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Abstract

This thesis presents a new method for designing robust, full order, dynamic, LTI

controllers that provide guaranteed levels of 72 performance for systems with static,
real, parametric uncertainties. Results are also discussed for systems with gain-

bounded uncertainties. Dissipation theory, which is an extension of Lyapunov theory,
is employed to analyze the performance of uncertain systems. For systems with real

parametric uncertainties, the dissipation analysis is augmented by Popov stability
multipliers. Popov multipliers reduce the conservatism of the analysis and do not

overly complicate computations.
The problem of synthesizing robust )W2 controllers, given fixed stability multi-

pliers, is reformulated in a systematic manner. For fixed multipliers, it is shown
that the synthesis problem is convex and can be solved by minimizing a linear cost
function, subject to linear matrix inequality (LMI) constraints. Unfortunately, for
large problems this formulation is found to be unusable with state-of-the-art soft-
ware. Therefore, a second synthesis method is derived. The second method hinges
upon separating a bound on the closed loop 1W2 cost into two parts: the first part
deriving from a full information control problem and the second part deriving from
an output estimation problem. This separation principle is used to derive sufficiency
conditions for the existence of a robust controller. The sufficiency conditions have
the form of coupled Riccati equations. Two new iterative techniques are developed to
solve coupled Riccati equations efficiently. The problem of finding stability multipli-
ers to analyze the system, given a fixed controller, is then reformulated without the
use of LMIs. A solution technique is introduced for this problem that uses a gradient
optimization technique. The analysis and synthesis routines are combined to form a
D - K iteration to design robust controllers. The design methodology is successfully
demonstrated on a small benchmark problem as well as realistic structural control
problems: two models of the Middeck Active Control Experiment (MACE).
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Chapter 1

Introduction

Future, high-fidelity measurement equipment on board satellites and other space sys-

tems will require a low vibration environment for successful operation. To increase

precision, devices such as mirrors on interferometers will need to be actuated at ever

wider frequency bandwidths. If the bandwidth of onboard actuation systems is in-

creased to overlap with the satellite's structural modes, control-structure interactions

could occur and degrade the instrument's performance. Linear, multivariable control

systems could then be employed to control the resulting vibrations in the structure.

Optimal control systems are highly tuned to the model of their plant. Conse-

quently, closed loop performance and even stability are highly dependent on the

accuracy of design models. Of course, even the best models of a structure are only

approximations of the actual hardware. Two types of uncertainties exist in a model.

This first type involves unmodeled or non-parametric uncertainties. The designer at-

tempts to deal with these, and other "unknown unknowns," by limiting or restricting

the controller bandwidth. The second type of uncertainty is modeled or parametric

uncertainty. These uncertainties are relatively well characterized and may even be

anticipated - these are the "known unknowns." One example of a parametric uncer-

tainty is the stiffness of a beam in a truss. The designer may have an expected range

of values for this parameter. Designing optimal control systems to handle modeled

and parametric uncertainties is the domain of robust control and the subject of this

research.



Designing robust control systems can take significantly more time and computa-

tional power than designing an equivalently-sized, non-robustified controller for the

same plant. It is desirable to reduce these burdens for several reasons. First, control

design is an iterative process, and engineers need to have adequate time to simulate

and test their controllers. If robust controllers are perceived as taking too long to

design, then engineers will not attempt to use them. Robust design tools must be

made nearly as easy to use as more standard design tools.

Secondly, if the computational burden of robust design is reduced, then engineers

will be able to perform designs for practical, higher-order systems. Limits on computer

memory and other issues have relegated some robust design methodologies to the

realm of simple, textbook problems.

Lastly, it is desirable, particularly on a space system or any system that is expected

to age or change with time, to be able to do periodic system identifications. System

identification data can be used to update models of the plant. New controllers can

then be designed for the updated model. Here, it clearly is desirable for the redesign

to take as little time as possible, so that the new controller can be implemented.

This research focuses on control systems for W 2 performance. An W2 performance

metric is appropriate for systems whose performance is judged by calculating the

root-mean-square (RMS) value of a signal over frequency. The system uncertainties

(the "known unknowns") that will be examined are of two types. The first is a real,

parametric uncertainty, such as the previously mentioned stiffness. The second is

an L2 gain bounded uncertainty, which is also a natural representation for certain

exogenous disturbance signals.

Robust controllers for such systems have previously been designed and successfully

implemented in structural control experiments by How et al.46' 50 These controllers are

referred to as W2/Popov or W2/SN controllers, depending on the type of uncertainty.

To date, these controllers have typically been designed by performing a gradient search

of an augmented cost function. The augmented cost function consists of a bound

on the performance objective and related constraints on performance and stability

robustness. Although the method should work in theory, in practice, it is difficult to



use because of the large computational effort involved. For large, structural control

problems, it can take days to solve for a controller.

It should be noted that this work concerns linear, finite-dimensional, time-invariant

(LTI) plants and controllers. All work is performed in continuous, rather than dis-

crete time. Also, some terminology, particular to this thesis must be clarified. In this

thesis, "analysis" refers to the process of determining the performance and/or stabil-

ity characteristics of a fixed (possibly closed loop) system. Typically, this involves the

determination of optimal weights (i.e., scalings or stability multipliers) for the uncer-

tainty blocks to reduce the conservatism of the analysis. In contrast, "synthesis" is

any process that finds a controller, given fixed weights. Finally, a controller "design"

is a process by which a controller is found and associated weights (i.e., scalings or

stability multipliers) on the uncertainty are found.

The overall goal of this thesis is to develop novel design algorithms for robust

7-2 controllers that are faster or more effective than existing techniques for prac-

tical systems. By robust, we mean that the controller should be able to stabilize the

system and provide a priori guarantees on a perturbed system's closed loop 72 per-

formance.

1.1 Background and Literature Review

To survey the literature on robust control, we must categorize a paper based on three

issues: the types of uncertainties that it deals with, the performance measure that

it uses, and whether it deals with controller analysis or synthesis. This thesis fo-

cuses on two types of uncertainties, each of which has a distinct body of literature

surrounding it. We are primarily interested in real, parametric uncertainties in the

plant. A secondary type of uncertainty that we will examine is merely restricted to

have a bounded 42-induced norm. We refer to these uncertainties as gain-bounded.

Regarding the performance metric of interest, we are interested in a metric that, in

the case of linear uncertainties, is equal to the 1-t2 norm of a system. This stands

in contrast to the more typical W7-, performance metric that is used in most robust



performance frameworks. Wrapped around the questions regarding the types of un-

certainty and performance metrics are the questions of whether we wish to synthesize

new controllers or to merely analyze the performance of existing, closed loop systems.

Our goal is to develop new design techniques for linear, multivariable controllers.

Thus, we will survey the literature on both analysis and synthesis. Each of the above

topics has been individually investigated at some level by previous researchers, and

we will review their works below.

1.1.1 Uncertainties and Robust Stability

For a structure, one example of a real, static, uncertain parameter is an uncertain

stiffness. The determination of whether a structure is robustly stable to such an

uncertainty is complicated by the fact that the uncertain parameters are real, rather

than complex. This phase information is difficult to describe mathematically if the

uncertainty block is structured. In fact, the problem has been shown to be NP-

hard. 9,83 Because stability robustness cannot be predicted exactly, approximate tests

are used. Approximate tests are conservative in the sense that they will always predict

if a system can be destabilized, but may also falsely predict that a robustly stable

system can be destabilized. The most famous of these methods is to calculate an

upper bound for the real or mixed structured singular value (pU). 24 ,84 ,83 To prove that

a system is robustly stable, the test requires that a frequency-domain inequality based

on the nominal system transfer function be satisfied.

In practice, when used as part of a design algorithm, ~1 analysis has several draw-

backs. First, the inequality may need to be checked at a large number of frequency

points to provide confidence in or to reduce the conservatism in the test. This can re-

quire a great deal of time. Secondly, once the values of p and any frequency-dependent

scalings have been determined at a number of points, in order to use the information

for, say, controller synthesis, one must fit a finite-dimensional transfer function to

the data. This requires the use of curve-fitting algorithms, which can be difficult to

use. When the transfer functions of the scalings are incorporated into the system,

the overall system can be much higher order than the original system.



Because p analysis is relatively difficult to use for design, a great deal of effort

has gone into developing simpler, easy-to-use, state space tests that are not overly

conservative. Most of these tests are founded upon the fundamental concepts of

Lyapunov stability. Because we are concerned with nominally linear systems, these

robust stability tests use quadratic Lyapunov functions. However, such functions can

lead to overly conservative results, so much research has been performed on reducing

their conservatism. Perhaps the most fruitful avenue of research has been the search

for Lyapunov functions that indirectly depend on the uncertainties in the system. 41

One example of a parameter-dependent, Lyapunov-based test comes from the classical

Popov criterion. A Popov analysis allows the mathematics to treat sector-bounded

nonlinearities in the uncertainty blocks. A Popov criterion is essentially a real p

analysis performed with a particular, fixed function for the weights. 49 This implies

that for certain classes of uncertainties, an analysis based on the Popov criterion

is equivalent to a real p analysis. The state space Popov test for robust stability

requires that a Lyapunov matrix and its associated stability multipliers (i.e., the

weights in the real p test) exist and solve a particular Riccati equation. 42'4 1 The

Lyapunov approach to robust stability analysis has certain important advantages.

The search for the Lyapunov matrix and the associated stability multipliers is convex.

In particular these convex problems can be conveniently written in the form of linear

matrix inequalities (LMIs). 18,' 67 Because off-the-shelf codes can be used to solve LMI

problems in polynomial time, this can make these types of tests more convenient than

a real p analysis.

Of course, the use of the Popov criterion leads to just one form of parameter-

dependent Lyapunov function. More complicated Lyapunov functions can be formed,

and, in some cases, can reduce conservatism in the analysis. Useful instances of more

complex functions are discussed in Refs. 26 and 27. The difficulty with these proposed

analyses is that the size of the problem (both the number of variables as well as the

size of the LMI constraints) must grow in order to achieve the desired improvements.

It should also be mentioned that other researchers have documented the relation-

ship between real p and concepts such as the passivity of an uncertain system.1



w z

G

(a) (b)
Figure 1-1: a. Analysis problem - uncertain system is represented as a nom-

inal system wrapped into a feedback loop with an uncertainty
block. b. Synthesis problem - uncertain system with controller
feedback loop. G and G are known, LTI systems.

From the above discussion, it seems clear that when Lyapunov type tests are made

more complex in an intelligent fashion, the conservatism of the test can be reduced.

However, the difficulty with adding complexity to a test is that, eventually, the test

becomes so complicated that it cannot be used for practical systems. Either it takes

too long or requires too much memory. An extreme example of can be considered.

Given nw parametric uncertainties, to check the robust stability of a linear system,

one can check the stability of the system at each of the boundaries of the unknown

parameters. Each of these boundary points yields a constraint that can be written in

the form of an LMI. The resulting test is no longer conservative. However, one must

perform 2"w tests! The size of the analysis problem depends exponentially on the

number of uncertainties. This is unacceptable for use as a general method, because

such tests would take too long to perform for systems with a reasonable number

of uncertainties. Tests that grow exponentially with the number of uncertainties

continue to be proposed in the literature (see, for example, Ref. 29). Such tests are

not treated further in this work because of their limited practical utility.

A second type of uncertainty block that we wish to consider is the bounded-gain

uncertainty. As shown in Figure 1-la, an uncertainty block, A, will be considered if

the 2 norm of w is less than a known value, -y, for an input signal, z, with a unit £2

norm. If the uncertainty is linear, than this corresponds to an 7, norm, i.e., A1 <

7. The robust stability problem with this type of uncertainty is typically analyzed



using complex p tests.6 5 This is the same as a real p analysis problem with one of the

scaling functions set to zero. If the uncertainty is nonlinear and/or time-varying, then

such systems are analyzed using a generalization of p known as the structured norm

(SN)." Checking if a system is robustly stable to these uncertainties is equivalent

to checking the BIBO stability of a system with to an exogenous disturbance signal.

Furthermore, a robust stability analysis of such systems can be treated using a Popov

analysis by setting some of the stability multipliers to zero. 49 This is because the

bounded-gain uncertainty can be considered a sector-bounded nonlinearity with a

particular set of sector limits.

A final point to consider regarding stability analysis is whether conservatism can

be reduced by using a higher order test. Methods used to overbound P or SN should

be interpreted as quadratic tests on the system transfer function. Likewise, the Lya-

punov results that have been discussed rely upon quadratic Lyapunov functions. It is

tempting to believe that, for instance, a quartic stability test could be used instead.4

However, evidence suggests that higher order tests cannot be relied upon to reduce

conservatism, as the order of the test may be required to grow with the number of

uncertainties. 45

1.1.2 Robust 12 Performance Analysis

We now turn to a discussion of the performance metric we wish to optimize. Robust

performance analysis has traditionally been performed using ,P techniques, which can

guarantee robust performance with an W-, metric.6 5 In contrast, for an LTI system,

our performance metric equals the the system W-2 norm. The WH2 norm is of interest

both for historical reasons and because, for some systems, an W-2 metric will more

accurately reflect the desired objectives than an '-t metric would.

Because of the uncertainties in the system, we will need to extend the definition of

the W2 performance metric to include nonlinear systems. For an excellent discussion

of the performance metric and its definition for an uncertain system, the reader is

referred to Ref. 74. For linear uncertainties, our performance metric is equivalent to

the -2 norm, even in the multivariable case. This contrasts with performance metrics



such as the generalized 7-2 norm of Rotea.7 1

Calculating the worst possible 72 performance of a system with real, parametric

uncertainties is a robust performance problem. It is at least as difficult as determining

if such a system is robustly stable. Thus, the robust performance problem is also NP-

hard, and the worst-case performance of the system cannot be calculated exactly.

Instead, it must be bounded from above. The problem of bounding the cost has been

examined in many works including Refs. 28, 26, 66.

To be specific, we wish to examine the robust performance of the system, G pic-

tured in Figure 1-la. This is the most general formulation of the robust performance

problem because the nominal system has two distinct inputs and two distinct outputs.

With d considered to be a white noise input to the system, the R 2 performance is

calculated from the error signal, e. Meanwhile, the nominal system is wrapped into

a feedback loop with the uncertainty block, A, via z and w. This is the formulation

considered by How. 46 How bounds the 7-2 cost of this system using Popov stability

multipliers. His method yields an upper bound on the worst-case -2 performance

of the system, given uncertainties within a specified range. The Popov robust per-

formance analysis relies upon the same theory that was used for the Popov robust

stability analysis. It requires the solution of a Riccati equation for an associated

Lyapunov matrix, given a set of stability multipliers. The cost bound is obtained

by recognizing that the Lyapunov matrix provides an upper bound to the worst-case

observability Gramian of the system. The bound is equivalent to the bound discussed

Haddad and Bernstein in Ref. 41. How's bound can be computed at a reasonable cost

and has proven to be effective for structural control.5 0

Controllers designed using a Popov analysis are tested experimentally on a struc-

tural system in Ref. 50. The results demonstrate that a Popov analysis was not overly

conservative for a system with static, real-parametric uncertainties. Additionally, the

results of Ref. 7 suggest that Popov's criterion should provide reasonable bounds on

the 7-2 performance for a wide variety of uncertain systems.

If desired, one can reduce the conservatism of a Popov performance analysis by

using more complex multipliers. In Ref 26, Feron is able to reduce the conservatism



of a robust 712 performance analysis compared to a Popov-type analysis by using

non-causal stability multipliers. However, again, this comes at the cost of increasing

the size of the analysis problem.

The situation for a system with a gain-bounded (as opposed to the real, paramet-

ric) uncertainty set is similar. As before, typically, only a bound on the worst case

performance is calculated. However, recent results by Paganini 68 indicate that nearly

exact bounds can be calculated via a set of LMIs evaluated at a finite set of frequency

points. However, the accuracy of the calculation depends on the number of frequency

points to be evaluated. Alternatively, this formulation can be modified to involve an

LMI optimization over a predefined, finite set of basis functions, but this convenience

comes at the cost of some conservatism. 36

For the system with two inputs and two outputs pictured in Figure 1-la, with

A representing a gain-bounded uncertainty block, the same performance analysis

tools used for the real, parametric case can be used. As in the analysis of stability

robustness, this essentially involves setting parts of the stability multipliers to zero.

These bounds are easily computable and based on quadratic Lyapunov functions.

Furthermore, the bounds are well understood.44 ,74 ,2 6

1.1.3 Controller Design and Synthesis

A variety of methods have been used in practice to try and make LQG controllers

less sensitive to parameter variations in structural systems. For a survey of the most

promising of these techniques, the reader is referred to Ref. 38. However, these meth-

ods (such as the sensitivity-weighted LQG method or the multiple-model method),

unfortunately, do not fulfill the criteria that we have stated a robust controller should

meet. They do not provide a priori guarantees that the system will be robust nor

can they provide a bound on the performance of the system.

One design method that will guarantee that the resulting controller is robustly

stable is commonly referred to as a "D - K iteration."8 5 A D - K iteration consists

of alternating synthesis and analysis steps. In the analysis, or D, step, the controller

is held fixed and optimal weights (stability multipliers) are found to calculate the



performance of the closed loop system. In the synthesis, or K step, the weights are

held fixed and a controller is synthesized. One advantage of this design methodology

is that at each step, the closed loop cost should decrease monotonically. Also, a

D - K iteration is straightforward to use. The major disadvantage of the method is

that the iteration is not convex. It can converge to a local minima and can even fail

to converge. Nevertheless, D - K iteration is well established as a standard design

tool in the robust control community. It is, for instance, the method used to design

robust, W,, controllers in most so-called "p synthesis" algorithms.2

Not all robust control design techniques rely upon D - K iteration. The controller

design problem pictured in Figure 1-1b is investigated in detail by How. 46 In this

case, A is a real, parametric uncertainty and the goal is to find a controller, K,

that minimizes the worst-case W2 norm of the system, as measured at e. Because

How uses Popov stability multipliers to describe the uncertainty blocks, his designs

are referred to as W2/Popov controllers. How sets up an augmented cost function,

composed of a bound on the (2 cost and an associated, nonlinear, matrix equality

constraint on the performance. This augmented cost function is then minimized

using a gradient search algorithm. This technique solves for both the controller and

weighting functions (stability multipliers) simultaneously. This can be a problematic

optimization, as it can be difficult to find an initial guess for the unknown parameters.

The stability multipliers are not motivated by any physical or heuristic rules. In

contrast, initial guesses for a controller could be, for instance, the non-robust LQG

or W-,, controllers. For this reason, it seems that it should be useful to examine a

D - K iteration approach for the J 2/Popov design.

If the uncertainty structure is merely gain-bounded, rather than real and para-

metric, then the design problem in Figure 1-1b is called the 1 2 /SN problem.

We turn now to the problem of controller synthesis, i.e., finding a controller for

a given set of weights. A significant body of literature has developed for controller

synthesis in the face of an ,,7t bounded uncertainty. This problem was first considered

by Bernstein and Haddad,5 who called it the mixed W 2/ W0 problem. They set up

an augmented cost functional in terms of bounds on the system covariance, rather



than in terms of a Lyapunov matrix. Full and reduced-order controller synthesis was

performed by solving the necessary conditions for optimality, a set of four coupled

nonlinear matrix equations.6 These are typically referred to as "the optimal projection

equations." The solutions of these equations yielded upper bounds on the worst-case

state covariance of the system, thus providing bounds on the 7 2 cost. However,

the analysis was limited to the case in which the disturbance inputs, d and w, were

identical. This is significant because it leads one to a different interpretation of

the performance metric and the disturbance signals. With only one input, after

having found the controller, it is possible to exactly calculate the closed loop system's

exact 17 2 performance. With two disturbance inputs simultaneously acting on the

system, this calculation is not possible, and only the bound on the performance is

known. Furthermore, in order to try and reduce the conservatism of the control

design, different, possibly dynamic, weights may be needed for the d and w inputs.

This is not possible unless the inputs are explicitly separate.

As just mentioned, the optimal projection equations of Ref. 5 are a set of coupled,

nonlinear matrix equations. They are also referred to as coupled Riccati equations,

because when some of the variables are held constant in each equation, the equa-

tions take the form of Riccati equations in the remaining unknowns. The coupled

Riccati equations can sometimes be solved by iteratively solving Riccati equations -

holding some terms constant and solving for the remaining variables using standard

Riccati solvers. 5 The second standard way to solve these equations is with a homotopy

method. 15 Neither of these methods is guaranteed to yield a solution to the problem.

The problem of state feedback controller synthesis for the ' 2/7-0 case with only

a single disturbance input was discussed by Rotea and Khargonekar.7 2 They demon-

strated that, in this case, the solution for the optimal controller gain was an inher-

ently convex problem. They showed that when this control gain was mated to an

-H,, estimator for a related problem, the resulting controller solved the single input

W2/W7L problem."5 This demonstrated that the controller had a useful separation

structure. A dual form to the single input problem, with separate inputs but only

a single performance variable, was discussed by Doyle et al.22 Of significance, this



controller was again derived using a separation principle.

The single input formulation has since been expanded to include dynamic scaling

functions to make the bounds less conservative for real, parametric uncertainties. 43

Ref. 5 also notes that the single input - 2 /W-H, problem is a generalization of the

maximum entropy controller, 63 ,62 i.e., the central Wt, controller.23 ,8 5 If the outputs

from the system in the single input '- 2/ 7- formulation are assumed to be the same,

then one of the optimal projection equations becomes superfluous. Furthermore, the

remaining two decouple, leaving only the standard pair of W7-' output feedback Riccati

equations. Thus, the 7-, control problem is the same as our problem of interest in

the case that the two inputs are specified to be identical and the two outputs are also

specified to be identical.

It is worthwhile to point out the connections between the W-2 /SN problem and

a closely related problem, typically called the General Mixed W-2/7-i, Problem, first

introduced by Ridgely et al.70 It seeks to minimize the nominal 72 performance of

the system while guaranteeing stability robustness against ]H, bounded uncertainties.

This formulation cannot be used to guarantee the robustness of a system because it

does not generate an overbound on the worst-case observability or controllability

Gramian that can be encountered. Nevertheless, a great deal of work has been done

on this problem. For instance, the controller synthesis problem has been shown to be

convex, 76 solvable via LMIs, 12 and able to be solved exactly in the discrete-time SISO

case. 75 A comprehensive review of these nominal 7-12 performance systems is beyond

the scope of this work.

We now turn to briefly survey the literature on the usage of LMIs for controller

synthesis and design. Recently, a great deal of work has been done to synthesize non-

robust controllers using LMIs. Dynamic, output-feedback controllers that satisfy an

o performance metric can be synthesized by using the Bounded Real Lemma.33 ,52

However, for an W2 performance metric, the Lemma is not directly applicable, and

controller synthesis methods that rely upon LMIs have been limited to state-feedback

controllers, 25 or to static, output-feedback controllers.53 ,34 ,13 Solving the W7-2/Popov

problem or the W 2 /SN problem requires the synthesis of a dynamic, 7-2, output-



feedback controller, which is more complex than the previously mentioned controllers.

A method to solve the dynamic, -2, output-feedback problem using LMIs is derived

in this thesis. The method formed the basis for results presented by Livadas.57

Unfortunately, LMIs cannot be used to directly perform a robust controller design,

because the resulting constraints are bilinear in the any unknown controller param-

eters and the unknown scalings (stability multipliers). (This fact will be made clear

in this thesis in Chapter 4.) Consequently, some research has been done to try and

directly solve bilinear matrix inequalities."3 However, to date, effective algorithms do

not exist to solve bilinear matrix inequalities, so the controllers must be designed

by solving alternating LMI problems. Of course, solving alternating LMI problems

makes the design method have the same complexity as a D - K iteration that uses

LMIs. Such a D - K iteration, where both the analysis and synthesis steps require

the solution of LMI problems, is used to design controllers in Ref 27. In this refer-

ence, the analysis step uses a more sophisticated multiplier than is used for a Popov

analysis. The synthesis step uses the methods of Ref. 33 to derive W7-. controllers.

However, the results of the paper do not deal with 7-2 performance. Furthermore,

it is interesting to note that the design methodology is demonstrated on an example

system with only two states.

Another robust control design methodology that relies upon solving LMI problems

in a D - K iteration has been posed by D'Andrea. 19' 20 The methodology uses the

analysis technique developed by Paganini, 68 to bound the 72 performance of the

system. The synthesis technique requires the solution of an LMI feasibility problem.

However, the number of LMI constraints must increase to achieve a reduction in the

conservatism of the performance bound, implying that the computational cost of the

method can be high. It should also be mentioned that this synthesis technique is only

demonstrated on an example system with one state in Ref 19.

Finally, we mention the separation properties of controllers. It is well known

that for a given, fixed LTI system, any output feedback controller that stabilizes the

system inherently possesses the ability to be separated into a state feedback gain and

an output estimator (see, for instance, Refs. 58 or 18). This can be discerned via a



Youla parameterization of the controller. Note that, in general, unless the separation

structure of a controller is explicitly used for its construction (i.e., an estimator is

found, then a control gain is found), then, to the best of the author's knowledge,

this separation structure is ignored. The separation structure exists but apparently is

not useful. Two obvious examples where the separation principle plays a significant

role in controller synthesis are the W 2 (LQG) controller and the W. controller. 23 Of

great interest to this research, as already mentioned, is the fact that the single input

W2/SN problem and single output 7 2/SN problems have been solved by making use

of the separation structure of a modified system.56 ,22

Other researchers 54,55,59 have made use of an observer-based separation structure

to design controllers that robustly stabilize uncertain systems. However, these results

have not dealt with the question of robust performance. Furthermore, these results

were concerned with time-varying uncertainties, so they would be overly conservative

for systems with static parametric uncertainties.

1.2 Thesis Overview and Objectives

As previously stated, the overall goal of the thesis is to develop efficient and fast

methods to design robust controllers for W2 performance. Lyapunov stability-based

Popov analysis techniques have been chosen to be used in the thesis for performance

analysis. This choice is based on several reasons. First, a Popov analysis provides the

user with a priori guarantees on a closed loop system's 12 performance, even when

the system is perturbed. Secondly, compared with the other analysis techniques in

existence, a Popov analysis is relatively non-conservative and does not require an

excessive amount of computation. Other techniques can further reduce conservatism

in an analysis, but this comes at the expense of speed. Finally, Popov analysis is

chosen because it has previously been used for controller designs on structural control

experiments with real parametric uncertainties.5 0 Thus, the controllers that will be

designed can be presumed to have at least as much utility as those used previously.

The need in the control community today is for design tools that are convenient



to use on practical problems, rather than just on small example problems. If robust

control design algorithms are perceived as being inconvenient to use, designers will

avoid them and stick with conventional design tools. Whether a tool is perceived as

being convenient is a function of two quantities: the time for the design algorithm to

converge and the time required to obtain an initial solution to the problem at hand.

The time for the design algorithm to converge is a measure of the raw computational

requirements of a design tool. For a particular problem, this depends on the type

of algorithm used (e.g. Newton's method vs. a convex optimization routine), the

size of the problem (the number of constraints and the number of variables), and

the structure of the problem (nonlinear, convex, etc.). The time required to obtain

an initial solution is a catch-all phrase that refers to the amount of time required to

set up a problem and then to apply the design algorithm so that an initial problem

solution can be obtained. Controller design, like any design, is an iterative process.

After an initial solution is tested, it is likely that design parameters will need to be

adjusted and that a new design must be performed. For robust control problems, the

time to obtain a first solution can be dominated by the time required to select an

initial condition for the design algorithm, rather than by the time required for the

design algorithm to converge.

To test whether or not a design algorithm is convenient for practical structural

control problems, we can utilize models of the Middeck Active Control Experiment

(MACE). MACE is a flexible structure with embedded actuators and sensors that is

designed to simulate a flexible precision pointing spacecraft."' In the MACE space

shuttle flight experiment, onboard STS-67 in March of 1995, the ability to design con-

trollers quickly was a necessity. One of the goals of the experiment was to demonstrate

that by experimentally identifying the structure of the MACE system while it was in

space, controllers could be redesigned to improve performance. 6 0 The reidentification

of the structure was necessary to quantify changes that occurred because of the shift

from a 1-g to a 0-g environment and because of changes due to the daily disassembly

and reassembly of the structure. During the course of the 14 day shuttle experiment,

over 400 hundred control designs were tested on the structure. 10 Models of the MACE



experimental hardware should serve as excellent test subjects for a design algorithm

for several reasons. First, the models are relatively high order. Secondly, the un-

certainties in the MACE models are real parametric quantities representing actual

uncertain structural parameters. Together these factors combine to make the MACE

problem representative of a practical structural control problem. The final reason to

use the MACE system is that W2 /Popov controllers have previously been designed

for the system by How et al.50 ,46 Models of the MACE system are discussed in more

detail in Appendix B.

To accomplish our objectives, several general tasks must be performed in this

thesis:

* Develop a new, systematic way to formulate a robust R 2 controller synthesis

problem, given fixed stability multipliers.

* Determine how a Lyapunov-based bound on the H2 cost of an uncertain system

can be separated such that it is the sum of the cost from a robust full-information

control problem with the cost of a robust output estimation problem. Determine

what this implies about the structure of robust R2 controllers with regard to

model-based compensators.

* Determine if the structure of the robust controllers is useful for synthesis.

* Develop and test new synthesis and analysis algorithms for high-order problems.

* Demonstrate the design algorithm on a practical, high-order, structural control

problem such as the MACE system.

The following chapter of this thesis lays out some preliminary mathematics that

will be used throughout the thesis. In particular, it contains theorems on Lyapunov-

based methods to bound the W2 performance of an uncertain system. It considers

both systems with real parametric as well as gain-bounded uncertainties.

Chapter 4 of this thesis details a new systematic formulation of our robust control

synthesis problem. In particular, it demonstrates that full-order, dynamic, W2 con-

trollers can be synthesized using LMIs. This includes both robust controllers as well



as the standard LQG controller. The results of this chapter stand as a viable method

to synthesize robust W-2 controllers for small systems.

Afterwards, in Chapter 5, a second synthesis method is developed for the robust

W-2 control problem. The method is an alternative to that already derived in Chap-

ter 4. It relies on identifying a useful separation structure in the bound on the cost.

The method leads to a set of three equations that are sufficient to guarantee the

existence of a robust controller.

The subject of Chapter 6 is how to transform the previously discussed synthesis

and analysis theories into practical computational tools. This is a difficult task,

because, for a design tool to be truly useful, it must be able to handle relatively

high-order systems. The chapter contains discussions of a synthesis algorithm and

then an analysis algorithm. Finally, these algorithms are combined to form a design

algorithm which is eventually demonstrated on the MACE system.

The final chapter of this thesis contains a summary of the preceding work. It

details the contributions this thesis makes to the field of robust control. Finally, it

concludes with some remarks about further work that could be done to advance the

field.
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Chapter 2

Mathematical Preliminaries

This chapter is a tutorial. The first goal of this chapter is to discuss two fundamental

concepts that are used throughout the thesis: linear matrix inequalities (LMIs) and

dissipation theory. LMIs have become quite popular for use in control system design

and analysis recently. They will be employed for robust 7-2 controllers in Chapter 4.

Dissipation theory is essentially an extension of Lyapunov stability theory. Dissipa-

tion theory will be used to derive conditions which are sufficient to guarantee that an

uncertain system can maintain certain levels of both stability and performance.

The second goal of this chapter is to highlight several known theorems on stability

and performance robustness. These theorems contain state space tests that allow us

to guarantee that a linear system will be robustly stable to its set of allowable uncer-

tainties. The last section of the chapter contains theorems that allow us to guarantee

a level of 72 performance for an uncertain system, in addition to guaranteeing its

stability. These results can be derived using dissipation theory. The results are posed

both in terms of LMIs as well as in terms of Riccati equations.

Most of the notation in this paper is standard, however, we note that R+ is the set

of non-negative real numbers, nxm is the vector space of n x m real-valued matrices,

and Sn is the set of square, symmetric, real-valued matrices. Furthermore, Dt is the



Moore-Penrose pseudo-inverse of a matrix D. Lastly, the notation

A B

C D

denotes a state space realization for the transfer function C(sI - A)-'B + D.

2.1 Introduction to Linear Matrix Inequalities

This section contains a definition of a linear matrix inequality (LMI), discusses some

of the properties of LMIs, and highlights state-of-the-art software which can now be

used to minimize a linear cost function subject to LMI constraints. The purpose of

the section is not to discuss the history or usage of LMIs for control theory. However,

for a comprehensive discussion of LMIs, including extensive coverage of their usage

in control theory, the reader is referred to Boyd et al.8

A matrix inequality is a statement that a matrix is sign definite or semidefinite.

We write A > 0 and A > 0 to denote the fact that the matrix A is positive definite

and positive semidefinite, respectively. Throughout this thesis, any matrix that is

written as forming a matrix inequality can be assumed to be symmetric. If a matrix

is positive (negative) definite then each of its eigenvalues is a real, nonzero, positive

(negative) number. This, of course, implies that the matrix is nonsingular (i.e., it is

invertible).

A linear matrix inequality is an algebraic matrix inequality in which some of the

parameters in the matrix are variables. These variables must appear in the matrix

linearly (not quadratically, not bilinearly, etc.). Typically, whether or not a given

matrix will satisfy a matrix inequality depends on the values chosen for the variables

in the matrix. If the set of variables that will cause a matrix inequality to be satisfied

is non-empty, then the matrix inequality is referred to as feasible.

We present a common example of an LMI, the Lyapunov inequality, which happens

to come from control theory. If a linear system has dynamics given by ± = Ax, then



the system is asymptotically stable if there exists a matrix P E S" such that

PA+ATP < 0.

Here, A is a known parameter, and P is the variable (every element of P is a variable).

Even though P is used in a matrix multiplication, each element of the P matrix will

still appear linearly on the left hand side of the above inequality. Thus, this is an

LMI. Note that the matrix that is the left hand side of the expression has explicitly

been made symmetric.

One important property of LMIs is that they form convex constraints for their

variables. In other words, a convex set is formed by the variables that will cause a

given LMI to be satisfied. For example, the above Lyapunov inequality is seen to be

convex. Convexity is important to optimization problems that have constraints that

can be written in the form of LMIs.

2.1.1 Schur Complements

Often, we shall encounter matrix inequalities with a quadratic variable term. Fortu-

nately, quadratic matrix inequalities in Schur complement form have an equivalent

representation as an LMI. In particular, a variable x exists such that

Q(x) S(x)T
S 0 , (2.1)

S(x) R(x)

if and only if

R(x) > 0, Q(x) - S(x)TR(x)tS(x) > 0, and (I - RRt)R = 0. (2.2)

In the case of strict inequalities, the third condition of (2.2) becomes superfluous, and

the pseudo-inverse in the second condition is replaced by an inverse.



2.1.2 The Elimination Lemma

We mention an important result that can be used to simplify a specific form of

matrix inequality and turn it into a pair of matrix inequalities. This lemma originally

appeared in Ref. 67. We present the lemma as it appears in Ref. 33; a proof of the

lemma appears in that reference.

Lemma 2.1 (Elimination Lemma) Consider the matrix inequality

p + uTov + VTETU < 0, (2.3)

with T symmetric; U, V not necessarily square; and E unknown. It can be shown that

there exists a matrix 0 satisfying the above matrix inequality iff

WT W < 0 and WV'WW < 0, (2.4)

where Nu and Nv are bases for the null spaces of U and V respectively.

2.1.3 Optimization with LMI constraints

As previously mentioned, a feasible LMI defines a convex set in its variable space.

