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Abstract

In this thesis, a new methodology for flutter boundary prediction using experimental
data is developed. Due to the complexity of the aircraft's structure and aerodynamics,
it appeared necessary to rely on a simplified wing model to create a low order state
space representation that would capture all the essential dynamics of a flutter prob-
lem. The methodology is the following: first, a low order finite element model was
derived using linear aerodynamic theory and a Pade approximation. The technique
also relies on a time-frequency analysis which selectively eliminates noise from the
recorded signals in order to estimate the transfer function of the system. A graphical
interface was developed to perform this task more efficiently. Then, a state space
model parameterized by the dynamic pressure q is identified with a quasi-Newton
optimization based on a frequency domain cost function. Finally, the flutter bound-
ary is determined based on the domain of stability of the parameterized model. This
methodology has been validated first on a theoretical example, then on wind tunnel
data through the Benchmark Active Controls Technology (BACT) model and finally
on the F18 System Research Aircraft.
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Chapter 1

Introduction

1.1 Motivation

Flutter is a phenomenon which is very critical in aeronautical engineering and arises

in the design of the wings and the tail of an aircraft. It involves a coupling between

inertial, structural and aerodynamic forces. Under certain conditions, typically in the

transonic region or at high dynamic pressure, the combination of these three forces

may create a self excited system that becomes unstable. Flutter therefore must be

avoided on any aircraft because its presence can result in the yield of the structure.

Furthermore, with the rise of new types of structures, wings are becoming more and

more flexible thus bringing flutter boundary even closer to normal operating condi-

tions. A more critical point is that, even though flutter boundary can be estimated

in the design procedure of an aircraft, the results are not very reliable and a large

margin of error must be allowed for. Therefore, flutter clearance is an essential part

of the aircraft certification problems which has to be accomplished through extensive

and expensive flight tests. The goal of this thesis is to provide efficient and reliable

ways to predict flutter boundary in real-time by using recorded flight data.

The wing flutter problem has been heavily studied in the past, and its theoretical

development, based on linear aerodynamic theory, can be found in [9] and [37]. A

Pade approximation is also used to model some delays in the aerodynamic forces.

An algorithm known as the k-method was developed in [36], using strip theory which



improved flutter boundary estimations. Currently, the so-called p-k iteration [13] is

used to predict the flutter boundary. This algorithm actually solves finite element

equations and gives an estimation of the damping ratio of each mode, given a specific

flight condition. Then, an iteration on the flight condition needs to be made to find the

flutter boundary. The preceding methods rely essentially on analytical computations

and also on assumptions about the accuracy of linear aerodynamic theory. Indeed

they do not take into consideration any flight measurements. In the past, experimental

data have been used to clear operating points in the flight envelope from flutter but

little extrapolation to the flutter boundary was attempted [3]. Lately, some attention

has been given to the use of modern control theory such as robustness analysis in

the prediction of flutter boundary . In [11], a methodology to obtain a conservative

bound of flutter for an airfoil in a wind tunnel is developed. The problem was set

up as a real-p problem with two uncertainties, Mach number and dynamic pressure.

The same idea was adapted to the F18-SRA [21] where unmodeled dynamics were

incorporated into the uncertainty as well.

1.2 Outline

Classical flutter boundary determination for a typical wing section is described in

Chapter 2. The equations of motion are first derived and the flutter boundary is

estimated using a damping ratio extrapolation. As further explained, this method

may provide poor performance when the recorded data are taken at flight conditions

that are not very close to the flutter boundary.

In Chapter 3 a review of major classical system identification techniques is pro-

vided since it quickly appears as one of the critical points in a flutter clearance

problem. A short description of parametric identification methods is given but more

attention is devoted to subspace identification methods. It is also shown how such

methods can handle multiple data sets.

The overall procedure proposed in this thesis is developed in Chapter 4. A tech-

nique based on time-frequency analysis is described to estimate the transfer function



of the system based on frequency sweep excitation signals. A Newton optimization

algorithm is then used to identify the system at different flight points simultaneously.

A validation of this method is done using the model described in Chapter 2 since it

represents the dynamics of the flutter phenomenon very well.

Application of the identification technique to the BACT model in a wing tunnel

experiment was achieved. The flutter boundary determination was duplicated from

earlier work by K. Gondoly based on robustness analysis. Improvements of results

obtained with experimental data is also presented.

Finally, the proposed procedure is applied to the F18 SRA and described in Chap-

ter 6. The flight data were provided by NASA Dryden Flight Research Center and

the experiments included flight conditions at different altitudes (10,000 30,000 and

40,000 feet) and different Mach numbers in the transonic region (Mach 0.8, 0.85, 0.9

and 0.95).
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Chapter 2

Classical flutter boundary

determination

Although a real aircraft is not strictly speaking a single elastic unit, it is necessary

from an engineering view point to treat it as such in order to deal with the complexity

of flutter problems. Another simplification is to limit the study to a specific part of

the aircraft that is susceptible to generating unstable oscillations. In general, an

aircraft has two critical points, the wings and the tail, and it is usually assumed that

there is no interaction between those two parts of the aircraft. In this thesis, only the

wing flutter problem will be addressed.

It is also necessary to make some further assumptions because, even if the wing is

considered as a cantilevered structure, it would still be a continuous system which

has an infinite number of modes. Since this is unfeasible in practice, a finite element

model is usually derived from the geometry and the material of the aircraft. However,

to understand the most important part of the physics involved in a flutter problem,

a typical wing section is enough [9]. In this Chapter, only a simple typical section is

presented to allow the reader understand the flutter phenomenon.



2.1 Typical section dynamics

Let us consider a unit width strip of a two-dimensional flat plate airfoil which has two

degrees of freedom: a bending mode and a torsion mode (also called pitching mode).

As a convention, a positive bending h will be downward, and a positive torsion a

will be pitching up. The semi-chord of the airfoil is denoted b, and the ratio of the

distance between the elastic axis and the center of gravity to the semi-chord is ah.

The x-axis is defined to be parallel to the air speed U. The model and the notations

are illustrated in Figure 2-1. Note also that two springs were incorporated in the

system to model the strain due to the rest of the wing. For an elementary unit length

dx on the x-axis, the small element of the airfoil has an elementary mass denoted dm.

The kinetic energy of an element of mass at a distance x from the elastic axis is

dT = (h + x&)2dm. (2.1)

So, the kinetic energy of the typical section is

1
T = -(mh 2 + 2Sh& + I,&2), (2.2)

2

where m is the mass per unit span of the wing, S, is the static moment of inertia

about the elastic axis and I is the mass moment of inertia about the elastic axis.

Those terms can be computed using the following expressions:

nm = dm,

S,= xdm,

S= J 2dm.

If the stiffness of the bending and torsion spring are respectively defined as kh and

ka, the potential energy is



u kh h

a --- -- ....-- ------
ka

b.ah

b

Figure 2-1: Typical section of the airfoil.

1 1
U= khh 2 + -k a2. (2.3)

2 2

Since the gravity does not play a fundamental role in the flutter phenomenon, this

force was omitted in the formula for the potential energy for reasons of simplicity.

The Lagrange equation of motion can now be computed

mh + S& + khh = -L (2.4)

SI + I,& + ka = M, (2.5)

where L and M represent respectively the aerodynamic force and moment about

the elastic axis.

2.2 Aerodynamic model

Proceeding further in the derivation of the equation of motion, the description of

the aerodynamic forces needs to be performed. The theory that will be considered

is called linearized aerodynamic theory. It assumes that all the forces and moments

are linear with respect to the air density p. The forces can be decomposed into two

parts: the non-circulatory and the circulatory one.

Defining b as the chord of the wing, ah as the ratio of the distance from the center



of gravity to the elastic axis and the chord, and U as the airspeed, the lift of the

non-circulatory part can be decomposed as follows:

1. A lift force with center of pressure at the mid-chord

L1 = pb2 (h - ahbo) (2.6)

2. A lift force with center of pressure at -chord point

L2 = pirb2 U& (2.7)

3. A nose down moment
prb4

Ma= a8 (2.8)

For the circulatory part, the step response to a vertical velocity component w (or

downwash) was obtained by Wagner, Kussner, von Karman and Sears and is equal to

L 3 (T) = 27rbpUw(rT), (2.9)

where 7 = Ut/b is non-dimensional quantity proportional to the time t. The function

1D is called the Wagner's function. It is a highly nonlinear function but can, however,

be approximated by

(7T) = 1 - 0.165e-0.0 41 7 - 0.335e-0 32r. (2.10)

The downwash due to the two degrees of freedom h and a consist of the three

following terms:

1. A uniform downwash corresponding to a pitching angle a, w = U sin a = Ua

2. A uniform downwash due to vertical translation h

3. A nonuniform downwash due to & whose value is (I - ah)b&



In the interval [ro, o + tTo], the downwash w(To) increases by an amount d(o)dTo.

When dro is sufficiently small, this may be regarded as an impulsive increment and

the corresponding circulatory lift is

dL3 (T) = 27rbpU((7 - Todw) dro.
tTo

By the principle of superposition, the circulatory lift becomes

L3 = 27rbpU D(T - To)w(To)dTo. (2.11)
oo TO

The total lift on the on the typical section is

L = LI + L2 + L3, (2.12)

and the total moment about the elastic axis is

1 1
M = ( + ah)bLl + ahbL2 - (- - ah)bL+Ma. (2.13)

2 2

Since the Wagner's function is a function of 7, it is convenient to convert the

equation of motion and use r instead of t as the time variable. To do this, we need

to relate the differentiation of a function f with respect to the physical time f to the

differentiation with respect to the non dimensional time f':

df df dT Uf
f- f'. (2.14)dt dr dt b

Using this notation, the aerodynamic lift and moment about the elastic axis in-

duced by h and a are

L(T) = 2rbpU2 L ( - To)[a'(To) + b "(To) + ( - ah)a(T)]dTo

+pr U2(h" - ahba") + prbU2a' (2.15)

and



1 1 1
M(T) =(- + ah)2rb2pU2  00 (T - To) [a'(To) + h"(To) + ( - ah)a"(To)]dro

+ahbprU2 (h - ahb") ( - ah)pr b2U2  Prb2U2 . (2.16)
2 8

Using this notations, the full equation of motion using the dimensionless time is

U2  U2

m -h" + S a" + mwh 2h = -L(T) (2.17)

U2  U2

S h" + I- a + IWQ2 = M(T), (2.18)

where Wh = kh/m and w, = kI.

