does not necessarily imply B. In

fact, prior experience with integral approximation tells us that in most of the cases,

even when W is numerically well represented by W. the function fG(t) has a poor

resemblance, or none at all, to the function fG(t).

The question of the requirements placed on W (s, t) in order to satisfy B is a very

difficult and delicate one. In fact, a general solution constitutes the cornerstone on

which the theory of approximate integration rests. The following discussion will touch

on the first steps in this direction.

Let us assume that W satisfies condition A. In regard to B, W must contain three

principal types of terms:

a. Dominant terms

b. Fast variation or primary variation terms

c. Slow variation or secondary variation terms.

DOMINANT TERMS. If the exact integral 1(II. 1) is such that a large bulk of the contri-

butions comes from the inside of G and is negligible in the outside, then W (s, t) must

possess certain terms which guarantee that the contribution of the approximate integral

4(11. 1) must also be negligible outside of G. The terms in W*(s, t) which control and

guarantee this requirement are called dominant terms. The proof that W (s, t) must

contain these dominant terms is difficult and will be omitted here. However, the reader

can easily visualize the necessity for this requirement. It can be translated into ana-

lytical terms as a sufficient condition, but not a necessary one, by saying that W *(s, t)

must be such that

Real W *(s, t) < 0 5(11. 1)

for values of s along the points of the line y (contour of integration) which lie in the

outside of Gtt and t <t <t ba

The genera nd* *

tThe general condition includes W* as well as F . Then, condition B must refer to

fG(t) = 2i F*(s)eW (st)ds

We shall discuss this situation in the theory of transitional-mixed transients.

ttUnder this condition eW * ( s ' t) is very small outside G and the integral is negligible.
This condition is, of course, not a necessary one.
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FAST VARIATION TERMS. The original function W(s, t) may suffer sudden changes

in value inside G when we travel along the contour line (of integration), or when t

passes from t a to t b. If W(s, t) possesses singularities inside of G (poles, branch

points, essential singularities), then it is very likely that such a sudden change will

take place. But these singularities are not necessarily the only cause of fast changes.

Rapid oscillation or fast changes in curvature may also occur.

It can be shown that these terms of fast variation play a fundamental role in the

genesis of the integral process of summation inside of G. These changes need not be

drastically large in order to have a profound influence on the integration process. Rela-

tively small changes count as well when the rate of change is fast, either with respect

to s or with respect to t. Since W(s, t) is the exponent of e, then the effect of the

changes of W(s, t) are largely magnified and so their effect on the whole integrand may

be large enough to be considered.

One basic theorem, which guarantees the fulfillment of condition B is that:

W (s, t) must contain all terms of fast variation. The singularities of W(s, t) must

then appear in W (s, t). By using the material of these notes, we cannot offer a definite

proof of this fact. In the first place, we have not yet defined what we mean by "fast

variation." In the course of these notes, we shall have the opportunity to dig more

precisely into this matter.

The so-called terms of fast variation do not necessarily coincide, at all points of

y or for all values of t, with the so-called dominant terms. Take, for example, 2(11. 1).

The terms of fast variation are associated with some of the derivatives W(n)(sc, t). At

some instant of time, some derivative, for example, increases very fast, while at some

other value of time some other derivative may be the important source of changes in

W *(s, t).

It is important to notice that W (s, t) is in fact a polynomial with variable coefficients

(with respect to the time). Under this circumstance, the number of terms in 2(11. 1)

may change as it moves in the interval t a t < t b .

It may be helpful to give a simple illustrative example. Assume that W(s, t) has

the form

W(s, t) = st - (s) 6(II. 1)

and suppose, just as an example, that the contour of integration is taken along the

imaginary axis of the s plane (s = + i).

In order to introduce terms of fast variation in W(s, t), we will suppose that (s),

along s = i, oscillates around the linear phase in the manner indicated in Fig. Zb(II. 1).

In accordance with the previous ideas, W (s, t) must show the same behavior for s = iw

inside G.

Let

2 3 5
= (cxp() x $I(w)+ (. %I(W) + () +...! c 3! Ic 5. ! c)+-"
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(a) (b) (a) (b) (c)

Fig. 2(11. 1) Fig. 3(II. 1)

We shall show that W(s, t) will have the form, at least

c (st) t IIrI x5 ~V~ ) 7(11. 1)(cct + xt -) + + ( 7 (II. 1)

PROOF:

1. Let us write

2 3 4 5

)*() = (cc) + )+ "'. + 4)3VG + + ( ) 8(11. 1)

Inside G, the function qI(w) shows three points of maxima at x = 0, x = +x; x = -x

Then: 4II(o) must vanish at these points

u IIII x IV coc x
II )+.II( ) + ( +-v( +) = 0

and II (c) - 0, since the expression above must vanish at x = 0 in accordance with Fig.

2b(II. 1). Now the symmetry of the two other points of maxima requires that =IVc) = 0.

For in this case, the equation

2
III x ¢ ) = 0

has two symmetric roots at

6wIII(c )
x = ±i c 9(11. 1)

W (tc)

2. Now, if we should take 4 (w) in 8(II. 1) of a degree smaller than 5(II. 1), it would

be impossible to retain in 8(II. 1) the same number of oscillations that are shown in the

original function +(w) inside G.

3. By substituting the above results in 8(II. 1) and by expanding 6(II. 1) around c,

then 7 (II. 1) follows immediately.
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The following remark is important.

In Fig. 2a(II. 1) the amplitude of the oscillation of +(w) around the dotted lines may

be relatively small. Nevertheless, in order to comply with condition B, the oscillatory

character has to be kept in W (s, t). In other words, if the approximation of +(w) is

made in three different fashions, as in Fig. 3(II. 1) (in which the lateral tolerance was

kept equal), then the result of the integral 4(II. 1) will certainly be different, and can be

made strongly different, for each of the three suggested ways of approximation. We are

not prepared to give a proof of this fact with the elements presented at this point. That

this is a fact, can be shown, step by step, in the future course of these notes. For a

reader familiar with transient behavior in filters, the difference in the transient behavior

associated with phase functions of type a, b, and c is almost obvious.

We shall come back to the discussion of terms of fast variation in subsequent chap-

ters. In order to show the importance of the dominant and fast variation terms, we shall

introduce a basic theorem without proof.

Let

W (s, t) approximate W(s, t)

and

F (s, t) approximate F(s).

Then we have

fG(t) = F(s) eW( s t ) ds; fG(t) 
2

i 
F* (s ) e W ( st )

10(II. 1)

G G

"The necessary and sufficient condition that fG(t) approximate fG(t), within certain

tolerances, is that F (s, t) and W (s, t) contain, respectively, the dominant and fast

variation terms of F(s) and W(s, t). "

(The theorem is not sharply stated. It will be in the future. It was introduced in this

way just to show the direction of our steps in the development of the theory of approxi-

mate integration. Here, the theorem has a rather qualitative character.)

SLOW VARIATION TERMS. It may happen, and is often the case, that W(s, t) contains

terms which suffer very small changes when s belongs to G and is taken along the

contour y, for ta t < tb Some of these terms may also appear in W (s, t). Terms

of slow variation play a secondary role in the theory of approximate integration. They

are handled with ease and they produce small changes, or perturbation, in the solution

obtained with the fast variation terms. Slow variation terms, however, may suffer fast

changes outside G. It may then happen that they contribute definitely as dominant terms

in the outside of G. The idea of slow variation terms is mentioned here rather as a

matter of definition of the possible components of W(s, t) or W*(s, t).

