
Distributed Visualization and Feature Identification for 3-D
Steady and Transient Flow Fields

by

David D. Sujudi

B.S., Aeronautical and Astronautical Engineering
The Ohio State University, 1991

S.M., Aeronautics and Astronautics
Massachusetts Institute of Technology, 1994

SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

ENGINEER IN AERONAUTICS AND ASTRONAUTICS
AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

FEBRUARY 1996

@ 1996 Massachusetts Institute of Technology. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute
publicly paper and electronic copies of this thesis document in whole or in part.

Signature of Author: , ,
Department of Aeronautics and Astronautics

January 12, 1996

Certified by:
Robert Haimes

Principal Research Engineer
Thesis Supervisor

Accepted by:

:.1ASSACHUSETTS INSTT iE Professor Harold Y. Wachman
OF TECHNOLOGY Chairman, Departmental Graduate Comnihttee

FEB 211996 .ari

LIBRARIES

Distributed Visualization and Feature Identification for 3-D
Steady and Transient Flow Fields

by

David D. Sujudi

Submitted to the Department of Aeronautical and Astronautical Engineering on
January 16, 1996 in Partial Fulfillment of the Requirements for the Degree of Engineer

in Aeronautical and Astronautical Engineering

Abstract

This thesis presents the development of three different visualization tools designed to facilitate the
understanding of 3-D steady and transient discretized flow fields in a distributed-computing
environment.

Distributed computing decomposes the computational domain into 2 or more sub-domains which
can be processed across a network of workstation(s) and other types of compute engines. The
decomposition brings up concerns regarding where and how a particle-path or streamline
integration can continue when the integration reaches a sub-domain boundary. This thesis
presents a scheme which manages the flow of information between the clients, where the
integrations are done, and the server, which does the rendering, in order to minimize network
traffic, avoid multiple instances of the same object, and make efficient use of the parallel
environment.

An algorithm to automatically locate the center of swirling flow has also been developed. The
scheme is based on critical-point theory. By using only tetrahedral cells (and transforming other
cell types to tetrahedra), the scheme can perform the computation on a cell-by-cell manner and
exploit the considerable simplification from using linear interpolation on tetrahedral cells. As
such, it can readily take advantage of the compute power provided by a distributed environment.

Finally, a residence-time integration tool, which computes the amount of time the fluid has been in
(or in residence within) the computational domain, is developed. The tool is then used to identify
separation regions. The fluid in a separated region usually remains there for a considerable
amount of time. There will be a significant difference between the residence time of the fluid
within the separated flow and that of the surrounding fluid. This difference is used to distinguish
the separation region. The residence-time equation for different types of flows (inviscid
incompressible, viscous incompressible, inviscid compressible, and constant density/viscosity) are
formulated. An explicit time-marching algorithm of Lax-Wendroff type is used to solve the
residence time equation on a cell-by-cell manner.

Thesis Supervisor: Robert Haimes
Title: Principal Research Engineer

Acknowledgments

I would like to thank Robert Haimes for his support and guidance throughout the course of

this work and for the opportunity to work with him on pV3.

To my parents and grandparents, thanks for the support, love, and encouragement. And also

for Rini, thank you for the love, support, and patience.

Finally, I would like to thank God for making it all possible.

Table of Contents

Abstract .. 2

Acknow ledgm ents .. 3

Table of Contents .. 4

List of Figures.. 6

List of Tables .. 10

Nom enclature... 11

1. Introduction ... 12

1.1 Thesis Outline... 14
1.2 p V 3 .. 15

2. Integration of Particle Path and Streamline across Internal Boundaries 18

2.1 Particle-Path and Streamline Integration 18
2 .2 S o lu tio n .. 2 1

3. Sw irl Flow Finder .. 28

3.1 Theory... 30
3.2 Implementation... 31
3.3 Testing ... 34

5. Residence Tim e .. 42

4.1 Residence time equation .. 43
4.2 Lax-W endroff algorithm 46
4.3 Boundary conditions ... 49
4.4 Numerical smoothing ... 50
4.5 Sample results .. 52

5. Conclusion .. 66

5.1 Summary of Results.. 66
5.2 Suggestions for Future W ork.. 68

Bibliography... 69

Appendix A: Formulation of Lax-Wendroff Algorithm 73

Appendix B: Identification of Flow Separation Using the Eigensystem of the
Velocity-Gradient Tensor .. 77

List of Figures

Figure 1.1 Interaction between the server and clients in a typical 2-client setup 16

Figure 1.2 pV 3 user interface. .. 17

Figure 2.1 Illustration of a streamline with 5 segments 20

Figure 2.2 Illustration for particle integration in a 3-client setup..................................... 23

Figure 2.3 Integration of a particle requiring a transfer from client 1 to client 2 and a re-transfer
from 2 back to 1 25

Figure 2.4 Illustration of a particle requiring 3 transfers 27

Figure 3.1 Flow pattern at a critical point whose velocity-gradient tensor has 1 real and a pair of
complex-conjugate eigenvalues ... 30

Figure 3.2a A hexahedron (or structured-grid cell) divided into 6 tetrahedra 31

Figure 3.2b A prism cell divided into 3 tetrahedra 32

Figure 3.2c A pyramid cell divided into 2 tetrahedra. 32

Figure 3.3 A sample result of an artificially-generated test case .. 35

Figure 3.4b flow past a tapered cylinder. Swirl flow centers and streamlines are shown 37

Figure 3.4a Flow past a tapered cylinder. Shown are swirl flow centers found by the algorithm.37

Figure 3.5 Flow over a F117 fighter. Swirl flow centers and streamlines are shown. Note: The
centers are not mirrored..... 38

Figure 3.4c B low up of figure 4b .. 38

Figure 3.6a Result of FAST vortex core finder on data set 1 .. 39

Figure 3.6b Result of pV3 swirl flow finder on data set 1................................... 39

Figure 3.6c Result of FAST vortex core finder on data set 2 .. 40

Figure 3.6d Result of pV3 swirl flow finder on data set 2..................................... 40

Figure 3.6f Result of pV3 swirl flow finder on data set 3. .. 41

Figure 3.6e Result of FAST vortex core finder on data set 3. Note that a streamline has also
been spawned here to indicate that the twist at the top of the middle curve is actually
outside the vortex. 4 1

Figure 4.1 Pseudo-mesh cell P (dashed) surrounding node i and a cell neighbor A. The corners
of P are composed of the center of neighboring cells marked by capital letters............. 46

Figure 4.2 Face and node numbering for hexahedral cell 47

Figure 4.3 Stencil for pseudo-Laplacian. Only cell A is shown. 50

Figure 4.4b Residence-time contours for flow shown in Fig. 4.4a51

Figure 4.4a Artificially-generated flow with constant velocity in the x direction, vx = 1...........51

Figure 4.5a Swirling flow through a converging-diverging duct [11]. A separation bubble is
shown as an iso-surface of streamfunction with value 0. Streamlines are also shown......52

Figure 4.5b Contours of residence time for flow through a converging-diverging duct. 53

Figure 4.5c Contours of residence time and iso-surface of streamfunction with value 0........ 53

Figure 4.5d Iso-surface of residence time of value 27.5................................... 53

Figure 4.6a Mesh at the hub of the stator/rotor (stator: 40 x 15 x 15, rotor: 40 x 15 x 15).
Dashed line segments indicate periodic boundaries 54

Figure 4.6b 3-D illustration of stator/rotor passage. Grey area is the hub 55

Figure 4.7 Nodes at the stator/rotor interface. Solid circles indicate actual nodes. Unfilled
circles indicate locations corresponding to actual nodes at the opposite interface 56

Figure 4.8 Nodes at non-overlapping region can be mapped to location at the opposite interface
by using the periodicity assumption .. 56

Figure 4.9a Residence-time contours at the hub. Regions where anomalies occur are indicated by
dashed circles 58

Figure 4.9b Residence time contours at the tip. Regions with anomalies are similar to the ones
show n in Fig. 4.9a.. 60

Figure 4.10 Residence time iso-surface of value 7.7. For clarity, rotor blade surfaces are not
show n............... 61

Figure 4.11 Residence time iso-surface of value 11.0 ... 61

Figure 4.13a Mach number contours at the hub. Regions with large gradient indicated by dashed
circles 62

Figure 4.12 Region B (of Fig. 4.9a) enlarged to show an unrealistically-large gradient of
residence tim e 62

Figure 4.13b Mach number contours. Region (at the stator suction surface near the trailing edge)
w ith large gradient... 63

Figure 4.13c Mach number contours at the tip. Regions with large gradient indicate by dashed
circles .. 63

Figure 4.13d Density contours. Density non-dimensionalized by the inlet stagnation density.
Regions with large gradient indicated by dashed circles .. 64

Figure 4.13e Density contours. A region with large density gradient (at the stator suction surface
near the trailing edge). .. 64

Figure 4.13f Density contours. A region with large density gradient (near the trailing edge of the
stator pressure surface) .. 65

Figure A. 1 Pseudo-mesh cell P (dashed) surrounding node i and a cell neighbor A. The corners
of P are composed of the center of neighboring cells marked by capital letters 73

Figure A.2 Face and node numbering for hexahedral cell. 74

Figure A.3 Contributions of cell A to the first-order (left), and the second-order (right) flux
integration . .. 75

Figure B. 1 Flow patterns for selected distributions of eigenvalues of the velocity-gradient
tensor 77

Figure B.2a Flow separating at a 3-degree angle from the specified separation plane (dotted line).
Velocity is zero and uniform in the z direction 80

Figure B.2b Side view of separating flow and the surface found by the separation-flow-finder
algorithm . .. 80

Figure B.2c Separation surface shown in Fig. B.2b. Velocity vector cloud not shown........... 81

Figure B.3a Flow moving in opposite direction divided by a separation plane (dotted line).
Velocity in is zero and uniform in the z direction. .. 81

Figure B.3b Side view of opposing flow and the surface found by the separation-flow-finder
algorithm . .. 82

Figure B.3c Separation surface shown in Fig. B.3b. Velocity vector cloud not shown 82

Figure B.4a Swirling flow through a converging-diverging duct [11]. A separation bubble is
shown as an iso-surface of streamfunction with value 0 .. 83

Figure B.4b Surfaces found by the separation-flow-finder algorithm. 83

Figure B.4c Enlargem ent of Fig. B.4b.. .. 84

Figure B.4d Separation surfaces and streamfunction iso-surface overlapped........................... 84

List of Tables

Table 3.1 Size of Test Cases for Swirl-Flow Finder Algorithm34

Nomenclature

F, G, H the quantities in the residence-time equation that are x, y, and z differentiated,
respectively

Q the non-derivative term in the residence-time equation
Sx, Sy, Sz projected areas on xz, yz, and xy plane of a face of a hexahedral cell
U the quantity in the residence-time equation that is time differentiated
V cell volume
X eigenvector
t time
u,v,w velocity
w reduced velocity
x,y,z spatial coordinates

Greek

, eigenvalue
Ct viscosity

p density
I residence time

Superscripts

n index of discretized time
averaged quantity

Subscripts

i, j, k referring to the Cartesian coordinate directions
i a node in a discrete computational domain

Chapter 1

Introduction

Understanding 3-D transient CFD data is difficult. The additional spatial and time dimensions

generate considerably more information than 2-D steady calculations. Furthermore, the increasing

complexity of the type of flow being simulated introduces numerous flow features investigators

will find of interest, such as vortices, separation bubbles, and shock interactions. All of these

directly impact the amount of effort needed to study and interpret such data.