2.3 Classical flutter prediction

The equations that have been derived model a self-excited system. Flutter occurs

when the state space model becomes unstable. Since the equations are linear, the

stability is checked by calculating the poles of the system. This is simple to do once

the model has been converted to a state space format, since it becomes an eigenvalue

calculation. However, to write the equation in a matrix form, it is important to notice

that the Wagner's function introduces some exponential terms in the time domain.

Those terms can be dealt with by adding two states to the system, which are usually

called the lags. The derivation of the state space model is shown is Appendix A. Once

the geometry of the wing is specified, the state space matrix A becomes a function

of air density p and air speed U only. It is interesting to plot the evolution of the

eigenvalues of the A matrix with respect to one of the two variables, the other one

remaining constant. Such a plot is called a root locus, and an example is shown in

Figure 2-2. In this case, the air speed varies from 200 ft/sec to 500 ft/sec. Notice that

the aircraft structure becomes unstable for air speed greater than 429 ft/sec. This

instability point, marked with a star on the figure, is the flutter boundary point that

we are interested in.
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Figure 2-2: Root locus of the flexible aircraft with respect to air speed.

As stated in the introduction, the problem addressed in this thesis is to predict

the flutter boundary based on flight data that are necessarily taken in the stable

region of the structure. Therefore, it is not possible to obtain the root locus of the

flexible structure close to the flutter boundary. The solution is then to extrapolate

the results that were obtained at lower air speed or lower air density up to the point

of instability. Let us assume, at first, that the poles of the system can be calculated

exactly by using some identification techniques. It is then possible to calculate the

error that is made by extrapolating the poles to higher speed. To obtain an idea of the

accuracy of the results, let us plot the real part as well as the damping ratio (which

has more physical meaning) of the pole that is going unstable with respect to speed

(Figure 2-3). Notice that the change of behavior of this parameter is very abrupt

in the neighborhood of the flutter boundary. This means that the extrapolation will

give an accurate answer only when the air speed of the point at which the poles are

calculated is very close to the boundary, typically on the right side of the dashed line.

In other words, to obtain a reliable answer by extrapolating the damping ratio of the

pole, we need to know a priori the answer with an uncertainty of less than 4%. An a

priori estimate of the flutter boundary can be obtained by a finite element modeling

of the aircraft and aerodynamics. However, the results would usually not be accurate
of the aircraft and aerodynamics. However, the results would usually not be accurate
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Figure 2-3: Evolution of the damping ratio and the real part of the torsion mode of
the aircraft with respect to air speed.

enough to allow the use of such a method. The noise was not taken into account up

to this point of the analysis. In real life, noise can never be avoided, providing even

more uncertainty in the results. This is amplified by the fact that we need to evaluate

the derivative of a curve to predict flutter, which is usually very sensitive to noise.

It was shown, in this section that extrapolating the damping ratio with respect

to the air speed or the air density is accurate only when data is available close to

the flutter boundary. In practice, this constraint is very limiting because flying close

to the instability region is very dangerous for the pilot. Another problem is that

the flutter boundary is originally unknown, so in order to fly close to it, it may

require many expensive flight tests. An alternate method, explained in Chapter 4, is

necessary to solve this problem.



Chapter 3

Classical identification techniques

In this thesis, the goal is to predict flutter boundary by relying heavily on recorded

data. The general idea is to obtain an accurate state space model of the structural

dynamics of the aircraft that is in agreement with both flutter theory and experimen-

tal data. Therefore, an essential step of the procedure is system identification. This

topic has been extensively studied in the past and a fairly comprehensive survey of

existing methods can be found in [23]. The main techniques are described briefly in

this chapter but special attention is devoted to subspace identification. Some inter-

esting contributions on data sets combination are also described in detail, illustrated

by a series of applications.

3.1 Parameter estimation method

The first step of a parameter estimation method is to define a model which is in

accordance with the physics of the system to identify. Many different models have

been proposed in the past. The most popular one is the Auto Regressive Model

(ARX) which is presented briefly. The general ARX model has the following form:

na nb

y(t) = 1 Aky(t - k) + L Bku(t - k) + n(t), (3.1)
k=1 k=1



where y is the output, u the input and n the noise. na and nb are two integers that

respectively represent the order and the number of zeros of the model. Those two

numbers are chosen by the user based on physical knowledge on the system. However,

nb should be smaller than na to get a strictly proper system. The other parameters,

Ak and Bk, are constants to evaluate through the identification method. Writing

Equation (3.1) in a matrix form leads to

... " Yna Una-nb+1

... Yp-1+na Up+na-nb

Una

Up-l+na

A1

Ana

B 1

Bnb

IYna+1 - nna+l

Yp+na - np+na

where p is an index for the number of data samples. Equation (3.2) is a set of

linear equations in Ak and Bk that are solved through a least square method.

... " " Yna Una-nb+l1

... Yp-1+na Up+na-nb

Un a

Up-l+na

Yna+l - nna+1

(3.3)

Yp+na n- P+na

assume that the noise is white, with zero mean and a variance of a,2, we

that the estimate is unbiased, since the expected value of the error e equals

-t
1 .. " Yna Una-nb+1 . na

E(e) = " E(n) = 0

Yp " Yp-1+na Up+na-nb Up-l +na

(3.4)

Y1

Yp

(3.2)

YI

Lp

A1

Ana

B 1

Bnb
Bnb

If we

can note



Denoting

-t
Y1 " " Yna Un-nb+1 Una

Q , (3.5)

Yp " " Yp-l+na Up+na-nb Up-l+na

The variance a2 of the estimate is

a2 = E(eeT) = a2QQT (3.6)

Note that the variance of the estimate is linked to the singular values of the matrix

Q. The variance can be decreased by increasing the amplitude of the input signal,

which means adding more energy to the system. This assertion is true as long as

non-linearities in the system can be neglected which implies magnitudes of the input

signal to be small. Therefore, there is a trade off.

Other types of model can be found in the literature such as the Auto Regressive

Moving Average Model (ARMAX), Output Error models (OE), Finite Impulse Re-

sponse models (FIR) or the Box-Jenkins models (BJ). A more comprehensive list can

be found in [24, 23]. Each model assesses some properties on the system such the

number of modes or the properties of the noise. For example, the ARMAX model

has the following structure

na nb nc

y(t) = Aky(t - k) + Bku(t - k) + C Ckn(t), (3.7)
k=1 k=1 k=1

where some dynamics are added to the noise.

Other types of model assume that the input is an unknown noise having some

known properties. For example, the Auto Regressive Model (AR) is the following

y(t) = E Aky(t - k) + n(t), (3.8)
k=1

Methods to identity such models are usually called prediction methods and those

problems are addressed in [25, 2].



3.2 Subspace identification

Subspace identification methods have been initiated by the works of Kung [19], and

Juang and Pappa [17]. A variety of new methods have emerged ([31], [28], [4] and

[22]) for identifying a system in the time domain, [32] for systems with stochastic

input, and also [26] in the frequency domain. Efficient numerical procedures using

the structures of Hankel and Toeplitz matrices, saves computational time and storage,

increasing the performances of such algorithms [5]. All those methods are based on the

same basic principle, presented in this section through a simple subspace identification

algorithm.

3.2.1 Notations

The goal of subspace identification is to find a linear, time invariant, finite dimensional

state space realization

Xk+1 = Axk + Buk (3.9)

Yk = CXk + DUk,

where A E nx, B E Rnxm, C E Rlxn, D E Rlxm, based on the knowledge of specific

sequences u = [u, ... , up], y = [Y1, ... , yp].

The following notation is used:

The block Hankel input and output matrices are defined as

Yk Yk+1 ... Yk+j-1

Yh(ki, j) = k+1 Yk+2 ... Yk+j

Yk+i-1 Yk+i ... Yk+j+i-2

and



Uh(k, i, j) =

Uk Ukc+1 .. Uk+j-1

Uk+1 Uk+2

Uk+i-1 Uk+i

We also introduce the extended observability matrix

C

CA

CA'-

the lower block triangular Toeplitz matrix

HtL =

D

CB

CAB

0

D

CB

CAi-2B CAi-3 B CAi-4 B

and the state matrix

X=[ xk Xk+1 --. Xk+j-1 ]

This notation leads to the following representation of the input output history:

Yh(k, i, j) = FX + HtUh.

... Uk+j

... Uk+j+i-2

(3.10)



3.2.2 Step by step procedure

The step by step procedure of a subspace identification algorithm with one data set is

now explained through the example of the deterministic identification (i.e. no noise

is corrupting the data).

Step 1: find a matrix P that satisfies an equation of the form

P = FQ, (3.11)

where r is the extended observability matrix and such that rank(P)=rank(F)=n.

In practice, the existence of noise makes it impossible to obtain equation (3.11) ex-

actly. Any subspace method extracts a matrix P from the input to output data that

is optimal in the sense defined by the method: the specific solution depends mainly

on the noise assumption. Depending on the subspace method that is chosen, different

computations of this matrix P are possible, all leading to different results.

In the case of a deterministic system, P can be found by post multiplying equa-

tion (3.10) by a matrix Uh' that satisfies UhUh = 0. We then obtain P = YhUh - .

However, the rank of the matrix P may not be equal to the order of the system. This

phenomenon is known as rank cancellation and its probability of occurring decreases

when the number of rows in Yh increases.

Step2: perform a singular value decomposition of P

P = USV,

where S = S 0 and U = (U1 U2) such that U1 is the first n columns of U.

Note that S1 is an n x n matrix. With Equation (3.11), we can see that there must

exist a full rank n x n matrix T such that

U = FT.

Let us now use the following notation: if M is an m x n matrix, M (resp. M)



will be the matrix with a reduced number of rows, obtained from M by omitting the

first (resp. last) 1 rows, where 1 is the number of outputs of the system.

Step 3: Evaluate A and C as follow: A = U1 tUi and C is equal to the first block

of Ui, where U1t denotes the pseudo-inverse of U1 .

Using the structure of the extended observability matrix, it is clear that

F=FA

U1 = ET , U = FT

UIT - 1 = UIT-1A.

This can also be written as

U1 = UI J', ' = T-1AT.

Thus, I is a matrix similar to A, which is what we wanted originally.

Step 4: Use a least square method to compute B and D.

