
Quality Assurance Framework for Distributed Collaborative
Software Development

by

Charles K. Njendu
Bachelor of Science in Civil Engineering

Mississippi State University, 1997

Submitted to the Department of Civil and Environmental Engineering in Partial
Fulfillment of the Requirements for the Degree of

MASTER OF ENGINEERING
IN CIVIL AND ENVIRONMENTAL ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 1998

@ 1998 Charles K. Njendu
All rights reserved

The author hereby grants to MI. T. permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part.

Signature of the Author
Department of Civil and Enf ierm ngineering

V May 22, 1998

Certified by
Feniosly Pena-Mora

Assistant Professor of Civil and Environmental Engineering
Thesis Supervisor

Certified by___
'-Profesor Joseph M. Sussman

Chairman, Department Committee on Graduate Studies

JUN 021M i&7t/~~

Quality Assurance Framework for Distributed Collaborative Software Development

by

Charles K. Njendu

Submitted to the Department of Civil and Environmental Engineering on May 22, 1998 in
partial fulfillment of the requirements for the degree of Master of Engineering in Civil and

Environmental Engineering

ABSTRACT

This thesis focuses on quality assurance within the sphere of distributed collaborative
software development. Software Quality Assurance (SQA) is defined as a planned and
systematic approach to the evaluation of the quality of and adherence to software product
standards, processes, and procedures. SQA includes the process of assuring that standards and
procedures are established and followed throughout the software acquisition life cycle.

A distributed collaborative software development endeavor was conducted at MIT in
Cambridge, Massachusetts and at CICESE (Centro de Investigacion Cintifica y de Educacion
Superior de Ensenada) in Ensenada, Baja California, Mexico during the 1997-1998 academic
year. This endeavor was in the form of a Distributed Software Engineering Laboratory
(DISEL). This thesis analyzes and assesses the process and method applied within DISEL as
well as other existing processes and methods.

The analysis covers concepts, functions, standards, models and plans developed for the
software process from a quality assurance perspective. The assessment involves questioning the
SQA plans and methodology implemented, what could be implemented more efficiently and
effectively the next time around and how this will be done.

To do so, this thesis then develops a quality assurance framework for collaborative
software development based on the results of the analysis and assessment. The framework
developed exposes several important attributes necessary for a successful software quality
assurance plan for distributed collaborative software development environments. These are
ISO quality and the Capability Maturity Model guidelines; excellent communication channels
with an organic structure; the existence of a well-structured data, documentation and code
repository; independence of SQA team members from the project where possible; a shared
culture; incentives; and rapid prototyping with iterations i.e. iterative enhancements.

The resulting framework will be useful in improving the quality assurance process of
the next cycle of collaborative software development in the distributed environment present at
MIT and CICESE.

Thesis Supervisor: Feniosky Pefia-Mora
Assistant Professor of Civil and Environmental Engineering

ACKNOWLEDGEMENTS
I would like to thank the many individuals and acknowledge the many factors that

contributed to the completion of this thesis.

For guidance and support I thank my advisor, Feniosky Pefia-Mora who also had to put
up with a lot of my doubts and taught me the ability to think of the big picture framework as
well as make the small details work in order to make all the last minute direction changes that
I needed to perform.

Thank you to David Marks, Charlie Helliwell and Cynthia Stewart for keeping me on
track within the M.Eng. Program requirements. To fellow M.Engers, Amy Hwang, Bernard,
Derrick and Jeri. Thanks guys.

To the other Information Technology team members including Bob Yang, Simonetta
Rodriguez, Emilie Hung, Christine Su, Kareem Benjamin and Gregorio Cruz, I am grateful to
have been a part of this pioneering effort to apply information technology in achieving Casual
Contact and Social Interaction in the Virtual World.

To "mum" (Mrs. Sarah Githinji), thanks for your support and enthusiasm.

To Peter Israelsson, Thu Nguyen, Vittorio Agnesi and John Laplante, for being good
friends. To Tim Wuu and William Gilreath, it is great working with you. I learnt a lot about
Information Technology, both from a practical and theoretical aspect respectively.

Ana Pinheiro and Amparo Flores, thanks for your support and invaluable friendship and
Ricardo Petroni, thanks for being who you are.

Thank you Simonetta for pulling me through a few tough times and for the enlightening
and intellectually challenging conversations on a variety of topics that I had the opportunity
to have with you. I hope these will continue.

Conny, this thesis and a good part of my quality of life would have been impossible
without you.

Liz, Mary, Grace and Kenneth, you are the most supportive siblings a brother could have.

To Ayn Rand, Bill Gates, and the United States, for most of what I value, this life.

My late Mum, belated thanks for all those years. I love you.

Dad, thank you for everything that I have achieved so far. My gratitude for this
opportunity to have studied, lived and learnt from the most prestigious and alive institution in
the world, MIT. Thank you for having enabled me to be a part of the greatest civilization
ever, the United States. Thank you for my life.

Table of Contents

A B STR A C T 2

ACKNOW LEDGEM ENTS 3

LIST O F TA BLES 8

LIST O F FIG URES 9

CHAPTER 1 INTRODUCTION .. 10

1.1 IMPORTANCE OF COLLABORATIVE SOFTWARE DEVELOPMENT RESEARCH................................. 10
1.1.1 DISTRIBUTED SOFTWARE ENGINEERING ... 12
1.1.2 THE NATURE OF SOFTWARE, SOFTWARE PROCESSES AND PEOPLE 12

1.2 DISTRIBUTED SOFTWARE ENGINEERING LABORATORY.. 13
1.2.1 THE M OTIVATION .. 14
1.2.2 THE DIGITAL ENVIRONMENT.. 15

CHAPTER 2 CONCEPTS AND FUNCTIONS .. 18

2.1 DEFINITION OF QUALITY ASSURANCE .. 18
2.1.1 TH E NEED FOR SQA 19
2.1.2 QUALITY AND ACCEPTABILITY... 20
2.1.3 QUALITY AND ASSURANCE .. 21

2.1.3.1 Q uality...................................... 21
2.1.3.2 Assurance .. 22
2.1.3.3 The A ssurance Function and M odel ... 22

2.2 QUALITY ASSURANCE ... 23
2.2.1 QUALITY FACTORS AND ITERATION 24

2.2.1.1 Softw are Q uality Factors... 25
2.2.1.1.1 Criteria... 27
2.2.1.1.2 Tradeoffs 28

2.2.2 SQA METRICS AND AUDITS .. 28
2.2.2.1 Metrics: The need for a standard terminology 28

2.2.2.1.1 Metricizing vs. Metrics: The Concepts................................ 29
2.2.2.1.2 Metricizing vs. Metrics: A Process Example................................. 29

2.2.2.2 R eview s and A udits 30
2.2.3 SQA PROGRAM AND SQA PLAN .. 30
2.2.4 QUALITY ASSURANCE FUNCTIONS.. 30

2.2.4.1 Validation and Verification ... 31
2.2.4.2 Testing and Evaluation 32
2.2.4.3 Software Configuration M anagement ... 32
2.2.4 .4 M ain ten an ce... 32

CHAPTER 3 SOFTWARE ENGINEERING STANDARDS AND SOFTWARE ENGINEERING

EN V IR O N M EN TS 33

3 .1 M O TIVA TIO N ... 3 3
3.2 ISO 9000-3 : SOFTWARE ENGINEERING STANDARDS 34
3.2 SC O PE O F IS0 9000-3.. ... 34
3.3 PRODUCT CENTERED SOFTWARE ENGINEERING ENVIRONMENT......................... 36

3.4 PROCESS CENTERED SOFTWARE ENGINEERING ENVIRONMENT 37

3.4.1 Overview 37
3.4.2 Processes and Process M odels ... 38

CHAPTER 4 SOFTWARE DEVELOPMENT MODELS AND SOFTWARE QUALITY ASSURANCE....... 40

4. 1 SOFTWARE DE VELOPMENT MODELS 40
4.1.1 A PROCESS STEP SPECIFICATION .. 40
4.1.2 W A T E R FA L L M O D E L .. 40
4.1.3 PROTOTYPING 42
4.1.4 ITERATIVE ENHANCEMENT .. 43
4.1.5 THE SPIRAL M ODEL ... 44

4.2 MODEL APPLICATION OF PROCESS CENTERED SOFTWARE ENGINEERING 44

CHAPTER 5 1.120 DISEL PROJECT: QUALITY ASSURANCE PLANS AND THEIR
IM PLEM EN TATIO N 46

5.1 QUALITYASSURANCE PLANS DESIGNED IN THE 1.120 PROJECT.................. 49
5.1.1 QUALITY CONTROL PLAN .. 49
5.1.2 SOFTWARE CONFIGURATION MANAGEMENT PLAN .. 54
5.1.3 TESTING PLAN 55
5.1.4 VALIDATION AND VERIFICATION PLAN ... 59
5.1.5 MAINTENANCE PLAN .. 61
5.1.6 DOCUMENTATION SPECIALIST PLAN.................................... 61

CHAPTER 6 EVALUATION .. 64

6.1 REVIEW OF DISEL PROJECT ... 64

6.2 REVIEW OF INITIAL SQA PLANS AND IMPLEMENTATION TO THE DISEL PROJECT...................... 65

CHAPTER 7 CONCLUSION .. 69

7.1 R ESEA R C H R ES UL TS... 69

7.2 A FRAMEWORK FOR DEVELOPING A QUALITYASSURANCE METHODOLOGY............................... 69

7.3 RECOMMENDATIONS FOR FUTURE IMPROVEMENT .. 74

R EFER EN C ES .. 75

APPENDIX A: DISEL QUALITY ASSURANCE PLANS .. 78

QUALITY CONTROL PLAN 79

INDEX: 80

PRODUCT INTRODUCTION 80
P ro d u ct D escrip tio n 80
Product Requirements. 80
Planned M arket. 80
Competitive/Predecessor Product 80
Operating Environment 80

THE A SSURAN CE PROCESS. 80
Identification of the Product Documents to be Reviewed. 80
Review Techniques Applied. 80
Audits. .. 80
W alkthroughs ... 80
Inspections 80
Peer Reviews. .. 80

Q U A LITY PLAN... 81
Q uality P lan G oals. ... 8 1
Quality Plan Benefits. .. 81
Quality actions planned 81

PRODUCT INTRODUCTION: ... 81

PRODUCT DESCRIPTION : .. 81

PRODUCT REQUIREM ENTS: .. 81
P L A N N E D M A R K E T : 8 1
COMPETITIVE/PREDECESSOR PRODUCT: .. 82
OPERATING ENVIRONM ENT: ... 82

THE ASSURANCE PROCESS: .. 82

IDENTIFICATION OF THE PRODUCT DOCUMENTS TO BE REVIEWED:.................... 82
REVIEW TECHNIQUES APPLIED .. 83

A udits: 83
W alkthroughs: .. 83
In sp ection s: 83
Peer R eview s: ... 83

QUALITY PLAN: 84
QUALITY PLAN GOALS: 84
QUALITY PLAN BENEFITS: 84
QUALITY ACTIONS PLANNED 85

SOFTWARE CONFIGURATION MANAGEMENT PLAN .. 88

IN D E X 8 9
INTRODUCTION 89

Purpose.................................... 89
Scope 89
G lossary of Term s .. 89

SCM ACTIVITIES 89
Software Configuration Identification .. 89

Identifying Configuration Items .. 89
Naming Software Configuration Items... 89

Software Version Control 89
Softw are C onfiguration C ontrol.. 89
Software Configuration Status Accounting .. 89
Software Configuration Audits and Reviews .. 89

BIBLIOGRAPHY 89
IN T R O D U C T IO N 90

Purpose............................... 91.. 91........... 91
Scope... 91

Glossary of Terms ... 93
SCM ACTIVITIES 97

Software Configuration Identification............................... 97
Identifying Configuration Items .. 97
Naming Software Configuration Items... 98

SOF TWARE VERSION CON TROL... 99
SOFTWARE CONFIGURATION CONTROL ... 100
SOFTWARE CONFIGURATION STATUS ACCOUNTING .. 101
SOFTWARE CONFIGURATION AUDITS AND REVIEWS ... 102

PLAN OF TEST TEAM 104

IN TROD UCTION: ... 105

COMPONENTS OF TESTING METHODOLOGY 105
PROGRAM DEVELOPMENT .. 105
T E ST IN G EN V IR O N M EN T 106
O B TA IN IN G TE ST C A SE S.. 106
T E ST E X E C U T IO N 106
EVALUATION OF TEST RESULTS ... 106
ASSESSM ENT OF QUALITY .. 106