II. 12 TRANSITION. PURE TRANSITIONAL TRANSIENTS. A brief explanation will be

given of the meaning of "transition" in connection with our theories of approximate inte-

gration.
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The polynomial 2(II. 1), which defines W (s, t), has a time-variable coefficient. The

relative value of the coefficient may change with t, so that it may happen that at a certain

time, say t = tl, a certain term (or terms) of this polynomial has a predominant effect

on the s behavior of W (s, t), while at other values of time, say t = t 2, this predominant

effect is switched to another term, or to other terms, of the polynomial. This time

variation of the predominant terms of the polynomial is called "time transition" or

simple "transition" of W(s, t). It is to be noted that the term applies to W (s, t) and not

to F(s) or F*(s), unless otherwise specified.

As an example, let us take the expression 7(II. 1). The point wc of expansion is fixed.

Therefore, the coefficients of the third and fifth powers are constant, but the corres-

ponding coefficients of the first and zero powers are functions of the time. At t = '(w a),

for example, the first-power term disappears and has no effect on the integral. But

at some other time, this term may, or may not, control the main behavior of

expression 7(II. 1).

DEFINITION. If at a certain interval of time, say at t a < t < t b , the contribution of the

integral 3(II. 1), coming from the region G, is controlled by this transitional process of

W then the transient (between t a and t) is called "transitional transient." We are
a tb),

under the assumption that W(s, t) suffers rapid changes in G but that they are finite. If

W(s, t) has poles or essential singularities, this definition does not hold.

If the function F(s) is of slow variation in G, then the corresponding transient is

called "pure transitional."

If F(s) has terms of fast variation (pole, zero, dipoles, etc. ) in G, then the transient

is called "mixed transitional."

The "theory of transition" in connection with our method of integration is a sort of

generalization of the integration through saddlepoints of higher order.

SECTION II. 2 SADDLEPOINTS OF HIGHER ORDER.

II. 20 DEFINITIONS. Let H(s) be an analytic function inside G. Let sc be a point in G.

The Taylor expansion around s c gives

H(n)(s H(n+ 1)(S

H(s) = H(sc) + (s - sc)H'(sc) + . + (s - Sc) n! + ( - s) (n+l)
c c c c c + c~ (n+l)!

1(II. 2)

DEFINITION 1(II. 2). "If s c is such that the first n derivatives- of H(sc) for s = s c vanish

simultaneously

H(V)(sc) 0 for v = 1,. n

but 2(II. 2)

H(n+ l)(sc) 0 

then we say that sc is a saddlepoint of G(s) of the order n + 1."

-37-
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This definition does not require that H(sc) must be zero. If H(sc) happens

then we say that s c is simultaneously a saddlepoint of (n + 1) order and a zero

If s = s is a saddlepoint of (n + 1) order, then 1(II. 2) can be written as

H) (n+ )(s) n+
H(s) = H(Sc) + (n+ 1)! (s - sc )

to be zero,

of n order.

3(11. 2)

We must now extend the definition of the (n + 1) order to the function W(s, t). The Taylor

expansion is

W(s, t) = W(s c , t) + (s - c ) WI(sc, t ) +... + (s -

n+1 W(n+ 1) n+ 1
+ (s - sc (n+l )! (s - Sc

Sc)n (n)(s, t)

4(II. 2)

DEFINITION 2(II. 2). "If the point sc has the property that

the first n derivatives of W(s c , t) with respect to s vanish

W()(Sc, t o ) = 

but

at a certain time, say t = to,

simultaneously

for v = 1, 2, . . . ,n

5(II. 2)

W(n+ 1)(sc, to) 0

then we say that sc is a transitional saddlepoint of (n + 1) order at the time t = to.',

This definition does not require that W(s c , t) must be zero.

At to the function W(s c , t) can be expanded around sc as

W(s, t o ) = W(s c , to) +
w ( n + 1)(sc t ) n+ 1

(n+l)! (s -C

REMARKS. I. This definition coincides with the corresponding definition regarding

H(s), if the derivatives W(V)(sc, to) = 0 for v = 1, . .. ,n for all values of time.

II. A saddlepoint of W(s, t) has a transitional character. That is, a point sc may be

a saddlepoint of (n + 1) order at t = to , but in general it is not necessarily a saddlepoint

at t = t + At. From this remark, the reader may immediately understand why the

saddlepoint method of integration is generally inadequate for obtaining a solution valid

for t = to . The transitional theory was developed to overcome this difficulty. In con-

nection with transitional transients, the saddlepoint method of higher order provides

solutions that are accurate at t = t o only. The solution holds good in a very narrow

interval around t o , which makes it of no practical importance. Outside this narrow

interval, the solution differs very rapidly from the correct answer.

II. 21 BEHAVIOR OF W(s, t) IN THE VICINITY OF A SADDLEPOINT. LEVEL LINES.

LINES OF STEEPEST DESCENT. ASYMPTOTIC STAR. In the immediate vicinity

of s c , and for t = to , the first two terms of 6(II. 2) control the behavior of W(s, t).
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Let us study the behavior of

W (= + 1)
W(s,t)- W(sc, t) = M(s, to)= (n+l)! (s )n+l = + iQ

cC

By setting s - s c = z = re i d one gets

w(n+ 1)(Sc, t) w(n+l) iOn+1

(n+1)! (n+ )! e
ion+ 1

= hn+ 1 e

and one gets

P = h rmcos (m + m)

Q = hm r sin (m + 0m)

m = n 

The lines defined by P = 0 and Q = 0 are called lines of steepest descent.

The lines P = 0 are solutions of

cos (m + m) = 0

or

9(11. 2)

m + 0m = + KrmZ

or

K = positive, zero, or
negative integer

, w Krr m
p 2m m m

If one gives to K successive integer values, starting with K = 0, then the angle p

repeats itself when

K = 2m = 2(n+1)

Then we have 2m different (P = 0) lines in the direction given by

IT mm KTr
p 2m m m K = 0, 1, 2,..., 2m- 1

Figure 1(II. 2) shows the uniform distribution of the lines P = 0 in the vicinity of the

saddlepoint of (n+l) order. The lines Q = 0 are solutions of

sin (m + m) = 0

or

m + m = Kwr
12(II. 2)

or

m K 0
r=t- +aQ m m

We also have, therefore, 2m = (n+l), Q = for K = 0, , Z, ... , 2m - 1, which are

distributed as

-39-
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LEVEL LINES IN THE VICINITY OF A SADDLEPOINT (TOP VIEW)

SECOND ORDER THIRD ORDER

) IN THE

P. (3rd ORDER)

[AGGERATED)

(VERTICAL SCALE EXAGiU..t

OF THE S. P. (2nd ORDER) (VERTICAL

SCALE EXAGGERATED)
(VERTICAL SCALE EXAGGERATED)

Fig. 4(II. 2)
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0
_m K = 0 .. .,2m-1 13(II. 2)

Q m m ' "

in Fig. 2(II. 2). The lines Q = 0 are uniformly distributed around the saddlepoint. The

lines P = 0 and Q = 0 alternate with each other.