We can pre multiply equation (3.10) by F' such that F'F = 0, and post multiply it

by the pseudo-inverse of Uh. By using the structure of the matrix Htj, we get

r±YhUht = rl D1
B

leading to

D
D = (F'
B

) tFYlyhUht

3.3 Multiple data sets in subspace identification

Currently available time-domain subspace identification algorithms assume that plant

identification is based on a single experiment, where only a single input to output data



set is available. There are, however, many cases for which data collection cannot be

done all at once, and experiments must be segmented possibly over a period of several

days, leading to the collection of many data sets all related to the same dynamic

system, but with possibly different initial conditions. This is typically the case,

for example, when attempting to identify the flexible dynamics of the F18 Systems

Research Aircraft (SRA) at NASA Dryden Flight Research Center, where several

data sets generated through many flights at the same flight conditions (altitude,

Mach number and dynamic pressure) are available.

The idea of combining data sets into one single identification method is not new

(see [20]). However, it has never been implemented on subspace identification meth-

ods. In this section, it is shown how such an algorithm may be readily adapted to

handle multiple data sets.

3.3.1 Motivational example

Before we start presenting the algorithm with multiple data sets, an example is first

described to show that naive concatenation of the data sets leads to severely degraded

performance. Results are compared with a method described in Section 3.3.2 and

in [7] which recovers the original performance of subspace algorithms.

The system is an 8th order discrete time system with one input and two outputs,

whose state space representation can be found in Appendix B. The system has been

excited separately by two sets of linear frequency sweeps. The choice of such inputs

has been motivated by some practical concerns since frequency sweeps were the only

available excitations at our disposal to identify the structural dynamics of the F18-

SRA. The following formula for the inputs has been used from k = 100 to 3000, the

first 100 points were set to zero:

el(k) = sin(27r(5 + 20k/3000)(k - 100)/3000)

e2(k) = cos(27r(5 + 20k/3000)(k - 100)/3000).

The simulation of this system has been realized for each input and the two data
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Figure 3-1: Concatenation of two simulations made on a 8 th order system with two
different inputs and no noise.

sets were concatenated. The plot of the input and outputs can be seen in Figure 3-1.

Notice that the discontinuity at the junction of the two data sets is very small. Then,

the identification of the system with a subspace algorithm (we used N4SID which

is a state of the art method) was performed as if the concatenated data had been

recorded from only one experiment. The number of blocks i in the Hankel matrix was

set to 14, 15 and 16. For i = 15, the original system was perfectly recovered. The

problem came when i = 14 or 16 was used since some of the eigenvalues have become

unstable as seen on Table 3.1. Other values of i have been tested from 10 to 30 and

the algorithm failed in about 70 % of the cases. Even though the identification was

accurate for some values of i, the issue remains; the user has no way to discriminate

between the right answer and the wrong one.

On Figure 3.3.1, the simulation of the system with the input concatenated is realized,

and the outputs of this single experiment are plotted. By comparing those outputs

to the one shown on Figure 3-1, it can be noticed that the difference between the

two tests is very small. However, when applied to these data, N4SID recovered the

Experiment 1
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Figure 3-2: Simulation made with the same system as in Figure 3.1 but with the
concatenated input.

original eigenvalues calculated eigenvalues calculated
eigenvalues by concatenating the two sets with this new algorithm

i = 14 i = 16
0.9893 + 0.0396i .9977+.0100i 1.0133 + 0.0614i 0.9893 + 0.0396i
0.9893 - 0.0396i .9977-.0100i 1.0133- 0.0614i 0.9893 - 0.0396i
0.9799 + 0.0245i .9960+.0200i 0.9969 + 0.0377i 0.9799 + 0.0245i
0.9799 - 0.0245i .9960-.0200i 0.9969 - 0.0377i 0.9799 - 0.0245i

0.9949 + 0.0149i .9944+.0386i 0.9985 + 0.0098i 0.9949 + 0.0149i
0.9949 - 0.0149i .9944-.0386i 0.9985 - 0.0098i 0.9949 - 0.0149i

0.9753 .9454+.1431i 0.9976 + 0.0195i 0.9754
0.9851 .9454-.1431i 0.9976 - 0.0195i 0.9850

Table 3.1: Eigenvalues of the identified model

right eigenvalues regardless of i. This shows that the identification procedure is very

sensitive to data corruption.

To show that this problem does not come from the kind of input that has been

chosen, the system was identified with each data sets separately. The original system

was recovered with any i that we picked for both data sets.

N4SID was then adapted to handle multiple data sets, using the algorithm de-

scribed in the next section. This modified version was used on the same numerical

data. As shown in table 3.1, the result of this identification was very accurate. The

eigenvalues were fitted with an error lower than 0.1%.
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Figure 3-3: Singular values to estimate the order of the system. The left picture
happens when concatenating the data, the right one is with the new scheme.

The question of determining the order of the system is also a major issue in identifi-

cation methods. In practice, the order is also unknown and needs to be determined.

In many subspace identification algorithms, the singular values of the matrix P (step

1) are plotted and the user must decide the order of the system. If there is a jump

in the amplitude of the singular values, the order is determined by the number of

singular values to the left of this jump. If there is no detectable jump, then the user

must guess the system's order, based on his or her knowledge of the system. Figure 6

shows the plots that are obtained using both procedures with 16 blocks in the Hankel

matrix (i = 16). Notice that it is not obvious to determine the order of the system

when the data has been concatenated. On the other hand, there is a gap of 3 orders

of magnitude for the improved procedure.

3.3.2 Algorithm

We will now assume that we have collected two data sets (the generalization to n

data sets is very simple and is omitted for notation purposes), ul (k), yl (k) and u2 (k),

y2 (k) and the following equations are satisfied

Y = PX 1 + HUI (3.12)

Y2 = rX2 + HU2.

Si1mlr Vl I



Let us now explain how the original algorithm has to be modified in order to

handle multiple data sets.

Step 1: Find two matrices P1 and P2 that satisfy Pi = FQi, for i = 1, 2, where P

is the extended observability matrix.

Actually, this step is similar to the first step of the initial algorithm, but we need to

perform it for each data set. For example, if we want to use the noise free method,

we should proceed as follow

Pi = YU1I = r(X 1U1 )

P 2 = Y2U21 = F(X2U2 ).

The main modification of the algorithm is to compute an additional step at this

point.

Step lbis: Compute the matrix ( = [P1 P 2].

This matrix ( satisfies

# = r[Q1 Q2],

which is exactly the same property as the matrix P of the first steps of the original

algorithm.

The steps 2 to 4 are exactly the same as in the original algorithm, where the

matrix (i replaces the matrix P.

3.3.3 Remarks

If we append the two data sets at the beginning of the experiment and use the

single data set algorithm, the Hankel matrix Yh will have some columns that have

no physical meaning. This is because, at the junction of the two data sets, some

columns will contain some data from both experiments as shown in Equation (3.13)

and Equation (3.10) would not be satisfied anymore.



yi(1) .. yl(p-i+2) ... y,(p) y2() "" Y2 (q)

y1(2) ... yi(p-i+3) ... y2(1) y2(2) .. Y2(q +1)

y1(i) Y2 (1) ... y(i- 1) y2(i) ... y2(q+i- )

No physical meaning

(3.13)

If the classical algorithm were used, those columns would be considered as part

of the dynamics of the system. On the other hand, the proposed method avoids this

problem by removing those undesirable columns. The algorithm treats those data

sets in parallel, and concatenates them only when performing a least square fit so

that only the real dynamics are kept. Therefore, the statistical properties such as the

bias or the variance of the estimator of the state space model are carried over.

Only deterministic subspace identification has been detailed in this thesis because

it is the easiest one to understand. However, this method can be applied to more

sophisticated algorithms such as N4SID.

3.3.4 Examples

An academic case

Let us start our series of examples with a very academic one. The system that was

chosen is a 4 th order system with two real poles at 0.5 and -0.25, and two complex

conjugate poles at 0.3e±i, / 3. The matrices B and C are chosen so that the system

is fully observable and controllable. The simulation was driven by a known input

which was generated by a white noise process. Some additional unknown white noise

was also added to the output. Each simulation lasted exactly 20 samples. The

identification was then made with the deterministic subspace algorithm and with

a set of independent experiments. The value of i in the algorithm was always set

to 10 and the identified system order to 4. The evolution of the eigenvalues with

respect to the number of experiments is plotted on Figure 3-4. It appears that all



the eigenvalues converge to the actual value of the plant. Of course, since noise is

corrupting the signals the convergence is not monotonic, but the variance of the error

tends to decrease.

The same data was then concatenated and treated as one single experiment with

the same simple subspace identification and the eigenvalues did not converge at all.

Actually, all the eigenvalues were identified as being complex.

An interesting application of this algorithm is to identify unstable systems. Indeed,

an unstable system cannot by driven for a long period of time in practice because

saturation will occur very quickly. Therefore, only a few valid samples for each

experiment are available.

To avoid the saturation, the identification could be done in closed loop, using the

following standard set up:

Reference signal command
Plant

Feedback signal

Controller

However, to stabilize an unstable plant, the feedback signal usually has a very high

amplitude compared to the reference signal. This means that the command is almost

equal to the feedback. Therefore, the spectrum of the command does not cover all

the frequency range. This property usually leads to poor identification performance.

To show that the proposed method also works for an unstable system, the same

experiment as before was generated with the mode at 0.5 switched to 1.2. The results

are plotted in Figure 3-5, and we notice that the modes are still very well identified.

Note also that the unstable pole was identified after the first experiment, but the

multiple data set algorithm showed improvements for the other eigenvalue.
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F18 longitudinal dynamics

A more practical application of this tool is to identify a linearized model of a system

at a point which is not an equilibrium point. In other words, we are looking at the

linearized dynamics around an arbitrary trajectory. Its main application would be

to realize an optimized gain scheduling for the control system of this plant [27]. The

linearized dynamics can be provided by a direct linearization of the equations of mo-

tion. However, this is a long and time-consuming process, and subspace identification

methods can be used to solve this problem more efficiently.

In the case of an F18, the linearized dynamics around that trajectory will be

time-varying, but we expect that they will be a function of the state variables only.

This assumption would simply mean that fuel variation is neglected. In such a case,

it is clear that it is impossible to stay for a long period of time at the same operating

point, since either pitch, yaw or roll rates would not be identically zero. If we try to

identify the plant with with only one experiment, the amount of data would be too

small to obtain a reliable model. Therefore, we need to collect data from different

experiments in order to obtain a reliable identified plant.