To aid investigators in this effort, various visualization software (as well as

software/hardware) packages have been developed. While most of these systems share many

similar features, new and unique concepts are constantly being developed in order to achieve the

ultimate goal, a better understanding of the data. For instance, the Virtual Windtunnel [5]

immerses the user within the data by employing a six-degree-of-freedom head-position-sensitive

stereo CRT system for viewing. A hand-position-sensitive glove controller is used for

manipulating the visualization tools within the virtual flow field. Systems such as AVS [36] [7]

and Khoros [33] [32] uses a visual programming environment in an attempt to ease and expedite

the programming process. In the data-flow visual programming environment, the user defines the

processing to be done on the data graphically, using icons to represent the processors and links

between icons to represent the flow of data. At the other end of the spectrum, pV3 [19] [20]

employs a more conventional programming (through subroutine calls) and a straight forward and

easy to learn user interface. It is designed for distributed computing and co-processing, allowing

for scaleable compute power for large data sets.

To facilitate the investigation of the data, these packages provide many common visualization

tools, which can be categorized according to their capabilities [8] [16]: feature identification,

scanning, and probing. Feature identification tools, such as a shock detector, enable the users to

find particular features of the flow quickly. Scanning tools, such as cutting surfaces and iso-

surfaces, provide a way to incrementally view the domain by specifying either a spatial or a scalar

parameter. Probing tools, such as instantaneous streamlines, streamline probe, and point probe,

provide the most localized information, the behavior of the flow or the values of a particular flow

quantity at certain point(s). This categorization also reflects the reduction of dimensionality of the

information in the data, from 3-D to 0-D, which is sometimes necessary in understanding the

various aspects of the flow.

These tools can be effective because they provide the users information based on the data in a

form that can be absorbed more easily. For instance, streamlines show how the vector fields

behave, and using it is usually more effective in comprehending the flow field than looking at

pages of raw numbers. Iso-surfaces provide information on the scalar fields in the data by

generating surfaces where the scalar field has a specified value, which concisely describes a

particular distribution within the domain.

Also crucial in the effectiveness in the use of these tools is the speed at which they can be

manipulated interactively. In investigating the vast amounts of data produced by the CFD solvers,

the users will need to orient and re-orient cutting surfaces around the domain, spawn streamlines,

and generate iso-surfaces. An almost instant feedback is required so as not to break the users'

train of thought during the investigation. For any particular tool, the feedback time depends

mainly on the size of the domain, the capability of the computer, and the number of other tools

being requested.

In recent years, unsteady 3-D simulations have become more common, and their size has

increased steadily. Along with this growth comes a demand for a visualization software capable

of handling huge 3-D unsteady data as well as providing tools for interrogating that data. To

meet this goal, a parallel visualization software, called pV3 has been developed at MIT [19] [20].

pV3 is designed for co-processing and also distributed computing. Co-processing allows the

investigator to visualize the data as it is being computed by the solver. Distributed computing

decomposes the computational domain into 2 or more sub-domains which can be processed

across a network of workstation(s) and other types of compute engines. Thus, the processing

needed by the visualization-tool algorithms (e.g., finding iso-surfaces, integrating particles and

streamlines, etc.) can be done in parallel. With parallel processing, the compute power can be

scaled with the size of the problem, thus maintaining the desired interactivity.

The computation of some of the visualization tools, such as iso-surfaces and cutting planes,

are embarrassingly parallel since they are done on a cell-by-cell basis. As such, these

computations are automatically parallelized when the computational domain is decomposed.

However, domain decomposition brings up concerns regarding the where and how a particle-path

or streamline integration can continue when the integration crosses a sub-domain boundary (also

called internal boundary). This is not an issue in a single-domain environment, in which a particle-

path or streamline calculation stops when the integration reaches the domain boundary. One of

the aims of this thesis is to present a method for managing the information movement needed to

continue integrations across these internal boundaries.

Parallel processing also invites opportunities to develop visualization tools that can take

advantage of distributed compute power. As noted by Haimes [16], the weakest link in

visualization is probably the scarcity of feature identification tools. Thus, the second and third

thrust of this work is to present two new feature identification tools, a swirling-flow finder and a

residence-time integrator, whose computations are designed to be parallel. A swirling-flow finder

automatically identifies the center of swirling flows and displays the center as a series of disjoint

line segments. A residence-time integrator computes the amount of time the fluid has been within

the computational domain. These tools provide alternative ways of looking at the data and its

features, and it is hoped that they can present new insights which lead into better understanding of

the data and the underlying physics.

1.1 Thesis Outline

Since all the work and development that will be presented here are done within the context of

pV3, a brief description of pV3 and its environment will be given in the next section.

Chapter 2 describes how domain decomposition effects the integration of streamlines and

particle paths, and the issues and problems encountered in continuing integration across sub-

domain boundaries. A solution that takes into consideration issues such as minimizing network

traffic and maximizing the use of the parallel environment will then be presented.

Chapter 3 first presents the motivation for the development of the swirling-flow identification

tool. The fundamental theory and its implementation will then be explained. And finally, some

result validation will be shown.

The algorithm used in computing residence time is discussed in chapter 4. The development

of the governing equations of residence time for various types of flow (inviscid incompressible,

inviscid compressible, viscous compressible, and constant density and viscosity) and some sample

calculations will also be presented.

Finally, the contributions of this work will be summarized in chapter 5.

1.2 pV3

pV3 is the latest in a series of visualization software developed at MIT. The previous

generation software, Visual2 [13] and Visual3 [17] [18], are designed for visualizing two and

three dimensional data in a post-processing manner. On the other hand, pV3 is designed for co-

processing visualization of unsteady data whereby the user can visualize the results as the model

or solver progresses in time. pV3 also allows the solution to be computed in a distributed/parallel

environment, such as in a multi-workstation environment or in a parallel machine. In such a

setup, the movement of visualization data between the solver machines and the visualization

workstation will be taken care of by pV3. The development of pV3 was motivated by the

increase in size of 3-D unsteady calculation and the need for highly interactive tools in visualizing

and interrogating the results [19].

In the distributed solver model of pV3, the CFD system/solver decomposes the

computational domain into sub-domains. The computational domain is made up of elements

(such as tetrahedra, hexahedra, etc.), and the sub-domain boundaries are formed by the facets of

these elements. pV3 accepts any combination of these elements: disjointed cells (tetrahedra,

pyramids, prisms, and hexahedra), poly-tetrahedral strips, and structured blocks. In pV3, the

programmer can specify where a streamline/particle-path integration should continue (to a cell in a

specific sub-domain, through a specific internal boundary in a sub-domain, or to try all sub-

domains) when the integration reaches a sub-domain boundary.

Figure 1.1 Interaction between the server and clients in a typical 2-client setup.

Each sub-domain is handled by a separate process (called a client in pV3), and each computer

in the distributed environment can execute one or more client(s). The user interface and graphic

rendering are handled by a process (called the server) run on a graphics workstation. As an

illustration, the interaction between the server and the clients in a typical 2-client setup is shown in

Fig. 1.1. A call to a pV3 subroutine (named pV_Update) is added to a typical CFD solver to

handle the processing needed by pV3, including particle-path and streamline integrations. To

keep the processing synchronized, each client does not exit pV_Update until the server transmits

a time-frame-termination message. Only then can the clients continue to the next time step.

From the user's point of view, pV3 consists of a collection of windows, which includes a 3D,

2D, and 1D window, as illustrated in Fig. 1.2. Objects such as computational boundaries, iso-

surfaces, streamlines, or cutting planes are shown in the 3D window. The mapping of the cutting

plane or contours are shown in the 2D window. The ID window displays one dimensional data

generated by various probing functions of the 2D window or from mapping the values traced

along a streamline. This arrangement, in conjunction with reduction of dimensionality provided

3D Window

Key Window -/ -o *, . dwi i ,,

2D Window

Dialbox Window

@'AJAA i D Window

Text Window i ..

Figure 1.2 pV3 user interface.

by the visualization tools, enable the user to simultaneously consider several aspects of the data,

and thus facilitating the comprehension of complex 3-D data.

Interactions with pV3 - for orienting objects in the 2D or 3D window, activating visualization

tools, modifying tool parameters, etc. - are done through mouse clicks and keyboard inputs within

the various windows. By entering text strings in the pV3 text window, the user can interact with

the solver by sending messages which are then interpreted by programmer-supplied routines in the

solver. This capability, which is unique among visualization software, enables the user to steer the

solution while simultaneously visualizing the results.

Chapter 2

Integration of Particle Path and Streamline
across Internal Boundaries

2.1 Particle-Path and Streamline Integration

A streamline is a curve in space which is everywhere tangent to the instantaneous velocity

field. It is calculated by integrating:

- u() (2.1)
da

where i is the position vector, ii the velocity vector, and a the pseudo-time variable. The

integration employs a fourth-order Runge Kutta method with variable pseudo-time stepping. The

pseudo-time variable is used only for integrating streamlines and is independent of the actual

computation time-step.

A particle path, on the other hand, represents the movement of a massless particle as time

progresses. The calculation amounts to integrating:

d- =(', t) (2.2)dt

The integration uses a fourth-order accurate (in time) backward differencing formula. Details

about the streamline and particle path integration algorithms can be found in [9] [10].

Both types of integrations start at a user-specified seed point and end when a computational

boundary is reached. However, between these points the integration might pass through one or

more sub-domain boundaries. When this occurs, information needed in continuing the integration

(referred to as a "continue-integration request" or "transfer request") must be sent to other

client(s) so that the integration can continue. The information usually comprises of integration

state, identification number for the particle/streamline, rendering options, the identification of the

client sending the request, etc. As stated in section 1.2, the CFD system can specify where an

integration should continue when it crosses an internal boundary. However, this specification

might be erroneous, or it might not be applicable in certain flow conditions. Thus, for robustness,

the system should try its best to continue an integration despite an incorrect instruction. For this

reason the client(s) receiving the transfer request has the option to do one of the following:

* accept the transfer: determines that the integration continues in its sub-domain and proceeds

with the integration.

* reject the transfer: determines that the integration does not continue in its sub-domain and

ignore the request.

* request a re-transfer: determines that the integration does not continue in its sub-domain and

requests that the integration be continued in one or more other client(s).

The algorithm for determining whether an integration hits an internal boundary, or whether a

client accepts/rejects a transfer, or requests a re-transfer involves checking the spatial location

used in the current integration stage against the sub-domain space. The details of this method will

not be discussed in this thesis, but can be found in [9]. Here, only the problems encountered in

managing transfer requests will be addressed, as well as how the client(s) and the server must

interact to ensure that integrations are continued, while keeping the process as efficient as

possible. The issues can be stated with the following questions:

* Due to the possibility of re-transfer, how can sending the same request to the same client(s)

repeatedly be avoided? This is a question of efficiency as well as avoiding multiple instances

of the same object within a sub-domain.