TEST TEAMACTIVITIES.. 107

REASONS FOR TESTING AT DIFFERENT LEVELS 107

UNIT TESTING ... 107
IN T E G R A T IO N T E ST IN G .. 108
SYSTEM TESTING.. 109

TEST DOCUMENTATION .. 109

B U G S D A TA B A SE 110

PROBLEMS THAT MAY ARISE... 110

D O C U M EN TS G EN E RA TE D 111

VALIDATION AND VERIFICATION PLAN ... 112

INTROD UCTION .. 113

6

OBJECTIVES OF THE V& V WORK PLAN... 113
PARTICULAR OBJECTIVES ... 113
REVIEW LOGISTICS 114
A G EN D A .. 114

CONDUCTING THE REVIEW ... 114

REVIEW M ETHODOLOGIES 115

WALKTHROUGHS 115

IN S P E C T IO N S 116
S C H E D U L E 1 17

PREPARATION .. 117

IN SPE C T IO N M E ET IN G 118

CORRECTIONS .. 119

FOLLOW UP... 119

Peer R eview s .. 120

AUDITS 120

V&V DURING THE SOFTWARE LIFE CYCLE ... 121

Software Concept and Initiation Phase...................................... 121

Software Requirements Phase 121

Software Architectural (Preliminary) Design Phase.. 122

Software Detailed Design Phase .. 122

Software Implem entation Phase .. 123

Software Integration and Test Phase ... 123

Software Acceptance and Delivery Phase ... 124

Software M aintenance and Operations Phase... 124

D A T E 12 5

A C TI VIT Y 12 5

M A IN TEN A N CE CON TRA CT ... 128

IN D E X 12 9

M ISSIO N .. 129

OBJECTIVES 129

W O R K P L A N 129

M ISSION 129

O BJECTIV ES ... 129

WORK PLAN 129

DOCUMENTATION SPECIALIST WORK PLAN ... 131

IN D EX ... 132

DOCUMENT STANDARD..................................... 132

PROCESS STANDARDS... 132

PR O D U C T STA N D A RD 133

INTERCHANGE STANDARDS 133

INFORM ATION REPOSITORY 133

DATABASE 134

FILE SYSTEM STRUCTURE 135

D O C UM EN T STO RA G E 139

QUERY FUNCTIONS 140

MINUTE AND DOCUMENT OF MEETING'S AGREEMENTS 140

M IN U TE S 14 0

DOCUMENT OF AGREEMENTS .. 141

USER'S M AN UAL. 141

DOCUM ENTATION SPECIALIST SCHED ULE 142

LIST OF TABLES
TABLE 2-1: FACTORS OF SOFTW ARE QUALITY... 26

TABLE 2-2: QUALITY FACTORS AND CRITERIA .. 27

TABLE 3-1: ISO DEFINITIONS. 35

TABLE 5-1: LEGEND FOR FIGURE 5-1: SQA, SCM, T&E, AND V&V IN THE SOFTWARE SYSTEM LIFECYCLE.............47

TABLE 5-2: QUALITY CONTROL PLAN.. 51

TABLE 5-3: D EVELOPM ENT BASELINES.. 55

TABLE 5-4: COMPONENTS OF THE TESTING METHODOLOGY.. 56

TABLE 5-5: TEST D OCUM ENTATION FIELDS.. 57

APPENDIX A-QC TABLE 1 : IDENTIFICATION OF THE PRODUCT DOCUMENTS TO BE REVIEWED 82

APPENDIX A- QC TABLE 2 : QUALITY CONTROL PLAN ... 85

APPENDIX A-SCM TABLE 1 : ROLE IDENTIFIER......................... 98

APPENDIX A - SCM TABLE 2 : CHARACTERS INDICATING THE TYPE OF THE DOCUMENT...................................99

APPENDIX A- SCM TABLE 3 : CRITERIA 99

APPENDIX A - V&V TABLE 1: SCHEDULED V&V ACTIVITIES.................. 125

APPENDIX A - ME TABLE 1: SCHEDULED ACTIVITIES... 130

LIST OF FIGURES
FIGURE 2-1: RESULTS OF MOST SOFTWARE PRODUCTS AND SYSTEMS 20

FIGURE 2-2: THE ASSURANCE SYSTEM ... 23

FIGURE 2-3: QUALITY FACTOR BREAKDOWN.. 25

FIGURE 2-4: METRICIZING AND METRICS: (SINCLAIR, VINCENT AND WATERS, 1988) .. 29

FIGURE 2-5: THE FOUR ASPECTS OF QUALITY ASSURANCE 31

FIGURE 3-1: PROCESS MODEL, PROCESS, PRODUCT AND RELATING ACTIONS.............................. 37

FIGURE 4-1: THE WATERFALL MODEL................................ 41

FIGURE 4-2: THE PROTOTYPING M ODEL ... 42

FIGURE 4-3: ITERATIVE ENHANCEMENT MODEL..43

FIGURE 4-4: PROCESS-CENTERED SOFTWARE ENGINEERING ENVIRONMENT SCHEMATIC....................... 45

FIGURE 5-1: SQA, SCM, T&E, AND V&V IN THE SOFTWARE SYSTEM LIFECYCLE .. 46

FIGURE 5-2: Q UALITY A SSURANCE FOR CLIQ! ... 48

FIGURE 6-1: DISEL REPOSITORY MAIN WEB PAGE... 67

APPENDIX A-FIGURE 1: DISEL FILE STRUCTURE .. 139

APPENDIX A-FIGURE 2. DOCUMENTATION SPECIALIST SCHEDULE... 142

CHAPTER 1
INTRODUCTION

This thesis focuses on quality assurance within the sphere of collaborative software

development. Software Quality Assurance (SQA) is defined as a planned and systematic

approach to the evaluation of the quality of and adherence to software product standards,

processes, and procedures. SQA includes the process of assuring that standards and procedures

are established and followed throughout the software acquisition life cycle.

A distributed collaborative software development endeavor was conducted at MIT in

Cambridge, Massachusetts and at CICESE (Centro de Investigacion Cintifica y de Educacion

Superior de Ensenada) in Ensenada, Baja California, Mexico during the 1997-1998 academic

year. This endeavor was in the form of a Distributed Software Engineering Laboratory

(DISEL). This thesis analyzes and assesses the process and method applied within DISEL as

well as other existing processes and methods.

The analysis covers concepts, functions, standards, models and plans developed for the

software process from a quality assurance perspective. The assessment involves questioning

what was implemented, what could be implemented more efficiently and effectively the next

time around, and how this implementation should be handled.

This thesis then develops a quality assurance framework for collaborative software

development based on the results of the analysis and assessment. The resulting framework will

be useful in improving the quality assurance process of the next cycle of collaborative software

development in the distributed environment present at MIT and CICESE.

1.1 IMPORTANCE OF COLLABORATIVE SOFTWARE DEVELOPMENT

RESEARCH

Software systems are increasing in the level of complexity while facing the associated

problems of higher costs, lower quality and frequent changes and re-workings. With

geographically distributed talent comes the need for inexpensive, convenient, natural ways for

software personnel to collaborate in distributed environments. Computer Supported

Collaborative Work (CSCW) is one result of this need (SEI Collaborative Skills in Software

Engineering, 1998). Due to the inability to map all aspects of physically co-located

collaboration onto the distributed environment, software developed in a distributed

environment has the added complexity brought about by this distance.

These distributed collaborative teams are being used to increase worker involvement,

improve quality and productivity by making use of geographically dispersed core

competencies, and reduce the complexity of the organization involved by helping flatten,

downsize and decentralize it. A good part of what hinders the development and successful

implementation of collaborative software development is the infancy level of the interpersonal

skills software professionals and the way they handle the different phases of the development

process such as requirements analysis, peer reviews and project management (SEI

Collaborative Skills in Software Engineering, 1998). This deficiency affects any work activity

involving two or more people, and is particularly evident in team work (such as systems

work) and group interactions (such as group meetings) (SEI Collaborative Skills in Software

Engineering, 1998). In addition, depending on the constitution of the team, additional

hindrances to the development of these interpersonal skills may develop. In the DISEL project

these included issues such as cultural and language differences as well as long distance

communication protocols.

Lack of interpersonal skills is seen as the most consistent barrier to successful software

development (SEI Collaborative Skills in Software Engineering, 1998). This barrier is

especially evident in collaborative software development where excellent interpersonal skills

are at a premium due to the added complexities of working at a distance.

The issues involved "can be characterized as an inability of groups to capitalize

effectively on the cumulative talent and technical skills resident in the participating

individuals, because they have no commonly understood, accepted, or enacted ground rules

for working together on their shared technical tasks" (SEI Collaborative Skills in Software

Engineering, 1998). In addition, when two or more people come together to work on a stated

objective, there stands the possibility, as emerged in the MIT distributed class, of different

people having differing expectations and goals within their involvement in the project.

1.1.1 DISTRIBUTED SOFTWARE ENGINEERING

Software consists of the programs involved, their data and documentation (Jalote,

1997). The sub-set of software development involved is collaborative software development

(distributed software engineering). Working definitions are as follow. Software development

or engineering is a broad discipline that include and refer to an integrated set of methods,

procedures, and tools for specifying, designing, developing, and maintaining software (Flecher

and Hunt, 1993). Software Engineering, in a working framework, involves having a

philosophy and principles from which a Software Engineering approach, environmental

support, a methodology and techniques and tools are derived (Flecher and Hunt, 1993).

1.1.2 THE NATURE OF SOFTWARE, SOFTWARE PROCESSES AND PEOPLE

No technology and in fact no human endeavor has as complex a nature as software and

its interaction with humans. For the developer it is the source of fun as it brings together the

realization of youthful dreams that are the stuff of magic. This "magic" involves the program's

ability to print, move physical entities whereas it is no more then an abstract construct of the

developer's mind (Brooks, 1995). To the user it is the ability to perform a multiplicity of tasks

with one machine but with program obsolesce occurring at a rate that is unimaginable in

previous technologies (Brooks, 1995).

Software is an extremely tractable medium placing very few bounds on what we can

express and create. The products created are some of the most complex artifacts of human

achievement with even greater complexity if their relationships and interaction are taken into

consideration. It is an abstract construct in which one is always learning and creating from

pure imagination to produce an abstract that moves concrete things. Software is complex, does

not conform (i.e. there are no fundamental principles such as in mathematics or physics),

requires constant change, and is invisible, non-visual and indivisible (Brooks, 1995).

This nature coupled along with a similar complexity in the people involved (such as

communication issues) for software engineering processes and approaches results in software

engineering systems differing from traditional engineering ones. However a system is only

complex as long as the user does not understand it. When the user understands the system, it is

no longer complex and becomes extremely simple.

It is the nature of humans to handle system complexity (whether in politics, economics

or other) by finding and defining the principles or philosophy behind the system as simply as

possible. There are standards, procedures and processes that can be followed in software

engineering, with some being more applicable to collaborative software engineering then the

entire area of software engineering to ensure quality. These standards, procedures and

processes, which we can prematurely define as part of software quality assurance (SQA),

ensure that the project is not late, over budget or that the software product is not too slow or

misses the mark (client requirements). The very existence of successful products implies the

existence of good SQA.

1.2 DISTRIBUTED SOFTWARE ENGINEERING LABORATORY

Defining and previewing the fundamentals of collaborative software development help

set the context within which DISEL was conducted at MIT and CICESE and allow for a more

concrete look at the DISEL development effort with these fundamentals in mind. It allows an

understanding of the motivation for the particular effort that took place in DISEL, enabling

assessment of the particular Digital Environment in which the effort took place and how this

environment was to be altered, was altered and affected the participants from the perspective

of SQA.

1.2.1 THE MOTIVATION

The task was to enhance the existing infrastructure of the typical digital environment

for engineering development over geographically distributed areas. The aim was to map the

physical occurrences of casual contact and the resulting requirements of social interaction and

personal expression onto the virtual world. The objective was to have a digital system

involved for casual contact, personal expression and social interaction that was as seamless and

natural as that experienced when running into a colleague, say, on the way to a coffee break

and having an unexpected and fruitful interchange. This was a continuation of absracting

human interaction in the physical world onto the digital world. The interaction developed

was to replicate or replace the interaction that occured when company people and colleges

students are worked in close proximity to each other. The resulting system was named Cliq!.

It was an entirely new paradigm.

The niche for Cliq! was evident from the creativity, brainstorming, idea definition,

formulation or simply pure remembrance that occurred within casual interactions in the

physical realm. Immense possibilities were opened up by the ability to map this peculiarity

onto the virtual world where most of humanity was increasingly spending its time. In

addition, as the capabilities of the virtual world became more similar to the physical world,

new virtual behaviors came into existence mapping old physical ones such as the requirement

for a new type of etiquette (netiquette). Initially, like all software paradigms, the digital system

developed required a lot of commitment for regular casual communication to occur. It was a

cumbersome but improving environment that is necessary in order to establish the same type

of effortless physical environment where physical casual contact, personal expressions and

social interaction occur.

The improvement of productivity over dispersed environments was one of the

requirements for Cliq!. As an aspect and extension of casual contact, this was done by

improving the ease of interaction between people and recreating a digital environment that

imitated the physical one quite well, for example, by re-producing certain expressions and

hand gestures that helped communicate more effectively. One goal was to have a seamless and

natural system where random interaction could happen with minimal investment. Another

goal of the system was to have the ease of a social environment, and not to be a monitoring

process. The previous system included semi-fixed microphones and a video/audio set-up, as

described in more detail below. This setup not only involved an enormous investment in time

but required two to three specialists to be interacting with the system due to its instability and

complexity.

