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Nonlinear Instability Behavior of a High Speed Multistage Compressor

By

Hong Shu

Abstract

This Thesis describes the development and application of a nonlinear

analysis for examining the instability inception process in multi-stage high speed

compressors. The goal is to develop a numerical procedure which can capture

the unsteady behavior of these type of turbomachines and to use the model to

assess the influence of non-linearities on stall onset. The model is built on two-

dimensional unsteady compressible description of the flow in the blade free

regions with a distributed bodyforce field to represent the flow inside the blade

row. The numerical scheme is Jameson's finite volume method and time-

matching technique. The thesis shows comparison of the computational

program against several different cases including a four-stage high speed

compressor run at Wright Laboratory. The calculations show that as observed in

practice, the system can be driven unstable at a normally linearly stable

condition by external forcing. An investigation has also been conducted on the

effect of different forcing structures on stall inception.

Thesis Supervisor: Professor E.M.Greitzer
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Nomenclature

a: speed of sound

A: area

bx: non-dimensional axial chord

c: local speed of sound

dmj: mass flow rate change across the cell (j,k)

dmb: mass flow rate change across a blade

E: total internal energy

F: four component vector in Euler equations

F : axial bodyforce

Fy: circumferential bodyforce

G: four component vector in Euler equations

H: total enthalpy

M: Mach number

ri: mass flow rate

n: harmonic number

P: static pressure

r: compressor mean radius

R: streamtube thickness

S: source terms of Euler equations

Sx: switch in x direction in numerical smoothing

Sy: switch in y direction in numerical smoothing

t: time

T: temperature



u: axial velocity

Ur: rotor rotating speed

v: circumferential velocity

V: volume

x: axial coordinate

y: circumferential coordinate

p: density

y: specific heat ratio

72: non-dimensional constant in numerical smoothing

74: non-dimensional constant in numerical smoothing

At: time step

0: flow coefficient. O=u/ Ur

y: total-to-static pressure rise

3: flow angle

il: adiabatic efficiency

z: time lag constant

X: rotor inertia parameter

p.: compressor inertia parameter

a: growth rate

o: rotating frequency

Subscripts:

1: leading edge of the blade

2: trailing edge of the blade

j: number of grid in axial direction

k: number of grid in circumferential direction



E: east side of a computational cell

N: north side of a computational cell

W: west side of a computational cell

S: south side of a computational cell

t: stagnation quantity

*: critical quantity

mx: total number of grids in axial direction

P: quantity in the plenum

c: quantity in the compressor

T: quantity in the throttle

a: quantity in ambient

': relative quantity

s: quantity in the stator

r: quantity in the rotor

is: isentropic

ss: steady state

Superscripts:

(0): previous time step

(1): stage 1 of four-stage Runge-Kutta method

(2): stage 2 of four-stage Runge-Kutta method

(3): stage 3 of four-stage Runge-Kutta method

(4): stage 4 of four-stage Runge-Kutta method

n: time step n



Chapter 1. Introduction

1.1 Background

Rotating stall and surge are widely recognized as the instabilities which

limit the operating range of compression systems. Surge is a low frequency,

essentially axisymmetric oscillation which involves the whole compression

system. Rotating stall is a wave propagating in the circumferential direction at a

fraction of rotor frequency, which is localized to the compressor blade row

region.

Because rotating stall and surge can have significant effect on gas turbine

engine operability, there has been a large amount of research on the basic fluid

dynamics of these phenomena as well as on ways to avoid or control them.

Many of the previous work have concentrated on low-speed (blade Mach

number less than 0.3) compression systems[1,2,3,4]. However, modern

compressors have blade Mach numbers around 1.0, and a natural question is

whether there are differences concerning these instabilities between low-speed

and high-speed compressors.

There has been some recent work on rotating stall and surge in high speed

compressors[5,6,7,8,9]. Prior to the work of Tryfonidis et. al[12], the conclusion

was that there were no basic differences between the unsteady behavior at low

and high speed compressors. Tryfonidis et al pointed out that compressibility

which had an axial structure introduced another class of modes. The

experimental data presented showed that it is one of the compressible modes

which becomes unstable first. Further, the rotating speed is near shaft speed in a



high-speed compressor running at 100% corrected speed. In low speed

compressors, the wave which first goes unstable is an mode which rotates at 0.5

shaft frequency or less and which we will refer to as the "incompressible mode".

This low speed behavior is captured by the incompressible Moore-Greitzer

model [2], while the high speed behavior is shown in the stability analysis of

Hendricks et al.

A typical experimental result is given in figure 1.1, which shows a

Spectral Density (PSD) plot of the experimental data of a high speed 4-stage

compressor (the EFC compressor tested at the Air Force Compressor Research

Facility) at 100% corrected speed. A wave traveling at shaft frequency grows in

amplitude as the throttle is closed. This shaft frequency wave, which can be

driven by the non-uniform rotor geometry, does not show the same growth in

low speed compressors. We associate this wave with the natural mode predicted

as the least damped by the compressible linearized stability model. The

compressible mode with a frequency near shaft frequency is excited by the

external forcing. The measured reflect both this forcing and the resultant

dynamic response of the compressor.

The two-dimensional compressible linearized stability model mentioned

above ([13],1991) was first developed by Bonnaure and updated by Hendricks

([10],1993), and applied to active control by Feulner ([18],1994). This approach

treats the compressor as a series of actuator ducts (1 per blade row) separated by

inter-blade row volumes, with suitable matching conditions at the leading and

trailing edges of each blade row. The results of the calculation include the

determination of the neutral stability operating point, and the circumferential

and axial shape of the perturbations, the wave rotational frequency and growth

rate. It is the compressible mode which dominates at high corrected speed.



Applications of this model to high speed compression systems reveal that

there are infinite number of modes for each spatial harmonic, in contrast to the

incompressible case where there is only one mode for each spatial harmonic.

The lowest frequency mode has a circumferential wavelength equal to the

compressor perimeter and the local mass flow is nearly uniform along the axial

axis, similar to the mode in the incompressible machine. We refer to this as the

"incompressible mode". In terms of circumferential and axial wave number we

designate it [1,0] for n=1, [2,0] for n=2, etc. The next lowest mode is therefore

[1,1] for n=1 with an axial wavelength scaling on the compressor length.

The linearized approach only applies to small perturbations. The stall

inception process, during which the waves grow to large amplitude, is not

described by this model and the assumption that each spatial harmonic and each

mode evolve independently is no longer true as the wave amplitude grows. In

addition, determining the influence of external forcing is beyond the scope of the

linear theory. For example, experimental data on high speed compression

systems show that instability occurs at a mass flow where the damping ratio

positive. It is hypothesized that the cause of this is that finite disturbances are

encountered which are large enough to induce a nonlinear response of the

system.

Mansoux et al(1993) developed an incompressible nonlinear stability

analysis of rotating stall using a Liapunov function approach[16]. This showed

that a linearly stable equilibrium point with a small domain of attraction can be

destabilized by a large enough perturbation. Specifically, in a compression

system when the so-called domain of attraction of an operating point becomes

very small, disturbances which might be considered "linear" in magnitude can



actually be unstable due to nonlinear effects. Mansoux's analysis however does

not describe high speed machines.

1.2 Objectives.

The objective of this thesis is to develop a computational nonlinear

stability analysis of the compressible flow in multi-stage high speed

compressors. The model should be able to capture the main features of the

transient behavior of rotating stall and surge, and the effect of external forcing

on compressor instability.

1.3 Approach.

The compression system includes an upstream duct, a multi-stage

compressor, a downstream duct, a plenum and a throttle. The basic unit in the

compressor is the blade row, which is separated from other blade rows by an

inter-row gap.

The flow in the upstream and downstream ducts as well as gaps are

modeled using a two-dimensional unsteady compressible description. The flow

inside the blade passage is represented by an unsteady compressible flow with a

distributed bodyforce field which is determined by the blade row characteristics

(pressure rise and exit flow angle). In the plenum and throttle, the flow is

modeled using a one-dimensional unsteady compressible description [1].

The numerical scheme to solve the fluid dynamic model is Jameson's

finite-volume method and time-matching technique.



The stability of axisymmetric disturbances can be investigated by

decreasing the throttle area. Flow transients resulting from a small change of

the throttle area are damped until a critical operating point is reached, at which a

growing transient occurs, finally developing into a limit cycle called "surge".