* How can the server know when to safely send the time-frame-termination message? Sending

this message when there is a possibility of further integration transfers could prematurely abort

the integration of some particles or streamlines. Thus, the server must know when all

transfers are complete for the current time step. Otherwise, the time-frame-termination signal

can not be sent and the clients (involving the CFD solver) will remain in a wait state, stalling

the entire calculation. In this case, the graphics server will eventually time-out due to

sub-domain boundary

Figure 2.1 Illustration of a streamline with 5 segments

inactivity, release the clients from this wait state, and quit. This situation is clearly

undesirable.

What is the best way to maximize the use of the parallel environment in integrating streamlines

and particle paths? These integrations are essentially a serial process. The integration starts

at some point at the beginning of the time step and stops at another point at the end of the

time step. In between, the process must be done in a certain order. In pV3's parallel

environment, the work of integrating streamlines/particles can be distributed because each

client processes only the objects in its sub-domain. However, problems in optimally exploiting

the distributed environment can occur due to the need to continue integration across internal

boundaries and also the existence of other types of requests (most of which are embarrassingly

parallel) that the clients need to handle. It can be foreseen that there could be cases where a

mixture of transfer requests and other requests could generate a load imbalance between the

clients. The problem can be alleviated (thus, maximizing the use of the parallel environment)

by prioritizing requests in a certain manner. This issue will be illustrated and made clearer

when the solution is discussed in the next section.

When it comes time for rendering, each client sends the server the relevant information about

all the particles (i.e., their locations) that end up in its sub-domain at the end of the current time

step. A streamline, however, is divided into segments. A new segment begins every time a

streamline integration crosses an internal boundary. For example, a streamline with 5 segments is

illustrated in Fig. 2.1. To render a streamline, each client sends the server information about the

Client 1 Client 2 Client 3

segment 4 segment 5

seed :
point_ "- - -

segment 1 segment 2 segment 3

computation boundary

segments (e.g., the points forming the segment) within its sub-domain. The server combines the

segments, constructs a complete streamline and then renders it.

Although, the underlying construction of a particle and a streamline are completely different,

the issues encountered in continuing their integration across an internal boundary are in fact

similar. For a particle, the question is where it should end up at the end of the current time step.

For a streamline, the question is where its next segment should begin at the end of the current

pseudo-time step. This similarity will be exploited in developing a scheme that is usable in both

cases. The evolution of this scheme will be described in the next section.

2.2 Solution

First, the following scheme is proposed:

1. It is decided to process transfer request (TR) through the server instead of having the clients

communicate directly. Thus, to continue the integration of a particle/streamline, a client sends

a TR to the server, which then distributes it to one or more client(s), depending on the

particular internal-boundary specification. This solution provides a simpler and cleaner system

overall because all other visualization message traffic is client-server and only one process (the

server) needs to manage the transfer requests. Since solver messages are client-client, the risk

of interfering with solver messages is also minimized.

2. For each particle/streamline segment that requires transfer across internal boundary, the server

keeps a list of clients to which the TR have been sent. The server also assigns a unique

identification number (denoted by TID, for "transfer id") for each of these particles/streamline

segments.

3. To prevent sending the same TR to a client, the server can send a TR for a TID to a particular

client only if the client is not already in the client list. Thus, to avoid sending a transfer

request back to the originating client (i.e., the client which initially sends the transfer request),

the originating client must automatically be logged in the client list.

4. Transfer requests have higher priorities (at the client and the server) over other types of

visualization requests. Thus, if the request queue of a client or the server contains a TR, that

request will be handled before other types of requests. In most situations, this procedure will

help lessen load imbalances. As an example, consider a 3-client setup where the request

queue of client 2 contains R1, R2, and lastly a transfer request TR, while that of client 1 and 3

contains only R1 and R2. R1 and R2 could be requests to calculate iso-surfaces, find swirling

flow, generate cut planes, etc. Let's suppose that TR will generate a re-transfer to client 3.

Requests R1 and R2 could take much longer to process in client 2 than in client 3, depending

on the size of the sub-domains, the type of request, and the flow conditions. If the clients

handle the requests according to their order in the queue (i.e., R1 first, R2 second, and so on),

client 3 will finish before client 2. Client 3 will have to wait until client 2 handles the transfer

request before it can process the re-transfer that will be generated by that request. On the

other hand, if TR has higher priority and is processed first by client 2, client 3 will receive the

re-transfer sooner. The entire process will take less wall-clock time than without prioritizing.

5. After a client processes a TR - whether accepting, rejecting, or re-transferring the request - it

sends a transfer-processed acknowledgment (TPA) back to the server. Since the originating

client is automatically logged in the client list, a TPA is also automatically associated with the

originating client.

6. The transfer process for a particular TID is completed when the server receives TPAs from all

the clients to which the TID has been transferred. To simplify the algorithm for checking

transfer completion it must be ensured that when a client sends a TR and then a TPA (such as

in a re-transfer request), the server receives them in the same order. Then, the server will

record the re-transfer (if any is allowed) before the TPA. This can be accomplished by setting

TPA's priority to be the same as TR's. Now, determining transfer completion can be done at

any moment by identifying those TIDs whose client list has a complete set of TPAs. When all

TIDs have a matching set of clients and TPAs, the server knows that no more transfers will be

requested during the current time step.

Client 1 Client 2 Client 3

TID 1 TID 3 * O
*---, O -- O

TID 2

WI . " O

a- b sub-domain boundary specification. Indicates that integration should
try to continue in client "a" if integration approaches from the left, in
client "b" if from the riaht. "*" indicates all clients.

* particle location prior to integration
O particle location after integration

Figure 2.2 Illustration for particle integration in a 3-client setup.

To illustrate this scheme, a 3-client example is shown in Fig. 2.2. In this example 3 particles

require transfers in the current time-step and 1 particle does not. Note that no transfer will be

requested for the fourth particle (the one in client 3) because it stays within client number 3. Due

to the similarity in continuing particle and streamline integration, only examples for particles will

be shown. In a step-by-step manner, the scheme works as follows (at each step, the particle

transfer log for each TID is summarized in the corresponding table):

1. The server receives two transfer requests from client 1 and one from client 2, and assigns

them TID 1, 2, and 3 as shown in Fig. 2.2. In the tables below, "cl." stands for client, and a

"/" under a client number indicates that a TR has been sent to that client (or the client is the

originating client), and a "V"' under TPA means that the server has received a TPA from the

corresponding client. Complying with the internal-boundary specification, the server transfers

TID 1 and 2 to client 2, and attempts to transfer TID 3 to client 1, 2, and 3. However, since

TID 3 already has client 2 in its transfer list, TID 3 will not be transferred there again. Note

that a TPA is automatically assigned to the originating client.

computation boundarysub-domain boundary

Transfer history of TID 1
cl. TPA c1.2 TPA Ic. 3 TPA

Transfer history of TID 1cl. I TPA cI. 2 TPA cl 3 TPA

Transfer history of TID 1
cl. 1 TPA cl. 2 TPA cl. 3 TPA
, s

Transfer history of TID 2
c. 1 TPA I c. 2 TPA cl. 3 TPA

Transfer history of TID 2cl. 1 TPA c. 2 TPA cl. 3 TPA

Transfer history of TID 2
cl. 1 TPA cl.2 TPA cl. 3 TPA
I/ I I/

Transfer history of TID 3
cl. I TPA c1.2 TPA cl.3 TPA

Transfer history of TID 3
cl. I TPA cl. 2 TPA cl. 3 TPA

Transfer history of TID 3
cl. 1 TPA cl. 2 TPA cl. 3 TPA
S S/

2. Client 1 will reject TID 3 and send a TPA. Client 2 will accept TID 1 and send a TPA. Client

2 will also request that TID 2 be re-transferred to all other clients, and then send a TPA for

TID 2. However, since client 1 and 2 are already in the client list of TID 2, TID 2 will only be

transferred to client 3. Client 3 will accept TID 3 and send a TPA. At the end of this step the

transfer process for TID 1 and 3 is complete because each client in their list is paired with a

corresponding TPA.

Transfer history of TID 1
cl. 1 TPA cl. 2 TPA cl. 3 TPA

55/sJI

Transfer history of TID 2
cl. 1 TPA cl. 2 TPA cl. 3 TPA

Transfer his ory of TD 2
cl. 1 TPA cl. 2 TPA cl. 3 TPA
V 5 V V I/ I/

Transfer history of TID 3
cl. 1 TPA c.2 TPA cl. 3 TPA

/ V/ I/ I/"

3. Client 3 accepts TID 2 and sends a TPA. At this point (and only at this point), all TID have a

complete list of TPAs (i.e., each client in the list is paired with a TPA). Thus, all transfers are

complete for this time step.

Transfer history of TID 2
cl. 1 TPA c. 2 TPA cl. 3 TPA

Transfer history of TID 3
cl. 1 TPA cl. 2 TPA cl. 3 TPA

55/555 J

Transfer history of TID 1
cl. 1 TPA cl. 2 TPA cl. 3 TPA

55/sJ

A ,, i sub-domain boundary

/ * / \

Client 1

Client 2

Figure 2.3 Integration of a particle requiring a transfer from client 1 to client 2 and a re-
transfer from 2 back to 1.

Now consider the situation illustrated in Fig. 2.3. Initially, client 1 transfers the particle to

client 2, then client 2 requests a re-transfer back to client 1. However, since the particle originally

comes from client 1, the above scheme will not allow this, and the integration stops. To take care

of cases such as this, the above scheme is modified to allow a particle (or streamline segment) to

be transferred to the same client twice. Since multiple transfers to the same client are now

allowed, there is no need to automatically include the originating client in the client list. For the

situation in Fig. 2.3, the process goes as follows:

1. The server receives a transfer request from client 1, and transfer the integration to client 2. In

the table below, there are now 2 columns under client and TPA to reflect that the particle can

be transferred to the same client twice.

Transfer history of TID 1
Client 1 TPA Client 2 TPA

V.

2. Client 2 requests that the particle be re-transferred to client 1, and then sends a TPA.

Transfer history of TID 1
Client 1 TPA Client 2 TPA
/ I,/ I €"

3. Client 1 accepts the transfer and sends a TPA. At this point every check mark in the client

column is paired with a check mark in the TPA column, indicating the transfer process for the

current time step is complete.

Transfer history of TID 1
Client 1 TPA Client 2 TPA

V V

This solution, however, is not without trade-offs and limitation. In cases where re-transfers

to the same client are not needed (such as in the first example above), unnecessary multiple

transfers to a client might be made. In some situations, a client might accept a transfer twice,

creating 2 instances of the same particle (or streamline segment). To prevent this, every time a

client receives a transfer request it checks whether it has previously accepted the object. If it has,

the request is ignored. The checking is done by comparing the global identification number,

which is unique through the duration of the visualization session, or the TID, which is unique

during each time step.

This solution is also not a general one. Consider the situation shown in Fig. 2.4, in which the

particle needs 3 transfers to client 2. This will not be possible without increasing the maximum

number of transfers to 3, which will further reduce the efficiency of the scheme. It can be seen

that however large this number is set to, the solution will never be general. Thus, as a trade-off

between efficiency and more generality the number of transfers have been limited to 2. This limit

will cover most cases without significantly compromising efficiency. Should a particle-path

integration require more than two visits to the same client, the integration will abort and the

particle will be "lost". If it is a streamline integration, only part of the streamline will be rendered

(from the seed point to the last point before the unsuccessful integration transfer). Fortunately,

this limit is not too severe in most instances. The streamline integration algorithm uses a pseudo-

time step limiter, which is based on the cell size as well as local vector field data. This limiter

insures that the next requested point in the integration is no more than the cell's size from the

Client 1

0 '..
.