NEGATIVE AND POSITIVE AREAS OF THE REAL PART P. A comparison of 9, 11,

and 13(II.2) shows that the real part P attains an extremum, for a given r, along the Q = 0

lines, where
M = P = pure real 14(II. 2)

The values of the function along Q = 0 are then given by

M = P = hmrmcos Kr = (-1)Khmrm 15(II. 2)
m m

so that the sign of P alternates from one Q = 0 to the adjacent one.

Figure 3(II. 2) shows the region of the z plane, in which real M = P are positive and

negative.

ASYMPTOTIC STAR. The configuration of Fig. 3(II.2) is frequently used in the following

discussion. For this reason, we prefer to name it. We have chosen the name "asymp-

totic star" but perhaps this is not the final designation.

Level lines, and isometric plots of several saddlepoints of the second, third, and

fourth order are shown in the different plots of Fig. 4(II. 2).

SECTION II. 3 INTEGRATION THROUGH A SADDLEPOINT OF (n + 1) ORDER.

II. 30 THE (n + 1) n/2 SOLUTIONS. INDEPENDENT BASIC SOLUTIONS. The contour

Ys must be deformed along the lines of steepest descent with maximum negative P.

The number of these lines is equal to (n + 1). The values of K which follow P maximum

negative lines are: K = 1, 3, 5, . . ., Zn + 1. The even values correspond to P maxi-

mum positive. The direction of these lines is given by

n+l Kr = 1, 3, 5, n+ 1 1(II. 3)'rQ=0 =
- n+---l-- +- ni+ K = l, 3, 5 ... 1(.3

We have to pick up the lines of steepest descent which are topologically equivalent to the

contour of integration ys.

Quite often we may have more than one primary saddlepoint. In this case, one has

to follow the lines of the steepest negative descent of one saddlepoint and then change

the corresponding negative line of steepest descent of the other primary saddlepoint

in such a way that the final contour, obtained in this way, is equivalent to the given

contour of integration.

Figure 1(II. 3) illustrates this procedure for the particular case of two saddlepoints

of the third order. Two possible deformed contours of integration are shown; both of

them lead to the same solution. For the deformed contour a, one has to switch from

one star to the other at a finite point in the s plane. For case b, the corresponding

switching takes place at the point of infinity.
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DESCENT OF THE STARS AT THE

CONTOUR)

3rd ORDER SOLUTIONS 4r. ORDER SOLUTIONS

POINT s -oo 

Fig. 1(II. 3) Fig. 2(11. 3)

We shall consider only the process of integration through a single saddlepoint of

(n + 1) order. To complete the integral we have to add the contribution of each saddle-

point.

We enter to the saddlepoint along a line of steepest descent, say for K = M, and

leave along another line, say for K= N. We shall label such a solution with the sub-

indices (M, N).

Since K = 1, 3, 5, 7 ... , Zn + 1, we can easily show that

the number of possible solutions = (n + )n Z(II. 3)

For n + 1 = 3 we have three solutions and for n + 1 = 4 we have six possible solutions.

This is schematically shown in Fig. 2(II. 3). A solution obtained by changing the direc-

tion of integration is not a new one.

All the (n + l)n/2 are not independent. (The term independent is not quite correct

here.) Some of them can be expressed as linear combinations of the others. For example,

for n + 1 = 3, solution 3 can be expressed in terms of 1 and 2. For n + 1 = 4, solution

5 can be expressed as a sum of and 2, and so forth. The solutions which cannot be

expressed in terms of the others are called the basic integral solutions of the saddle-

point of (n + 1) order.

It can be shown that the number of basic integrals is equal to n (for an (n + 1) order

saddlepoint).

Therefore

the number of basic solutions = n 3(II. 3)
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II. 31 ANALYTICAL EXPRESSION OF A BASIC INTEGRAL SOLUTION. Let us con-

sider the integral

f(t) F(s) eW(st) ds 4(II. 3)

Ys

and assume that W(s, t) possesses a primary saddlepoint of (n + 1) order, say at s c , at

a certain time t = t
0

The Taylor series expansion of W(s, t), around sc is given by 6(II. 2). We shall

assume that IW( l)(sc, to)| is large enough when s c is taken along the lines of steepest

descent corresponding to K = M and K = N, which are taken as the deformed contour of

integration. This assumption guarantees the fact that the expression

W(n+ 1)(sC to )

e (n+l)! n+l 5(11. 3)

suffers a sudden change in the vicinity of the saddlepoint and becomes negligible outside

the vicinity of the saddlepoint.

We shall suppose, first, that F(s) is a constant whose normalized value is equal to

one.

Let YM, N denote the contour of integration along the lines of steepest descent K = M

and K = N.

The integral 4(II. 3) becomes

W(s , o) t W(n+ 1 )(Sc to ) n+l

f~oe (n+l)! (S - C)(f(t0 C e t e + to) (s - ds 6(11. 3)

,N

in which the terms of (s - c )n + etc. are assumed to be negligible, since in the vicinity

of the (n + 1) order saddlepoint, the term

w(n+ 1)(sc t)(S s _+ 1

(n + 1)!

controls the behavior of W(s, to)-

Let us introduce the transformation

(n+lw (n+l)(sct) (s - ) z pe 7(11. 3)

Then, one gets

W(sc to) n+ 1
~Wf(t0) ~o ni (+)! n1e dz 8(11. 3)

0fto) / Z
~(n+ )! w c 0 )(~~~to)M, N
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O=O,K=2

LANE

K=O

Fig. 3(11. 3)

The set of (n + l)n/2 expressions

hM, N = ri

YM, N

z (n+l) de dz 9(II. 3)

is called the integral solution of the (n + 1) order saddlepoint.

Considering the transformation under 7(II. 2) and 13(II. 2), 14(II. ), 1(II. 3), and

8(II. 3), it can be seen that the star of Fig. 3(II. 2) rotates in the positive direction an

angle 0(n+l)/n+l when the transformation 7(II. 3) is introduced. The star has the position

in the z plane indicated by Fig. 3(II. 3). The lines of steepest descent for Q = 0 are

given, in the z plane, by

KQ n
Q - n+l

K = 0, 1,...,2n+ 1 10(II. 3)

The lines of steepest descent in the shaded areas (P negative) are given by 10(II. 3) for

K odd.

We are now ready to evaluate the integral 9(II. 3).

hM, N = 2rri

Nrrn+l in+
e- n+le e

0 0
e

we have

e. NT
1 n+

hM, N 2Tri

100 n+ 1 +i M -E

dp - i -P e n+ldp
2rri

P re)
xdx =

i n+ 1)
-e (n+l)

h 1 r(nl)
M, N = - (n+i) e

. Tr N+M
in+ sin N-M

n~~l 2 n+ I 

In terms of these quantities, the explicit solution of 6(II. 3) can be written as
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W(s'to) 1 1)
f(to) = e - (n+1) e

rr N+M
n+l 2 sin 1T N-Msn n1 2

((n+1 ) !

1

W(n+ 1)(Sc, to

12(II. 3)

Solution 12(II. 3) presupposes that F(s) = 1 in the integral 4(II. 3). Now we shall obtain
a solution of 4(II. 3) when F(s) is present. We shall assume that F(s) is analytic in the
vicinity of the saddlepoint s c of (n + 1) order.

The Taylor series expansion of F(s) is

F(s) = F(sc) + F'(sc)(s - sc) +...

