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Abstract

A method is formulated for treating acoustical transmission
and boundary - value problems in liquid helium II. According to
present concepts, He II isa mixture of two fluids obeying a special
system of complex hydrodynamics. In particular, this is known to
result in twb virtually independent modes of sound propagation.
Therefore a reformulation of the intrinsic (or characteristic) acous-
tical impedance concept is required, for which a matrix representation
is applicable. By similarly associating a matrix form of impedance
with plane reflecting surfaces, boundary conditions may be imposed.
The classical requirements (continuity of pressure and particle veloc-
ity at the boundary) are generalized to apply individually to each
fluid component in He II. Expressions are obtained for the reflective
properties of various types of surfaces. In particular, materials
which present unlike boundary conditions to the two fluid components
are shown capable of partially converting one mode of sound to the
other upon reflection. For example, surfaces of highly porous sub-
stances exert unequal viscous forces and should therefore act as such
converters (with possible application for extending present frequency
ranges of second sound). These properties of reflectors are expressed
in terms of reflectivity arrays'. The array gives direct reflective
factors for both types of sound, plus coupling factors between types.
Examples are given for several special cases, and a form of reciproc-
ity is shown to exist for the coupling process. The boundary condi-
tion is derived for still another type of coupling, due to heat trans-
fer, which occurs at a licuid-vapor interface; a modified form is ap-
plicable to the resonance type (Yale) experiment.
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WAVE TRANSMISSION AND REFLECTION PHENOMENA IN LIQUID HELIUM II

1. Introduction

The macroscopic hydrodynamic equations of liquid helium II have been

developed by Tisza 1'2 and Landau.3 Whereas these investigators started from

different molecular assumptions, most of their macroscopic results were

identical. Actually Tisza has recently shown that these results can be

obtained from very general assumptions leaving the molecular interpretation

open to a large extent. Whatever differences do exist between the two

theories are irrelevent for the problems discussed here.

The essence of the complex hydrodynamics of helium II is the presence

of two interpenetrating liquids ('normal' and superfluid') of different

densities

P = Pn + P ' (1)

and velocity fields Vn, Vs, and correspondingly two modes of longitudinal

sound propagation. In the first sound (pressure waves) the two liquids move

in phase; in the second (temperature waves) the two velocities are out of

phase so as to give no net transfer of matter. The first sound can be gen-

erated by an ordinary transducer, the second by periodical heating as demon-

strated by Peshkov.

The subject of the present paper is to develop a scheme for the solu-

tion of boundary-value problems in this complex hydrodynamics (reflection,

transmission). The interest of this problem lies in the fact that particular

boundaries may affect the two fields in a different manner, producing there-

by an unbalance, or coupling, between the two sound modes.

Generally speaking, there are two reasons for this: (1) heat absorp-

tion or rejection by He II is accomplished by the transition P aPnl or vice

versa; (2) the boundary conditions are different for n and v since the

superfluid liquid can slip along solid walls.

Process(l) has been used to transform second sound generated in the liq-

uid into ordinary sound in the equilibrium vapor phase detectable by a micro-

phone (Yale)4. (2) could be used to generate second sound mechanically which

would be advantageous for high frequencies. The practical application of

this principle is not so obvious, since longitudinal waves involve particle

motions perpendicular to the plane of a radiating surface, whereas the dif-

ference in boundary conditions exists only for the tangential velocity com-

ponents. An artifice to circumvent this difficulty consists in using sur-

faces of porous materials, thereby creating a region of helium where the

direction perpendicular to the radiating surface proper can be considered -

- from the microscopic point of view - - tangential to the walls. (This ap-

plication is analogous to the possibility examined by Lifshitz5 of genera-

ting second sound by the oscillations of a small sphere, which, however,
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was shown by him to be inefficient).

The properties of such surfaces (briefly semi-impervious surfaces)

can be conveniently described in terms of an acoustic impedance, which in

the complex hydrodynamics of He II will have the form of a matrix.

Section 2 will contain the matrix formulation of the general wave

propagation in He II whereby an intrinsic matrix impedance will be defined.

Sections 3, 4, and 5 will contain the discussion of transmission and reflec-

tion of various surfaces characterized by different impedances.