A principal part of the process in developing Cliq! was the conceptual development of

casual contact within a digital environment for engineering development that re-created the

physical and social interactions occurring in physically co-located engineering working

groups.

1.2.2 THE DIGITAL ENVIRONMENT

Prior to the DISEL effort, the Design Studio of the Future had developed a basic

infrastructure that allowed teams to communicate electronically sharing audio, video,

applications, and documents. The heart of the environment was a network of computers

running Microsoft Net Meeting as its principal communication software tool (Microsoft,

1997). Audio and video equipment included semi-fixed microphones and video camera feeds

of the room activities onto the web and across to the other ends of the distributed

environment. It was set up for two users with one node at CICESE in Baja California, Mexico

and the other node in Cambridge, MA, USA.

The hardware used in the environment included a video camera to capture the

speaker's and listener's appearance and motion, a microphone to capture the speaker's voice,

speakers to broadcast the sound from the other site, a video projector to broadcast the image

from the other site and a wireless pointing device (mouse). The software used in the

environment included Microsoft Net Meeting that was used to transfer the sound and

synchronized the Web browser. InPerson on a Silicon Graphics machine was used to transfer

the video image (Silicon Graphics, 1997). The operators in the environment included the

video camera operator who captured the video image of the site. The audio quality was

extremely poor especially at times when traffic on the Internet was high. Due to the capacity

of the network, there was a problem with the communication process. When the transfer rate

decreased, the sound quality dropped rapidly. The audio contained most of the message from

the other site. Sometimes the speaker did not know whether the listener over at the other side

could hear the sound clearly, resulting in lessened communication

The microphones involved were cumbersome, restricting natural body movement and

expression due to their semi-fixed state. In addition, one had to lean in extremely close to the

microphone in order to have them pick up what one was trying to communicate. Video

quality was also a problem as well as the fixed nature of the one camera installed upon a tripod

that was recording and transmitting the proceedings of the sessions to the other side. This

reduced the scope of sight of most participants to what this single camera was focused on and

its view range. Also, server stability depended on a lot of factors, some external to the

immediate system. For example, due to El Nino on the West Coast of the U.S.A. and Mexico,

lines of communication were disrupted resulting in no web-based communication between the

two locations. Finally, to run this setup on either side required a team of two to three

specialists continuously interacting with and monitoring the system due to its instability and

compatibility problems.

Therefore, the previous system was cumbersome, not natural, and, due to the

investment in time and patience required, an inconvenience to use unless this investment was

greatly out-weighted by the objective one was trying to achieve. The Digital Environment was

a secondary option to most means of communicating and interacting. Thus it was a challenge

to implement casual contact and social interaction in such an environment. However, the

Design Studio of the Future had the basic infrastructure of electronic communication

environment to enable this effort, noting that the requirements were the provision of a natural

way over networks for casual contact, social interaction and personal expression. What was

needed was a system that could allow casual contact in this dual distributed environment and

be extended to handle six dispersed groups in working or educational environments. These

environments would be physically located in Japan, Chile, Australia, Switzerland, Mexico and

the U.S.A.

CHAPTER 2
CONCEPTS AND FUNCTIONS

An understanding of the fundamentals of software engineering with a focus on

collaborative software development validates the following observation. Collaborative

software engineering development, like any other engineering discipline, can generally be

divided into two aspects. These aspects are the product created and the process involved in the

creation of this collaborative software product. Consequently the roles involved, activities

performed and documents generated can be classified within two sets. One set is involved

directly in the collaborative software-engineering product and consists of the requirement

analysis, design and coding. These people may be termed as "those who do it", directly and

visibly creating the software product. The other set is involved in ensuring that the processes

established are optimal in delivering the required product, the software quality assurance. This

set of people may be term as "those who help 'those who do it,' do it", indirectly creating the

software product.

2.1 DEFINITION OF QUALITY ASSURANCE

Software quality is an attribute and can subjectively be defined as "The degree to which

a customer or user perceives that software meets his or her composite expectations" and

objectively as "The degree to which the attributes of the software enable it to perform its

specified end item use" (McManus and Schulmeyer, 1987).

Software quality assurance is an activity and is defined as "...a planned and systematic

pattern of all actions necessary to provide adequate confidence that the item or product

conforms to established technical requirement" (McManus and Schulmeyer, 1987). An

important point to note concerning software quality assurance is that "Unlike hardware

systems, software is not subject to wear or breakage; consequently its usefulness over time

remains unchanged from its condition at delivery. Software quality assurance is a systematic

effort to improve that delivery" (McManus and Schulmeyer, 1987).

The conceptualization and development of quality assurance for distributed software

systems is more marked and necessary due to the additional complexity. As software projects

get larger, certain characteristics and needs become evident such as the need to have distinct

phases within a given development process. Usually, each phase has a specific deliverable at its

end. For example, the analysis phase has the requirement analysis document while the design

phase has the design documents. Therefore, any quality assurance process should go

throughout the whole development phase and allow for phasing.

2.1.1 THE NEED FOR SQA

The typical well-implemented SQA plan is justified by the following common

occurrences in most software projects. As the project progresses the costs of detecting and

correcting errors increases geometrically with project progress. Studies show that the cost of

correcting errors in the maintenance phase can be anywhere from 30 to 270 times as costly as

the costs incurred if these errors were uncovered in the design or analysis phases (Sinclair,

Vincent and Waters, 1988). In addition, most of the effort undertaken by Information System

departments occurs in system maintenance while half of the cost of removing errors in the

testing and development phases come from errors inserted in earlier stages of the project

(Sinclair, Vincent and Waters, 1988).

The primary goal of quality assurance is to avoid the two common pitfalls of software

development that result in the above problems. These pitfalls are either a product that is

robust and stable but does not meet the end user's needs or a product that meets the end user's

needs but is not robust or is unstable.

A focus on product quality is usually half of quality assurance. The other half is

process quality. The quality assurance team may be aware of the above two common fallacies

and intend not to fall in them but under a time crunch, the process is usually forsaken in an

attempt to obtain a product by any means necessary. Product and process quality are the most

pursued and common objectives in software quality assurance. However, there is a third

aspect to good quality assurance especially in a distributed, collaborative environment; the

people involved. In most quality assurance plans people are only implicitly considered in the

process aspect and usually only from a project management perspective. However, as noted in

Chapter 1, quality issues related to people are just as essential to ensure software quality

assurance. The people under consideration include the client (purchaser) and the producers

(project team).

Figure 2-1: Results of Most Software Products and Systems

2.1.2 QUALITY AND ACCEPTABILITY

Acceptability is a key part to defining quality (Sinclair, Vincent and Waters, 1988).

Problems with meeting acceptability may be anything from taking the requirements out of

context to satisfying the objective aspect of the requirements without consideration of the

subjective aspect or vice versa. To illustrate this concept, take as an example a contractor for a

building who is given the following key requirements. The contractor is to build a home for a

family and include perfect amenities. The contractor then delivers a Spanish

architecture type building with large windows and white walls furnished with amenities like

air-conditioning. However, if the location of this building is Greenland the large windows

would clearly be unacceptable as it was built out of context. In addition, air-conditioning is

not a priority in Greenland, subjectively or objectively. Unfortunately, acceptability is usually

not as clear in the software industry as it is in the building industry before one has the final

product.

2.1.3 QUALITY AND ASSURANCE

Quality and assurance are two separate distinct items (Sinclair, Vincent and Waters,

1988). However, the phrase as a whole does refer to an existing activity, that is the act of

ensuring or assuring quality in the project.

2.1.3.1 Quality

Quality is when the software product meets the requirements at the unit and,

especially, system level. This implies two actions, that the requirements established by the

client are meet and that both functional and quality specifications and characteristics are meet.

The quality unit function involved is circular in nature and consists of the following units:

documentation, discussion and agreement (Sinclair, Vincent and Waters, 1988). It is an

iterative unit function that occurs within each stage or phase of the project development.

First, the requirements are documented and processes, standards and procedures are applied as

necessary. Then a discussion occurs with most if not all of the members involved in the

project (such as client, peers, auditors) and if a consensus is reached, any necessary

modifications are made to the initial document and the unit process comes full circle (Sinclair,

Vincent and Waters, 1988).

In order to satisfy the client's and software quality characteristics the discussion should

result in the following. Identification of particular attributes that may be termed as

constituting acceptable software (Software Quality Factors), identification of sub-attributes

(Criteria) that, if present, verify the existence of Software Quality Factors, and the provision

of a weighed checklist based on "Itemized Requirements (the smallest measurable unit) of the

Criteria" (Sinclair, Vincent and Waters, 1988). Clarification and analysis of the Quality

Factors and their Criteria can then be done.

2.1.3.2 Assurance

If quality is the goal then assurance is the means or processes involved in the

achievement of these goals. Similar in part to the quality function, the assurance process is

made up of a process, documentation, review and comparison. The process involves the

execution of an action (corrective or initiating). This action is then documented to capture its

form (an example was the bug-tracking system that was developed in the DISEL effort). The

documentation is then analyzed to ensure completeness. If satisfactory this documentation is

compared with chosen standards, procedures and requirements to achieve acceptability. If not

acceptable the loop is repeated starting with the process until acceptability is obtained

(Sinclair, Vincent and Waters, 1998). The assurance process is similar to the quality function

and can be overlaid.

2.1.3.3 The Assurance Function and Model

Both the quality function and the assurance process when focused upon are unitary and

iterative. Both are singular units of a larger system as detailed in figure 2-2. As illustrated there

are four fundamental phases within any software product life cycle. These are analysis,

modeling, development, and realization. Within each phase the assurance process occurs.

These phases are a high level view of other sub-phases that may or may not occur in software

development. These sub-phases may include preliminary analysis or preliminary design.

Regardless of the level of abstraction that a phase consists of, the assurance process is

applicable to the phase and, on the development project level, the assurance system may be

implemented. When the linearity of the phases and the circularity of the quality function and

the assurance process are combined, the assurance system provides a generic Software Quality

Assurance system life cycle.

Analyze Model Develop Realize
CFmpaie Compaie CompaIe Compeie

Document Review Document Review Document Review Document Review

The Assurance System:
Adapted From "Software Quality Assurance"
(Sinclair, Vincent and Waters, 1988)

Figure 2-2: The Assurance System

2.2 QUALITY ASSURANCE

A key benefit of quality assurance is the differentiation between quality and quantity.

Quality is intangible to most software development teams compared to quantity and this

intangibility is one of the problems involved in resisting SQA and not seeing it as a value-

adding discipline to the profession. Other hindrances to accepting the SQA function such as

programmer's dislike of bureaucracy and paperwork may be countered by developing

incentives for employees to accept SQA or developing an SQA plan that is an incentive by

itself.

The principal loss attributed to an SQA plan is a perceived loss of productivity to the

extent that the plan is unjustified (Sinclair, Vincent and Waters, 1988). This perception results

due to the instinctive manner to view productivity from a quantity aspect. However,

productivity in software development has to account for the maintenance, testing and

debugging which as already noted, consumes most of the resources in a software product life-

span. Productivity may be high during development and implementation without an

SQA plan but if the costs of maintenance, testing and debugging are added into the equation,

overall productivity falls sharply, usually to a level lower than that realized with an SQA

plan.

Some other factors that influence the quantity of code produced, besides the SQA plan,

include the quality of programs, the power of the programming language, the programming

environment and programmers experience (Sinclair, Vincent and Waters, 1988). In addition,

productivity may be increased using editor enhancements (an editor example being Emacs,

which was used in the DISEL endeavor), computer sub-second response time, more

automation of the software project process, using on-line programming vs. batch

programming, languages and program generators (Sinclair, Vincent and Waters, 1988).

2.2.1 QUALITY FACTORS AND ITERATION

Quality factors are the standards applied in the iterative process using the quality unit

function and the assurance unit process. These quality factors such as reliability,

maintainability and so forth can be decomposed further into attributes known as criteria and

that also help describe the quality factor. Each criterion has associated with it one, or several

metrics that taken as a whole quantify the criterion. This structure is illustrated in Figure 2-3.

Figure 2-3: Quality Factor Breakdown

2.2.1.1 Software Quality Factors

There are approximately 12-13 accepted Quality Factors in Software Quality

Assurance Circles (Evans and Marciniak, 1987). Both Quality Factors and Criteria Tables are

developed from material in Evans and Marciniak. Quality Factors are listed in Table 2-1.

Table 2-1: Factors of Software Quality

How well does it satisfy user's needs? Extent to which program satishies
specifications and user needs.

How well does it utilize resources? Extent to which computing resources, code
and communication time are utilized.

How easy is it to expand the capabilities of Required effort to increase the program
the system? functionality either through enhancement

of existing functionality or addition of new
functionality and data.

How easy is it to change the software Effort required to change the software
system? objective, functionality or other of an

existing program.

How secure is the software? Extent to which unauthorized access to
software is controlled and controllable.

Is the software versatile and easily Ease of interfacing it with other software
interfaced? systems and programs.

Is the software easy to fix? Effort required to find and correct an error
in an operational program.

How easy is it to move? Effort required to transfer the software
system from one hardware and/or software
environment to another.