An accurate simulator of the F18, developed in cooperation between NASA Dry-

den Flight Research Center and MIT, was used to generate an example. Indeed, a

pull up maneuver was simulated and some white noise excitation was added to the

horizontal tail. The white noise amplitude was set to be small so that the nominal

trajectory would not be affected. The initial flight point was chosen at Mach 0.6 and

15000 feet of elevation. To show that subspace identification methods with multiple

data sets can be applied to an aircraft, the experiment was first run at a steady level

flight with an excitation that lasted .5 seconds. The input was added directly to the

horizontal tail and the simulation was done in closed loop with the actual control law

in the feedback path. However, only the open loop plant was identified by collecting

data from the horizontal tail and from the longitudinal states of the airplane (vertical

speed, forward speed, pitch and pitch rate). The nominal values of those states were

subtracted and the subspace identification method was then run with the perturbed



values. As a matter of fact, the phugoid could not be identified by this method. The

reason is that this mode has a very low frequency (.1 Hz), so by taking runs of exper-

iments of only 0.5 seconds (1/20 of a period) this mode cannot be observed properly.

However, the short period eigenvalue has converged to a value which is very close to

the one estimated by NASA Dryden with an other simulator, as shown in Figure 3-6.

Then, the simulation was run with a command input of 1.5 degrees/sec of pitch

rate. At the initial time, the aircraft still was at Mach 0.6 and at 15000 feet of eleva-

tion. A linear model of the plant was then identified at every step of the maneuver.

Here again, the excitation was added directly on the horizontal tail for a period of 0.5

seconds around the operating point of interest. No linear models of the F18 around

a pull up maneuver have been found in the literature. Therefore, the results cannot

be compared to actual values but still, they are plotted in Figure 3-7. The conclusion

that can be drawn is that the multi-data sets algorithm provides such information

that can be used, in the future, for more efficient control law design.

3.4 Conclusion

All the methods that were presented in this chapter have been used extensively in the

past and have given very reliable results. However, a major constraint remains: there

is not enough structure in the state space model obtained with such identification

techniques. In other words, those methods give a very good representation of the

dynamics of the system at each flight conditions, but it is very hard to establish

a correlation between the different flight conditions. This is a major constraint for

flutter boundary prediction since this is the information that we are interested in.

Those identification methods could however be applied to estimate a transfer

function. A different method is presented in the next chapter but it relies on the

type of input that was used in the experiments. In the future, if different excitation

signals are used such as white noise, subspace identification may find some interesting

application in a flutter boundary determination problem.
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Chapter 4

A new methodology

As stated in Chapter 3, the major problem of the previous identification method

was that the state space model had no structure that could be carried over from one

flight condition to another. The main reason is that the physics was not represented

well enough in the model resulting from classical system identification methods. The

solution was found by using an accurate model of the structural dynamics of an

aircraft close to fluttering flight conditions. The detailed approach is illustrated by

the flowchart shown in Figure 4-1. As one can see, three essential steps are involved in

the proposed flutter boundary estimation procedure. The first step gives an estimate

of the transfer function of the system and relies on the a priori knowledge of the

exciting signal. The second step takes the transfer function estimate and fits a physical

model to it. The last step uses the parameterized model and projects it to the flutter

boundary by varying Mach number and dynamic pressure.

4.1 Transfer function estimation

Classical transfer function estimation techniques, developed in [30], as well as the

identification methods described in Chapter 3 have been tried on both simulated and

experimental data. The results of those methods were not satisfactory enough for

the purpose of flutter boundary estimation because the properties of the input signal



Time domain call al Physical model Flutter boundary
data Transfer function Function Physical model Parametric estimate

estimation study

Figure 4-1: Flowchart of the methodology

were not used effectively. Indeed, the input was a frequency sweep

u(t) = Uo sin(27rg(t)).

This sweep is characterized by the properties of the function g. The derivative of

g with respect to time 4 is called the instantaneous frequency f. In the case of adt

flutter problem, the frequency sweep is either linear, which means that

dgdg = kt, (4.1)
dt

or logarithmic

dgdg= k log(t). (4.2)
dt

Work on transfer function estimation of systems excited by a linear frequency

sweep was found in [6]. However, the limitation was that the slope k of the frequency

sweep had to be very slow in order to apply this method. This limitation is a major

constraint in aeronautics, given the high cost of flight tests.

New ideas emerging from wavelet analysis [35] gave rise to a new transfer function

estimation method based on time-frequency analysis. Moreover, the input signal has

an apprecialble power spectral density at a frequency wo only during a short period



of time. Assuming that the system is linear, the output should also have a non zero

power spectral density at wo only around this time. Therefore, the transfer function

estimate should rely only on data from this time interval.

4.1.1 Principle of the estimation

A transfer function is supposed to be a continuous function of frequencies which it

is impossible to deal with since there would be an infinite number of frequencies. It

is thus necessary to discretize the frequency axis and calculate the transfer function

at only a finite amount of points. The choice of those frequencies will be addressed

in Section 4.1.2. In the rest of this section, the interest is focused on estimating the

transfer function at one given frequency wo0.

In this method, all the outputs are processed separately so that the system can be

considered as multiple input, single output. In the first step of the estimation, all the

inputs and the output are filtered by the same band pass filter centered around the

frequency w0 . Filtering the signals does not alter the identification at all. Indeed, if

the filter F is linear time invariant (LTI), this operation can be seen as a multiplication

by the following scalar matrix:

F 0

0 F

in which the number of rows is equal to m, the number of inputs. If we note U

and k the filtered input and output, it follows that:

F 0

= FY = FGU = G U = GU

0 F

This means that if the filtered input excites the system, the output will be the filtered

output. For this reason, in the rest of this section, all the notations related to the
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Figure 4-2: Choice of the parameters N1 and N2 of the input and output signals

inputs and output will represent the filtered signals.

Now, a time window (from a sample time noted N1 to a sample time noted N2 for the

input and the output) need to be selected. Physically, this time window corresponds

to the time when the input excites the system at the frequency wo. It also represents

the time when the input signal is actual information and not noise. The choices for

the parameters N1 and N2 will be discussed in the next section.

The figure 4-2 illustrates this choice. The upper plot correspond to the input signal

and the lower plot, to the output. Note that the output signal outside the time

window has a significant magnitude. Since there is no energy in the input at this

time and this frequency, properties of linear systems reveals that the energy in the

output signal outside the interval [N1 N2] just comes from noise. Therefore, only the

part of the signal with accurate information (inside [N1 N 2]) will be kept.

We are now able to compute the transfer function estimate at this frequency: let

N2

U = u ( k)eiwok
k=N1



where ul represents the Ith input of the system. Define also

N2

Y= yi(k)eiwok.
kc=N 1

If we assume that there is no noise then

m

Y = GU
1=1

where G1 is the estimate of the transfer function from the Ith input to the output.

However, this equation is true only in two cases. First, when the system is at steady

state during the whole time window and second, when the system is at rest at the

beginning of the time window and the time window is long enough so that the system

is assumed to be at rest at the end of the time window also.

If we reproduce this procedure for many experiments, we obtain a set of equalities

Yk = [Ukl]GI

where Uki correspond to the Fourier transform of the 1th input of the kth experiment.

If there are enough independent experiments, the matrix of Uki will be of rank m. If

so, a least-square solution will give a transfer function estimate

G1 = [Ukl] t Yk (4.3)

where [Ukl]t represents the pseudo-inverse of Ukl. In a flutter problem, there are

usually two exciters (one on each wing) and a set of symmetric and asymmetric

excitations is performed. This provides two linearly independent equations so Uki

will be full rank.

Note that if the filter F is an ideal band pass filter, filtering the signal does not

affect at all the estimate since the Fourier transform of the input and the output

signals should be the same at the frequency of interest. However, this filtering is

helpful to determine the length of the time window to consider.



4.1.2 Resolution issues

For practical purposes, it is necessary to determine the length of the time window

At and the resolution Af that can be obtained in the transfer function. Of course,

it would be interesting to minimize those two parameters. However, a theoretical

boundary is defined by the Heinsenberg inequality [35].

AtAf > 2. (4.4)

Also, the slope of the chirp gives another relation between time and frequency

resolution. At this point, we need to make a distinction between the linear and the

logarithmic sweeps.

In the case of a linear sweep,

Af = kAt. (4.5)

Combining this equation with the Heinsenberg inequality (4.4), we obtain

At = V2/k, Af = . (4.6)

In the case of a logarithmic sweep, Equation (4.5) becomes

k
Af = At. (4.7)

t

Therefore, the time and frequency resolutions become of function of time (and

frequency due to Equation (4.2))

At = 2tit, Af = 2k/t. (4.8)

Of course, those results have an underlying assumption which is that the damping

ratio of the modes of the system are not too small so that Equation (4.5) is still

satisfied for the output signals.
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Figure 4-3: Signal representation using the graphical interfacing tool

4.1.3 Graphical interface

Selecting the time window for each signal may be a hard and laborious process. In-

deed, a different time window must be selected for every frequency of the transfer

function estimate that we are interested in. To solve that problem, a tool was de-

veloped to create a graphical interface [33, 8] so that the user can select this time

window more efficiently.

The tool shows a 3-dimensional time-frequency representation of the signal. In

other words, it plots the amount of energy in the signal for each time and each

frequency. The center part of Figure 4-3 gives an idea of the picture that is drawn for

a noisy output. Since the input signal is known to be a frequency sweep, it appears

clearly what part of the signal is actual information and what part is noise. The

user can now select a series of points on this picture which defines a polygon on this

time-frequency plot. The tool will then only keep the part of the signal inside this

polygon. The result of this selection is illustrated on the right picture of Figure 4-3.

The left picture represents the input signal.

4.2 Identification

Identification of transfer function through a polynomial fit has attracted a lot of

attention [34]. However, when the order of the system gets high, the coefficients



of the optimal polynomial become very sensitive to noise in the transfer function.

This is a problem in a flutter boundary determination because we are looking for the

correlation between all those coefficients. It was then decided to rely more heavily on

a physical model.