00
2

.........

Client 2

sub-domain boundary

Figure 2.4 Illustration of a particle requiring 3 transfers.

current position. If the size of the neighboring elements do not change drastically, the problems

posed by this scheme will be minimal. In a flow computed using an explicit scheme, the time step

governed by the CFL stability requirement of the flow solver will generally limit the movement of

a particle to no further than the adjacent cells.

Chapter 3

Swirl Flow Finder

This work is motivated by the need to easily locate vortices in large 3-D transient problems.

A tool that will automatically identify such structures is definitely needed to avoid the time-

consuming and tedious task of manually examining the data. However, the question of what

defines a vortex raises considerable confusion. As a result, various definitions of a vortex and

methods for identifying vortices have been proposed by investigators.

Moin and Kim [28] [27] propose the identification of vorticity using vorticity lines, which are

integral curves of vorticity. However, this method is found to be very sensitive to the starting

point of the integration. Moin and Kim [28] indicate that a badly chosen initial point will likely

result in a vortex line which wanders over the entire flow field, making it difficult to identify any

coherent structures.

Chong, Perry, and Cantwell [6] propose a definition based on the eigenvalues of the velocity-

gradient tensor. A vortex core is defined as a region with complex eigenvalues, which means the

local streamline has a helical pattern when viewed in a reference frame moving with the local flow.

By incorporating some of the work of Yates and Chapman [39] and Perry and Hornung [31],

Globus, Levit, and Lasinski [14] identify vortices by first finding a velocity critical point where the

velocity-gradient tensor has complex eigenvalues. The vortex core is found by integrating,

starting from the critical point, in the direction of the eigenvector corresponding to the only real

eigenvalue.

Banks and Singer [3] [4] propose an algorithm which finds the vortex core by using a

predictor-corrector scheme. The vorticity vector fields is used as the predictor and the pressure

gradient as the corrector. This scheme is designed to self-correct toward the vortex core.

Jeong and Hussain [25] propose a definition of a vortex in incompressible flow in terms of

the eigenvalues of the tensor S 2 + 2, where S and Q are the symmetric and antisymmetric parts

of the velocity gradient tensor. A vortex core is defined as a connected region with two negative

values of S2 + j22

These are merely a sample of the works that have been done on this subject. For a more

thorough survey, the reader can refer to [4] and [25], both of which discuss the inadequacies and

limitations of the various schemes.

Considering the confusion that still exists on what constitutes a vortex and the limitations of

existing schemes, this author believes that there is a need for a tool that can help investigators

locate vortices, and yet has a familiar and intuitive interpretation. To achieve this goal, the

condition that what the tool finds must be vortices will be relaxed. However, the scheme must be

practical, in terms of computational speed and usability.

This work proposes that a tool which identifies the center of swirling flows satisfies the above

need and criteria. Investigators have been using swirling flow as one of the means to locate

vortices in 3-D discretized vector fields. Swirling flows in a 3-D field are usually identified by

studying vector fields which are mapped onto planar cuts or by seeding streamlines. These

procedures can be very laborious, especially for large and complex flows. The scheme presented

here allows automatic identification of the center of swirling flows in 3-D vector fields.

The algorithm for implementing this tool is based on critical-point theory. As will be

described below, the scheme works on a cell by cell basis, lending itself to parallel processing, and

is flexible enough to work with the various types of grids supported by pV3. With this method,

the need for curve integration (which is needed for visualization tools such as streamlines and

particle paths) has been avoided. Curve integration is a serial operation and can not readily take

advantage of pV3's distributed computing capabilities. And, as described in chapter 2,

integrations across a distributed environment involve passing information between machines and

other additional complexities which further reduce efficiency.

In the next sections, the theoretical background of this algorithm and its implementation will

be described. The results of the scheme on exact artificially-generated data as well as CFD data

will be shown. Results will also be compared (using artificially-generated data) against those from

a tool developed by Globus, Levit,and Lasinski [14].

Figure 3.1 Flow pattern at a critical point whose velocity-
gradient tensor has 1 real and a pair of complex-conjugate

eigenvalues.

3.1 Theory

Critical points are defined as points where the streamline slope is indeterminate and the

velocity is zero relative to an appropriate observer [6]. According to critical point theory, the

eigenvalues and eigenvectors of the velocity-gradient tensor, Dui/xj (this matrix will be called A),

evaluated at a critical point defines the flow pattern about that point. Specifically, if A has one

real and a pair of complex-conjugate eigenvalues the flow forms a spiral-saddle pattern, as

illustrated in Fig. 3.1. The eigenvector corresponding to the real eigenvalue points in the direction

about which the flow spirals, and consequently, the plane normal to this eigenvector defines the

plane on which the flow spirals. For a complete description of all other possible trajectories the

reader can refer to [6] or [1].

The pattern in Fig. 3.1 is intuitively recognized as swirling flow, and, therefore the above

method can be used to find the center of swirling flows located at critical points. However, there

are obviously swirling flows whose center is not at a critical point. Fortunately, a similar method

can be applied in these cases.

At a non-critical point with the necessary eigenvalue combination (i.e., one real and a pair of

complex conjugates) the velocity in the direction of the eigenvector corresponding to the real

eigenvalue is subtracted. The invariance of the eigenvectors' directions with respect to a Galilean

transformation ensures that the resulting flow will have the same principal directions. The

resulting velocity vector will be called the reduced velocity. If the reduced velocity is zero, then

the point must be at the center of the swirling flow. A similar statement was also made by

Vollmers, Kreplin, and Meier [38].

Therefore, to find a point at the center of a local swirling flow, the algorithm searches for a

point whose velocity-gradient tensor has one real and a pair of complex-conjugate eigenvalues

and whose reduced velocity is zero.

3.2 Implementation

pV3 accepts structured and/or unstructured grids (containing any combination of tetrahedra,

polytetrahedra strips, hexahedra, pyramids, and prism cells). In the interest of efficiency, only

tetrahedral cells are used, with all other cell types reduced to 2 or more tetrahedra. Fig. 3.2

shows how various types of cells are decomposed into tetrahedral cells.

Figure 3.2a A hexahedron (or structured-grid cell) divided
into 6 tetrahedra.

Figure 3.2b A prism cell divided into 3 Figure 3.2c A pyramid cell divided into 2
tetrahedra. tetrahedra.

This approach allows the use a simple linear interpolation for the velocity, avoiding the more

complex, and inherently more costly, interpolation required by other types of cells (such as

bilinear interpolation for hexahedra). A tetrahedron has 4 node points, sufficient to solve for the

four coefficients of a 3-D linear interpolant. More importantly, linear velocity interpolation

produces a constant velocity-gradient tensor within the entire tetrahedral cell. Consequently, the

straight forward algorithm described below can be employed, which otherwise would not have

been possible.

The algorithm proceeds one tetrahedral cell at a time, and can be summarized as follows (it is

assumed that a velocity vector is available at each node):

1. Linearly interpolate the velocity within the cell.

2. Compute the velocity-gradient tensor A. Since a linear interpolation of the velocity within the

cell can be written as

ui = Ci + U A + Ay + Az (3.1)

then A can be constructed from the coefficients of the linear interpolation function of the

velocity vector.

3. Find the eigenvalues of A. Processing continues only if A has one real (kR) and a pair of

complex-conjugate eigenvalues (kC).

4. At each node of the tetrahedron, subtract the velocity component in the direction of the

eigenvector corresponding to XR. This is equivalent to projecting the velocity onto the plane

normal to the eigenvector belonging to XR , and can be expressed as

i = i - (i -i)i (3.2)

where i is the normalized eigenvector corresponding to XR, and w is the reduced velocity.

5. Linearly interpolate each component of the reduced velocity to obtain

wi = ai + bix + cy+ diz (3.3)

i=1, 2, 3

6. To find the center, set wi in Eqn. (3.3) to zero. Since the reduced velocity lies in a plane, it

has only 2 degrees of freedom. Thus, only 2 of the 3 equations in Eqn. (3.3) are independent.

Any 2 can be chosen as long as their coefficients are not all zero.

0= ai + bix + cy+ diz (3.4)

i=1, 2

which are the equations of 2 planes, whose solution (the intersection of 2 planes) is a line.

7. If this line intersects the cell at more than 1 point, then the cell contains a center of a local

swirling flow. The center is defined by the line segment formed by the 2 intersection points.

Since the 2 intersection points lie on the line found in step 6, the reduced velocity at those

points must be zero. This suggests a different (but equivalent) and more efficient way to finding

the center. This approach renders steps 5, 6, and 7 unnecessary and replaces them with a new

step 5:

5. For each of the tetrahedron's face, determine if there is exactly 1 point on the face where the

reduced velocity is zero. If at the end there are exactly 2 distinct points, then the cell contains

a center, which is defined by those 2 points.

Both approaches have been tried with identical results. Therefore, the second approach is

implemented.

3.3 Testing

The algorithm is first tested on artificially-generated vector fields where the location of the

center of the swirling flow is known exactly. The field is defined by

(5)u= y-y c ,v=x-xc w=f(z)

Note that this vector field has circular streamlines (in the x-y plane) around a central axis whose

location is defined by x, and y,. The magnitude of the vector is equal to the distance from the

central axis. The field is discretized using an 11 x 11 x 11 node structured grid. The results for

various values of xc, Yc, and functional forms of vz (including constant, linear, and exponential) are

studied and determined to be correct. A sample result (with xc = 2.2 Ax, Yc = 1.5 Ay, and vz = 1)

is shown in Fig. 3.3. A streamline is also shown in this figure to provide a sense of the swirling

vector field.

Table 3.1 Size of Test Cases for Swirl-Flow Finder

Algorithm

Case Number Number Number of Calculation
of Nodes of Cells Tetrahedral Time (sec.)**

Cells*
Cylinder 131072 123039 738234 34

F-117 48518 240122 240122 16

* After decomposition (if needed) of original cells.
** On SGI Indigo2 with MIPS R4400 150 Mhz CPU.

center of
swirl flow

Figure 3.3 A sample result of an artificially-generated test case.

Further tests are done using data from 3-D calculations of flow past a tapered cylinder [26]

and of flow over an F- 117 fighter at an angle of attack [37]. The tapered-cylinder calculation

employs structured grid, while the F-117 case uses unstructured grid composed of tetrahedra.

The size of these data sets and the time needed to find the swirl flow centers are summarized in

Table 3.1.

The results are shown in Figs. 3.4 and 3.5. To indicate the existence swirling flow,

streamlines have been spawned near the centers found by the algorithm. These results indicate

that the large coherent structures found by the algorithm do indeed correspond to centers of

swirling flow. However, the algorithm does not find all the swirling flow in the tapered cylinder

data. Missing are a few swirling flow structures further downstream of the cylinder, which are

found by studying the vector field more closely. It is believed that the size of the grid cells might

be a factor. The cells are larger away from the cylinder, reducing the accuracy in the calculation

of the velocity-gradient tensor (and consequently the reduced velocity). Another possible cause is

the algorithm's sensitivity to the strength of the swirl flow. As shown in Figs. 3.4b and 3.4c, the

structures are very coherent for strong swirls (i.e., the swirl velocity is larger than or comparable

to the normal velocity). However, the structures start to break up as the swirl weakens, and

further downstream, where the swirl flows are very weak, the algorithm finds no coherent

structures.