2. Wave Propagation in Helium II - - Intrinsic Impedance,

The hydrodynamic equations and in particular the equations of wave

propagation in He II can be described in two different sets of coordinates.

In the first set (called briefly the x-scheme), one considers the displace-

ment vectors of the two fluids xn, x and the corresponding velocities xn,im.

In the second set (briefly the i-scheme) one considers normal coordinates"

I1' 2 introduced by Tisza2 corresponding to the two modes of sound propa-
gation. (Also n, xs are identical to ns is in Tisza's notation). The trans-

formation connecting these schemes is

Xn = 1 +2' l = (pnxn + Psx)/p (2)

xs = 1 - Pn 2' 2 = (Ps/P)(Xn - x s )

Ps

Obviously 1 1, refers to a "center of mass" motion (first sound) and 2 to

a "relative motion' with vanishing net flow (second sound). The general wave

motion in the interior of the liquid can most conveniently be described in

the - scheme. On the other hand the boundary conditions, particularly at

semi-impervious surfaces can be expressed rather in the x-scheme. Hence the

transformations between the two schemes are of interest. These can be repre-

sented best in a matrix form. We consider only plane waves traveling in one

direction and define the following two component vectors".

x - ) = (3)
~nxs ~ )2

and their adjoints

-A~~ ~= 1n'Is 2 (3a)
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We write (2) in matrix form,

x = s g, S-lX (4)

with

S = i : -11 (5)

where the abbreviation = pn/Ps is used. S is self-adJoint (does not

change if rows and columns are interchanged);, hence the adJoint relationships

are

X - S, = X 8 (4a)

The density of the kinetic energy is

W = + .2 1 *~ +1 *2
2Pnn2 + n Ps2 =1 · 2 2 (6)

The last two terms correspond to the two modes of sound propagations. The

total energy flow, or intensity, is obtained by multiplying each energy den-

sity of Eq. (6) by its corresponding wave velocity, c1 and c2.

1 * 2 1 .2
2PCll + P 2~2 (7)

This expression suggests the definition of a generalized intrinsic

impedance

Z = 0 (8)

ape

and the intensity appears then as

2Zg (9)

in close analogy with the usual acoustic case. Zo§ is a diagonal matrix

because we neglect the coupling terms between the two sounds. This coupling

term is proportional to the coefficient of thermal expansion and is extremely

small (see Lifshitz and Tisza).

Equation (9) suggests the definition of a generalized pressure

= Zoi = (10)
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The intensity is then

X= (9a)

The physical meaning of PS is more apparent from an alternative form which

we are now going to derive.

One has for a plane wave of phase velocity cl

' 1 -c 1 vo - f (11)

and

=-Yg 1· (12)
P

Equation (12) is the equation of continuity (of. Tisza) and finally

2 AP.
Cl = ,'P (13)

P, p are the pressure and density, respectively. From Eqs. (11), (12), and

(13) one has

Pcj 1 = AP

The analagous expressions for second sound are according to Tisza2

2 = -c2 V 2 (hla)

- V- 2 = APn/Pn (12a)

2 A ~aPn)awn P

hence pc 2~Z = APn and

(Pn = ·8*(14)

APn

Here APn is the excess of the "osmotic pressure" introduced by Tisza,l' 2

which plays the same role for second sound as the excess of ordinary pres-

sure for first sound.

Although the impedance in the x-scheme is not necessary to the solu-

tion of boundary-value problems, its formulation does give useful insight

to the manner in which the boundary conditions for such problems may be in-

troduced. Since the intensity is invariant, one has

_ 1 X -lZo lx =XZox (15)
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so that Z S- Z 8l

and hence

PrV + 0 a "1+02j (16)
_ n

P 1 C 2 PS

n

The four-element matrix of (16) bears a close analogy to a four-terminal

electrical network in which one set of terminals is considered to correspond

to the normal fluid component, the other to the superfluid component. We

imagine a geometrical plane passed through a point of observation perpendic-

ular to the direction of wave propagation. Then for outgoing waves only,

(PsPn/P) [(pn/ps)Cl + c is the pressure which must be exerted against the
superfluid to suppress its motion for unit velocity amplitude of normal fluid

(or the reverse for the other off-diagonal element). Also (PSPn/P)(PS/Pn)cl+c2]
is the superfluid input impedance for normal fluid "clamped".