4.2.1 Model definition

The model is defined by a state space representation and is parameterized by a finite

number of coefficients. This step is very specific to each flutter boundary determina-

tion problem and has to be studied with a lot of care each time. It also requires to

determine all the known physical properties of the plant and incorporate them into

the state spaces matrices which should be dependent on a small number of parame-

ters k. For example, in the case described in Chapter 2, the parameters /k would be

some physical values, such as the chord, the moment of inertia or some aerodynamic

coefficients. The model should also be dependent on the flight condition through the

dynamic pressure q and the Mach number M. In a more synthetic way, this can be

expressed by

A(Pk, q, M). (4.9)

The goal of the identification is to estimate those fk based on data from flight

conditions at different q and M.

The major benefit of this method is that it reduces the number of degrees of

freedom in the model to the number of /k that are considered. This means that it

forces the results to have a certain structure which makes physical sense. For example,

if one coefficient is supposed to increase with say dynamic pressure while an other

one should decrease, the proposed methodology does take it into account whereas the

damping ratio extrapolation method described in Chapter 2 did not.



4.2.2 Cost definition

The original cost function that was used in the state space identification was a

quadratic cost:

N

J = E Trace(TF(wi)-C(jwI-A)-B+D)(TF(wi)-C(jwiI-A)-lB+D)*, (4.10)
i=1

where M* denotes the conjugate transpose of M. The main problem of this cost is

that the zeros are not well fitted at all. Indeed the transfer function at a pole has

a much higher magnitude than the transfer function at a zero. Therefore, the cost

function tends to weight more the frequencies closer to the poles than to the zeros.

In the flutter problem, the zeros of the transfer function were also of big importance.

Therefore, a logarithmic cost was substituted. For a single input single output system,

the cost is

N

J = "(log ITF(wi) - log IC(jwi - A)-B + D) 2 . (4.11)
i=1

The general formulation in the case of a system with m inputs and p outputs is

J = EE E (log ITFk (wi)I - log ICk(jwiI - A)-B 1 + Dk 1)2 , (4.12)
i=1 k=1 l=1

where TFk (resp Dkl) is the entry of the transfer matrix G (resp. D) located at

the kth row and 1th column, Ck is the kth row of C and B is the 1th column of B.

However, this cost only penalizes the magnitude of the transfer function but the

phase sometimes did not match the identified model one. The solution was found by

penalizing also the phase difference between the estimate and the identified model.

Nm p

J = 1E E (arg(TFk(wi)) - arg(Ck(jwiI - A)-1'B + Dkl) 2  (4.13)
i=1 k=1 l=1

The final cost was a logarithmic cost. The additional term on the phase was

sometimes added in order to improve the transfer function fit. However, the results

when using this additional term did not bring significant improvements in flutter



boundary prediction so no results will be presented with this term.

4.2.3 Estimating the physical parameters

Once the model and the cost function are defined, the last step of the identification

procedure is to find among all the admissible state space matrices included in the

model, the one that minimizes the cost function

Jopt = min J(/k, qi, Mi) (4.14)

where the subscript i stands for the different flight conditions that are considered.

A wide variety of methods have been proposed in the past to solve optimization

problems. They can be decomposed into two distinct categories: the deterministic

and the stochastic algorithms. Stochastic algorithms are becoming more and more

popular nowadays because of the raise of computer power. The basic stochastic search

is called the Monte Carlo search which is basically a pure random search. Modern

techniques provided considerable improvement by introducing some strategies in the

search. Among those techniques, the most popular ones are the simulated anneal-

ing [1] and the genetic algorithm [38, 15]. Simulated annealing replicates a physical

process called annealing that heats up a solid until it melts, followed by cooling it

down until it crystallizes into a state of perfect lattice. During this process, the free

energy of the solid (which corresponds to the cost function to minimize) is minimized

but the cooling must be done carefully so that the free energy of the structure is not

trapped into a local minimum. Genetic algorithms tend to mimic the evolution of

the species, mutating some individuals and eliminating the unadapted ones, leading

to the individual that will best fit its environment.

On the other hand, the deterministic methods are usually based on local properties

of the function to optimize which will indeed provide only a local minimum. Some

global optimization method exist but they can be applied only to functions that have

very specific properties. The most commonly used deterministic methods are often

based on the first order derivative and they can be improved by second order deriva-



tives. The choice of the algorithm to use in a hard problem for the non expert but

some general ideas to optimize the convergence of the algorithm can be found in [10].

The algorithm that was chosen to solve the flutter problem is called a quasi-Newton

algorithm. Its principle relies on the first order derivative, calculated analytically and

on second order derivative, calculated numerically using the so-called BFGS method.

The BFGS method estimates directly the inverse of the Hessian matrix based on the

variations of the gradient. A direction of search is defined and a line search is then

done. More information about this method can be found in [10, p155]. There is

however one task to perform before applying the Newton algorithm: the computation

of the gradient. This requires a lot of algebra so it will be presented in Appendix C.

Example

As an example, the state space model described in Chapter 2, Equation (2.17)

and (2.18), will be used. The system was simulated with a frequency sweep and

it was assumed that only the vertical displacement h was recorded. The procedure

presented in this thesis is then applied to this data in order to obtain the air density

at which the wing will flutter. It was assumed that 5 parameters of the model were

unknown: mass per unit span m, first and second moments of inertia So and I, bend-

ing and torsion frequencies wh and wo. The goal of this procedure was to recover the

values of the original model. The simulations were performed at two different flight

conditions (which in this case means two different air densities pi and P2) and the

five unknown parameters were identified using those two experiments simultaneously.

Therefore, the cost function had to be augmented:

J = J(m, Sa, I, Wh, wa, Pl)+ J(m, Sa, I, wh, wa, p2). (4.15)

Note that in this case, the dynamic pressure dependency was switched to an air

density dependency. This does not alter the procedure at all because there is a direct

relationship between air density and dynamic pressure. To make the simulation more



realistic, some white noise was added to the output. This white noise had zero mean

and a maximum amplitude varying from 0 to 0.5 with a step of 0.1. This highest noise

level corresponds to a coherence between the input and the output of a maximum of

0.8 which is approximately what happens for real data. Ten simulations were done

for each noise level. Once the state space model was identified, the A matrix of the

system was just a function of p. The flutter boundary can then be computed. A plot

of the expected value of this boundary and its variance for each noise level is shown

in figure 4-4. It is shown, that even with no noise, there is some slight error in the

identification of those coefficients. This is due to some bias in the transfer function

estimation. This problem appear because the system is lightly damped which causes

a very high resonance. In those types of system, the damping ratio is much more

difficult to identify and this is what causes the slight bias in the transfer function.

This problem should not appear as significantly with the real data because there

is some additional damping in the system which is not modeled in this example.

However, the flutter boundary prediction was very accurate (less than 10% for all the

noise levels that were taken). Note also the low level of the variance of the estimate

compared to the nominal value. This means that the estimate for the flutter bound

is reliable.
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Chapter 5

Application to wind tunnel data

(BACT model)

Work on flutter boundary determination on the Benchmark Active Controls Technol-

ogy (BACT) model developed at NASA Langley Research Center, was originally done

by K. Gondoly and presented in [11]. However, some problems on identification of the

experimental data occurred, leading to degraded performance in the flutter boundary

determination. Therefore, the identification algorithm presented in Section 4.2 was

applied to the BACT model and compared to K. Gondoly's results.

5.1 Presentation of previous research

In this section, a review of K. Gondoly's work is presented briefly. The BACT model

is a standard NACA 0012 airfoil. It is equipped with a trailing edge actuating surface.

The span of the control surface is 30% of the total model span and its chord is 25%

of the chord of the wing. Four accelerometers were positioned near the inner leading

edge, outer leading edge, inner trailing edge and outer trailing edge and calibrated to

provide measurements in g's. An analytical model was then derived using a software

package called Interaction of Structures, Aerodynamics and Controls (ISAC) created

at NASA Langley Research Center. A detailed description of this package can be

found in [14]. This analytical model was parameterized by the Mach number M and



the dynamic pressure q. The dynamics could then be linearized to obtain a state

space model of the form

- A B E Ai Bi x
= + i (5.1)

y C D i=1 Ci Di u

where x represents the state variable, y the outputs and u the inputs. 6 i,i=1,2

represent the dynamic pressure q and the Mach number M respectively.

In [11], the author shows how this kind of system can be incorporated into a

robustness analysis problem of the form

This is a typical real-tL problem where P represents the nominal plant and A the

uncertainty block. The latter is a diagonal matrix in which each non zero elements

are either q or M. The robustness problem is solved by a maximum singular value

determination

1
- = min{f(A)I det(I - M(s)A) = 0} (5.2)

The goal of the work on the BACT model was to predict flutter boundary by using

experimental data. This was handled through the following identification procedure

that the author developed. The fact is that there exists an infinite number of state

space realizations for each system. The main constraint was to obtain all the iden-

tified models in the same state basis, which is not guaranteed by any identification

procedure. In other words, the states x should always represent the same physical

quantity. One way to be sure that the same basis is carried over from each identified



plant is to have as many outputs as there are states and to know the relationship

between the outputs and the states. This means that the "C matrix" should be a

known full rank square matrix here denoted as C. In such a case, the identification

can be performed in any state space basis and the following transformation can be

applied

T = C-1C

A = T-1AT (5.3)

B = T-1B

where A, B and C are the identified state space matrices and the tilde represents the

matrices in the basis of interest.

In the BACT model, there were four outputs and ten states. It was then impossible

to use the previous method directly. An intermediary step was introduced, consisting

of observing the unmeasured states. The observer was built using the analytical

model that was supposed to be close to the true plant. This gave an additional six

outputs. Then an identification method called FORSE, developed by R. Jacques

for the Space Engineering Research Center (SERC) was used [16]. The state space

transformation described in Equation (5.3) was performed, using a C that was also

computed analytically.

A series of identifications were realized at different Mach numbers and dynamic

pressures. A model of the form of Equation (5.1) was then derived for each experi-

mental condition. The nominal plant was the identified model but the perturbation

matrices Ai, Bi, Ci and Di were all calculated analytically.

5.2 Identification of the BACT model

The conclusion of this experiment was that the major weakness came from the sys-

tem identification procedure because the unmeasured modes mainly come from the lag

terms which are not very much observable. When using experimental data, measure-

ment noise corrupts the observation leading to degraded flutter bounds. Therefore,



the identification method was changed to the one presented in Chapter 4. The exper-

imental data for the BACT model already came into a frequency domain format so

it was not necessary to apply the transfer function estimation using a time frequency

analysis.