How dependable is it in producing expected Extent to which the program performs or is
performance? expected to perform its intended function

within a specified time period at a given
precision.

How easy is it to apply the software to Extent to which the system can be applied
another application closely related but to another application that is related in
other than its originally intended one? scope to the one the system usually

performs.

How easy is it to prove the system? Effort required to test a program to ensure
performance of its intended function.

How easy is it to use? Effort required to get over the learning
curve (learn, operate, prepare input, execute
actions, and interpret program output).

How easy is it to contirm system
performance?

Ettort required to verity specitied software
operation and performance.

2.2.1.1.1 Criteria

Criteria, from one perspective, are characteristics that define Quality Factors. From an

opposite perspective, Quality Factors may be divided into independent characteristics, or

Criteria. Table 2-2 lists Quality Factors with associated Criteria.

Table 2-2: Quality Factors and Criteria

Completeness, Consistency, Traceability

Effectiveness-Processing, Effectiveness-Storage

Extensibility, Modularity, Self-descriptiveness, Simplicity; Generality

Modularity, Simplicity, Self-descriptiveness, Generality

Access Control, Access audit

Modularity, Commonality; Independence, System compatibility

Modularity, Simplicity, Self-descriptiveness, Document accessibility, Consistency

Independence, Modularity, Self-descriptiveness

Accuracy, Anomaly management, Simplicity

Simplicity, Independence, Document Accessibility, Application independence, Self-
descriptiveness, System clarity, Modularity, Generality

Modularity, Simplicity, Self-Descriptiveness, Document accessibility, Test

Operability, Training

2.2.1.1.2 Tradeoffs

Quality Factors can be clearly interdependent, have no relation or the relationship may be

unclear. In cases of interdependence the impact between factors may be positive or negative. A

matrix may be developed to obtain this relations with human judgment being used to decide

on the importance of relative Quality Factors in cases of negative impact. For example, if

processing of classified information is of extreme importance and integrity and efficiency

impact each other negatively then a human decision may be made to trade-off efficiency for

integrity in the software system.

2.2.2 SQA METRICS AND AUDITS

The most visible way to ensure quality in a system is to perform testing activities in an

attempt to correct and fix bugs. However, this activity is limited to the final phases of the

software project. In contrast SQA, in the form of life-cycle reviews and audit checklists, run

the entire length of the product life-cycle, from conception to completion. SQA is therefore

more comprehensive for bug prevention then testing.

2.2.2.1 Metrics: The need for a standard terminology

SQA is an integral aspect of the software development cycle. One of the basic

problems in assessing SQA impact is that SQA is not as visible as code. This is true since

SQA's fundamental units are quality functions and assurance processes, both intangibles.

Therefore, standardized terminology in SQA is critical as meanings are not as self evident

relative to tangible aspects of software development lifecycle. Metrics are unit measures of

quantities and qualities that are used in SQA. Even these metrics need to be precisely defined

in order to have the parties involved talking about the same units. Barry W. Boehm and co-

authors in their book Characteristics of Software Quality define "metrics" as "a measure of the

extent or degree to which a product (here we are concentrating on code) possesses and exhibits

a certain (quality) characteristic" (Sinclair, Vincent and Waters, 1988).

2.2.2.1.1 Metricizing vs. Metrics: The Concepts

Quality Factors, as stated, are built from Criteria, and these in turn are built from Sub-

criteria. Sub-criteria are built from Attributes or Itemized Requirements from which review

or audit questions may be asked. These questions are formulated such that either a yes or a no

is the answer. The summation of the yes and no values give the values of the Sub-criteria,

Criteria or Quality Factor as necessary. Metricizing according to Sinclair and co-authors is the

act of defining these Criteria and Sub-criteria of given Quality Factors (i.e. decomposition and

weight assignment) and should only be used in this manner. Metrics are then applicable,

according to the previous definition, to the process of assigning weights to questions and

totaling the scores of the review or audit (Sinclair, Vincent and Waters, 1988).

2.2.2.1.2 Metricizing vs. Metrics: A Process Example

Figure 2-4: Metricizing and Metrics: (Sinclair, Vincent and Waters,1988).

The above example clarifies what metricizing and metrics are, their relationship and

Metricizing:

One Criterion of the quality Factor "Efficiency" is "Execution Efficiency." One

Subcriterion of"Execution Efficiency" is "Data Efficiency." An Attribute or Itemized

Requirement of"Data Efficiency" is that "data is to be grouped for efficient

processing." A review or audit question for the "Data Efficiency" Subcriterion would

then be, "Is Data grouped for efficient processing?"

Metrics

If the answer to the question is "yes" a "1" would be placed in the score column

of the review or audit sheet; if the answer is "no" a "0" would be placed in the

score column. For a non-applicable question the score-holder would have an "X"

drawn through it. The total score for all the Criteria/Subcriteria divided by the

number of applicable questions will result in the Total Metric Score for the

Quality Factor being judged.

differences (Sinclair, Vincent and Waters, 1988).

2.2.2.2 Reviews and Audits

The heart of the SQA effort is the reviews and audits. This is the actual

implementation to ensure completeness, to the required degree, of the Quality Factors of

choice. The nature of reviews and audits is that they are iterative and repetitive. They are

iterative when a phase has a low numerical score on required Quality Factors. Then

corrections are made and the phase redone with these corrections. They are repetitive in

that certain types of reviews and audits may be applied to different phases of the project.

2.2.3 SQA PROGRAM AND SQA PLAN

The software quality program (SQP) consists of all SQA related activities before,

during and after the software development program (SDP). This involves the

establishment and implementation of requirements, standard practices and procedures to

software product, process and quality. The Software quality plan is the section of the SQP

that occurs during the SDP.

2.2.4 QUALITY ASSURANCE FUNCTIONS

Quality Assurance is closely related to the functions of Software Configuration

Management (SCM), Validation and Verification (V&V), Testing and Evaluation (T&E)

and Maintenance (ME). The relationship is a matter of how they are viewed within the

quality department of the software development effort. For example, SCM, V&V, T&E

and ME may be seen as integral parts of the overall SQA function or they may be viewed

as being on the periphery of each other's actions. In reality, neither SQA is complete

without the functions of SCM, V&V, T&E and ME nor are these functions complete

without the SQA function. An appropriate way to view QA and the relations of V&V,

T&E, SCM and QC is illustrated in figure 2-4.

Figure 2-5: The four aspects of Quality Assurance

2.2.4.1 Validation and Verification

Validation is defined as the process involved in evaluation of a specific phase in search of

correctness and consistency according to those required by the products and standards that are

provided as input. Verification is the process involved in the evaluation of software to ensure

conformity with specified requirements. Validation and Verification may either be

independent of Software Quality Assurance or dependent. Outside personnel are usually hired

to provide this independence. Typical activities for Validation & Verification include

monitoring user requests and documentation, ensuring completeness of material submitted,

and managing discrepancies between produced documentation and required product and

process documentation.

The Four Aspects of QA

Validation & Verification Testing

Software Maintenance
Configuration
Management

All Focused on Quality Assurance

2.2.4.2 Testing and Evaluation

The overall goal of testing is to provide confidence in the correctness of a program. The

ideal objective of testing is to provide perfection in resulting output when given all forms of

input, perfection being defined as conformance to standards and user requirements. However,

such results would require the testing of all inputs which is usually impossible as gains reduce

drastically with cost for every additional input tested after a certain point. Good testing

establishes and tests up to this point.

2.2.4.3 Software Configuration Management

Software Configuration Management involves the identification, control and

assessment of the status of software and software documentation. This involves controlling

changes to configuration items and related documentation, recording and reporting the

information needed to manage configuration items effectively, and recording and reporting on

the status of proposed changes and implementation of approved changes.

2.2.4.4 Maintenance

Maintenance has a different meaning for software products as compared to physical

products since software has the peculiarity of maintaining its state to that existing at delivery.

Maintenance involves the reworking of the software system to changes in the surroundings.

This may include operating systems, expanded user requirements and the need to run

comparable applications to those intended for the system initially.

CHAPTER 3
SOFTWARE ENGINEERING STANDARDS AND
SOFTWARE ENGINEERING ENVIRONMENTS

As information technology progresses, the amount of software produced has increased

and is still increasing raising the importance of the role of quality management of software

products. Establishment of such a quality management system is justified by the need to

provide guidance for software quality assurance (American National Standard, 1995). These

standards are established to ensure the desirable objectives of a software process, namely,

optimality and scalability (Jalote, 1997). To achieve these objectives, a process should have the

following properties: predictability, support testability and maintainability, enable early defect

removal and defect prevention, and allow process improvement (Jalote, 1997).

3.1 MOTIVATION

The requirements for a generic quality system in a two-party contractual situation have

already been published. These requirements are "ANSI/ISO/ASQC Q9001, Quality Systems -

Model for Quality Assurance in Design, Development, Production, Installation, and

Servicing". These requirements are for two-parties agreeing under contract to have one party

develop software for the other for some given compensation. But the processes, nature,

development and maintenance of software differ from those of most industrial goods.

Differences include documentation where in traditional industrial products the

documentation accompanied the product development while in software, documentation is

the product.

Therefore, in such a fast-track technology, it becomes necessary to provide extra

guidance for quality systems that take into account these differences involving software

products as well as the present level of information technology (American National Standard,

1995). These guidelines are then used within the two main quality assurance approaches

(product- and process-based) illustrated further on, along with derived models such as the

waterfall or spiral model, illustrated in Chapter 4, to deliver a quality system.

3.2 ISO 9000-3 : SOFTWARE ENGINEERING STANDARDS

Some of the properties of software govern that some activities relate to particular

phases of the development process while other properties require activities to apply

throughout the process hence ANSI/ISO/ASQC Q9000-3-1991 has been formulated and

developed to reflect these differences of phase-specific activities and project-wide activities

(American National Standard, 1995).

However an additional point to note is that when two parties agree to contracts on

software product development, the contracts may have different forms and these guidelines

may not be applicable even if "tailored". Therefore, determination of the adequacy of

ANSI/ISO/ASQC Q9000-3-1991 application to the contract is important. Accordingly,

ANSI/ISO/ASQC Q9000-3-1991 deals primarily with situations where specific software is

developed as part of a contract according to purchaser's specifications. However, the concepts

described may be equally of value in other situations (American National Standard, 1995).

3.2 SCOPE OF IS09000-3

ANSI/ISO/ASQC Q9000-3-1991 (henceforth the 9000 series is referred to as ISO

Q900x-x with the final extension assigned accordingly) develops guidelines that facilitate ISO

Q9001 application to organizations developing, supplying and maintaining software. The

purpose is to provide guidance when a contract between two parties requires proof of the

supplier's ability to develop, supply, and maintain software products.

ISO Q9000-3 guidelines are intended to provide guidelines to meet a purchaser's

requirements. These guidelines are suitable for use in agreements between two parties where

design effort is necessary or performance terms are used to outline product requirements

(American National Standard, 1995). In addition, the guidelines are suitable if the supplier has

enough of a quality history to ensure or at least qualify that his product satisfies the

purchaser (American National Standard, 1995).

ISO Q9000-3 uses the following core definitions in developing its guidelines amongst

other functions.

Table 3-1: ISO Definitions.

Software: the abstract constructs that are embodied in a system and consist of programs, rules,
help, algorithms and associated documentation.

Software product: the set of items delivered to the user/purchaser and consisting of the
programs, rules of use and documentation.

Software item: A perceivable part of the software product at the end of the development or at a
transitional point.

Development: The actions that are to be executed in the creation of the software product.

Phase: A work segment that is defined.

Verification (for software): The process involved in evaluation of the products of a specific
phase in search of correctness and consistency according to those required by the products and
standards that are provided as input.

Validation (for software): The process involved in evaluation of software to ensure conformity
with specified requirements.

The ISO Q9000-3 guidelines outline a framework for a quality system consisting of

management responsibility and the supplier's quality system. Management responsibility is

threefold; supplier's side management responsibility, purchaser's side management

responsibility and joint reviews. The supplier side management responsibilities include quality

policy, organization (involving responsibility and authority, verification resources and

personnel, and management representative) and management review. The purchaser's side

management responsibilities include, but are not limited to, defining their needs to the

supplier, answering questions from the supplier, approving the suppliers proposals, concluding

agreements with the supplier, ensuring the purchaser's organization observes the

agreements made with the supplier, defining acceptance criteria and procedures, and dealing

with the purchaser-supplied software items that are found unsuitable for use.

Both the supplier and purchaser in a continuation of quality assurance are brought

together during the joint reviews where the following tasks are performed as appropriate:

conformance of the software to the purchaser's agreed-to requirements specification,

verification results, and acceptance test results. The results of such reviews are then agreed

upon and documented.

According to ISO Q9000-3 guidelines the supplier's quality system should document

the system. Furthermore, according to these guidelines the whole quality system, all

throughout the development of the software, needs to be integrated as a process hence making

sure that quality is built as system development progresses. The emphasis should be on

preventing problems and not on curing problems. The responsibility of ensuring effective

implementation of the documented quality system belongs to the supplier (American National

Standard, 1995).