Stability of the rotating wave can be simulated by imposing a circumferential

disturbance on an axisymmetric steady-state flow field and tracking the system

response to this disturbance. The disturbance will grow or decay depending on

the operating point. The growth rate and rotating frequency of this

circumferential disturbance can be obtained from its time history.

1.4 Thesis overview

Chapter 2 of this thesis addresses the numerical model including the

aerodynamic description of each part of the compression system and the

formulation of source terms which appear on the right-hand side of unsteady

Euler equations and which represent the flow inside blade rows.

Chapter 3 describes the test cases used to assess the model. Comparison

has been carried out with a two-dimensional non-linear incompressible

computation done by Gong[24] by simulating a hypothetical single-stage

compressor with blade Mach number of 0.2. Calculations are performed for a

NASA three-stage compressor and a four-stage compressor at Wright

Laboratory. Comparisons of mean flow calculations with results from another

CFD calculation done at Pratt & Whitney are also made. The stability

calculations are also compared with a linearized compressible analysis, as well

as experimental data.



In chapter 4, an investigation of the effect of forcing on stall inception will

be performed. Specifically, we wish to see how the stall inception point changes

with different level of (a) forcing by an extend disturbance rotating at shaft

speed and (b) forcing due to a stationary disturbance.



Chapter 2. Description of the Fluid Dynamic Model

2.1 Geometry of the compression system

The compression system considered here consists of five parts: an

upstream duct, a multi-stage compressor, a downstream duct, a plenum and a

throttle valve. The layout of the system is shown in figure 2.1, which is a cross-

section along the circumferential direction.

- throttle

upstream compressor downstream plenum
duct duct

Figure 2.1 Compression system configuration

The upstream and downstream ducts are straight cylindrical channels

with constant area. The basic units inside the compressor are a blade row which

can be inlet guide vanes, a rotor, or a stator, and a inter-row gap which separates

blade rows.



2.2 Assumptions

The compressor is taken to have high hub-to-tip ratio so that radial

variations of the flow quantities can be neglected. Area changes are taken into

account. The flow is considered adiabatic. The bodyforces inside the

compressor are determined by the compressor characteristics (which are known

from experimental data or from results of a mean flow prediction model). These

bodyforces are the way in which viscous effects are taken into account.

2.3 Modeling ducts and inter-row gaps

2.3.1 Equations

The fluid mechanics in the upstream and downstream ducts as well as in

inter-row gaps are described as the motion of an unsteady inviscid compressible

gas in two dimensions. Adding varying streamtube thickness in the third

direction to account for area change, the quasi three-dimensional Euler equations

in conservative form and in Cartesian coordinates are as follows:

TU aF aG
+ + D= S (2.1)

at ax Dy

where U, F and G are four component vectors given by:

pR ' puR pvR 0

puR (pu2 + P)R• pu v R  p R
U= F= G= S= ax

pvR puvR (pv 2 + P)R 0
pER) puHR pvHR 0



In these equations R is the streamtube thickness. The pressure P, and total

enthalpy H are related to the density p, velocity components u and v, and total

energy per unit mass E by the following two equations which assume a perfect

gas with a constant specific heat ratio y:

P=(y - 1)p[E- (u 2 + V2)] (2.2)
2

P
H = E +- (2.3)

Additional equations which will be required are the definitions of the

speed of sound, Mach number, stagnation pressure and stagnation density.

c = P (2.4)
p

2 r
M = + (2.5)

c

P, = P(1+Y-M2)y-1 (2.6)2
1

Pt = p(1+ Y-lM2 y-1 (2.7)

The flow variables are non-dimensionalized using the upstream

stagnation density, the stagnation speed of sound and the mean radius. This

leaves the equations unchanged and gives the following inlet stagnation

quantities:

1 1
Ht =- Pt =1, Pt -



2.3.2 Numerical scheme

To solve equation (2.1), the node-centered Jameson finite volume scheme

is used.

1. Finite volume discretization:

Take the integral of equation (2.1):
d fUdg+ f(Fnx

dy
n=(

dl

d UdQ + f (Fdy
dt Q

+ Gny)dl= J SdK2
Qsd

dx

dl

Figure 2.2

-Gdx)= fSdK2

In figure 2.3, node (j,k) is surrounded by a cell ABCD with four sides

marked E,S,W,N.

(2.8)

(2.9)



(j,+1)

V y

(j-1,) (j,) (j+],k)
A B

(j, -1)
y

x

Figure 2.3 Grid and cell for cell-centered scheme

The grid of points A, B, C, D is:

A: (j-1/2, k-1/2)

B: (j+1/2, k-1/2)

C: (j+1/2, k+1/2)

D: (j-1/2, k+12)

Using equation (2.9) on cell (j,k):

SUd2 + (FAy - GAx)E + (FAy - GAx)N +

(FAy - GAx)w + (FAy - GAx)s = ISdQ
qj,k

Where:

U Ud
Uj, k = j,k

Rj,k

average value of U over cell (j,k)

(2.10)



fdQ = Aj,k  area
2j,k

f Sd J SdQ
s j,k _ j,k

jk = d2 Aj k

Qj,k

Thus:

dUj,kAj,k d + [FE (YC - B) - GE (XC - XB)]+dt
[FN(yD -yC)- GN(xD -xC)] + [Fw(YA -YD) - Gw(A - XD)]+ (2.11)

[Fs(YB - YA)- GS(XB - XA)] = Aj,kSj,k

FE can be approximated as:

FE = F.j+k = (Fj,k + Fj+,k)

2

so is GE, FN, etc.

Writing (2.3) in short:
dU 1

dUjk _ I Fluxes + Sj,k R, k  
(2.12)

dt Aj,k

2. Time discretization:

A four-stage Runge-Kutta method is used here:

U (O) = U n  known value at time step n

U ) = U(O) + AtR(O)
4

U(2) = (O) + 1 AtR(1)
3

U(3 ) = U() + 1 AtR(2)
2

U (4) = U (0) + AtR (3)

U n+1 = U (4) new value at time step n+1



3. Numerical smoothing:

Most discrete approximations to the Euler equations require the addition

of numerical smoothing (or artificial viscosity) to overcome two problems:

1). Dissipation of steady high wave number oscillations which have wavelengths

comparable to grid spacing, and which are solutions of the finite difference

equations, but not of the partial differential equations. These waves can amplify

and lead to instability.

2). Capturing of shock waves is needed to suppress or limit overshoots.

The semi-discrete cell-based Euler equation with numerical smoothing is:

dU,k
Aj,dUk + ( Fluxes - Aj,kSj,k) = Dj,k (2.13)

j'k d

where
A A

Dj,k = 72 [x (Sx At - U) + 8 (Sy A SyU)]j,k -

At At
74[8x( At ( A GYU)]j,k

72, 74 are non-dimensional constants; 72-0.05~0.5, 74=0.01,

Sx, Sy are switches to be defined later.

Combining Dj,k with fluxes, (2.13) becomes:
dUk

A,k djk + (I mod ifiedfluxes - Aj,kSj,k) = 0 (2.14)
j'k d

For example:

(mod ifiedfluxes)E = FEAYE - GEAXE - 72 ( )E (Uj+l,k - Uj,k )+

74( )E (Uj+2,k - 3 Uj+l,k + 3Uj,k - Ujl,k)

(mod ifiedfluxes)w = FwAYw - GwAXw + 72 (--t)W (Uj,k - Uj-l,k)

A
74 ()W (Uj+1,k - 3 Uj,k + 3 Uj-1,k - Uj-2,k)



There are several ways to calculate S, and Sy. Here the following

formula is used:

X IPj+1,k - 2Pj,k + Pj-,k

j,k(2.15)

Pj k+1 - 2 P j k + Pj,k-I
SY I j,k +

Pj,k

2.3.3 Time step

For the Cartesian mesh used in this calculation, the maximum time step

among all cells for Jameson's method is:

Atmax = y (2.16)
IulAy+ vIAx+c ~A2 +Ay2

In practice, At is limited to 0.9-0.95 Atmax

2.3.4 Boundary conditions

1. Subsonic inlet boundary

The inlet stagnation pressure Pt, the stagnation temperature Tt and the

flow angle 0 are specified. As stated in 2.3.1, the flow variables are non-

dimensionalized using the upstream stagnation density and stagnation speed of

sound, so the inlet stagnation quantities are:
1 1 1

Ht = , t = 1, Pt =- Tt -
Y - 1 tY yR

The static pressure, temperature and density can be expressed as

functions of axial velocity as follows (see NACA Report 1135)

Y -1 u 2 Y
P = Pt [1 - (1+ tan 2 0)2] - 1 = P(u) (2.17)



T = Tt[1-
7-1

(1+7+1

71+
'Y + 1

2

tan 2 0 ) 2 l= T(u)
au

1

tan 2  ) -1 = p(u)
a*

To close the system of equations, we select the characteristic relations

coupling the boundary with the interior flow volume.
P p u P au (220)

pc = -(u - c)( pc (2.20)
at at ax ax

The implicit finite difference relation is:

SP - pc8u = 4[P 1 - Po
1+ X4

(2.21)

(0,1:) (1 k)

Figure 2.4 Grid at inlet boundary

where
At

X4 =(U- C)
Ax

6P = Su
au

R
Su =

--- - pc

Thus

where

Pt [1-
7-1

- 1(1+
y+1

tan 2 0)
a*

2u 1+tan2 0[1 -1(1+
a2 7+1 (1+
aj y+1 y+1

]-1
y+1 (+tan2) 2
Y + a*

2
tan2  ) 2 ]Y-

a,
(2.22)

(2.18)

(2.19)

- pc(ul - uo) ] - R



Hence:

u 1 = u0 + 6u

vo+1 = u 1 tan 0

P~+1 = P(un+l)

Tn+1 = T(un+1 )

po+1 = pn+1 / (RTn+1)
a2 2

Here * - ,
ao y+1

and ao = yRT= 1,

2 Lso a*
y+1

2. Subsonic exit boundary

The exit boundary considered here is the exit of the downstream duct. So

Pexit equals the plenum pressure Pp, and Pmx+l= Pexit

Assume Pexit is specified. The for

points (mx, k) and (mx+l, k) at the exit are:
ap 1 P

at C2 at
aP aua + pc
at at
av av
at 3x
aP au

- pc-- =at at

ur characteristic relations connecting

ap 1 ap
= -u( )ax C2  X

= -(u + c)( + px

-(u - ap
ax

Cu

ax

(2.23)

(2.24)

(2.25)

(2.26)
cu

ax
Implicit finite difference approximations for the above relations are given as

follows:
S _____1p g P 1 Pmx+l - Pmx 2 (Pmx+l - Pmx)] =- R1

c 1+ , c

8P + pcu- [Pmx+l - Pmx + pC(Umx+1 - Umx)] R 21+ ,2

(2.27)

(2.28)

(2.29)V = _1 (Vmx+ 1 - Vm x ) = R3
1+ h,



6P - pc6u - [Pm+ 1 -Pmx - pc(umx+l - ux)] - R4  (2.30)
1+ 4

The quantities 1, X2, and X4 are:

uAt
Ax

Solving for 6P:

R2 + R 4

8P= 2
0

(u + c)At

Ax

u
(M= x > 1)

cmx

(M < 1)

Thus:
1

6p = R1 + 2 6P

6u = R2 - 6P
pc

6v = R3

Therefore:
Pn+1 pn +6

mx+1 mx+1
n+1n+1
mx+l = Umx+1 + 8
n+1

mx+ = x+ + 8v

The exit boundary considered here is the exit of the downstream duct. So

Pexit equals the plenum pressure Pp, and Pmx+l= Pexit-

2.4 Modelling the plenum and the throttle

The continuity equation for the plenum [2] is:

S= pVp dPp

yP dt

(u -c)At
I/ 4 =

(2.31)



Pa

\ Throttle

Plenum

Figure 2.5 Plenum and throttle

In (2.31) ric is the mass flow through the compressor.

riT is the mass flow through the throttle.

Vp is the volume of the plenum.

p, P are the density and static pressure at the exit of the downstream

duct.

Since the plenum serves as an upstream reservoir for the throttle, rh T can

be expressed as:

rfiT = AT 'PPP
MT

y+1

(1 - 1 M2) 2 (y-1)
2

AT , the area of the throttle which determines the compressor operating

condition, is specified.

MT is the Mach number of the throttle. MT is related to the plenum

pressure by:
Y

P =(1 + M2 )Y-

P, 2

Y

< (1+ )-1=1.893
2

(MT =1 is the choking condition)

(2.32)

(2.33)



Thus

F2 PyP < 1. 893

MT 'Y - 1 Pa - Pa .Pp > 1.893
Pa

Now MT can be expressed as a function of Pp.

Then,
dPp_ 7P

d - (ric - rh T ) RT (2.34)
dt pVp

Apply four-stage Runge-Kutta method for time discretization as follows:
p(O) = pn

p() = (p(O) + 1 AtR

p(2) = p(O) + 1 AtR 1

p(3) = p(O) + 1 AtR(2)
P P 2 T

p(4 ) = p(O) + AtR(3)
P P T

pn+ = p(4)
P P

2.5 Modelling the flow in blade rows

The flow in a blade row is represented by a locally uniform flow with

distributed bodyforces. Locally no gradients of the fluid properties in the

tangential direction are taken into account, but a hypothetical bodyforce changes

the tangential momentum of the fluid.

In some engines, air is taken out from some blade rows in the compressor

for various reasons such as cooling the turbine blades, which is called "bleeds".

Since this model will be used to simulate modern high speed compressors, it

should be able to address flow through a compressor with mass flow changes.



Change of mass flow through a blade row is represented by a source term in the

continuity equation.

2.5.1 The equations

Derivations of the one-dimensional unsteady compressible flow equations

in the cascades with bleeds and area changes are given in Appendix 1. The

equations are:

continuity:
a(pR) a(puR)a(R) + uR= dmj (2.35)

at 3x

axial momentum:

a(puR) a [(pu 2 +P)R] aR+ -= P - + F x + dmju (2.36)
at ax ax

circumferential momentum:

a(pvR) a(puvR)a(vR) a(puvR) = Fy + dmjv (2.37)
at ax

energy:
a(pER) a(puHR)a(ER)+ a(uHR) = dmjH (2.38)

at ax

The quantity dmj is the mass source per unit length along the axial direction.

Fx and Fy are axial and circumferential bodyforces.

The above equations also apply to the flow in the rotor relative frame

(t', x', y'), but the flow variables are all relative quantities (with prime). The

equations are:
a(p'R) a(p'u'R)-- + = dmj (2.39)

at' ax'
a(p'u'R) a[(p'u'2 + P')R] aR 'at' = P a + F  + dmju' (2.40)

a(p'v'R) a(p'u'v'R)v (2.41)+ = F + dmjv' (2.41)at' ax'



a(p'E'R) a(p'u'H'R)+ = dmjH' (2.42)at' 3x'

We need to transform these equations into the absolute frame with the

relative flow variables, then replace the relative quantities with absolute

quantities in order to obtain the flow equations in the rotor blade row. The

relations between the relative coordinate (t', x', y') and the absolute coordinate

(t,x, y) are:

t= t'

x = x' (2.43)

y = y' + cot'

where co is the rotor rotating freqency, and co = U/r . Ur is the rotor speed and

r is the compressor mean radius at mid-span. Here r=1 because it is non-

dimensionalized by itself.

The relations of derivatives in the relative and absolute coordinates are:

a a
ax' ax x' ax (2.44)
a a at a y a 4

=-- + + +Ur
at' at at, ay at at ay

The equations in the rotor relative frame can be transformed into the

absolute frame as shown below:
a(p'R) + a(p'u'R) a(p'R)+ + Ur dmj (2.45)

at ax ay

a(p'u'R) a[(p'U' 2 + P')R] a(p'u'R) , R + dm+ +U r  =P +F +dmu
at ax r y ax

(2.46)
a(p'v'R) a(p'u'v'R) a(p'v'R)

+ + U r  = Fy + dmjv' (2.47)
at ax yr

a(p'E'R) a(p'u'H'R) a(p'E'R) dmH'
at ax ay

The relations between relative and absolute quantities are as follows:



p'=p

u' u(2.49)

V' = v - U r

The continuity equation (2.45) and the axial momentum equation (2.46) will

remain the same with absolute quantities.