In the case of the F-117 data, the structures are less coherent than in the tapered cylinder.

The tetrahedral grid used in this data is very irregularly sized, and is rather coarse. Comparison

between the streamlines in Figs. 3.4c and 3.5 also shows that the swirl in the F117 data is

noticeably weaker. Both of these factors might contribute to the incoherence in the structures.

Comparisons have also been done between the results of this algorithm with that of FAST's

vortex-core finder [14] [2]. FAST's finder defines a vortex core by integrating from a critical

point in the direction of the eigenvector corresponding to the only real eigenvalue of the velocity-

gradient tensor. For this comparison, 3 artificially-generated data sets are used, each bounded by

a cube containing 3 randomly-placed vortices. The data generator is developed by D. Asimov at

NASA Ames Research Center.

The comparisons are shown in Figs. 3.6a to 3.6f. Despite the lack of any 3-dimensional cues,

the curves in these figures do exist in 3-D space, and each pair of figures are taken from the same

view point. A high degree of similarities are found in each case except for the middle curves in

each data set, where FAST produces curves that are either longer and/or has different orientation.

Closer inspection of the data shows that pV3's results are the correct ones, while FAST's curve

integrations veer away from the core due to the difficulty in integrating near critical points.

FLOW

Tapered
cylinder

Figure 3.4a Flow past a tapered
cylinder. Shown are swirl flow
centers found by the algorithm.

Figure 3.4b flow past a tapered
cylinder. Swirl flow centers and

streamlines are shown.

Figure 3.4c Blow up of figure 4b.

A;':9 Cr

Figure 3.5 Flow over a Fl 17 fighter. Swirl flow centers and
streamlines are shown. Note: The centers are not mirrored.

Integration
veers away

Figure 3.6a Result of FAST vortex core
finder on data set 1.

N .A

Figure 3.6b Result of pV3 swirl flow finder
on data set 1.

Integration
veers away

Figure 3.6c Result of FAST vortex core
finder on data set 2.

ii

Figure 3.6d Result of pV3 swirl flow finder
on data set 2.

1

Figure 3.6e Result of FAST vortex core
finder on data set 3. Note that a streamline
has also been spawned here to indicate that
the twist at the top of the middle curve is

actually outside the vortex.

Figure 3.6f Result of pV3 swirl flow finder
on data set 3.

Chapter 4

Residence Time

Flow separation represents interesting, and sometimes important, features in many types of

flow calculations. In turbomachinery, separated flows are associated with extremely hot regions

where high-speed hot flow exiting the combustor has been stagnated. These hot spots are very

undesirable since the allowable operating stress of the turbine blades are closely related to

temperature. In flow over a wing, the adverse pressure gradient on the wing upper surface can

lead to separated flow. The major consequences of this phenomenon are a drastic loss of lift (or

stalling) and a significant increase in pressure drag.

This interest in separated flow motivates the development of a tool which can automatically

locate these regions. Ideally, the tool can work directly on the vector fields at each time slice of

an unsteady data, without requiring other types of data or information from other time levels. An

attempt was made to develop an algorithm, based on critical point theory, which works solely on

the vector fields. However, this scheme was found to be unreliable in detecting separated flows.

For documentation, the algorithm is described in Appendix A.

Helman and Hesselink [22] [23] have developed a visualization scheme for generating

separation surfaces using only the vector field. The scheme starts by finding the critical points on

the surface of the object. Streamlines are integrated along the principal directions of certain

classes of critical points and then linked to the critical points to produce a 2-D skeleton of the

flow topology near the object. Streamlines are integrated out to the external flow starting from

points along certain curves in the skeleton. These streamlines are then tessellated to generate the

separation surfaces. With this approach, difficulties might be encountered in integrating

streamlines from critical points, and also in finding separated regions that are not attached to an

object. It is also unclear how a recirculation region should be defined in unsteady flows since a

region that appears to be recirculating at a time slice might actually be moving with the flow as

time progresses.

Discussions and communications with Haimes [15] and Giles [12] lead to the development of

a scheme based on residence time. Essentially, this tool computes the amount of time the fluid

has been in (or in residence within) the domain by integrating the residence-time governing

equation over time. Time zero is defined as the time when the tool is turned on by the user.

Thus, this tool provides information viewed in a frame of reference moving with the fluid, in

contrast to streamlines and particle paths which present information viewed from a fixed reference

frame.

Most of the fluid within a separation region stays within that region for a considerable

amount of time. Thus, a common feature of separation region is that the residence time of the

fluid within it is considerably larger than that of the surrounding fluid. The iso-surface tool can

then be used to distinguish this region. Therefore, residence time can potentially be used to locate

separation regions.

The equations used for computing residence time will be discussed in the first section of this

chapter. Section 2 describes how the equations are solved in discretized flow fields. Section 3

and 4 discuss the boundary conditions and the numerical smoothing, respectively. Some sample

calculations are shown and discussed in section 5.

4.1 Residence time equation

The residence time of a fluid particle is defined by

Dr
-1 (4.1)

Dt

where I denotes residence time. And since + ii V, then Eqn. (4. 1) becomes
Dt t

+ i- VT =1 (4.2)at

where i is the velocity vector.

Since the time when the residence time calculation starts is defined as time zero, then initial

the condition is

T (x,y,z) = 0 (4.3)

At inflow boundaries, new fluid is entering. By definition, this fluid has zero residence time.

Therefore, the boundary condition is

c (x,y,z) = 0 at inflow (4.4)

To obtain the conservative form of Eqn. (4.2) for incompressible flow, Eqn (4.2) can be

rewritten as

+ui-VI +' V - =1+, V-uiat

a +Vt +-r Vi= 1+ V -ii
at

And since V -ii = 0 for incompressible flow, then

a- +V- t = 1 (4.5)at

The conservative form for compressible flow can be obtained by rewriting Eqn. (4.2) as

p- +i- p Vt = pat

where p denotes density. And since the conservation of mass equation for compressible flow is

apa +V- pu=0
at

then

P-- + u. p + _p +V- Pii P
at It ta+

a + V -(pr ii) = p (4.6)
at

The effect of viscosity on t is similar to its affect on velocity because the same mechanism is

at work in both instances. Therefore, the viscous term for Eqn. (4.6) is analogous to the viscous

term in the conservation of momentum equation of the Navier Stokes equations. Thus, the

residence time equation for a viscous compressible flow is

S+V- (p' ii)= p+V- RV'E

or p+V-(p'u- V'T)= p (4.7)
at

where g is the absolute viscosity, which accounts for both laminar and turbulent viscosity.

For a flow with constant viscosity and density, Eqn. (4.7) reduces to

-+ V -' ii= 1+ EV2"
t P

+V. i--u- VT) =1 (4.8)
at p

where - is constant.

All the conservative forms of the residence-time equation (i.e. Eqns. (4.5), (4.6), (4.7), and

(4.8)) can be expressed as

BU aF BG aH
+ + + Q (4.9)

at ax dy Ez

where, for incompressible inviscid flow

U= , F=' u, G='r v, H=' w, Q=1,

for compressible inviscid flow

U= pt, F= pr u, G= pr v, H= pr w, Q= p,

for compressible viscous flow

U= p, F= pt u- , G= pT v- g , H= pt w- - ,g Q= p

and for a flow with constant viscosity and density

U=', F--- u- , G--- v - H--- w- Q=
p ax p ay pQ z

Note that Eqn. (4.9) has a form similar to the conservative formulation or the Euler

equations. This similarity enables the use of an Euler solver developed in another work. The

algorithm, which will be discussed in the next section, operates on a cell-by-cell manner, and,

therefore, can readily take advantage of pV3's parallel capability.

cell A

Figure 4.1 Pseudo-mesh cell P (dashed) surrounding node i and
a cell neighbor A. The corners of P are composed of the center

of neighboring cells marked by capital letters.

4.2 Lax-Wendroff algorithm

An explicit time-marching algorithm of Lax-Wendroff type is used to solve Eqn. (4.9). This

scheme is identical to that used by Saxer [34] to solve the Euler equations for a stator/rotor flow.

The basic integration scheme is similar to the one introduced by Ni [29], recasted by Hall [21],

and then extended by Ni and Bogoian [30] to 3-D. Saxer [34] then adapted the formulation to

handle unstructured grids, particularly unstructured hexahedral cells.

In solving the residence time equation, it is assumed that the flow variables u, v, w, p, and t

are known at all the nodes. The algorithm then computes the flux across each cell face by

averaging the fluxes F, G, and H at the corner nodes. The flux residual is computed by adding the

fluxes through the six faces, and then adding the source term for the cell. This residual is then

distributed to the eight corner nodes according to the Lax-Wendroff algorithm to evaluate the

residence time change at those nodes. The details of the construction of the algorithm are

face nodes

1 2376
5 6 2 1485

3 3487
4 1562

.......................... 5 5678
4 3 6 1234

1 2

Figure 4.2 Face and node numbering for hexahedral cell.

discussed in [34]. The construction is repeated in Appendix B for convenience. However, the

final results can be presented here without loss of continuity.

A pseudo-mesh cell P can be constructed around node i. The corners of cell P consist of the

centers of cells which has node i as one of its node, as illustrated in Fig. 4.1. The node and face

numbering of a hexahedral cell is as shown in Fig. 4.2. Then, the contribution of one of the

adjacent cell, say cell A, to the change at node i is

SUiA 8 V t AU- (AFAS +AGAS +AHASz) AQA (4.10)
i 8 At)A A f=1,3,5 A Y Zf+ 2

where, for inviscid incompressible flow,

AF = iAt +--Au,

AG = iAt +t-Av,

AH = WAt +-fAw,

AQ=O

for inviscid compressible flow,

AF = uA(p')+(pt)A u,

AG = VA(pr)+(pu)Av,

AH= wA(pt)+(pt)Aw,

AQ=Ap

for viscous compressible flow,

AF= uA(pt)+(p)Au- -A ,

AG= VA(pt)(p t)Av - j1A ,1

AQ=Ap

for flow with constant density and viscosity,

AF= A(p)+pt) u- --.

AG= VA(pt)+(pr)Av-- A

AH= wA(pt)+(p)Aw- (JA(,t

AQ=O

and

AUA V J FS +GS, + HSIc +AtAQA
f V)A =1 cellA

Except for quantities defined above, the subscript A denotes quantities evaluated at cell A,

while the subscript i stands for average quantities at P, the pseudo-cell associated with node i.

The bar over F, G, and H denotes an average over the four grid nodes of the face f. Sx, Sy, and

Sz are the projected areas on the yz, xz, and xy planes of the facef. Sx , Sx , and Sz refer to the

averaged projection areas of opposite faces of cell A. Other quantities with overbar are averages

over the cell.