In accordance with 7(11. 3) we have

+ F(V)

1v! 13(II. 3)

F(z) = F(sc) +
F'(sc)z

[1 w(n+1)( t)]
1/n+l +' -**

F() zv

v! [1 w(n+)(Sc, to)]

00

o0

Hence, the integral 4(II. 3) becomes

f(to) =
W(sc , to )e

(ni), W(n+ 1)(s c , t)]
l/n+ 1 ,

co

Z a e f
0 M,N

v -z(n+1)
z e dz 15(II. 3)

The integral in 15(II. 3) can be performed, along the lines K = M and K = N, as

ivn n+l iv ~'n+1 -p Nirp e e e dp -TiJ

~0

Mwriv M r
n+l

v n+l -ppe e e

{ein v+ lNi
2wTi e

1 i+ l v
n+ 

J00

0
n+ 1

-pp e dp

. v+1 N+M
= 1 e1 n+l T 2

-- eTT

and the solution for 15(II. 3) becomes
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W(s C , to )

f(to) = Tr(n+l) E
v=O

. v+l N+M
n+l 2 . iv+l N-M ]e S~fl[-~Tsin - 2 IJ

Ln~it

16(11. 3)

The series above converges extremely fast when I W(n+l )(sc,to) I is large. Only the first

few terms are needed for obtaining a good degree of approximation for f(to).

II. 32 REMARKS ON SUBSECTION II. 31. In the last subsection, II. 31, we gave the

expression for computing the integrals in connection with the (n + 1) order saddlepoint.

These solutions have a formal character; they are given merely as a matter of illus-

tration for certain basic steps and for the terminology which has to be followed in the

development of the theory of transition. Confusion may result if we go ahead with the

transition theory without first showing some of the basic ideas involved.

Due to the presence of time, a saddlepoint of higher order can be found only at a

certain time, say t =t o , and therefore the solutions in 12(II.3) and 16(II.3) can be applied

only at t =t o . This type of solution is practically useless. However, it has a theoretical

meaning that will permit us to construct a more adequate theory from which we can

derive solutions valid in a rather broad interval of time around t .
o

After t = to, the (n + 1) saddlepoint dissolves. What happens is that the saddlepoint

breaks up into two or more saddlepoints, each of lower order, with the sum of their

order equal to (n + 1). Each of these new saddlepoints moves away along different

orbits. Before t = to the individual saddlepoints are

moving toward sc and they meet at t = to. In other words,

TANGENT TO THE LINE a saddlepoint of (n + 1) order can be considered as the
OF STEEPEST DESCENT,'

AT LINESTDESN O time confluence of two or more saddlepoints whose orders

add up to (n + 1).

The asymptotic star configuration of Fig. 3(II. 2)

changes considerably as the colliding saddlepoints move

apart. There is only a single point at which the lines

Fig. 4(II. 3) P = 0 and Q = 0 meet. In the vicinity of s c the lines of

steepest descent are no longer straight lines. They are

sharply curved.

These sharp curvatures in the vicinity of sc are the cause of failure of the ordinary

saddlepoint methods of integration in the case of saddlepoints of higher orders.

For, suppose that the lines of steepest descent and the negative shaded areas have

a configuration of Fig. 4(II. 3). When we apply the saddlepoint method we are dealing

with two main ideas:

1. We approximate the integrand in the vicinity of the saddlepoint.

2. We express the integral along the small segment of the contour contained in the

vicinity of s s . This segment coincides in direction with the tangent to the line of steepest
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descent at s . Once we have settled the integral along this segment, with end points,

say, at r = r and r = -r o , then we replace

O+r r

f| r by|

What we are really doing in this last step is to extend the integral along the tangent to

the line of steepest descent, and the tangent may leave, as in Fig. 4(II. 3), the shaded

negative area. An integral along this line does not necessarily satisfy condition B given

in subsection II. 11.

These considerations show us how we must direct our next steps: Develop a method

of integration in which we can follow the curved lines of steepest descent, not only in the

vicinity of s but also for a sufficient distance from the saddlepoint, so that the function

W(n+l) - sc)n+l

(n+l)! ( s c)e

becomes negligible, even if

Wn+l(s, t)

(n+l)!

is not very large. The method of integration which accomplishes these possibilities

is called "the extended saddlepoint method of integration. "

The theory of the extended saddlepoint method of integration is involved and cannot

be given in its full and final form here. We shall start with the so-called third-order

transition as a convenient introductory approach to the advanced theory. There is a

rather large class of transients which belong to the third-order transitional family, and

therefore the results of this first approach find a large number of applications.
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CHAPTER III

PURE TRANSITION OF THE THIRD ORDER

SECTION III. 1 DEFINITIONS. EXAMPLE.

III. 10 DEFINITION OF PURE TRANSITION AND TRANSITIONAL TRANSIENTS.

Let us consider the integral

f(t) = 21i F(s)eW(s't)ds 1(III. 1)

s

together with a domain, say G, of the s plane, from which a prominent contribution

to the integral takes place at the interval ta < t t b . In this domain, for a certain value

of the time, say ta t = t o tb, there is a point, say sc e G, that becomes a saddle-

point of the order (n + 1). Let W(s, t) be analytic in G. We shall study the integration

of 1(III. 1) in two separate cases:

I. When F(s) is constant (or practically constant) in G, we have

fG(t) I eW(set) ds 2(111. 1)

SG

which is called a "pure transitional integral" of the (n + 1) order.

The transient it represents is called a "pure transitional transient

of the (n + 1) order."

II. When F(s) is meromorphic in G (having, therefore, no exponential

behavior), we have

fG(t) 1 i F(s)eW(s, t)ds 3(111. 1)

SG

which is called a "mixed transitional integral of the (n + 1) order."

The corresponding transient is called "mixed transitional transient

of the (n + 1) order."

The case (n + 1) = 3 will be fully discussed as an introduction to the general case.

Under section III. 30 we shall consider the pure "transitional case." In Chapter IV

we shall introduce mixed transients and the mechanism of the transitional transient

formation.

III. 11 INTRODUCTORY EXAMPLE. Let

W(s,t) = st - log /s + 1 4(111. 1)

The saddlepoints are given by
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WI(s, t) = 0
or

t 0 = 0
1 + 2l+s

from which we obtain

= = 1 = I
s 2

two saddlepoints

The orbits of the saddlepoints are given in Fig. 1(III. 1). The saddlepoints meet at
t = 1/2. At this point the orbits suffer a 90 ° change in direction. The saddlepoints

move toward the points ± i when t - oo.

Let us now consider the second derivative of 4(III. 1).

II 1 S2
WI (s, t) = - s

(1 + z2)

The second derivative vanishes at s = 1, which is the point in which the two saddle-

points meet and therefore at s = 1 we have

W (s, t) = 0

WI(s, t) = 0

for t =- 2

Therefore, s = 1 is, at t = 1/2, a saddlepoint of the third order.

The third derivative is

Zs(s 2 -3)

(1 + 2)

and for s = 1 its value is

FINAL POSITION OF
s , FOR t = 

SADDLE POINT FOR t<

\ &A- -2

SECONDARY S.P

FINAL POSITION
,,2 FOR t=ac

SADDLE POINT FOR t > L
; / (PRIMARY S. P)

CONFLUENCE OF THE TWO
SADDLE POINTS AT t =
S.POF3.o 2
ORDER - 'S..