Using the above relations in the circumferential momentum equation

(2.47), we obtain:

a(pvR) + (puvR) + (pvR)
+ + Ur

t ax ay

= F, + dmj(v- U,)

(pR)
at

a(puR)
+ + Ur

3x

U (pR) (puR) (pR)
at x ' y

(2.50)

a(pR)
ay

(2.51)

(2.50) becomes:
a(pvR) a(puvR)

+ a(pvR) _
+ U, - =

In equation (2.48),

E' = - + 1 (u2
y-1p' 2

1 2
H'=H-vU + 1 U2

+ v' 2 ) = E -
1vUr U

(2.53)
V 2 r(2.53)

Equation (2.48) becomes:
a(pER)

at
+(puHR)
3x

a(pvR)
Ur[atat

a(puvR)

3x
SU(pvR)Ur

1 2 (pR) + (puR)
2 r t ax

= dmjH - Urdmjv

+ Ur (pR)]
ry

12
+- U dmj

Using:

F, + dmjv (2.52)

+ Ur
D(pER)

(2.54)



Substitute equations (2.51) and (2.52) into (2.54) to get:
D(pER) D(puHR) D(pER)+ + U UrF + dmjH

at ax Dy
(2.55)

The equations in the stator and rotor blade rows can be written in the

same form as equation (2.1):
aU aF

at 3x
(2.56)

In a stator:

rpuR
F (pu2 + P)R

puvR

,puHR

G=O S=

dmj

aR
Fxs + P - +

ax
Fys + dmjv

dmjH

dmju

puR

(pu 2 + P)R
puvR

puHR

(PUrR

puUrR

pvUrR
pEUrR)

dmj

F,xr + P-
ax

Fy + dmjv

UFyr + dm

The numerical scheme applied to equation (2.1) as described in sections

(2.3.2) and (2.3.3) is used here.

2.5.2 Modelling the source terms

The so-called source terms are the terms on the right hand side of

equation (2.56). Since (2.56) is solved for the four basic flow variables u, v, P, p,

the bodyforces Fx, Fy in the source terms should be represented by these basic

pR
puR

U=pvR

pER

In a rotor:

(pR

puRU = p
pvR

pER

+ dmju

jHj

aG+ = S
Dy



variables and some specified quantities. We must also determine dmj given

mass source in each blade row.

We need to decide what quantities should be specified to determine Fx

and Fy in a rotor and a stator. Two quantities are needed since there are two

unknowns in either a rotor or a stator. A total-to-total pressure rise characteristic

is chosen as one specified quantity for both a rotor and a stator. Then, the flow

angle is chosen as another specified quantity in a stator; and in a rotor, the

adiabatic efficiency is used to determine how much percent of shaft work are

used to increase the total pressure across the rotor.

A stator and a rotor are thus treated differently.

1). In a stator, there are three unknowns:

dmj, FxI Fys

We specify:

dmb: mass flow source of the blade row, a function of the local flow

coefficient 0, dmb = f,(0)

APt: total pressure rise across the blade row. Also a function of the

local flow coefficient 4, AP = f2()

13: flow angle, fixed value.

According to the definition of dmj in section 2.5.1, which is the mass flow

change per unit axial length:

X2 dmidx = dmb (2.57)

The quantity dm, is the axial distribution of dmb. Since dmj=O in the inter-row

gaps, we use a sinusoidal function with value and derivatives of 0 at both the

leading and the trailing edges to have a smooth distribution of this source term

in the compressor.



dmj = adm sin[ 2 (x - x 1 ) - - ] + (2.58)
X2 - X1 2

Substituting dmi into equation (2.57), and solving for adm:

adm = dmb (2.59)
X 2 - X 1

The circumferential bodyforce changes the tangential momentum of the

fluid. It can be formulated in the following way:

Ei h (uj tan Pjw - uj tan (j )F (2.60)
(Xj+ 1 - xj)

where ijw is the specified fixed flow angle of cell (j,k).

pj is the current flow angle of cell (j,k), Pj = atan(vj / uj).

E is a coefficient used to adjust the amount of bodyforce so to get the

desired flow angle.

Pj

(j,k)

Figure 2.6 Flow angles on a cell

When p1> 3jw as shown in figure 2.5, Fys is negative, which means that a

downward bodyforce needs to be put on the fluid to make flow angle close to

the given value.

To calculate the axial bodyforce F, we are given APts = f(0j) defined by

t2 =1+ ts (2.61)
Pt 1  Pt1

Given this total pressure rise, if it were an isentropic process, we would have:



y-1

Tt2 = (2.62)
Ttl is Pti

ATts is = (Tt 2 - T )is = Ttl( -1) (2.63)
tl is

We need to distribute this isentropic total temperature change into each

cell. Using the same function as (2.58), we have the isentropic total temperature

change of a cell (j,k) as follows:

dT .=aTt sin[2 2 (xj - xl) ] + 1 (2.64)

Where

aTt = ATts lis

X2 - X1

The isentropic enthalpy change of a cell (j,k) is given by:

AH = rnCp dT Jis (2.65)

Because the flow is assumed adiabatic, the work done during the

isentropic process is: Wj is = AHj lis. For blade passages with high solidity, we

can assume :

j lis = Fxsu j + Fysv j  
(2.66)

Thus

Fxsuj + Fysvj = Ht is (2.67)

AHt lis -FysVj
Fxs = (2.68)

uj

We should keep in mind that the real process is not isentropic, because

there are dissipation terms on the right-hand side of energy equation aside from

the work done by bodyforces. The work done in the stator is zero, as reflected in

the energy equation (see Appendix 1).



2). In a rotor, there are three unknowns:

dmj, Fx, Fyr

We specify:

dmb: same definition as in the stator.

APt: same definition as in the stator.
Y-1

-1

Ptl1 Y
1: adiabatic efficiency, = Tt2 1

Tt2

The calculation of dmj is the same as in 1).

Given APtr = f (j), and going through the same procedure as in 1), we

obtain:

ATtr 'is = Ttj ( - 1) (2.69)
T tis

In the real process:

ATtr is
AT tr - is (2.70)

"1

We distribute ATtr into each cell using the same function as in 1) to obtain:

dTtj = aTtsi 2 X (xj - x) - ] + 1 (2.71)

where

anl = ATtraTt --
X2 - X1

We also have

AHt = rihCdTt (2.72)

The work done by the rotor is Wj = AHt, where Wj is the shaft work, i.e. UrFyr

in the source term of the energy equation of the rotor. Thus

UrFyr = AHtj (2.73)



F yr AH (2.74)
Ur

Once we know Fyr , we can get Fxr the same way as in 1), i.e.:

Fxruj + FyrVj = AHtj lis = AHt (2.75)

Fxr = t-FyrVj (2.76)
uj

2.6 Unsteady blade row behavior

So far, the bodyforces determined by the blade row performance are

assumed quasi-steady. To account for the unsteady effect of the fluid in the

blade passage on the performance of the blade row, a first order lag is

introduced [13] as a correction to the performance of a compressor. This model

takes the form:
dX

I = Xsteady-state - X (2.77)

Where: Xsteady-state is the steady state value of flow field variable.

X is the instantaneous value of a flow field variable.

, is a time constant related to the convection time of the bulk flow

bx
through the blade channels, t = L. Here b x is the non-dimensional

axial chord.

The unsteadiness of the total pressure loss L is used in the model.

For a stator:

dL, Lsss - Ls(2.78)

dt

For a rotor:

dLr dLr Lr,ss - Lr
+ U r  T r(2.79)

dt dy " r



Thus
dLr dLr Lr,ss - Lr

r =- U r + (2.80)
dt dy tr

Ls and Lr are then calculated by using four-stage Runge-Kutta method.

To find the unsteady total pressure rise APt, we need to know the ideal

total pressure rise APt 'ideal' because APt= APt lideal-L. APt lideal=0 in stators. In

the rotors, an empirical formula is used, which is APt lideal = C + 0. 54 tan Iexit ,

obtained from the author's experience (see also [21]).

2.7 Flow chart of the computational program.
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Chapter 3 Test cases to assess the model

3.1 Introduction

In this chapter comparisons are shown with the model of reference [4],

with a two-dimensional non-linear incompressible model (developed by Gong),

and with a linearized compressible model [13], and also some high-speed

compressor data.