3.3 PRODUCT CENTERED SOFTWARE ENGINEERING ENVIRONMENT

Product centered software engineering environment achieve quality by evaluation of

products, or the final product achieved at the end of each phase. A primitive method, it is

usually self-evident to software development teams that the next step necessary to take to

ensure a quality product is optimization for quality of intermediate and final software

products by looking at the processes involved in realizing these products. The fundamental

relationship between the process model, process and the final product that results is illustrated

in figure 3-1 (Garg and Jazayeri, 1996).

Figure 3-1: Process Model, Process, Product and Relating Actions

3.4 PROCESS CENTERED SOFTWARE ENGINEERING ENVIRONMENT

3.4.1 Overview

A process is a "partially ordered set of activities to achieve a goal" (Garg and Jazayeri,

1996). A software development process is a set of activities with the goal of producing a

software product. A process model is a representation of a process. Key components of a

process model are activities to be performed, agents performing the activities, products

produced and the resources needed to execute the activity. Process-centered engineering looks

at the process used in creation of the software product. The result is a focus on the people

involved and their interaction. The core of process-centered engineering is the delimiting and

modeling of these processes followed by mapping them onto the software development

environment (Garg and Jazayeri, 1996).

The main difference between product- and process-centered engineering environments

(PCSEE) is that PCSEE support the managerial and quality assurance functions in addition to

the development function that is supported by both types of software engineering. The

principal problem with a process centered approach is that, unlike a product which is visible

and easier to agree upon, different processes may be used to achieve the same value with the

value of each process being difficult to agree upon. The principal advantage is that PCEE's

define the processes across functional boundaries based on the product, allowing the software

environment to support QA naturally in assessing and delimiting a process.

3.4.2 Processes and Process Models

While a process model may be used to understand and communicate the process, it

may also be used to analyze, improve and manage the process itself, being discharged if found

lacking in any of these three operations. Formal, complete models are easier and more realistic

for implementation in addition to allowing easier automation. Formality and completeness

indicate that models have levels of abstraction. These levels may be at a high level such as the

prototyping model illustrated in Chapter 4, though detailed models are more common and

useful for development.

Because software development is an intellectual and creative activity, the software

process cannot be static. The software process not only needs to be adapted to its environment

but also change with environmental changes. In addition, some PCSEE's support dynamic

modification of process definition as the process occurs. "The study of the software process as

a dynamic entity, with its associated activities of modeling, definition, analysis, simulation and

so on, has identified a new function in a software development organization called 'process

engineering.' An extension of the traditional function of quality assurance, process engineering

treats software processes in a systematic way with a well-defined life cycle. An important

function of PCSEE is the support of process engineering" (Garg and Jazayeri, 1996). A

process-centered system whose architecture is decentralized and geographically distributed is

OZ created in 1992 (Garg and Jazayeri, 1996).

CHAPTER 4
SOFTWARE DEVELOPMENT MODELS AND

SOFTWARE QUALITY ASSURANCE

The effectiveness of a given Software Quality Assurance plan is principally dependent

on its suitability for the software development process and the particular model in use.

4.1 SOFTWARE DEVELOPMENT MODELS

Some typical models and their application from a software quality assurance

perspective include the waterfall model, prototyping, iterative enhancement and the spiral

model. In addition, a model with a focus on software quality assurance and based on process-

centered software engineering is illustrated.

4.1.1 A PROCESS STEP SPECIFICATION

Process step specification addresses the process model property of step sequences with

respect to their initiation and termination, amongst other issues related to the step property

(Jalote, 1997). Since defect detection is one aim of a process, verification and validation (V&V)

is necessary at the end of each step. Also termination of each step in a work product

necessitates a small number of steps to reduce the cost of V&V. As noted, specifications are

determined by when a step should be initiated and when it should be terminated, depending

on project implementation. All these issues are fundamental to designing the common

development process models described below.

4.1.2 WATERFALL MODEL

The waterfall model treats the software development lifecycle as a linear process with

each phase following into the next from a time perspective. The waterfall model is illustrative

of the types of activities that occur in software development. It is an appropriate model for

illustrating the basic software engineering phases and work products but is deficient in

application. The principal problem with the waterfall model is the conflict between the need

to adequately analyze work products before reviews and the pressure to continue the overall

software development effort without a loss of wholeness (Evans and Marciniak, 1987). Below

is a schematic of the waterfall model. The decreasing space between each phase is

representative of the time compression that occurs towards the end of a project.

Figure 4-1: The Waterfall Model

Before major reviews occur, the documentation requiring reviewing may be bulky and

complex due to the intertwining relationship between different forms of documentation such

as requirement analysis, design, code and testing. What occurs is that data is submitted for

review and the project proceeds. Therefore, since the results of a review ends up being

submitted after the project has proceeded, changing the status, then the results of the formal

review are no longer valid.

Since the software project is extremely dynamic, changes cannot be factored in the

review process because of schedule pressures or project limitations. It is difficult to accurately

assess project progress and software quality. What usually happens is that when technical data

documentation, planning documentation and other documentation is submitted for review

there is not enough time to sufficiently evaluate all documentation. Instead what occurs is

sampling of the documentation with resulting approval to documents that should not be

approved, critical relationships are not captured, risk is ignored and suggestions given are not

optimal. The aim becomes keeping the documentation on schedule instead of assessing the

integrity of the project.

4.1.3 PROTOTYPING

A prototyping development model facilitates rapid development of a system that

reflects the projected operational capabilities of the system before the software product is

developed. The prototype system serves as a test platform on which system and user interface

concepts can be tested prior to development.

Figure 4-2: The Prototyping Model

Requirements Analysis

Design

--' Design I T-[['

SRequirement Analysis]

Product assurance within a rapid prototyping development environment would

involve activities that are less internal (project members) and more external (client interaction)

in attempting to realize the client requirements aspect of the software product quality. In

addition, satisfaction of standards and procedures, such as ISO guidelines in use, are easier to

determine due to the visibility achieved by developing an early prototype.

4.1.4 ITERATIVE ENHANCEMENT

The iterative enhancement model involves software development in increments where

a certain amount of functionality is added to the system per iteration until the complete

system is implemented. It combines the linearity of the waterfall model that is necessary for

project completion with the prototype model benefits of having a visible product that can be

tested.

Design

Implementation

Analysis

Iteration 0

Design Design

-I Implementation Implementation

Analysis

Iteration 1

Analysis

Iteration n

Figure 4-3: Iterative Enhancement Model

A simple implementation is initially done for a sub-set of the problem space. This sub-

set contains a key aspect of the requirements easy to implement, involving a build up to the

final system. Each of these iterations involves addition of key tasks to the incremental build

system. These key tasks are contained in a list and realized in order of implementation

difficulty. Each task consists of removing the next task from the list, designing the

implementation, performing an analysis of the partial system obtained after this step, and

updating the list as a result of the analysis. Quality assurance as an iterative function fits well

into this model.

4.1.5 THE SPIRAL MODEL

Project activities that use this model can be arranged in a spiral manner will many

cycles. Each cycle in the spiral model starts with objective identification, alternatives and

constraints. Evaluation of these items follow with a focus on risk/benefit analysis. Then

strategies are developed, leading to development of the software and the start of planning the

next cycle of the spiral.

4.2 MODEL APPLICATION OF PROCESS CENTERED SOFTWARE

ENGINEERING

Figure 4-4 models the components of a typical process-centered software engineering

environment. The principal components of this architecture are a data repository to store

data, code, process and product documentation; software tools that help with the processes;

some sort of communication system; and process engines that are support by the

communication infrastructure. This process architecture, especially the data repository and

communications subsystem, were realized in the DISEL endeavor. The data repository was

used for the process of document creation, storage and manipulation such as schedules,

agendas, minutes and the communications sub-system included e-mail for the process of

communication.

Figure 4-4: Process-centered Software Engineering Environment Schematic.

CHAPTER 5
1.120 DISEL PROJECT: QUALITY ASSURANCE

PLANS AND THEIR IMPLEMENTATION

The diagram and definitions in figure 5-1 illustrates the software development life-

cycle, the quality assurance functions of Software Configuration Management, Validation

and Verification and Testing and Evaluation, and the scope of SQA (Sinclair, Vincent and

Waters, 1988).

Figure 5-1: SQA, SCM, T&E, and V&V in the Software System Lifecycle

Table 5-1: Legend for Figure 5-1: SQA, SCM, T&E, and V&V in the Software System
Lifecycle

IDCR: Initial Design Concept Review (Requirements Analysis Phase)

SRR: Software Requirements Review (Requirements Specification Phase).

PDR: Preliminary Design Review

CDR: Critical Design Review

FDR: Final Development Review

FCA: Functional Configuration Audit

POR: Post-Operation Review

PCA: Physical Configuration Audit

FB: Functional Baseline

AB: Allocated Baseline

DB: Design Baseline

PB: Product Baseline

OB: Operational Baseline

Quality assurance in software creation includes the planned and systematic actions

developed to establish that a given software product or system developed meets the user's

requirements. Hence since meeting user requirements can be better achieved by optimizing

these planned actions, then quality assurance involves looking at the process in addition to

monitoring the product quality. A third aspect of Quality Assurance that has been neglected

until recently and may be the most important aspect in realization of a collaborative

development project is the people involved and the team dynamics that occur.

The purpose of the DISEL effort in broad terms was to re-create the "campus

experience" in distance learning situations and allow individuals to express themselves without

the constraints of the machine environment. The objectives were to enable Casual Contact

and improve Social Interaction through collaborative awareness, personal expression and

social feedback (http://kiliwa.cicese.mx/ disel/Documents/Documentation.html). The result

was the Cliq! system which delivered on each of these three objectives. The DISEL effort was

conducted within the 1.120 Information Technology project. The development model that

was implicitly applied was the Waterfall model.

Principle QA for Cliq! & DISEL Participants

Documentation Specialist: Testing:
Diana Ruiz Juan Contreras

Juan Francisco

Validation and Verification:
Gregorio Cruz Quality Control:

Lidia Gomez Ruben Martinez
Charles Njendu

Simonetta Rodriguez

Quality Assurance for Cliq!

Figure 5-2: Quality Assurance for Cliq!

The quality assurance sub-teams were quality control, software configuration

management, validation and verification, testing, documentation and maintenance. The

quality assurance relationship has been reproduced above as it was structured within the

DISEL project, with the four principle active roles. Documentation played the key role in

ensuring compliance with any of the aspects of SQA. Compared to the generic relationship

established in Chapter 2, quality control in the DISEL replaced positions with maintenance in

activities performed towards SQA. Whatever occurred within the scope of maintenance was

implicitly merged with testing. Software Configuration Management within definitions also

occurred.

5.1 QUALITY ASSURANCE PLANS DESIGNED IN THE 1.120 PROJECT

The following is an overview of the quality assurance plans developed by the team

members of the DISEL endeavor. These plans consisted of the quality control plan, the

software configuration management plan, the testing plan, the validation and verification plan,

the maintenance plan, and the documentation specialist plan.

5.1.1 QUALITY CONTROL PLAN

The purpose of the quality control (QC) plan was to improve software quality by

monitoring both the software product and the development process that produced Cliq!. The

software product included the code, design documentation, test plans and user manual. In

addition, the plan was to ensure compliance with established standards and procedures for

both the product and process that had been tried and proven. Finally, the quality control plan

was to ensure that any inadequacies in the product, the process or the standards were brought

to the attention of the team to ensure that they are corrected.

The following were the benefits that the DISEL effort pursued in creating a quality

plan that captured these purposes. An appropriate development methodology in achieving

client requirements would be used. As the project progressed, project members would have

standards and procedures to direct their work. Independent reviews and audits necessary to

ensure a quality system would be conducted. Documentation would be produced to support

maintenance and enhancement of the system and process. Most importantly, this and other

documentation being produced during and not after the system development. In addition, if

changes were necessary, there would be mechanisms to ensure a smooth transition and project

progression. Also, since risk within the process was not even, nor was it expected to be,

testing would be developed with an emphasis on the high-risk product areas. Finally, each

software task such as the development, and the finer sub-tasks, would be completed to

requirement satisfaction before the next tasks begun, with deviations from agreed upon

standards and procedures being exposed as soon as possible and external professionals being

able to audit the project as necessary.

The following was the schedule of the actions planned, documentation involved and

producers of documentation for the stated quality control objectives in realization of the Cliq!

system.

Table 5-2: Quality Control Plan

Definition of the Quality
SControl Plan

Quality Control Plan Quality Control Engineers

Participation as witnesses in None. Client
the client interview that is
used to obtain requirements.

Presentation of the Quality
Control Plan within the
1 1rsnaino h ult

Quality Control Plan QC engineers

laboratory.