Therefore, minimization of a convex cost function subject to LMI constraints consti-

tutes a convex problem. Of particular interest to our work, the minimization of a

linear cost function subject to LMI constraints is a convex problem. This is commonly

referred to as an eigenvalue problem (EVP).8

Convex problems have a number of noteworthy properties. First, the feasible

space defined by the constraints is convex. Also, linear cost functions have a unique

minimum (maximum) over the feasible space. Certain optimization methods have

been developed to take advantage of these properties. In particular, ellipsoid methods

and interior point method solvers have been employed to solve EVPs.8 These methods

theoretically guarantee that if the solver is initialized at a point within the feasible

region, the optimum can be found. Furthermore, they guarantee that the optimum

will be found in polynomial time. In other words, given any number of variables, say



n variables, there is some fixed constant k, such that problem will be solved in time

proportional to n k

In this thesis, LMI problems are solved using a test version of the commercial

software known as LMI Lab.30 ,32,31 This software employs the sophisticated interior

point method solvers proposed in Ref. 64.

2.2 Introduction to Dissipation Theory

Dissipation theory is an extension of Lyapunov stability theory (Lyapunov's Second

or Direct method). The importance of dissipation theory is that it provides a means

to very quickly and straightforwardly write down the form of a candidate Lyapunov

function for a linear system with uncertainties. The majority of the results in the

succeeding sections of this chapter can be derived using dissipation theory.

This material was developed primarily by Willems, 81' 79s' 8 but for a more recent

discussion the reader is referred to Refs. 44 or 57. Consider the dynamic system, M,

given by

= g(x(t), (t))(2.5)

z(t) = h(x(t),w(t)),

where x : + - R"4 1 and z, w : R+ -- lnwx . Definitions are now given for storage

function and its corresponding supply rate.

Definition 2.1 (Willems, Refs. 79, 80) A system M of the form in equation (2.5)

with state x, is said to be passive with respect to a scalar function, r(w, z), called a

supply rate, if there exists a positive definite function VM : R" -+ 1, called a storage

function, that satisfies the dissipation inequality

VM(x(t 2)) < VM(x(t1)) + r(w(T), z(T)) , (2.6)

for all t 1, t 2 and all x, z, and w satisfying the system definition of equation (2.5).



Figure 2-1: Neutral interconnection of two systems M1 and M 2.

Assuming that VM is differentiable, an alternate form of (2.6) is

VM(x(t)) - r(w(t), Z(t)) , t > 0, (2.7)

where VM denotes the total derivative of VM(x) along the state trajectory x(t).

We now show how to use dissipation theory to derive Lyapunov functions that

prove the stability of a feedback system.

Lemma 2.2 (Willems, Refs. 79,80) Consider two dynamic systems M1 and M2

with state space representations as in equation (2.5), and input output pairs (wi, zl)

and (w 2, z 2) respectively. For the system interconnection illustrated in Figure 2-1,

with wl = z2 and w2 = , assume that the individual systems are associated with

states, supply rates and storage functions of the form xi, ri(wl, z1), Vn, (xi) > 0;

and x 2, r 2(w 2, 2), VM2 (x 2) > 0 respectively. Suppose that the supply rates satisfy

ril(w1, z1) + T2(w 2 , Z2 ) = 0, for all wl = z2 and z 1. In that case, the equilibrium

point ( 1, x 2 ) = 0 of the feedback interconnection of M1 and M 2 is Lyapunov stable.

Furthermore, a Lyapunov function which proves the stability of the system is V --

VM1 + VM2.

Finding a Lyapunov function for an interconnected system is a sufficient condition

to guarantee its stability. To extend this to robust stability problems, suppose that

system M1 in Fig. 2-1 is a known LTI system and that M2 represents an uncertainty

block, A. Typically, the system supply rate is assumed to be a quadratic function of

the states. If we are given a supply rate for the uncertainty block, r2 (t), then we need

merely to determine under what conditions the system is stable if ri(t) = -r 2 (t).

Fortunately, for many types of uncertainty blocks, there are well known supply rates



in the literature. For instance, if A is an 2 - £2 norm bounded system such that

IZ112 /llw 2 < 1, then we can choose r 2(t) = c(wTw 2 - z2z 2), where a is any positive

scalar. 44

The preceding discussion can also be easily extended to cases with multiple inde-

pendent blocks. For instance, if there are two uncertainty blocks, A1 and A 2, then a

sufficient condition to guarantee stability of a system, M, is that rM = - (rA1 + rA2 ).

2.3 A Review of Robust Stability Analysis

The purpose of this section is to present known state space robustness tests that can

be proven using dissipation theory. We will mention equivalent frequency domain

criteria for pedagogical and historical reasons, but these are not utilized in this thesis.

The test used to determine if a system is stable for all allowable values of an

uncertainty depends on what information is known about the uncertainty. The most

general type of uncertainty considered in this thesis is a square, gain-bounded un-

certainty block. This is considered first. Tests for systems with real parametric

uncertainty are more complex and are considered afterwards.

For simplicity, this discussion of gain-bounded uncertainties will be limited to

single blocks, i.e., uncertainties without structure. However, the material will be

easily generalizable to block-diagonal uncertainties.

Consider the following LTI system, M, in a feedback loop with an uncertainty

block, A,

= Ax + Bw

z = Czx (2.8)

w = Az,

where we assume that A is stable and that A is a square operator and all of the

matrices are of the appropriate sizes. Assume that the only information known about



the uncertainty block is that its £2-induced norm is bounded, in particular that

|Az| 2  IW2 1
sup = sup <-. (2.9)
zAO IZl12 z#O Z112 

This system is essentially the same as the system shown in Fig. 2-1, with, say, M

replacing M, and A replacing M2. The Small Gain Theorem tells us that the system

is robustly stable if we can guarantee that the infinity norm of the plant is less -y.

However, to reduce the conservatism of the Small Gain Theorem, we can appeal to

the Structured Small Gain Theorem (see Section 7.2 of Ref. 85). First, we define the

structured norm, SN.

Definition 2.2 (Dahleh & Diaz-Bobillo, Ref. 18) The structured norm, SN, is

a map from the space of stable systems to the nonnegative reals, defined as

SN = SNA, 2 (M) - 1 (2.10)
inf A £2 _-ind (I - MA) - 1 is not £2-stable} (2.10)

if, for every allowable A, (I - MA) -1 is £2-stable, then SN 0.

Note that SN is not a true norm in the mathematical sense, because it does not satisfy

the triangle inequality and there are nonzero matrices for which SN=O0. Clearly, SN is

a generalization of p that is used for systems with potentially nonlinear and/or time-

varying uncertainties. The following Structured Small Gain Theorem is adapted from

Ref. 18.

Theorem 2.1 The system of equation (2.8) is stable in an £2 sense to all allowable

uncertainties if and only if

SN < y. (2.11)

Unfortunately, as mentioned in the introduction, it is not possible to exactly calculate

SN nor p in general. However, in the case of nonlinear and/or time-varying pertur-

bations, bounds on SN become exact. For the single uncertainty block, we define a

scaling function, D = al, where a is a real number greater than zero. This form is



chosen for the scaling such that for all allowable uncertainties

DA- l D C2-i.d £,2-ind

even though the scaling does not necessarily commute with the A block. The following

theorem tells us how to compute SN.

Theorem 2.2 (Dahleh & Diaz-Bobillo, Thm. 7.4.2, Ref. 18) For nonlinear, time-

varying or time-invariant perturbations,

SN = inf |D-IMD|| . (2.12)
a>O

Usage of the Structured Small Gain Theorem has two distinct advantages over the

Small Gain Theorem. First, the Structured Small Gain Theorem allows us to consider

uncertainties with multiple blocks, i.e.,

A E {diag (A1, A 2, ...A)l Ai is a Pi x pi causal, nonlinear,

time-varying operator; and pi = nw .

In this case, the scaling function would also become block diagonal. Secondly, conser-

vatism is reduced by use of the scaling functions, D, which are also easily generalized

for multiple blocks. In the case of linear uncertainties, the theory presented for SN

is equivalent to complex p theory. We will not utilize p nor SN machinery directly

in this thesis. They have been presented so that dissipation-based results can be

compared to them.

For pedagogical reasons, let us now apply dissipation theory to the system of

equation (2.8) and derive a sufficient condition for robust stability. We will derive a

condition that ensures that |IDMDll,< y. A supply rate for the uncertainty block

can be chosen to be

rA = 9(zTz - 72wTw) , (2.13)

where a is, again, a real scalar greater than zero. We will assume that the system



has a storage function that is a quadratic function of the states. Given some positive

definite matrix, P, say that the system storage function is

VM = xTpx. (2.14)

We wish to show that the system is dissipative with respect to its supply rate, rM,

i.e., VM rM. To guarantee that the system is stable, according to Lemma 2.2, we

need that rM = -r, which implies that we need

VM < -(zT -- 2 Tw) , (2.15)

where the matrix P in the definition of V is, as of yet, unknown. Equation (2.15) is

a sufficient condition to guarantee that the system is robustly stable. If we evaluate

the derivative of the storage function using the plant dynamics, we quickly find that

this condition is equivalent to

xT(PA + ATP + aCT C)x + xTPBw + wT BPx - rY2 wTw < 0. (2.16)

We need this condition to hold for all x and w. This implies, then, that we need the

following matrix inequality to hold

PA + A T P + CTCz P B(2.17)

Bp 0 . (2.17)

Using Schur complements then, this matrix inequality is equivalent to the following

inequality (only the non-trivial condition is shown)

1
PA + ATP + aC Cz + I PBwBTp < 0 (2.18)

which is an Algebraic Riccati inequality. If there exists a positive definite matrix

P that satisfies the above inequality, then the system is robustly stable. Of course,

these inequalities are very familiar. They are statements of the Bounded Real Lemma,



which tells us that they are equivalent to

Il-'M(s)|| = IlM(s)I = IICz(sI - A)- 1Bwl, y, (2.19)

which agrees with the desired SN condition. Furthermore, inequality (2.18) is familiar

because it is the inequality form of the standard 4c, Riccati equation. It can be

shown 78 , 8 1, 23 that an equivalent method to guarantee the stability of this system is

to solve the familiar 7Lo Riccati equation

1
PA + ATP + aCzCz + - PBBP = 0 . (2.20)

0y 2

If a unique, stabilizing, positive-definite solution to the Riccati equation exists, it

possesses the smallest eigenvalues of all positive definite matrices satisfying inequali-

ties (2.17) or (2.18).

In the frequency domain, these conditions also have a familiar interpretation, com-

monly known as the "Circle Criterion." If the plant is SISO, then the Circle Criterion

requires that the Nyquist plot of the system remains inside a circle of radius 7.

We now consider a system with independent, static, real, parametric uncertainties.

This type of uncertainty is complicated to describe because it does not change with

time and it has constant (zero) phase. In fact, to definitively show whether a system

with real parametric uncertainties is robustly stable is an NP-hard problem. 9' 83 Ro-

bust stability analysis of such a system can be analyzed using the mixed or real p

type formulation of Fan et al.24 However, because we are interested in controller de-

sign, we examine Lyapunov-based, state space methods of analysis. If a gain-bounded

uncertainty formulation is used, then the results will be overly conservative. To make

the results more accurate, we can make the Lyapunov function depend on the uncer-

tain parameters. In particular, we will present methods of analysis that use Popov

multipliers41,42,46 and then discuss the connections between this and p.

Consider again the stable system given in equation (2.8), where A is a size n, x

n, unknown, diagonal, static, real matrix. The A block is diagonal because the

uncertainties are independent. Assume that, in addition to being real, it is known
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Figure 2-2: A sector-bounded nonlinearity.

that each of the uncertainties, 6 j, will lie within a certain range. In particular, say

that we know 2nw real scalar parameters, Mli, M2 , such that M11, < i < M2 for

i C [1, nw]. A Popov analysis constrains the phase of each uncertainty by considering

it to be a static, sector-bounded nonlinearity. Defining M1 and M2 to be diag(M,)

and diag(M 2i), respectively, and

Md = (M 2 - MI) - 1 , (2.21)

the Popov analysis restricts the analysis to consider only uncertainty blocks that are

elements of the following set

U = {A (z)I (A(z) - M z)TMD (M 2 z - A(z)) > 0, and A(0) = 0} . (2.22)

For each of the individual uncertainties, this restricts it to belong to the sector pic-

tured in Fig. 2-2. At this point, the formulation is very similar to the Lur'e problem

(see, for instance, Ref. 8).

The following theorem presents a sufficient condition to guarantee that the system

is robustly stable to a real parametric uncertainty.

Theorem 2.3 (Livadas, Ref. 57) Given a system as defined in equation (2.8) and

the uncertainty set, U, defined in equation (2.22), if there exists a positive definite

matrix P together with diagonal matrices H and N, where P and H are positive



definite and N is positive semidefinite, and the following matrix inequality is satisfied,

AT P - CTNMCz)+(P - CTMiNC) A ()T

-CTTMIMdHM 2Cz - CT M2HMdMICz
< 0, (2.23)

B T (P - CzNMICz) + NCzA B C[N + NCzB,

+MdHM2 Cz + HMdM1Cz -HMd - MdH

then the system is stable for all A C U.

The reader is referred to Ref. 57 for a proof of this theorem. The derivation of the

constraint can be done using dissipation theory and an uncertainty supply rate of

rA = 2(w - M1 z)T Nz + 2(w - Mlz)TMdH(M 2z - w) . (2.24)

The matrices H and N are referred to as the "stability multipliers" of the problem.

One could also derive a similar condition that allows more general multipliers. If

the restriction that N be positive semi-definite is lifted, then the stability multipliers

become non-causal and conservatism is reduced. 26

As was found for the case with gain-bounded uncertainties, this stability robust-

ness criterion can also be written in terms of a Riccati equation. The following

theorem can be derived using the Schur complements of the constraint from Theo-

rem 2.3.

Theorem 2.4 (How, Ref.46) Given a system as defined in equation (2.8) and an

uncertainty set U, as defined in equation (2.22), suppose a set of diagonal matrices

H and N exist such that H is positive definite, N is positive semidefinite, and

Ro = HMd + MdH - BWCN - NCzB (2.25)

is positive definite. Furthermore, suppose there exists a matrix P > 0 satisfying

(A + BwMICz)TP + P(A + BMCz) + [HCz + B§P + NCz(A + BMICz)]T.

Rol[HCz + BIP + NCz(A + BMCz)] = 0. (2.26)



Then, the system is robustly stable for all A E U.

This theorem is similar to results derived in Ref. 41. Note that Theorems 2.3 and 2.4

are effectively the same.

We can relate the conditions in Theorems 2.3 and 2.4 to a mixed or real 1i analysis

and a modified circle criterion. Using the results of Refs. 81,46, one can demonstrate

that the test that a system be dissipative is equivalent to a test that the transfer

function of a related system is positive real at all frequencies. In this manner, one

can transform the dissipation tests from a state space condition to the frequency

domain. Consider a case with an even-sided sector-bounded uncertainty, i.e., with

M2 = -M1 = /I. In Ref. 49, it is shown that checking the conditions of Theorem 2.4

is equivalent to checking if the transfer function of the nominal plant, G(jw), satisfies

the following condition at all frequencies

G*HG + j(NG - G*N) - C 2H < 0 (2.27)

where H is the usual stability multiplier, N = 2Nw1/, and a = P - 1. We can compare

this to the mixed or real p test posed by Fan et al.24 At any given frequency, 1 is

overbounded by a parameter p, if the maximum eigenvalue of the expression

G*DG + j(A/G - G*K/) - ftH (2.28)

is non-negative, and where the scaling matrices, D = D(w) and A = K(w), are

chosen to minimize the eigenvalue. (The D scaling has the same purpose as the

scaling matrix used to calculate SN in equation (2.12).) Clearly, the Popov and real

/t tests have the same form. In fact, it is clear that the Popov multipliers, H and N,

are equivalent to specific realizations of the scaling matrices in L theory

D(w) = D = H (2.29)

n(w) = An = 2Nw/ . (2.30)

The Popov analysis can also be interpreted as an off-axis circle criterion. Consider



a SISO system, where the plant transfer function, G(s), is written as x + jy. In this

case, Ref. 49 shows that condition (2.27) can be written as

2 N 2 2 N 2
x 2 + 2 + . (2.31)

This condition should be interpreted as requiring that the Nyquist plot of the system

lie within a circle centered on the jw axis at N/H. Thus, the Popov test can be

interpreted as a sophisticated extension of the small gain circle criterion. Furthermore,

it is also noticed that, just as mixed or real p is a generalization of complex p,

the Popov analysis is a generalization of the analysis technique used for a system

with gain-bounded uncertainties. In terms of the Popov stability multipliers, the

multipliers used for the gain-bounded case are H = al, and N = 0.

2.4 A Review of Robust Performance Analysis

This section has two purposes. The first purpose is to define the W2 performance

metric that will be used throughout the thesis. The second is to present results that

extend the stability robustness concepts of the previous section to allow us to bound

the performance of an uncertain system.

First, consider a system with real parametric uncertainties in the dynamics matrix,

defined by

= (A + AA)x + Bdd (2.32)

e = Ce ,

where A E Enx is the nominal dynamics matrix, d is an exogenous disturbance, e

is the performance signal, and the parametric uncertainty, AA, is defined as follows.

Recall the definition of U in equation (2.22). Using this definition, we can define AA

as some element of the set 'A where

UA = {AA EE -nxn I AA = BWACz, where A E , (2.33)

and where B,, E Enx and Cz E nlZn n are known matrices. For convenience, the



system can also be written as

S= Ax + Bw + Bdd

z = Czz
(2.34)

e = Cex

z = Aw

where A is a member of U.

We wish to analyze the 7-12 performance of our system. The difficulty with this

uncertainty description is that it has described the parametric uncertainty in terms

of uncertainty blocks, A, that are nonlinear. Indeed, in the case of gain-bounded

uncertainties, we explicitly wish to consider uncertainty blocks that are nonlinear.

Unfortunately, the ft 2 norm of a nonlinear system may not be defined. Therefore,

we will define a generalized -2 performance metric, that, in the case of a linear

perturbation, is equal to the square of the worst-case f- 2 norm of the system given

all possible system perturbations. As an aside, it is important to note that, unlike

the generalized -2 metric of Rotea, 71 our performance metric reduces to the usual

72 norm as long as the system is linear, even if the system is MIMO. We initially

give two definitions for our performance metric. If d is taken to be a zero-mean,

unit-covariance, white noise signal, then the performance metric, J, is the expected

value of the Euclidean norm of e, or

1 7
J(A)= sup lim - eTedt . (2.35)

/AEUA '--Tc 7 JO

A second definition for the performance metric depends on the impulse response of

the system. For an LTI system, these definitions are equivalent. This definition is

taken to be the sum of the squares of the L 2 norms of the responses due to a set of

impulsive inputs, 6di, where the di form a basis for the input space, or

J(UA) = sup Z ei1 (2.36)
AAEUA i=1



sup e eTei dt. (2.37)
AAEUA i=1 0

Either definition of the cost is generalizable to nonlinear or slowly time-varying sys-

tems. However, in these cases, equation (2.35) and equation (2.37) are not necessarily

equal. In the cases of interest to this thesis, we typically will not be able to calculate

these cost functions exactly. Instead we will calculate bounds on the cost functions.

We postulate that, when applicable, a bound on equation (2.37) will also provide

an an upper bound to equation (2.35). Therefore, equations (2.35) and (2.37) will

be used interchangeably to define the cost function. Stoorvogel 74 provides an excel-

lent discussion of the meaning of the 1-2 norm for a nonlinear system and gives a

comprehensive discussion of this performance metric.

It remains to be seen how the performance metric can be calculated. The perfor-

mance metric is equivalent to the function defined in the following lemma.

Lemma 2.3 (Haddad and Bernstein, Ref. 41) Given the system of equation (2.32),

with UA as defined in equation (2.33), assume A + AA is stable for all allowable AA.

In this case, the performance metric function is equivalent to

J(UA) sup tr BjPABd (2.38)
AAEUA

where PAA is the unique, positive semidefinite solution to the Lyapunov equation

(A + AA)TPAA + PAA(A + AA) + CTCe = 0. (2.39)

This lemma is based directly on the manner in which the -2 cost is typically calculated

for a linear system. The definition seems straightforward. Unfortunately, in general

it is not possible to calculate J(UA). This would require a search over all possible

AA; it is at least as difficult as solving the p stability robustness problem, which

is NP-hard. Instead, given specifications about the class of uncertainties, we must

utilize methods that overbound our performance metric, J(UA).

The first of these bounds comes from Refs. 82,57. It is an extension of Theorem 2.3.



Theorem 2.5 (Livadas, Ref. 57) Given a system as defined in equation (2.32) and

an uncertainty set, UA, defined in equation (2.33), if there exists a positive definite

matrix P together with diagonal matrices H and N, where P and H are positive

definite and N is positive semidefinite, and the following matrix inequality is satisfied,

AT (P - CTNMC) + (P - C[MiNCz) A
-CTMIMdHM2Cz - CzTM2HMdMCz )T

+cce < o, (2.40)

BT (P CzNM Cz) + NCzA BwC[N + NCzBw

+MdHM2 Cz + HMdMCz -HMd - MdH

then the system is stable for all A E U and the performance metric, J(UA), is bounded

from above by the following cost function,

J(UA) = tr [B T (P + CzT (M 2 - M1) NCz) Bd]. (2.41)

The reader is referred to Ref. 82 for a proof of this theorem and, in particular, a

derivation of the cost function. The authors use the storage functions of dissipation

theory to capture the impulsive nature of the performance metric.

As was found in the case of the stability robustness tests in the previous section,

the LMI-based performance test has an analog in a test that uses a Riccati equation.

This is presented in the following theorem.

Theorem 2.6 (How, Ref. 46) Given a system as defined in equation (2.32) and

an uncertainty set, HA, defined in equation (2.33), suppose a set of diagonal matrices

H and N, exist such that H is positive definite and N is positive semidefinite, and

that Ro, defined in equation (2.25), is positive definite. Furthermore, suppose there

exists a matrix P > 0 satisfying

(A + BMJiCz)TP + P(A + BMICz) + [HCz + BiP + NCz(A + BwMICz)]IT

Ro [HCz + B P + NCz(A + BM 1 Cz)] + CTC = 0. (2.42)



Then, the system is robustly stable for all A C U. Furthermore, the cost, J(UA) is

bounded from above by the following cost function,

J(UA) = tr [B (P + CT (M2 - M) NCz) Bd]

This gives us two methods two bound our performance metric. Note that, for any

feasible H and N, if the bound given in Theorem 2.5 is minimized with respect to

P, then it is equal to the bound given in Theorem 2.6. Furthermore, these bounds

could be rewritten in terms of a stability multiplier, N, that was not restricted to be

positive semidefinite in order to reduce conservatism.

We now consider a system with a gain-bounded uncertainty block or, equivalently,

a system subject to a £2 norm bounded exogenous disturbance. Recall the system

defined in equation (2.34). In this case, the only restriction on A is that its £2-

induced norm is bounded by 1/y. The previously given definition for the generalized

W 2 performance metric applies to this uncertainty set as well.

When we were only concerned with stability robustness, rather than performance

robustness, the analysis of this uncertainty set led to i, type conditions. The

following theorems extend the 7i results to include bounds on the l 2 performance

metric. Note that, because a Popov analysis is a generalization of the analysis used

for these cases, these theorems can be derived by setting H = aI and N = 0 in

Theorems 2.5 and 2.6. However, the results are important in their own right. We first

present a theorem that uses LMIs and then present its Riccati equation counterpart.

Theorem 2.7 (Ref. 82) Given a system as defined in equation (2.34), if there exists

a scalar parameter o > 0, such that there exists a positive definite matrix P E S'

satisfying

ATP + PA + CPTCB + 2CzTC1z 1PB
S T < 0, (2.43)

1 BTP -I

then IIGzwllO < y, and the cost, J, is bounded from above by a function

J < J = tr (BTPBd) . (2.44)



Theorem 2.8 (Hall and How, Ref. 44) Given a system as defined in equation (2.34),

if there exists a scalar parameter a > 0, such that there exists a positive definite matrix

P E S' satisfying

PA + ATP + CTCe + CTCz + PB,BTp = 0 (2.45)

then IIGzwllK < 7, and the cost, J, is bounded from above by a function

J < 7 tr (BT PBd . (2.46)

As in the real parametric case, for any feasible a, if the bound given by equation (2.44)

is minimized with respect to P, then the minimal value is equal to the bound given

in equation (2.46).



Chapter 3

Problem Statement

This chapter describes the robust W 2 controller design problem in detail. The follow-

ing chapters in this thesis are devoted to describing new ways of solving this problem.

Briefly, the problem is to design a linear, time-invariant, dynamic controller for a lin-

ear, finite-dimensional plant that can guarantee that the closed loop system is stable

and that the system will deliver, at worst, a known level of W-2 performance, even if

the plant is not known exactly. The problem of interest is similar to the problems

investigated by previous researchers, as given in Chapter 2. Our problem, is effec-

tively the same as that investigated by How.46 In this chapter, the problem will be

defined, and notation that will be used throughout the remainder of the thesis will

be specified.

First, consider a linear, time-invariant plant with no uncertainty, given by

; A B B, x

e Ce 0 De d (3.1)

y C, Dyd 0 U

where A E R " n, Bu, E nx, Bd E J n xn d, Cy E n x n , Ce E lZexn, Dyd E lny x nd,

and Deu E 7Ze x n . This system can be considered the nominal system description

of the uncertain plant that we want to model for the full problem description. We

assume that the disturbance, d, is white noise with zero mean and unit covariance.



Note that the system process noise and any measurement noise are both captured

by this disturbance, d. Correlation between the process and measurement noises can

be modelled by setting BdD' f 0. Also, the control signal is u and the measured

signal is y. We assume that (A, Bu) is stabilizable and that (A, Cy) is detectable. The

performance of the system is measured at e. We assume that both Ce and Deu are full

column rank. Finally, the cost due to the states and the cost due to the control are

assumed to be uncoupled, i.e., C[Deu = 0, though this assumption can be relaxed.

Our goal is to find the LTI controller, given by

{ c A Bc c (3.2)c

that minimizes the W-2 norm of the system, as measured at output error signal, e.

We assume a priori that the controller is full-order, thus A, E InZx, and the other

matrices are of appropriate dimensions. The controller has no feedthrough term from

y to u because this would make the resulting W2 norm of the system be infinite.

For the nominal system, the controller that minimizes the W2 norm is given by the

celebrated LQG controller, commonly written as

A - Bu(D T Du ) B T R - (QC[ + BDD T -'C, (3.3)

BC = (QC T + BdDy)(DydDy) - ' (3.4)

Cc = -(D Deu) 1B TR, (3.5)

where R and Q are the unique, stabilizing solutions to the Riccati equations

RA + ATR - RBu(D Du) -1BR + CTCe 0 (3.6)

AQ + QAT + BTBd - (QCT + BdDTd)(DydD )- (CYQ + DydB T ) = 0. (3.7)

Furthermore, the square of the -2 cost of the closed loop system with the LQG

controller is

J = tr (RBdB) + tr (QCTCe) (3.8)



Of course, our interest lies with uncertain systems. In this thesis, we consider

two types of uncertainties in our system, real parametric uncertainties and gain-

bounded uncertainties. The uncertain systems will be perturbed versions of this

nominal system.

3.1 Real Parametric Uncertainties: The 7 2 /Popov

Problem

We examine the problem of designing robust 7-2 controllers for a linear, time-invariant

system with certain parameters that are unknown. The unknown parameters are real-

valued and static. Furthermore, they are known to lie within a certain prespecified

range.

Consider a perturbed version of the system discussed in equation (3.1), where the

actual system dynamics are captured by a matrix A6, rather than the A, but all the

input/output matrices (Cy, B,, etc.) are as given. We can then define a matrix, 6A,
to be the difference between the actual and the nominal dynamics such that

A= A +6A. (3.9)

Given that the system dynamics matrix is real-valued, 6A can be considered real-

valued as well. Furthermore, 6A is static, since A6 does not vary with time, and

the elements of 6A are assumed to be independent of each other. Note that, in

general, we do not put any restrictions on the structure of the 6A matrix. For a

well-known system, 6A should be sparsely populated or should be low rank, due to

the structure in the system. In this thesis, we shall only consider systems that have

an uncertainty in their system dynamics matrix. This restriction is not as limiting as

it might seem. In most cases, parametric uncertainties in the "B" and "C" matrices

can be incorporated to a modified system dynamics matrix.4 6

We presume that we can bound the magnitude of the variation in any parameter

that is expected to be different from its nominal value. Therefore, we assume that we



can bound the magnitude of the elements in the 6A matrix. To apply the standard

tools developed for the robust analysis of linear systems with uncertainties, we place

the uncertain parameter in a feedback loop with the plant. This allows us to effectively

control an entire set of possible plants. For n, uncertain parameters, the uncertainty

feedback loop is defined as

6A = BwACz , (3.10)

and

w = Az (3.11)

z = CxZ, (3.12)

where A E Enwx , Bw E R n x w , and Cz E R n xn

In many cases, elements of the A matrix may themselves be modelled as the

uncertain parameters. In other cases, primitive quantities that form the A matrix

may be more naturally modelled as the uncertain parameters. In the former case, if

a given element, say aij, of the A matrix is uncertain, then B, is a column vector

of zeros with row i set to unity, and Cz is a row vector of zeros with the j entry set

to unity. The case with matrix primitives being more easily modelled as uncertain

can appear, for instance, in structural control problems. For instance, the dynamics

matrix of a single spring system with a unit mass can be written as

0 1
A = (3.13)

where w is the natural frequency and ( is the damping ratio of the spring. If ( is an

uncertain parameter in the A matrix, then this situation is easily modelled using the

framework discussed. We can choose, for instance,

[ [ ]
BW = , and Cz= 0 1
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Figure 3-1: The controller design problem

However, in the case where w is uncertain, we find that the Popov framework cannot

handle this exactly. Only one parameter is uncertain, but to place uncertain param-

eters in both entries of the bottom row of the A matrix would require a diagonal A

block of size 2 x 2. Unfortunately, we are unable to constrain both of the elements

of an uncertainty block to be equal. However, letting both elements vary indepen-

dently is overly conservative. In this case, acceptable results have been obtained by

instead assuming that the frequency variations occur only in the squared frequency

term.3 9 10 '38 This leads to the following formulation

BwCA Cz = 6 w: 0 (3.14)
-(x

The case with both w and ( both uncertain presents further difficulties. The reader

is referred to Refs. 46, 38 for further details on the modelling and the selection of the

uncertainty matrices. It should be noted that if the formulation allowed the stability

multipliers to be block diagonal, rather than diagonal, then this framework would be

able to fully accommodate an uncertainty block with a repeated term.

In any case, for real parametric uncertainties, we require that the A block is square

and diagonal, and that its terms are independent of one another.

We also know that the unknown parameters in the A block are real. Therefore,

we model the uncertainty block using Popov multipliers, as discussed in Chapter 2.

A Popov analysis of real uncertainties is typically less conservative than a small-

gain type analysis, because Popov multipliers can bring phase information into the



description of the uncertainty block.

It is also assumed that bounds on the expected variation of the parameters are

known. Each uncertain parameter, 6i, is considered to lie between the real values M1,

and M 2i, where M2, > M1 i. These parameters give us the slopes of the sector bound

used in the Popov analysis. For n, uncertain parameters, we can define diagonal

matrices M1 and M 2 of size n, x n, whose nonzero elements are the bounds on the

individual uncertain parameters.

We can now concisely summarize the above discussion and state the problem

below.

The 7- 2 /Popov design problem: Consider the system in Figure 3-1. The LTI

plant, G, in the system is given by

X A Bd Bw Bu X

e Ce 0 0 DeU d

z Cz 0 0 0 w

y Cy Dyd 0 0 u

with A E l Znxn, Du E R-(n +nu)xnu, Dyd e )Z nyxnd, Bw E Rnxn, and Cz E Znwl n

and the other matrices of compatible dimensions. The realization is assumed to be

minimal. Furthermore, C, and Deu are both full column rank, and the control cost is

decoupled from the state cost, so that CTD,,= 0. Also, we assume that (A, B,) is

stabilizable and that (A, Cy) is detectable. However, we do not put any requirements

on the stabilizability and detectability of the uncertainty loop, (A, Bw) and (A, Cz).

Lastly, we assume that the estimation problem is non-singular, implying that Dyd is

full row rank.

The uncertainty block, A, is a diagonal matrix whose diagonal entries are the n,

static, independent, real, uncertain parameters. Each of the uncertain parameters, 6j,

is bounded by a known quantity so that we can define diagonal matrices MN and M2

whose diagonal elements are such that M 1i < 6i < M12 . For convenience, we define

Md (M 2 - M1)- 1

The goal is to find two size nr diagonal matrices H and N, with H > 0 and N > 0,



which serve as Popov multipliers for the uncertainty block, as well as a full-order LTI

controller, given by equation (3.2). The controllers and Popov multipliers should

guarantee that the system is stable for any allowable uncertainty block. Moreover,

they should provide an overbound on the (2 cost of the system given any allowable

uncertainty.

Note that the constraint that N be positive semidefinite is not necessary. It can

be lifted, and the resulting stability multiplier makes the analysis less conservative.

However, this constraint is included to allow these designs to be compared to the

results in Refs. 46,49, 50, 57.

3.2 Gain-Bounded Uncertainties: The 7- 2/SN

Problem

This problem is similar to the W2/Popov problem. We are still interested in the

W 2 performance of a linear, time-invariant plant with a full order LTI controller.

However, rather than investigating real parametric uncertainties, we will be interested

in robustness against nonlinear, time-varying uncertainties and/or L2 gain bounded

exogenous disturbances. Thus, the system will be made robust to a more general set

of uncertainties than was investigated for the 7- 2/Popov controller. As before, we

will use dissipation analysis to analyze the performance of the new systems. This

effectively makes the W 2/SN problem a subset of the W2/Popov problem, because

less complex stability multipliers must be used to describe a more general uncertainty

block.

We would like to describe the uncertainty set for the ]- 2/SN problem. We will

first consider that the uncertainty comes from a parametric uncertainty in the system

dynamics matrix. Recall the parameterization of the uncertainty in the A matrix

described by equations (3.9), (3.10), and (3.15). We adopt identical parameterization

and identical notation for the new case. However, we now allow that the A block

can be a nonlinear, time-varying operator. Furthermore, we do not require that



the n, uncertainties are independent. However, we do require that the gain of the

uncertainty block is bounded. Referring to Figure 3-1, the gain constraint is that

sup AZ2 < , (3.16)

where y is a positive, real number. Clearly, from the Small Gain Theorem, we know

that the system is guaranteed to be robustly stable if we can control the z output of

the plant such that z11 2I 11W 2< 7 for all allowable A.

We note that the gain constraint can be written as

zT z - 2w w > 0. (3.17)

Written in this form, this constraint is used to define the uncertainty supply rate in a

dissipation analysis. The constraint clearly contains no information about the phase of

the uncertainty block (as would be useful if we were interested in a real uncertainty).

It merely constrains the L2-induced norm of the block. According to dissipation

theory, 49 the correct stability multiplier for this type of uncertainty block is a2In,

with a a real scalar. The Popov multiplier, H + Ns, used for the W72/Popov problem

is not appropriate. However, it is clear that the solution of the W-2/SN problem can

be thought of as a particular instance of the Popov multipliers, with H = a2I and

N = 0. This implies that the methods of solution for the 7- 2/Popov problem and the

7-12/SN problem can be similar.

The fact that we are restricted to use a single scalar block, u2I, for the multiplier

is the same as the fact that the scaling matrix, D in SN theory was restricted to this

form in equation (2.12). The W2/SN problem derives its name from the fact that

it combines an W2 performance requirement with the same nonlinear, time-varying

uncertainty description that can be analyzed using SN analysis.

There is a second interpretation of the robustness condition that can be given in

the 71 2/SN case. Consider the system of Figure 3-2, with the plant dynamics given by

equation (3.15). We want the controller to deliver robust stability and performance

in the face of a disturbance, d, which has a bounded spectrum, together with a
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Figure 3-2: Robustness against an exogenous signal. The w disturbance is
an £2 signal. A new signal, z, is measured at the output for the
, norm of the system. The d signal may still be considered to

be white noise. The e signal still represents the error signal by
which the system's NH2 performance is measured.

second disturbance, w, which has bounded power. We require that the closed loop

system's first output, z, has bounded power. This is an i, performance metric.