The contributions to node i from cells B, C, D, E, F, G, and H are computed in a similar

manner. The sum of these contributions define the change at node i. Thus,

8 cells

6 Ui = 16 Ui =6 Ui +6 Ui +6 UiA +6 Ui, +6 UiE +6 UiF +6 UiG +6 UiH (4.11)
j=1

As discussed by Saxer [34], this scheme is conservative because the discrete solution

approaches the analytic solution as the grid is refined. It is spatially second-order accurate even

for non-uniform grids, and also second-order accurate in time.

4.3 Boundary conditions

Three types of boundary conditions must be considered: inlet, outlet, and wall. At the inlet,

or the inflow boundary, new fluid enters the computational domain. By definition, the residence

time of this new fluid is zero. Therefore, the condition at the inflow boundary is

Ui = 0, for all node i at the inflow boundary.

At outlet boundaries, the simplest alternative has been used, which is to do nothing.

Essentially, this approach assumes that the contributions to 8 Ui by the cells just upstream of the

boundary and by the non-existent cells just downstream of it are equal. This assumption is

reasonable as long as the gradients of the flow quantities in the direction normal to the boundary

is small. However, if the user of this tool determines that such an assumption no longer applies or

a more elaborate boundary treatment would be more appropriate, a subroutine can be supplied

which overrides the standard method. The values of U and 8 Ui of all the nodes will be passed to

this subroutine, and the necessary modifications/adjustments (be it for the outlet boundary nodes

or any other regions of the flow) can made.

At a wall boundary with non-zero velocity, the algorithm must ensure that there is no flux

through the wall. This is accomplished by making a correction to the nodes of cells adjacent to

the wall boundary. The correction is performed after the Lax-Wendroff changes 6U have been

distributed to all nodes, including the nodes at the wall boundaries. The contribution of cell A (A

is adjacent to the wall) to UAU, is corrected as follows

(6UiA)wal = (U iA
) field +8 V (AUA)wal correction

(4.12)

where

(AUA)wall correction = (FS +GS +HS) f =wall face (4.13)

This correction is performed on the eight nodes of cell A. Note that the wall correction, Eqn.

(4.13), is simply the flux error introduced in the field calculation.

4.4 Numerical smoothing

A fourth-difference smoothing operator identical to the one used by Saxer [34] is added to

the Lax-Wendroff scheme to damp out non-physical oscillations that can be introduced by the

scheme. The smoothing term is added to the right-hand-side of Eqn. (4.10) and has the form

-(SF)smo 4 V (IV(12V2U))

where (SF)smo4 is a scaling factor, and I is a length comparable to the local grid size. In discrete

form, the smoothing operator becomes

cell A4)-4----------------
I

/I /

/ /
, /I/

Figure 4.3 Stencil for pseudo-Laplacian.
Only cell A is shown.

......

63i_

-

{S2.'-S*-~ - ~<~' -~ -fD-E

PIP~- ~ - ~ -

=0 x=10

Figure 4.4a Artificially-generated flow with constant velocity in the x direction, vx = 1.

0.0 1.0 2.0 30 4.0 5.0 6.0 7.0 80 9.0 10.0

Figure 4.4b Residence-time contours for flow shown in Fig. 4.4a

(8 U1

8 cells

j=-v (D
j=1

- D)

D is a pseudo-Laplacian based on the six edge nodes surrounding node i, as shown in Fig. 4.3.

It is defined by Holmes and Connell [24] as

6 nodes

D = w k (Uk
k=1

-ui)

D is the discrete representation of a cell-averaged pseudo-Laplacian,

8 corner nodes 1

D 2 1 2
k=1 8

1 Vk is a grid-dependent weight which determines the degree of dependence on the neighboring

nodes. For details on how this value is obtained, the reader is referred to [34]. v is a coefficient

with a typical value of 0.002 to 0.01. A value of 0.005 is used for the calculations shown in the

next section.

4.5 Sample results

This algorithm is first tested using artificially-generated data sets to ensure that the computed

residence time agrees with the easily-computed analytical solution. A sample data set is shown in

Fig. 4.4a, in which the flow has a constant velocity in the x direction. In this case, the algorithm

for inviscid incompressible flow is used. A contour plot of the result is shown in Fig. 4.4b, which

agrees well with the expected result for such uniform flow.

The algorithm has also been tested on a flow through a converging-diverging duct, shown in

Fig. 4.5a, computed by Darmofal [11] using the incompressible, axisymmetric Navier-Stokes

equations. In this flow, a separation bubble (which correspond to a streamfunction value of 0)

exists just downstream of the converging section, shown in Fig. 4.5a as an iso-surface of

streamfunction with value 0. The viscous incompressible residence-time algorithm is employed

here, and the results is shown as a contour plot in Fig. 4.5b. The residence time has been non-

dimensionalized by dividing by the vortex core size and multiplying by the freestream velocity

[11]. Note the elliptical region of high residence time fluid downstream of the constriction as well

Figure 4.5a Swirling flow through a converging-diverging duct [11]. A separation bubble is shown as
an iso-surface of streamfunction with value 0. Streamlines are also shown.

Figure 4.5b Contours of residence time for flow through a converging-diverging duct.

Figure 4.5c Contours of residence time and iso-surface of streamfunction with value 0.

Figure 4.5d Iso-surface of residence time of value 27.5.

as at the wake of the ellipse. The elliptical region corresponds to the fluid "trapped" within the

separation bubble. The wake contains high residence time fluid because the fluid that ends up in

the wake travels through a slow-moving path around the separation bubble, as can be seen in Fig.

4.5a. Fig. 4.5c combines the residence-time contour and the streamfunction iso-surface. Fig.

4.5d show the iso-surface of residence time of value 27.5. The elliptical upstream portion of this

iso-surface closely matches the separation bubble. The rear section of the ellipse is somewhat

thinner compared to the separation bubble due to the effect of viscosity, which mixes the high and

low residence-time fluid.

To demonstrate its applicability for multi-partitioned data, the algorithm is applied on an

unsteady stator/rotor flow computed by Saxer [34]. In the examples shown here, the

computation solves the 3-D unsteady Euler equations on a 40 x 15 x 15 grid for both the stator

Stator

Direction of
rotation

Figure 4.6a Mesh at the hub of the stator/rotor (stator: 40 x 15 x 15, rotor: 40 x
15 x 15). Dashed line segments indicate periodic boundaries.

and rotor passages. The data and computation for the stator and rotor are handled by two

separate processes. The size of the computational domain, illustrated in Figs. 4.6, has been

reduced from multiple blade passages to one blade-to-blade passage with a stator-to-rotor pitch

ratio of 1. The data is visualized in a post-processing manner by interpolating from 10 equal-

interval time slices obtained in one blade-to-blade period.

Since the flow is assumed to be circumferrentially periodic, some of the computational

boundaries shown in Figs. 4.6 represent periodic boundaries. This information can be

communicated to the residence-time module by defining an array containing the nodes that are

Rotor

Stator

Pressure
/surface

Suction
surface

Suction
surface

surface

Figure 4.6b 3-D illustration of stator/rotor passage. Grey area
is the hub.

periodic (or equivalent). Thus, if nodes 2 are defined to be equivalent, the changes for both nodes

are summed and the sum, which represent the actual 8 U, is used to update the values at both

nodes.

The stator/rotor interface in this computation is a special type of boundary due to the relative

movement between the stator and the rotor. Thus, nodes at the stator outlet and at the rotor inlet

are not necessarily aligned in the tangential direction. However, the gridding always ensures

alignment in the radial direction. In order to deal with special cases such as this, pV3 allows the

user to supply a subroutine in which the values of U and 8 Ui can be modified before the node

values are updated. Within this subroutine the quantities (U and 6 U at the interface) needed to

compute the changes at the stator/rotor interface are transmitted from one client to the other.

The way the changes are computed for this particular example can be best explained through

an example. Consider nodes a, b, and c at the stator outlet and nodes o, p, and q at the rotor

Rotor

stator outlet

rotor inlet

b

cp

Figure 4.7 Nodes at the stator/rotor interface. Solid circles indicate actual nodes. Unfilled
circles indicate locations corresponding to actual nodes at the opposite interface.

stator

d
rotor

d'

Figure 4.8 Nodes at non-overlapping region can be mapped to
location at the opposite interface by using the periodicity assumption.

inlet, as shown in Fig. 4.7. All of these nodes are in the same radial plane. The change at node b

is computed as the average of the change at b and the change at the corresponding point at the

rotor inlet, b'. The change at b' is computed by linearly interpolating the changes at o and p.

Thus,

8 Ub 2 (8 Ub,old + Ub',old)

where the subscript "old" refers to quantities before modifications. The changes at other points at

the stator outlet are computed in a similar manner. By assuming circumferrential periodicity, it is

possible to determine the change at the corresponding rotor inlet even though the surfaces do no

entirely overlap. For instance, in Fig. 4.8 node d' corresponds to node d.

The change at node p, at the rotor inlet, is defined such that the new values of U (i.e., after

the updating) at p and at its corresponding point p' will be equal. Thus,

8 Up = U, - Up,ol

where the subscript "old" refers to quantities before updating. Up, is computed by linearly

interpolating the new values of U at b and c. As in the stator outlet, the assumption of periodicity

is also used to deal with non-overlapping regions.

The results are shown as residence-time contours in Figs. 4.9. The residence time has been

non-dimensionalized by dividing by the stator blade axial chord at the hub and multiplying by inlet

stagnation speed of sound. Note the high-residence time fluid at the wakes of the stator and rotor

blades. This is due to the slower-moving fluid at the pressure surfaces. The movement of the

rotor and the difference in the residence time of the fluid at the pressure and suction surface also

result in the alternating pattern of low and high values in the rotor passage.

Fig. 4.10 displays the iso-surface of residence time of value 7.7. Here it can be seen clearly

the wake region of the stator blades as well as some of the alternating structure in the rotor. The

residence-time iso-surface of value 11.0 is shown in Fig. 4.11. The wake structure of the rotor

blade is clearly shown. An interesting aspect is the existence of the surface at the pressure side

near the stator trailing edge. What happens to this high residence time fluid when it flows

downstream? Shouldn't there be fluid with residence time much higher than 11 in the rotor

passage? The fact that there is no region with values higher than 13 (anywhere in the domain)

seems to suggest high residence time fluid is being "lost". However, the answer lies in the

realization that the value at a node represent an average for the fluid around the node. As the

high-value fluid at the pressure surface flows downstream past the trailing edge it becomes mixed

with the low-value fluid from the suction surface. This averaging lowers the high values. Closer

inspection shows a similar occurrence at the rotor trailing edge.

These results also shows 3 regions where the distribution of residence time seems unrealistic.

These regions are shown in Fig. 4.9a as regions A, B, and C. Fig. 4.12 displays an enlarged view

of region B. Although the anomalous behavior are not readily obvious in Figs. 4.9 (particularly at

A and C), they are apparent during the startup period. At the start of the residence time

integration, the value at all nodes are set to zero. As time progresses, new fluid (which by

definition has a residence time of zero) enters through the stator inlet. Thus, there is a wave front

separating the fluid which exists at the time the integration starts and the fluid which enters

afterwards. Until this wave front exits through the rotor outlet, any fluid downstream of it must

have uniform residence time. Any non-uniformity represent anomalous behavior.