'; A ~ S.F SADDLEPOIN
2nd ORDER

t< (PRIMA

OF SADDLE POINT FOR I2

IT OF
FOR
RY S.P)

Fig. 1(III. 1)
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1W (l, t) = 

Then, the expansion of W(s, t) around s = 1 is given by

W(s, t)= log + t) + (t- )(s - 1) + 3! (s - 1) + 0. 06Z5 (s -1)4 +.. 7(111. 1)

III. 1Z MORE ABOUT TERMS OF FAST VARIATION IN W = st - log sZ+ 1. A simple

mathematical procedure will allow us to have a visual picture of the terms of fast vari-

ation.

Let us compute the successive derivatives of st - log s + 1 and plot, in the s

plane, the positions of their zeros and poles.

Derivative s Poles Zeros

I sWI =t
1 + s

w(n)(s, t)
n!

s=l

II _ - s
W = 

(1 2

III _ Zs(s - 3)

(1+ s 2 )

IV = + 6 s - 6 s + 1

(1 + 2)4( + )

etc.

s = i, 2 nd order

s =± i, 3 ord er

s = i, 4 th order

etc.

s = 1

s= ; = 

+ 2.42 + 0.414
s =2 .42; s =_ 0.414

etc.

The values of the first four derivatives, their poles, and zeros are tabulated above.

The behavior of the derivatives after the first is important in this discussion. In

Fig. 2(III. 1) the positions of the poles and zeros are indicated and the saddlepoints and

saddlepoint orbits are shown.

REGION OF FAST VARIATION OF ALL DERIVATIVES(ESSENTIAL
SINGULARITY)(ALL DERIVATIVES HAVE POLES AT t i)

-' PRIMARY S.P FOR t >

SECONDARY SADDLE POINT,'w o ZEROS ON ORBITS

FORt> __:> .1-···-~~ \TrA~ J(

FORt< 

Fig. 2(III. 1)
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Now, following the motion of the primary saddlepoints one can have a simple notion

of the number of terms we need to keep in the expansion of W(s, t) for different values

of time.

For t < 1/2, the saddlepoint s s l is the primary one. At t = 0, the saddlepoint is at

infinity; and as t increases, S 1moves along the positive real axis toward the point

s = + 1. In its motion, S s l will encounter the points at which some derivatives may be

zero. In other problems, the saddlepoint may encounter some points at which some

derivatives have poles.

In the region A, Fig. 2(111. 1), the saddlepoint will encounter the point in which the

four derivatives vanish (at s = + 2. 42... ). If, at this point, we compute the values of

the successive derivatives, we find

II I V

2!- 0. 05175 - 0

= + 0.0075 5 = - 0. 0000
3! 5!

This situation clearly indicates that in A one can cut the expansion of W(s, t) up to the

third power, since the higher derivatives have a small influence. Now, it can be observed

that the third derivative has the nearest zero (at s = + 3) and the pole at ± i, which are

both far from A. There, the third derivative term has a slow variation in A and the

integral is mostly controlled by the second derivative. The first derivative term is

constantly zero along the orbit, and the constant term can be taken out of the integral

sign.

The situation changes when the saddlepoint moves in the region Tr.

In the first place, the second derivative is going to vanish and therefore is going

to lose control of the integral.

In the second place, the other saddlepoint s2 will become active, and both will

change in direction after their confluence at s = + 1.

If one computes the values of the second, third, fourth, etc., derivatives at s = + 1,

one finds the values

WII WIV
_! = 4 = + 0. 0625

WIII W = negligible
3! + 0. 0833 5! = egligible

It is clear that we have to keep the first terms in the expansion of W(s, t). Now let us

give attention to the confluence of the asymptotic stars of s s l and ss2 at s = + 1. They

clearly will form at t = 1/2, s = 1, a sort of mixed star between the third and fourth

orders, whose actual shape is, for the present, immaterial. The actual behavior of the

confluent asymptotic stars will be discussed later.

When the saddlepoints s s and Ss2 abandon the region Tr, the derivatives start
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increasing, and more and more terms of the expansion of W are needed. Inside the

region C, all derivatives tend to infinity, and finally, at s = i, W has an essential singu-

larity. In the region C, the whole idea of approximation becomes meaningless. In the

particular case of W = st - log s + 1, the essential singularity is removable.

st - log 2 + 1 1 st
e - e

Therefore, in the vicinity of s = i, the saddlepoint method becomes meaningless, but

we can use some other method of integration which may be applicable to eSt/ sZ + 1.

SECTION III. 2 PURE TRANSITIONAL TRANSIENTS OF THE THIRD ORDER.

AIRY-HARDY FUNCTIONS.

III. 20 DEFINITION OF A PURE TRANSITIONAL TRANSIENT OF THE THIRD ORDER.

Let a = a(t), b = b(t), c = c(t), and d = d(t) be time-variable coefficients independent of

s. Let s = sc be a fixed point of the s plane.

An expression of the form

e s a + b(s - sc) + c( - c )2 + d(s - s )3 1(III. 2)

s

is called, by definition, a pure transitional transient of the third order.

III. 21 TRANSIENTS REDUCIBLE TO THE THIRD ORDER. Now, consider the integral

2(III. 1) which defines the general pure transitional transient.

Let D w be a region of the s plane such that

1. it contains the orbits of primary saddlepoints,

2. the primary saddlepoints move inside Dv in the interval of time

t a < t t b , and

3. c E Dv. If for s E Dv and for t, ta t tb, the expansion of

W(s, t) on the integral 2(III. 1) can be written as

W I(s , t) WII(s ,t) WIII(s t)

W(st) W(s c,t) + (s - S ) 1! s+ (s - S - ) 3!

Then, the transient represented by

f(t) = i eW(st) ds 2(111. 2)

is

is said to be reducible, in t a < t s< t b to a transitional transient of the third order. In
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such a case

a c, W II (s, t)

c zIII 3(III. 2)W (s c t)
b = W(sc, t) d 3!

III. 22 CANONICAL FORM. THE VARIABLE B. The integral 1(III. 2) which defines

the third-order transitional transient, is a function of t through the variables a, b, c, d.

The large number of variables makes the problem very difficult to discuss.

The following transformation reduces the number of variables and puts the integral

in a more suitable form.

Let

1 z- c 4(III. 2)s - s 3d

After performing algebraic operations one gets

f(t) = eA(t) 1 e Bz + dz 5(III. 2)

z

where

3
bc Z c

A = a -~3d+ 27 dZ

d
B = } (b C2) 0 6(111. 2)

YZ is the transformed contour
of cut in the z plane

Since in the integral 5(III. 2) the functions eA(t)/ / are simple factors of the integral,

we usually disregard them momentarily and consider only the integral

Ah(B) = BZ dz 7(111. 2)

z

which is called the canonical integral. (The notation Ah(B) comes from the names Airy

and Hardy. In fact, in the future we shall use a more complete notation

Ahv, 3(B )

For the moment, we shall dispense with the indices.)