As will become apparent in Section 3, the boundary conditions imposed

by he porous reflectors mentioned earlier may be introduced most logically in

the x-scheme. For example a thin layer, or region, exhibiting viscous proper-

ties is effectively a lumped resistance inserted in series between otherwise

extended regions possessing intrinsic (or characteristic) impedance Z ox After

expressing in this manner the net resulting x-scheme impedance presented at the

layer, conversion is made to the - scheme for application of the boundary con-

ditions derived in Section 2.*

* It is of interest to express the generalized pressure in the x-scheme.
One has

SP S I XPP = -~x

and x =

Ps

Here p and p are the exce s sound pressures of normal fluid and super-
fluid, nconsidered by Landau a. Accordingly,

iPn\ -x= l cAP + An PnCll + P252

_x = 1 a a ·

Ps AP- APn) Ps0 - PnC22

The total pressure is the sum of the two components = AP. Hence only
the first sound contributes to the total pressure! Ordinary transducers
are accordingly incapable of generating or detecting second sound.
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3. Boundary Conditions at a Plane Reflecting Surface

We proceed now to derive the boundary conditions which hold at a re-

flecting surface. In order to keep the problem purely mechanical for the

time being, the conditions will be derived first for the case of a boundary

which is a perfect heat insulator. That is, no interchange PsPnp will

occur; and any unbalance introduced between the two modes of propagation

will be due solely to unequal viscous forces on the two fluid components.

The boundary conditions of classical acoustics are that particle ve-

locity and particle pressure must both be continuous across any interface.

(This is equivalent to specifying continuity of velocity and energy flow.)

The same is true for the case of He II, except that here both the velocity

and the pressure are matrices. Having derived a relationship in the x-

scheme in terms of true particle velocities and pressures, we may then trans-

form to f- coordinates; the latter system is preferable for dealing with the

distribution of energy flow between the two modes of propagation.

Let the incident sound energy in He II travel along the positive y-

axis and encounter a boundary surface defined by y = 0 in Fig. 1. In gen

eral there will be some energy reflected back in the negative y-direction,

and some will continue through the interface (where it may or may not in-

volve two modes, depending upon whether liquid He II is involved for y> 0).

ROUNnARY (V-=OA_,,., .'i , _

li - -

INCIDENT

_2i _ __ ENERGY
TRANSMITTED
ENERGY

iml m~~~~~

y= O
it REFLECTED . (6i+X)

_r 4 E NERGY CONTINUOUS

Figure 1. Reflection of sound in helium II from plane boundary.

Let X1 represent the true particle velocity due to incident waves and r

that due to reflected waves; then the effective velocity experienced by the

interface is Just the sum of these, or Xi + 2k. In order to specify the

requirements on pressure, a matrix impedance x is assigned to the reflect-

ing surface. This matrix determines the reflectivity characteristics. The

effective pressure driving the surface then becomes the product of Z times

the particle velocity, or Zx(Xi + Xr).
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But the pressure supported by the standing-wave system must be iden-

tical to this value, and is given by Zox ( i - )'. The reversed direction

of propagation for the reflected wave accounts for the minus sign. Com-

bining, we have the boundary condition

~ox ((17)Zox i Xr) = Zx( +r (17)

in the x-scheme. Since our concern is pimarily with the relative amounts of

first and second sound reflected, transformation is made to the -scheme. Em-

ploying (4) and (4a),we have

Z i r r (18)

where Z! is now the characteristic impedance for the surface in the {-scheme.

The same relationship as used before holds for transforming reflector imped-

ances from one scheme to the other, namely

-J sZx (19)

We may solve (18) for the amplitude Ir of the reflected waves, to obtain the

following matrix in terms of the incident waves ~i

-i %Ir = (Zo+F) 1 (Zos -Zji = ( ) .(20)
A2 1 A22 

The diagonal elements 1' A22 represent the fractional amounts of incident

first and second sound amplitudes which are reflected unchanged. Conversely,

the diagonal terms A2' A21 represent transfer of amplitudes between modes.

However, a more significant property of the reflector is the manner in which

intensities leaving its surface are divided between first and second sound.