Twelve different experimental data sets at various experimental conditions ob-

tained from simulated data were available for the BACT model and used as a valida-

tion process. For each of the twelve experimental conditions taken separately, twelve

distinct state space models are identified. The initial guess for the Newton algorithm

was always coming from the analytical data. The varying elements of the model (or

1k using the same notations as in Chapter 4) were all the non zero elements of the A

matrix. The three other state matrices were all set to their analytical values. Once

the twelve state space matrices were identified, a parameterized model of the form

of Equation (5.1) was computed using the linear regression for each elements of the

matrices A, A1 and A 2.

Replicating the work of K. Gondoly, the flutter boundary was estimated from each

experimental condition by keeping the total pressure constant. This correlated the

variation of the dynamic pressure to the Mach number by

2M + yM3
M = ( 4  )6q, (5.4)

reducing the problem to only one degree of freedom q.

Results are presented in Figure 5.1. The top picture shows the results of K.

Gondoly and the bottom picture shows the results using the Newton identification

method. The results are presented in the same format as in [11]. To be able to com-

pare the performance of the flutter boundary determination from one experimental

condition to another, it was necessary to normalize all the results. Since this was an-

alytical data, the flutter boundary was known exactly. The flutter bound estimated

with the robustness analysis method can be normalized by the actual bound. This

normalized value is plotted on the y-axis of Figure 5.1 and quantifies the accuracy

of the prediction. Each flutter bound is estimated from data measure at a certain



nominal dynamic pressure. This value can also be normalized by the actual flutter

boundary. This value quantifies how far the nominal value of the dynamic pressure is

to the actual flutter one. This quantity is plotted on the x-axis. The shaded region

represents what is considered to be an acceptable results. This is somehow arbitrary

but it is defined as a triangle because we want more accuracy close to the flutter

boundary.

The results using the new identification method are slightly worse than the one

presented in [11] when the nominal plant was close to the flutter boundary. The

reason is that the previous method was relying on the analytical model to calculate

the matrices Ai, Bi, Ci and Di. In the new identification method, those matrices are

estimated from the identified models which contributes as a source of error. Note

also that, with the new identification method, the accuracy of the prediction does

not depend on how far the nominal point is to the flutter boundary. This results was

actually expected because all the bounds were predicted from the same model.

For the experimental data, we are able to present the same type of figure since

the true flutter boundary can be determined in a wind tunnel. However, for most

of the experimental points, there is no flutter boundary while staying at constant

total pressure. The flutter bound was then calculated at constant Mach number as

shown in Figure 5.3. In this Figure, the circle represent the nominal points and the

cross are the predicted flutter boundary. The curved solid line correspond the the

experimental flutter boundary. The diagonal lines are the constant total pressure

lines. The numbers on this graph, ranging from 1 to 6 labels the different nominal

points. Those labels are carried over on Figure 5.2.

In the method presented in [11], results on experimental data could not be plotted

on the same type of graph as Figure 5.1 because the points were out of scale. One

reason is that the observer was perfect for the analytical data so the reconstructed

states were very accurate. This property was not carried over for the experimental

data.

The conclusion of this experiment is that the identification process using a quasi-

Newton optimization method is validated. It gave comparable results for the analyti-
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cal model and was able to obtain acceptable results also for experimental wind tunnel

data.



Chapter 6

Application to the F18-SRA

The flutter boundary prediction techniques are now being applied to a real aircraft,

the F18 System Research Aircraft (SRA). The goal of this project is to provide the

flight test engineer with real-time information about how close the pilot is to instabil-

ity. This would increase the flight envelope of the aircraft considerably, and therefore

increase its performance.

6.1 Description of the experiment

The experiment was run at NASA Dryden Flight Research Center, based in Edwards

Air Force Base, Calif. This facility possesses a large variety of high technology capa-

bilities including a flight systems laboratory with a diversified capability for avionics

system development, a data analysis facility to process flight research data in real

time and a high temperature and loads calibration laboratory to ground test struc-

tural components. It is well known for supporting the Space Shuttle program and

some major current projects include the F-15 ACTIVE, the F-18 High Angle of At-

tack Research Vehicle (HARV) and the F-18 SRA. The latter aircraft is a modified

F-18 which is being flown to test the newest and most advanced technologies such as

electrical actuators, fiber optics, flush air data collection systems and flutter clearance

techniques.

For flutter boundary prediction, a specific experiment was realized. Its purpose
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Figure 6-1: Diagram of the DEI exciter

is to excite the structure of the aircraft to obtain a reliable model based on the

flight data. This goal was achieved by adding an exciters manufactured by Dynamic

Engineering Inc (DEI exciters) at the tip of each wing. This exciter consists of a

diamond-shaped, symmetric airfoil section and a rotating slotted cylinder as shown

in Figure 6-1. Depending on the position of the slot, the airflow will be directed

either above or below the airfoil, therefore creating a positive or negative additional

aerodynamic force as shown in Figure 6-2. The magnitude of this force is dependent

on the air speed of the aircraft. Its dependence is highly non-linear. A need of

measuring this force became very quickly necessary and was obtained by some strain

gauges located next to the exciter vanes.

To measure the displacement of the structure, ten accelerometers were placed

along the wings and the tail of the aircraft. Figure 6-3 and Table 6.1 details their

position.

The inputs were chosen to be linear or logarithmic sinusoidal sweeps spanning

the 3 to 30 Hz range. This range was chosen because it is expected to contain all

the flutter modes for the F18. The sampling frequency was chosen to be 200 Hz.

Each sweep lasted roughly 30 seconds to compromise between the need for reliable

information and the requirement to save on operating and maintenance costs.

To be sure to excite the symmetric and the asymmetric dynamics of the aircraft,

each test would consist of two sequences. In the first sequence, the two exciters would

roughly be in phase, whereas in the second experiment, these exciters would roughly



Lift

90 180

angle of
rotation of
the cylinder

Figure 6-2: Aerodynamic force due to the DEI exciter with respect to its position.

Output Sensor location
1 left wing forward
2 left wing aft
3 left aileron
4 left vertical tail
5 left horizontal tail
6 right vertical tail
7 right horizontal tail
8 right wing forward
9 right wing aft
10 right aileron

Table 6.1: Position of the accelerometers
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Figure 6-3: Diagram of the F18-SRA with the DEI exciter

be 180 degrees out of phase. The tests were performed at different elevations (10K,

30K or 40K feet) and different Mach numbers (.7, .8, .85, .9 or .95) to obtain a

broad range of flight conditions. Some supersonic flight tests were also realized at an

elevation of 30,000 feet. The operating conditions at which tests were performed are

plotted on Figure 6-4, along with the aircraft flight envelope and the assumed flutter

boundary, calculated purely analytically using a p-k iteration method [39].

6.2 Data analysis

The data were collected from real flight tests and were significantly corrupted by

atmospheric disturbances. In addition some sensors were suspected to be defective.

To investigate both issues, coherence plots between each input and each output were

computed. Some corresponding coherence plots may be illustrated in Figure 6-5 which

are based on a flight test performed at Mach 0.8 and 10,000 feet.

It may be immediately remarked that on average, the measured coherence is low

(no more than 0.8 in most cases). This indicates that the data are contaminated by

high levels of noise. From experiment to experiment, the coherence was also found to

change significantly (possibly due to different weather conditions). Such a difference

in coherence may be used to weight results from different experiments accordingly.
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This issue will not be addressed in this thesis since its purpose is just to present

a methodology for flutter determination. To quantify the results that have been

obtained, a cost function I.II on the coherence plots was defined. It was chosen to be

the mean of the coherence between 0 and 50 Hz, bearing in mind that the excitation

frequency range is from 3 to 30 Hz. However, due to some non linearities in the

exciters, the input signal had some energy up to 50 Hz. Therefore, the coherence can

be written as

I 1 Ioo

wpr = p(w)dw, (6.1)

where p represents the coherence function. The resulting scores are presented

in Table 6.2 and 6.3. The average of these scores for each output and for both

inputs was calculated. It appears that five outputs consistently have a much higher

score than any other outputs. These five outputs are the leading and trailing edge

accelerometers on each wing, and the right aileron accelerometer. It was decided to

discard the latter because it measures also the aileron's own dynamics, which are



input 1 output 1 input 1 output 2

frequency frequency
input 2 output 1 input 2 output 2

50 100 0 50
frequency frequency

input 1 output 3 input 1 output 4

frequency frequency

input 2 output 3 input 2 output 4

50 100 0 50
frequency frequency

Figure 6-5: Plot of the coherence of
feet

the input and output data at Mach 0.8, 10,000



Data output 1 output 2 output 3 output 4 output 5
1 0.3596 0.339 0.1907 0.111 0.1066
2 0.4153 0.4287 0.1878 0.2063 0.1243
3 0.2896 0.2678 0.1551 0.2104 0.1408
4 0.2417 0.2008 0.1577 0.1600 0.1036
5 0.4639 0.4557 0.3051 0.1470 0.1330
6 0.4266 0.4289 0.2843 0.1877 0.1700
7 0.3992 0.3940 0.2303 0.2100 0.1428
8 0.3470 0.3742 0.2199 0.2655 0.1915
9 0.3943 0.3853 0.2481 0.2042 0.1334

10 0.4121 0.4205 0.2574 0.2590 0.1350
11 0.3661 0.3686 0.2624 0.1018 0.1174
12 0.4416 0.4335 0.3387 0.1731 0.1693
13 0.3799 0.3598 0.2096 0.0922 0.1026
14 0.4934 0.4965 0.2817 0.1952 0.1469
15 0.3605 0.3948 0.2368 0.2359 0.1410
16 0.4007 0.4141 0.2125 0.1585 0.1405
17 0.3292 0.2961 0.2102 0.1438 0.1017
18 0.3799 0.3215 0.1974 0.2762 0.1260
19 0.3866 0.3286 0.2280 0.2701 0.1524
20 0.1479 0.1612 0.3545 0.1998 0.0980

average 0.3716 0.3634 0.2341 0.1904 0.1338

Table 6.2: Coherence between the right exciter and the five first accelerometers

neglected in the ensuing analysis. When more experience is acquired, this viewpoint

may be revised.

Browsing through the public domain literature has led to interesting comparisons.

For example, Bucharles, Cassa and Robertier [3] consider the same type of excitation

signals for the flutter clearance of the Airbus A320 commercial aircraft. However,

the average coherence was ranging from 0.9 to 0.95 which is much higher than the

one coming from the F18-SRA. In terms of signal to noise ratio (SNR), this would

represent an SNR of 5 to 10, compared to 2.7 for the F18-SRA.