Oct 9~ QC participates in the Requirements Specification Analysts
review of the Captured
Requirements using the
walkthrough technique
within the laboratory class

Oct 14: ~ Requirements Specification Requirements Specification Analysts
Audit

iOct I4 Project Plan Audit Project Plan Project Managers

Oct 1 j Requirement Analysis Audit Requirement Specification QC Engineers
Presentation in the Review
laboratory class

Oct 20 *: ':--: : Documentation Specialist Documentation Specialist Documentation Specialist
work plan audit work plan

Oct 2 : Requirement Analysis audit Requirement Analysis Analysts

Oct 30;' ~ Presentation of the Requirement Analysis Audit QC Engineers

Requirement Analysis audit
at the laboratory

iNov 3' ~ Requirement Analysis Requirement Analysis Analysts
review as preparation for the
technical review scheduled
for November 6th

Nov 6 Participation as reviewers in Requirement Analysis Analysts
the group review of the
requirement analysis within
the laboratory class

Nov 13 Participnation as reviewers in Reauirements Analysis IAnalysts
a review of the requirements
analysis at the laboratory
class

Audit to the Software Software Configuration Software Configuration
Configuration Management Management Plan Manager
Plan

Requirements Analysis audit Requirement Analysis Analysts

Nov 2 : Presentation of audit Requirement Analysis audit QC Engineers

performed to the
requirement analysis at the
laboratory

Nov 20 Presentation of audit Software Configuration QC Engineers
performed to the software Management work plan audit

1 , configuration management
work plan in the laboratory

Nov 2 Test Plan audit Test Engineers plan Test Engineers

Nov 29 Requirement Analysis audit Requirement Analysis Analysts

Dec 2 SPresentation of the Requirement Analysis audit QC Engineers
Requirement Analysis audit
at the laboratory class

Dec 2nd Presentation of the Test Test Engineers plan audit QC Engineers
Engineers plan audit at the
laboratory class

Jan 4* Maintenance Engineer work Maintenance Engineer work Maintenance Engineer
plan audit plan

Jan9 I Preliminary Design Audit Preliminary Design Designers

Jan 1$: Participation as reviewers in Preliminary Design and Designers and QC Engineers
the Preliminary Design Preliminary Design review
review at the laboratory
class. A walkthrough review.

Jan:29 Preliminary Design audit Preliminary Design Designers

Feb 53 . Presentation of the review Preliminary Design audit QC Engineers
results made to the
preliminary design at the

1-- / j -

'We

laboratory class

Detailed Design preparation Detailed Design Designers
review

Participation as reviewers in Detailed Design and Detailed Designers and QC Engineers
the Detailed Design review Design preparation review

S review will be in the form of
inspection

Participation as witnesses in Source code Programmers
the code technical review at
the laboratory class. This
review will be in the form of

Sa peer review

" Audit to the changes Changes record Software Configuration
S recorded by the Software Manager

Configuration Manager

Participation as witness in Source code Programmers
the code technical review at
the laboratory class. A peer

e review
-wae.Cn.iur.io

Audit to the tests applied to
the code modules. The Test
Engineer must supply a
document with the results.

Test results Test Engineers

,Apr 9lhb '--'',' Presentation of the audits Test results audit QC Engineers
made to the code modules
tests at the laboratory class

Apr 3ii Final audits to all deliverable User manual, Software Documentation Specialist,
documents: the final user Configuration Software Configuration
manual, the software documentation and Manager and Test Engineers
configuration document, Acceptance Test results
and the system and
acceptance test results

Miy 7 ih Presentation of final audits Final audits and Trend QC Engineers
results and the trend analysis Analysis
at the laboratory class

:;~EZar:~~~:~:~~c:~::~~t,.t. I i:x~~" ~ ~. :~

" ~ ~ ~- ~ ~ h;
~"~ :* rr2: r

, ~?.
.: -~ .^*~

5.1.2 SOFTWARE CONFIGURATION MANAGEMENT PLAN

Software configuration management is traditionally applied to the development of

hardware systems, or to the development of hardware elements of hardware-software systems

tailored to a system, or portion of a system, predominantly comprising software. Software

configuration management is the discipline of applying technical and administrative direction

and surveillance to identify and document the functional and physical characteristics of

software configuration items (SCI's) (Buckley, 1992).

In developing Cliq! software configuration management (SCM) was expected to include

the following tasks. Software configuration management items were to be audited to verify

conformance to specifications, interface control documents, and other contract requirements.

In addition, SCM was to control changes to configuration items and their related

documentation, recording and reporting information needed to manage configuration items

effectively; including the status of proposed changes and the implementation status of

approved changes (Buckley, 1992).

The software configuration management plan was developed to identify and define the

organization, activities, overall tasks, principles, and objectives of SCM. The policy statement

used in creation of the plan included keeping the number of configuration changes to a

minimum, and any suggested improvements not required to meet requirements were to be

approved and authorized only if they could be justified on a cost-savings and/or effectiveness

ground.

The purpose of the software configuration plan was to identify and describe the overall

policies and methods for SCM to be used during the software life cycle. The full purpose,

scope and the glossary of terms for SCM are included in Appendix A.

SCM activities were to include Software Configuration Identification (which involved

the identification of Configuration Items and the naming of Software Configuration Items),

Software Version Control, Software Configuration Control, Software Configuration Status

Accounting, and Software Configuration audits and reviews.

Identification of Software Configuration Items (SCI's) was to be used in each of the

documents, or set of documents, with a formally designated, fixed specific time in the software

lifecycle. These documents and their associated times were to form baselines as the project

progressed. A series of different baselines to be used were established permitting an ordered

flow of development work.

Table 5-3: Development Baselines

Requirements baseline Specification baseline Design baseline

Unit baseline Integration baseline Operational baseline

Marcela Rodriguez gives a concise description of these roles and their interaction in the

Software Configuration Management Plan she developed for the Cliq! development effort. In

it she states that "The Requirements baseline is established when the requirements are

completed and initially approved. The Specification baseline includes the program external

specifications together with a cross-reference to the requirements and operational concept.

The Design baselines are established when the design is initially completed and inspected. As

each unit is completed, inspected, and tested a Unit baseline is established. After initial

implementation and unit test, the programs are placed in the Integration baseline. The

Operational baseline is established at the time of system shipment." (Urreas, 1997).

5.1.3 TESTING PLAN

The development of any software system, including Cliq!, involves a series of

production activities with the possibilities of human error just like any other sequence of

production. The complexity, changeability and invisibility of software magnify the number of

possible errors and their type. Testing is extremely difficult as the essence of software

is conceptual, abstract, highly precise and richly detailed (Brooks, 1995). Errors tend to show

up from the first moment of the process (because from this stage on the objectives can be

specified in erroneous or imperfect form). These errors typically magnify in the subsequent

stages of design and development. In summary, it is impossible for humans to work and

communicate in perfect form. This imperfection requires the development of software

accompanied by an activity that attempts to guarantee the system quality, the activity of

testing (Benjamin and Garcilazo, 1997). Testing, put simply, is looking at the code elegance,

robustness and consistence.

The testing plan purpose was providing confidence, robustness and consistency in

Cliq!. It is impossible to test for all possible scenarios even if known. Therefore the scope of

the test plan was intended to ensure that Cliq! satisfied the requirements given by the client,

captured in the design documentation and detailed in the product description, standards and

procedures of the quality control plan in appendix A. The main objective of the plan was to

implement a test that exposed different error classes, in minimal time and manpower without

the loss of efficiency, and in a preventive and not curative manner (Castillo and Ortiz, 1998).

The separate components used in the development of the testing methodology are

listed in table 5-4.

Table 5-4: Components of the Testing Methodology

The program to be tested.

The environment in which the testing occurred.

The methods used to obtain test cases.

The methods used for performing test cases and evaluating results.

The methods for assessing program quality based on the results.

Test team activities included participation in the revision of the analysis document to

get familiar with user requirements and design methodology. The purpose of the participation

was to enable the test team to design tests that captured the functionality, performance and a

good application of the methodology (Castillo and Ortiz, 1998).

Testing was divided into 3 levels: unit, integration and systems testing (Castillo and

Ortiz, 1998). The unit level was easiest to define, structure and achieve a complete test criteria

for. Unit testing is also known as structural testing.

However for a software product, the sum is rarely the whole of its parts meaning that

unit tests cannot provide a guide to the overall system behavior. Therefore after unit testing

was performed integration testing occurred which involved working at different levels of

abstraction leading to the final system testing. The main problem with the intermediate

system testing was that unlike a unit (such as the User Interface) whose behavior is usually

specified and the whole Cliq! system whose behavior must always be specified and was

specified in the requirements and design phases, integration behavior was unknown. This

made it impossible to use functional testing at the integration level.

Since unit testing could not give the behavior of the system as a whole and integration

testing was structural as well, system testing of Cliq! was the final step that helped eliminate

the variant behaviors that came from software not being the sum of its parts (Castillo and

Ortiz, 1998). The test documentation fields that resulted are listed in table 5-5.

Table 5-5: Test Documentation Fields

Test identifier Version of the test Name of the test

Level of the test Modules to be tested Test Objectives

Test date Required time Inputs

Expected outputs Results Comments

Conclusions

This information allowed the test engineers to obtain a history of all tests applied to the

system as well as a database of errors found in the design and programming stages (Castillo

and Ortiz, 1998).

In addition a bug-tracking system or database was developed and included the fields

listed in table 5-6.

Table 5-6: Bug-Tracking System Information Fields

Date Stage [Design or Programming] Type of error

Syntax Incongruent with respect to Class

previous stage

Relation Function Attribute

Other (Specify) Level of error (High, Medium Section of the design

and Low) document or code where

the error was found (row,

page or diagram).

The documents that the test plan generated in achieving its purpose were:

* A test plan

* The results of tests applied to modules and methods

* The results of integration tests

* The results of usability tests

* The results of regression testing

5.1.4 VALIDATION AND VERIFICATION PLAN

Validation, as defined in Chapter 2, refers to the process of evaluating software at the end

of its development to ensure that it is free from failures and complies with its requirements. A

failure is defined as incorrect product behavior. Verification refers to the process of

determining whether or not the products of a given phase of a software development process

fulfill the requirements established during the previous phase (Cruz and Gomez, 1997). These

definitions cover the traditional look at the production of a software system: the product and

the process.

Within the DISEL effort software verification and validation helped determine that the

software requirements were implemented correctly and completely and were traceable to the

Cliq! system requirements. V&V evaluated how well the software was meeting its technical

requirements and its safety, security, and reliability objectives relative to the system. It also

ensured that software requirements were not in conflict with any standards or requirements

applicable to other system components. Software V&V was typically supposed to analyze,

review, demonstrate or test all software development outputs.

The responsibilities of V&V were to ensure that Cliq! was free from failures and meet its

user's expectations. There were several theoretical and practical limitations that applied to

Cliq! or any software system, that made these responsibilities impossible to obtain. These

include the impracticality of testing all data, the impracticality of testing all paths and the lack

of a rigorous mathematical proof of correctness that could be applied to software engineering

(Cruz and Gomez, 1997). In delivery of the Cliq! system, V&V set out to analyze and test

the software with the focus being delivery of functionality at the level of personal expressions

and social feedback, and to assess how well the software realized the issues of reliability,

security, and safety.

The Validation and Verification (V&V) plan developed for the Cliq! system had to

satisfy these client requirements at the functional level and in its performance. The particular

objectives of the plan created to ensure this included:

* Correctness: Involved making sure that the final product is free or errors.

* Consistency: Involved making sure that the product is consistent with itself and with

the other products. As an example, the definition of a function key should be the same

one for all interfaces (F1 = help).

* Necessity: The system was to have all that is necessary in order to operate in accordance

with the requirements of the client. That is, more capacities to the system then the

ones needed should not be added.

* Sufficiency: Involved making sure that the system is complete.

* Performance: Involved making sure that the system satisfied client requirements.

The key activities through which the validation and verification added value in the DISEL

endeavor were:

* Creation of a Software Verification and Validation Plan

* Creation of a System Acceptance Plan

* Creation of the final Software Verification and Validation Report

* Creation of the Agenda for the Laboratories where Cliq! was created, and

* Work as Moderators of the Activities performed in the Laboratory Sessions.

In short, validation and verification in the development of Cliq! asked whether the

functionality of Cliq! was meet and attempted to answer this question.

5.1.5 MAINTENANCE PLAN

The role of maintenance, as stated earlier on, never really occurred in the development of

Cliq! and was integrated within the testing function. However, the objectives of the

maintenance plan, as developed, were to ensure that the development team was updated on

errors detected and ensure system flexibility. The mission, objectives and work plan are

detailed in appendix A.

5.1.6 DOCUMENTATION SPECIALIST PLAN

Documentation is one of the most important aspects of quality assurance since it is the

most visible and durable result of the software production. Documentation is essential both to

the creation, use and maintenance of the system. Within the development of the DISEL

software development process a great amount of documentation was generated including

requirements analysis documentation, design documents and source code. This documentation

was stored in order to have a development process history and in a manner that was user-

friendly. The main objective of such documentation was to be a communication, reference

and idea generation medium between the several members of the DISEL development team,

especially in the distributed endeavor. In addition, during the project, the documentation

served as a means of avoiding the distortion of ideas, helped with project control, stored the

rationale of the decisions and made visible the capacities and limitations of the system (Ruiz,

1997). Documentation in the DISEL effort was collected in a data documentation and code

repository online at http://kiliwa.cicese.mx/-disel and was classified within two categories

reflective of process and product importance.