For our purposes therefore we allow only one mode of sound at a time to strike

the surface and build up a reflectivity array. This array which must not be

confused with a matrix may be written

Reflectivity =

A 2 2
F21 = r/Yli = Psl
tF21 = 2r"/'li =~o ~n2

PFc1 2
F1 2 lr/2i Pn °2 42

2

F2 2 = 2r/Y2i = A2 2

-7-
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Thus if unit intensity of first sound strikes the surface, then in-

tensities F11 = A11 of first sound and F21 (pnc 2 /Pscl)Al of second

sound will leave the surface. Similarly for unit incident intensity of sec-

ond sound, intensities F1 2 of first sound and F2 2 of second sound will be

reflected. In this manner, the diagonal elements play the roles of ordi-

nary reflection coefficients, while the off-diagonal elements act as trans-

fer factors. Evaluation of the reflectivity array will be given for spe-

cific cases in the following section.

4. Special Reflecting Surfaces

We now turn to the examination of specific cases of reflecting bound-

aries, still restricting ourselves, however, to the purely mechanical case,

i.e., no transition between fluid components. The types of reflectors in

which we shall be interested may be divided logically into two main cate-

gories: (1) impervious surfaces and(2) semi-impervious surfaces; (a third

category comprising pervious boundaries* will not be considered here).

4.1. Impervious Surfaces. This category includes any boundary which is per-

meable to neither normal fluid nor superfluid. As a result, the perpendic-

ular component of the internal convection peculiar to second sound is pro-

hibited at the surface (since we have specified infinitely poor heat conduc-

tivity).Therefore 2 is zero at y = 0, so that all second sound is reflected.

We have for the impedance and the reflectivity

ZI =( 0 ; Reflectivity =

0 0

* Pervious boundaries might (
cross-sectional area of a 
sound. Then the effective
differ from the intrinsic
factor f. The impedance ar

Z = fZ Ref]AU -03~.eo

1r i PC1-Z11 

ll_ _pc_+Zl '2i

2r 0 2r 

Yli y2i

(22)

constitute such a trite case as a change in
narrow duct containing He II and conducting
impedance presented at the unction would
impedance of He II only by a linear scale
id reflectivity would be respectively

lectivity =
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where Z1 is the usual mechanical impedance of the surface to an ordinary

acoustical wave (and therefore the impedance experienced by normal sound).

For the element lr/li the absolute magnitude of the ratio is used, since

Z1 may have reactive components. Note the diagonal nature of this array

which indicates no coupling between modes of propagation.

In particular for a very thin membrane (thin compared to a first-

sound quarter wavelength) with low heat conductivity and surrounded by liquid

He II, the mechanical impedance will reduce simply to pc1. This results in

complete transparency to first sound. The array becomes

O 0O

Reflectivity = (23)

(Membrane) 0 1

Its significance is that ideally such a system would constitute a mode fil-

ter, transmitting all first sound, but still reflecting all second sound.

4.2. Semi-impervious Surfaces. The other case we shall analyze involves

reflections from regions of space which present different viscous drag to

the two fluid components of He II. We shall consider only the most ideal-

ized situations. The unequal viscous drag will be supposed due to the pres-

ence of a porous or honeycomb structure through which superfluid may pass

unhindered (zero viscosity is one of the properties of superfluid) but which

presents ordinary viscous friction to the normal fluid component. Further-

more, the honeycomb will be considered so thin-walled that negligible fluid

is displaced by its presence, but sufficiently rigid not to participate in

the mechanical vibrations. This highly artificial condition may then by rep-

resented mathematically by introducing a normal fluid pressure gradient* due

to viscous drag throughout all regions occupied by the structure. We shall

first examine the case where only a thin layer of space is thus occupied

(i.e., a thin porous screen) following which the extension to a semi-infinite

space will be given.