Simultaneously, we require that the controller minimize a bound on the closed loop

system's 3 2 norm, as measured from the error signal, e.

This second interpretation of the robustness problem leads to a problem formu-

lation that is similar to the mixed ' 2/0 proposed in Ref. 5 and examined in

other works. 86,56,72 However, the current problem formulation differs from the mixed

W2/7,o problem and various related problems because there are two distinct distur-

bance inputs with two distinct performance outputs. This is necessary so that the

definition of the system's l12 performance makes sense. In the mixed W2/RLc prob-

lem, only one input is defined. When discussing the Na characteristics of the system,

the input is considered to be an £2 signal, but when discussing the H 2 performance

of the system, the input is considered to a white noise signal. The implication of

this fact is that, given a controller, it is possible, in the single input case, to exactly

calculate the "H2 performance of the system. In contrast, for the two input system,

an exact means to calculate the W2 cost is not known, so only bounds on the system

performance are calculated. Furthermore, it is likely that to reduce the conservatism

of a design, different weights should be applied to the d and w inputs. Thus, the

single input approach is not flexible enough to handle a system with an W.. perfor-

mance metric that also possesses a distinct and meaningful 7t2 performance metric.

Similarly, in Ref. 86, the two output signals, z and e are considered the same signal.



Fortunately, robustness to an exogenous, bounded-power signal can be analyzed

using the same tools that were discussed for the case of the time-varying parametric

uncertainty. This is because it is equivalent to requiring that the nominal closed

loop system has infinity norm less than 'y. We will typically find it more convenient

to discuss the -2 /SN problem as if it derived solely from a parametric uncertainty

framework. We will leave implicit the fact that the problem can also be derived from

a system with dual exogenous disturbance inputs and a mixed performance criterion.

We can now concisely summarize the above discussion and state the problem

below.

The W 2 /SN design problem: Consider the system in Figure 3-1. The LTI plant,

G, in the system is given by equation (3.15), with n states, n, control inputs, a size

nd white-noise disturbance input, ny measurements, and an error measurement of

size ne. The realization is assumed to be minimal. Furthermore, the control cost is

decoupled from the state cost, so that CeDeu = 0. Also, we assume that (A, Bu) is

stabilizable and that (A, Cy) is detectable. However, we do not put any requirements

on the stabilizability and detectability of the uncertainty loop, (A, B,) and (A, Cz).

Lastly, we assume that the estimation problem is non-singular, implying that Dyd is

full row rank.

The uncertainty block, A, is full, square, and size n,. The uncertainty block has

bounded £ 2-induced norm, such that IIAz1 2/ 2 < 1/-y for all z.

The goal is to find a stability multiplier, orI, to describe the uncertainty block

and a full-order, LTI controller given by equation (3.2). The controllers and stability

multiplier should guarantee that the system is stable for any allowable uncertainty

block. Moreover, they should provide an overbound on the W2 cost of the system

given any allowable uncertainty.



Chapter 4

Linear Matrix Inequalities for

Robust t2 Controller Synthesis

This chapter presents a novel solution to the controller synthesis problem posed in

Chapter 3. The chapter does not tackle the full design problem, which is left to

Chapter 6. Throughout the chapter, the stability multipliers (H and N for the

W2/Popov case, a for the 1W2/SN case) will be considered fixed. The goal will be to

find the controller that minimizes the bound on the 7-2 cost of the uncertain system,

using fixed multipliers.

The solution is made possible because we are able to transform the robust W 2 con-

troller synthesis problem into a problem of minimizing a linear cost function subject

to LMI constraints, i.e., an eigenvalue problem. The procedure can be performed

relatively independently of the type of stability multiplier that is used to characterize

the system uncertainty. Thus, the synthesis procedure is derived in detail for the

case of an W2/SN controller only. Afterwards, the case of the W2/Popov controller is

summarized. The LMI formulation for the W2/Popov case was derived by Livadas5 7

by following the derivation of the 7-2/SN case, which appears here. These synthesis

procedures build upon the LMI-based synthesis procedures derived for Wo controllers

in Ref. 33.

This synthesis procedure is interesting from a historical perspective, because it

presents the first known method to use LMIs to synthesize a dynamic controller that



optimizes the closed loop 7-12 cost (or a bound on the 7-2 cost) for an output feedback

system. Previous LMI-based control synthesis procedures have only dealt with static

'7-2 controllers using either full-state feedback 25 or output feedback.5 3

4.1 LMIs for it 2/SN Controllers

Recall the nominal plant, G, of equation (3.15) and the controller, K, given by equa-

tion (3.2). We wish to consider the nominal system formed by closing the loop between

the plant and the controller. This is the lower linear fractional transformation of the

system, F (G, K),

A d Bw

e 0C 0 0 d (4.1)

z Cz 0 0 w

where

A = A BuC, C (4.2)

and

BE = Bd and B, B (4.3)SBcDyd 0

Ce= [Ce DeuCc and Cz [ C 0 . (4.4)

Note that the closed loop matrices contain the unknown terms from the compensator.

Of course, this closed loop system is still a nominal system. The relation of the

closed loop system to the uncertainty, A, is shown schematically in Figure 1-lb.

From the figure, it is clear that the closed loop system and the uncertainty block are

interconnected in the manner of the systems analyzed in Section 2.4. This means that

we can use dissipation theory to bound the closed loop cost of the system. Applying

the results of Theorem 2.7 to this system reveals that the cost is bounded by

J < J = tr ( PB PBd), (4.5)



if a positive definite matrix P E S2n exists and satisfies the Riccati inequality

A T P + PA + CT + U20czT + 1 2PBB P < 0 . (4.6)

Furthermore, if such a P exists, the closed loop system will be stable for all uncer-

tainties, A, where jIAz112/ 11zI12 1/i for all z. Recall, once again, that the stability

multiplier, a, is considered to be fixed.

Unfortunately, while equation (4.5) and inequality (4.6) are perfectly useful for

determining whether or not a given controller is acceptable, they give us no insight

into how to solve for an unknown controller. The difficulty is that both the cost

bound and matrix inequality constraint are nonlinear in the unknowns (the controller

parameters and the Lyapunov matrix, P). This occurs because the closed loop matrix

parameters contain the unknown controller variables. Thus, the robust '- 2 controller

synthesis problem appears to require a nonlinear optimization. The main result of

this section is given in the following theorem. It converts the nonlinear optimization

problem into a linear, convex optimization problem.

Theorem 4.1 For the system of equation (4.1) and a fixed stability multiplier, a,

define a matrix B, E nx"u that is full column rank. Furthermore, define

T

Bd yd 1= (4.7)

Consider the cost function, J, given in equation (.5), subject to the matrix inequal-

ity constraint given in equation (4.6). Then a positive definite matrix P exists and

minimizes the cost function subject to the constraint, if and only if a positive definite

matrix P E S 2n exists and minimizes

tr (BPB) , (4.8)



while satisfying

SP 1 B w

< 0,

-I

AQ 11 + Q11AT - Bu(DT D,e)-1BT + 1 BBT OaQ11CT

uCzQ11 -I

We Ce Q 11 0

(4.9)

Q 1CTWeu

0 <0

-I

(4.10)

where Weu is an orthonormal basis for the nullspace of D T , and

P1 1

P21

I

P21

P22

0

I

0

Q11

> 0 , (4.11)

for some matrix Q11 ( S n .

of (4.8).

Furthermore, J is equal to the constrained minimum

Proof. To synthesize a controller, we would like to find the matrix P that minimizes

equation (4.5) and satisfies inequality (4.6). However, this is not a straightforward

LMI minimization that we can solve. Inequality (4.6) contains terms that are the

product of unknown compensator terms with the unknown P. Furthermore, the cost

is also not linear in the unknown matrices. We wish to have a cost function that is

linear in the unknown terms with inequality constraints that are also linear in the

unknowns. This would form an EVP (see Section 2.1). We shall demonstrate that

we do not, in fact, need to find P. Instead we shall prove that it exists and find a

related matrix, P, that will serve to minimize the bound on the cost and fulfill the

robustness constraints.

ATP 1 1 + P11A + C T Ce + 2 CTCz

+ Cy,3P 2 1, + P2c

1 p11a~y Bw 111



We first examine the cost function,

-T
Ba Bd

& = tr (BTPBd) = tr /P . (4.12)
BcDyd BcDyd

The cost contains the product of the unknown term B, with P. The key to this proof

is to recognize that we can, without loss of generality, assume that the B, matrix has

a fixed form, say B. For instance, we might choose

B = Iy (4.13)
0(n-ny)xn,

or

B=CT , (4.14)

if Cy is full row rank. As long as B3 has full column rank, then we can use a simi-

larity transform to change any realization of the controller to have a realization with

BC = Bc. Note that if this were the typical state space realization for an LQG or

a suboptimal 7-, controller, then one would write the B, matrix as the product of

CT with a n x n matrix that is the solution to a Riccati equation. Thus, choosing

B = CT makes the realization of the W2/SN controller appear somewhat familiar.

At any rate, in specifying Bc, we have formed a cost function that is a linear

function of the unknowns. For reasons that will be made clear later, we define a new

matrix P E S2n. Replacing P with P in the expression for the bound, leads to the

desired bound, equation (4.8).

We now turn our attention to finding a way to linearize the constraints. We define

some new expressions that will allow us to separate out the compensator terms in our

closed loop matrices. Note that only Ac and C, remain undefined in the realization

of the compensator. Define

E) = (4.15)



Also, matrices A1 , A 2, and A 3 are defined such that

A A LA 0

BcC, O

0 B,

I 0

= A + A 20A 3 .

Similarly,

e = Ce DeuCc Ce 0] + [0

= + C +C 2 A 3 .

Furthermore, we replace occurrences of P in the Riccati inequality (4.6) by the

previously defined P. With these definitions and by making use of Schur complements,

the Riccati inequality can be rewritten as the matrix inequality

ATP + A + O 2zTdz Ip6w OT

-I 0 <0.

0 -I

Again, this is not a linear matrix inequality since it contains products of unknown

terms. Substituting the new definitions for the closed loop matrices into inequal-

ity (4.18) yields

ATP + PA 1 + 2CToz Iw

~ pP -I

C1 0

PA 2

+ 0

C2

0 0 o]+

CT

0

-I

A P

AT
0

0

0 CT]< 0.(4.19)

This has the form of the inequality in the Elimination Lemma (Lemma 2.1). In

Ac [o 0 ]
JLC

(4.16)

Deu I I]

(4.17)

(4.18)

ET 
I



applying the lemma, the definitions of I, U, and V are obvious from the form of

inequality (4.19). Strictly speaking, the Elimination Lemma is written in terms of

strict inequalities, while (4.18) and (4.19) are non-strict. It can be shown that the

lemma can be applied to (4.19), because the upper left and lower right blocks of (4.18)

are non-singular.

One could apply the Elimination Lemma without specifying bases for the required

nullspaces. However, this would not allow one to learn about the structure of the

LMIs. Therefore, we choose to specify bases for the nullspaces. Accordingly, we write

S= P 0 C0

= U' 0 I 0 ,
0 0 I

where

U'= 0 I 0 0

BT 0 0 DT

and all matrix blocks are defined such that the corresponding multiplications make

sense. Because B, can be assumed to have full column rank, we can choose a basis

for the nullspace of U' as

I 0 0

0 0 0
Wu, =

0 0 I

-(De) tB u  Weu 0

where W/Ve is an orthonormal basis for the nullspace of D . Thus,

P- 1 0 0

WU= 0 I 0 Wu .

0 0 I



For notational ease, we define the inverse of P to be Q. Furthermore, we define the

matrices Pij and Qij to be the size n x n blocks in the (i, j) partitions of the P and

Q matrices, respectively. Then, multiplying out WuT4Wu leads to inequality (4.10).

Inequality (4.9) is derived similarly. It comes from the second constraint stipulated

in the Elimination Lemma,

Wta fWv e c .

It is straightforward to show that we can choose

Wv=

In

Onxn

0

0

0

0

In,

0

to find the desired LMI.

We now need only derive the

mizing the trace of (B~'PBd), the

such that

third LMI of Theorem 4.1. Because we are mini-

requirement that P = Q-1 leads us to constrain P

P >Q-1 (4.20)

Clearly, because P is minimized, the above inequality will be driven to the edge of

its constraint boundary, i.e., such that the quantity (P - Q-I) becomes singular. By

Schur complements, this is equivalent to an LMI,

P 1 1

P21

I

0

P22

0

I

I

0

Q11

Q21

0

I

Q,
Q22

>0. (4.21)

Technically, this may not be enough to ensure that the matrices P and Q that emerge

from the minimization are inverses. This is why the proof has been written in terms

of a matrix P, rather than the desired matrix, P. The inverse condition will fail in



the case where the cost function does not effectively minimize all of the eigenvalues

of P. This is the case with most systems; it occurs when the Bd and Bc matrices

have rank less than n. Fortunately, this is not a problem. As detailed in Refs. 82

and 57, the resulting P matrix can always be transformed to be P, such that the

inverse condition is achieved, i.e., P-'= Q. The transform leaves the portions of the

P matrix that affect either the cost function or the constraints unchanged, and only

affects the unconstrained terms.

Finally, we can derive the final desired LMI, inequality (4.11). We note that

portions of Q are not needed in the problem formulation. Matrices Q21 and Q22

appear nowhere in LMIs (4.9) and (4.10), nor in cost function (4.8). Thus, they are

superfluous and can be dropped from LMI (4.21), leading to the desired LMI. 0

The proof of Theorem 4.1 is related to the work in Ref. 33, which deals with a

method to synthesize suboptimal W7-. controllers using LMIs. In the 4, case, the

synthesis LMIs were derived from the Bounded Real Lemma. That lemma guarantees

that if a given closed loop Riccati inequality (essentially inequality (4.6) without the

Ce term) is satisfied, then the desired level of W, performance is achieved. Thus, in

the -.. case, the development need only linearize the Riccati inequality. However,

in the W2/SN case, in addition to linearizing a Riccati inequality, we must explicitly

minimize a bound on the (2 cost function. Thus, the key to the proof of Theorem 4.1

was the substitution of expression (4.8) for the cost function in equation (4.5).

Theorem 4.1 is significant because neither the bound on the cost, equation (4.8),

nor the constraints given in inequalities (4.9)-(4.11) contain the unknown controller

parameters. They are written solely in terms of the unknown Lyapunov matrices.

Thus, the constraints are LMIs. The bound is also linear in the unknowns.

Note that there is no guarantee that two matrices P and Q exist that can satisfy

the LMIs of Theorem 4.1. There is no reason to believe that any given 7 2/SN problem

necessarily has a solution. When the system has significant levels of uncertainty (i.e.,

7 is small), the stability robustness constraint can become too restrictive for any

controller. Clearly, no controller can yield a closed loop system that delivers a a level



of y below the minimum level of y that can be achieved with an 7-' controller. Also,

note that the existence of a solution to these LMIs is sufficient to guarantee a solution

to the problem, but these conditions are not necessary.

Assuming that the problem has a solution, after minimizing the bound on the

cost function, equation (4.8), subject to LMIs (4.9)-(4.11), it may not be the case

that the resulting matrix P is equal to the desired closed loop Lyapunov matrix, P.

This occurs when P is not equal to the inverse of the resulting Q matrix. This is

the case when the Bd and B, matrices have rank less than n, so that the EVP does

not constrain all of the eigenvalues of P. However, it is always possible to derive

the matrix P, given P. This is done via a straightforward transformation detailed by

Livadas 57 ,82 and others.3 3 The details of this transform are secondary to the discussion

at hand. Therefore, for purposes of discussion, we will always presume that the P

matrix is effectively determined by solving the EVP.

Given the closed loop Lyapunov matrix, P, the controller parameters can be

found from the closed loop Riccati inequality. The Riccati inequality is equivalent

to inequality (4.18), with P replacing P. Because P is known, this is an LMI for

the unknown controller parameters, 0, defined in equation (4.15). This becomes a

feasibility problem for 0, i.e., any O which satisfies the LMI yields a valid controller.

It is also a convex problem. Thus, there is a convex space in R (n+nu)n such that

every point in the space fulfills the LMI. Each point in the space corresponds to a

different (but entirely equivalent) realization for the optimal controller.

Rather than solving a feasibility problem, it is also the case that the controller pa-

rameters can be solved for algebraically. This is discussed in Ref. 33, where this is the

suggested procedure for finding the controller parameters in a suboptimal W,4 design.

Interestingly, we can derive yet a third, even simpler, method to solve for the

controller parameters. A novel, closed form set of equations exists for the controller

in terms of the Lyapunov matrix. This is the subject of the next theorem.

Theorem 4.2 Given a matrix P that satisfies inequalities (4.9) and (4.10), and a

matrix Q such that Q = P-1, a realization for the controller that achieves the cost



given by (4.8) is

A = -P-T(P11A + 2T cC+ 2CTz + CTCe)Q11Q-1
AC p (jlA+ 21 Be Cy ~ 21

-P21T (A + B,WB wP1 - B,(DeuDe) BU P) Q-1

Proof. This proof is essentially an extension of the proof of Theorem 4.1. As such,

we shall reuse some of the notation defined in that proof.

Recall the definitions of , Al, A2, A 3 , C1, C2, ', U, and V from the previ-

We form the matrix [ Wv Wu ]. However, we drop certain redundant

columns for clarity, leaving a matrix

Wuv =

In 0 Q11

0 0 Q21

0 0 0

0 In -D )tB

Following the ideas in the previous proof, we form the expression

WUTV ( + UTV + VTOTU) WUV

P1IA + P2TBcCy + ATP11 + CoB u 2 C TCz

Ce

(4.22)

(4.23)

(4.24)

ous proof.

0 0

0 0

0 In

We 0

where

Ell
<0 ,

El1

(4.25)

()T 3
-I

-(D TDe)-B TQ-1
--\ eu e u "u"21



B,DtuCe + Q (AT P21 + C TB Pll)

+Q11 (AT P + Bc21 2 CTCz)

WeVuCe

I-BTPI11y W

AQ 11 ± Q11AT o 2QllC[ CzQ11

-Q11CT(D T )tBT - BDtuCeQ11

-BDu, (D )t B
T

Wu CeQll

1 T7y w

Q11C[ + BuD~

-wTel

-W'VCeQ11

-I

The matrix inequality (4.25) can then be simplified by replacing it with its Schur

complements, formed by reducing out the 2nd, 4th, and 5th rows. This leads to a

trivial matrix inequality and a new inequality:

(D11

(121

21
<o,

(22
(4.26)

P 11A + P 2TBcCy + ATp11 + Cf BT 2 1

+±2CTCz + Ce WeWV uCe
Ce z e e e e

Ce - WeuW Ce

+A - BuDtuCe + 1 BwB PI
SQT T T T

+Q (A P 2 1 + C[ B Tpl)

+Q (ATP 1 1 + C T )21

+c 2CTCz ± CT euW Ce)

QT CTD T + BuDtu
"°21 "Jc eu u

(D22 = (A - BuDtuCe)Q11 + Q11(A - BuDtCe )T - Bu(DeuDe) -1BT

+ B, BT + U2 Q 11 CTz 1 1  1 QC T WeuW CeQ1 1

These expressions can then be simplified by recognizing that since D[,Ce = 0, then

DCe = 0, CTVWe lW{Ce = CTCe, and Ce, - WeuWCe = 0. Then, 11 0 is

where

(11

21



seen to be a Schur complement of LMI constraint (4.9), and 422 < 0 has the form

of a Schur complement of LMI constraint (4.10). Thus, setting OI21 = [ 0 0 ], is a

sufficient condition to require that (4.9) and (4.10) are satisfied. This condition then

reveals two matrix equations

1A + -BwBP 1 + P + QCB (AP21 p)

+Q11 (ATPi1 + CcP 2 1  + or2 cT ) 0 (4.27)

and

QT CTD T + BD, = 0, (4.28)

These two equations can be explicitly solved for Ac, and Cc, leading to equations (4.22)

and (4.24). M

Theorem 4.2 clearly provides a faster method for obtaining the controller param-

eters than either solving an LMI feasibility problem or solving an algebraic equa-

tion. However, it is also clear that the realization for the controller given in equa-

tions (4.22)-(4.24) does not provide us any insight into the workings of this controller.

The realization is an extremely complicated expression. It does not have the conve-

nient, observer-based form that we typically see for, say, an LQG controller or a

suboptimal W,, controller.

Nevertheless, together, Theorems 4.1 and 4.2 form a complete solution to the

W2/SN controller synthesis problem for many systems. To use the theorems, one

must minimize the cost function of equation (4.8) subject to the LMI constraints in

equations (4.9)-(4.10) with respect to P and Q1. This is an EVP. After solving the

EVP, one can substitute the resulting Lyapunov matrix to equations (4.22)-(4.24)

to obtain the controller. Because the EVP is convex, if the problem has a solution

it can be found in polynomial time using off-the-shelf codes. For a problem with

n states, we have observed solution times for this EVP proportional to between n4

and n5 using LMI Lab.30 ,3 2,31 For relatively small problems, this solution speed is

probably acceptable. A synthesis problem will be solved using this LMI technique in



Chapter 6.

It is worthwhile to examine the size of the EVP problem posed by Theorem 4.1.

LMIs (4.9)-(4.10) are of outer dimension n + n, n + nw + n, and 3n. We must solve

for four size n x n matrices, P1 1, P21, P22 , and Q11. For systems of even moderate

size, this would typically be considered a large optimization problem. The difficulty

is that an optimization routine needs to find the Jacobian and, in most cases, at least

an approximation to the Hessian of the problem. The Hessian's size is on the order

of the square of the number of unknowns. For many real-world systems, the memory

required to calculate and store these matrices makes an LMI approach to the synthesis

problem impractical. This is the major drawback of the procedures proposed in this

Chapter.

It should also be pointed out that the development in Theorems 4.1 and 4.2 is

general enough that it encompasses the standard H2 optimal (LQG) and 7-, subop-

timal controllers. If the uncertainty terms are set to zero, then we have a derivation

for an LQG controller. If the uncertainty terms are set to zero and we accept any

point that satisfies the LMIs rather than minimizing the cost function, then we ob-

tain an IH, controller. Of course, there is no reason that one should ever want to

try to synthesize either an LQG or an 7 controller (full order) using the given

LMI method. These controllers can be efficiently synthesized using well-established

techniques that rely upon separating the problem into a state-feedback problem and

an observer problem. These sub-problems are then solved efficiently using Riccati

equations. The apparent similarities between the robust 7-2/SN controller and these

simpler, non-robust controllers lead us ask whether or not our robust controllers could

be synthesized using a separation principle. This question is the subject of Chapter 5.

4.2 LMIs for -t2/Popov Controllers

This section discusses how LMIs may be used to synthesize W2/Popov controllers.

The uncertainty in the system is assumed to be best described by using both of

the two Popov stability multipliers, H and N. These multipliers will be considered



fixed, but their presence makes the synthesis procedure different than the procedure

outlined for the W2/SN controller in the previous section.

Although the final synthesis procedure for the W2/Popov system is more complex

than that of the W2/SN controller, the theory behind its derivation is fundamentally

the same. Therefore, we will merely give the applicable theorems without proof. For

a full discussion and proof of the results in this section, the reader is referred to either

Ref. 82 or 57.

For the W2/Popov system, closing the loop between the plant and the unknown

compensator leads to the same closed loop matrices defined in equations (4.2)-(4.4).

With these definitions, Theorem 2.5 allows us to say that the square of the closed

loop 7-2 cost, J, is bounded by

J _ = tr [T ( + CT(M 2 - M1 )NC) Bd], (4.29)

if a positive definite matrix P E S 2' exists and satisfies the matrix inequality

AT (P - C NMCz) + (P - OTz MINCz)A + Ce

-CT MMdHM2Cz - CT M 2HMdMlCz

< 0.
B(P - CzNMCz) + NCzA N + NCzB

+MaHM2Cz + HMdMCz -HMd - MdH

(4.30)

Furthermore, if a valid P exists, then the closed loop system will be stable for all

allowable uncertainties.

As in the case with the Wi2/SN controller, the cost bound, equation (4.29) and the

constraint (4.30) are both nonlinear in the unknowns. Fortunately, we do not have

to solve this nonlinear optimization. The following theorem explains how the cost

function and constraint can be linearized, making the problem convex.

Theorem 4.3 For the system of equation (4.1), given fixed stability multipliers, H

and N, define a matrix B E "nxn" that is full column rank. Furthermore, define

Bd as in equation (4.7). Then, a positive definite matrix P exists and minimizes



the bound on the cost function, J, given in equation (4.29), subject to the matrix

inequality constraint given in equation (4.30), if and only if a positive definite matrix

P C S2n exists and minimizes

(4.31)

while satisfying

ATPi1 + P1IA + CTCe

+CTB P21 + P12 JcCy

HCz + NCzA + BP 1

CTH + ATCTN + P11Bw

B w C[ N + NCz B

-HMd - MdH

<0o,

Q11AT + AQii - BT(D Deu)- 1Bu

HCzQ11 + NCzAQll + BT

-NCzB,(DT De)-1B T

CeQ11

and

P1 1

P2 1

I

for some matrix Q11 E S n , where A

constrained minimum of (4.31).

-NCzBu(D TDeu) - 1B T C T N

+BTCzN + NCzB,

-HMd - MdH

0

P21

P22

0

I

0

Qll

<0

(4.33)

(4.34)> 0,

A
A + BwM1 Cz. Furthermore, J is equal to the

Proof. See Ref. 57. U

Theorem 4.3 reveals that an 'H2/Popov controller can be derived by minimizing a

linear cost function with respect to a Lyapunov matrix, subject to LMI constraints.

Unfortunately, unlike in the 7- 2 /SN case, we are unable to give a closed form

solution for the 7- 2/Popov controller in terms of the Lyapunov matrix. It does not

(4.32)

( ... ) T ( .)T

tr [I T (P + CT(M2 - MI)NCz) Bd ,



appear possible to derive a set of controller equations using the same procedure that

was used to derive Theorem 4.2. In trying to derive the analogous theorem, we

would attempt to find a set of conditions that are sufficient, but not necessary, to

guarantee that LMIs (4.32)-(4.34) are satisfied. Unfortunately, the presence of the

Popov multipliers would complicate this procedure. In comparison to the robustness

constraint in the W-2/SN case (see inequality (4.25)), additional terms would appear

in the comparable inequality for the W2/Popov case. These terms would contain the

product of the Popov multiplier N and the the system dynamics matrix, A. It can

be shown that this would preclude us from explicitly solving for Ac, and, thus, from

deriving a controller realization.

In the previous section, comments were made regarding the utility of LMIs for

synthesizing an W2/SN controller. Topics included the speed of optimization routines

and the amount of memory that was required to solve the problem. These comments

apply equally to the case of the W2/Popov controller and need not be repeated.
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Chapter 5

A Separation Principle for Robust

12 Controllers

This chapter presents a second solution to the controller synthesis problem posed in

Chapter 3. Unlike the solution presented in Chapter 4, this latest synthesis technique

does not rely upon LMIs. Rather, it relies upon dividing the problem into two simpler

problems. Since this chapter deals with controller synthesis, rather than controller

design, the stability multipliers are considered fixed throughout the chapter.

The chapter demonstrates that a bound on the closed loop W 2 cost of a system

with a robust 7 2 controller can be separated into the sum of two parts. The first of

these parts is a bound on the cost of a related full-state feedback or full information

control problem. The second part is equal to a bound on the cost of a related output

estimation problem. The separation property of the bound on the cost implies that

robust W/2 controllers possess an identifiable observer-based structure. The problem

of finding the optimal controller can then be separated into two sub-problems. The

first of these is to solve the aforementioned state feedback or full information control

problem. The second sub-problem is to solve the related output estimation problem.

The final control signal is formed by multiplying the state estimate found from the

output estimation problem by the gain matrix found from the state feedback problem.

The motivation behind this work lies in the desire to develop efficient means

to synthesize robust W2 controllers. The efficacy of using this separation structure



will not be demonstrated until Chapter 6. There, it will be mentioned that, in

practice, controllers synthesized by solving the state feedback and output estimation

problems are identical to controllers synthesized by using the LMI-based techniques.

This is apparently the case even though theorems in this chapter only demonstrate

that the separation-based cost function (formed by summing the costs from the two

sub-problems) overbounds the cost function used in the LMI-based minimization.

However, as will be discussed, there is a close relation between the two cost functions

in the 7 2/SN case, and we speculate that controllers derived via the two methods

should, even for the Popov case, be equal.

It is well known that a Youla parameterization allows any stabilizing controller

to be written as the combination of a state feedback gain with an observer (see, for

instance, Ref. 18). However, except for a few significant exceptions, this separation

structure is typically not exploited in the controller synthesis process. Either the

structure is too difficult to identify, or, presumably, it is not useful. It is the fact that

the separation principle simplifies the synthesis of robust 7-2 controllers that makes

the principle significant.

The separation principle for robust 72 controllers resembles that found in the

state-space derivation of the hoo controller 23 but differs from it because of the stochas-

tic nature of the 7-2 performance index. This makes the derivation unique.

For pedagogical reasons, the separation structure will be derived first for the case

of the 7- 2/SN controller (which has a simplified set of stability multipliers). This

will allow us to compare the structure to that of the mixed -2/-0 t controller of

Bernstein & Haddad.5 Then, in the second section in this chapter, an expanded

separation principle is presented to cover the case of Popov multipliers. The last

section of the chapter discusses how the separation principle leads to a synthesis

technique for a class of suboptimal controllers.



5.1 A Separation Principle for t12/SN Controllers

In this section, we will show that an W-2/SN controller can be derived by solving a

robust estimation problem and a state feedback problem. The control signal will be

the optimal state estimate multiplied by the state feedback gain. We will consider each

of the two smaller problems first, before proceeding to the main problem of interest,

the output feedback problem. The smaller problems are considered in a more general

context than the full problem, which will assume that some of the weights on the

cost and system parameters are normalized. Finally, the last part of this section

discusses the relationship between controllers derived using the separation principle

and controllers derived using LMI techniques.

5.1.1 JL2/SN Full-State Feedback

The full-state feedback (FSFB) problem is to find the static optimal control gain that

robustly minimizes the system performance metric, given exact knowledge of the

states of the system. None of the disturbance terms is measured, as this information

is superfluous if one knows the states. This problem retains most of the structure

from the original system (3.15). However, now we set Cy = I and Dyd = 0, so that

the system is

x A Bd B, Bu,

e Ce 0 0 Deu d
S = (5.1)

z Cz 0 0 0 w

y 0 0 0 u

This problem is different from the "full information" problem traditionally associated

with 7-t, control problems 23 for two reasons. First, this FSFB problem retains the

original system's separate outputs for the performance and stability criteria. Secondly,

the measurement vector does not include any information about the disturbances.

It is assumed a priori that the optimal control for this problem is a linear function

of the states. The optimal control gain is determined in the next theorem.

Theorem 5.1 For the system in (5.1), given a fixed scaling, a, if there exists a



positive semidefinite matrix R E Sn that is the stabilizing solution to the Riccati

equation

1 TRA + ATR + CTCe+ 2CTCz - RBu (DDeu)-1 BTR + RBwB R= 0, (5.2)

then the optimal control that stabilizes the system against all uncertainty blocks with

£ 2-induced norm less than (1/7) and minimizes the cost is given by

S= -(DT Deu)-B Rx . (5.3)

In this case, an upper bound on the cost, J, is given by

,FS = tr (BT RB) . (5.4)

Proof. This proof is based on dissipation theory. Without the presence of the

error term, e, this would essentially be the same as the -, full-information problem.

Then, this discussion would essentially be the same as the Lyapunov-type analysis

performed for the standard 71, state-feedback system found in Ref. 8. Similarly, if

the inputs were equal (Bw = Bd), then this controller should yield the same result as

that discussed in Ref. 72. Furthermore, were it not for the presence of the unknown

control term, the following dissipation argument would be the same as that of Ref. 44.

For stability and performance, we desire the sum of the supply rate for the uncer-

tainty, ra, a performance supply rate, rp, and the derivative of the storage function

for the plant, VG, to be negative for all values of x and w. In particular, we require

that

VG + TA + rp 0, (5.5)

where

VG = xTRx , for some positive definite matrix R E Sn

ra = o (zTz - 2wTw)



rp = eTe.

Note that the uncertainty supply rate is required to be positive to be part of a

dissipation argument. Substituting in the dynamics from (5.1) to the dissipation

inequality and assuming that u = Kx, we find that

xTR(Ax + Bw + B,,x) + (Ax + Bww + Buk)TRx

+(Cx + D ukX)T (Cex + DeuRX) + x TC TCz -C y2WTW < 0 . (5.6)

We can set the optimal control gain by locating where the left hand side of (5.6) is

extremal with respect to K. Differentiating the left hand side with respect to K and

setting the result equal to zero yields

K = -(D uDe, ) 
1 BR . (5.7)

This demonstrates (5.3).

Next, note that (5.6) must hold for all values of x and w. Thus, it is equivalent to

R(A + BuR) + (A + Bu,)TR + aCTCz RB 1
+(Ce + Deuk)T(Ce + Deuk) Z< 0. (5.8)

BWR -a721

By Schur complements, this last inequality is equivalent to

R(A+BK)+(A+BK) R+(Ce+DeuK) (Ce+DeuK)+aCTCz + 1RBwBR < 0.

(5.9)

At the optimal control gain, however, this inequality is pushed against the constraint

boundary, so, in fact, it is an equality. Substituting in the optimal gain from equa-

tion (5.7) and recalling that DT Ce = 0 yields (5.2). Finally, an explanation for why

equation (5.4) provides a useful bound for the cost is provided in Ref. 82. U

A second method to derive equation (5.2) can be found in Ref. 44. We wish

to find the worst-case disturbance, w = w*, i.e., the signal that will maximize the



bound on the cost function. Similarly to before, we differentiate the left hand side of

equation (5.6) with respect to w, and find that

W* (y2 -1 B TRx. (5.10)

Substituting the expression for w* and the optimal gain from equation (5.7) to equa-

tion (5.6) yields the desired expression. The expression can be written as a Riccati

equation, rather than an inequality, because, together, the optimal control and worst-

case disturbance make the expression singular.

It is worthwhile to discuss the FSFB Riccati equation, equation (5.2), in some de-

tail. The equation combines terms that we would expect from an W2 Riccati equation

with those of an ,7-1 Riccati equation. For negligible levels of uncertainty (7 --+ c),

the equation looks like an LQR Riccati equation (recall equation (3.6)). Given that

(A, B,) is stabilizable, this equation will always have a stabilizing solution. However,

for higher levels of uncertainty, the (BwB T/(uo' 2)) term affects the quadratic coeffi-

cient in the equation. As 'y decreases, the quadratic term eventually becomes sign

indefinite, and/or the quantity

[B,(DT )-1B T 1 B T 1/2u) B +-2 BW

fails to form a stabilizing pair with A. In these cases, the Riccati equation can fail to

have a stabilizing solution. Thus, for high levels of uncertainty, not even a full-state

feedback controller will necessarily be able to guarantee the stability of the system.



5.1.2 ?- 2/SN Output Estimation

The motivation for the Output Estimation

full output feedback problem is examined.

v

y

A

C,

C,

Bd

0

Dyd

(OE) problem will become clear when the

For now, consider a system

(5.11)

B,

I

0

with just two outputs, the measurement, y, and a performance signal, v. The system

is subject to a white noise disturbance, d, and a bounded power disturbance, r. The

performance signal contains a direct feed-through contribution from the control, u.

This problem retains part of the mixed nature of the original problem because of the

twin inputs.

The goal in this problem is to find a dynamic filter that minimizes the expected

value of the quantity (vTv - rTr). Such a filter can be found by applying the following

theorem.