The model of [4] is a incompressible analytical stability analysis. This

analysis and the non-linear incompressible model developed by Gong can be

used to test the validity of the compressible model for low speed cases. Test case

1 is for this purpose. A single-stage low-speed compressor with hypothetical

geometry and characteristics is simulated by the current model and a back-to-

back comparison done with the non-linear incompressible computation. Both are

then checked with the analytical result of model of [4].

The present model has also been assessed against data for multi-stage

high speed compressors. The instability of a high speed multi-stage compressor

at design or near-design speed is of most concern, so a four-stage compressor

which has been run at the Wright laboratory operating at 100% corrected speed

is examined. Results are compared against those of the linearized compressible

analysis as well as experimental data. The same compressor operating at 70%

corrected speed is also examined. As a further check, a three-stage high speed

machine designed at NASA has been modeled at conditions corresponding to

80% corrected speed and the results compared with the linearized analysis.

3.2 Test case 1: Hypothetical single-stage low speed compressor



Comparison has been carried out between the current compressible

calculation and the incompressible computation done by Gong for a

hypothetical single-stage compressor. The capabilities of the two models are:

current model Gong's model

compressible incompressible

IGV,rotor, stator & inter-row gaps lumped compressor

bodyforces in x and y directions bodyforce in x direction only

allow circumferential velocity no circumferential velocity

inside blade rows

Two calculations were done using same overall compressor

characteristic, same operating condition, same inertia, same initial perturbation

structure, and same grid points in the circumferential direction.

The overall total-to-static compressor characteristic y is:

N (Q) = -5.76 0 3 + 4.320 2 + 0.3 (3.1)

The operating point is at 4 = 0.49, dW = 0.08, shown in figure 3.1. The rotor

inertia parameter is set to 1.08 , and the compressor inertia parameter is set as

2.0.

A time history of the inlet axial velocity at four circumferential positions

around the compressor is given in figure 3.2a and figure 3.2b for the present

numerical simulation (run at a blade Mach number of 0.2) and the

incompressible calculation of Gong. As can be seen, there is good agreement

between the two.

A time history of the first (most important ) spatial fourier component of

the axial velocity non-uniformity is given in figure 3.3 for both methods. Good

agreement exists in the pre-stall region for which the amplitude is less than 0.08.



There is less agreement between the two in the region with amplitude larger

than 0.08, but the results are quantitatively similar. It is thought that the main

reason for the discrepancy is associated with the different manner in which the

two methods specify the bodyforces.

By calculating the slope of the amplitude in figure 3.3 (the region with the

amplitude less than 0.08), we obtain a growth rate of 0.02 for both methods.

Similarly, we can calculate the rotating frequency of the first spatial harmonic of

flow coefficient by taking the slope of the phase of this component shown in

figure 3.3. This is about 0.27 for both calculations.

We can also use the model of [4] to calculate the growth rate and rotating

frequency of the first harmonic in this case. The formulae are

d V

growth rate a( 2

Inl
rotating frequency n 2

n 2

InI
do

Sincehere 0.08, 0 = 0.02

o = 0. 27

The growth rate and wave frequency are the most important quantitative

features of the stall inception and there is good agreement among the three

models for these quantities.

From the linear point of view, if the initial circumferential perturbation is

small enough, we should see a linear region where different modes evolve

independently and different harmonics travel at different speeds as predicted by

the linear model. As a further check therefore, a simulation with the first five



harmonics at a level of 0.01% of mean flow as an initial perturbation was carried

out. The time history of the first three Fourier components of flow coefficient is

shown in figure 3.4, in which (a) shows the phases of the three harmonics, and

(b) shows the slopes of the phases which tell the rotating speeds of these

harmonics. Here we see a clear linear region before 12 rotor revolutions

(perturbation less than 0.2% of mean flow), in which the rotating speeds of the

first, second and third harmonics are about 0.276, 0.359, 0.400, respectively. The

model of [4] predicts:

1- -2 - 0.270(lst)
- +2+9

2 2 =0. 360(2nd)
2 2

121

S 2 =0.405(3rd)
3 2

The biggest difference between the analytical model and the numerical

calculation is 2%.

There is a transient period between 12 and 50 rotor revolutions, where the

harmonics start to interact, showing a change in phase speeds, especially for the

third harmonic. After 50 rotor revolutions (perturbation bigger than 8% of mean

flow), these three harmonics are coupled with the phase speeds "locked", as seen

in figure 3.4 (b).

3.3 Test case 2: a four-stage high speed compressor operated at 100% corrected

speed.

This four-stage high speed compressor has been tested at the Wright

laboratory. The mean flow has been simulated using a mean-line generation



code of Pratt & Whitney (we will refer to this as "PWmean"). Based on this mean

flow, a stability analysis is performed by using the linearized compressible

model of Hendricks [13]. Both the mean-line calculation and stability calculation

are conducted using the current model, then compared against the mean flow

calculated by PWmean and linearized stability analysis, as well as experimental

data.

The geometry of the compressor is given in Appendix 2. Taking the

geometry and blade row characteristics (total pressure rise, efficiency (rotor),

flow angle (stator)) given by PWmean as inputs, a steady-state mean flow

calculation can be performed for each throttle setting greater than a critical value

below which an axial oscillation involving the whole compression system (surge)

would happen. Starting from a throttle setting which sets the operating point far

away from the instability (surge) point, the mean flow calculations can be carried

to the instability point by gradually decreasing the throttle area.

Comparison of the calculated and input overall total pressure rise

characteristics is shown in figure 3.5. Comparisons of total pressure, static

pressure, total temperature and flow coefficient axial distributions from current

calculation and PWmean at two different operating points are shown in figure

3.6 and 3.7. PWmean gives values only at the leading and trailing edges of each

blade row. In figure 3.5, the maximum discrepancy between the two methods is

about 2.5% of the total pressure rise. Figure 3.6 and 3.7 show that the two

methods give almost the same values at leading and trailing edges of each blade

row for the four variables. The shape of the flow coefficient distribution inside

the blade row calculated by the current model results from the sinusoidal

bodyforce distribution inside the blade row.



The discrepancy in figure 3.5 occurs due to the following. As stated in

chapter 2, the source terms are formulated in such a way that the total pressure

rise across each blade row should be specified as a function of local flow

coefficient at each axial grid point. Theoretically no matter what kind of flow

coefficient distribution inside a blade row, every point should give the same

blade loading (total pressure rise) for an operating condition. From PWmean,

we can get the total pressure rise characteristic as a function of the leading edge

flow coefficient for each blade row. Based on this, the local pressure rise

characteristics are generated according to the flow coefficient distribution inside

a blade row to ensure that the blade loading given at each grid point is close to

that of leading edge. It is very difficult, however, to make them exactly the

same.

For example, at one operating condition where the inlet Mach number is

0.374 as shown in figure 3.7, we can examine the first rotor. If we take five

points along the axial direction and mark them on a flow coefficient plot (figure

3.8), then plot the five corresponding local characteristics (figure 3.9) and look up

the pressure rises given by these five points in figure 3.8, we see that they are not

exactly the same. The average value is also below the specified value at inlet of

this rotor (marked on line 1 in figure 3.9). This is the main reason for the

discrepancy between the calculated and specified pressure rises.

The steady-state mean flow can be calculated at throttle areas larger than

the critical value. At this throttle setting (marked * in figure 3.5), the flow field is

stable. Further decreasing the throttle area causes instability because a small

axial oscillation evolves into a large amplitude axial oscillation. We call this

operating point the "surge point". The surge behavior of this case is shown in



figure 3.10, which gives the time history of the flow coefficient at the inlet of the

compressor.

To see the rotating-stall type of instability, we need to put a

circumferential perturbation into the steady-state flow field. The way to do this

is to superimpose small amplitude circumferential perturbations, which can

include an arbitrary harmonics distribution, on the quasi-steady axisymmetric

pressure rise characteristics. The response of the system to this initial

perturbation is then tracked. At the operating point where we saw the surge-

type of instability, a small initial circumferential perturbation was put into the

mean flow field, and a time history of the inlet flow coefficient (with the mean

value subtracted) at four circumferential positions is shown in figure 3.11. The

disturbances decay, but they are clearly traveling waves with rotating speed near

100% of rotor speed.