A complete discussion of the integral 7(III. 2) follows in the next sections.
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III. 23 LINES OF STEEPEST DESCENT. THE FUNCTION M(B, z). SATELLITE

SADDLEPOINT. STAR CONFIGURATIONS. LAGOONS. Let us introduce the notation

M(B, z) = Bz + z 3

B = IBI eip 8(III. 2)

z = rei qb

I. Zeros of M(B, z).

There are three zeros at

z =O
0

Let - ~i eZo2

M = P + iQ P and Q real 109(III. 2)01

P = r {IB cos (B + ) + r cos 3}See Fig. 1(111. 2).II. P = 0 and Q = 0 lines.Let
M = P + iQ P and 2Qreal 10(III. 2)

We can immediately write

P = r BI cos ( + )+r 2 cos 3 

Q=r J/BI sin ( + p)+ r2 sin (.)

sin 3

where r must be real and positive, since it is a magnitude.

The computation of the lines is a rather tedious process of algebraic computation.

We are not going to follow all of the mathematical steps required for obtaining the lines

of steepest descent from 12(III. 2). While all of these steps have been worked out in

notes, the limitations of space prevent their detailed presentation here. Illustrative

examples of final results will be given by means of convenient figures.

It can be shown that Eqs. 12(III. 2) admit three sets of P = 0 lines and three sets
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ZEROS OF M(B,Z)

Fig. 1(III. 2)

p = -60°; Fig. 4(III. 2)

Finally, the satelli

of Q = 0 lines. The form and position of the lines are strongly

influenced by the angle . See 8(III. 2). The effect of IBI, for

a fixed P, is a sort of scale factor.

Figure 2(111. 2) shows the lines of steepest descent for

p = -33 1/30. The shaded areas correspond to the parts of the

z plane in which P attains a negative value. These shaded areas

are called lagoons. Along the lines Q = 0, the function M(B, z)

is pure real.

Figure 3(1II. 2) shows the corresponding configuration for

is plotted for P = 0.

te saddlepoints of the z plane can be computed by

dM(B, z) = 0 = B + 3z2

dz

* .B * .B.. Z =1 =; =-i
s1 s2 I 13(III. 2)

In Fig. 2(III. 2), the lines of steepest descent of M do not run over the satellite saddle-

points. In Figs. 3(III. 2) and 4(III. 2), which are plotted for the so-called critical values

of , lines of steepest descent run over the satellite saddlepoints.

111. 24 THE THREE POSSIBLE CONTOURS. DEFINITION OF THE FUNCTIONS

AhV(B). Let us consider the integrals 1(III. 2) and 2(III. 2), and let us study the trans-

formation of the contour s into the yz contour, in the z plane, under the transformation

4(111. 2). This transformation shows that y is obtained from s by a shift and a rotation.

There are three possible positions of yz in which the integral 7(III. 2) converges.

They are indicated by y, Y2,' 3 Each contour corresponds to an integral. See

Fig. 5(III. 2).

Then, the integral 7(III. 2) breaks into three functions, which are given by

Ah(B) eBz +z 3

Yv

dz v = 1, 2, 3 14(III. 2)

Often, as we shall see in the case of transitions of n order, two indices are attached

to Ah(B). One corresponds to the contour from which it is generated and the other

indicates the order of transition. In our case, the complete notation would be

Ah1, 3 (B)

Ah 2 , 3 (B)

Ah3, 3 (B)

for Ahl(B)

for Ah 2 (B)

for Ah3 (B)

In the present chapter we shall dispense with the functions of the order index.
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Fig. 4(III. 2)

Fig. 5(III. 2)
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Only two functions are independent, since we can deduce from Fig. 5(III. 2) that

Ah 3 (B) = Ah (B) - Ah2 (B) 15(III. 2)

1II. 25 EVALUATION OF THE FUNCTION Ahl(B).

Ah (B) = eBZ + dz 16(III. 2)

1

Figure 5(III. 2) shows that the integration along y 1 is equivalent to integrating along

the straight lines a to 0 and 0 to b when a and b -oo. It can be noted that there is not

a continuous passage from a to b along the lines of steepest descent. We shall use

the lines of steepest descent only at great distances from the origin of the z plane.

1. Integration along the line z = Tei

3 3 ir 3
z = T e =-T3 = real

.Ar
1 

dz = e dT

Then

Tr 3 Tr .TT
00 ii-T iT 1- 00 

BTe 3 3 e BTe -3 - e e dTe e dT
2wrri 2rrie~r2 f v ! e d 

0O~~0 0foo

00 I 3 ve e -T V

e B= v!3 ~Vj00e
x V0

- 6and1 17(III. 2)
0

e T dT 

0

and 18(111. 2)

--T 1 v+l
TdT- -'~I

Tr

2. Integration along the line z = T e

In a similar way one gets
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TT
-13 00

-e
2Tri

O

3
-T BTe

e e

.Tr
-1T

1 ( 3 ) -i(v+ 1 ) 
=ri e

o

3. The complete integral is then given by

Ahl(B) = e Bz 

Y1

= _ r l +
Z r -5

3
-z3 1

dz = 3
3r

r(3) r(-)
1! B- 3!

0 -v! BI

0

3 r( 3
4!

sin (v+1)j-

B 4 + B B+..6!

III. 26 EVALUATION OF THE FUNCTIONS Ah2 (B) AND Ah3 (B).

it can be shown that

oo r v+ 1)

Ah2 (B) = 3 v!
0

In a similar way,

i(2v- 1) 
B V e 3 sin (+ )

1 - 3 3
= ' {r (1) e + r

3B4 e34! F B e 3 +. . .

3 ______Be -
4!

oo

Ah 3 (B) = 1 

0

1

zvC ~

r v+1)3 J
v! B e

. v+l
3

r(±) el3L

sin (+l)Tr

- e
Be + B e

22(III. 2)

+' '

4 e rr

- 4! B e

III. 27 RELATION BETWEEN Ah, Ah 2 , AND Ah 3 . We have shown, Eq. 15(III. 2), that

Ahl(B) = Ah2 (B) + Ah3 (B)

Besides, from 20, 21, and 22(III. 2) we can easily get

Ah2 (B) = e
-13 1 l 3

.

Ah3(B) 3 Ah BeAh3(B) = e Ah 13 ~~~~~1

23(111. 2)
.2r-i

3

Relations 23(III. 2) show that we need only to compute and stick to Ahl(B).
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SECTION III. 3 GENERATING FUNCTIONS.

III. 30 GENERAL EXPRESSIONS FOR THE PURE TRANSITIONAL TRANSIENT

OF THE THIRD ORDER.

From 5, 6, and 7(111. 2) one gets

f(t)

A = a - b + 2 1(III. 3)3d 27 2
d

B

The values of a, b, c in terms of the derivatives of W(s, t) are given by 3(III. 2).

III.31 TRANSVERSAL AND LONGITUDINAL FUNCTIONS. In accordance with 1(III. 3)

the transient is given by the product of two factors. The first factor depends on A and

d. The second depends on B.

The first factor is called the transversal function.

'eA= transversal generating function 2(111. 3)

The second factor is called the longitudinal function.

{Ah,(B)} = longitudinal generating function 3(11. 3)

The transversal generating function (GF) has a simple mathematical expression and

needs no special discussion. The longitudinal generating function is given by the newly

introduced Ahv function which we shall study in some detail.

Relation 23(III. 2) shows that it is sufficient to consider only Ahl1(B).

III. 32 B PLANE TRANSIENT TRAJECTORY. The argument B is, in general, a com-

plex quantity. Let us introduce the B plane as indicated by Fig. 1(III. 3).

For a particular transient, the quantities a(t), b(t), c(t), and d(t) are given. See

1 and 3(III. 2).