Semi-impervious Rigid Screen. Let the position of the porous screen be

represented by a thin layer of thickness At at the plane y = 0. The influence

of the layer will be manifest entirely through the viscous drag opposing flow

of the normal fluid component. Treating the problem as analagous to a lumped

electrical impedance inserted in a continuous transmission line, the effec-

tive impedance presented by the screen may be written as

-9-
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Z = Z +Rx l*.'X --OX ' (24)

Here the first term is the intrinsic impedance of He II, the second the added

series resistance. This series term involves the matrix

Rx = R ( ) (25)

or in the -scheme

RS =R 1) (26)

where the scalar coefficient Ro is the flow resistance for the normal fluid

component. Making the simplest assumption that flow resistance behaves in the

classical manner with respect to normal fluid, its definition becomes

RoXn = gradpn = Apn/A . (27)

Ro is a real, positive quantity determined entirely by the coefficient of

viscosity of normal fluid, (essentially equal to that of He I) and the de-

tailed porous structure of the honeycomb. This Pn is the excess pressure of

the normal fluid component, as defined in the footnotes on page 5. Converted

to the -scheme, the resultant impedance encountered by incoming waves at

the plane y = 0, becomes

Z += -o H0 (1 ) a . (28)

Applied to (20) the matrix for the reflected waves is

1/pc1 1/pc1
Ir 2 1 1 ( '\.~1i (29)

+1 _+1 ) l/apc2 l/pc2 (29)
c1 apc 2 /

all elements of which become maximum for very large values of Ro . The con-

dition of one-half maximum effect is given by

2/Al
o i/pc I + /apc2 (

For Ro greatly in excess of this value, the refloctlvity would be

-10-



(Reflectivity)Screen
1

1 + 12Pne2 

(31)

Because of the extremely low viscosity of even the normal fluid component

porous material fulfilling this condition wald be virtually impermeable for

ordinary liquids.

Numerical values of the four intensity ratios corresponding to the

reflectivity are shown in Fig. 2. Note that the off-diagonal elements rep-

resent transfer from one mode to the other upon reflection from the screen..

1'.0

J
IL.

I

1.7-
- a-

1.8-

-r
---- A

F22

N

1.9- 2O 2.1
TEMPERATURE (K)- -

X-PoNT

'I-

2.2

'Figure 2. Reflectivity factors versus temperature for thin porous screen.

F11 - - Fraction af first sound reflected unchanged

F2 2 - - Fraction of second sound reflected unchanged

F12 - - Fraction of first sound "reflected" as second sound

F21 - - Fraction of second sound "reflected" as first sound.

Figure 2 illustrates the interesting fact that the two intensity transfer

factors are equal (F1 2 = F21), so that the conversion efficiency is the same

for either mode of incident sound. This is a type of reciprocity.

-11-
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The viscous properties of the thin porous screen result in a greater

impedance mismatch for second sound than for first. Thus the factor F2 2
giving the reflectivity ratio for second sound (fraction reflected without

conversion) greatly exceeds F1 1. This is a direct consequence of the rel-

atively low wave velocity of second sound (cl/c2 -10). Thus from (16) the

impedance (pn/p) UPspn)cl+c21 experienced by superfluid at the screen is
determined primarily by c1 and therefore provides a better match for first

sound. Of course an actual reflector of this nature would displace an ap-

preciable amount of liquid so that corrections would be necessary for devi-

ation from the idealized situation assumed for deriving the curves of Fig.2.

Extended Semi-Impervious Region

Perhaps a more practical reflector for converting first sound to

second, or the reverse, would be provided by the plane face of an extended

porous medium. Thus the interior honeycomb structure of, for example, a

sintered material should provide differential viscous drag to the two fluids.

For the case of pulsed energy, the structure could be considered infinite in

extent (short enough pulses do not detect thickness of a reflector until the

reflection process has been completed).

Here again the true situation can be approximated only crudely by

visualizing all regions for y>O as endowed with viscous properties (with

respect to normal fluid) and determining the resulting characteristic im-

pedance. Space does not permit complete analysis of this case, but it may be

shown that in the extreme situation the flow resistance R will be sufficient

to suppress virtually all normal fluid vibration. This occurs when Rwp.

Under such circumstances the mode corresponding to second sound re-

duces essentially to vibration of superfluid only, without attenuation, and

with effective wave velocity

V PsCl + PnC 2

P

The mode corresponding to first sound,however,degenerates to an over-

damped motion, for which the resistance to normal fluid vibration virtually

precludes flow of energy.