Theorem 5.2 For the system of equation (5.11), which

unit covariance, white-noise signal, d, and signal r E

semidefinite matrices X E Sn and Y E S n that are the

coupled Riccati equations

is subject to a zero-mean,

£2, if there exist positive

stabilizing solutions to the

S(A - (YC + BdDTd) E;'C) + (A - (YCf + BdDT)E1 C

+XBrBTX + C C = 0

and

(A + BrBTX)Y + Y(A + BrBTX)T _ (YCT + BdD d)E d (CY + DydB T )

+BdB T = 0,

(5.12)

(5.13)



where Ed A DydD T, then a filter exists such that the expected value of (vTv - rTr) is

bounded by

JOE tr (Bd- HDyd)TX(Bd - HDyd) , (5.14)

where H = (YCT + BdDTd)(Ed)- 1. Lastly, a realization for the filter which achieves

this is given by

A - HC, - BuC, H
(5.15)

-Cv 0

Proof. We presume a priori that the optimal filter has a fixed, model-based,

observer structure, given by

x = A + Buu + H(y- Cyi) (5.16)

u = -Cv",

where : is the state estimate, H is an unknown filter gain, and the other terms are

from (5.11). If we define the error coordinates, X x- , then the closed loop system

with the filter is

x = (A - HCy)£i + (Bd - HDyd)d + Brr
(5.17)

v = Cx .

Note that, because the control input is known, it does not appear in the error dy-

namics. As was done for the FSFB case, we can use dissipation to form a constraint

that bounds the closed loop system's performance and guarantees its stability. The

dissipation inequality is

VK+ TrP 0, (5.18)

and we note that there is no uncertainty term. Taking

VK = TX , for some positive definite matrix X E S"

rp = Tv - rTTr,



and substituting in the state dynamics, the dissipation inequality can be written as

STX((A - HC1)Ji + Brr) + ((A - HCy,) + Brr)TXz + TC C, - rTr < 0. (5.19)

This inequality must hold for all (2, r), so it is equivalent to

X(A - HC,) + (A - HC)TX +CC XB < . (5.20)

BrX -I

By appealing to the results of Theorem 2.8, we can see that, given a matrix X that

satisfies this inequality, a bound on the cost is given by

tr (Bd - HDYd)TX(Bd - HDyd) . (5.21)

We note that the smallest symmetric matrix X that satisfies inequality (5.20) is also

a solution to the Riccati equation,8 1

(A - HC,)TX + X(A - HC,) + XBrBT X + CVTCv = 0. (5.22)

Thus, for a given gain H, the bound on the cost can be minimized by solving Riccati

equation (5.22). It should be noted that this Riccati equation could also be derived

by differentiating inequality (5.20) with respect to r, to determine the extremal value

for r. Substituting the extremal value for r back to the inequality would yield the

Riccati equation.

As an aside, it should be mentioned that, for a stabilizing H, Riccati equa-

tion (5.22) also happens to be a constraint on the -oo norm of the closed loop

system. Thus, if the disturbance r had a bounded L2 norm, then this constraint

would guarantee that v11 / r< 1.

Note that cost function (5.21) has the form of the desired cost function (5.14).

We wish to minimize this cost function, subject to the Riccati constraint. We form



an augmented cost functional

Jaug = tr (Bd - HDyd)TX(Bd - HDyd)

+tr Y [(A - HC,)TX + X(A - HCy) + XBrBTX + C C], (5.23)

where the Lagrange multiplier, Y E R , is a symmetric matrix. The performance

bound is a steady state bound, so Jaug must be stationary with respect to the optimal

gain, H*. Taking the necessary derivatives and finding the stationary point leads to

two necessary conditions

(A + BrB TX - H*Cy)Y + Y(A + BBTX - H*C,)T

-H*DydB T - BdDT H* + H*DydT H*T + BdBT = (5.24)

and

H* = (YC T + BdD) (Ed)- 1 , (5.25)

where Ed = (DydDTd). Note that Ed is always invertible since Dyd was assumed to

be full row rank. Substituting the form for H* into (5.22) and (5.24) leads to the

desired conditions (5.12) and (5.13). Finally, the formulae for the filter parameters

come from substituting the form for H* into equation (5.16). M

It is interesting to note that the gain matrix, H, has same form as the gain in a

Kalman Filter (see the LQG controller input matrix in equation (3.4)) or as in an

73-1 optimal estimator. However, H is different, because the matrix Y, which has the

effect of a covariance matrix, is not the same as the covariance matrix from either of

those problems. Instead, Y must satisfy a pair of coupled, nonlinear equations (5.12)

and (5.13).

Together, equations (5.12) and (5.13) serve as a set of sufficiency conditions for

the existence of a solution to the output estimation problem. Neither equation is a

Riccati equation. However, they are referred to as "coupled Riccati equations." The

first of these, equation (5.12), can be thought of as an equation for X. Given a fixed

Y, it is a Riccati equation that can be solved for the worst-case disturbance input,



BTX. Likewise, given a fixed X, the second equation (5.13) is a Riccati equation in

Y that can be solved for the best possible estimator gain, (YC T +BdDd)(Ed)- 1. The

first equation retains its inherent W,--type of form, while the second has an /W2-like

structure (due to the negative definite quadratic term), reflecting the mixed nature

of this problem.

5.1.3 1-2/SN Output Feedback

We turn to the real problem of interest. The full output feedback problem will now

be broken down into two smaller problems via a separation principle.

For the sake of clarity, we will examine the case where various weights have been

normalized. We now assume that the static scaling, a, is unity and that the closed

loop 7, gain of the system, 7, is unity. Given a problem with a or "y different from

unity, we can absorb these constants into the Cz and B, terms and continue the

problem with these modified matrices. Similarly, we assume that DTDe, = 1.

Theorem 5.3 For the system of equation (3.15), with a = 1 and y = 1, if a matrix

R E Sn exists such that it is the unique, positive semidefinite, stabilizing solution to

the related full-state feedback Riccati equation

RA + ATR + CTCe + CTC - RBB R + RBBTR = 0 , (5.26)

and positive semidefinite matrices X E S' and Y E S n exist and are the stabilizing

solutions to the related output estimation coupled Riccati equations

X (A + BBR - (YC T + BdD)E Y,) + XBB X + RBB T R

+ (A + BW,BR - (YC T + BdD)Ed C) X = 0 (5.27)

and

T T T
(A+BB (R+X)) Y +Y(A+BB (R + X))T

-(YC T + BdDy )Ed'(CyY + DydB ) + BdB T =0, (5.28)Y(C Uud~ d d uu



where Ed = (DydD d), then a controller given by

AT =A + BwB R - B, - Buc
B = (yC, + BDTd) E - 1

c= -BRt

(5.29)

(5.30)

(5.31)

will stabilize the system for all A with L 2-induced norm less than (1/7). Furthermore,

for all such A, the closed-loop performance of the system, J, will be bounded by

OF = tr {BTRBd + [Bd - BcD yd] T X [Bd - BcDyd] .JOF = tr I ud yd - Bc Dcyd (5.32)

Proof. The proof of this theorem relies upon the results from the FSFB problem

and the OE problem. First, assume that a positive definite solution exists for R

in (5.26). To see how the full problem separates into the state feedback problem

and the estimation problem, examine the steady state expected value of a candidate

Lyapunov function given by xTRx. Along state trajectories, we have that

d
lim E{x TRx}
t-+oo dt

d
- lim E{xTRx} = 0 (5.33)dt t- oo

d
= lim dE{x Rx}

too dt

= lim E{xTR(Ax + Bw + Buu) + (Ax + Bww + Buu)TRx}

+ tr (BTRBd)

- lim E {xT(RA + ATR)x + XTRBWW + w TBRx

+ xTRBuu + UT BRx} + tr (BTRBd) , (5.34)

where the last equality is obtained by substituting in for the state dynamics, and

the term outside the expected value arises from taking the derivative of the expected

value of the white noise input, d.

We now examine a dissipation inequality that will guarantee that the closed loop

system is stable and will allow us to obtain a bound on the closed loop cost. The



inequality is the same as that discussed in the proof of Theorem 5.1, i.e.,

VG + rA + rp O. 0 (5.35)

If we use the same forms for the supply rates and storage function used before, then

the dissipation inequality tells us that we are guaranteed to achieve both robust

stability and performance if we require that

xTR(Ax + Bw + Bu) + (Ax + Bww + Buu)TRx

+(Cex + DeuU)T(Ce, + Deu) + xTCTCXz - wTw < 0, (5.36)

We can obtain extremal values for the control and the disturbance by differentiating

the above inequality with respect to u and w. The extremal values will be needed to

complete the square in the dissipation inequality so that the separation principle can

be identified. The extremal control and disturbance are

u* -B Rx (5.37)

w* BRz . (5.38)

We wish to examine the dissipation inequality when both the control and disturbance

are set to their extremal values. In other words, we examine the case where

xTR(Ax + Bw* + Bu*) + (Ax + Bw* + Bu*)TRx

+ (Ce + DeuU* )T(Ce + Deuu*) + TCTC XCz - w*T * < 0. (5.39)

Substituting the definitions of u* and w* to inequality (5.39) and completing squares

allows us to rewrite the extremal dissipation inequality as

xTR(Ax + Bw + Buu) + (Ax + Bw + B u)TRx + (xTCTCzx - wTw)

+ xTCTCx + uTu - (U - u*)T(u - U*) + (W - w*)T(w - W*) < O. (5.40)



From here, we can see that

x R(Ax + Bw + Bu) + (Ax + Bw + Bu)TRx < -(XTCTCzX - WTw)

- xcTCCe - uTu + (u - u*)T(u - U*) - (w - W*)T( - w*) . (5.41)

Now, we return our attention to the general case, with non-extremal controls and

disturbances. Equation (5.34) holds true in general. A comparison of this equation

with inequality (5.41) reveals that

lim E -(X TCTCz - WTW) - XTCTC z - uT + (u - u*)T(u - u*)

- (w - w*)T(w - w*)} + tr (B TRBd) 2 0. (5.42)

This last inequality can also be obtained by substituting for xT(RA + ATR)x from

the FSFB Riccati equation into equation (5.34).

For clarity, we make the following definitions

A T
v = u-u =u±+BRx (5.43)

r W-w- =w-Bw Rx, (5.44)

such that v to represents the difference between the actual control and the extremal

control, and r represents the difference between the actual disturbance, w and the

extremal disturbance. Inequality (5.42) can now be written as

- lim E {xTCTCe + T} + lim E wTw - zTz}
t-+oo t--oo

+ lim E {Tv - rTr} + tr (B TRBd) > 0. (5.45)
t-+oo

Next, recalling the definition of the cost function, we see that the performance metric

that we would like to minimize can be written as

J lim E{eTe} = lim E{xTC[Cex + Tu} . (5.46)
t+oo t-+oo



Furthermore, recall that A I < 1, so that

lim E {wTw - zTz} <0. (5.47)

Combining these facts with (5.45) reveals that

J < tr (BT RBd) + lim E{vTv - rTr} . (5.48)

Thus, the cost is bounded by the sum of two terms. The first term is the FSFB

cost bound. The second term will be shown to be related to an output estimation

problem. To minimize the second term, we would like to push vTv as close to zero

as possible. If we knew the state, x, then we could set u = -BI Rx and vTv would

be identically zero. Thus, this is an estimation problem. The rTr portion of the cost

can be thought of as the amount by which the uncertainty differs from the worst-case

uncertainty. Thus, this term helps decrease the cost.

To bound the cost function given by the right hand side of (5.48), we rewrite the

system dynamics using the definitions for v and r. The original system, given in

equation (3.15), is equivalent to

Ax + B,B w R - B,BWR + Bdd + Bw + Bu

= ARX + Bdd + Br + Buu, (5.49)

where

AR A + BB TR (5.50)

B, Bw (5.51)

Cv B R. (5.52)



Then, the open loop system is equivalent to

I AR BE B, Bu d

v C 0 I (5.53)

y C Dyd 0 0

Since we are interested in minimizing (vTv-rTr), the original performance variable, e,
is not relevant to this new, reduced problem. Minimizing JoF for the system in (5.53)

is clearly the situation that was examined in the OE problem, with AR replacing A.

Using Theorem 5.2, we see that to solve this problem, we must satisfy equivalent

forms to (5.12) and (5.13). This leads to the desired, coupled Riccati equations (5.27)

and (5.28). Furthermore, the desired controller, given in (5.29)-(5.31), is derived from

the OE filter given in (5.15), by replacing A with AR.

Lastly, we consider the cost function. Given that we recognize that part of the

cost is bounded by the cost from an output estimation problem, the boundary given

in (5.48) defines a bound on the cost as

J < JOF JFS -+ JOE , (5.54)

where JFs and JOE were defined in (5.4) and (5.14), respectively. Substituting in

these definitions yields the desired bound (5.32). 0

According to this theorem, a solution to the '- 2/SN synthesis problem can be

obtained by solving for the variables R, X, and Y, in equations (5.26)-(5.28). A close

examination of the three equations reveals that equation (5.26), the FSFB equation,

is written in terms of R alone. Equations (5.27) and (5.28) contain all three variables.

This implies that equation (5.26) can be solved first, independently of the other two

equations.

Assuming that the solution for R is known, equations (5.27) and (5.28) are then a

pair of coupled, nonlinear, matrix equations for the unknowns X and Y. These last

two equations are referred to as "coupled Riccati equations," because if Y is fixed,



equation (5.27) is a Riccati equation for X. Likewise, for a fixed X, equation (5.28)

is a Riccati equation for Y.

Note that we now have two seemingly different solutions to the 7-2/SN controller

synthesis problem - one in terms of coupled Riccati equations and one in terms of an

LMI problem (from Chapter 4). We believe that they are, in fact, the same. Why this

is felt to be the case is discussed later. The latest synthesis approach is interesting

because it requires the solution of a smaller problem than is required from solving

the LMI problem. The LMI problem posed in Theorem 4.1 is to minimize a linear

cost functional subject to three LMIs of outer dimension n + nw, n + nw + ne, and

3n. In practice, an optimization routine can have great difficulty working with these

LMIs as constraints. The Jacobians, and possibly Hessians, of the constraints must

be evaluated, and the memory requirements for this operation can be prohibitive.

In contrast, the new derivation involves three matrix equations of size n. This

solution does not require an explicit minimization of the cost function. If the solution

to the three equations exists, then it is the minimal solution for JOF. Suppose, for the

sake of argument, that the coupled Riccati equations can be solved using standard

Riccati equation solvers. In this case, if the equations can be solved via the successive

solution of the three Riccati equations, say, n times each, then this should be at least

as fast as the LMI-based solution for the problem. A Riccati equation can be solved

more quickly than a comparably sized LMI problem. Current convex programming

methods for LMI problems require computational times on the order of between n4

and n5 . In contrast, a Riccati equation has approximately the complexity of the

eigenvalue problem for its related Hamiltonian system, so it can be solved in times on

the order of (2n)3 . Of course, for small systems, any speed advantage of the Riccati

equations may be negligible.

It should be mentioned that the coupled Riccati equations in Theorem 5.3 are very

similar to the coupled Riccati equations posed by Bernstein and Haddad for their full-

order, mixed 71-2/o, controller. 5 The matrices R, X and Y play similar roles to the

variables used in Ref. 5, which are components of the closed loop covariance matrix.

Dual forms for the Riccati equations can be developed if equations (5.26), (5.27)



and (5.28) can be written in terms of R - 1, X - 1 , and Y- 1. However, the problems

are different in the sense that this formulation allows for the white noise disturbance

to affect the system differently than the L2 disturbance, i.e., Bd w B. In practice,

if one were to formulate the problem without the ability to separate these inputs,

then one would need to define a modified input matrix, B = , and replace all
Bw

occurrences of Bd and B, with this term. This would be conservative.

For pedagogical reasons, we can also point out how the output feedback controller

encompasses the standard, non-robust, optimal, W 2 controller, i.e., an LQG con-

troller. Recall that the LQG solution is found by solving equations (3.6) and (3.7).

Equations (5.26)-(5.28) can be seen to be equivalent if the uncertainty terms, Cz and

B,, are set to zero. Note that D,, has been normalized in the 7 2/SN case. With the

uncertainty terms neglected, equation (5.26) is seen to be identical to equation (3.6).

Furthermore, equation (5.28) becomes decoupled from equation (5.27). It is seen

to be equivalent to the Kalman filter Riccati equation (3.7) with Y -- + Q. What

happens to the third equation in the robust case? With the uncertainty effectively

eliminated, equation (5.27) becomes

X (A - (YC T + BdDT,)Ed1Cy) + RB,uBTR

+ (A - (YC + BdD )E Cy) X = 0 ,

which is a Lyapunov equation for X. Note that the quantity A-(YCj'+BdDd)ECy

is guaranteed to be stable because of the choice of Y (or Q) from the filter Riccati

equation. This Lyapunov equation has a solution because of the assumption that

(A, B,) is stabilizable and that R is full rank. Thus, the equation is superfluous in

the limiting case.

The W2/SN formulation does not exactly capture the standard W.. central con-

troller formulation, 23 because the system has been slightly altered from the H, case.

To have an equivalent problem, we would need to be able to directly measure part of

the w disturbance, i.e., we would need to add a Dy, feedthrough term.
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We believe that an 7W2/SN controller synthesized using LMIs, as discussed in The-

orem 4.2, is equivalent to an - 2/SN controller derived using the separation principle

given in Theorem 5.3. This fact is important because the LMI formulation was based

on first principles (Lyapunov theory, dissipation, etc.). Therefore, the LMI formu-

lation can be accepted as yielding a controller that will give the tightest possible

quadratic bound on the -2 cost. In contrast, the separation principle formulation

presumed a form for the controller. It is conceivable, therefore, that the formulation

has accidentally excluded the desired controller from consideration.

Unfortunately, we are unable to prove that the two controllers solutions are the

same. We can show that, given a solution to the LMI-based synthesis problem, this

solution is also a valid solution of the separation-based synthesis problem. A proof

of the converse is incomplete. The converse proof shows that, given a solution to the

separation-based synthesis problem, this solution is equal to the optimal solution that

would be obtained by solving the LMI-based synthesis problem over only a restricted

set in the space of available Lyapunov matrices.

To see this, first consider that we have a solution to the LMI-based synthesis

problem. We have a matrix P E S2n that was obtained by minimizing the cost

function in equation (4.8), subject to LMIs (4.9)-(4.11). The controller in this case

is given by equations (4.22)-(4.24). Note that, by definition, this controller and

the accompanying Lyapunov matrix satisfy the closed loop Riccati equation (formed

by substituting the closed loop realization in equations (4.2)-(4.4) into the Riccati

equation of Theorem 2.8). We wish to transform the controller to have a realization

that will fulfill the coupled Riccati equations of the separation principle. The effect

of this on the Lyapunov matrix is a similarity transformation that leaves unchanged

the upper left block of the matrix (the part corresponding to the states of the plant).

Specifically, we need merely transform

P 11 P2  to P1 1  -P 22

P2 1 P22 -P 22 P22 J
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Because P is positive definite, its lower right block, P22, is also positive definite, so

this transformation will always exist. Thus, we can obtain a matrix, say P E S2n,

that has the desired form.

To demonstrate that the transformed system satisfies the separation principle, we

must demonstrate that matrices X, Y, and R exist that satisfy the FSFB Riccati

equation and the OE coupled Riccati equations. Choosing X = P22 and R = P1 1 -

P2 2 = P1 1 - P 2 2 will demonstrate that equations (5.26) and (5.27) are satisfied. To

see this, examine the lower right, size n x n, block of the closed loop Riccati equation,

which is

P2 2 A + A P22P 2 1BuCc C CTB- 2 CTD DeuCc + P21 ,BT T2  0. (5.55)

We substitute into equation (5.55) for Ac and C, from equations (4.22) and (4.24),

respectively. Then, noting that P2 1  -P 22 , the matrix inversion lemma reveals that

Q11= P 1 21 - 2 P 1P 2 1

SP1 1 -P 22 = (X + R) - X = R (5.56)

211 - 11 22121

= Q = R. (5.57)

Armed with these facts, after some algebra, equation (5.55) can be seen to be equiva-

lent to the first OE coupled Riccati equation (5.27), with Bc left unspecified. Similarly,

the upper right block of the closed loop Riccati equation can be shown to equal the

sum of equations (5.26) and (5.27). Thus, the FSFB Riccati equation (5.26 is also

satisfied. Finally, since equations (5.26 and (5.27) are satisfied, a solution for Y is

guaranteed to exist from equation (5.28) (because the coefficient of the quadratic

term is negative and the system is detectable). Furthermore, the cost function that

is minimized subject to the LMI constraints can be examined. It is

tr (?TIPB,) = tr (B PllBd + B T P 21BcDya + DB P21Bd +- D B P 22 cyd
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= tr (BT(X + R)Bd - BT XBDy - D B T XBd + DB TXBcDYd)

= tr (BT RBd + [Bd - BcDyd]TX[Bd - BcDyd])

= JFS+ JOE . (5.58)

Thus, the solution found by solving the LMI synthesis problem satisfies the separation

principle.

We now examine the converse statement. Assume that a solution exists for ma-

trices R, X, and Y from equations (5.26), (5.27), and (5.28). We can define a size

2n x 2n matrix to satisfy the closed loop Riccati equation. Reversing the procedure

just discussed, we choose

PI1  X+R (5.59)

P21  -X (5.60)

P22 = X. (5.61)

Using the separation-based controller realization of Theorem 5.3, and this definition

for a candidate Lyapunov matrix, P, it is straightforward to show that the closed

loop Riccati equation is satisfied. For instance, as already mentioned, summing equa-

tions (5.27), and (5.26) yields the upper left block of the closed loop Riccati equation.

The other blocks are obtained similarly. Therefore, we have demonstrated that the

separation-based controller satisfies the desired robustness constraints. However, this

has not demonstrated that the matrix P is equal to the Lyapunov matrix that would

be obtained by minimizing cost function (4.8) subject to the three LMI constraints.

Therefore, the converse is not proved.

However, it is the case that both the FSFB and OE problems have implicitly

minimized the individual cost functions related to those problems. Referring back to

the LMI cost function, written in equation (5.58), it is clear that the separation-based

solution does yield a minimal value for the cost function if the space of Lyapunov
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matrices is restricted to the form

A -B

-B B > 0 (5.62)

with A = AT, and B = BT. Thus, the converse holds in a limited sense. If the

restricted set in the space of available Lyapunov matrices could be shown to contain

the optimal Lyapunov matrix for certain realizations of Bc, then the converse would

be proven in full.

These facts lead us to propose the following conjecture:

Conjecture 5.1 Consider the system of equation (3.15). With o = 1 and 7 = 1,

examine the controller of equations (4.22)-(4.24), found by minimizing (4.8), subject

to (4.9)-(4.11). This controller is equivalent to the controller given by (5.29)-(5.31),

found by solving equations (5.26)-(5.28). Furthermore, the minimal value of the

bound on the cost found from each minimization is the same.

This conjecture has not been proven. It will, however, be shown in Chapter 6 that

the conjecture seems to hold in practice.

Turning aside from the question of whether or not the two controller solutions

are equivalent, we can also give an interpretation for one of the LMI constraints used

in the LMI-based solution. For the solution to exist, there must exist a matrix Q11

which satisfies LMIs (4.10) and (4.11). In fact, if the B, matrix is set to have the

realization of the Bc matrix in the separation-based solution, then the matrix Q11

will satisfy the following equality (based on the Schur complement of LMI (4.10)),

AQll + Q 11AT - BuB + BwB T + Q 1 1 C C zQl + QlC CeQ = O . (5.63)

We can show that the separation-based solution satisfies this condition as well. Mul-

tiplying equation (5.63) through on the left and right by Q-1 reveals that it has the

the same form as the FSFB Riccati equation (5.26). Thus, the second LMI in Theo-

rem 4.1 can be thought of as a constraint on the controller gain, much as the FSFB

Riccati equation yields a controller gain.
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The motivation for the definitions of Pij blocks in the previous discussion comes

from a careful examination of the closed loop version of the cost function in Theo-

rem 2.7 (see also equation (4.5)). That cost function is (again)

tr (i3TpBd) = tr (B'P 1Bd + B P21cyDY + DaBcl 21Bd + D T P2 2BcDy d

It is useful to think of the trace(B TPBd) term in this expression as the "state

cost" in the bound, i.e., that portion of the cost that is due to the system states

being nonzero. The other terms of the cost relate to the compensator states or some

combination of compensator and plant states. This state cost term has the same form

as the 7 2 cost one could derive for the open loop system (assuming the nominal plant

is stable). Furthermore, the state cost term also has the same form as the bound on

the cost of a system with a state feedback controller, tr (BRBd).

Intuitively, it seems that the state cost (not to mention the entire cost function)

for the output feedback controller must be greater than the cost for the system with

a state feedback controller, because the former can only estimate the system states.

The additional cost is accounted for in the matrix X. This provides an understanding

for the definition that P1 1 = X + R. The definitions for the other two blocks of P

follow from this initial observation.

These definitions also provide insight into the last LMI constraint in Theorem 4.1,

which states that

P11 p 2  I

P 21 P 22  0 >0.

I 0 Q11

In Theorem 4.1, assume that we have chosen B. to equal the controller input matrix

found from separation-based solution. This implies that the P matrix satisfies the

closed loop Riccati equation (substitute the closed loop system to the Riccati equation

in Theorem 2.8). Using Schur complements, we can see that this LMI constraint is
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equivalent to (non-trivial part)

P1 - QllI pT > 0.

P 2 1  P 2 2

However, as discussed previously, in this case, Q11 is equal to R, the solution of the

FSFB Riccati equation. Thus, since the upper left block of the above LMI must be

greater than or equal to zero, this last constraint can be interpreted as requiring that

the state cost of an output feedback controller be greater than the associated cost for

a system with a state feedback controller.

The fact that the LMI-based synthesis solution satisfies a separation principle is

significant. First, this clarifies the relationship between the LMI-based solution to the

W 2/SN problem and the mixed W2/'h.. controller of Bernstein and Haddad.5 Using

equations (5.59)-(5.61), we see that

X +R -X
-X X

As shown in Ref. 5, this is the same as the form that a closed loop covariance matrix

should have for full-order controllers. Furthermore, the matrices X and R appear

in the bound on the cost of this system in a similar manner to the way that the

covariance terms appear in the bound on the cost of the mixed 72/J00 controller. Of

course, P is a Lyapunov matrix, rather than the system covariance, but it seems that

the inverse of P should be closely related to the covariance found in Ref. 5. They

are dual problems. This duality, however, is limited in the sense that there is no

guarantee that the dual problems will yield the same cost bound for a given problem.

If Conjecture 5.1 could be shown to hold, then this has implications for broader

class of problems as well. We would effectively show that the full-order, mixed

W 2/'RN controller synthesis problem of Ref. 5 could be reformulated as an LMI,

i.e., it could be formulated in a convex fashion. Other control problems are similar,

involving necessary conditions which contain coupled Lyapunov and Riccati equa-
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tions. One example of this is the nominal W-2/70 problem posed by Ridgely et

al.70 This problem is typically solved using homotopy-type methods.77 Conjecture 5.1

would imply that the necessary conditions found by Ridgely could be replaced with

a convex problem written in terms of LMIs. For the nominal 7-2/7-i problem, other

researchers have actually found this convexity result by other means. 12,76

5.2 A Separation Principle for 1-2/Popov

Controllers

This section expands on the previous work in the chapter to show that a robust

7-12 controller with Popov multipliers can be synthesized by solving a robust estimation

problem and a full information control problem. The control signal will equal the

optimal state estimate multiplied by the gain from the full information problem.

The separation-based cost function derived in this section will be shown to over-

bound the cost function that is minimized in the LMI-based synthesis method of The-

orem 4.3. Nevertheless, despite the fact that the two cost functions do not match, it

will be shown in Chapter 6 that controllers obtained from the two synthesis methods

seem to match in practice.

As before, we will present the two subsidiary problems before presenting the prob-

lem of greatest interest, the output feedback problem. Throughout this section, all

weights will be left in explicitly, to leave the development as general as possible.

Of course, because we are dealing with just the synthesis problem, and not the full

design problem, the Popov stability multipliers, H and N, will be considered fixed

throughout this section.

5.2.1 7t 2/Popov Full Information Control

The goal of the full information (FI) control problem is to find the static feedback gain

that robustly minimizes the system performance metric. In general, a full information

control problem differs from a full-state feedback problem because the system allows
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independent measurements of both its states and a disturbance signal. Like the

original problem, this problem has two disturbance signals, an exogenous broadband

disturbance, d, and a disturbance due to the uncertainty in the system, w. However,

we are now interested in a system that can measure w. The Fl system is the same as

the original system (3.15) except for modifications necessitated by the measurement

change. In particular, we have that C, = [ 0 ]T, Dy [ 0 I ]T, and CTDy, = 0,

i.e.,

e

z

y

A method to determine the

theorem.

A Bd Bw

Ce 0 0

Cz 0 0

] o0
0

0 I

optimal FI control

Bu

Deu

0

0

(5.65)

gain is the subject of the following

Theorem 5.4 For the system in (5.65), given

that the matrix

fixed multipliers H and N, assume

Z MdH + HMd - NCB, - BTN + NCzBuE' B T (5.66)

is positive definite. In this case, if there exists a matrix R that is the unique, positive

semidefinite, stabilizing solution to the Riccati equation,

RA + AR + CCe + R(Bw - BuE jBifC N) + (CH H+ATCT N)

Z - 1 (HCz + NCzA) + (B - NCzBuE;'B )} - RBuE;BR =0, (5.67)

where A A + BwM 1 Cz and E D Deu, then, for all valid uncertainty blocks, A,

the optimal control that minimizes the cost is given by

u= Eu-B (-Rx CTNMCz - CTNw) ,
(5.68)
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and an upper bound on the cost, J is given by

JFI = tr [BT(R + CT(M 2 - M)NCz)Bd] (5.69)

Proof. This proof is based on dissipation theory. The proof differs from the

12/SN full-state feedback proof because the supply rates are specialized for the case of

Popov stability multipliers. To achieve robust stability and performance, dissipation

theory tells us that we must require that

VG + rA + rp 0, (5.70)

where

VG = xTRx, for some positive definite matrix R E 7n

rA = 2 [(w - Mlz)TNz + (w - Mz)TMdH(M 2 z - w)]

rP = eTe,

and Md = (M 2 - M1 ). Writing out the dissipation inequality using the system

dynamics and definitions of the supply rates and storage function yields,

xTR(Ax + Buu + Bww) + (Ax + Buu + Bww)TRx + (xTC T + UT De )(Cex + Deuu)

+2(w - MiCz)T [NCz(Ax + Bu + Bw) + MdH(M 2Czx - w)] < 0 (5.71)

Interestingly, because of the form of the uncertainty supply rate, ra, inequality (5.71)

has terms involving products of the control, u, and the uncertainty input, w.

To find the optimal control gain, we must determine where the left hand side

of (5.71) is extremal with respect to u. Differentiating with respect to u and setting

this quantity to zero reveals that the extremal control is given by equation (5.68).

To obtain the desired Riccati equation, we substitute the expression for the op-

timal control back to inequality (5.71). After simplifying terms, we note that the
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resulting inequality must hold for all quantities [ x

matrix is negative semidefinite, in particular, that

RA + ATR - CTMINCzA - ATCT NMICz

+CTMINCzB,E,1B TR - RBuE7iB TR

+RBuE- 1 B T CNM C + C[Ce

-C z M1 NCzBEu' B C NMCz

-CT MMdHM2Cz - CTM 2HMdMICz

NCz(A + BuEu'B TNMCz)

+(B- NCBuEu1B')R - B CzTNMCz

+MdHM 2Cz + HMdMICz

w ]. This implies that a related

-MdH - HM

+NCzBw + BTC[ N

-NCzBu Eu 1B[ TN

<0

(5.72)

(we have added lines to visually separate the matrix blocks for clarity). At this stage,

we could form a Riccati equation by taking Schur complements of the above inequal-

ity and examining its extremal solutions. However, the above expression is rather

complicated. We can simplify it using a congruence transformation. A congruence

transform preserves the signature of a matrix, thus leaving the inequality valid. The

transform is to multiply on the left and right by

T7= [ CZT M

and TT, respectively. This leads to the following matrix inequality

R(A + BMICz) + (A + BwMICz)TR

+CTCe - RBuEII BTR

(5.73)

NCz(A + BwM1 Cz) + HCz

(B - NCzBEuB T)R

-MdH - HMd

+NCzB, + BTC N
-NCzBuEu B CTN

< 0 . (5.74)
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Taking Schur complements of (5.74) leads to the following

RA + ATR + CTC, + {R(B, - B,E-1B TCT N) + (CTH + ATCTN))

Z - 1 {(HCz + NCA) + (BT - NCzBuEj-'B )R - RBuE B T < 0, (5.75)

and

-Z <0 , (5.76)

where Z is seen to be equal to the lower right (2, 2) block of (5.74). The fact that

we require that -Z be negative semidefinite ensures that the solution to the Riccati

equation, R, will be positive semidefinite (see Lemma 3 of Ref. 23).

It should be noted that the value of R that is extremal in expression (5.71) will

also be extremal with respect to inequality (5.75). Thus, we need only examine the

extremal points of (5.75). This leads to the desired Riccati equation (5.67). The

expression for the bound on the cost is obtained by appealing to Theorems 2.5 or 2.6.

The most interesting difference between the full information W2/Popov problem

the the full-state feedback W 2/SN problem is the form of the optimal control. For

the 7-2/SN problem, the control is a linear function of the states alone. This is just

what one would expect from an LQR problem or an W,, full information problem.

In contrast, the control for the 7W2/Popov problem is a linear combination of both a

state feedback term as well as a term involving the uncertainty input, w. This second,

unexpected term arises because of the Popov stability multiplier, N. The uncertainty

supply rate contains a term that is the product of N and the derivative of the state.

This leads to terms involving products of w and u. It should be noted that this is not

due to the fact that the FI system measures w. Rather, it is entirely due to the form

of the Popov multipliers. Were we to examine a FI problem for the W2/SN case, we

would find the same result as was found in Theorem 5.1 for the FSFB problem.

Of course, because practical systems have noise in their measurements, it is not

expected that the FI control can be achieved. We shall see later how an output
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feedback controller attempts to approximate this control.

5.2.2 Ji2/Popov Output Estimation

The motivation for the Output Estimation (OE) problem will become clear after the

derivation of the output feedback controller. However, this sub-problem is interesting

in its own right. Consider the system

X A Bd Br Bu
d

v Cv 0 Dvr Dvu (5.77)
r

y C, Dyd 0 0
- U

where D, is known to be full rank. The system has only two outputs, a performance

variable, v, and a measurement, y. The system is subject to a white noise disturbance,

d, and a bounded power disturbance, r. The performance signal contains feed-through

contributions from both the r disturbance as well as the control, u. This problem

differs from the OE problem for the 7- 2/SN system because of the effect of r on the

performance metric.

The goal in this problem is to find a dynamic filter that minimizes the expected

value of the quantity (vTEuv - (rTr), where E, is a known, positive definite matrix

and ( is a known, positive scalar. It is assumed that there is not enough knowledge

regarding any feedback between v and r to apply a Popov multiplier to the system.

The desired filter can be found by applying the following theorem.

Theorem 5.5 For the system of equation (5.77), which is subject to a zero-mean,

unit covariance, white-noise signal, d, and signal r E L2, suppose the matrix

(I - DrDvr (5.78)

is positive definite. If there exist positive semidefinite matrices X E S and Y E Sn

that are the stabilizing solutions to the following coupled Riccati equations
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X A - (YC[ + BD 4) E 1 CY) + A - (YCY" + BdD )T E Y)T X

+(XBr + CTEDvr)E-(BTX + Dr EC,) + CDEC, = 0 (5.79)

and

(A + Br(- (BTX + D rEC,))Y + Y(A + Br-'(BT X + Dv ECv))T

-(YC + BdDy )E d (CY + DydB ) + BdB T = 0, (5.80)

where Ed DydDyd, then a filter exists such that the expected value of (vTEv - (rTr)

is bounded by

JOE = tr (Bd - HDyd)TX(Bd - HDyd) , (5.81)

where H = (YC T + BdDTd)(Ed)- 1. Lastly, a realization for the filter which achieves

this is given by

A - HC, - BD-'C, H
A HC 0-B C (5.82)

Proof. This proof will proceed exactly as the proof of Theorem 5.2 proceeded.