From 1(III. 3), we have

B = B(t) = -. 4(III. 3)

Then, as time passes, point B will describe in the B plane a line which is called the

-- (' t PLANE / Fig. 1(III. 3)

REAL B
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trajectory of the given transient. In the future discussion we shall refer to a particular

transient as its trajectory in the B plane.

III. 33 THE TRANSITIONAL SOLIDS OF THE THIRD ORDER. Let us consider the

following functions:

Real Ah (B); Imag Ah (B)

IAhl(B) ; Arg (Ah I(B))

The transitional solids are formed as follows. Pick up a value of B. For this selected

value of B, compute, for example, Real Ahl(B). Now measure Real Ahl(B) along a

line perpendicular to the B plane, passing through point B. If we proceed in a similar

manner for every point of the B plane, we shall generate a surface which, together

with the B plane, will define the Real Ahl(B) solid.

Solids for Imag Ahl(B), IAhl(B)I, Arg (Ahl(B)) may be constructed in a similar way.

These solids are indicated as isometric plots for certain strategic regions of the B

plane, in Fig. 2(III. 3).

These solids provide a visual means for seeing directly the behavior of the longi-

tudinal part of a particular transient. We first plot the corresponding transient tra-

jectory. The intersection of a given solid with the cylindrical surface perpendicular

to the plane and generated by the trajectory gives us visually the corresponding part

of the longitudinal factor.

Figure 2(III. 3) shows a typical straight-line cross section of the transitional solid.

The cross section along the real B axis appears very frequently in several problems.

Along this cross section the function Ahl(B) is pure real. This cross section coincides

with the so-called Airy-Hardy functions. Integral 7(III. 2) is a generalization of the

above-mentioned functions.
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CHAPTER IV

MIXED TRANSITIONAL TRANSIENTS

MECHANISM OF TRANSIENT FORMATION

SECTION IV. 1 DEFINITIONS.

IV. 10 DEFINITIONS OF PURE TRANSITIONAL TRANSIENTS. Pure transitional tran-

sients are given, by definition, by

2ri eW(s, t) ds

We shall start with the discussion of mixed transients, in which the effect of F(s) is

considered. We shall first study simple typical cases which will help us in the attack

of the general problem.

IV. 11 THE COINCIDING POLE MIXED TRANSIENTS OF THE THIRD ORDER. Let

F(s) be reduced to

F(s) = 1 1(IV. 1)-s c

The denomination "coinciding" simply indicates that the pole is at s = s c , which is the

point of confluence.

The relation 23(111. 2) allows us to treat only the case for the contour Y1 which gen-

erates the Ahl(B) functions.

The corresponding integral for the coinciding pole transient of the third order is

given by

a+b(s-sc) + c(s-sc)2 + d(s-sc)3 Bz+3

f(t) = 2 e ds =eA dz 2(IV. 1)

Y1

when the transformation 4(III. 2) is introduced.

We shall study in some detail the canonical integral, which reads

Bz + z3
~(B) ,i - e dz 3(IV. 1)

1

In order to integrate 3(IV. 1) one uses the auxiliary integral

(·-B Bz B
dB = e _ 4(IV. 1)

0
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z PLANE
Fig. (IV. 1)

Then 3(IV. 1) becomes

4p(B) 2= -i f eZ dz + fi eZ dz

1 1

eBz dB = -1
e dB2-rri

since

Ahl(B) = A1 eBz + z
Ah(B) Ti Y1

The first integral of 5(IV. 1) has a pole at z = 0. Figure 1(IV. 1) shows the

is needed

contour which

3 oo 3 +'n'/3
1 ee 1 dT

21i z = 21i 
J Jpj 3

epei 1 /o T e d -f: f eT dT 1

Then, expression 5(IV. 1) becomes, by using 6(IV. 1) and 20(III. 2),

1 B oo +l v+l )
1'p (B) + v+l)! sin (v+l

0
7(IV. 1)

1{ ( r ! 3)B 2 _ ( B 4 }

which is the corresponding solution of the coinciding pole transient.

Curve 2 in Fig. 2a(IV. 1) shows the function cp(B) for B real. (In Figs. 2a, 2b,
and 2c(IV. 1) the point s c was selected as the point sd of confluence of the 2 saddlepoints

which correspond to the third-order case.)
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The complete pole transient can then be written as

fp(t) = eA (B) 8(IV. 1)
p 1)

IV. 12 THE COINCIDING ZERO TRANSIENT. Let F(s) be reduced to

F(s) = s- s 9(IV. 1)

The coinciding zero transient is written as

~~1 ra+b(s-sc)+ c(s-sc)2 + d(s-sc )3 A fo(t) = i J1 (s -sc e ds e 1 Bzz dz
fo2t ri c Y- 2=Zrri

10(IV. 1)

with canonical form

(B) - fr S ze dz 11(IV. 1)41, 0(B ) ze- i

This integral can be computed immediately.

It can be seen that

I Bz + z d Bz + z d

11

since the function converges uniformly with respect to B.

Hence in accordance with 20(111. 2) one gets

9 1 0 (B)=' Z ( B=Tsin 
(-)! B(V-) sin (v+l)

0

r(4) r()3 +}...

12(IV. 1)

Curve 3 in Fig. 2a(IV. 1) shows the corresponding function 12(IV. 1) for B real.

The complete zero transient is given by

A
fo(t) = 1, 0 (B) 13(IV. 1)

IV. 13 COMPARISON OF PURE, COINCIDING POLE, AND COINCIDING ZERO

TRANSIENT (third order). As a matter of illustration of the waveforms corresponding

to the pure, coinciding pole, and coinciding zero transient, we offer Fig. 2a(IV. 1) which
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is computed for only B real. Curve 1 shows the pure transitional transient.t

IV. 14 SHIFTED POLE TRANSIENTS. (Small shift case). This is the case when

F = 1
F s - s b Sb Sc 14(IV. 1)

Here we shall study the case of small shift, that is, s b is close to s c

The corresponding integral reads

a+... +d(s-s )3
1 A 1f (t) = S ds e 1--

sb Ti c sb-

s

Bz + z
e dz

z - Zb

Y1

where zb = sb - Sc; Zb is small.

The corresponding canonical integral now is given by

1

4, Pb = ZTri
1

Bz + z3
e dz

z - Zb

Now let us introduce the transformation

Z - z b = U

We obtain

3 3 2 2 3Bz+z 3 =u + 3u 2 Z + 3 uz + zb + Bu + Bzb

* or

z3+BZb u 3+u(B+3b) 3u 2 z

4) b(B ) e b2 i e u e b du
18(IV. 1)

Let us introduce the new variable parameter

X = B + 3 Zb 19(IV. 1)

(for small values of zb' X B).

Before performing the integration 18(IV. 1) it is convenient, for reasons of further

simplification, to substitute this value in 15(IV. 1) so that we shall first consider the

integral

1, pa (X ) 2ai= e3+ 3Zbdu 20(IV. 1)

tin Fig. 2(IV. 1) the variable v is used instead of z. This change in notation does
not change the results.

a
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for small shifts.