One classification was process documentation. Examples included project schedules,

agendas, and minutes. These documents recorded the development process and maintenance of

the system. In addition, the documentation made the development process "visible" and

maintained information about project scheduling, prediction and control of the process (such

as plans, calendars, estimates). Also process documentation included reports about the

resources used during the development, standards to be implemented in the several phases,

compilation of ideas and strategies to be implemented for the project members, rationale of

the design decisions and details of the daily communication between managers and

development team.

The other category was product documentation. Examples included requirements

specification, design documentation and the code. These documents described and detailed the

product developed from both the technical (system documentation) perspective and the

system user (user documentation) point of view. A good example of common user

documentation was the user manual. System documentation included all the documents from

the requirement specification stage to the final acceptance test plan. These documents were to

be used during the maintenance phase and would need to be updated every time that changes

were carried out on the system. The most visible documentation, user documentation,

typically contained an overview of the services that Cliq! delivered, how the system was to be

used, a reference manual that enabled the handling of errors and facilities and a section that

described the installation process of the system as well as an administration manual.

As mentioned earlier on, the quality of the generated documentation was of great

importance since the utility of the system degrades without adequate information on how to

use it or how to understand, reconfigure and redefine its development.

In order to achieve this quality the development of the documents followed standards.

These standards governed the process, ensuring the satisfactory information exchange of

electronic copies of the documents and fundamentally determined the nature of the

documentation. These standards needed to be as specific as possible yet generic enough to be

used in the elaboration and useful creation of several types of documents. Last but not least,

the document standards specified the appearance of all the documents. These standards served

the purpose of maintaining the consistency of the documents and allowed easy relationship

constructs and use of analogy to reduce information overload. Documentation included the

identification, structure and presentation of its content.

CHAPTER 6
EVALUATION

In development of the Cliq! system, complexities existed mainly due to the DISEL

effort having been a first attempt that consequently magnified productivity detriments such as

cultural differences, poor communication protocols that resulted in the SQA function being

discharged or implemented haphazardly. This mainly occurred because the benefits of the

SQA functions and a well-designed SQA framework were the least visible. Hence SQA was

the first to be discharged under the pressure of meeting project deadlines that occurred with

project progress in the DISEL effort. In addition, it was poorly defined.

6.1 REVIEW OF DISEL PROJECT

The MIT collaborative software engineering experience was unique as a learning

experience because it brought to the forefront all the factors necessary to stress the importance

of process, product and people interaction quality. A good number of the team members had

minimal software development experience on the scale required by the project and hence

spent a good amount of the time on the learning curve. However, this is the expected

composition in a learning environment and for a non-industrial team. Another complexity

was the dispersed nature of the team members. Team dynamics developed along with the

project. In addition to cultural differences there were language differences (English and

Spanish). The main issues involved were the cultural differences as well as the structure that

was already in place at the start of the project. These cultural differences included a

dependence on a set structure on one side (requiring no deviation from a topic or agenda and

passive consensus) versus an aggressive, individualistic approach on the other side.

In addition, the physical separation magnified difficulties. If the team was in one

physical location, a shared culture might have developed; in fact, it would have had to. The

distance allowed and fostered the ability to disengage oneself and passively sink in the

background, something that would have been impossible in a physically co-located

environment. An important but contestable point to note (since this effort had to be

distributed) is that the best possible scenario might have realized these two cultures working

together on impartial ground. That is, if the MIT counterparts were in CICESE they would

have had to fully adapt or move back to MIT and likewise with the CICESE students in the

MIT environment. A non-MIT or non-CICESE dominant physical environment would have

been ideal to develop this shared culture that was mission-critical to the whole project

endeavor.

In the working difficulties that developed, a question to ask is, is it possible that a

separation of culture and communication is necessary to identify the problem? If it were only

MIT students or CICESE students involved in a distributed endeavor, would most of these

problems persist, hence indicating more of a communication problem then a cultural

difference problem?

Other more substantial issues that affected the productivity of the group involved

spatial issues of the local environment on either side. Using the MIT side as an example, it

would have made immense difference if the team members meeting had individual keyboards

to communicate fostering participation during the lectures and lab sessions. The particular

setting of the design studio with a conference-type table in the center with group members

clustered around it created more of a clustering effect and more chances for passive group

isolation (an incentive to associate as one team instead of two) as well as active group isolation

(the opportunity to develop a we versa them mentality). In addition, the room set-up had and

required too many points of foci. The cameras were at a given angle, the screen at another and

the computers and mike coming from yet another angle. The cameras provide a fixed static

look to the MIT students of their CICESE counterparts governing how the group interacted

and particularly replied. The room was futuristic in design with lacking functionality.

6.2 REVIEW OF INITIAL SQA PLANS AND IMPLEMENTATION TO THE

DISEL PROJECT

The main result of these SQA plans and their relation to the DISEL effort was that,

besides the documentation plan, they were never implemented comprehensively or even

in a manner required to add substantial value to the project. As the project progressed these

plans were abandoned and ad hoc methods were applied as found or thought necessary. For

example, as the testing phase was entered an entirely different test plan was used instead of the

one initially documented. In a similar vein, alternate quality control activities such as testing

the user interface and network modules from an outside user's perspective developed with the

project.

This evolution of the SQA function with time is good, however the plans failed as they

were generic, massive documents that had "nuggets of value" hidden in "masses of writing". As

such they may have been effective for a large development team, but were time-consuming to

extract value for a small team like the DISEL one. Most of the SQA value added was from

these ad hoc methods instead of the pre-prepared plans. The discrepancy in the SQA value

added and how much of it came from the plans designed at the start could have been largely

avoided by the following method. A method that involved designing these plans carefully and

early to fit the expected model of the project in terms of client requirements, the distributed

nature of the endeavor, the language and cultural differences amongst other factors.

Another shortcoming of the SQA plans was that they were not as tightly coupled to

each other and the project schedule as possible. In addition, they were linear in manner with

no iteration planned for either within or between the phases (such as preliminary design and

specific design, or design and coding). A waterfall model was implicitly assumed. In addition,

provision of incentive schemes to develop, implement and maintain SQA plans were non-

existent or not explicitly defined.

An excellent implementation of the SQA function was evident in the data repository

developed for the DISEL effort. This data repository was located at

http://kiliwa.cicese.mx/-disel/ with the front end illustrated in figure 6-1.

Netcap - Clabrtv SotaeEgn rig

File Edit View Go BookmarKs Options uirectory winoow Help

Co1tent C a # N t o

Distributed Software Engineeritnq Laboratori
"DI)SEL"

Project
Overview

Diselis a distributed, collaborative software engineer laboratory. Students
lPraps from CICESE and MIT collaborate in the development of a medium scale

sotiware project Each parttcpan plAys arole along of the I cypke of the

This initatve proposes a new perspecutve of distance education by having
V V a studentsexperiencing a profestonal product development process and

emphasi6~ng the collaborative nature of the learming experience.

Mee~s

2L~d DocuGmetif one

Figure 6-1: DISEL Repository Main Web Page

The data repository was also a direct communication media in the form of an e-mail

archive that tracked communication between project participants according to subject title,

author or date. A good structure allowed the on-going documentation to fit in well. In

addition, timely updates of crucial importance were communicated to team members via e-

mail and an established protocol that divided messages in levels of importance. However,

room for improvement is possible in the organizational form of this repository.

In addition, a project plan that supported early prototyping, spending less time on

analysis and more time on coding and testing, along with SQA plans that encompassed this

method, would have been efficient. It would have kept team morale up, allowed sufficient

time for bugs that surfaced to be resolved, and for the client to confirm that their

requirements were being meet and incorporated, seeing and adapting to the effect of changes as

the project proceeded. Rapid prototyping provides a tangible object with properties that can

..... .if J t , .

' Locaion:l

Lrr~x~r~rixr~r~xxuua-~ ~ I....II^

~aw~e~n~ - lrr~51"'

then be assessed for conformance early on in comparison to the relative abstractions of the

requirements analysis and design phases. Therefore, less time should have been spent on

analysis, more on coding and testing with reiterations to previous phases as necessary. This

does not imply that requirement analysis is unimportant. In fact, this simply stresses the

importance of the requirement analysis role since by implementing rapid prototyping the

project becomes a more concrete attempt earlier on to capture the client's requirements.

In summary, the SQA plans needed to be developed in synch, account for iteration,

involve rapid prototyping and fit the distributed collaborative nature of the project as best

possible with room for change as the project progressed.

CHAPTER 7
CONCLUSION

7.1 RESEARCH RESULTS

Based mainly on the evaluation and partial suggestions given in Chapter 6, the

following Software Quality Assurance framework has been developed mainly through

implementation of the lessons learnt on the first DISEL effort and lessons learnt by Brooks in

designing the IBM System/360. Most of the lessons are still meaningful to the software

engineering discipline as a whole. These lessons have been used in creation of an SQA

framework within the scope of a distributed collaborative software-engineering environment,

the environment within which Cliq! was developed.

7.2 A FRAMEWORK FOR DEVELOPING A QUALITY ASSURANCE

METHODOLOGY

Using the Capability Maturity Model as a framework for description of effective

software processes and a pathway to improve an organization's software process maturity, the

initial DISEL effort was at level 1 (Curran and Sanders, 1994). The next effort, without a well-

defined SQA methodology, will be at level 1 as well. Level 1 as defined in Curran and Sanders

is the "initial" level where "The software process is characterized as ad hoc. Few processes are

defined and success depends mainly on individual effort". Key process areas that may exist

include configuration management, quality assurance, sub-contract management, project

tracking and oversight, project planning, and requirements management. The second level to

aim for is repeatability where "basic project management processes are established to track

costs, schedule and functionality. The necessary process discipline is in place to repeat earlier

successes on projects with similar applications." (Curran and Sanders, 1994). Key processes

include peer reviews, inter-group coordination, product engineering, integrated software

management, training programmes, organization process definition, and organization process

focus.

The purpose of this SQA framework is to help the next endeavor for distributed

collaborative software development within DISEL develop SQA plans and methodologies that

will help move towards fully achieving level 1 maturity and, if possible, move on to level 2.

Starting at the top-most level that is project management, estimating should not be

built around cost-accounting, as such an estimation substitutes effort with progress. While it is

true that cost varies with the product of man-months, progress does not. Within project

scheduling itself, the use of Brook's rule of thumb to establish the lengths of the different

phases will be an appropriate working estimate to start scheduling by. This rule states that a

third of the schedule should be for design, a sixth for coding, a quarter for component testing,

and a quarter for system testing (Brooks, 1995). Requirements should be included in the one-

third of the time that is allocated to design. In addition, a schedule will need to be defined,

understood by team members and closely followed. A critical-path schedule will be invaluable

as an indicator of schedule slippage and associated cost. If slippage occurs and on disclosure of

the project status to the project manager, acceptance and dealing with the slippage without

panic will encourage future ease of full status disclosure (honest reporting). With particular

application to the next DISEL endeavor and its possibility of being an extension of the present

one, Brook's cautionary second-system effect which states that the second is the most

dangerous system a person ever designs as the tendency is to over design it, needs to be kept in

mind.

With respect to project management and documentation, the excellent effort in

maintaining a data repository should be continued. However, establishing a code repository

will be invaluable in allowing the programmers to keep track of code versions. This code

repository should be an aspect of the data repository or an entity in itself. Appropriate access

levels should be established as necessary. The data repository is to be a structure imposed on

the documents that a distributed project will produce and hence its design can be established

early on. This design will need to be carefully done with all documents being a part of this

structure. Proper design will improve final products such as the user and systems manuals.

The World Wide Web was and is an excellent medium for accessing and modifying the

repository, allowing all distributed software development team members easy access to

documentation from just about anywhere, a desirable feature for distributed collaborative

development.

Due to the amount of paper that will be generated and, in a distributed collaborative

effort, the kilobytes of electronic mail, a small number of documents will become the critical

pivots around which every project's management will revolve. These will be the manager's

main personal tools. For the distributed software project, the documents will be the project's

objectives, user manual, internal documentation, communications protocol, schedule, budget,

organization chart, and floor space allocation. Maintaining each critical document will provide

the project manager with status surveillance and a warning mechanism. Other benefits will

include the documents serving as a checklist and a database and, since the project manager's

chief daily task will be communication and not decision-making, the documents will

communicate the plans and decisions to the whole team, easing the manager's burden,

providing precision and avoiding repetition. In addition, ordinary English documentation will

be necessary throughout coding and other documents produced as memory will fail the

programmer-user-author. In documentation the programmer-user-author will need to be

concise, standing back and seeing the big picture then extracting the necessary information.

Communication being key, the organizational structure of communication will need

to be a network, and not a tree, so all kinds of special organization mechanisms will have to be

devised to overcome the communication deficiencies of the tree-structured organization.

Scheduling disasters, functional problems, and systems bugs mainly arise because of

miscommunication and assumptions. Another cause is the perfection required in

programming unlike other disciplines where estimates work. In programming, team members

translate ideas into programs, but human ideas are imperfect and programs need perfection to

run. Project members in the distributed effort will need to communicate with each other as

often as possible and with as many means as available. These include organizational

mechanisms such as regular project meetings with technical briefings, the shared data

repository, code repository, chat sessions and Net Meeting.