There is essentially no difference between the two because we do not include a Popov

multiplier in the description of the feedback loop from v to r; it is only described by

bounded gain information.

As before, we will assume that the filter has a model-based observer structure.

However, unlike before, there is now a feedthrough term from r to v. We assume the

filter to have the form

x = A. + Buu + H(y - Cy,) (5.83)

u= -DC,

where is the state estimate and H is an unknown filter gain. The observer does

not account for the presence of the D,, term explicitly. This information cannot be

included because there is no information about the exogenous r signal other than the

fact that it has bounded power. Defining the error coordinates, = - , the closed
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loop system with the filter can be written as

X = (A - HCy)2 + (Bd - HDYd)d + B,r (584)

v = Cv,2 +Dvr .

Following exactly the same procedure used in the proof of Theorem 5.2, we can use

dissipation theory to derive a Riccati equation that allows us to bound the cost. If

X E R n is a positive definite matrix satisfying

(A-HC) X+X(A-HC)+(XBr+CTEuDvr)-1 (BTX+D EC,) +C E , =0,

(5.85)

then a bound on the cost is

tr (Bd - HDyd)TX(Bd - HDyd) . (5.86)

Equation (5.85) happens to be a standard W-,. Riccati equation for the closed loop

system. Thus, if r E £2, the Riccati constraint would guarantee that the closed loop

system achieved Iv| / lr < (. Note also that the cost function of equation (5.86)

has the desired form of equation (5.81).

Next, we wish to minimize the bound on the cost, subject to the Riccati constraint.

Thus, we form an augmented cost functional

Jaug = tr (Bd - HDyd)TX(Bd - HDyd) + tr Y [(A - HC,)TX + X(A - HC,)

+(XB + C[ EDvr)- (BTX + D 7EC,) + C ECv] , (5.87)

where the Lagrange multiplier, Y E n, is a symmetric matrix. Since this is a

steady state bound and we are interested in time-invariant controllers, Jaug should

be stationary with respect to the optimal gain, H*. This leads us to two necessary

conditions

(A + Br-(B TX + D rEuC) - H*Cy)Y + BdB T + H*DydD H*T
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Y(A + Br-' (B TX + D EUC) - H*C)T - H*DydB T -BD T H*T = 0 (5.88)

and

H*= (YC T + BdDT)(Ed)-1, (5.89)

where Ed (DydDd). We note that Ed is always invertible since Dyd was assumed

to be full row rank. Substituting the form for H* into (5.85) and (5.88) leads to the

desired conditions (5.79) and (5.80).

Finally, the equations describing the optimal filter can be obtained by substituting

the definition for H* into the assumed filter form in equation (5.83). 0

The OE problem we have just examined is essentially the same as the OE prob-

lem for the '72/SN system, since the implicit feedback loop from v to r has not been

characterized using Popov multipliers. As a result, the solutions essentially have the

same form. As before, the description of the optimal filter gain has been written in

the same form as that which would typically be found for a Kalman filter. However,

neither the filter nor the filter gain are the same as would be found in a Kalman filter,

because the conditions that the matrix Y must fulfill are not those of a Kalman filter.

The matrix Y must fulfill a pair of nonlinear equations, equations (5.79) and (5.80).

These equations are referred to as coupled Riccati equations. For a fixed Y, equa-

tion (5.79) is a Riccati equation in terms of X. Similarly, for a fixed X, equation (5.80)

is a Riccati equation in terms of Y. The coupled Riccati equations constitute a set

of conditions that are sufficient to guarantee the existence of a solution to the OE

problem.

5.2.3 -tW2 /Popov Output Feedback

Now that we have discussed the two subsidiary problems that will be used to simplify

the Output Feedback (OF) problem, we can give the main results of this section.
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Theorem 5.6 Consider the system of equation (3.15). Assume that we are given

fixed stability multipliers, H and N. Define the following constant matrices

S MH + HMd- NCzBw-BCTN (5.90)

Z + NCzBEu BuC[N (5.91)

A - N B, E B u  N, (5.92)

where E, D D u,D. Furthermore, assume that both Z and ( are positive definite.

If a matrix R E S' exists such that it is the unique, positive semidefinite, stabilizing

solution to the related full-state feedback Riccati equation

RA + ATR+ CC + {R(Bw - BE;u-IB CTN) + (CH + ATC TN)}

•Z - 1 {(HCz + NCzA) + (B - NCzBuE- 'B T )R} RBuE)R1BTR = 0, (5.93)

where A A + BMICz, and if positive semidefinite matrices X E Sn and Y E S'

exist that are the stabilizing solutions to the related output estimation coupled Riccati

equations

X (Atemp- (YC T + BdDy) E Cy) + (Atemp - (YCT + BdDy)E Cy)T XT -1

+(XB, + CEDr)- 1(B X + D ,EC) + Cv EC,= 0 (5.94)

and

(Atemp + Bw-1(B X + D rEuC,))Y + Y(Atemp + Bw -1(B X + D rEUC,))T

-(YC T + BdDyd)E d (CyY + DydB T ) + BdB T  0, (5.95)

where Ed = (DTydDT), and

Atemp = A + BC(- (5.96)

c, = E u
1B (R - CT NMCz + CTN(-~g) (5.97)
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Dvr = E BCT N (5.98)

g = BR - BwC z NMCz + NCzA + MdH(M + M2)Cz (5.99)

then, a controller given by

A = Atemp- BcCy + BuCc (5.100)

Be = (YC + BdDy )(DydD) -  (5.101)

C, = -(I + Eu B C N(-'NCzB)-'C (5.102)

will stabilize the system for all allowable A. Furthermore, for all allowable A, the

closed-loop performance of the system, J, will be bounded by

JoF = tr {B RBd + [Bd - Bcd]TX [Bd - BcDyd] . (5.103)

Proof. The proof of this theorem uses the results of the Fl and OE problems for

the 7- 2/Popov case. The proof will follow the same course as was developed for

the W 2/SN case. However, it differs because the Popov multipliers (H and N) are

incorporated into the system dynamics differently than the manner in which the

multiplier (rl) was incorporated in the 7- 2/SN case.

First, as was done in the proof of Theorem 5.3, consider a candidate Lyapunov

function for the W2/Popov system. At steady state, the expected value of the Lya-

punov function is a constant, such that

d d
lim E{xT Rx } = lim E{xTRx} = 0 (5.104)
t-+oo dt dt t-*oo

= limE T(RA + ATR)x + XTRBw + wTBwRx
t-- oo

+xTRBuu + uTB Rx} + tr (BTRBd), (5.105)

where the last equality comes from substituting in the system dynamics, and the

trace terms arise due to the differentiation of the white noise signal, d. As an aside,

note that equation (5.105) has the same form as equation (5.34).
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We will now discuss a dissipation inequality for the system. The dissipation in-

equality involves terms that ensure that the closed loop system will be stable for

any uncertainty that can be described using Popov multipliers. Also, the inequality

contains terms that allow us to bound the W2 cost of the closed loop system. This

dissipation inequality has already been derived in the proof of the FI theorem. It is

repeated here for clarity:

xTR(Ax + Buu + Bw) + (Ax + Buu + Bw)TRx + (xTCT + UTDT) (CeX + DeU)

+2(w - MICzz)T [NC,(Ax + Bu + Bw) + MdH(M2Czx - w)] < 0. (5.106)

As was done in the proof for the output feedback problem in the 7-2/SN case, we

wish to examine this inequality under extremal conditions, when both the control

and disturbance are extremal. Then, we wish to complete the square on the control

and disturbance terms in the general dissipation inequality. This will reveal that the

performance metric is bounded by the sum of the cost functions from the FI and OE

problems.

We have already derived the form for the extremal control in the proof of the FI

theorem. It is

u* = EuB (-Rx + CT NMCz - CT Nw) . (5.107)

This expression could have been found by differentiating equation (5.106) with respect

to u. The expression for this extremal control can be simplified if we make the

following definitions:

K 1  BuR (5.108)

K 2  B uC z N (5.109)

K BTC NMICz. (5.110)

Therefore the extremal control can be written as

u* = -Eu 1 ((Ki - K 3 )x + K 2w) . (5.111)
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At this point, the form for the worst-case (extremal) disturbance is not known. It

will be needed to complete a square in the dissipation inequality. In the -12/SN case,

the worst-case disturbance was found to have essentially the same definition as the

optimal control, with B, replaced by B,. (This is the same as is found in a pure

7-, problem.) This will not be the case for the '7-2 /Popov system. To find where

the inequality is extremal with respect to the disturbance, w, we take the derivative

of (5.106). Setting the resulting expression equal to zero reveals that

BTRx + NCz(Ax + Bu) + Bw*) BCT N(w* - MCzx)

+MdH(M 2 Czx - w*) + MdH(MCzx - w*) = 0. (5.112)

Noting that H, N, M1 , M2 , and Md are all diagonal matrices, we can rewrite this

last expression to find that the worst-case disturbance is

w* = - [B Rx + NCz(Ax + Buu) - B CNMICzX

+MdH(M + M2)Czx] (5.113)

= - [gx + KTu] , (5.114)

where

( MdH + HMd- NCzB, - BCzN (5.115)

S B -R BwC z NM1Cz + NCzA + MdH(M+ C + M2)Cz (5116)

We note that the definitions for ( and G agree with equations (5.90) and (5.99), respec-

tively. Here, in the H-2/Popov case, just as the extremal control required knowledge

of any disturbance, the worst case control makes use of the control input (not nec-

essarily optimal). This occurs because the uncertainty supply rate in the dissipation

analysis contains the product of the Popov multiplier N with the derivative of the

state variable.
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Having derived explicit expressions for both the extremal control and disturbance,

we wish to examine inequality (5.106) with the control, u, and the disturbance, w,

specified to be these functions. Replacing each occurrence of u and w by u* and w*,

respectively, and substituting definitions (5.107) and (5.113) to the inequality yields

a new, complicated inequality. After some algebra, this can be simplified to

xT(RA + ATR)x - 2xTCT M1 [NCzAx + MdHM2 Czx]

+XTCeCe - u*TEuU* + w*TW* w 0, (5.117)

where we have explicitly made use of the fact that CTDe = 0. In order to relate the

performance of the system with extremal inputs to a system with arbitrary inputs,

we complete the square on the control and disturbance terms in equation (5.117) to

obtain

xTR(Ax + B +u + Bww) + (Ax + Buu + Bww)TRx + XTCTCe

+uTEuu + (w - w*)T((w - W*) - (u - u*)TE(u - u*)

+2(w - MiCzX)T [NCz(Ax + Buu + Bww) + MdH(M 2Czx - w)] < 0 . (5.118)

This last inequality can be rearranged to reveal that

xTR(Ax + Bou + Bww) + (Ax + Buu + Bww)TRx < -xzTCTCx _- uTEu

-2(w - MiCzxz) [NCz(Ax + Buu + Bww) + MdH(M 2Czx - w)]

-(w - w*)T((w - w*) + (u - u*)TE,(u - u*) . (5.119)

At this point of the proof, we can return our attention to the general case, with

non-extremal controls and disturbances. Equation (5.105) holds true in general. A

comparison of this equation with inequality (5.119) demonstrates that

lim E {-xTCTCeX - uTEu - (w - w*)T((w - W*) + (U - u*)TEu(U - u*)

-2(w - MICzX)T [NCz(Ax + B,,u + Bw) + MdH(M 2 Czx - w)1}
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+trB T RBd > 0 .

This latest inequality can be simplified if we make the following definitions

v i uu* =u -1B (_Rx + CTNMICX - CTNw) (5.121)

r W- * -1 = w-( BRx + NCz (Ax + Buu) - BC TNMI Cz

+MdH(Ml + M2)Czx] , (5.122)

such that v has been defined to be the difference between the actual control and the

desired, optimal control. Likewise, r has been defined to be the difference between

the actual disturbance, w, and the worst-case disturbance. This allows us to rewrite

inequality (5.120) as

- lim E {2(w - MiCzx)T [NCz(Ax + Buu + Bww) + MdH(M 2Czx - w)]

- limE TCTCCe + UTEU} + lim E v TE,v - rT} + tr BTRBd > 0 . (5.123)
t oo t-+ oo

Next, recalling the definition of the cost function, we see that the performance metric

that we would like to minimize can be written as

J =lim E{eTe} = lim E{xTCTCex + UTEUu}. (5.124)
t-+oo t--oo

Furthermore, we recall that the uncertainty is described by Popov multipliers, so that

lim E {2(w - MiCzx)T [NCz(Ax + Bu + B,,w) + MdH(M 2 Czx - w)]} > 0.

(5.125)

Combining these facts with (5.123) reveals that

J < tr BTRBd + lim E {v TEv - rT(r} . (5.126)t-oo

Thus, we see that the performance of the closed loop system will be bounded by the

sum of two expressions. The first expression is equal to the bound on the cost for the
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related robust full information (FI) system without the additional quantity

tr [BjTCT (M2 -M)NCzBd] 

which is always positive (see Theorem 5.4). The second expression is equal to the cost

for a related output estimation (OE) problem. This estimation problem is, essentially,

to estimate the system states and the incoming disturbance, w. If we knew both x

and w, then we could set the control to be equal to the optimal control, and then

vTE,v would be identically zero. Thus, it is an estimation problem. The (-rT(r)

term actually helps to decrease the cost, because it accounts for the amount by which

the uncertainty differs from the worst-case uncertainty.

We wish to bound the second term on the right hand side of (5.126). To do this,

we shall use the results from the OE problem discussed in Theorem 5.5. First, we

transform the system to have the form specified for an OE problem. The original

system dynamics are given in equation (3.15). They can be rewritten as

-Ax + Bdd + Bww + Buu + Bww* - Bww*

Ax + Bdd + Bw + Buu + Bw-l(- x + KTu) - B~-' (gx + KTu)

AtempX + Bdd + Brr + ButempU (5.127)

where

Atemp A + BC(-'g (5.128)

Br Bw (5.129)

Butemp B, + Bw,-INCzB (5.130)

=B, + B,(-1KT . (5.131)

Furthermore, the new output of interest, v, can be rewritten as

v = u + E BT ( Rx CTNMCzx - CTNw)
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+E u17 B uTC[Nw* - Eu7BTC TNw*

= Cx + D,,r + D,,u , (5.132)

where

C, = E-1 T(R - C[NMCz + CTN(- 1g) (5.133)

= E-I(K1 - K 3 + K 2 -1g) (5.134)

Dvr = E 1BuCTN=E1 K 2  (5.135)

D, = I + E 1 B TCNC-NCz B (5.136)

= I + E K 2- 1K2 . (5.137)

Together, these definitions allow us to rewrite the open loop system as

Atemp Bd r Butemp
d

v Cv, Dvr D, (5.138)

y C, Dyd 0 0

Comparing this system to the OE system of Theorem 5.5, we see that they have

exactly the same form. Also, comparing this system to the original system of equa-

tion (3.15), we see the new system retains three inputs, but has only two outputs.

The original performance variable is no longer needed. Since the goal is to minimize

E{vTEuv - rT(r}, the e output does not need to be considered. Lastly, we note that

D, is invertible, as was required by the OE problem. The matrix is, in fact, positive

definite, since it is equal to the sum of a positive definite matrix, I, with a positive

semidefinite matrix, E-1 K 2(-1KT. Clearly, this is now an output estimation problem

with performance variable v.

Since this is an OE problem, Theorem 5.5 is used to derive a filter which will

minimize the bound on the cost. Equations (5.94) and (5.95) are found from equa-

tions (5.79) and (5.80) by replacing occurrences of A with Atemp. Note that definitions
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for the C,, D,, and D,, matrices, which are needed in Theorem 5.5, have also been

specified. Furthermore, the definitions for the controller parameters proposed in equa-

tions (5.100)- (5.102) can be derived by replacing A by Atemp and substituting in the

appropriate definitions to the filter of equation (5.82).

Finally, we are in a position to derive the separation-based cost function of equa-

tion (5.103). As already noted, equation (5.126) demonstrates that the 72 cost can

be bounded by the sum of two terms. The first term can be overbounded by solving

a full information control problem. The second term can be bounded by solving an

output estimation problem. Thus a bound for the closed loop system cost can be

given as

J OF A tr BTRBd + JOE (5.139)

= tr BTRBd + tr [Bd - BD] T X [Bd - BcDyd] (5.140)

_ JFI + JOE,

where JFI and JOE were defined in equations (5.69) and (5.81), respectively. The

controller synthesis problem has effectively been separated into two smaller problems:

one problem to find the appropriate feedback gain and one problem to find an optimal

filter. 0

Theorem 5.6 provides a set of conditions that are sufficient, but not necessary,

to guarantee the existence of an W2/Popov controller. Given the assumptions men-

tioned in the theorem, existence is guaranteed if we can solve equations (5.93)-(5.95).

Equation (5.93) is seen to be a Riccati equation in terms of R alone. In contrast,

equations (5.94) and (5.95) are functions of three variables, R, X, and Y (R appears

in the definitions of Atemp and C,). In practice, then, one can solve equation (5.93)

for R first, without regard to the other two equations. Then, given R, one can solve

equations (5.94) and (5.95) for X and Y. These last two equations are coupled Riccati

equations. Given fixed R and Y, equation (5.94) is a Riccati equation in terms of X.

Likewise, given fixed R and X, equation (5.95) is a Riccati equation for Y.
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The proof of Theorem 5.6 follows the same course as the proof of Theorem 5.3 for

the W2/SN system. No new mathematical machinery is developed for the 7-2/Popov

case. The proofs are fundamentally the same, but differ because of the way that the

stability multipliers affect the dynamics. If the separation principle for the system

with Popov multipliers had not been demonstrated, one might mistakenly believe that

the separation principle was restricted to systems with constant multipliers (as in the

7' 2/SN case). In fact, the exact form of the multipliers should not be a limiting factor.

The choice of multipliers certainly does affect the controller dynamics and associated

sufficiency conditions. However, it is not fundamental to the existence of a separation

principle for a quadratic bound on a robust 7-2 cost. It should be possible to derive

similar results for other finite dimensional multipliers. Strictly proper multipliers

should allow one to avoid some of the anomalies that appear in the W72/Popov case,

such as an optimal control that depends on knowing the disturbance.

To understand why the exact form of the separation principle should hold inde-

pendently of the type of multiplier, consider that a sector transformation can be used

to change the explicit form of the multiplier. Sector transformations do not affect

the input/output characteristics of the system intact; thus, they should not affect

whether or not this separation principle will hold. In the case of a system with Popov

multipliers, a sector transformation will make the transformed system appear to only

have a constant stability multiplier. However, the Popov multiplier's unusual non-

causal dynamics also makes the transformed system dynamics fail to have the form

required by the 'W2 /SN problem of Theorem 5.3. The transformed system contains a

direct feedthrough term from w to z. One should be able to rederive the separation

principle for this system with a constant multiplier.

As in the case of the W2/SN synthesis, what makes the separation principle inter-

esting for the 1t2/Popov synthesis is the size and form of the new synthesis problem.

After solving for R with a standard Riccati equation solver, we are left with two size

n x n variables, X and Y. In contrast, the LMI solution requires one to solve for a

size 2n x 2n and a size n x n matrix. Furthermore, the separation-based formulation

uses coupled Riccati equations. Note that standard Riccati equations of size n require
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solution times proportional to (2n) 3 , while our experience with convex optimization

codes indicate that these perform on the order of between n4 and n". Therefore,

if one can solve the coupled Riccati equations by, say, iterating on the solutions to

standard Riccati equations, then this could be faster than solving the corresponding

LMI problem.

In addition, it should be mentioned that a separation-based synthesis routine has

the potential to require much less memory than a comparable LMI-based routine. The

LMI-based synthesis technique required us to minimize a linear cost function subject

to the three LMI constraints. However, our experience with LMILab indicates that

current codes are not usable for higher-order systems. The difficulty is that a solution

technique must determine the Jacobians and, possibly, Hessians of the constraints.

For a practical problem, this requires too much memory to be evaluated. In contrast,

the sufficiency conditions in the separation principle (see Theorem 5.6) do not require

the explicit minimization of any cost function. A solution of the coupled Riccati

equations automatically yields the optimal controller.

Before leaving our discussion of Theorem 5.6, we should mention how it enhances

our understanding of the LMIs in Theorem 4.3. Specifically, we wish to give an

interpretation for LMI (4.33). Examining the Schur complements of this LMI leads

to two new LMIs

QlAT + AQ + [Q l(CzTH + ATCTN) + B, - BuEu BCTzN]

[Z- 1 [(HCz + NCzA)Q11 + BT - NCzBuE u1 B

-B (D Den,)-Bu + Q11CTCeQ <11 0 (5.141)

and

-z < 0 (5.142)

where Z is as defined in equation (5.91). The second of these LMIs requires that

-Z be negative semidefinite. This is actually less strict than was assumed in the

separation principle of Theorem 5.6, but has much the same effect. Of greater interest
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is the first of these LMIs. If we multiply this LMI on the left and right by Q- 1, we

obtain

Q11A + Q + {Q- (Bw - BE'B CTN) + (CH + CTN)

Z-1 (HCz + NCzA) + (BT - NCzBE B)Q-i

+CTCe - QjB E 71B, TQ; < 0. (5.143)

After rearranging this inequality, it can be seen that this is an inequality form of

the FI Riccati equation for R in Theorem 5.6. Thus, the second LMI constraint of

Theorem 4.3 can be thought of as a constraint on the feedback gain of the controller.

Of course, for any given solution of the LMI-based control problem, it need not be the

case that Q-I is equal to the solution of the Fl Riccati equation, R. This would only

happen in the case where the correct realization was chosen for B, in the solution of

the LMI problem.

5.3 Suboptimal Controllers

It has not been demonstrated that solving the FI (or FSFB) problem and the OE

problem will yield the same controller that would have been obtained using the LMI-

based synthesis technique. However, the controllers derived using the separation

principle are optimal in the sense that they minimize a bound on the i 2 cost of the

system, JOF. Theorems 5.3 and 5.6 provide a set of conditions that are sufficient to

guarantee that a robust controller exists. Note that in the separation-based synthesis

method, an explicit minimization is not performed on JOF. We shall now discuss how

the previous results point to a means to synthesize suboptimal controllers, i.e., con-

trollers that satisfy the robustness requirements of the system but do not necessarily

minimize the bound JOF. These results will be discussed in terms of the -2/Popov

controller, but they apply to the case with the W2/SN controller as well.

Assume that we can satisfy the assumptions of Theorem 5.6 and that R is a sta-

bilizing solution to the FI Riccati equation. Then, according to the theorem, finding
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solutions for the two coupled Riccati equations will yield the optimal controller. What

would we obtain if we satisfied conditions which were less stringent than the coupled

Riccati equations? In particular, what would we obtain if equation (5.94) were a

matrix inequality rather than an equality?

Recall that the derivation of the 7-2/Popov separation principle relied upon prior

knowledge of the OE filter discussed in Theorem 5.5. It can be shown that a Riccati

inequality with the left hand side of equation (5.94) would arise if one were to derive

equation (5.85) using dissipation theory, rather than simply appealing to standard

W-, theory. A dissipation derivation would quickly show that, because ( is positive

definite, finding a matrix that satisfies the inequality form of (5.94) will guarantee

that a controller exists that can satisfy the closed loop robustness requirements.

Note that certain properties of Riccati equations are will established. In particular,

say that P that is the unique stabilizing solution to a Riccati equation, Ric(P) = 0.

Given a matrix P that satisfies the related Riccati inequality, Ric(P) < 0, one can

show that P < p.81

Consider the Riccati inequality formed by requiring that the left hand side of

equation (5.94) be negative definite. Suppose that positive definite matrices X and

Y are such that this inequality is satisfied. Furthermore, suppose that equation (5.95)

is satisfied; this implies that Y is a valid Lagrange multiplier. Then the controller

formed by substituting X and Y to the definitions in equations (5.100)-(5.102) will

suffice to satisfy the necessary robustness requirements. Furthermore, the closed loop

cost can be bounded by substituting the given matrices to equation (5.103). The

controller is considered suboptimal because controllers that achieve tighter bounds

on the 712 cost must exist.

Having a set of conditions that are sufficient to guarantee the existence of a sub-

optimal controller could be useful. It is possible that the suboptimal controller could

be easier to solve for than the optimal controller. Given a fixed Y matrix, the Riccati

inequality for X can be converted into an LMI - it is a convex constraint. Thus, for

a fixed Y, the set of feasible X is a convex set. It is likely that a solution technique

could take advantage of this fact, even if only indirectly. For instance, even if the
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LMI constraint requires too much memory to use in an optimization routine, it is

conceivable that one might be able find a member of the feasible set more easily than

one can solve the Riccati equation. If this is the case, then, after finding a feasible X,

one can evaluate the bound on the 7W2 cost. If the cost is deemed acceptable, then it

is unnecessary to go on to find the exact solution that minimizes OF.
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Chapter 6

Design of Robust W-2 Controllers

Previously, we have examined several existing methods to analyze the W2 performance

of an uncertain closed loop system, and we have derived new methods to synthesize

robust 7W2 controllers for an uncertain plant. This chapter combines the available

analysis and synthesis tools to form a complete robust 7-2 controller design method-

ology. The design technique will rely on what is commonly called a "D- K iteration."

In the D, or analysis, step of the iteration, the controller is held fixed and the perfor-

mance of the system is analyzed (stability multipliers are determined). Conversely, in

the K, or synthesis, step of the iteration, a new controller is synthesized for a given

set of stability multipliers. The great attraction of using a D - K iteration is its

relative ease of implementation and use. By dividing the design process into separate

analysis and synthesis steps, the D - K iteration allows us to directly employ our

already developed analysis and synthesis tools in a full design process. Furthermore,

as we shall demonstrate, it is easier to initialize a D - K iteration than a methodology

that allows both the controller and the stability multipliers to vary simultaneously.

The theoretical foundations behind two different controller synthesis methods were

presented in Chapters 4 and 5. In contrast, the next section of this chapter will focus

on practical issues related to synthesis algorithms, particularly memory usage and

time of solution. A synthesis algorithm based on the separation principle of Chapter 5

will be shown to be effective and attractive for use in a D - K iteration.

The second section of the chapter focuses on the implementation of a robust
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analysis routine. A practical analysis routine is proposed for use with higher-order

systems.

Finally, in the last section of the chapter, the algorithms developed for analysis

and synthesis are combined to form a practical controller design routine. The design

routine uses a D - K iteration and appears to be useful for high order systems. The

design technique is demonstrated on two structural control design examples.

6.1 Implementation of a Synthesis Routine

Two competing methods have been proposed to synthesize robust 712 controllers. In

Chapter 4, it was shown that the controllers could be synthesized by minimizing

a linear cost function subject to LMI constraints. This is known as an eigenvalue

problem (EVP) problem. EVPs are convex and can be solved in polynomial time.

Alternatively, in Chapter 5, a synthesis method was derived based on a separation

principle. This synthesis method required the solution of a full information Riccati

equation followed by the solution of an output estimation (OE) problem. The OE

problem was solved by finding the solution to a pair of coupled Riccati equations.

As discussed in Chapter 5, the reason for investigating synthesis via the separation

principle is that it potentially offers several advantages over an LMI-based synthesis.

The first of these is decreased memory usage. The outer dimensions of the LMI

constraints are greater than the dimensions of the Riccati equations in the separation

principle. Furthermore, the number of variables in the LMI-based formulation is

greater than the number of variables in a separation-based formulation. The second

potential advantage of a separation-based technique is speed. If the OE problem can

be solved by successively solving standard Riccati equations, then the separation-

based technique should approach solution times proportional to (2n)3 (for a problem

with n states) rather than the n4 or n 5 times typically found with EVP solvers. Both

of these advantages become more and more significant as problem size increases. The

final reason to investigate the separation-based synthesis is that it gives us more

insight into the makeup of the robust controllers.
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This section concentrates on the implementation of the separation-based synthesis

technique. It should be noted that because the LMI-based methodology is an EVP, its

implementation is straightforward. Off-the-shelf codes, such as the LMI Control Tool-

box (LMILab) for Matlab,32,30,31 exist that will solve these problems. Using LMILab,

we have been able to implement synthesis routines based on Theorems 4.1 and 4.3

for plants with up to approximately 16 states on a Sun SPARC-20 workstation. Syn-

thesis for larger systems has not proven possible because the stated software requires

excessive amounts of computer memory. Some of the memory overhead in LMILab is

due to the fact that LMILab is a general-purpose LMI solver. Thus, large amounts of

memory are required to, for instance, merely describe the LMI constraints. However,

it is believed that the major memory penalty occurs because the EVP algorithm must

try to approximate the Jacobians and, possibly, Hessians of the cost function. It is

believed that more efficient coding of an EVP algorithm (outside Matlab) would allow

a marginal increase in the number of states that can be accommodated. This option

was not pursued because writing specialized LMI code is not a practical option for a

designer. Furthermore, even if the memory problem is overcome, any EVP algorithm

is still expected to require solution times on the order of between n4 and n5 , which

will be too slow for large systems.

For greater details on the implementation of an LMI-based synthesis technique,

the reader is referred to either Ref. 82 or the thesis by Livadas. 57 These references

present a complete D - K design using LMIs for two example systems with 4 and 8

states. Also, it should be noted that when a system is small enough such that one

can perform an LMI-based synthesis, the resulting solution can be used to serve as a

check for any controller derived using a separation-based technique.

We turn now to the topic of finding a means to efficiently synthesize a controller

using the separation principle. For a system with gain-bounded uncertainties, the

separation-based synthesis method is found in Theorem 5.3. To simplify the discus-

sion, we will concentrate only on the W2/SN case in this section. Results developed

here will transfer to the W2/Popov case (and Theorem 5.6) by analogy.

To synthesize the controller, we must solve equations (5.26), (5.27), and (5.28).
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As discussed in Chapter 5, equation (5.26) is a Riccati equation in terms of R alone.

Therefore, it can be solved independently of the other two equations. We will pre-

sume throughout the rest of this section that we have found a solution for R, using

equation (5.26). Now, we must find an effective method to solve the remaining equa-

tions, the coupled Riccati equations. These equations originate from an OE problem

statement. We next present several inefficient or unsuccessful methods that have

been investigated to solve the OE problem. Then, in Section 6.1.2, we introduce the

Control Gain Iteration, which appears to be the most effective tool to solve the OE

problem.

6.1.1 Preliminary Attempts to Solve the OE Problem

The coupled Riccati equations, equations (5.27) and (5.28), are a pair of nonlinear,

coupled, matrix equations for the unknown, size n x n, matrices X and Y. Because

they possess bilinear coupling terms, equations (5.27) and (5.28) are not Riccati

equations. However, for a fixed Y, equation (5.27) is a Riccati equation for X, and

the converse is true for Y and equation (5.28).

In principle, because the OE coupled Riccati equations are only of size n, we expect

that their solution should pose no serious memory problems, even for relatively large

systems. The important question is whether or not these equations can be solved

quickly.

The structure of the coupled Riccati equations influences whether or not they can

be solved using standard Riccati equation solution techniques. In equation (5.28),

the coefficient of the quadratic Y term is negative semi-definite. Given the fact that

(A, C,) was assumed to be detectable, then, for a fixed X, this equation always has

a solution. It is akin to a typical 7-2 Riccati equation. In contrast, the coefficient

for the quadratic X term in equation (5.27) is positive semi-definite. This implies

that, given a fixed Y, there is no guarantee that the equation will have a stabilizing

solution, even if (A, B,) is controllable. Essentially, the equation has a form similar

to an 7-m Riccati equation.

The most straightforward method for trying to solve the coupled equations is to
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iterate between solutions of coupled Riccati equations, i. e., to fix X = Xk and solve

equation (5.28) for Yk+l, then to fix Y = Yk+1 and solve equation (5.27) for Xk+2.

The iteration is repeated until the solutions appear to converge. We refer to this

procedure as the standard iteration. Note that a set of coupled Riccati equations that

are similar to ours can be written for the solution to a mixed R-t2/, problem5 or

an optimal projection problem.51 In Ref. 5, the standard iteration is proposed as a

means to solve them.

The standard iteration was tested extensively on an 8-state example problem.

This problem is detailed in Appendix A. Solutions for the problem were compared

to the controllers derived from the LMI-based methodology. When controllers from

a separation-based approach were obtained, they were identical to the controllers

derived via the LMIs.

Unfortunately, testing reveals three difficulties with the standard iteration. First,

it can be difficult to come up with a useful initial condition to start the iteration.

While one can try Xo = 0 and solve for Yo, there is no guarantee that there will then

be a stabilizing solution for X 1. This identifies the second problem with the iteration

- that equation (5.27) does not necessarily have a stabilizing solution. Often, one

may be able to start the iteration, and the procedure will iterate for some time, but

eventually Yk enters a region where there is no solution for Xk+l. These problems are

due to the sign of the quadratic term in the equation, as mentioned above.

The two previous problems might seem to be manageable if one could start the

iteration near to the solution. However, experimental evidence indicates that even

this is not adequate. The third problem is that at low levels of -y (at high levels of

uncertainty, i.e., for -y near 'Ymin) the standard iteration is divergent. For high levels

of y the iteration will converge reliably, even with poor initial conditions. However,

at low levels of 'y, the iteration does not converge. Significantly, even if one starts

the iteration at a point obtained by solving the LMI-based synthesis problem, the

iteration diverges. The finite precision of any Riccati equation solver ensures that the

initial point will be different from the true stationary point. The iteration typically

displays an exponential divergence in these cases.

135



Because these are matrix, rather than scalar equations, there does not seem to be

a way to determine whether or not an iteration is stable at a given point. Therefore,

we are unable to predict whether any iterative method will work at a given level of

7.

Leaving aside the standard iteration, we can examine a second method that is

commonly proposed for use with coupled Riccati equations, namely a homotopic

continuation method. 14,16,15 ,69 The central idea behind a homotopy algorithm is to

first solve a degenerate form of the required problem. The degenerate problem is

chosen because it has a known solution. The problem is then continuously deformed

(by changing whatever parameters made the problem degenerate) until it becomes

the required problem. By following the solution as it evolves along the deformation

trajectory, one can arrive at the desired solution. In particular, for the OE coupled

Riccati equations, we might use an initial degenerate problem consisting of the original

system but with Cz = 0 and B, = 0. We know from Chapter 5 that the solution

to this problem is the LQG controller. Then, the homotopy parameters Cz and B,

can be incrementally increased in size until their desired values are reached. Another

choice for the homotopy parameter might be 72

The problem with a homotopy method is that at each increment, the gradient

and then the trajectory with respect to the homotopy parameter(s) must be calcu-

lated for the unknown variables. In our case the unknowns are X and Y. If 72 is

chosen as the homotopy parameter, calculating these gradients requires the solution

of four linear matrix equations, each with approximately n2 unknowns. If Cz and B,

are chosen to vary independently, then the gradient calculation becomes even more

complicated. Solving the equations is theoretically possible, but this method is not

computationally attractive for larger systems. Thus, this method seems unlikely to

offer any of the desired benefits over an LMI-based synthesis routine. Furthermore,

our experience indicates that the solution can vary nonlinearly, or even discontinu-

ously, with the homotopy parameter. This complicates the algorithm by requiring it

to make judicious choices in step size and other practical matters at each step. For

these reasons, homotopy is not pursued for the OE problem.
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It is also possible that a solution to the OE problem could be found by develop-

ing some sort of Hamiltonian system that captures the dynamics implied by equa-

tions (5.27) and (5.28). This is, of course, how steady state Riccati equations are

typically solved - by forming the associated Hamiltonian matrix and performing an

eigen-decomposition of it. Were the OE equations not coupled, then we could form

a large (size 4n rather than 2n) Hamiltonian system for them. Of course, it is the

coupling that makes this problem interesting, and it is the coupling that prevents us

from forming a Hamiltonian system. No similarity transform has been found that

can decouple the problem such that it can be solved using an eigen-decomposition.