It is difficult to tell whether the surge or rotating stall happens first using

the current nonlinear calculations because the throttle closing rate may not be

small enough in unsteady calculations. However we can use the linearized

stability model to address this part. Using the mean line information from

PWmean and the same geometry, the eigenvalues for n=0 (surge type) and n=1

(rotating stall type) are plotted in figure 3.12. The plot gives contours of real and

imaginary parts of the dispersion equation, representing the eigenvalues of the

linear system. As the least damped eigenvalue reaches the imaginary axis, the

system becomes neutrally stable. In figure 3.12, we see that surge occurs at an

operating condition where inlet Mach number is 0.3610, and rotating stall

happens at an operating condition with inlet Mach number of 0.3556. Surge thus

occurs before rotating stall.



In figure 3.12, for n=1 (the lower plot), there are two eigenvalues with

different rotating frequencies. One is about 1 rotor frequency, another is about

0.45 rotor frequency. These have almost the same growth rate, in other words,

the so-called (1,1) mode and (1,0) mode have zero damping almost

simultaneously. Note that in the compressible flow field, each harmonic of the

flow variable consists of an infinite number of modes and they are all

independent. In figure 3.12, each graph only includes the least damped modes,

i.e. modes with growth rate close to zero.

It is of interest to study these two modes and a three-dimensional

"waterfall" spectral plot provides a convenient way to do this [12]. Here, the

power spectrum of a spatial harmonic is calculated over a window of fixed

period. The window is then marched forward in time and the process repeated.

The result is the variation of the rotating spatial wave spectral distribution over

time.

The results shown in figure 3.12 have been reduced using this technique

for the first harmonic, and the three-dimensional "waterfall" plot is shown in

figure 3.13. We see that there are two waves traveling at different speeds, one at

about 1.0 rotor speed and the other at much lower speed of about 0.15. They

contain about the same amount of energy. To confirm that the 100% rotor

frequency mode is the (1,1) mode in the linear analysis, the axial structure of the

shaft frequency component of the axial velocity disturbances is compared with

that of (1,1) mode predicted by the linearized analysis. Figure 3.14 presents the

amplitude and phase of this mode at the leading and trailing edges of the nine

blade rows for both methods.

The two calculations match well in terms of both amplitude and phase.

The small discrepancy may be due to the different level of details that these two



methods model the flow within the blade row. In particular, the linear

compressible model treats the blade row as an actuator disk, whereas the current

method models the flow inside the blade row, as required by the numerical

scheme used. The inlet and the exit of the compressor are essentially "out of

phase", which is an important effect of the compressibility. The incompressible

mode has no variation of phase along the axial direction (as seen later in case 3).

At an operating point which is 1.5% in inlet Mach number away from the

linear instability point, a circumferential disturbance traveling at the shaft speed

(the so-called once per revolution forcing) was input to examine the effect of the

forcing. The magnitude of this shaft speed forcing corresponds to 1% of the

mean total pressure rise across each blade row. For large enough amplitude of

this once per rev. forcing (1.4% of the mean flow in this case), the compression

system goes into rotating stall.

Figure 3.15 is the time history of the first three spatial fourier components

of the axial velocity. The upper plot is the phase and the lower plot is the

logarithm of the amplitude. The stall inception period is very short (only 3 rotor

revolutions), which is not long enough to show a clear picture of the stall

inception, but the fully developed rotating stall cell travels at about 40% of rotor

frequency.

To see a clear picture of the stall inception, a calculation with once per rev.

disturbance was done as the throttle was slowly closed from a stable condition.

A time history of the first three harmonics of the axial velocity is shown in figure

3.16, and a three-dimensional "waterfall" plot is shown in figure 3.17. In figure

3.16, the prestall wave of the first harmonic travels at 100% of rotor frequency,

then changes to 40% when it evolves into rotating stall. After about 5 rotor



revolutions, the circumferential disturbances are surpressed and the flow goes

into a surge cycle.

Figure 3.17 shows the first harmonic wave energy grows before the fully

developed rotating stall, while figure 3.18 is the same plot using experimental

data for this compressor at 100% corrected speed [12]; the two are similar.

Because the spectral plot does not allow an abrupt change of the amplitudes of

signals, it can not show the transient behavior from the stall inception to the fully

developed stall. The rotating speed of the fully developed stall was measured as

about 50% of rotor frequency in the experiment, which is close to the calculated

value. The data also show that the flow went into surge after a very short period

of rotating stall.

The conclusions from the above comparisons are:

1) Compressibility is important in this case. The compressible mode rotates at

the rotor frequency and has an axial structure in which the inlet and exit are "out

of phase".

2) The system exhibits stall at a linearly stable operating point with once per

revolution forcing of sufficient amplitude.

3.4. Test case 3: Four-stage high-speed compressor operating at 70% corrected

speed.

The geometry of this compressor at this speed is given in Appendix 2.

The mean line calculation is performed as in case 2. Comparison of the

calculated and input overall total pressure rise characteristic is shown in figure

3.19. Comparisons of total pressure, static pressure, total temperature and flow

coefficient axial distributions from the current calculation and PWmean at one

operating condition are given in figure 3.20. Comparisons of the adiabatic



efficiencies for the four stages is shown in figure 3.21 (solid line for input and

dashed line for calculated results). As in case 2, there is good agreement

between the two methods for steady-state quantities.

For the stability calculation, the same procedure as case 2 was carried out

with similar results were obtained. Surge was also observed with a finite

closing rate of the throttle area. With an initial small amplitude circumferential

perturbation in the mean flow field, a time history of the inlet axial velocity at

four circumferential positions is shown in figure 3.22. The disturbances decay

with the wave traveling at about 15% of rotor speed. Figure 3.23 is the root locus

for the linearized analysis for n=0 (surge type) and n=1 (stall type). Surge is

predicted to occur before rotating stall.

A power spectral density analysis of the results shown in figure 3.22

shows only one wave traveling at about 15% rotor frequency. Figure 3.23 shows

that only one mode ((1,0) mode) has very low damping. However the frequency

of this mode is about 45% of rotor frequency, which is different from that of the

nonlinear calculation. Comparison of the axial structure of the (1,0) mode and

0.15 frequency mode (figure 3.24) shows that they are very similar.

The reason for the difference of the rotating speed may be that the

methods which the two models calculate the unsteady behavior of the

compression system are different. Here we are trying to put it in a very simple

way. The linear incompressible theory tells that t of each blade row

determines the eigenvalues. In the linearized model, this term is just a function

of the leading edge mean flow coefficient, but in the current model, it is a

function of both the local flow coefficient and its perturbation. As explained in

section 3.3, the mean flow coefficient in a blade row changes substantially, so it is



difficult to keep each grid point operate at the same operating condition. As

shown in figure 3.24, the perturbation of the flow coefficient also changes very

much across a blade row (In the IGV, it changes more than 30% from leading to
ASP

trailing edge), so the term t given by each grid point can be very different

from that of the leading edge. The prediction of the eigenfrequency from these

two models could thus be different. (If we recall the calculation of case 2 (100%

corrected speed), we also saw a mode at 15% rotor frequency (figure 3.14)).

A question to be answered is then whether this 15% rotor frequency mode

exist in the real compessor. The data from the paper of Tryfonidis et al[12] helps

answer this question. Figure 3.25 is the three-dimensional "waterfall" plots of the

first harmonic of flow coefficient of this 4-stage compressor at 70%, 80%, 90%

and 100% corrected speeds. Two other waves are discernible besides the one

rotor frequency wave in all the four speeds. One of these two waves has the

frequency close to 15% of rotor frequency, so there is a wave traveling at low

speed in the compressor.

To see the effect of external forcing, a calculation with once per rev.

disturbance is done as the throttle is slowly closed from a stable condition. A

time history of the first three harmonics of the inlet axial velocity is shown in

figure 3.26. The prestall wave of the first harmonic travels at 100% rotor

frequency, then changes to 35% when it goes into the rotating stall. Figure 3.27 is

the three-dimensional "waterfall" plot for n=1. Just before stall, the low

frequency mode grows quickly, while the rotor frequency mode does not change

much. It thus appears that the low frequency (incompressible) mode goes into

stall first in this case. This is different from the last case where the rotor

frequency mode grew substantially prior to stall.