2
3 UZb 2

e = + 3UZb 21(IV. 1)

so that 20(IV. 1) becomes

_ _ _ 1
1) f e u x + u 3

, p u du + b 2ria

ux+u2f ue du

The first integral is a coinciding pole transient. The second is a coinciding zero tran-

sient. Then, the first theorem of composition is given by

"The shifted pole transient is equivalent to the sum of a coinciding pole transient

and 3 b times a coinciding zero transient." Since

X = B + 3 b

there is practically no shift if zb is small. The function ZZ(IV. 1) is plotted in

Fig. Zb(IV. 1). The curve 0 is the coinciding pole transient. The lower curve is the

coinciding zero transient. Figure 2b(IV. 1) was computed for X real, zb = 0. 1.

Curve 1 is the final shifted pole transient for zb = -0. 1, curve 2 is the corresponding

curve for z b = +0. 1. It can be noted immediately that

"In transitional transients, shown here for the third order, a small shift of the

coinciding pole produces a strong effect on the wave envelope overshoot, and leaves

the rising part of the wave practically unchanged."

IV. 15 SHIFTED ZERO TRANSIENTS. This is the case when

F(s) = s - s s sa c 23(IV. 1)

The shifted zero transient is given by

1 /= a+(S-Sc)b+ .-
fa(t) = Zri - (s sa) e

1 1a+(S-Sc)b+ . .
2=ri - S c)

1 1* a+(s-sc)b+.
-2i (Sc - Sa) eei

. +d(s-s )3
ds

e z
(3~2 Az e

( Yd-)2

Bz + z3 1
dz - z2·rri a .4 Bz + z

e dz
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The first integral is a coinciding zero transient, the second is za times a pure tran-

sitional transient.

Figure 2c(IV. 1) shows the plot of

1 Bz + z3 za f Bz + z
2i J ze dz -2v e

for za = 0.01 and B real.

In Fig. 2c(IV. 1), curve 9 is the coinciding zero transient. Curve 0 is the pure

transitional transient. Curve 8 is the composite transient for a shift of za = -0.01

and curve 10 shows the effect of Za = 0.01 zero displacement. It can be noted that

"In transitional transients (here proved for the third order) a small displacement

of a zero from the coinciding position has a very small effect in the transient wave."

IV. 16 DIPOLE TRANSIENTS. This is the case where

s -
s - s b

since

s - s b + s b - aF(s) = 1
s - Sb

+ 6
S - S 

25(IV. 1)

so that

fd(t) = l/ a+... +d(s-sc ) 3 ( - s .
2T I J e ds + s b

-
s a )

a+. .. +d(s-sc ) 3

e ds 26(IV. 1)

The first integral leads to

1 a+. .. +d(S-S )3
1 J e ds =

Y1

A
e Ahl(B)d 1

27(IV. 1)

The second, in accordance with 20(IV. 1), leads to

a+. .. +d(s-sc )3

e
s - Sb

ds = 6e (A+zb+z )
ux+u3

e duuU·""

+ 3Zb 2rri S ue du) 28(IV. 1)

which is the composition of a coinciding pole and a coinciding zero transient.

The final dipole transient then reads

U

a
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fa(t) = Ah 1 (B) + eA {Ad
Bz +z 3

b [6 1 p(X) + 3 6Zbol, 0(X)]

X = B + 3 Zb = B

The functions 1 p(X) are given by 7(IV. 1) and 12(IV. 1), respectively.

Figure 2c(IV.1) shows the dipole transient composition that corresponds to

29(IV. 1)

30(IV. 1)

the values

z =0. 2
a

z b =+.1

from which the following

Curve

OJ Zb=+O 1;

Zb = +0. 1;

J Zbb = -0. 1;

cases can be separated.

z = +0.2
a

z = -0.2
a

z = +0.Z
a

z = -0. 
a

SECTION IV. 2

IN THE CASE

COMPARISON OF SECOND- AND THIRD-ORDER SOLUTIONS

OF COINCIDING POLES.

It is of interest to compare integral solutions corresponding to the contribution of

the second- and third-order saddlepoints in the case in which the saddlepoint orbit runs

over a pole. Graphical comparison of the corresponding waveforms reveals at once the

character of both types of transient formation.

1.2

PURE RESONANCE 1.I
FORMATION

0.9

T-[1+Ef(X.'X)]

07
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-4 -3 -2 -I
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0.3

Oi02 I I I 
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Fig. 1(IV.Z)

-71-

when

0

3 4 5 6 7 8 9 10 11 12

X -

_II� �� ___ _�__�II I� __ _ _ _ 1______11_ __I�I IC



.

Fig. 2(IV. 2)

a

-72-

a

4



t Figure (IV. 2) illustrates the graphs of the second- and third-order coinciding pole

formation. Normalized units have been selected in order to give a proper basis of

comparison.

It can be observed that both formations are characterized by the rapid increase of

the response around the normalized point X = 0. For negative values of X, both cases

show a slow monotonic increase reaching the signal point at practically the same value

of X (X = -1). After this point, the second-order solution rises faster than the third-

order solution. Both waves tend to the final state (1)* by oscillation. The second-order

solution shows faster oscillation and smaller overshoot value, and converges faster

than the wave corresponding to the third-order case.

The graphs of the third-order coinciding pole transients, illustrated in Fig. 1(IV-Z),

correspond to the functions associated with Ah3, 1' The cases associated with Ah3, 2

and Ah3 3 are not shown.

SECTION IV. 3 COMPARISON OF ZERO, DIPOLE, AND POLE TRANSIENTS OF

HIGHER ORDER.

At this point we should like to remind the reader that the present report, No. 55:2a,

is intended only as an introduction to the theory of the saddlepoint method of integration.

Since the basic ideas, procedures, and results have been very well illustrated by the

previous analysis, we consider that the discussion of higher order transients is out of

the scope of this introductory report. Higher order solutions are treated in other

reports of this series.

We consider it of interest, however, to present some typical results which corres-

pond to the higher order cases, particularly from the point of view of comparison of the

waveforms associated with zero, dipole, and pole transients of different order.

This subsection gives the results of the analysis of transients of higher order. The

waves presented here are associated with the function Ahn 1' n = 3, 4, 5, oo. The

results are given in Fig. 2(IV. 2). Since this set of graphs is self-explanatory, a further

description is omitted.

*
The bibliography for the entire Series 55 will be given in the final report of

the series.
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CHAPTER V

CONCLUDING REMARKS

This report has given, in an elementary way, the basic ideas, procedures, and

mechanism of solution of the saddlepoint method of approximate integration.

This elementary and somewhat informal presentation has been advanced to a formal

treatment of the problem of approximate integration because of strategic reasons. A

unified and formal theory of integration is very difficult to follow if it has not been pre-

ceded by a somewhat elementary and heuristic presentation of the subject, particularly

if certain mechanisms of construction of the solutions are not familiar to the reader.

Several reports of Series 55 will contain a formal and rigid presentation of a unified

theory of approximate integration. Some ideas of this theory are hard to accept if they

have not been introduced by qualitative information on certain specific methods - the

saddlepoint, cliff, and pocket methods, for example.

The spirit of report No. 55:2a is to supply the reader with some elementary knowl-

edge on the subject of the saddlepoint method of integration. Through all of this report

the reader may have noticed that all efforts were directly concentrated on showing the

mechanism of construction of the solution rather than on giving a formal discussion of

the subject. All details that are not relevant to this mechanism of construction were

omitted. For example, proof of the asymptotic character of the solution was not given.

All of this proof and analytical details were saved for the formal presentation of the

theory. 
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