A fourth, relatively successful, method to try and solve the OE problem comes

from using a Shanks transformation to modify the standard iteration. The Shanks

transformation is numerical procedure that is designed to find approximate solutions

to slowly converging or diverging series.3 The transform (which is nonlinear) is per-

formed after every third iteration. The procedure for the transformation is

X, #= S(X,) = Xn+lXn_1 - Xn
Xn, 1 + Xn_, - 2X,

When it works, the procedure removes the effects of the dominant eigenvalue from the

convergence of the iteration. The main difficulty with the transformation is that, as

one gets close to the solution, the differences between each iteration become negligible,

and the transformation becomes numerically unreliable.

For the coupled Riccati equation iteration, the Shanks transformation was per-

formed element-by-element on the X variable. It was tested on the previously men-

tioned problem with 8 states and demonstrated some very positive effects. For some

levels of y that were previously shown to be divergent using the standard iteration, if

the iteration was started near the solution, then the Shanks transformation stabilized

the iteration and drove it toward the solution. At high levels of 7, cases run with the

Shanks transformation converged faster than the standard iteration alone. The short-

coming of the method was that it did not affect one's ability to start the iteration.

At low levels of y, initial conditions which seemed reasonable did not take three steps
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such that one could perform the transformation. Thus, the Shanks transformation

was deemed too unreliable for general usage.

A fifth avenue of research focused on trying to make the method of solving for

X more robust. One method that was investigated was to fix Y and then solve

not equation (5.27), but, essentially, the sum of equations (5.28) and (5.27) for X.

(The substitute equation was actually (5.27) + aY-'(5.28)Y - 1 = 0, for some scalar

parameter a). This affected the stability of the coefficient of the linear term in the

equation. While in certain circumstances this allowed the routine to find solutions

for X when there would be none for the original iteration, this method did not work

reliably. However, this approach led to the development of the control gain iteration,

which proved to be the most reliable method available to solve the OE problem.

6.1.2 The Control Gain Iteration for Coupled Riccati

Equations

Three problems have been encountered when using the standard iteration to solve

the OE problem: it is difficult to find valid initial conditions for the iteration, the

iteration stops when equation (5.27) fails to have a stabilizing solution, and the it-

eration becomes more divergent as the uncertainty size increases. The control gain

(CG) iteration is a modified version of the standard iteration. It has been designed

to eliminate the first two of the stated problems. It also seems to be effective at

alleviating the third problem. The control gain iteration and a modified version of

the CG iteration are presented below. An example synthesis problem is worked to

demonstrate the effectiveness of the CG iteration versus the standard iteration and

an LMI-based synthesis.

The CG iteration is essentially a perturbation method, and can also be thought

of as a continuation method for X. At iteration k, the procedure is to solve equa-

tion (5.28) for Yk, at a fixed Xk. Then, Xk+1 is taken to be the stabilizing solution
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of the following modified Riccati equation

Xk+1 (A + BB R - (YkC f + BdD )E 1 CY + BwBXk
Tk -1 yT X+

+ (A + BwB R - (YkCY + BdDd)E Cy + BwB TXk )T Xk

-Xk+1BwB Xk+l + RBBR = 0. (6.1)

Assuming the iteration has not converged, the procedure loops back and finds Yk+1,

and so on. Note that if it is evaluated at a stationary point, i.e., if Xk+1 = Xk, then

equation (6.1) is exactly the same as the original equation (5.27).

The CG iteration is effective because the modified Riccati equation has a negative

coefficient for the quadratic Xk+1 term. Thus, this equation has the form of an

W2, rather than an W7-,, equation. Then, according to standard Riccati equation

theory,23 as long as the linear coefficient of Xk+l1 is stabilizable with respect to Bw, at

any iteration there will be a stabilizing Xk+1 to solve equation (6.1). This eliminates

the second problem found for the standard iteration. In fact, note that the modified

dynamics matrix

A + BwB R - (YkCT + BDyD)E; C + BwB TXk (6.2)

can be assumed to be stable at every step. This is because the matrix Yk, which was

selected at the beginning of the step as the solution to equation (5.28), was chosen

to stabilize the above quantity.

The key point that makes this iteration akin to a perturbation method is that

the iteration always has a solution at the initial step. A valid initial condition is

Xk=0o = X = 0. Even at this point, the iteration will find a 6Xk=1 such that Xk=l =

Xk=o + 6 Xk=1 is a stabilizing solution of equation (6.1). This eliminates the first

problem found for the standard iteration. The control gain iteration takes its name

from the fact that the resulting X effectively yields the optimal stabilizing control

gain for the dynamics matrix given in equation (6.2).

Before presenting some results obtained with the CG iteration, we present a further
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enhancement to the iteration. This iteration is referred to as the "Control Gain

Iteration with Relaxation," or CGR iteration. It is motivated by the fact that, in

practice, the standard iteration will head toward values of X that are unbounded.

Equations (5.27) and (5.28) can be viewed as antagonists in a game. Equation (5.28)

seeks to find the optimal estimator for the given X. In contrast, equation (5.27) seeks

to find the worst-case disturbance that will damage the performance for a given Y.

The CGR iteration seeks to allow the estimator solution (Y) to "catch up" with the

uncertainty solution (X) by effectively giving the estimator forewarning of which way

the X solution might go. Consider a slightly modified version of equation (6.1),

Xk+1 A + BBR - (YkCT + BdD)E C + aBwB Xk)T (y T

+(A + BB TR- (YkCT + BdDd)E Cy + aBwBXk ) Xk+1

+(I - 2a)Xk+IBwB Xk+1 + RBB = 0 , (6.3)

where a is a known scalar. Given an a > 1, equation (6.3) will always have a

stabilizing solution at every step. Choosing a large value of a forces Xk+1 to stay

near Xk. Choosing a closer to allows Xk+1 to change as much as possible while still

ensuring that a stabilizing solution will exist.

The CGR iteration is performed as follows. Preselect two scalar relaxation pa-

rameters, al and a 2. Then, at iteration k,

1. Set a = al. Solve eqn. (6.3) for a stabilizing Xk+l, given Xk.

2. Solve eqn. (5.28) for Y -+ Yk, given X = Xk+1-

3. Increment counter: k -+ k + 1.

4. Set a = a 2, Xk = Xk-1. Resolve eqn. (6.3) for Xk+1.

5. Resolve eqn. (5.28) for Y -+ Yk, given X = Xk+1.

6. Check stopping conditions. If not done: k -+ k + 1, then go back to step 1.

Choosing a relatively high choice for al and a relatively low choice for a 2 in the

CGR iteration often has following desirable effects: The solution for X from step 1
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of the iteration stays near the previous X solution. Then, in step 2, Y is selected

in response to this value of X. Step 4, then, allows the solution to move toward the

(presumably pathological) solution that the original Riccati equation (5.27), would

have yielded. In step 5, a solution for Y is found that balances out the effects of the

nearly pathological solution. Finally, returning to step 1, the solution for X does not

head in a divergent direction because of the choice for Y.

Again, because these iterative routines involve matrix equations, there appears to

be no way to a priori determine whether or not an iteration will converge. However,

we can demonstrate the effectiveness of the CG and CGR iterations on the 8-state

example problem described in Appendix A.

Controllers were synthesized for the example problem using four methods: the

standard iteration; the CG iteration; the CGR iteration; and, serving as a benchmark,

an LMI-based minimization using LMILab. All controller synthesis was performed

with a single, fixed value of the stability multiplier (o = 1). The computer used was

a Sun Sparc-20 workstation. For the iterative procedures, the stopping condition was

based on the Frobenius norm of the change in Y. At iteration k, we calculate

A
Yk , and dYk Yk - Yk- 1

If

tr (dYk d kT)tr (Y ) < 1 10-14
tr (Yk kT ) -

then the iteration is deemed converged. It should be noted that, for convenience,

the stopping condition is only checked after every even numbered step in the CGR

routine.

In practice, it was found that a value of (10- 14) for the stopping condition was more

than enough to ensure that the resulting controllers were identical to the controllers

from the LMI-based solution. Even if the stopping condition was varied up or down

by a few orders of magnitude, the Bode plots of the separation-based and LMI-based

controllers matched. In addition, the separation-based cost function, equation (5.32),

was found to equal the cost function that was minimized in the LMI-based synthesis
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technique, equation (4.8). For this problem, then, Conjecture 5.1 was found to hold.

The stated design point of the problem was for an uncertainty level of 7 = 2.0. At

this level of y, the LMI problem solved in approximately 48 seconds. In contrast, the

standard iteration was divergent. Even when it was initialized on the solution point,

the iteration diverged toward infinity. However, the CG iteration converged nicely

from a starting point of X = 0. It needed only one-fourth of the time required by the

LMI solver. The convergence of the CG iteration did not appear to be sensitive to

the choice of initial condition for X. The iteration converged from every initial point

tested (varying Xo between 0 and I), although an extensive test was not done to find

a point which would cause the iteration to fail.

Use of the CGR iteration requires us to specify two parameters, al and a 2. Some

choices for the parameters cause the iteration to converge, while others can make it

diverge. After testing the CGR iteration on this example problem and the problems

that will be presented later in the chapter, several rules of thumb for selecting al

and a2 were developed. One should always choose al to be greater than a 2. The

reasons for this were discussed previously. Also, it is useful to plot the OE cost,

tr (Bd-BcDyd)T Xk(Bd-BcDyd), versus iteration to judge convergence. It is desirable

to smooth any oscillations in the plot to speed convergence. The cost can oscillate in

both a short period mode (with period 1, i.e., between steps 2 and 5 of the iteration)

and a longer period mode. Raising a tends to decrease the overall rate of change

of the iterate. When plotting the solution after each iteration, this can make the

plot appear to be smoother over long periods. Changing a 2 tends to affect the short

period character.

For the 8-state example problem, a series of tests was done at an uncertainty level

of y = 1.0, to see what values of a should be used. A wide range of values were

tried for al and a2. Three representative plots of the OE cost at different values of a

are shown in Figures 6-1, 6-2, and 6-3. By comparing the (ai, a 2) = (3, 1) case and

the (2, 1) case it can be seen that, raising a caused the cost trajectory to appear

smoother, though more oscillatory than before. Meanwhile, lowering a 2, seemed to

successfully allow the estimator to "catch up" with the disturbance. This can be seen
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Figure 6-1: Convergence of the CGR iteration, with (a1,c 2 )=(2,1). The iter-
ation is initialized at the solution from the LMI routine. Stopping
condition tolerance set to 10-19

143

I II

L A ... : J -



04

0c0

10-10-12

100

10- 18

S10

-20"10
Ca

x 10 - 4 Convergence of the CGR Iteration

Iteration Number

Figure 6-2: Convergence of the CGR iteration, with (ac,a 2)=(3,1). The iter-
ation is initialized at the solution from the LMI routine. Stopping
condition tolerance set to 10-19.
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Figure 6-3: Convergence of the CGR iteration, with (a1,a 2)=(2,0.55). The
iteration is initialized at the solution from the LMI routine. Stop-
ping condition tolerance set to 10-19.
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from the fact that the (2, 0.55) case appears to be a version of the (2, 1) case with

approximately every other iteration point removed. Choosing Oa1 = 2.0 and a2 = 0.55

was found to make the iteration converge most rapidly, although not most smoothly.

Furthermore, the choice of a1 = 2.0 and a 2 = 0.55 was found to be approximately as

effective at a wide range of values for y. All data regarding the CGR iteration and

the 8-state example was obtained using this choice for the parameters.

Finally, the four synthesis techniques were compared for an entire range of uncer-

tainty levels. Of course, the range of uncertainties for which controllers exist is only

semi-infinite. Recall that y = oc would correspond to a case with no uncertainty,

leading to an LQG controller. At the other extreme, as y approaches the minimum

level that can be obtained by an W,-optimal controller, P7min, the W2/SN problem

becomes intractable (by any means) because the ~2 cost approaches infinity.

The time required for solution and the number of steps required for the iterative

schemes to converge is listed in Table 6.1. In all cases, the iterative schemes were

initialized at X0 = 0. As the level of uncertainty increased (as 7 decreased), the

iterative methods required a greater number of steps to converge. Finally, at some

point, they diverged. The lowest level of 7 achieved by the standard iteration was only

2.55. In contrast, the CG iteration was efficient for uncertainties that were greater

than twice as large, i.e., down to better than y = 1.0.

Note that at any particular level of uncertainty, there is a unique, minimal level

of W2 cost that can be guaranteed by an 7-2/SN controller. Furthermore, as already

noted, for this system the cost function from the LMI-based and separation-based

synthesis methods were found to match. Therefore, when speaking of the time to

solution versus the level of uncertainty, we could equally well speak of the time to

solution versus the bound on the ,-12 cost. The time to solution data of Table 6.1 is

shown graphically in Figure 6-4. It is clear from the figure that at reasonable levels of

uncertainty, the iteration methods are superior to the LMI solver. However, the LMI

solver is extremely robust and can find solutions at any valid level of y. Unfortunately,

the new iteration schemes are not convergent at the lower extremes of y. However,

for this example, the CG iteration is still faster than the LMI solver out to better

146



Bound on the Method Time required
y / 2 Cost (sqrd) Used (sec). Iterations
10 5.2 LMI 25.8 NA

Stnd 2.9 4
CG 3.4 5

CGR 4.7 8
5 5.4 LMI 41.5 NA

Stnd 4.4 7
CG 4.5 7

CGR 7.5 12
2.55 6.3 LMI 25.7 NA

Stnd 18.5 34
CG 7.5 13

CGR 10.7 20
2.0 8.2 LMI 47.9 NA

Stnd Div. Div.
CG 11.7 19

CGR 14.5 24
1.5 18.4 LMI 34.0 NA

Stnd Div. Div.
CG 12.9 21

CGR 14.2 24
1.0 287.7 LMI 44.6 NA

Stnd Div. Div.
CG 33.7 51

CGR 31.9 50
0.9 935.5 LMI 55.7 NA

Stnd Div. Div.
CG 2164 2498

CGR 63.9 88
0.75 17,482.9 LMI 56.8 NA

Stnd Div. Div.
CG Div. Div.

CGR 483.5 638

Synthesis Routine Performance for a Range of Uncertainties.
"Div." means that the method diverged. All iterative solutions
were started with initial condition Xo = 0. The squared -2 cost
for a system with an LQG controller (-y -+ oc) is 5.1.
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- LMI solver

- - Standard Iteration

-- CG Iteration

..... CG Iteration w/ Relaxation
100

SI

S (2.55)

(09)

(2.0) Design Point
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I .

( 1.0)
(1.5)

10 101 102
H2 Cost Normalized by LQG Cost

Figure 6-4: Time to solution vs. W2 cost (squared) for various synthesis
techniques. Data is for a distinct set of 8 points only - lines
plotted between points are not necessarily indicative of actual
solution times. Levels of y at five levels of 72 cost are indicated
in parentheses. Notice that the standard iteration diverges for y
levels below 2.55. ymin is approximately 0.66.
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than 50 times the LQG cost and double the level of the design uncertainty. As -y is

decreased past 1.0, the CG iteration takes considerably more time to converge. By a

value of y = 0.9, the CG iteration requires thousands of seconds to converge.

In practice, it should be the case that the iterative routines are even faster than

indicated in the table and the figure. The runs used to generate the data for the table

and figure were not refined to run at the highest possible speed. At each iteration,

for instance, the iterative routines plotted figures which were similar to Figure 6-3.

This and other computations were in place for diagnostic reasons. It was later found

that, when these diagnostic tools were deactivated, the time required for the CGR

iteration to solve the y = 1 case dropped to 19.8 seconds.

It should also be mentioned that the behavior of the the CG and CGR iterations

differs from that of the standard iteration in the cases where the iterations diverge.

When the standard iteration diverges, it yields values for X that tend toward infinity.

The iteration stops when either no stabilizing solution can be found for X or when

the computer's numerical tolerances are exceeded. In contrast, the CG and CGR

iterations tend to fall into limit cycles, which exist well within the machine's numerical

limits, or into slowly expanding spirals. Because the modified iteration schemes can

always find a stabilizing solution for X, these cycles can (theoretically) continue

indefinitely. This, unfortunately, means that sophisticated criteria must be developed

to detect if the iteration has fallen into an unstable spiral or limit cycle, so that the

iteration can be stopped.

The CG and CGR iterations have been tested on several other small example

problems, with similar results. One problem tested was the 8 state, single disturbance

input -2/I.0 synthesis problem of Ref. 5. In this case, the CGR routine was found

to quickly converge to a solution for all desired levels of y. In fact, the iteration

yielded solutions at levels of 'y which were, based on the reference, significantly below

the level that was stated as being convergent when using a continuation method for

y wrapped around the standard iteration.

Controller synthesis problems were also run for systems with Popov multipliers.

The problems were small enough such that LMI-based solutions could be obtained. It
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was found that controllers obtained by solving the conditions of Theorem 5.6 matched

those obtained by performing the LMI-based minimization of Theorem 4.3. The

controllers were identical for every example problem that was tested, despite the

fact that the separation-based cost function was only guaranteed to overbound the

LMI-based cost function. Unfortunately, it was also found that the separation-based

cost function did not, in general match the LMI-based cost function. If the Popov

multiplier, N, was set to zero, then the problem was essentially the same as the

7-2 /SN case, and the cost functions were found to match. However, if N was nonzero

and the quantity (Cz B) was nonzero, then, even though the controllers matched,

the cost functions did not. Why the quantity (CzBu) should have an impact on

whether or not the cost functions matched is partially explained by the fact that this

term makes the OE system's realization different in the - 2/SN and 7 2/Popov cases.

Without (CzB,), C, has the same form as in the 712 /SN case, and D,, equals zero,

as in the -12/SN case. Tests were also performed that seemed to demonstrate that

the quantity (CzBw) did not affect whether the cost functions matched.

The equivalence of the controllers, but lack of equivalence in the cost functions,

for the 7- 2/Popov case indicates that the separation-based cost function can probably

be written in a less conservative form.

6.1.3 Implications for Controller Design

The results of the previous section indicated that, for the example problem, controller

synthesis was possible using the CG and CGR iterations. The modified iterations were

simple to initialize, and they could not enter a region where they could fail to yield

a solution for X. Furthermore, compared to the standard iteration, the modified

iterations were significantly more robust to the level of uncertainty. They were stable

at higher levels of uncertainty. Furthermore, significant reductions to the time needed

for solution were seen in comparison to the LMI-based synthesis routine.

Of course, one cannot draw general conclusions about how well the CG and CGR

iterations will perform for a general plant based on the results of the sample 8-state

problems. Nevertheless, if the results shown in Figure 6-4 are an indication, then it
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should perform well. For example, consider the Middeck Active Control Experiment

(MACE), which flew on the space shuttle in 1995 (see Appendix B and Ref. 60).

In that experiment, uncertainties in the structure's modal frequencies necessitated

the use of robust controllers to achieve high-precision vibration control. Robust con-

trollers were designed where the closed-loop cost of the perturbed system was less than

1.5 times the closed-loop LQG cost. 40, 50 This makes the ability to design controllers

in the 60-times-LQG-cost range (7 = 1.0), as demonstrated in the example problem,

seem somewhat superfluous. Thus, it seems that for reasonable structural control ex-

periments, where the models have been carefully developed, the CG iteration scheme

should be in its usable range.

If controllers are desired to operate at the extreme range of 7, then, for small

systems, the LMI synthesis technique can be employed. However, in these cases, it

seems likely that the designer should consider using a pure W7-, synthesis technique

(i.e., ip-synthesis), rather than an 7- 2/SN controller, since he is willing to sacrifice

such high levels of performance.

Leaving aside the questions of convergence and uncertainty level, the CG and

CGR iterations should be able to synthesize controllers more quickly than an LMI-

based routine. The solution time of an LMI-based routine varies exponentially with

the problem size. Assuming that a computer has enough memory to handle a given

problem, the exponent is expected to be between 4 and 5. For the CG and CGR

iterations, we expect solution times to vary proportionally to system size. To be

efficient, we would would need the number of iterations in the CG and CGR routines

to grow (at worst) linearly with system size. If this were the case, for a system

with n states the solution time would scale according to the following formula: (close

to, say, n iterations) x (2 Riccati equations per iteration) x ((2n)3 solution time

per equation) = solution time proportional to 16n 4 . If this formula were correct,

solution time would increase at an acceptable rate and the benefits of the separation-

based routines over an LMI-based routine would become more and more significant

as system size increased.

The results of the previous section also indicate that a controller derived by solving
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the FSFB (or FI) and OE problems can be identical to a controller derived by solving

the LMI-based synthesis problem. Although there is no proof of this, it is expected

that this will be the case for general systems. If this is found to not be the case, then

a controller derived via the separation principle will still meet the desired robustness

criteria, but will not deliver the lowest possible bound on the 7-2 cost.

The CG or CGR iteration should be used in the synthesis portion of a D - K

iteration controller design. This should produce designs more quickly than a D - K

iteration that employs LMIs for controller synthesis.

6.2 Implementation of an Analysis Routine

We have analyzed the 7-2 performance of an LTI system with static, real, parametric

uncertainties using dissipation theory and Popov stability multipliers. For the closed

loop system expressed in equations (4.2)-(4.4), the 7-2 performance is bounded by

equation (4.29), where P is a size 2n x 2n Lyapunov matrix satisfying the matrix

inequality given in (4.30). Similarly, for a system with time-varying, gain bounded

uncertainties, a simplified dissipation analysis can be performed using a constant

stability multiplier. In this case, the 7-2 performance is bounded by equation (4.5),

where P is a size 2n x 2n Lyapunov matrix satisfying the matrix inequality given

in (4.6).

With either uncertainty set, if the controller is held fixed, than the matrix in-

equality (or the Schur complement of it) becomes a linear matrix inequality. Also,

the bound on the cost becomes linear, making the minimization of this bound a con-

vex problem (recall the EVP discussed in Chapter 2). This means that, theoretically,

the analysis problem can be solved using off-the-shelf LMI codes.

Unfortunately, just as the LMI-based synthesis approach of Chapter 4 was found

to be unusable for higher-order systems, an analysis routine based on LMIs and

currently available codes has been found to be unusable for such systems. On a Sun

Sparc-20 workstation using LMILab,3 2' 30 '31 we have only been able to analyze systems

with up to approximately 16 states. The problem is that the LMIs routines required
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too much memory. Note that the dimension of the analysis LMI is even larger than

the synthesis LMIs of Chapter 4. An analysis LMI constrains the closed loop system,

so its outer dimension is size 2n + n,.

Therefore, we seek to develop an analysis routine that does not rely upon LMIs.

Fortunately, we note that the problem is convex, so the new routine will not encounter

local minima. In fact, because it is convex, there are quite a few different algorithms

that could be chosen to solve the problem. Even algorithms that are not specifically

designed for convex problems, such as a gradient search routine, should converge

to the unique minimum. Regardless of the solution technique, however, we need to

make the routine as efficient as possible, both in terms of speed as well as in terms

of memory requirements, so that it can be used for problems with greater than, say,

twenty states. We will concentrate our discussion on an analysis using Popov stability

multipliers. The case of the single, scalar stability multiplier is a subset of the Popov

multiplier case, so our results will carry over to this simpler case.

For the new analysis routine, we will continue to use equation (4.29) to define the

cost function. Also, the solution needs to satisfy a constraint that is equivalent to the

Popov LMI constraint (4.30) to achieve stability and performance robustness. The

solution is to use Theorem 2.6. Substituting the closed loop system matrices to the

Riccati equation of Theorem 2.6 and recalling the definition of ( in equation (5.90),

allows us to write an equivalent set of robustness constraints. They are

P(A + B,(-ICz) + (A + B ± Ce + C~-)PC + PBwQ BP = 0 (6.4)

and

S> 0, (6.5)

in which we have used the following two definitions,

A = A + BMCz (6.6)

Cz = HCz + NCzA. (6.7)
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Thus, the closed loop Riccati equation can be used to find the minimum value of

the bound on the 7-2 cost. Also, note that, by definition, H and N are diagonal.

We require that H > 0 and N > 0. As noted in Chapter 3, these sign-definiteness

constraints are included so that the results can be compared to the designs in Refs. 46,

49,50,57.

To solve this optimization, we could minimize an augmented Lagrangian, consist-

ing of our bound on the cost, equation (4.29), plus the sum of the trace of the two

constraints, (6.4) and (6.5), each of which must be multiplied by a Lagrange mul-

tiplier matrix. This is similar to the optimization performed to obtain the Optimal

Projection necessary conditions.5 1 However, in the Optimal Projection case the object

was to find the controller parameters for a fixed scaling. In our case, we are searching

for the Lyapunov matrix, P, and the optimal scalings, H and N. Our optimization is

also similar to the optimization examined by How et al.46,48 In Chapter 5 of Ref. 46,

How proposed to optimize equation (4.29), plus the trace of the Riccati equation (6.4)

multiplied by a Lagrange multiplier matrix. In How's case, the controller parame-

ters, Lyapunov matrices, scalings, and Lagrange multiplier were all unknown. The

difference here is that we have made explicit the constraint on ( and that, again, our

controller parameters are fixed.

We desire to simplify the optimization so that it can be run on practical prob-

lems. How's approach leads us to conclude that we may be able to drop the second

constraint, inequality (6.5), and still have a reasonable optimization. In the regions

where ( is not positive definite, we expect that no P will exist to satisfy the Riccati

inequality or that the cost will be high, so this constraint could be left out. Having

only one explicit constraint simplifies the optimization considerably. Therefore, we

will neglect this constraint. More will be said about this later.

Unfortunately, the proposed optimization is still too unwieldy for a large system.

The unknown parameters in the above optimization are the (2n) 2 elements of P,

the (2n) 2 elements of the Lagrange multiplier matrix, and the 2n, nonzero elements

in H and N. For a high order system, this is too many parameters to be able to

expect to optimize quickly. Clearly, the greatest problem is the size of P. We will
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now demonstrate that we can perform the analysis optimization without explicitly

optimizing of the P variable and the Lagrange multiplier matrix, thus greatly reducing

the problem size. This is the key feature of this optimization routine.

The optimization will be performed explicitly over only the H and N variables.

The P matrix will implicitly be allowed to vary with H and N. We achieve this by

only examining the gradient directions that keep the optimization trajectory in the

space specified by the Riccati constraint, equation (6.4). For clarity, we re-display

the bound on the cost given in equation (4.29). It is

S tr [BT (P + T(M 2 - M)NCzB d].

We wish to find the gradient of 3 with respect to the diagonal parameters of H and

N. The gradient of 3, with respect to H alone, is a size n, vector,

OH A E hi ". , i C [1, n], (6.8)

where hi is the ith diagonal element in the H matrix. From the definition of 3, the

derivative with respect to a single parameter is

= tr OP
h tr B h , (6.9)

ahi ah

where P- is implicitly evaluated along a direction dictated by the Riccati constraint.

To find this constrained gradient of P, we take the first variation of the Riccati

constraint (6.4). Keeping only the first order terms, we obtain

P( + 1  + (A + B - z) P + C ((-1 ) +PB 6C

+Cz (- BP + PBw(- B'6P + 6PB,( 1 P + PBW(( - 1 )B 0 (6.10)

To evaluate this expression we write out the variation of each of the terms. Two of
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these are

6Cz = 6HC +6NCzA (6.11)

6(-') = -' (6HMd + Md6H - BwC O N - 6NCB,) (- . (6.12)

Substituting the above expressions into equation (6.10) yields a complete expression

for the first variation of the Riccati constraint. To determine the derivative of P with

respect to hi, we need only examine the variation of the Riccati constraint case with

H varying, i.e., where 6N = 0. This is

6P(A + Bw(- Cp) + (A + Bw-Cp) T P + CT -S6HCz

+CTsH(-0Cp - CpT(- (6HMd + Md6H)(- 1Cp = 0, (6.13)

where, for convenience, we have defined that

Cp Cz + BwP HCz + NCA + BP. (6.14)

It can be seen that equation (6.13) is a Lyapunov matrix for 6P in terms of 6H.

To use equation (6.13) to calculate the effects of changing element i of the H

matrix, we can set

0 .. 0

6H +- AH = Ahi , (6.15)

0 ... 0

i.e., 6H is set to a matrix of zeros except for the ith element on the diagonal. To

calculate the derivative of P with respect to hi, we choose Ahi = 1 and define

6H based on this. Then, equation (6.13) can be solved, yielding 6P -- APi. The
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derivative is then
oP
Oh = AP/Ahi = AP . (6.16)

The only difficulty with this procedure is that we must solve a different Lyapunov

equation for each of the n, uncertain parameters. Fortunately, we can simplify this

procedure by making use of a dual form of the Lyapunov equation.

To find the constrained gradient of the cost, J, with respect to H, we must

calculate the n, scalar derivatives OJ/Ohi, i E [1 ... n,]. These were defined in

equation (6.9). Given the Lyapunov equation of equation (6.13), our knowledge of

linear systems tells us that these derivatives are numerically equal to the W-2 norms

of the following LTI systems

A + B,w(-Cp Sd

(Cp(-'AHizz + CTAH(- 1Cp , i E [1... n], (6.17)

-CTC'(-(AHiMd + MdAHi)(-1Cp)1/2

which are subject to exogenous white noise inputs with zero mean and unit covariance.

However, the l 2 norm of a system described by equation (6.17) can also be calculated

by using a dual formulation. The norm, and, hence, OJ/hi, is also equal to

tr AQH [CT -1AHiz + CT AH(- 1 Cp - CT (-(AHiMd + MdAHi)0(-Cp

= 2tr [AQHTI-1(AHi)(Cz - MdlCp)] , (6.18)

where the AHi are defined in equation (6.15), and AQH is the solution to the following

Lyapunov equation

(A + B(- Cp)AQH + AQH(A + B(-lCp)T + BdBd = 0. (6.19)

Notice that equation (6.19) is not a function of AHi. Therefore, AHi is independent

of which uncertainty signal, i, is being examined. To find the derivative, we need

only solve equation (6.19) once. Given AQH, the n, scalar derivatives are then found

by evaluating the trace quantity in equation (6.18) n, times, for each of the possible
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choices of AHi. For each uncertainty i E [1... n,], we define AH using Ahi = 1.

The above derivation carries over in a straightforward fashion to the N scales.

We calculate the constrained gradient of the cost component-wise. The n, scalar

derivatives of the cost are each defined with respect to a particular diagonal element

of N, i.e.,

= 2tr AQNsCT(-AN(CzA + CzBw(-'Cp)

+ tr (BOz(M2 - Ml)AN zBd), i E [1 ... rw], (6.20)

where ni is the ith diagonal element of N, AN is defined to be a matrix of zeros

except for the (i, i) element which is set to unity, and where AQN is the solution to

the following Lyapunov equation

(A + B,w(-Cp)AQN + AQN(A + B, lCp) + BdB = 0. (6.21)

A careful examination of equations (6.19) and (6.21) reveals that they have exactly

the same form. Therefore, for any problem, we will find that AQN = AQH.

As an aside, it should be noted that equations (6.19) and (6.21) are identical in

form to a Lyapunov equation that was derived (but not used) by How. 46 In Ref. 46,

the equation was derived by taking the derivative of the augmented cost function

(mentioned earlier) with respect to the Lyapunov matrix, P. In that case, the variable

that took the place of AQN was the Lagrange multiplier for the Riccati constraint.

This makes intuitive sense because Lagrange multipliers give the sensitivity of a cost

function to changes in its constraints. However, it should also be noted that the

gradients obtained from equations (6.19) and (6.21) are much simpler than those

found by taking the gradients of the augmented cost function. In Ref. 46, when using

the augmented cost function, analytic forms for the gradients were necessarily taken

with respect to changes in every term of the H and N matrices, even though these

matrices were actually diagonal. In our case, we are able to simplify the formulation

and restrict our attention to the effects of the diagonal elements.
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In summary, we have shown that we can calculate the constrained gradient of the

Lyapunov matrix with respect to the scalings H and N by merely solving a single, size

2n Lyapunov equation and then by evaluating 2n, trace quantities. Additionally, the

cost function, J, for any H and N can be evaluated by using the closed loop Riccati

equation, equation (6.4). Together, these operations form the basis for an efficient

analysis routine.

6.2.1 Coding of the Analysis Routine

The analysis routine that we propose is a constrained optimization. There is a cost

function, equation (4.29), together with certain constraints. There is the Riccati

constraint, equation (6.4), which guarantees that the system fulfills the robustness

requirements. This is implicitly enforced by constraining the gradient of the cost.

However, there are two additional types of constraints that must be considered.

The next constraint that we will discuss is the requirement that H is positive

definite and N is positive semidefinite. The constraint on H ensures that each term

in the uncertainty block affects the system. The constraint on N enables the analysis

routine to obtain information about the phase of a static real parametric uncertainty

(or a static sector bounded nonlinearity). The constraints on H and N are, in fact,

simple to enforce because these are diagonal matrices. Therefore, the constraints can

be enforced on the individual diagonal elements of the matrices, hi and ni .

In practice, it has been found that the constraint H > 0 should be implemented

as H > e, where E is a small, arbitrary positive number. The important point to

note, however, is that c should be chosen to be significantly larger than the minimum

precision of the optimization algorithm. This should help prevent the routine from

running into precision problems - essentially, this should prevent the routine from

considering a semi-definite matrix for H. Of course, the value for F that should be

chosen is problem specific. For the examples that will be discussed in the next section,

e was typically set to 10- 4 or 10- 6 . This was far from the expected precision of the

algorithm (which was better than 10-10).

One last constraint must be discussed. The quantity ( should be constrained
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to be positive definite (recall inequality (6.5)). This condition is significantly more

difficult to implement in a gradient type routine than were the definiteness constraints

on H and N. Note that gradient routines, unlike LMI routines, optimize a scalar

cost function subject to scalar constraints. The problem with a constraint on (

is that it is not a diagonal matrix. It is a linear matrix function of the H and

N variables. Clearly, we would like to implement this constraint in an LMI-type

framework. Unfortunately, this is not a simple proposition using scalar constraints.

It is possible that one could enforce the constraint on ( by requiring that the n,

determinants of ( and its sub-matrices are positive. These are difficult, nonlinear

constraints to implement, particularly since the matrices Cz and B, can be general,

rank-deficient forms. The gradients of the constraint require a great deal of algebraic

manipulation to evaluate efficiently. Therefore, as mentioned previously, we will follow

the approach of How46 and we will not include this as an explicit constraint in the

optimization. It is felt that the Riccati equation will typically not have solutions

in areas where the constraint on ( would be violated, thus making the constraint

superfluous.

However, depending on the coding of the gradient method, it is certainly possible

that the effects of this constraint could be implemented. One ad hoc way to achieve

some of the benefits of the constraint is to include it as an implicit penalty weighting

when evaluating the cost. If ( is found to have negative eigenvalues at a given point,

then one can arbitrarily add a large value to the cost at this point.

To summarize the discussion so far, our optimization problem is to minimize J,

given by equation (4.29), with respect to the n, parameters hi and ni, subject to

the constraints that hi > 0 and ni > 0, for i E [1, n,]. The only variables in

the optimization are the diagonal entries of H and N. The gradient of J is to be

evaluated using the constrained gradient discussed in the previous section.

We will use a sequential quadratic programming (SQP) routine to solve this con-

strained optimization. The reader is referred to Refs. 37, 73 and the references con-

tained therein for more detailed discussions of such a routine. Certainly, we could

choose to spend the time to implement an optimization code that is geared for convex
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problems. An example of such a routine would be the method of centers.8 However,

implementation of such a routine would require a significant amount of development

time. Another potentially useful optimization technique could be the successive ap-

proximation method presented in Refs. 73,21. This method is presented as a replace-

ment for SQP routines and requires less memory to run. However, this type of routine

would also require a considerable amount of development time. The use of an SQP

algorithm offers several practical benefits. SQP codes are readily available, and they

are easy to implement and debug. Furthermore, use of an SQP routine will demon-

strate that the analysis procedure does not need to be solved by a state-of-the-art

convex optimization routine.