Data output 6 output 7 output 8 output 9 output 10
1 0.1284 0.1117 0.4754 0.3804 0.3826
2 0.2226 0.1393 0.4680 0.3718 0.3772
3 0.2503 0.1321 0.4103 0.2340 0.2761
4 0.1321 0.1082 0.2867 0.2271 0.2793
5 0.1836 0.1305 0.4967 0.5423 0.4079
6 0.2495 0.1568 0.4445 0.4994 0.3213
7 0.2373 0.1225 0.4702 0.5209 0.3474
8 0.2861 0.1719 0.4085 0.4926 0.2835
9 0.2562 0.1232 0.4737 0.4717 0.3532

10 0.2488 0.1187 0.4437 0.4916 0.3170
11 0.0931 0.1154 0.5352 0.5474 0.5058
12 0.1994 0.1521 0.4563 0.4874 0.4188
13 0.1129 0.1049 0.5006 0.4618 0.4304
14 0.2459 0.1397 0.4773 0.4540 0.3992
15 0.2584 0.1375 0.4048 0.4363 0.3219
16 0.2140 0.1299 0.4230 0.4977 0.3290
17 0.1809 0.0960 0.3550 0.2624 0.3300
18 0.2732 0.1249 0.3153 0.2529 0.3042
19 0.3015 0.1389 0.3564 0.2598 0.4085
20 0.1662 0.1084 0.3721 0.2491 0.4054

average 0.2120 0.1281 0.4287 0.4070 0.3599

Table 6.3: Coherence between the right exciter and the five last accelerometers



Data flight number Mach Altitude Input type
1 533 0.85 10k symm
2 533 0.85 10k asymm
3 533 0.9 10k symm
4 533 0.9 10k asymm
5 531 0.85 30k symm
6 531 0.85 30k asymm
7 531 0.9 30k symm
8 531 0.9 30k asymm
9 531 0.95 30k symm

10 531 0.95 30k asymm
11 532 0.7 10k symm
12 532 0.7 10k asymm
13 532 0.8 10k symm
14 532 0.8 10k asymm
15 532 0.95 30k symm
16 532 0.9 30k symm
17 533 0.95 10k symm
18 533 0.95 10k asymm
19 533 0.98 10k symm
20 533 0.98 10k asymm

Table 6.4: Flight condition for each data set



6.3 Transfer function estimation

The transfer function of the system was calculated using the method described in

Chapter 4.1. It was applied to all the flight test data and Figure 6.6 shows a typical

estimate. This specific transfer function was obtained from the flight number 533, at

10,000 feet and Mach 0.8. Only the accelerometers of the right wing are presented in

this plot. The inputs are regarded as a symmetric and an asymmetric ones. It is not

simple to verify whether the estimate is accurate or not because the real answer is not

known. However, some consistency checks may be done between the phase and the

magnitude of a transfer function, as well as some consistency among the four outputs

that were chosen. In the first transfer function (input 1 to output 1), the magnitude

starts with a slope of 40 dB/decade at low frequency and a phase of 180 degrees. The

phase then drops to 360 degrees and the magnitude remains constant, at around 40

dB. This would mean that there is a second order pole at 6.5 Hz. It seems that there is

also a pole zero cancellation around 13 Hz. However, due to the low resolution of the

estimate, this cannot be affirmed by this plot only. The high frequencies (above 18 Hz)

are rather noisy, but it seems that the magnitude and the phase are stable, meaning

that no poles or zeros are in that region. Looking at the second transfer function

(input 1 to output2), it seems that the low frequencies have the same properties as

the first plot which is a slope of 40 dB/decade for the magnitude with a phase of

180 degrees. The pole at 6.5 Hz is still detectable on this plot and a pole around 12

Hz is also seen. This confirms the pole zero cancellation of the previous plot. For

the asymmetric excitation, two poles could be detected by looking at the transfer

function at 8 and 18 Hz. However, it is much harder to correlate the phase in this

case, because the poles seem to have a much bigger damping ratio so the variation of

the phase with respect to frequency are much smaller.
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6.4 Description of the structural model

For the identification of the state space model, the quasi-Newton algorithm was used.

In this method, the first step is to define a structure for the model to be used. A

linear time invariant representation was chosen where only the A matrix of the state

space model has a dependency in q, the dynamic pressure:

i { = A(q)x + Bu (6.2)

y=Cx

More physical constraints need to be imposed to the state matrices in order to

capture more accurately the dynamics of the system. Numerous state space model

have been proposed in the past but a couple of them seem more popular that others.

In one of them [12], the state space matrices are as follow:

0 I 0

A = -M-1K -M-1C -M-1P , (6.3)

0 I A

where I is the identity matrix. The matrices M, K and C are the apparent

structural mass, stiffness and damping of the aircraft, which means that the non

circulatory part of the aerodynamics is included in the matrices. Those matrices

are calculated analytically with a finite element model that was developed at NASA

Dryden. Those matrices were used because analytical results for structural dynamics

are usually very reliable. The lower right matrix A represents the aerodynamic lags. It

is a diagonal matrix with real negative eigenvalues. P is a full matrix which appears

as the coupling between the lags and the structure. To correlate this part to the

Chapter 4, the elements of the P and A matrices would be the /3 's, the coefficients

to determine.

An other model [29, 18] that is also popular is:



0 I 0

A = -M- -M- 1 C -M- 1P , (6.4)

o Q A

where Q is an other full matrix. In the model described by Equation (6.3), the

number of lags is fixed by the number of poles that are taken into account in the

structural model of the aircraft. For the model described by Equation (6.4), he

number of lags can vary but it usually equals to 2 because additional lags do not

improve the flutter boundary prediction significantly (see [29] for reference). The

matrices to be determined by the identification are P and A, and Q if Equation (6.4)

is used.

It was assumed that the DEI exciter only produced a force input on the structure

and did not affect the aerodynamics of the wing. This assumption is validated by the

size difference between the wing and the exciter. Therefore, the structure of the B

matrix is chosen to be

0

B= B

0

where B also comes from the finite element model of the aircraft. The sensors are

accelerometers so we assumed that they measure only structural displacements and

were not affected by the aerodynamics. In the model, this is translated into a matrix

C of the form

C=[CI C2 0]

where C1 and C2 are full matrices. Those two matrices C1 and C2 are to be

determined so they are also part of the parameters fk to identify.

Those matrices could theoretically also come from analytical results. However,

the aircraft was assumed to be symmetric. This assumption is not perfectly valid for

a real aircraft since there are always load discrepancies and side slip in a flight test.

There is also another source of error which is in the implementation of the sensors.



The positions of the accelerometers are not known precisely enough to rely on the

analytical model. Therefore, the C matrix also had to be identified.

6.5 Evaluation of the C matrix

As stated in the description of the model, the C matrix is not considered to be a

function of the dynamic pressure. However, discussion with NASA engineers informed

us that this matrix was mainly a function of fuel weight. In this thesis, the fuel weight

discrepancies will be neglected. This assumption can be validated by the fact that an

F18 has some fuel in the wings and in the fuselage but the fuel in the fuselage does

not contribute substantially in the flutter boundary. In a flight test, the fuel in the

wings is always burnt first. Since the plane has to fly a important amount of time

before it reaches the flight test condition, there is very little fuel remaining in the

wings when the experiment is run. Thus, the flutter boundary should not be affected

very much.

It was then decided to refine the methodology presented in Chapter 4 by calcu-

lating the C matrix first. The main benefit is to reduce the amount of parameters /k

in the model. To obtain an accurate value of the C matrix, the identification would

have to be done with ground data, so that no aerodynamic lags would corrupt the

results. However, such data was not available on the F18-SRA so the flight condition

with lowest dynamic pressure was used. The selected condition was at Mach 0.8 and

elevation of 40,000 feet where eight different experiments have been performed. For

each of these experiments, one C matrix was calculated and Figure 6-7 shows a typical

transfer function fit that was obtained by minimizing the logarithmic cost described

in Equation (4.11). However, the problem of the initial condition in the Newton

algorithm has not been addressed yet. It was solved by using the quadratic cost de-

scribed in Equation (4.10) whose solution is available through a least square method

and requires very little computational time. The cost function was then switched to

the logarithmic cost. Due to the fact that the initial guess for the parameters already

come from an optimization, the algorithm converged rather quickly to an acceptable
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solution.

Eight different C matrices were now available and it was possible to test the

sensitivity of the fitting procedure to the data that were used in the procedure. This

check was done for each coefficient of the C matrix independently. The mean over the

eight experiments as well as the variance were estimated using the following classical

statistical formula

m1

N i=1 (6.5).2 1 ) X 2

where xi are the coefficients of the C matrix and N is the number of experiments,

in this case equal to 8. The normalized standard deviation u/m of each coefficient

with respect to its mean is shown in Figure 6-8. Recall that the normalized standard

deviation is the square root of the variance divided by the mean. This standard

deviation actually represents the length of the confidence interval of the coefficient

by:



0

0

.5

C

-o

deviation (below 0.4) which means that the results are consistent from one experiment..................................

6.6 Evaluation of the A matrix

The last step of the identification procedure is to obtain a reliable A matrix parame-

terized by the dynamic pressure q. Only data from three flight conditions (elevation

of 10,000 30,000 and 40,000 feet) were available for each Mach number. However,

the flight condition at 40,000 feet has already been used in the identification of the

800-
80

Ei.
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6.7 Flutter results

Even though the results on the coefficients of the A matrix were rather poor, it was

decided to compute the flutter boundary for all the state space model that were found.

Since the system is parameterized by only one value (the dynamic pressure), a line

search would give the answer for the flutter boundary. The dynamic pressure can

then be converted into an altitude. Figure 6-10 shows the different flutter boundary

estimates that were obtained. It is clear that the variance of the estimate is quite

big. However, considering that the coefficients in the A matrix are so spread out, it

is still interesting to notice that all the points are in the same range of magnitude.

An other important point is that the real flutter boundary is actually unknown,

since analytical results do not provide accurate estimations. Thus, none of the pro-

vided flutter boundaries can be rejected.



Chapter 7

Conclusion

In this thesis, a methodology to predict flutter boundary has been developed. The

procedure consisted of three major steps. First, a transfer function estimation was

realized to compress the data into a physically interpretable structure. Then, an iden-

tification was performed to obtain a state space model parameterized by the dynamic

pressure q. Finally, a stability bound determination gave the flutter boundary.