Accordingly, this boundary should reflect a greater relative propor-

tion of first sound than did the thin porous screen. Furthermore, the more

drastic modifications of the boundary conditions should result in numerically

greater coupling factors, F1 2 and F2 1.

-12-



5. Phenomena Involving Heat Transfer

5.1 General Considerations.Thus far analysis has been simplified by the as-

sumption of zero heat flow between the liquid He II and the reflector. We

may now include the effects of such heat interchange. This process occurs

for example when the boundary is formed by the liquid surface in equilib-

rium with its vapor, and is the case investigated experimentally by Lane

Such a licuid-vapor interface rovides coupling between the two types of

sounds in the liquid and the classical sound in the vapor. For simplicity

we consider only perpendicular incidence of sound waves against the free

surface.

Coupling takes place due to periodic evaporation and condensation of

helium at the surface. The situation for helium differs markedly from that

of a classical liquid in equilibrium with its vapor. For ordinary liquids

the temperature fluctuations accompanying the evaporation-condensation pro-

cess occur only at the interface, being thus localized by the condition of

adiabaticity. However, in He II an adiabatic means for heat transfer is

provided by second sound. In this manner temperature fluctuations occuring

at the surface may be detected at (or reciprocally, generated from) well

submerged positions. We show in fact that the impedance encountered at the

surface by incident waves of either first sound, second sound, or the vapor

mode involves all three modes. This has a direct bearing on acoustical

resonance methods such as employed by Lane.

To establish the boundary conditions existing at the interface it is

necessary to consider both the temperature fluctuation and the heat flow

inherent in second sound. Variations in temperature are produced by the

varying relative concentration of normal fluid according to an empirical re-

lationship deduced from experiment

pn = r _T (32)
Pn T

The factor r has been evaluated numerically as about 5.5. Equation (12a)

relates this concentration to incident and reflected waves so that

n V2 f2 i 2r) = r -T (33)
Pn 2 T

(where the sign has been reversed for the reflected wave velocity). For

purposes of computation we now make the assumption that the vapor pressure

fluctuations which occur at the surface are given directly in terms of AT/T

by means of the Clausius-Clapyron equation. Although this is probably not

-13-



the physical situation* the assumption suffices for specifying conditions of

resonance. Hence the vapor pressure pg is

Pg p-p T L P 2p T 2 -g PC2(52i 2r 
g 2re 

where L is the latent heat of vaporization at the ambient temperature, and

pg the vapor density. The boundary requirement that pressure be continuous
across the interface results in

Pg .
rL 2 p-pg Pc 2 ( 2 1 - r) = pcl(i lr) PgCg(xgi - Xgr) (35)

where x and c represent particle velocity and wave velocity, respectively,

for the vapor. This states that the pressure associated with the interaction

between second sound and the surface must support (and therefore equal) both

first sound pressure in He II and classical sound pressure in the vaporS*

The boundary condition for particle velocity at the surface is a state-

ment of the equation of continuity. This must take into account the alternate

changes in material volume due to the periodic interchange between liquid and

vapor. The evaporation rate is fixed by the heat transfer characteristics of

second sound in He II according to a relationship given by Tisza. Therefore

we have

heat flow = pgLvg = sT(S2i + J2r) (36)

where s is now the specific entropy and vg the vapor particle velocity. Note

that since the wave velocity c2 does not enter explicity into (36) there is

no change in sign for the reflected wave.

We may now express our condition of continuity

PsL (i2i + 2r ) + + 1r)- g + gr (37)
g

The first term represents source (or sink) of volume due to second sound; the

latter two constitute ordinary particle flow due to He II first sound and

classical sound in the vapor. Finally, by combining (35) and (37) and elimi-

nating the time derivative, we obtain

1 j 2i + 1 t + lrl+ 1 iii + r O (38)
PPC2 12i fl Sfce Ili - lr |9 

* It has recently been learned from Dr. Onsager that a dissipative process
occurs at the surface which could be taken into account by the insertion
of a complex factor in (34). This would lead to expressions for the
heights and widths of resonance peaks in the Lane experiment.