Fluid in regions A, B, and C is found to show significant non-uniformity at startup, on the

order of ±10 % of the expected value. There are also strong correlation between the location of

these regions and supersonic regions with large gradients in mach number and/or density. Figs.

4.13 show the mach number and density contours and the locations with large gradient. At this

Region

Figure 4.9a Residence-time contours at the hub. Regions where anomalies
occur are indicated by dashed circles.

point, it is suspected that the anomalies are due to dispersive errors in the flow solution at these

regions. Shapiro [35] performed a linearized analysis of the 2-D Euler equations and apply it to a

number of of numerical schemes, one of them being a cell-vertex algorithm similar to the one used

by Saxer to compute the stator/rotor flow. Shapiro concluded that the low frequency oscillations

occuring near regions of high gradients are due to dispersion in the numerical schemes. However,

the connection between dispersive errors and the anomalies observed in the residence-time

computation is still inconclusive and warrants further investigation.

Nevertheless, the existence of these anomalies does not undermine the purpose of this

particular example. The applicability of the residence-time tool on multi-partitioned data has been

demonstrated. And the ability to modify 8 U through a programmer-supplied subroutine is found

to be very useful in dealing with special cases such as the one presented at the stator/rotor

interface.

Figure 4.9b Residence time contours at the tip. Regions with anomalies are
similar to the ones shown in Fig. 4.9a.

60

Figure 4.10 Residence time iso-surface of value 7.7. For
clarity, rotor blade surfaces are not shown.

Figure 4.11 Residence time iso-surface of value 11.0.

Figure 4.12 Region B (of Fig. 4.9a)
enlarged to show an unrealistically-large

gradient of residence time.

Figure 4.13a Mach number contours at the hub. Regions with
large gradient indicated by dashed circles.

P vw\,p

5.

(

7

/
I/

7

Figure 4.13b Mach number contours. Region (at
the stator suction surface near the trailing edge)

with large gradient.

Figure 4.13c Mach number contours at the tip. Regions with large
gradient indicate by dashed circles.

Figure 4.13d Density contours. Density non-dimensionalized by the inlet
stagnation density. Regions with large gradient indicated by dashed circles.

Figure 4.13e Density contours. A region with large density gradient (at
the stator suction surface near the trailing edge).

Figure 4.13f Density contours. A region with large density gradient
(near the trailing edge of the stator pressure surface).

" \i

i

Chapter 5

Conclusion

5.1 Summary of Results

This thesis has addressed three primary topics which will be reviewed here. First, a method

has been designed for managing the information movement needed to continue streamline and

particle-path integrations across the internal boundaries of a multi-partition computational

domain. Although the underlying structures of a streamline (a curve) and a particle (a point) are

completely different, the similarity in continuing their integrations across internal boundaries has

been exploited to arrive at a scheme that works in both cases. The scheme manages the flow of

information between the clients, where the integrations are done, and the server, which does the

rendering, in order to minimize network traffic, avoid multiple instances of the same object, and

make efficient use of the parallel environment. It also provides a simple test to determine whether

more integration transfers will be done within the current time-step. This knowledge enables the

server to know when it can safely instruct the clients to proceed to the next time step.

Second, an algorithm to automatically locate the center of swirling flow in 3-D vector fields

has been developed and implemented as part of the pV3 visualization package. By employing

cell-by-cell processing and using only tetrahedral cells (and transforming other cell types to

tetrahedra), the scheme can take advantage of pV3's distributed environment and the

simplification from using linear interpolation. There is evidence suggesting that the strength of

the swirl flow and the coarseness of the grid might affect the degree of accuracy and coherency of

the results. However, tests using artificially-generated vector fields and 2 different CFD data have

shown that the coherent structures found by the algorithm are indeed centers of swirling flow.

Results on artificially-generated data have also been compared with those from the vector-field

topology module of FAST [14] [2]. High degrees of similarities have been found. This

comparison also demonstrates the advantages of the algorithm over a curve-integration method

used by FAST. There are difficulties in finding critical points and in identifying swirling flows

whose critical points are outside the computational domain. Furthermore, a curve integration

numerically tends to veer away from the core of the swirling flow, and is less able to take

advantage of a parallel capability.

Finally, interest in flow separation has motivated the development of a residence-time

integration tool. This tool computes the amount of time the fluid has been in (or in residence

within) the computational domain. Since the fluid in separated regions remains there for a

considerable amount of time, there will usually be a significant difference between the residence

time of the fluid within the separated flow and that of the surrounding fluid. The iso-surface tool

can then be used to identify this region.

The residence-time equation for different types of flows (inviscid incompressible, viscous

incompressible, inviscid compressible, and constant density/viscosity) has been formulated. An

explicit time-marching algorithm of Lax-Wendroff type is used to solve the residence time

equation. The algorithm performs the computation on a cell-by-cell manner, and thus can readily

take advantage of pV3's distributed processing. In order to handle the variety of possible

boundary-condition treatments, provisions is made to allow the programmer to supply a

subroutine where some integration variables can be modified before the updating step.

The algorithm has been tested on artificially-generated data with good results. It has also

been applied on a flow through a converging-diverging duct computed by Darmofal [11]. In this

flow a separation bubble exists immediately downstream of the duct constriction. The tool is able

to show a region of high residence time corresponding to the separation bubble. Applicability on

multi-partitioned data has been demonstrated using a stator/rotor flow data computed by Saxer

[34]. The stator and rotor data and processing are handled by separate pV3 clients. This example

also illustrates the flexibility of the tool in handling special boundary cases such as the one

presented by the stator/rotor interface.

5.2 Suggestions for Future Work

The line segments found by the swirl-flow finder can be colored to communicate other types

of information about the flow. Further investigations must be done to determine what information

are relevant and useful.

The residence-time algorithm can be adapted for tetrahedral cells. This improvement will

allow the tool to work on all type of cells since (as described in chapter 3) other cells can be

reduced to tetrahedra.

Further studies should be performed on the residence-time tool using various types of flows

to determine other useful information that might be conveyed by this tool as well as to determine

its limitations.

The results shown in appendix B suggests possibilities of using the eigensystem of the

velocity-gradient tensor in finding shear surfaces. This potential use should be investigated

further.

Bibliography

[1] R. H. Abraham and C. D. Shaw, Dynamics: The Geometry of Behavior, parts 1-4, Ariel

Press, Santa Cruz, CA., 1984.

[2] G. V. Bancroft, F. J. Merrit, T. C. Plessel, P. G. Kelaita, R. K. McCabe, and A.

Globus,"FAST: A Multi-processing Environment for Visualization of Computational Fluid

Dynamics," Proceedings Visualization '90, San Francisco, CA, Oct. 1990.

[3] D. C. Banks and B. A. Singer, "A Predictor-Corrector Scheme for Vortex Identification,"

ICASE Report NO. 94-11, NASA CR-194882, 1994.

[4] D. C. Banks and B. A. Singer, "Vortex Tubes in Turbulent Flows: Identification,

Representation , Reconstruction," ICASE Report No. 94-22, NASA CR-194900, 1994.

[5] S. Bryson and C. Levit, "The Virtual Windtunnel: An Environment for the Exploration of

Three-Dimensional Unsteady Flows," Proceedings Visualization '91, October 1991.

[6] M.. S. Chong, A. E. Perry, and B. J. Cantwell, "A General Classification of Three-

Dimensional Flow Fields," Phys. Fluids A, Vol. 2, pp. 765-777, May 1990.

[7] I. Currington and M. Coutant, "AVS - A Flexible Interactive Distributed Environment for

Scientific Visualization Applications," Second Eurographics Workshop on Visualization in

Scientific Computing, April 1991.

[8] D. Darmofal. Hierarchial Visualization of Three-Dimensional Vortical Flow

Calculations. Master's Thesis, M.I.T., March 1991.

[9] D. Darmofal and R. Haimes, "Visualization of 3-D Vector Fields: Variations on a

Stream," AIAA Paper 92-0074, 1992.

[10] Darmofal and R. Haimes, "An Analysis of 3-D Particle Path Integration Algorithms for

Unsteady Data," AIAA Paper 95-1713, 1995.

[11] D. Darmofal. A Study of the Mechanisms of Axisymmetric Vortex Breakdown. Doctoral

Thesis, M.I.T, November 1993.

[12] M. Giles, personal communications.

[13] M. B. Giles and R. Haimes, "Advanced Interactive Visualization for CFD," Computing

Systems in Engineering, 1(1):51-62, 1990.

[14] A. Globus, C. Levit, and T. Lasinski, "A Tool for Visualizing the Topology of Three-

Dimensional Vector Fields," Report RNR-91-017, NAS Applied Research Office, NASA

Ames Research Center, 1991.

[15] R. Haimes, personal communications.

[16] R. Haimes and D. Darmofal, "Visualization in Computational Fluid Dynamics: A Case

Study," Proceedings Visualization '91, October 1991.

[17] R. Haimes and M. Giles, "VISUAL3: Interactive Unsteady Unstructured 3D

Visualization," AIAA Paper 91-0794, 1991.

[18] R. Haimes, M. Giles, D. Darmofal, "Visual3 - A Software Environment for Flow

Visualization," VKI Lecture Series on Computer Graphics and Flow Visualization in

CFD, 1991.

[19] R. Haimes, "pV3: A Distributed System for Large-Scale Unsteady CFD Visualization,"

AIAA Paper 94-0321, 1994.

[20] R. Haimes, "Unsteady Visualization of Grand Challege Size CFD Problems: Traditional

Post-Processing vs. Co-Processing," Proceedings of the ICASE/LaRC and ACM

SIGGRAPH Symposium on Visualizing Time-Varying Data, 1995.

[21] M. G. Hall, "Cell-Vertex Multigrid Schemes for Solution of the Euler Equations,"

Technical Report 2029, Royal Aircraft Establishment, March 1985.

[22] J. Helman and L. Hesselink, "Analysis and Representation of Complex Structures in

Separated Flows," SPIE Proceedings, Vol 1459, 1991.

[23] J. Helman and L. Hesselink, "Visualizing Vector Field Topology in Fluid Flows," IEEE

Computer Graphics and Applications, May 1991.

[24] D. G. Holmes and S. D. Connell, "Solution of the 2-D Navier-Stokes Equations on

Unstructured Adaptive Grids," AIAA Paper 89-1932-CP, 1989.

[25] J. Jeong and F. Hussain, "On the Identification of a Vortex," Journal of Fluid Mechanics,

285, pp. 69, 1995.

[26] D. Jespersen and C. Levit, "Numerical Simulation of Flow Past a Tapered Cylinder,"

AIAA Paper 91-0751, 1991.

[27] J. Kim and P. Moin, "The Structure of the Vorticity Field in Turbulent Channel Flow. Part

2. Study of Ensemble-Averaged Fields," Journal of Fluid Mechanics, 162, pp. 339, 1986.

[28] P. Moin and J. Kim, "The Structure of the Vorticity Field in Turbulent Channel Flow. Part

1. Analysis of Instantaneous Fields and Statistical Correlations," Journal of Fluid

Mechanics, 155, pp. 441, 1985.

[29] R.-H. Ni, "A Multiple Grid Scheme for Solving the Euler Equations," AIAA Journal, 20,

pp. 1565-1571, November 1981.