From the above results, several points can be made here:

(1) Compressibility is not important in this case.

(2) Rotating stall occurs at a linearly stable operating point with external forcing

of sufficient amplitude.

3.5 Test case 4: NASA three-stage compressor operating at 80% corrected speed

The mean line geometry for the NASA 3-stage high speed compressor is

in Appendix 2. The mean line calculation is performed in the same way as in the

above cases. Comparisons of the mean flow as the above cases were conducted,

with similar results. Figure 3.28 and 3.29 are the comparisons of the input and

calculated overall total pressure rise characteristics and the axial distributions of

the four flow variables from current calculation and PWmean, respectively.

Only one stability calculation was performed in this case. A

circumferential perturbation is superimposed on a steady-state flow field

initially and the response of the system to this initial perturbation is then

tracked. A time history of the first three harmonics of the inlet axial velocity is

shown in figure 3.30. The perturbation is slowly decaying, and the phase speed

(rotating speed) of the first harmonic is about 45% of rotor speed in the negative

direction. The eigenvalue plot for the linearized stability calculation for n=1 and

inlet Mach number Min=0.3728 is shown in figure 3.31. The mode with the

highest growth rate has the rotating speed of 43% and also travels in the negative

direction.

3.6 Discussion

The above tests give confidence in the current method. For the most part,

the results agree with the linearized analysis in the linear region. Some results,



however exhibit strong nonlinear behavior prior to stall when the disturbance

level gets large. Figure 3.16 shows the second and third harmonic start growing

before the first harmonic does, although the first harmonic dominates in the

whole transient process. This may be the reason the transient is so abrupt.

Figure 3.32 are the first and second Fourier coefficients of experimental data of

the 4-stage compressor at 100% corrected speed[12], which show the similar

trend as in figure 3.16. The second harmonic starts growing earlier than the first

does, supporting the current calculation.

An interesting phenomenon seen in both the current result and

experimental data is that there is a high frequency small amplitude wave

superimposed on all harmonics. And as one approaches stall, this wave grows

in amplitude. Two questions are thus:

1. What is this wave?

2. What is the effect of this wave on stall inception?

To address these, the axial structure of the wave in the zeroth and first

harmonics of the flow coefficient was examined. By performing a Fourier

decomposition of the zeroth harmonic in time at one axial location, we can get

the amplitude and phase of this (1.6 rotor frequency) component at this axial

location. The axial distribution of the amplitudes of this mode is thus obtained

by repeating the same procedure along the axial direction of the system. Figure

3.33 is a plot of the amplitudes and phases of this mode of the zeroth harmonic.

The figure shows that there are about five standing waves in the whole system.

The wave in the region of the compressor (the compressor is between 10 and 11

along axial direction) is the strongest, indicating that the compressor is likely the

source of this wave. The length of the compressor is roughly the half length of



the standing wave, indicating that the frequency of this wave is set by the

compressor geometry.

Calculating the natural frequency of the acoustic wave in an organ pipe

based on the geometry of the system [23], we find that the number of these wave

with 1.6 rotor frequency should be five in the system. The standing wave

number seen in figure 3.33 thus matches with the natural acoustics of the system.

The standing wave observed is thus an acoustic wave, and the 1.6 rotor

frequency mode is an acoustic mode.

Figure 3.34 is the amplitude distribution of the acoustic mode in the first

harmonic. It is very similar to that of the zeroth harmonic. Combining the fact

that all higher harmonics have the same frequency as the zeroth harmonic, it is

possible that the harmonics interact with each other through nonlinear effects.

The amplitude of this mode gets large as the operating point approaches

stall, so it may make a contribution to the onset of rotating stall. Acoustic

instability has been studied by Gysling et al[23], who found that the mechanism

responsible for the acoustic instability, i.e. the compressor feeding energy into

the disturbance, is similar to the mechanism responsible for rotating stall and

surge. Here, it is also seen that acoustic waves can be coupled with rotating stall.



Chapter 4. The Investigation of the Forcing Effect on
Compressor Instability

4.1 Introduction

The aerodynamic forced response of a compressor can be an important

factor in establishing stability. A compression system can be driven unstable

when in a normally stable operating regime by external forcing of sufficient

amplitude. In this it is not the damping ratio alone, but the increased

perturbation level associated with low damping ratios combined with

degradation of the nonlinear resistance to such perturbations, which determines

the rotating stall inception point [16]. In this chapter we investigate how the stall

inception point changes with level and type of external forcing.

4.2 The effect of forcing (once per revolution disturbance) level on stall

inception

Forcing here refers to a non-uniformity created by such features as non-

uniformity of tip-clearance. There can have a level up to several percent of the

mean flow quantities. Forcing with shaft frequency has been seen in almost all

compressors, and calculations were carried on to see the effect of such forcing on

stall. The forcing is implemented in the same way as in section 3.3, i.e. a

circumferential disturbance is superimposed on the mean steady-state total

pressure rise characteristic of each blade row. One percent in forcing means a

non-uniformity of one percent of the mean total pressure rise across a blade row.

A series of such calculations at different operating points then gives us a picture



of the change in stall inception point with forcing level. The result is shown in

Figure 4.1 as the solid line. The figure shows that the change in stall inception

point increases with the amplitude of forcing. For example, 4.5% in forcing

causes about 4.6% change of stall inception in flow coefficient away from the

linearized instability point.

4.3 The effect of forcing structure on stall inception

Another type of forcing is stationary distortion. A series of calculations

has also been carried out with stationary distortions and results are also shown

in figure 4.1. Stationary forcing triggered rotating stall at smaller amplitude than

the once per revolution forcing. This seems surprising because the latter is

expected to be close to one of the resonances of the system. The steady-state

characteristics of the compressor with both a once per revolution and a

stationary forcing are plotted in figure 4.2. The characteristic with stationary

forcing is seen to be more severely degraded from the uniform flow situation,

consistent with the larger effect of stationary forcing.

A central question is thus why the system has a stronger response to

stationary than to once per revolution forcing. One part of the answer is

associated with the resonances of the system. To find these, calculations were

carried out using a first harmonic sinusoidal forcing containing a spectrum of

frequencies in both positive and negative directions of rotor rotation. The PSD

of the time history of the inlet flow coefficient shows that there are two peaks in

both positive and negative directions of the frequency axis, as shown in figure

4.3. Neither the stationary forcing nor once per revolution forcing appears at a

resonance of the system.



We can also compare the response of the system to 0.9 shaft frequency

forcing with that to stationary and once per revolution forcing, when all forcings

are only the first spatial harmonic sinusoidal perturbations (The amplitude used

was 0.2% of mean value, about 0.7% of inlet dynamic head). The response to 0.9

rotor frequency forcing was stronger than for once per revolution forcing, but

smaller than from stationary forcing.

Figure 4.4 is the time history of the amplitudes of the first three spatial

Fourier harmonics of inlet flow coefficient for cases with stationary forcing and

0.9 rotor frequency forcing. The forcing is first harmonic only. The second and

third harmonics in the case with stationary forcing are larger than with 0.9 rotor

frequency forcing while the first harmonic stays about the same level, showing

that the nonlinearity level in the former case is much larger than the latter case.

Another difference between the two cases is that there is a low frequency

(~0.7% rotor frequency) oscillation seen in all three harmonics with stationary

forcing. This frequency is about the surge frequency of the system predicted by

linear analysis (see Fig. 3.12). As stated in chapter 3, surge is more unstable than

rotating stall in this compressor. We thus propose that the degradation of the

resistance to this level of stationary forcing arises because of nonlinear

interaction with the surge mode of the system.

To further explore the idea that this effect is a nonlinear phenomenon, we

need to decrease the amplitude of both the stationary forcing and 0.9 rotor

frequency forcing to a level small enough to be in the linear region. We thus use

0.02% of inlet dynamic head and run the calculations again. This time the

response of the system to stationary forcing is less than that to 0.9 rotor

frequency forcing as seen in figure 4.5, which shows the time history of inlet flow

coefficient around the whole annulus for both cases. The response for 0.9 shaft



frequency forcing has bigger magnitude. This means that the response of the

system to 0.9 shaft frequency forcing is stronger than that for stationary forcing

within the linear region, and therefore agrees with linear analysis.