The transfer function estimation was solved through a time-frequency analysis.

The analysis consisted of an appropriate time windowing which optimized the fre-

quency resolution based on the properties of the input signal. This method was

specifically developed for systems excited with fast frequency sweeps. This method is

the major contribution of the thesis since existing transfer function estimation meth-

ods usually assume random excitation. The results of this method were satisfactory

for the experimental data. However, in the simulated case, small bias appeared at

the poles of lightly damped systems. Even though this error did not lead to large

errors in the flutter boundary determination, a more appropriate time windowing can

be realized with a wiser use of the graphical interface tool. This would consist of

selecting a time window length also based on the a priori knowledge of the damping

ratio of the poles.

The state space model identification method was based on a quasi-Newton op-

timization. The cost function chosen in this procedure was based on the transfer

function that was previously estimated. The algorithm had very good convergence



properties, meaning that the transfer function was recovered fairly well in every case.

This optimization approach worked well on BACT data. However, when applied to

the F18-SRA, there was a lack of consistency in the structure of the state space model

from one experiment to another. We suspect that this lack of consistency was prob-

ably due to the model used since the BACT experiment validated this optimization

approach. Another cause for this lack of consistency may also be in the amount of

data used for each identification. Only four runs were available for each flight point,

and they were used independently in the identification process. This means that each

identification used only one run per flight condition.

The stability boundary was determined via a line search. There were no theoretical

and practical problems involved with the computation of the bounds. However, there

were many of discrepancies from one experiment to another in the estimated flutter

boundary in the experimental data case. Such discrepancies were actually expected,

given the discrepancies in the identified models of the previous step.

For future work, it would be interesting to develop a more appropriate model of

the structure and the aerodynamics of the system that is considered. Developing

such a model would lead to more correlation among the elements of the state space

matrices. Its main contribution would be to reduce the variance of the identified

coefficients 3k.

Another interesting improvement would come from the use of ground data for the

identification of the C matrix. In this thesis, the lags in one flight condition (40,000

feet and Mach 0.8) had to be neglected, thus representing a severe approximation.

The use of ground data would avoid this approximation because no aerodynamics

would corrupt the experimental data. Another benefit of this improvement is that

ground tests are much cheaper than flight tests, thus the cost of the overall procedure

would be reduced.

A final area of improvement may be in ameliorating the experimental set up.

For example, longer sweeps may be useful to obtain high resolution in the transfer

function estimation. Furthermore, relocating the sensors positioned on the tail onto

the wings may provide better performance in the analysis of the structural dynamics



of the F18. Those sensors were not used here because their coherence plots were too

low.
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Appendix A

Linearized equation of motion of a

typical wing section

In Chapter 2, the equation of motion for a wing subject to aerodynamic forces has

been derived. However, the full linear state space model was not presented explicitly.

To obtain this model, it is easier to work in the Laplace domain.

Let us recall the equation of motion from Equation 2.17 and 2.18.

U2  U2

m -h" + S-a" + mwh2h = -L(T) (A.1)

U2  U2

S U I2 + I -a" +2 IaWa M(T), (A.2)

with the lift and moment presented in Equation 2.15 and 2.16

L() 27rbp0U2 04.-, (T- To)[a'(To) + b h (To) - ah)a (To)]dTo

+p7rU 2(h" - ahba") + pirbU2a' (A.3)

and



M(r)
1 ) 1 1
(-+ ah)2rbpU2 I(T - To)C[a'(0o) + -" (To)+(- - ah)a"(To)]dTo

2 _o0 I~ bIko 2

+ahbprU2 (h" - ahba") - ( - ah)prb2U2 a' b2 a".U
By taking the Laplace transform of the equation of motion, we obtain8

By taking the Laplace transform of the equation of motion, we obtain

U2  U 2

m b2 hs2 + S- oS 2 + mWh2h = -L(s)
b2 b2

U2
S U2 hs2

b2

U 2

+a -as2 + I, a2 a = M(s),
b2

(A.4)

(A.5)

(A.6)

where s stands for the Laplace variable. The Laplace transform of the lift and the

moment are

S2rbpU 2(b(s)[as + hs2 +
b (2 - ah)as2]2

+prU2(hs 2 - ahbas2 ) + prbU2 as

1 1 1
( + ah)2rb2pU2 (s)[as + hs2 + (- ah)s2]

+ ahbpU2 (hS2 - ahbas2) -( - ah)pb2U2as -
2

nrb2U2  
2

8 as

Plugging Equation (A.7) and (A.8) into Equation (A.5) and (A.6) leads to

(m + prU2 hS2 + (S2 _ prU2 ahb)S 2 + mWh 2h + prbU2Cas

= -27rbpU 2 () [as + S2 + ( ah)S2

(A.8)

(A.9)

L(s)

and

(A.7)

M(s)



(SE - ahbp7rU)2 hs2 + (a ah2 b2 ,prU 2 + p7rbU 2 S2~ + I"Uw2

+( - ah)p7b2 b2as = (1 + ah)2wb 2 pU2 4(S)[as + !hs + (1 - ah)(S2]

The Laplace transform of the Wagner equation can be approximated by

0.165 0.335
s + 0.041 s + 0.32

Noting that

s 1m= 1 -

s+k s+k

and

s+ k s+ k

leads to the three following identities:

#(s)as = as - 0.165a +
0.041a

0.165
s + 0.041

- 0.335a +
0.32a

0.335
s + 0.32'

0.0412a
= as 2 - 0.165as + 0.165 * 0.041a - 0.165

s + 0.041
0.322a

- 0.335as + 0.335 * 0.32a - 0.335
s + 0.32

- hs2 - 0.165hs + 0.165 *
0.0412h

0.041h - 0.165 s + 0.041

0.322h
- 0.335hs + 0.335 * 0.32h - 0.335

s + 0.32
(A.16)

We now introduce two states xl and x 2, usually called lags by the following equa-

tion:

(A.10)

(A.11)

(A.12)

(A.13)

D (s)as2

(A.14)

and

(A.15)



x (s) = 0.165 * 0.041 *

Z2(s) = 0.335 * 0.32 •

(1- (1 - ah)0.0 4 1)a - 10.041h

s + 0.041

(1 - (1 - ah)0.32)a - 10.32h

s + 0.32

1
4(s) [as + 1hs2

b
- ah)s2] - ah)oas + (1 - - ah)0.3 35)as

1
+ (-0.335 + (0.165 * 0.041 + 0.335 * 0.32)(- - ah)) a2

+ -hs22 -(0.165 + 0.335)hs
b b
1

+ 1 (0.165 * 0.041 + 0.335 * 0.32)h + xx + x2b

By plugging this expression into the equations of motion (A.7) and (A.8), a set of

linear equations is obtained.

(A.17)



Appendix B

State space model example

In Chapter 3, a motivational example was presented to show the relevance of a mul-

tiple data set algorithm for subspace identification methods. The state space model

used in this example is presented here in more detail:

{ = Ax + Bu

y = Cx+Du

with

0.89 -1.5 -13.1 -81.9 -353.5 -1013.8 -1957.5 -1977.6

0.005 1 0 -. 2 -. 9 -2.6 -5 -5

0 0.005 1 0 0 0 -0.0084 -0.0085

0 0 0.005 1 0 0 0 0
A=

0 0 0 0.005 1 0 0 0

0 0 0 0 0.005 1 0 0

0 0 0 0 0 0.005 1 0

0 0 0 0 0 0 0.005 1



0 0 0
0 0 0

.0047

0

0

0

0

0

0

0

0 10

001
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Appendix C

Gradient of the cost function used

in the identification procedure

The cost function that is considered in the identification procedure is

Nm p

J = EE E (log ITFkL(wi)I - log ICk(jwiI - A)-1 B + DkI )2, (C.1)
i=1 k=1 l=1

where TFkI (resp Dkl) is the entry of the transfer matrix G (resp. D) located at

the kth row and Ith column, Ck is the kth row of C and B, is the lth column of B.

Since the Newton search has been selected as the optimization algorithm, the

gradient of the cost function has to be calculated. Therefore, the partial derivative

with respect to any coefficient of the state space matrix has to be found. Note that

the cost function is a sum of terms of the form

(log ITFkl(wi)I - log ICk(jwiI - A)-B + Dk 1)2, (C.2)

so the derivation of the gradient can be restrained to a single input, single output

system. Let us start by calculating the partial with respect to a coefficient of the C

matrix. An intermediate step is to calculate the differential of J with respect to the

row matrix Ck.



dJck E y 2(log(IGkl(wi)l) - log(Ck(jwiI - A)- 1 B + DklI))
(C.3)

d(log(Gk (i)I) - log(ICk(jwiI - A)-'B, + DkLI))

N

dJck = 2 (log(Gk(wi)) - log(Ck(jwiI - A)- 1 B + Dk)) (C-4)
i=1

-d(Ck(jwiI - A)-'B + Dkl)

Ck(jWiI - A)-1 B + Dk

To obtain the gradient, we need the partial derivative of the cost J with respect

to ckl, the element on the Ith column of the Ck matrix. In that case, the matrix dC

is just a matrix of zeros with a one on the 1th column denoted dCkl.

OJ N
= 2 log(Gk(wi)) - log(ICk(jwiI - A)- 1 B + DklI) (C.5)

9 Ckl i=1

-dCkl(jwiI - A)- B l

Ck(jiI - A)- 1B + Dk

Let us now calculate the partial derivative with respect to an element of the B

matrix. This is done in a similar way as for the C matrix.

OJ N
-bk = 2 log(|Gk(wi)i) - log(ICk(jwiI - A)- BI + DklI) (C.6)

&bkl i=1

-Ck(jwiI - A)-ldBkl
Ck(jwiI - A)-iB + Dki

For the differential with respect to A, an intermediate step should be derived

which is the value of d(P-1).

Let us start by

PP- 1 = I

By differentiating both sides of the equality, we get



dPP- 1 + Pd(P-1 ) = 0.

Arranging this equation leads to

d(P - 1) - -P-dPP-'.

We can now apply the same principle as for the B and C matrices to the A matrix:

OJ
191lc = E2Trace (log(jGk (Wi)j) - log(lCk(jwiI - A)-IB + DklI)

i=1

-Ck(jiI - A)-ldakl(jwiI- A)-iBI

Ck(jwiI - A)-1BI + Dkl

(C.7)

(C.8)
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