[30] R.-H. Ni and J. C. Bogoian, "Prediction of 3-D Multi-Stage Turbine Flow Field Using a

Multiple-Grid Euler Solver," AIAA Paper 89-0203, 1989.

[31] A. E. Perry and H. Hornung, "Some Aspects of Three-Dimensional Separation, Part II:

Vortex Skeletons," A. Flugwiss, Weltraumforsch. 8, Heft 3, pp. 155-160, 1984.

[32] Rasure and Young, "An Open Environment for Image Processing Software

Development," 1992 SPIE/IS&T Symposium on Electronic Imaging, SPIE Proceedings,

Vol. 1659, February 1992.

[33] Rasure and Kubica, "The Khoros Application Development Environment," Experimental

Environments for Computer Vision and Image Processing, editor H.I. Christensen and

J.L. Crowley, World Scientific 1994.

[34] A. Saxer. A Numerical Analysis of 3-D Inviscid Stator/Rotor Interactions Using Non-

Reflecting Boundary Conditions. Doctoral Thesis, M.I.T., February 1992.

[35] R. A. Shapiro, "Prediction of Dispersive Errors in Numerical Solutions of the Euler

Equations," MIT Computational Fluid Dynamics Laboratory Paper CFDL-TR-88-4,

1988.

[36] C. Upson, T. Faulhaber, Jr., D. Kamins, D. Laidlaw, D. Schlegel, J. Vroom, R. Gurwitz,

and A. van Dam, "The Application Visualization System: A Computational Environment

for Scientific Visualization," IEEE Computer Graphics and Applications, Vol. 9, No. 4,

pp. 30 - 42, July 1989.

[37] S. A. Vermeersch. Investigation of the Fll 7A Vortical Flow Characteristics. Master's

Thesis, MIT, May 1993.

[38] H. Vollmers, H. P. Kreplin, H. U. Meier, "Separation and Vortical-Type Flow around a

Prolate Spheroid. Evaluation of Relevant Parameters," AGARD Conference Proceedings,

No. 342.

[39] L. A. Yates and G. T. Chapman, "Streamlines, Vorticity, Lines, and Vortices," AIAA

Paper 91-0731, 1991.

Appendix A

Formulation of Lax-Wendroff Algorithm

The formulation of the Lax-Wendroff algorithm starts from the second-order Taylor series

expansion of U"+a = U((n+ 1)At), where the superscript n denotes the time level. Thus,

Su n+l =un 1 2a 2u)nU - +At-- + 2 At 2 (A.1)

Substituting Eqn. (4.9) into (A. 1) and rearranging,

U"+1 = U" - At + a H-Q
U -x D y a z

At (AF
2 x

+ AG n

ay

cell A

a n)
+ -AHn -AQ n

cell P

Figure A. 1 Pseudo-mesh cell P (dashed) surrounding node i and a
cell neighbor A. The corners of P are composed of the center of

neighboring cells marked by capital letters.

(A.2)

where

)F)G)H)Q
AF = At , AG" = At , AH n = At , AF = At

at at at at

Now consider the construction of the Lax-Wendroff algorithm on an unstructured grid, as

illustrated in Figs. 4.1 and 4.2. Node i is surrounded by its eight nearest neighbor cells A, B, C,

D, E, F, G, and H. The change at node i is 8 Ui - Un, 1 - U", which is found by integrating Eqn.

(4.2) over the cell P of volume Vi, and then using Gauss's theorem.

8U i = (-At ellP(F,G,H)(nx,ny,nz)dS +AtViQ ii Ce PY

- ff cell(AF,AG,AH)(n x nynz) dS
2 Cel P

(A.3)
At

+ -2 VAQ)2

where fi = (nx ,ny ,n z) is the unit normal vector pointing outward of the surface element dS.

(AF, AG, AH)(nx,n,, n) indicates the dot product of the two vectors.

Each of the integrals are considered separately. The first integral is the first-order flux

contribution. It is approximated as the sum of one-eighth of the surface integral over the cells

face nodes

2376
1485
3487
1562
5678
1234

Figure A.2 Face and node numbering for hexahedral cell.

Figure A.3 Contributions of cell A to the first-order (left), and the second-
order (right) flux integration.

A,..., H. The first order source term is approximated in a similar manner, as the sum of one-

eighth of the average over each of the cells A, ..., H. The second integral, representing the

second-order flux, is approximated as a sum of open surface integrals, as shown in Fig. A.3. The

first and second order contributions of cell A to node i can be written as

S II At
sU, 4 (-At (F,G,H)(nx,ny,nz)dS+ VAQA

At
- 24fa13 (AF,AG,H) nn)dS (A.4)

At
+ - VAAQA)2.8

Eqn. (A.4) is approximated by

SU (At) t A A 15 ASX+AGAS +AHASY) + AQA (A.5)
8 Ui V)i A f=1,3,5 f 2

where AUA denotes the average first-order change of U in cell A, and is given by

AUA A cell A(F,G, H)(nx, nn) dS + At VAQA

=)A "-FSx+GS HS, ce A +AtQA+O(14

where the overbar means an average over the four nodes defining the face f. Sx, SY, and Sz are

the projected areas of face f on the yz, xz, and xy planes. Sx , S,, and Sz are the averaged

projection areas of opposite faces. The second-order flux terms is formulated in this way so that

the sum of their contributions to the corner nodes of a cell is zero, and thus preserving

conservation. The evaluation of the terms AFA, AGA, A A , and AQA depend on the type of flow

being considered, as shown in section 4.2.

The contributions from the other cells B,...,H to node i are formulated similarly. Finally, the

residual D Ui can be expressed as

8 cells

8 U i = 18 Uij = 8 UiA UiB +8 Uic +- UiD UiE +- UiF UiG +- UiH

and the new value of U at node i is

U"n+ = Un +6 U i

Appendix B

Identification of Flow Separation Using the
Eigensystem of the Velocity-Gradient Tensor

The fundamental proposal is that flow separation can be identified using the eigenvalues and

eigenvectors of the velocity-gradient tensor, D ui/a xj. As discussed in chapter 3, the flow pattern

about a critical point (or about any point when viewed in a frame of reference moving with the

point) is defined by the eigensystem of this tensor. An observation of the flow patterns, as

illustrated in Fig. B. 1, suggests that the eigenvector corresponding to the largest positive real

eigenvalue (XR+) points in the direction normal to the separation plane. XR+ and XR+ will be used

Pattern Eigenvalues

S = . r

Figure B. 1 Flow patterns for selected distributions of
eigenvalues of the velocity-gradient tensor.

IM

to denote this eigenvalue-eigenvector pair. Thus, the separation surface is a surface where the

velocity vector is perpendicular to the local XR+.

The implementation of this algorithm employs an approach similar to that used for finding the

center of swirling flow (see chapter 3). The scheme works on tetrahedra cells, and checks for the

existence of a separation surface one cell at a time. The outline of the procedure is as follows:

1. Linearly interpolate the velocity within the cell to obtain

ui = ai + bix + cy + dz (B.1)

2. Compute the velocity gradient tensor A. Since a linear interpolation of the velocity within the

cell can be written as

Su i a Ui a Ui

Ui = Ci + Ax + 'Ay + 'Az (B.2)

then A can be constructed from the coefficients of the linear interpolant.

3. Find the eigenvalues and eigenvectors of A, and identify the eigenvector (XR+) corresponding

the largest positive real eigenvalue. If no positive real eigenvalue exists, continue with the

next tetrahedral cell and go back to step 1.

4. First, let XR+ = (x 1, X29 3) and fi = (, u2 , u3). Then, the plane where the velocity vector is

everywhere normal to XR+ can be found by setting the dot product of XR+ and a to zero.

XR+ i = X 1 U 1 + X2U2 + X3U 3 = 0

(blX 1 +b 2 x 2 + b 3 x 3)x+(cix, + c 2 2 +c 3 x 3)x+(dixi + d 2 x 2 + d 3 x 3)z
(B.3)

+ (alxl + a 2 x + a 3x 3) = 0

Note that Eqn. (B.3) is the equation of a plane.

5. The next step is to determine whether this plane intersect the cell being considered. The

algorithm used to do this is already available within the pV3 system library, and will not be

described here. The intersection (if any) defines the separation surface within the current cell.

This method has been tested on a number of artificially-generated data in which there is a

distinct separation surface. Figs. B.2a to B.2c show the results on a data set in which the flow

diverges at a 3-degree angle from the specified separation plane (shown as a dotted line in Fig.

B.2a). The separation surface computed by the algorithm correspond well to the defined plane, as

shown in Fig. B.2b and B.2c. The "stepping" effect is due to the discretization of the data. In

Figs. B.3a to B.3c the flow moves in opposite direction across the separation plane. The location

of separation plane is same as in the first case. Again, a good agreement is found between the

result and the specified plane.

Although good results are evident in cases where there are clear separation surfaces and

minimal amount of noise in the data, the result on actual CFD data with more complex flow

features are less reliable. The algorithm has been tested on data for a swirling flow through a

converging-diverging duct (see Fig. B.4a.) computed by Darmofal [11] using the incompressible,

axisymmetric Navier-Stokes equations. In this result, a separation bubble (which correspond to a

streamfunction value of 0) exists just downstream of the converging section, shown in Fig. B.4a

as an iso-surface of streamfunction with value 0. Figs. B.4b and B.4c show the surfaces found by

the algorithm. By overlapping the streamfunction iso-surface and the "separation" surfaces (see

Fig. B.4d), it can be seen that only a small portion of the separation bubble is detected and that

the result is corrupted by noise. It has been determined that the considerable amount of swirl in

this flow results in a flow with a predominantly spiral-saddle pattern (i.e., velocity-gradient tensor

with 1 real and a pair of complex-conjugate eigenvalues) with an axis of rotation approximately

parallel to the duct axis. Consequently, only portions at the front and back of the separation

bubble are detected because only in those regions of the bubble are the flow approximately

perpendicular to the axis.

Therefore, in view of its limitations, this method is deemed unreliable and to have limited

practical usefulness for identifying flow separations.

x

Figure B.2a Flow separating at a 3-degree angle from the specified separation plane
(dotted line). Velocity is zero and uniform in the z direction.

Figure B.2b Side view of separating flow and the surface found by the separation-
flow-finder algorithm.

80

Figure B.2c Separation surface shown in Fig. B.2b. Velocity vector cloud not shown.

Figure B.3a Flow moving in opposite direction divided by a separation plane (dotted line). Velocity in
is zero and uniform in the z direction.

Figure B.3b Side view of opposing flow and the surface found by the separation-flow-finder
algorithm.

Figure B.3c Separation surface shown in Fig. B.3b. Velocity vector cloud not shown.

bubble

Figure B.4a Swirling flow through a converging-diverging duct [11]. A separation bubble is shown
as an iso-surface of streamfunction with value 0. Streamlines indicate strongly swirling flow with axis

of rotation approximately parallel to the duct axis.

Figure B.4b Surfaces found by the separation-flow-finder algorithm.

.. " "a -,

Figure B.4c Enlargement of Fig. B.4b.

"I "

** 9
LWL

-~:~ ." * ' ,n a gra tur
C~r '.rp.

L1iv

S -..

1 64

Figure B.4d Separation surfaces and streamfunction iso-surface overlapped.

84

1 ~ _ __ _ ."srss~ r.~~ -