Chapter 5. Summary and conclusions

A two-dimensional nonlinear compressible model has been developed to

examine stability in high speed multistage compressors. Computational

implementation of this model allows the investigation of both rotating stall and

surge. The model has been applied to two high speed multistage compressors

and compared with existing experimental data. The model has also been used to

investigate the effect of external forcing on stall inception.

Some specific conclusions are as follows:

1. For the compressor examined here the compressible mode was important at

100% corrected speed. This mode rotates at near shaft speed and has an axial

structure in which the inlet and exit of the compressor are "out of phase".

2. Simulation of this 4-stage compressor at 70% corrected speed shows that

compressibility is much less important.

3. The system exhibits rotating stall at operating points that are linearly stable if

extend forcing is of sufficient amplitude. For example, rotating stall occurs at an

operating point 1.5% away (in mass flow) from the linear instability point when

the amplitude of once per revolution forcing is about 1.2% of the mean total

pressure rise across each blade row.

4. The response of this system to stationary forcing becomes stronger than that of

once per revolution forcing if the amplitude of the forcing becomes large

enough.



Recommendations for future work

Further comparisons and testing with experimental measurements on real

engines are essential to assess the range of validity of the current model.

Two specific questions can also be identified:

1. When does the compressible mode (rather than the incompressible mode)

become unstable first and why?

2. Does thinking about stall onset from a dynamic point of view lead one to a

different set of design guidelines than the current "steady-state" approach?

These questions have an impact not only on understanding the basic

unsteady fluid dynamics that characterizes the stall inception, but also on stall

management and on development of schemes for active control. The simulation

being developed should provide an excellent tool to answer these questions.
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Appendix 1

Derivation of the one-dimensional Euler equation in

stators with streamtube thickness R(x).

1. Continuity equation:

The control volume is shown in figure A1.1

dm.Ax

puR puR +d(puR) Ax

dAx

Figure A1.1 Control volume for mass flow conservation

mass of the fluid inside the control volume: pRAx

rate of mass change with time: -~(pRAx)

mass flow rate in: puR + dmjAx
d(puR)

mass flow rate out: puR + Ax
dx

rate of mass change=mass flow rate in - mass flow rate out

Thus

(pRAx) d(puR) x + dmAx
at dx

a(pR) (puR)
at+ x = dm (A.1)



2. Axial momentum equation:

The control volume is shown in figure A1.2.

"(PR)
PR PR + a Ax

3x

Ax

Figure A1.2 Control volume with pressure force on each face

Momentum of fluid enclosed: pRAx -u

Rate of change of momentum enclosed: (puRAx)

Axial component of pressure force=pressure force@inlet+pressure force@outlet

+pressure force@wall

a(PR) Ax=PR-( PR + axAx) P -sin maax cosa
a(pR) x+ aRAx
3x ax

Momentum in: puR -u + dmAx u

3(puR) Bu a(pu2R)Momentum out: [puR + Ax]- [u +-Ax] = puR u + Rx
ax ax 3x

External force: FxAx

rate of momentum change=momentum in - momentum out + pressure force +

external force

Thus



(puR) _(pu2R) (pd) aR
+dmiu +P -+F

at ax ax ax x
_(puR) (pu 2R+PR) R

i.e. + + PR) = + F + F + dmju (A1.2)
at ax ax

3. Circumferential momentum equation:

Momentum of fluid enclosed: pRAx -v

Rate of change: -(pRAx)

Momentum in: puR -v + dmAx -v

__(puR) v A(puvR)
Momentum out: [puR + Ax] -[v + Ax] = puR -v + xuR)

ax ax 3x

External force: FyAx

Thus similarly, we obtain:

a(pvR) a(puvR)(vR)+ F + dm.v (A1.3)
at 3x

4. Energy equation:

Internal energy of fluid enclosed: pRAx -E

Rate of change: (pERAx)

Bulk flow energy in: puR -H + dmAx -H

O(puR) aH a(puHR)
Bulk flow energy out: [puR + Ax] -[H + Ax] = puR _ H + Ax

ax ax ax

Heat addition: 0 (assume flow is adiabatic)

work exchange: 0

rate of internal energy change=energy in - energe out+heat addition+work

Thus
D(pER) (puHR) = dmH

t + dm(A1.4)8 t 8 x (A1.4)



Appendix 2
Compressor Geometry

In the following compressor geometry files:

represents the stagger angle in degrees

0* represents the camber angle in degrees

o represents the solidity
t
- represents the thickness to chord ratio
c

c represents the non-dimensionalized chord length

RHLE represents the non-dimensionalized hub radius at the leading edge

RTLE represents the non-dimensionalized tip radius at the leading edge

RHTE represents the non-dimensionalized hub radius at the trailing edge

RTTE represents the non-dimensionalized tip radius at the trailing edge

A.2.1 EFC 4-stage compressor at 100% corrected speed

* t
Blade Type - c RHLE RTLE RHTE RTTE

IGV 4.0 4.0 1.649 0.055 0.231 0.798 1.117 0.867 1.117

Rotor 1 48.4 17.1 1.590 0.055 0.223 0.867 1.117 0.922 1.117

Stator 1 19.4 54.2 1.630 0.055 0.168 0.922 1.117 0.951 1.117

Rotor 2 50.8 14.6 1.620 0.055 0.176 0.951 1.117 0.978 1.117

Stator 2 17.9 51.6 1.580 0.055 0.141 0.978 1.117 0.997 1.117

Rotor 3 51.9 17.7 1.550 0.055 0.148 0.997 1.117 1.018 1.117

Stator 3 19.4 53.6 1.550 0.055 0.123 1.018 1.117 1.028 1.117



0.055

0.070

0.143 1.028

0.107 1.032

Rotational speed (non-dimensionalized)=0.972

A.2.2 EFC 4-stae compressor at 70% corrected speed

Blade Type

IGV

Rotor 1

Stator 1

Rotor 2

Stator 2

Rotor 3

Stator 3

Rotor 4

Stator 4

30.0

48.4

29.4

50.8

17.9

51.9

19.4

55.4

28.5

0*

4.0

17.1

54.2

14.6

51.6

17.7

53.6

11.4

36.9

t

C

1.649 0.055

1.590 0.055

1.630 0.055

1.620 0.055

1.580 0.055

1.550 0.055

1.550 0.055

1.560 0.055

1.500 0.070

c RHLE RTLE RHTE RTTE

0.231

0.223

0.168

0.176

0.141

0.148

0.123

0.143

0.107

0.798

0.867

0.922

0.951

0.978

0.997

1.018

1.028

1.032

1.117

1.117

1.117

1.117

1.117

1.117

1.117

1.117

1.117

0.867

0.922

0.951

0.978

0.997

1.018

1.028

1.032

1.035

1.117

1.117

1.117

1.117

1.117

1.117

1.117

1.117

1.117

Rotational speed (non-dimensionalized)=0.68

A.2.3 NASA 3-stage compressor

c RHLE RTLE RHTE RTTE
t

c

Rotor 4

Stator 4

55.4

28.5

11.4

36.9

1.560

1.500

1.117

1.117

1.032

1.035

1.117

1.117

_ _ 11|

Blade Type



IGV 15.29 0.0 2.000 0.100 0.299 0.689 1.233 0.689 1.233

Rotor 1 47.48 14.52 1.619 0.049 0.368 0.689 1.233 0.721 1.211

Stator 24.70 49.55 1.459 0.064 0.277 0.721 1.211 0.789 1.194

Rotor 2 45.36 16.39 1.468 0.061 0.289 0.789 1.194 0.851 1.179

Stator 2 25.43 51.09 1.417 0.065 0.191 0.851 1.179 0.888 1.173

Rotor 3 41.64 20.10 1.423 0.077 0.222 0.888 1.173 0.919 1.153

Stator 3 25.87 53.68 1.417 0.070 0.164 0.919 1.153 0.943 1.147

Rotational speed (non-dimensionalized)=1.0163
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Figure 3.12 Eigenvalues plots for surge type and rotating stall

type of instabilities from linearized analysis
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Figure 3.31 Eigenvalues plots for rotating stall type of instabilities

from linearized analysis for NASA 3-stage compressor

at 80% corrected speed
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