An SQP routine implicitly forms an augmented Lagrangian consisting of the cost

function and the constraints, together with Lagrange multipliers. This is why we

have not discussed augmenting the cost function with the positive definiteness con-

straints. We need merely supply such a routine with a means to evaluate the cost

function and constraints at any given point. In addition, we also supply the routine

with the gradient of the cost function (the constrained gradient) and the gradient

of the constraints. However, we do not need to provide gradients of the augmented

Lagrangian. An SQP routine attempts to minimize this augmented Lagrangian by

implicitly solving the Kuhn-Tucker optimality conditions and finding the Lagrange

multipliers for the constraints.

We can briefly outline the major steps of an SQP routine. Given the cost, the

gradient of the cost, and an estimate of the Hessian matrix for the current iteration,

the routine sets up a quadratic programming (QP) problem. The purpose of the QP

is to find the best direction in which to search for a point with a reduced cost. The

QP minimizes a cost function that depends on the square of the step direction, as well

as the Hessian matrix and the cost gradient. The QP can be solved using a variety

of standard techniques, including linear programming.3 7 After obtaining a direction

from the QP, a line search routine is implemented. The line search routine searches

in the indicated direction for a point which yields a lower value for the cost. Some

sophisticated routines attempt to find the point which yields the lowest cost in the
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indicated direction (in the neighborhood of the current solution). The line search

routine implemented in the Matlab Optimization Toolbox37 merely searches for any

lower cost point. The last major step of an SQP routine is to find and update the

Hessian matrix for the current iteration. Since the Hessian is expected to be a large

matrix, it is only estimated. A standard procedure used to update the Hessian is the

BFGS (Broyden, Fletcher, Goldfarb, and Shanno) routine, which requires gradient

information at the current and previous iterations.

Regardless of the specific routine that is chosen to solve the optimization, the main

benefit of this analysis method is that it does not require large amounts of computer

memory. Using the SQP routine in the Matlab Optimization Toolbox (known as

constrain.m) with a slightly modified line search routine, the analysis routine has

proven effective for systems with 8, 24, and 59 states. The Matlab line search routine

was modified in certain examples to search over only half the originally programmed

number of points. This reduced the search time. The results indicated that the

proposed analysis routine should be useful for higher-order systems.

6.3 Testing of a D - K Iteration

The synthesis and analysis algorithms developed in the previous two sections are

combined to form a complete robust H 2 controller design algorithm. The algorithm

is a D - K iteration. In this section, it is used to successfully design W2/Popov

controllers for three structural control problems with real, parametric uncertainties.

As has been the case throughout this thesis, our primary interest is in the utility

of our design algorithms. We wish to have a fast and easy-to-use design algorithm.

While we will occasionally comment on the robustness characteristics of our controller

designs, this is not our focus. In fact, each of the examples that we will examine has

already been examined by either How et al.46,50 or Livadas. 57 How's emphasis was on

an examination of the characteristics of the 7- 2/Popov controllers. Assuming that the

stated results in the references are correct, then our designs should duplicate them.

The D - K iteration will now be described in detail. To start the iteration, the
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designer must first pick the initial stability multipliers, H and N in the W2/Popov

case, and c in the 7- 2/SN case. The initial stability multiplier is then held fixed and

the synthesis problem is solved. The controller that is derived in the synthesis step is

then held fixed so that the analysis problem can be solved. The new set of stability

multipliers that comes from the analysis step is then used to start the next iteration.

A cost function is evaluated after each iteration (at the end of the synthesis step).

The iteration is repeated until the function converges. The cost function is given by

equation (4.29), and is calculated by solving the closed loop Riccati equation, given

in (6.4). To be specific, after iteration k + 1, if

k+l - Jk < costtol (6.22)

where cost_tol is a prespecified parameter, then the D - K iteration is deemed con-

verged. It should also be mentioned that the D - K iteration is also required to run a

minimum number of iterations, denoted min_iter. This helps ensure that the routine

will not indicate that it is converged when it has merely been initialized in a region

where the cost function varies slowly with the multipliers.

It might seem that one could try to initialize the D - K iteration by guessing an

initial controller and using this to start the analysis algorithm. However, in practice,

we have found this option to be considerably more difficult. The problem is that, in

effect, one must solve a robust control design to obtain an initial controller guess. A

guess such as the LQG controller may not work, because it may not allow the closed

loop system to fulfill the stability robustness requirements. Therefore, the analysis

algorithm would have no solution. Similarly, one could try to use the 7oI central

controller by disregarding the W(2 performance measure and merely ensuring that

the closed loop system is robustly stable. However, when attempting to synthesize

this W, controller, it should be understood that stability multipliers have implicitly

already been picked in this synthesis. They are H = I and N = 0 (or, equivalently,

a = 1). There is no guarantee that such a controller will exist, i.e., the 'W central

controller Riccati equations may not have a solution. Therefore, one should guess at

163



stability multipliers until the initial synthesis step yields a valid controller.

It should also be noted that there may be cases in which the designer is unable to

find a set of stability multipliers that can start the iteration. This can mean one of two

things. First, it is possible that no LTI controller exists that can achieve the desired

stability robustness bounds. A second, more pleasant, possibility is that controllers

exist but the guesses for the stability multipliers have been inadequate. The problem

in this case can usually be dealt with by wrapping a continuation method around the

D - K iteration. A controller design is first performed for a system with a lower level

of uncertainty. This can then serve as an initial condition for a problem with a larger

uncertainty. This process is repeated until the desired level of uncertainty is reached.

A continuation method will be demonstrated on the third example in this section.

In addition to the parameters that specify when the overall D - K iteration is

deemed converged, both the analysis and synthesis steps each have their own con-

vergence criteria. However, the convergence criteria of the inner steps are not as im-

portant to the design process as is the outer convergence parameter, cost_tol. While

the individual steps of a D - K iteration are themselves convex problems, the over-

all iteration is not. It may have local minima and, if so, which minimum is found

can certainly be path dependent. The difficulty is that we have no way of knowing

whether or not the iteration is following a path that will lead to the best solution.

There is no evidence that optimizing each synthesis and analysis step to the finest

possible precision will necessarily lead to the best path. Certainly, it leads to an ac-

ceptable path, in that the cost function is always guaranteed to decrease. However, it

can also add unnecessary time to the design procedure. Instead, we can also follow a

path found by allowing each analysis and synthesis step to be suboptimal. One need

not require that high degrees of precision are obtained at each step, but only that

the cost is moved downwards enough to make a significant difference in the overall

iteration. This is the course that we adopt. The convergence criteria for the analysis

and synthesis algorithms are discussed in light of this fact.

As discussed in Section 6.1.2, the synthesis step uses either a CG or a CGR

iteration. For clarity, we note that in the CG iteration, the convergence criteria are
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checked after every solution for X. Meanwhile, in the CGR iteration, the convergence

criteria are checked after only every other solution for X. Also, the convergence

criteria for the CG-type methods are different than the criterion that was used in

Section 6.1.2. Two criteria are used. The first criterion is based on how closely

equation (5.94) or (5.27) is satisfied. Note that it is the solution for X given a value

of Y that is only approximated in the CG-type methods. Meanwhile, the solution for

Y always exactly satisfies the desired estimator equation ((5.95) or (5.28)) at each

step. For simplicity, consider just the W-2/Popov case. The R1 2 /SN case follows by

analogy. After iteration number k + 1, we calculate the residual error by substituting

the latest iterate into equation (5.94), i.e.,

Xres Xk+ [A - (YkCT + BdDy)E'Cy] + [A - (YkCT + BdDi)E C y]Xk+1

+(Xk+1Br + CvTEuDr)$7'(BT Xk+l + D EC) + C[EC, . (6.23)

Note that Xres will only equal the zero matrix when Xk+1 is equal to the desired

solution. An easily computable measure of the convergence is the trace of Xres, which

also equals zero at the solution. The first stopping criterion for the synthesis algorithm

is that

Xtol < tr Xres < 0, (6.24)

where xtol is a preselected negative parameter. The second stopping criterion is that

the bound on the cost, as defined in equation (5.103) should be converged. When

the absolute value of the fractional change in the cost is less than a prespecified

parameter, Jsynth tol, then the cost is deemed converged.

When both convergence criteria of the synthesis procedure are satisfied, then the

procedure is stopped. These stopping criteria give us a great deal of flexibility. They

give us the ability to allow distinctly suboptimal controllers as the output of the

synthesis routine. As discussed in Section 5.3, if the matrix Xres, defined in equa-

tion (6.23), is negative semidefinite, then we are assured that a suboptimal controller

exists. This controller will satisfy the required stability robustness constraints, but

does not minimize the bound on the -2 cost. Of course, the trace of Xres cannot be
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the only stopping criterion, since the trace could be negative even when the matrix

has some positive eigenvalues. However, in practice, it is found that when the trace

constraint is combined with the restriction that the cost be convergent, there is no

problem. As noted in Section 6.1.2, if the CG and CGR iterations are not conver-

gent, they tend to fall into limit cycles, and these do not satisfy the cost convergence

criterion. Therefore, setting Xtol closer to zero ensures that the resulting controller

will be closer to optimal.

The analysis routine consists of the SQP algorithm discussed in the previous

section. The SQP algorithm is deemed converged when the variables and the cost

cannot be made to change significantly. This is specified by two parameters, an-

vartol and ancost_tol which correspond to the parameters known as OPTIONS(2)

and OPTIONS(3) in Ref. 37. When weighted functions of the change in the variables

and the cost fall below these parameters, the routine is considered to be converged.

The reader is referred to Ref. 37 for a more complete discussion of these convergence

issues.

In addition to converging to a solution, the SQP routine is also terminated if it

has iterated for a period of time and brought the cost function down, but has not

converged. Allowing the analysis routine to terminate early is particularly useful in

cases where a superior solution can be obtained but only at great expense in terms of

time. This is common in many optimization algorithms. As already discussed, it is not

the case that we need every analysis algorithm to obtain the best stability multipliers.

We only need better multipliers than the ones that we started with. In our analysis,

after the routine has evaluated the cost at more than a prespecified number of points

(even if some of these point proved to be infeasible), then the analysis is terminated.

This parameter is denoted as an_max.

Therefore, in each of the following examples, we will specify seven convergence

parameters: cost_tol, min_iter, Xtol, Jsynth_tol, anvar_tol, ancost_tol, and an_max.

For clarity, we note that in our terminology, an iteration refers to an analysis step

followed by a synthesis step. Because we start with an initial controller synthesis,

there is always one more synthesis step than there are iterations or analysis steps.
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Unless otherwise noted, a discussion of solution time for a design will not include the

time required for the initial synthesis step.

Each of the following examples was run on a Sun Microsystems Sparc-20 worksta-

tion. All programs were executed in Matlab. The solution of all Riccati equations was

accomplished using the Schur decomposition method in the p Synthesis Toolbox. 2 All

operations involving LMIs were done using the LMI Control Toolbox. 32,30, 31

6.3.1 Four Mass System

In the first example, we will design a controller for the system with four masses

and three springs detailed in Appendix A. The stiffness of two of the springs is

uncertain, but a possible range of values is known for them. Thus, the system has

real, parametric uncertainties. As an aside, we note that this is the same nominal

system for which we synthesize W2/SN controllers in Section 6.1.2. However, in the

previous case, there is only a single uncertainty, an uncertain mass. We choose to

do the design for the system with the uncertain springs so that we can compare the

controller to the l 2/Popov design done by Livadas.57 Livadas also performs a D - K

iteration. However, for the synthesis step, he uses the LMI methodology presented

in Chapter 4. Similarly, for the analysis step, Livadas minimizes the bound on the

W-2 cost given in equation (4.29), subject to LMI (4.30).

This design plant has 8 states. The controller is eighth order and SISO. There are

two real parametric uncertainties. With a Popov multiplier for each uncertainty, this

translates to 4 scalar parameters, hi, ni, i e [1... 4], that must be optimized in each

analysis step.

For this example, all synthesis steps were performed using the CG iteration. The

CG iteration converged quickly to the desired controller without problem. The analy-

sis steps were performed with the previously discussed SQP algorithm. The algorithm

worked effectively and converged to an optimal set of multipliers in each iteration. It

was found that at the start of the line search portion of the algorithm, the routine

typically had to try two or three points before finding a point for which the cost

function was lower than the current point. However, in the subsequent line searches,
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Table 6.2: Convergence criteria for the 4 mass problem

Table 6.3: Solution Time for the 4 mass problem. na = not available or
not applicable for comparison, because the criteria to determine
convergence after each synthesis step of the D - K iteration are
not the same. The LMI-based results are from Reference 57, Ta-
ble 4.14. Total solution time does include the initial controller
synthesis.

the routine usually found a new point immediately.

Overall, the design algorithm works very well for this system. The D-K iteration

is started with an initial guess of H = I and N = 0. The stopping parameters for this

case are listed in Table 6.2. The algorithm completes the design in 10 iterations, i.e.,

11 synthesis steps and 10 analysis steps. Figure 6-5 shows how the cost changed after

each iteration. In fact, the plot shows that the change in the cost is monotonically

decreasing, indicating that the D - K iteration has found a path that allows it to

smoothly converge. We need not expect this to be the case in general, however. In

fact, were we to run the iteration further, we would expect the second plot to level off

or to sawtooth around a certain level, indicating the finite precision of the routine.
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Parameter Value
cost_tol 1 x 10- 4

min_iter 3
Xtol -1 x 10-6

Jsynthtol 1 x 10-6

arvar_tol 1 x 10- 4

ancost_tol 1 x 10- 4

an_max 400

Total Avg. Avg. Time
o # of # ofSolution Synth. Anlys. per Full

Synth. Anlys.Time Time Time Iteration
(min:sec) (sec) (sec) (sec)

Separation 3:37 11 8 10 14 22
Based
LMI

Based na na na na na 129
Based
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Figure 6-5: Convergence of the 4 mass problem. Fractional change in the
cost function after each iteration.

The most important result for our purposes is the time that the algorithm required

to solve the problem. These results are summarized in Table 6.3. The design required

approximately three and a half minutes to solve. We can compare this to the results

found using an LMI-based method. The best metric to examine for a comparison of

the algorithms is the average time required for an iteration (an analysis step followed

by a synthesis step). As shown in the table, the iteration that uses the separation

principle is almost 6 times faster than the iteration that relies upon LMIs. This

is in general agreement with the results for the synthesis step alone, discussed in

Section 6.1.2.

Also shown clearly in Table 6.3 is the fact that the analysis problem takes longer to

solve than the synthesis problem. Intuitively, one would probably expect that it takes

less time to solve the analysis step than the synthesis step. The reasoning being that

analysis step need only optimize over 4 parameters-the diagonal matrices H and

N. In contrast, the synthesis step must optimize over the eight-state controller. In

practice, however, the analysis algorithm is slower because it must solve larger Riccati

equations. Analysis is done on the closed loop system, so the Riccati equation for
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Figure 6-6: Cost function of the four mass problem vs. time. Cost after a
synthesis step denoted by o; cost after an analysis step denoted
by *

the cost is size 16. The Riccati equations in the synthesis algorithm are only size 8.

Because the time required to solve a Riccati equation is proportional to the cube of

its size, the analysis Riccati equation solution is significantly slower.

The time required for each step to solve is also examined in Figure 6-6, which

shows the cost function plotted after each step. From the plot, it is clear that the

analysis steps require more time to solve. However, what the plot also shows is that

the analysis and synthesis halves of the D - K iteration are both critical to minimizing

the cost function. The net effect of all the analysis steps on the cost is roughly equal

to the net effect of all the synthesis steps. For this problem, at least, one cannot hope

to find a global minimum for the cost function by performing synthesis for a fixed set

of stability multipliers.

It should also be mentioned that the resulting 7 2 /Popov controller design is es-

sentially identical to the controller designed by Livadas. The poles of both controllers

and the optimal stability multipliers are listed in Table 6.4. Most of the real and

imaginary parts of the poles agree to better than ±0.01. The Bode plots of the two
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Parameter Separation Based LMI Based

Controller -0.0375 ± 1.3902j -0.0382 ± 1.3904j
Poles -0.5454 ± 2.3348j -0.5541 + 2.3227j

-2.4347 ± 1.5462j -2.4445 + 1.5455j
-2.4117 ± 2.8750j -2.4138 ± 2.8774j

hi 1.34 1.36
2.68 2.75

ni 0.51 0.54
1.20 1.22

bound on cost 3.8559 3.8555

Table 6.4: Solution for the 4 mass problem. The LMI-based results are from
Reference 57, Table 4.13.

controllers are indistinguishable. The multiplier values, particularly in percentage

terms, do not agree quite as closely. However, given the close agreement of the bound

on the cost between the two solutions, this seems to indicate that the solution is

relatively insensitive to the choice of the multipliers. The overall agreement between

these solutions is evidence that, for this problem, there are no local minima. The

results for this system at a lower level of uncertainty, as reported by Livadas in Ref,57

Table 4.13 (who compared his results to that of How 46 ,48 ) are in general agreement

with this finding.

6.3.2 SISO MACE System

Our second example is taken from an actual structural control experiment. It provides

us with the opportunity to do a robust controller design for a practical system. The

system is the SISO model of the MACE system discussed in Appendix B. The plant

has 24 states. The uncertainties come from 4 uncertain modal frequencies. Again,

these are real, parametric uncertainties. Since we use Popov multipliers, this implies

that there are 8 scalar parameters, hi, ni, i E [1... 4], that must be optimized in each

analysis step.

Unfortunately, this problem is large enough such that the synthesis algorithm

based on the LMI results of Chapter 4 cannot handle the system. Nor can the

171



Table 6.5: Convergence criteria for the SISO MACE Problem

analysis routine based on LMIs run. The LMILab code requires too much memory.

Therefore, we cannot give the type of comparative results that we presented for the

4 mass problem. However, i-2/Popov controllers are designed for the SISO MACE

system in the work by How et al. in Refs. 46 and 50. We attempt to replicate a design

presented in these works. The level of uncertainty that we choose to concentrate upon,

M 2 = -M 1 = 0.021, is the most thoroughly discussed level of uncertainty in the these

references.

From the results of the 4 mass problem, it can be seen that the cost of the analysis

problem can be relatively insensitive to the choice of the multipliers. Therefore,

requiring a high degree of precision in the choice of the multipliers is felt to be

unnecessary. This is reflected in the choice of the convergence parameters, which are

listed in Table 6.5.

All synthesis steps for the SISO MACE example were performed using a CG it-

eration. The CG iteration typically converged in under 15 steps. No convergence

problems were encountered at this level of uncertainty. The analysis steps were per-

formed using the SQP routine. For this problem, the line search routine was found

to be excessively slow. Too many points were tried before the routine found one that

lowered the cost function. Therefore, the line search routine was changed such that

it evaluated the cost of only every second point that it would have originally consid-

ered. As a result, the modified SQP routine was found to be much more effective.

The initial line search in each analysis step searched between 9 and 11 points, but
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Parameter Value
cost_tol 1 x 10-2

miniter 3
Xtol -1 x 10- 5

Jsynthtol 1 x 10- 5

anvar_tol 2.5 x 10-1
ancost_tol 1 x 10-2
anmax 50
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Figure 6-7: Convergence of the SISO MACE problem. Fractional change in
the cost function after each iteration. The extra iteration that
was run to check convergence is shown.

subsequent searches required three or fewer points. Furthermore, each analysis step

converged before it had reached an_max evaluations of the cost function.

The D - K iteration for this problem was initialized at H = I and N = 0. The

overall D - K iteration converged in only three iterations. However, to double check

that the solution had actually converged to the correct solution, the iteration was

forced to restart from the solution point with anvar_tol = 1 x 10-2 and ancost_tol =

5 x 10- . After completing the required extra iteration, the routine again exited,

indicating that it had indeed converged. Further precision in the cost function was

deemed unnecessary. The change in the cost function as a function of iteration is

shown in Figure 6-7. Because the plot decreases monotonically, it seems clear that

the D - K iteration is converging to a solution.

The synthesis step of this design converged more rapidly than we might have

predicted based on the size of the system. As shown in Table 6.6, the average synthesis

time for the problem was only 44 seconds. The SISO MACE system has three times

as many states as the previous, 4 mass problem. In section 6.1, we had predicted
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Total # of Avg. # of Avg. Time
Solution Synthesis Synthesis Analysis Analysis per Full

Time Steps Time Steps Time Iteration
12:00 4 0:44 3 3:16 4:00

Table 6.6: SISO MACE Problem: Solution time (min:sec) using the D -
K iteration with a separation-based synthesis step. Data does
not include the final, extra iteration that was run as a check on
convergence.

that the synthesis algorithm would have solution times proportional to n4 . However,

the 4 mass problem required, on average, 8 seconds to converge. Clearly, an accurate

calculation of convergence time for the synthesis algorithm must be based on much

more than the size of the system. One of the variables affecting synthesis time is,

as discussed in Section 6.1.2, the relative size of the uncertainty. Therefore, we do

not actually learn anything about the workings of the synthesis method by trying to

compare the results for the two examples.

Also shown in Table 6.6 is the total time of solution for the problem and the

average time required to perform an analysis step. Again, we find that analysis takes

up the majority of the design time. This is primarily due to the time required to solve

the larger, closed loop Riccati equations. As in the previous example, we can plot the

cost function as a function of time. This is shown in Figure 6-8. The plot graphically

demonstrates how much longer the analysis steps require to solve than the synthesis

steps. However, the plot also seems to indicate that the extra time needed by the

analysis steps is worthwhile, since it is the first analysis step that seems to have the

greatest effect at reducing the cost function. What the plot does not show is the

change in the cost function achieved by the initial synthesis. The MACE system is

open loop stable. The open loop system has a cost of approximately 17.1. The initial

synthesis reduces this to approximately 3.7.

We would like to compare the design time that this methodology required to the

time required by the routine of Ref. 50. Unfortunately, we do not know how much time

the routine in the referenced work required to minimize the augmented Lagrangian.
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Figure 6-8: Cost function of the SISO MACE problem vs. time. Cost after a

synthesis step denoted by o; cost after an analysis step denoted
by

However, it is estimated 47 that, after accounting for differences in computational

speed, the augmented Lagrangian approach required a minimum of between 30 and

45 minutes to reach its solution. This does not include the time required to find an

initial condition to start the minimization. It is important to recognize, however, that

in comparing solution times we have implicitly presumed that the two solutions are

equivalent. To see whether the two solutions to the SISO MACE problem actually

are equivalent, we can examine the stability multipliers, the bound on the 7 2 cost,

and the controllers derived in each case.

The stability multipliers derived using both methodologies are listed in Table 6.7.

Note that in the referenced solution, the last entry of the H matrix was a priori set

to unity. This can be done without any loss of generality, and it has the benefit of

reducing the size of the optimization by one variable. Therefore, if the optimal scales

are the same, then, for comparison, our scales should be normalized such that the

fourth entry of H is equal to unity as well. However, even after normalizing the scales,

it is clear that the two solutions are different.
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Separation and Aug. Lagrangian
D - K Iter. Based Based

multiplier mode (Hz)
hi 8.83 9.32 x 10-2 4.66

9.40 4.10 x 10-2 8.39
13.30 1.39 x 10-1 11.83
13.88 4.51 x 10-2 1.00

ni 8.83 8.83 x 10- 4  0.050
9.40 1.98 x 10- 4  0.043

13.30 1.61 x 10- 3  0.026
13.88 2.79 x 10- 4  0.082

cost/(open loop cost) 0.103 0.11

Table 6.7: Optimal multipliers for the SISO MACE problem. Results for the
augmented Lagrangian case are shown to the same precision as
given in Tables II and III for controller Gpc4 in Ref. 50. Open
loop cost is 17.1.

The minimum value of the cost function, J, attained via each design methodology

is also listed in Table 6.7. Although Ref. 50 only lists the bound on the cost to two

significant figures, it is clear that new methodology yields a lower bound on the cost.

Because the goal of this design is to minimize the cost function, this implies that

the controller of Ref. 50 is inferior. Having said this, since it is known that the cost

function is a conservative estimate of the square of the l12 performance, this does not

necessarily imply that the performance of the controllers will be different in practice.

This is examined next.

The Bode plot for the robust WH2 controller designed using the D - K iteration

is plotted in Figure 6-9. Also shown are the weighted Bode plots for the plant and

the non-robust W2 controller for the nominal system (LQG). The robust controller

appears to be very similar the LQG controller. The main difference is that some of

the poles and zeros have different amounts of damping and that the DC gain of the

robust controller is slightly decreased. This plot should be compared to Fig. 14 in

Ref. 50, which shows the Bode plots for the same weighted plant, the same LQG

controller, and the SISO robust controller designed in that reference. That robust
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Figure 6-10: SISO MACE Problem: Performance at various levels of a cor-
related uncertainty. Robustness guaranteed to ±0.02. Cost is
normalized by the open loop cost. Solid line = system with LQG
controller. Dashed line = system with 7-t2/Popov controller.
Dotted line = performance guaranteed by an 7-2/Popov con-
troller. The optimal LQG cost is 0.0922. The actual W7-2/Popov
controller performance for zero uncertainty is 0.0962.

controller is significantly different from the LQG controller. It, for instance, does not

exhibit the peak at approximately 0.5 Hz, nor the same pole-zero pattern between

7 and 14 Hz. We conclude, then, that the two solutions for the SISO controller are

significantly different.

The robustness of the controller designs can also be examined. Given a particular

perturbation to the nominal system, we can calculate the exact 7t2 performance of

the system, rather than just a bound on the performance. This gives an indication

of how conservative our designs may be. We examine the case where the stiffness

changes in the four modes are exactly correlated, i.e., they are either all 1% high
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together, or 2% low together, etc.. Of course, this is not an inclusive test of all the

worst case uncertainties, but it is a useful and practical measure of the robustness

and conservatism. The exact performance of the perturbed system with the controller

from the D - K iteration is plotted in Figure 6-10. Also shown is the level of perfor-

mance that was guaranteed by the W2/Popov design and the exact performance of the

LQG controller. Notice that the range of stiffnesses for which the LQG controller can

stabilize the system is very narrow. It is too highly tuned to the nominal system. For

most perturbation sizes, the LQG controller significantly underperforms the guaran-

teed performance level of the robust controller. As expected, the W2 /Popov controller

achieves a significantly wider range of robustness. The controller was designed to be

robust to ±2% variations in stiffness. In fact, the W2/Popov controller maintains a

level of near-optimal performance over more than twice the required range. This is a

measure of the conservatism of the controller for a correlated uncertainty. However,

the achieved performance using the robust controller is close to the bound through-

out the range of greatest interest, [-0.02, 0.02]. Also, at the nominal position, both

the achieved performance of the robust controller and the bound on its performance

are closer than 10% to the performance of the LQG controller. This means that the

controller has not significantly sacrificed performance for the sake of robustness.

A similar plot was shown in Ref. 50. For perturbations in the ±2% range, the

controller from Ref. 50 achieves inferior performance compared to the controller de-

signed using our techniques. Furthermore, the controller from Ref. 50 maintains a

flat level of performance for perturbations ranging in size from 0.1 down to below

(-0.25). It is considerably more conservative than the new controller. The controller

from the reference has achieved greater robustness bounds against a correlated un-

certainty, but this has been at the expense of decreased performance. Furthermore,

the designer typically will not have the ability to calculate such robustness margins,

so this extra robustness is left unknown. The only information that is known is the

bound, and the new controller design has achieved a superior bound.

As an aside, it should be noted that even though the design from Ref. 50 is

different than the design performed using the D - K iteration, this is not necessarily
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SISO MACE Problem: Performance at various levels of a cor-
related uncertainty. Robustness guaranteed to -0.025. Cost is
normalized by the open loop cost. Solid line = system with LQG
controller. Dashed line = system with W2/Popov controller.
Dotted line = performance guaranteed by an W2/Popov con-
troller. The optimal LQG cost is 0.0922. The actual W2/Popov
controller performance for zero uncertainty is 0.0969.

an indication that the optimization problem has local minima. It could have local

minima. However, it could also be the case that the augmented Lagrangian algorithm

should have been run for a greater amount of time.

If desired, the robustness margins for this controller can be increased. Because our

design for the W2 /Popov controller at the ±2% level of uncertainty seems relatively

non-conservative, the stability multipliers from this design can be used as an initial

condition for a design at a larger level of uncertainty. A controller was designed

for a system with a 10% larger uncertainty, i.e., M2 = -M, = 0.0221. This is

the maximum level of uncertainty that appears in Ref 50. This design required less
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than 9 minutes to converge. To demonstrate that the level of uncertainty could be

increased even further, a final design was performed for M2 = -1M = 0.0251, using

the solution from the previous case as the initial condition. This design required just

over 7 minutes to converge. The Bode plot of this final controller was again almost

identical to the LQG controller. The controller achieved a cost function of 0.105 times

the open loop cost. The actual performance of the final controller on a perturbed

system was also calculated. It is shown for the case of a correlated uncertainty in

Figure 6-11. This latest controller guarantees a robustness margin that is 25% wider

than the controller of Ref. 50 and is still less conservative.

For this system, it is clear then, that the D - K iteration approach with a

separation-based synthesis algorithm offers a significant benefits over a method that

relies on a minimization of the augmented Lagrangian. The D-K iteration converged

more quickly and to a more optimal value of the cost function. The close similar-

ity between the new W2/Popov controller and the LQG controller demonstrates that

even subtle changes can have a dramatic effect on the robustness of a design.

6.3.3 MIMO MACE System

The third example system demonstrates that our control design methodology can be

used for large systems. The system is a MIMO model of the same MACE system

used in the previous example. The model is discussed in more detail in Appendix B.

Unlike the SISO version of this system, however, the current controller has three

control signals and three sensor inputs. The plant has 59 states (compared to 24 in

the SISO model) and a commensurately larger set of uncertain modal frequencies.

This time there are 11 uncertain frequencies (compared to 4 in the SISO model),

which means that there are 22 scalar parameters, hi, ni, i E [1... 11], that must be

determined at each analysis step. Each uncertain frequency is known to vary within

a certain percentage from its nominal value. The percentage of possible frequency

shift varies between +2.2 and ±6.7 percent, depending on the mode of interest. The

exact uncertainty parameters are listed in the Appendix.

As was already found for the SISO model of this system, the MIMO model is too
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large for our LMI-based synthesis and analysis routines. However, we can compare

our design to the W2 /Popov controller discussed by How et al. in Refs. 50 and 46.

Recall that the controller design discussed in these works was found by minimizing

the augmented Lagrangian discussed in Section 6.1. To initialize the minimization, a

controller was chosen from a multiple model controller design38s 39 for the system and

combined with guesses for the optimal scalings. Ref. 50 presents the optimal Popov

scalings (H and N) that were found using this and presents some experimental results

found using the controller. It does not, unfortunately, present the bound on the cost

that is guaranteed by the controller nor the time required by the algorithm to solve

the problem.

To start our design algorithm, we needed to determine initial conditions for the

Popov multipliers, H and N, that could enable the controller synthesis routine to

converge. As was done for the previous examples, we wished to guess a simple set of

initial conditions. This would highlight the relative ease with which one could start

the D - K iteration. Unfortunately, it was found that the problem could not be

initialized starting from H = I and N = 0. Furthermore, no scalar value, say k, was

found such that H = kI and N = 0 could initialize the algorithm. Therefore, it was

decided, instead, to solve the problem with a continuation method wrapped around

the D - K iteration.

In the continuation method, an initial problem is considered that has a reduced

level of uncertainty. A robust controller is designed for this degenerate system using

our D - K iteration. Then, the resulting multipliers are used to initialize a design

at a higher level of uncertainty. This process is repeated until the required level of

uncertainty is reached.

For the MIMO MACE plant, it was found that H = I and N = 0 did not initialize

the problem above approximately 50% of the required uncertainty level. However,

a choice of H = 2-diag (1, 2, . . ., n) and N = 0 initialized a design at 65% of the

required uncertainty, i.e., using M2 -- 0.65M 2 and M1 -+ 0.65M 1 . The 65% case

was used as the first of three separate designs in the continuation method. This was

approximately the highest percentage of uncertainty for which the CG iteration con-
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Table 6.8: Convergence criteria for the
desired uncertainty

Convergence criteria for
the desired uncertainty

MIMO MACE problem at 65% of the

the MIMO MACE problem at 82.5% of

Table 6.10: Convergence criteria for the MIMO MACE problem at 100% of
the desired uncertainty
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Parameter Value
costtol 1 x 10-2
min_iter 3

Xtol -1 x 10 - 5

Jsynth_tol 1 x 10-5
anvartol 2.5 x 10- 1

ancost_tol 1 x 10- 2

anmax 50

Parameter Value
cost_tol 1 x 10- 2

min_iter 3
Xtol -59 (= -n)

Jsynthtol 7.5 x 10- 3

anvartol 2.5 x 10-1
ancost_tol 1 x 10-2

an_max 50

Table 6.9:

Parameter Value
cost_tol 1 x 10- 2

min_iter 3
Xtol -45 ( -0.75n)

Jsynth_tol 4 x 10- 4

anvartol 2.5 x 10- 1

ancost_tol 1 x 10- 2

anmax 50



verged using relatively simple choices for H and N. The convergence parameters for

this design are listed in Table 6.8. After the initial design, the size of the uncertainty

was increased by half of the required amount to 82.5% of the required uncertainty.

The CG iteration was not convergent for the 82.5% case using the multipliers gener-

ated in the 65% case. Therefore, this design was run using a synthesis algorithm that

employed the CGR iteration. A quick set of tests was run to find a set of parameters

a and a 2 that allowed the CGR iteration to converge quickly. Eventually, al = 10

and a 2 = 1 were chosen. These values were used at each step of this design. The

convergence parameters for the design at 82.5% are listed in Table 6.9. Finally, the

optimal multipliers resulting from the 82.5% case were used to start a design for a

system with 100% of the required uncertainty. Again, a CGR iteration was employed

for the synthesis step. A quick check of a few values for al and a 2 allowed us to settle

upon using a 1 = 9 and a 2 = 1 for this design. These values were used at each step

of the the design. The convergence parameters for the design at 100% are listed in

Table 6.10.

The synthesis algorithms performed well at the three levels of uncertainty. At

65% of the required uncertainty, the CG iteration typically required less than 15

steps to converge. Similarly, at the two higher uncertainty levels, the CGR iteration

was always found to finish in fewer than 17 steps.

It should be noted, however, that the stopping criteria used with the CGR itera-

tion were less strict than those used with the CG iteration. The xtol and Jsynth_tol

parameters were chosen to allow the CGR synthesis algorithm to result in relatively

suboptimal controllers. This change was motivated by the desire to speed up the

overall D - K iteration. It turns out, however, that this course of action was some-

what misguided. Speeding the synthesis of the controllers did not speed the overall

D - K iteration significantly since it was the analysis portion of the iteration that

took up the majority of the design time. This is made clear in data that is presented

later. Secondly, the stopping conditions for the CGR iteration can be relaxed too

much. The CGR iteration synthesis was used for the design at 82.5% without inci-

dent. However, after this design was completed, ztol and Jsynth_tol were tightened
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down to try and prevent overly suboptimal controllers from being synthesized. It

turned out, as shall be seen in a plot presented later, that the parameters should

have been tightened down further to ensure that the D - K iteration yielded a cost

that decreased monotonically with each step.

The analysis routine was less successful with the MIMO MACE designs than

it was with the previous examples. The problem in the analysis routine was that

the closed loop Riccati equation had 118 states. Certain Riccati equation routines

exhibited numerical precision problems with this system. This is discussed later in the

chapter. An obvious problem with Riccati equations of this size is that they are slow to

solve. This makes the analysis routine significantly slower that the synthesis routine.