** The minus sign precedingthe last term of (35) accounts for the reversed
sense of incidence for sound in the vapor.
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where the quantity occuring in the term for second sound is given by

= - (pgL)2/(Ppg)rc 2
2sT. Expression (38) establishes the relationship be-

tween the two types of sound in the liquid and the sound in the vapor. This

is applicable either to a situation involving acoustical resonance (Yale

experiment) or to the case of short pulses where the geometry of the equip-

ment does not enter. Note that the above result (38) is completely analo-

gous to an electrical situation involving two different transmission lines

in parallel with a third at a common unction; each line has a different

characteristic impedance. In this respect pc 2 enters as an effective

characteristic impedance for second sound insofar as interactions with the

other types are concerned.

5.2. The Experiment of Lane and Collaborators. Condition (38) is directly
4

applicable to the resonance experiments conducted at Yale . The physical

situation is idealized in Fig. 3. Here is shown a vertical column of liq-

uid He II of depth d, beneath a column of helium vapor of height h.

RIGID TOP

r 1
h

VAPOR

He Ir
d

l-CLASSICAL
TRANSDUCER

`-INTERFACE

TRANSDUCER
/FOR SECOND SOUND

CLASSICAL
/TRANSDUCER

RIGID BASE

Figure 3. Coupling due to liquid-vapor interface
(idealized Yale resonance experiment).
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Classical transducers, for ordinary sound in the vapor and first sound in

the liquid, are provided both at the extreme top and extreme bottom of the

containers. In addition, a second-sound transducer is located at the bot-

tom. Measurements consist, in general, of activating the second-sound trans-

ducer and detecting a signal with one of the classical transducers, or the

reverse. As either the frequency or height of the liquid is altered, a suc-

cession of resonance peaks is observed.

The precise conditions of resonance depend upon a variety of factors,

such as the top and bottom impedance of the container and the internal imped-

ances of the transducers. Only the simplified situation of completely rigid

container ends and infinite internal impedance for all transducers will be

considered here. (That is, classical transducers of the pressure type; and

second-sound transducers of the temperature7 i.e., low heat flow--type).

Also it is considered that for the steady state, the waves become one-dimen-

sional and plane.

Under such conditions (not necessarily the experimental ones) maximum

energy would be fed to the system for resonance conditions, i.e., matched

to infinite impedance. This condition is specified by modifying (38) for

infinite top and bottom impedances. Accordingly

1 2vd + 1 2vd 1 2rvh
2tan c- + 1 tan - + - tan c = 0 (39)

pc -a1 BPC2 02 Pgc g

gives the requirement for resonance, where v is the frequency. This condition

holds for any of the transmitter-receiver combinations.

Additional factors, such as dissipative effects occuring at the surface,

would have to be introduced for computing heights and widths of resonance

peaks. Furthermore non-infinite impedances would alter the conditions of

resonance (39), by modifying the effective depth d or height h. For example,

a Ulow-impedance" type of second-sound generator (i.e., ratio of temperature

fluctuation to heat flow, small) would result in the replacement of the tan

of the second term by cotan. Similar alterations in (39) would occur for

other modifications in the equipment.

Note that for this particular situation involving resonance, no recourse

is made to the matrix method . For less specialized cases, however, such as

reflection of short pulses from the surface, the previously derived matrix

formulation would be used.

6. Conclusions

The transmission and reflection of sound in He II is formulated on the

basis of a matrix representation. A system of generalized coordinates

(- scheme) is used for expressing energy flow, whereas true coordinates (x-

scheme) are used for setting up boundary conditions at the surface of a re-

flector. The reflectivity conditions for the case of normal incidence are
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expressed by means of transformations between these two systems. Distinction

is made between reflectors(l) for which heat exchange with the liquid helium

plays a basic role, and(2) those for which no heat transfer takes place. Con-

cerning(2),it is shown that impervious (or impenetrable) surfaces reflect all

incident second sound. Coupling between first and second sound occurs only

for semi-impervious surfaces for which the superfluid component experiences

less viscous retardation than does the normal fluid. Reflectivity curves are

given for the case of a thin, semi-impervious screen, for which transfer of

intensity between modes may reach 15 per cent. That the coupling factor for

such a surface is identical for either type of incident sound constitutes a

type of reciprocity. Concerning(l), the boundary condition governing reflec-

tion of acoustic energy from a liquid-vapor interface is given. Special

modifications for the case of resonance are applicable to the Yale type of

experiment.
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