The final problem encountered with these three MIMO designs is that the analysis

routine's line search was inefficient. The analysis algorithm spent far more time in

the line search portion of the routine than it did performing gradient and Hessian

evaluations. Tests showed that, given a maximum of 50 cost function evaluations, an

entire analysis algorithm typically found fewer than 5 points with successively lower

costs. To alleviate this problem, the line search routine was modified to evaluate

only every second point that it would have originally considered. This is the same

modification that was made for the SISO MACE problem. Nevertheless, not once

in any of the designs at the three uncertainty levels did the analysis routine exit

because it had converged, rather than because it had reached the maximum number

of function evaluations.

The convergence of the D - K iteration is governed by the fractional change

in the cost after each iteration. This is plotted for each of the three designs in

Figures 6-12, 6-13, and 6-14. In the design for the 65% case, the design converges

after 6 iterations. The fact that the plot of Figure 6-12 is not monotonic should

not necessarily surprise us. The design problem is not convex, and time to solution

can be highly path dependent. Turning to the design at 82.5%, Figure 6-13 shows

that the initial condition based on the 65% solution allows the D - K iteration to

converge quickly to a solution. The algorithm exits after only 3 iterations. It would

have exited sooner were it not for the requirement that it iterate at least 3 times.
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Figure 6-12: MIMO MACE Problem: Convergence at 65% of the required
uncertainty. Fractional change in the cost function after each
iteration.
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Figure 6-13: MIMO MACE Problem: Convergence at 82.5% of the required
uncertainty. Fractional change in the cost function after each
iteration.
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Figure 6-14: MIMO MACE Problem: Convergence at 100% of the required
uncertainty. Fractional change in the cost function after each
iteration.

Finally, we can discuss the design at 100% by examining Figure 6-14. Like the case

at 65%, this design did not converge smoothly to its final value. It took its largest

step in the fourth iteration and finally converged at the fifth iteration. Because the

convergence was not smooth, to double check that the routine had found a minimum,

it was restarted after the fifth iteration. However, it immediately exited again after

one more iteration, indicating that it had found a minimum.

We would like to understand how design time using the D-K iteration scales with

problem size. It should be more useful to compare the design times of the two MACE

models than it was to compare the SISO MACE model to the 4 mass model, because

the two MACE models are of the same structure. Although the MIMO system has

more control inputs and sensors, the underlying dynamics of the models are roughly

the same (pole-zero patterns, major modal frequencies, etc.). We intuitively feel that

if a problem was exhibited in the smaller model then it should be exhibited in the

larger model. Therefore, we will compare the two models, but acknowledge that any

correlations could be imaginary rather than real.
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Percentage Total # of Avg. # of Avg.
of Required Solution Synthesis Synthesis Analysis Analysis
Uncertainty Time Steps Time Steps Time

65 5:10:49 7 0:07:23 6 0:44:25
82.5 2:34:33 4 0:07:27 3 0:44:05
100 4:11:28 6 0:07:28 5 0:42:50

Overall 11:56:50 17 0:07:26 14 0:43:47

Table 6.11: MIMO MACE Problem: Solution time (hr:min:sec). Data for
the design at 100% does not include the final, extra iteration
that was run as a check on convergence.

The time required for controllers to be designed at each of the three levels of

uncertainty is shown in Table 6.11. The overall MIMO design requires approximately

12 hours of computational time. This seems long compared to the 12 minute design

time required for the 24 state SISO model, shown in Table 6.6. However, the long

MIMO design time is due primarily to the fact that a continuation method was used.

If the MIMO system could have been solved in one step, as the SISO problem was,

then the design time would essentially be cut by two-thirds, down to perhaps 4 hours.

Four hours is 20 times longer than was required for the SISO system. Note that if

design time scales with n3 for n states, then the MIMO case should take 15 times

longer than the SISO problem. In contrast, if the design time scales with n 4 , then the

MIMO case should take 37 times longer than the SISO problem. Therefore, for this

system, bringing a single D - K iteration to convergence is a problem that seems to

scale at a rate better than n4

It is also useful to discuss how size affects the solution time of the individual

synthesis and analysis algorithms, rather than the D - K iteration as a whole. The

CG iteration required about 7.5 minutes to synthesize controllers for the MIMO

MACE problem. This is only 10 times more than was required for the SISO problem.

That is better than a rate of n3. Unfortunately, a discussion of the time required

to solve the analysis problem is probably not valid (using this example), since the

analysis routines in the MIMO cases failed to converge.

The data in Table 6.11 reemphasize the fact that the analysis routine requires
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Figure 6-15: Cost function of the MIMO MACE problem vs. time at 65%
of the required uncertainty. Cost after a synthesis step denoted
by o; cost after an analysis step denoted by *.

a far greater amount of time to solve than does the synthesis routine. Any signifi-

cant improvement to the analysis portion of the iteration would be manifested as a

significant improvement in overall design time.

The information in Table 6.11 is augmented by the plots in Figures 6-15, 6-16,

and 6-17, which show how the cost in each design evolved with each step and with

time. From these plots it is clear that the majority of the optimization was accom-

plished in the first design. The designs at 82.5% and 100% were started very near to

designs yielding their respective final costs.

The plot in Figure 6-17 exhibits one surprising anomaly. It is not monotonically

decrescent. The last two synthesis steps actually worsen the cost. This is due to

the fact that the stopping criteria for the synthesis algorithm were overly relaxed,

as mentioned earlier. The controllers found in the last two synthesis steps were

suboptimal to the extent that they were inferior to what had already been obtained

(for a fixed set of stability multipliers). It seems likely, then, that it would be useful

for the stopping criteria in the synthesis step (and probably the analysis step) to be
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Figure 6-17: Cost function of the MIMO MACE problem vs. time at 100%
of the required uncertainty. Cost after a synthesis step denoted
by o; cost after an analysis step denoted by *
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made tighter as the D - K iteration progresses. This would allow for more solutions

to be found early on, but would not sacrifice the accuracy of the solution at the end.

The stability multipliers found for the three designs are listed in Table 6.12. From

this data, it is clear that the multipliers do change significantly with the changing level

of uncertainty. Furthermore, a close examination of the multipliers reveals one of the

difficulties that would be encountered if we attempted to design the controller using a

homotopy algorithm. The scalings do not vary linearly with the level of uncertainty.

In fact, 6 of the 22 parameters increase between 65% and 82.5% and subsequently

decrease between 82.5% and 100%, or vice versa. For a homotopy algorithm, this

means that incremental increases in the uncertainty size must be conservative or any

derivative information is useless. This leads to lengthy design times.

Table 6.12 also lists the multipliers from the design in Ref. 50 at 100% of the

required uncertainty. In the reference, the last entry of the H matrix is fixed to be

20. After appropriately scaling our multipliers, we can see that the solutions for the

multipliers are different. Unfortunately, we are unable to say whether or not the

controllers from the two design methodologies are the same. Ref. 50 does not list

a bound on the cost of the system. Instead, it gives the results of an experimental

test conducted with the W2/Popov controller. The experimental implementation of

the controller on the MACE system yielded a 12.4 dB improvement over the open

loop system. The LQG controller yielded a 10.2 dB improvement. Similarly, for the

controller produced using our design methodology, it theoretically guarantees that

the closed loop W 2 cost will be no more than 3.907, a 13.45 dB improvement over the

nominal open loop cost of 18.38.

The square of the 1-2 cost for the nominal system can be written as

J =J tr Ged(j)Ged(jW)dW (6.25)

where Ged is the closed loop transfer function between the performance signal, e,

and the disturbance term d, which is a white, zero mean noise signal with identity

covariance matrix. Figure 6-18 contains plots of the square root of the integrand of
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Separation and Aug. Lagr.
D - K Iteration Based Based

65% Uncert. 82.5% Uncert. 100% Uncert. 100% Uncert.
Mode (Hz) hi ni hi ni hi ni hi ni

1.40 1.13e - 1 2.76e - 3 1.17e - 1 3.25e - 3 1.62e - 1 3.39e - 3 2.29 0.059
3.35 4.60e - 2 8.18e - 4 5.35e - 2 8.15e - 4 5.15e - 2 9.64e - 4 4.83 0.125
4.88 1.40e - 1 4.62e - 3 1.38e - 1 5.69e - 3 1.13e - 1 5.97e - 3 6.79 0.152
5.92 1.41e - 1 3.82e - 3 1.09e - 1 3.73e - 3 1.40e - 1 4.26e - 3 10.00 0.153
8.76 8.41e - 0 6.56e - 2 8.18e - 0 1.03e - 1 6.52e - 0 1.18e - 1 11.00 0.152
8.91 7.33e - 2 7.04e - 4 7.75e - 2 7.80e - 4 1.08e - 1 1.18e - 3 18.95 0.205
9.42 2.00e - 1 5.01e - 3 2.31e - 1 6.05e - 3 2.52e - 1 6.66e - 3 14.92 0.190

13.31 2.99e - 1 4.29e - 3 2.21e - 1 4.33e - 3 2.00e - 1 4.53e - 3 16.92 0.183
13.90 3.44e - 1 5.70e - 3 2.68e - 1 6.55e - 3 2.40e - 1 5.80e - 3 12.97 0.177
14.80 1.34e + 1 3.61e - 2 1.30e + 1 2.98e - 2 1.07e + 1 4.10e - 2 20.91 0.171
33.78 1.11e + 1 1.75e - 2 1.05e + 1 2.10e - 2 6.26e + 0 1.39e - 2 20.00 0.063
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Cost function of the MIMO MACE problem vs. frequency.
Nominal plant with W2/Popov controller designed for 100%
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this expression for the open loop system, the system with an LQG controller, and the

system with the W72/Popov controller. The plot for the system with the 7 2/Popov

controller is almost identical to the plot for the system with the LQG controller,

except that the gain is slightly increased in most regions. A similar plot was shown in

Ref. 50 for the W2/Popov controller designed in that reference. That plot was based on

experimental data. Experimentally, the robust controller actually performed better

than the LQG controller, because the experimental apparatus was not exactly equal

to the desired nominal plant.
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6.3.4 Comments on the Design of Robust 7- 2 Controllers

The usage of the D - K iteration on the previous examples demonstrates that the

D - K iteration is simple to start. In each of the previous designs, relatively simple

initial guesses for H and N were used to start the iteration. In comparison, to design

the controller by minimizing an augmented Lagrangian, one must guess both an

initial controller and a set of stability multipliers. In the MIMO MACE problem, the

initial controller used by How 46 to start the minimization was a robustified controller

designed using a multiple model technique. If one considers the time required to

obtain this type of initial condition, then the D - K iteration is even more attractive.

It should also be noted that once the iteration was started, the iteration never

encountered a problem starting subsequent analysis and synthesis steps. All subse-

quent steps ran satisfactorily. One might expect that, for instance, at the start of

each synthesis step one would need to change the al and a 2 parameters. Fortunately,

this was never found to be necessary. However, as was discussed in the section on the

MIMO MACE design, it is potentially useful to change the convergence parameters

of the individual steps, as the iteration progresses. This could both reduce solution

time and prevent overly suboptimal controllers from being designed.

The accuracy of our final solution is limited by the accuracy of the Riccati solver.

Numerical precision decreases as problem size increases. Additionally, solution time

increases with problem size. Of course, reliance on the accurate solution of Riccati

equations is also common to non-robust controller design techniques. Unfortunately,

these robust controllers have the disadvantage that they require the solution of a closed

loop Riccati equation in the analysis step. This is undoubtedly the limiting factor that

prevents robust controllers from being designed for arbitrarily large systems. In the

discussion of the design for the MIMO MACE example, it was mentioned that certain

Riccati solver routines had problems with the 118 state, closed loop Riccati equation.

All computations in this thesis were performed in Matlab. Matlab software provides

a variety of methods to solve Riccati equations. Riccati solvers can be found in the

following Matlab software toolboxes: Control, Robust Control, p-Synthesis, and LMI
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Control. For our purposes, a series of tests were done, and it was found that the most

accurate of these routines was the Schur decomposition routine in the p-synthesis

toolbox. The routine was also faster than the routines in the other toolboxes. This is

the routine that was was used to solve all Riccati equations in our design examples.

The data in the three example problems also demonstrated that the existing anal-

ysis routine is significantly slower than the existing synthesis routine. Future work

should concentrate on coding a routine that can solve the analysis problem more

quickly. A secondary goal in the development of a new routine should be to limit the

number of times that the closed loop Riccati equation must be solved. This would

both reduce solution time and could potentially increase the accuracy of the solution.

If a gradient routine is used, this could be achieved with a more efficient line search

routine.

Because the synthesis algorithm (based on the CG or CGR iteration) has proven

to be relatively fast while the analysis algorithm is relatively slow, there could po-

tentially be a new viable alternative to a D - K iteration. The alternative could be

pursued for small systems or for large systems with only a few uncertainties. Rather

than separating the design into analysis and synthesis steps, the routines could be

integrated. The integrated routine would be initialized in the same manner as the

current D - K iteration-by guessing for a set of stability multipliers. It would then

proceed to optimize the cost function with only the stability multipliers serving as

explicit variables. However, the gradient of the cost function would not equal the

constrained gradient derived for the analysis algorithm. The new gradient would

implicitly allow for the controller to vary. The gradient would be approximated by

calculating a set of finite differences. The stability multipliers would be perturbed

slightly and a new controller synthesized at the nearby point, allowing the finite dif-

ference to be calculated. To calculate the full gradient, a synthesis would need to be

performed for each stability multiplier, so this procedure would only be advisable if

the problem size was small or there were not many uncertainties. The only serious

drawback with this idea is that there may be a point for which a controller cannot be

synthesized. As we have already seen, no method has been found to identify such a
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point (before synthesis is attempted). Therefore, routines would need to be written

to quickly detect when a CG or CGR iteration was diverging.

We can now review the various bounds on the t- 2 cost that we have discussed and

explore how they have been employed in the D - K iteration. In the W7-2 /SN case, the

cost function that is minimized by an LMI synthesis methodology is, by Theorem 4.1,

equal to the trace quantity shown in equation (4.5). This is the same bound on the

cost that is calculated in the analysis routine of our D - K iteration. In Section 5.1,

it was proposed that the cost function formed by summing the state feedback cost

with the output estimation cost is also equal to the bound calculated in the analysis

routine. It is this separation-based sum that synthesis approach implicitly minimizes.

In every example problem that could be run using LMIs, this did, in fact, prove to

be the case. Said another way, the cost function minimized in the analysis step is

equivalent to the cost function minimized in the synthesis step.

In the - 2/Popov case, the bound calculated by the analysis step and the cost func-

tion minimized by the LMI-based synthesis method are equal to the trace quantity

in equation (4.29). Meanwhile, the cost function calculated in the separation-based

synthesis technique is given in equation (5.103). This separation-based cost function

is formed by summing the full information control problem cost with the output es-

timation cost. Unlike the - 2/SN case, the 7 2/Popov separation-based cost function

is only expected to overbound the analysis cost function. Fortunately, in the cases

examined to date, the minimization of the separation-based cost function in the syn-

thesis step resulted in a commensurate reduction in the analysis bound. This meant

that each synthesis step always resulted in a decrease in the desired cost function (ex-

cept in the cases when distinctly suboptimal controllers were allowed). Significantly,

even in the Popov case, the separation-based synthesis was always found to yield the

same controller as was obtained via the LMI-based synthesis technique.

Overall, it seems that the proposed D - K iteration meets the critical goal of

being convenient to use. The time to obtain the first solution, even in the MIMO

MACE case, seems reasonable, because simple initial conditions can be used to start

the iteration. The initial MIMO MACE solution requires approximately five hours.
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Additionally, the computational requirements of the algorithm seem reasonable. For

these problems, the design algorithm seems to require solution times proportional to

approximately n4
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Chapter 7

Conclusions

This chapter begins with a summary of the work in the thesis. Then it highlights

the contributions that the thesis has made to the field of robust control. The last

section of the chapter discussions some of the questions that have been opened by

this research.

7.1 Summary and Contributions

The goal of this thesis has been to develop new methods to design robust controllers

for 7 2 performance on problems of practical dimension. Models of the MACE struc-

tural control experiment were chosen to serve as the principal plants for which con-

trollers would be designed. It was felt that MACE was representative of many prac-

tical structural control problems. If a design routine was convenient to use for the

MACE problem, then it should also be relatively convenient to use for other structural

control problems.

An initial survey of the literature involving 1W2 performance analysis tools for

uncertain systems led us to conclude that the use of a Popov analysis technique

was advisable. Popov multipliers were chosen because they had been proven to be

highly effective for systems with real parametric uncertainties. Additionally, they re-

quired less computation than more sophisticated multipliers. For systems with gain-

bounded, rather than real parametric uncertainties, the multiplier was a degenerate
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form of the Popov multiplier. The choice of the Popov multiplier meant that con-

trollers designed in this thesis should be equivalent to controllers previously designed

by minimizing an augmented Lagrangian46 ,49,50 or those designed using LMI-based

optimizations for each of the steps of a D - K iteration.57

Initially, the problem of controller synthesis was solved by examining the robust-

ness characteristics of the closed loop system. For systems with real parametric or

gain-bounded uncertainties, this led to a synthesis technique that required the mini-

mization of a linear cost function, subject to three LMI constraints. This was a convex

problem that, theoretically, could be solved in polynomial time. The cost function

that was minimized was equal to a bound on the square of the closed loop W2 cost.

However, the LMI synthesis technique was only the first attempt to reformulate

the controller synthesis problem. The LMI constraints that were derived hinted that

J72/SN and W2/Popov controllers contained a useful separation structure. Upon ex-

amining the bound on the closed loop cost, it was found that the cost function, or

a bound on it, could be separated into the sum of two parts: a cost derived from

solving a robust full-state feedback or full information problem and a cost due to

a robust output estimation problem. This information was then used to deduce an

observer-based form for the robust controllers. A set of conditions that was sufficient

to guarantee the existence of the robust controller was derived. These had the form

of coupled Riccati equations. Robust controllers, then, could be derived by solving

these coupled Riccati equations. For systems with gain-bounded uncertainties, it was

proved that a controller derived from the LMI optimization would satisfy the suffi-

ciency conditions of the separation principle. Although the converse of this statement

was not proven, it was shown that a separation-based controller would satisfy the re-

quired robustness criteria, even if it did not minimize the cost function used in the

LMI-based synthesis technique.

It was found that the LMI-based synthesis technique, while theoretically appeal-

ing, could not be used for higher-order systems (greater than approximately 18 states)

on modern computers with state of the art software. Therefore, a separation-based

synthesis technique was developed. A novel means of solving coupled Riccati equa-
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tions was developed. These methods solved the synthesis problem by iteratively

solving a set of modified Riccati equations. Two similar methods were developed,

the control gain (CG) iteration and the relaxed control gain (CGR) iteration. On

synthesis problems that were small enough for the LMI solver to handle, the CG and

CGR iterations proved significantly faster than the LMI solver at reasonable levels

of uncertainty. The primary advantage that the iterative routines had over the LMI

solver was that they used Riccati equation solvers. Riccati equation routines typically

solve at a rate proportional to the cube of the problem size, rather than between the

fourth or the fifth power, which was the rate experienced with LMI codes.

It was also found that LMI codes were unable to solve higher-order analysis prob-

lems. Therefore, a new analysis method was developed that did not utilize LMI

routines. The analysis problem became an optimization over only the stability mul-

tipliers, rather than over the multipliers and the Lyapunov matrix. This reduced the

problem size to one which could be solved using conventional gradient-based opti-

mization techniques. The gradients of the cost function were found analytically and

were constrained by a Riccati robustness constraint.

The separation-based synthesis routine was combined with the new analysis rou-

tine to form a D - K iteration design routine. On a small, eight-state example

problem, this routine was shown to be considerably faster than a comparable D - K

iteration that relied upon LMI solvers for analysis and synthesis. The new design

routine was then tested on both a SISO and a MIMO model of the MACE system.

The routine performed well. For the MACE system, the routine met the essen-

tial goal of being convenient to use. It was easy to find initial conditions to start

the routine, which meant that the time to obtain the first design solution was rea-

sonable. Additionally, evidence suggested that, for reasonable levels of uncertainty,

the methodology's solution time was proportional to approximately n4 . Thus, this

method seems to offer a viable design tool for practical structural control problems.

On the small eight-state example problem and several problems of similar size,

it was found that a controller derived using the separation principle matched the

controller derived by solving the LMI-based minimization. It was claimed that this
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should hold true in general.

Since they could be set up as LMI problems, it was clear that the problems of both

controller analysis and controller synthesis were convex. However, neither the analysis

nor the synthesis routines used for this D - K iteration were convex. The convex

characteristics of the problems were not used, at least explicitly. (Implicitly, of course,

in the analysis routine, gradient methods were deemed viable since it was known

that no local minima existed). Convexity was sacrificed for the sake of solvability.

When convex routines (LMI-based routines) failed to work on problems of practical

dimension, alternative methods were developed. Certainly, this approach went against

conventional thought. The current popularity of papers using LMIs demonstrates that

most researchers are attempting to find ways to demonstrate that their problems are

convex.

The contributions that this thesis has made to the field can now be itemized.

1. For a variety of systems, the synthesis of full-order, dynamic, LTI, W-2 controllers

can be formulated in a convex fashion, using LMIs. Previously, it had only

been shown that the synthesis of static W2 controllers was a convex problem. In

particular, this thesis shows that, given fixed stability multipliers, the problem

of synthesizing robust W2 controllers for closed loop systems with two inputs

and two outputs is convex. The synthesis can performed by minimizing a linear

cost function subject to three LMI constraints.

2. The Lyapunov-based cost function associated with a robust R2 controller can

be bounded by the sum of two cost functions: the cost due to a robust full

information (or robust full-state feedback) problem and the cost due to a robust

output estimation problem. In particular, this is true for closed loop systems

with two inputs and two outputs whose uncertainty is described using Popov

stability multipliers.

3. Three conditions are derived that are sufficient to guarantee the existence of a

robust -2 controller. The conditions have the form of coupled Riccati equations.

One of the conditions is derived from a robust full information (or a robust full-
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state feedback) problem while the remaining two come from a robust output

estimation problem.

4. New methods were developed to solve coupled Riccati equations. They are

iterative schemes that successively solve modified Riccati equations. They are

referred to as the CG and CGR iterative methods. These methods are general

enough to be applied to coupled Riccati equations that appear in other control

problems.

5. A new robust performance analysis technique was developed. The method ex-

plicitly optimizes over only the stability multipliers. By eliminating the Lya-

punov matrix from the optimization, this allows modern computers to handle

problems that are much larger than can be handled using an LMI framework.

Gradients of the cost function were derived that implicitly account for a robust-

ness constraint.

Furthermore, because the MACE is a complex structural system, we speculate

that the results found with this system may be representative of results that would be

obtained for other structural control problems. In this case, the following statements

would be expected to hold:

1. At reasonable levels of robustness on systems that are small enough for an

LMI solver to handle, the CG and CGR iterations solve more quickly than the

comparable LMI-based synthesis problem.

2. A D - K iteration, based on the separation-based synthesis technique and

the new analysis technique, is a powerful design tool. On systems that are

small enough to be handled by LMI-based routines, this D - K iteration solves

more quickly than a D - K iteration that uses LMIs in both the analysis and

synthesis steps. The new D - K iteration is convenient to use on structural

control problems of practical dimensions.

3. While solving convex problems using LMIs is theoretically attractive, this is

not always the most efficient means to obtain a solution. Optimization prob-
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lems with LMI constraints require a great deal of memory and computation.

Since neither the synthesis nor the analysis problems were solved using convex

optimization routines, it is not always the case that convex problems are best

solved using convex optimization routines.

7.2 Recommendations for Future Work

Some areas of investigation should be pursued to further define the importance of

this work to the field:

1. It is likely that the benefits of the suggested analysis routine have not been

fully realized because of the lack of sophistication in the current analysis code.

Therefore, a new and more efficient analysis code should be written. Any signif-

icant change in the efficiency of the analysis routine would lead to a significant

change in total controller design time, since analysis requires the majority of

the design time. If future researchers employ a gradient solver of the type that

is currently used, then a more sophisticated line search routine should be de-

veloped. Other methods, such as method of centers could probably also be

employed.

2. Experiments could be performed to try and quantify the benefits of using the

new analysis method over an LMI-based analysis method. For instance, one

could form a large set of random, uncertain plants and solve for the optimal

stability multipliers using both the new analysis technique and an LMI-based

analysis method. As problem dimension grows, it is expected that the benefits

of the new method should become more and more apparent.

3. Criteria should be developed to detect when the CG or CGR iterations fail

to synthesize a controller. Such criteria would be based on the convergence

parameters of the iteration and, possibly, quantities such as the shifts in the

eigenvalues of the X matrix (see equation (6.1)). The routines would have to

be highly sophisticated, since the iteration typically falls into a limit cycle or
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a slow spiral when it fails. Thus, examining changes between consecutive it-

erations would not be adequate. One would have to look at longer sequences

to detect divergence. If such criteria can be developed, then, because the syn-

thesis problem can be solved quickly, an entirely new design method could be

employed. As discussed in Section 6.3.4, one could design a controller by explic-

itly optimizing over just the stability multipliers. At each point in the multiplier

space, a controller could be optimized. This would avoid the need to perform a

D - K iteration.

4. For systems described by Popov multipliers, work can be done to try and de-

termine the exact relationship between the bound on the cost found using the

closed loop system and the bound on the cost that is derived using the separa-

tion principle. Relating these two bounds is complicated by the fact that the

Popov stability multiplier contains a derivative term.
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Appendix A

Example Problem: A System with

Four Masses

This system originally appeared in Ref. 11. It has since been examined in Refs. 17,

46, 48, 57. The structure is pictured in Figure A-1. It consists of four rotating disks

of nominally equal inertia linked in series by three torsion bars of nominally equal

stiffness. It is a SISO system. The controller inputs a torque to disk number 2.

However, the sensor is non-collocated with the control input-it measures the angular

displacement of disk 4. The system is also excited by a white noise disturbance

entering through disk 4. The goal of the controller is to keep disk 4 as still as possible,

on average. Therefore, the controller is to minimize the W2 norm of a performance

signal, which is composed of a weighted sum of the displacement of disk 4, the velocity

of disk 4, and the control effort.

We consider two uncertainty models for this system. The first model supposes

that the dimensions of disk 1 are uncertain, making its inertia uncertain. This model

is interesting because slight changes in the inertia can cause poles and zeros to shift

order, producing large phase changes in the model. The second uncertainty model

supposes that the stiffnesses of two of the rods can be different from nominal. This

model is interesting because there are two uncertainties, making the analysis problem

more challenging.

We will attempt to replicate the control designs already presented by How 46 and
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Figure A-1: The Four Mass System. Figure from Ref. 57.

Livadas. 57 The various weights for the controller are chosen to be identical to those

used in the references. The nominal system can be described by the following state

space model
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where the nominal mass, m, of the disks is

of the rods, k, is also equal to unity.

0  0  0  C
Bd=

0000

Deu = 1

Dyd= [pi

1
m

(A.1)

0 0 1 -1 0 0

-1 0 -1 2 -1 0
,D=d

2 -1 0 -1 2 -1

-1 1 0 0 -1 1
(A.2)

equal to unity, and the nominal stiffnesses
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Modeling an inertial uncertainty in disk 1 is complicated by the fact that the

mass appears inversely in the dynamics. Therefore, following the work of Ref. 46, the

inverse of the inertia of disk 1 is modelled as being uncertain. With J representing

the possible shift in the inverse of the inertia in the disk, we write that

1 1
= + 1 , (A.3)

J1 Jlnom

where the nominal inertia, Jlnom, is equal to 0.5 (it is the first entry of the matrix

that defined J in equation (A.2)). This implies, for instance, that if the actual inertia

varies between 1.0 and 0.25, then J must vary between -1.0 and 2.0. The uncertainty

enters the dynamics matrix as AA = - JB,Cz, with

B =- 0000 1000 and Cz -k k -d d o]

(A.4)

For our design, the uncertainty limits were set to M2 = -M1 = 0.159. This lets us

guarantee a level of performance for the system with inertia in the range of 0.46 <

J < 0.54, i.e., approximately a robustness margin of ±8 percent.

For the second uncertainty model, we would like to examine independent variations

of up to ±5% in kl and k3 , i.e., in the stiffnesses of rods 1 and 3. The uncertainty in

the dynamics matrix is then AA = -Bw(AK)Cz where

-1 1 0 0 0 0 0 0Cz = I (A.5)
0 0 1 -1 0 0 0 0

- T

0 0 0 0 -2 1 0 (A.6)

0 0 00 0 0 -11

AK = diag(Akl, Ak2 ). (A.7)

The uncertainty limits for this model were set to M2 = -M1 = 0.05112.
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Appendix B

Example Problem: The MACE

System

The Middeck Active Control Experiment (MACE) was used to demonstrate the utility

of controlled-structures technology 61 on a flexible structure in zero gravity. Experi-

ments were initially performed on the MACE apparatus on the ground. Later exper-

iments were performed in space, on Space Shuttle Mission STS-67 in March, 1995.60

The experiment demonstrated that high authority structural controllers could suc-

cessfully reduce the vibrations experienced by high-fidelity scientific instruments on

a flexible space platform. Models based on finite-element analyses and ground-based

identification experiments were used to predict the structure's zero-gravity behavior.

Experiments confirmed that designing controllers to be robust to parametric uncer-

tainties was critical for superior vibration control. Furthermore, it was shown that

the re-identification of structural models, while in space, enabled controllers to be

redesigned to yield superior performance. For details on this, the reader is referred

to Refs. 39,10, 40 and the references contained therein.

The MACE project provided much of the impetus for this research, because the

redesign of controllers for a short-duration experiment required fast controller design

techniques. For our purposes, we will be satisfied with studies of models of the

MACE hardware while it was on the ground. In particular we will utilize the so-

called Development Model configuration. 61 This is so that we can compare 7 2/Popov
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Suspension Cable

Triax Accelerometer
Strain Gages

Strut
Node

Dummy Gimbal

+que Wheel Assembly

Torque Wheel Assembly

Optical Encoder

Rate Gyro Platform

Pointing/Scanning Payload

1.5 m

Figure B-1: The MACE system in its Development Model configuration

Table B.1: Important structural properties of the MACE system
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Property Value

Length 1.5m
Cross-section Area 2.25 x 10- 4m2

Geometric Inertia (I) 1.4 x 10-8m 4

Mass per unit Length 0.27 kg/m
Young's Modulus 2.3 x 109 Pa



controllers that we design to those designed by How, et al.46 ,50 W 2/Popov controllers

were not tested in the space-borne experiment, because the controllers required too

much time to redesign. A picture of the MACE hardware is shown in Figure B-1, and

structural parameters of the overall hardware are listed in Table B.1. The figure and

the data in the table were obtained from Ref. 50. The structure consists of four Lexan

tubes, connected by aluminum nodes. It is suspended by wires from a sophisticated

air-spring suspension system. In the center of the structure are three torque wheels,

and at one end is an actuated payload-the Pointing Scanning Payload. As can

be seen from the figure, the structure has a variety of sensors. The goal of the

controller is to keep the Pointing Scanning Payload as still as possible, on average.

For this configuration of the MACE system, broadband disturbances are injected

into the system through the actuators. These actuators also serve to control the

structure. Furthermore, the performance and sensed signals for the structure are the

same. Collocation of these signals allows this particular configuration to have superior

performance to the system which flew on the shuttle-in that system, a secondary

gimbal was used to inject disturbances into the system.

Sensor noise and unmodelled high frequency dynamics must be accounted for in

the controller design. Extensive tests were performed on the model on the ground to

refine finite element models of the structure. The uncertainties in the model primarily

reflect the expected changes that occur when the structure is removed from the effects

of gravity. Removing gravity causes the damping in the structure to change and the

frequencies of modes to shift.

The open loop MACE system is nominally stable because certain local control

loops on the structure are closed a priori. These local loops are already incorporated

into the models we use to design higher authority controllers. This permits us to

calculate an open loop performance metric for the structure, against which we can

judge the performance of our robust controllers.

The first bending mode of the MACE structure is approximately at 1.8 Hz, placing

it within the bandwidth of many scientific instruments. In fact, the structure is

modally rich below 100 Hz. This makes the use of a high-authority controller a
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Frequency (Hz) Damping Ratio Mode Description
0 1 Torque wheel #1
0 1 Torque wheel #2
0 1 Torque wheel #3

0.20 0.15 Suspension - bounce
0.22 0.15 Suspension - X-axis pendulum
0.23 0.15 Suspension - Y-axis pendulum
0.23 0.15 Suspension - Z-axis pendulum
0.33 0.08 Suspension - tilt
0.20 0.15 Suspension - 1st twist
1.21 0.15 Outer gimbal pendulum
1.29 0.05 Inner gimbal pendulum
1.86 0.04 1st X-Y bending
3.13 0.04 1st X-Z bending
6.72 0.02 2nd X-Y bending
6.87 0.01 2nd X-Z bending
8.85 0.02 Suspension - 2nd twist
9.40 0.008 3rd X-Y bending
13.29 0.007 3rd X-Z bending
14.00 0.007 4th X-Y bending
14.25 0.007 Suspension - 3rd twist
17.40 0.006 4th X-Z bending
36.00 0.011 Suspension - 4th twist
39.10 0.02 Suspension- 5th twist
42.50 0.015 5th X-Y bending
64.12 0.01 5th X-Z bending

Table B.2: Modes of the MACE Structure below 65 Hz. Data from Ref. 46.

necessity if high-fidelity payloads are to be pointed accurately. The modes below 65

Hz in a finite element model of the structure are presented in Table B.2. The digital

computer controlling the system consists of two Intel 80386 processors and a Weitek

3167 co-processor. This computer is able to run a 24 state SISO compensator at 1

KHz and a 59 state 3-input/3-output compensator at 500Hz.4 6 Again, the reader is

referred to Ref. 46 for further details.

It should be emphasized that the object of this work is not to investigate various

robust control designs, but to demonstrate the efficacy of a design technique. To

this end, we will design controllers for the same models and same control weightings
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as were investigated by How, in Ref. 46, and How et al. in Ref. 50. The models

are based on measured transfer function data. The model size is reduced to make

it appropriate for controller design. The models incorporate Pade approximations to

account for computational time delays in the system.

A SISO model for the MACE system consists of 24 states. Four of these states

are due to the Pade approximation. The SISO loop is the Z-axis bus rate gyro sensor

and a control signal to the three torque wheels. A combination of all three wheels

must be used to actuate the structure around any single axis. The chosen design

conditions are the same as those that lead to the "GPC4" controller of Refs. 46, 50.

We need not specify all of the parameters for the model, but we should specify a few

relevant relationships:

Ce e C C

D Deu = 6x10- 4

CT Deu = 0

yd yd = DD eu/5

B Dyd = 0

B, = B,.

Four modes in this model are uncertain. These occur at 8.83, 9.40, 13.30, and 13.88

Hz. We require that the controller be robust to two percent variations in the frequen-

cies of these modes, i.e., M2 = -Mi = 0.021.

A more complicated, MIMO model of the MACE system is also investigated.

There are 3 inputs and 3 outputs, corresponding to three independent inputs to the

torque wheels and three independent rate gyro measurements. The model has 59

states; this includes a three pole Pade approximation for each of the output channels.

As in the SISO case, we can specify a few selected parameters in the model:

CTC = diag(0.2, 1, 1)

DeDeu = 2 x 10-213
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Table B.3: Uncertain modes in the MIMO MACE model

CT Deu

DyDyd

B TD,

Bw

= 0

= D ,De/10

= 0

- BU .

The MIMO model has eleven modes that have uncertain frequencies. These are listed

in Table B.3 with their assigned levels of uncertainty. The modes at 1.4 and 5.92 Hz

are considered particularly difficult to specify.
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Frequency (Hz) m2 = -nl
1.40 0.067
3.35 0.022
4.88 0.028
5.92 0.058
8.76 0.028
8.91 0.022
9.42 0.022
13.31 0.022
13.90 0.028
14.80 0.022
33.78 0.022
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