A system design fact that will allow the implementation of iterative, prototype-

supporting SQA plans is that much of software architecture, implementation and realization

can proceed in parallel (for example, in the Cliq! system development the network layer

implementation could have proceeded in parallel with the User Interface design). In addition,

stressing SQA plans that require knowledge of the full system will be impossible (and is

impossible in all but the smallest systems), therefore, SQA plans developed will need to

demand and make use of interfaces instead of system internals. Hence, parts should be

encapsulated.

The SQA plans will also need to account for and help establish the choice of

programming language, the programming environment (for example, whether the

programmer will be responsible for multiple duties), programmer's experience, editor

enhancements, sub-second response-time decrease, additional automation of the software

development process, on-line programming, languages, and program editors. These are all

factors involved in code productivity. As a start, Emacs was found to be the editor of choice in

the DISEL project and was perceived as one of the principle sources of value added to the

system. It will be crucial to incorporate documentation in the source program as much as

possible instead of keeping it as a separate document in order to keep the documentation

maintained. Three notions will be key to minimizing the documentation burden (Brooks,

1995). These will be the use of parts of the distributed system that have to be there anyway,

such as names and declarations; to carry as much of the documentation as possible; the use of

space and format to show subordination and the use of nesting to improve readability; and the

insertion of necessary ordinary language documentation into the program as paragraphs of

comment, especially as module headers.

Test cases framework will need to include valid, functional input data, some borderline

input data, and some test cases for clearly invalid input data. The following is an example

using an input field for dates and requiring input to be in the form of mm/dd/yy. Valid,

functional data is 06/29/74, borderline input data is 02/29/96 where the borderline data is

that the 2 9 th in February only occurs in leap years and invalid input data would be something

like 00/0T/OH.

An appropriate overall project methodology that should be incorporated into the SQA

plans is rapid prototyping with iterations i.e. iterative enhancements. This is because for most

projects (as happened in the development of Cliq!) the first system built is barely usable with

it being too slow, too big, too hard to use, or all three. Hence the distributed project should

plan to throw one away and probably will anyway. Rapid prototyping will allow the project

to accommodate this problem, solve it (since the first few iterations behave as a first system

that is consequently be thrown away) as well as gain from the accompanying concretization of

clients requirements that result in building a prototype. The tractability and the invisibility of

the software product will expose the developers to perpetual changes in requirements.

Quantifying these changes into well-defined numbered versions will then be necessary. In

addition, the total lifetime cost of maintaining a widely used program is typically 40 percent

or more of the cost of developing it therefore this needs to be accounted for in the SQA plans

if the distributed system developed is to have any long term usage (Brooks, 1995). The system

will entropy with additional changes as, though modules added to a system may increase

linearly with versions, the number of modules affected increases exponentially (Brooks, 1995).

With respect to the SQA function directly, the following is the framework for

development of plans.

* The review techniques will have to reveal the true status to all distributed team

members. For this purpose a milestone schedule and completion document will be the

key.

* Independence for the SQA personnel will have to be achieved. This independence

mainly involves independence from project control, financially or other. As an

example, the SQA sub-team could report directly to the client, establishing the

advantages obtained by having independent SQA reviewers - an in-house out-sourcing

effort.

* The SQA personnel will need to keep in mind that partitioning a task among multiple

people occasions extra communication effort and therefore should keep the SQA team

composition and size consistent as much as possible throughout the project (Brooks,

1995).

* The SQA Quality Factor of principle importance will be (conceptual) integrity from

which the other important ones such as system reliability and usability for distributed

collaboratively developed software systems will follow. To achieve conceptual

integrity, single control of the concepts will be necessary. Such a conceptually

integrated system is faster to build and test.

7.3 RECOMMENDATIONS FOR FUTURE IMPROVEMENT

As noted this is a framework within which precise and elaborate SQA methodologies

may be crafted and implemented for future endeavors involving collaborative software

development. In addition, separate frameworks may be devised and implemented based on the

concepts, functions and models outlined earlier on. Improvement in terms of establishment of

guidelines, standards and procedures specific to distributed collaborative software

development may be derived as well from these in addition to the nature identified in Chapter

1.

REFERENCES

American National Standard. American National Standard: Quality Management and Quality

Assurance Standards - Guidelinesfor the Application ofANSI/ISO/ASQC Q9001 to

the Development, Supply, and Maintenance of Software. American Society for

Quality Control Standards, 1995.

Benjamin, Kareem and Garcilazo, Juan. DISEL. September, 1997

(http://kiliwa.cicese.mx/ disel/Documents/)

Boehm, Barry W., Characteristics ofSoftware Quality. North-Holland Pub. Co., 1978.

Brooks, Frederick P., Jr. The Mythical Man-Month. Addison Wesley, 1995.

Brown, Bradley J. Assurance of Software Quality. SEI Curriculum Module SEI-CM-7-1.1

(Preliminary), Carnegie Mellon University, Software Engineering Institute, July

1987.

Buckley, Fletcher J. Implementing Configuration Management. IEEE Computer Society Press,

1992.

Castillo, Juan Jose Contreras. DISEL. Maintenance Contract. November 12, 1997

(http://kiliwa.cicese.mx/-disel/Documents/MaintenanceContract.html#WorkPlan

Castillo, Juan Jose Contreras and Ortiz, Juan Francisco Garcilazo. DISEL. Plan of Test Team.

February 2, 1998

(http://kiliwa.cicese.mx/ disel/Documents/Plans/Test/Plan.htm)

Chavez, Humberto and Rodriguez, Simonetta A. DISEL. Project Requirements Analysis.

December 10, 1997

(http://kiliwa.cicese.mx/-disel/Documents/Documentation.html)

Cruz, Gregorio and Gomez, Lidia. DISEL. Validation and Verification Plan. December, 1997

(http://kiliwa.cicese.mx/-disel/Documents/Plans/VV/VVDiselPlan.html)

Curran, Eugene and Sanders, Joc. Software Quality: A Frameworkfor Success in Software

Development and Support. Addison-Wesley., 1994.

Evans, Micheal W. and Marciniak, John. Software Quality Assurance and Management. John

Wiley and Sons, Inc., 1987.

Flecher, Tom and Hunt, Jim. Software Engineering and CASE: Bridging the Culture Gap.

McGraw-Hill, Inc., 1993.

Garg, Pankaj K., and Jazayeri, Mehdi. Process-Centered Software Engineering Environments.

IEEE Computer Society Press, 1996.

Jalote, Pankaj. An Integrated Approach to Software Engineering. Springer-Verlag New York,

Inc., 1997.

McManus, James I. and Schulmeyer, Gordon G. Eds.. Handbook of Software Quality

Assurance. Van Nostrand Reinhold Company Inc., 1987.

Microsoft. Microsoft Net Meeting. 1997

Njendu, Charles and Martinez, Ruben. DISEL. Quality Control Plan. November 11, 1997

(http://kiliwa.cicese.mx/-disel/Documents/Plans/QC/QcPlan.htm)

Ruiz, Diana. DISEL. Documentation Specialist Work Plan. October 23, 1997

(http://kiliwa.cicese.mx/-disel/Documents/DSWorkPlan.html#Document

Standard)

SEI, Collaborative Skills in Software Engineering. March, 1998

(http://www.sei.cmu.edu/technology/collab.skills.in.se.html)

Silicon Graphics. InPerson.. 1997

Sinclair, John, Vincent, James and Waters, Albert. Software Configuration Assurance: Practice

and Implementation. Prentice-Hall, Inc., 1988.

Urrea, Marcela Deyanira Rodriguez. DISEL. Software Configuration Management Plan.

October 30, 1997

(http://kiliwa.cicese.mx/-disel/Documents/Plans/SCM/ScmPlan.html)

APPENDIX A: DISEL QUALITY ASSURANCE
PLANS

MIT/CICESE

QUALITY CONTROL PLAN

Charles Njendu, Ruben Martinez, November 11, 1997

INDEX:

PRODUCT INTRODUCTION

Product Description.

Product Requirements.

Planned Market.

Competitive/Predecessor Product.

Operating Environment.

THE ASSURANCE PROCESS.

Identification of the Product Documents to be Reviewed.

Review Techniques Applied.

Audits.

Walkthroughs

Inspections.

Peer Reviews.

QUALITY PLAN.

Quality Plan Goals.

Quality Plan Benefits.

Quality actions planned.

PRODUCT INTRODUCTION:

PRODUCT DESCRIPTION:

The task is to develop a system that allows geographically distributed users to: (1) exchange

and publish documents, (2) handle and track a common and an individual agenda, (3) access

the administrative system of the corporation, (4) hold conferences with other users, and (5)

perform co-development.

PRODUCT REQUIREMENTS:

There are some requirements that the system must satisfy:

The World Wide Web must be used as the interaction method among the users.

The system must include handling of graphics, audio, and video.

The system must track organizational documents.

The system must have an effective and adequate man-machine interface.

The system must integrate information, multimedia, and communication technologies.

The system must be flexible so can be adapted to different organizational models.

The system must have the ability to integrate and communicate the different locations as if

they were only one location, in other words, there must be audio and video contact between

the communicator and audience from one location to the other locations and vice versa.

PLANNED MARKET:

The main users will be people from universities and from corporations who have

the need to exchange information as described in the Product Description.

COMPETITIVE/PREDECESSOR PRODUCT:

Microsoft NetMeeting.

OPERATING ENVIRONMENT:

The system must be platform- and computer-independent.

THE ASSURANCE PROCESS:

Appendix A-QC Table 1 : Identification of the Product Documents to be Reviewed.

Requirements Specification.

Project Plan.

Software Configuration Manager Plan.

Documentation Specialist Plan.

Preliminary Design Document.

Preliminary Operator Manual.

Detailed Design Document.

Test Plan Document.

Maintenance Engineer Work Plan.

Design Test Results Document.

Code Modules Test Result Document.

System Integration Test Result Document.

Changes made to the design.

Changes made to the code modules.

Changes recorded by the Software Configuration Manager.

System Acceptance Test Results Document.

Final Operator Manual.

User Manual.

REVIEW TECHNIQUES APPLIED

Audits:

The audit is a formal review performed to evaluate conformance to standards and plans, and

to ensure change integrity. The leader of the review is responsible for verifying changes as part

of review report. These techniques can be applied to Initial Requirements and to Development

Plans. The quality control engineer's audits will be similar to reviews done in an inspection

preparation.

Walkthroughs:

The walkthrough is used to detect defects, examine alternatives, and be used as a forum of

learning. The producer makes all change decisions, and change verification is left to other

project controls. The walkthrough technique can be applied to the detailed requirements

document, the system design, and to the preliminary and final operator manual.

Inspections:

A group of people meets to detect and identify errors in a software product. The focus is on

finding errors, not correcting them. During the meeting, the reviewers present a list of errors

detected in a preview review and any errors are found during the inspection. The uncovered

errors must be removed and the moderator verifies the rework. This technique can be applied

to the detailed design document and to the source code.

Peer Reviews:

The objective is to detect errors in the source code. An expert, who performs a mental

execution of the program to pick up errors before execution or compilation, does the task.

The issues that must be reviewed are the following: correctness, misuse of variables, omitted

functions, poor programming practices and redundancy. This technique is applied only to the

source code.

QUALITY PLAN:

QUALITY PLAN GOALS:

To improve software quality by monitoring both the software and the development process

that produces it.

To ensure full compliance with the established standards and procedures for the software and

the software process.

To ensure that any inadequacies in the product, the process or the standards are brought to

management attention, so they can be fixed.

QUALITY PLAN BENEFITS:

An appropriate development methodology is used.

The project use standards and procedures in its work.

Independent reviews and audits are conducted.

Documentation is produced to support maintenance and enhancements.

Documentation is produced during and not after the development.

Mechanisms are used to control changes.

Testing emphasizes all the high-risk product areas.

Each software task is satisfactorily completed before the next one is begun.

Deviations from standards and procedures are exposed as soon as possible.

External professionals can audit the project.

QUALITY ACTIONS PLANNED

Appendix A- QC Table 2 : Quality Control Plan

Definition of the Quality Control Plan Quality Control
Plan

Quality Control
Engineers

Participation as witness in the client interview None Client
ised to obtain the requirements
Presentation of Quality Control Plan at the Quality Control QC Engineers
laboratory class Plan
Participation in the review of the Requirements Analysts
requirements using the walkthrough technique Specification
at the laboratory class.
Requirement specification audit. Requirements Analysts

Specification
Project Plan audit. Project Plan Project Managers

Presentation of the requirement analysis audit Requirement QC Engineers
it the laboratory class Specification

Review
Documentation Specialist work plan audit Documentation Documentation

Specialist work Specialist
plan

Requirement analysis audit. Requirement Analysts
Analysis

Presentation of the requirement analysis audit Requirement QC Engineers
it the laboratory class analysis audit
Requirement analysis review as preparation Requirement Analysts
or the technical review to be performed on analysis
Nov 6th.
Participation as reviewers in the review of the Requirement Analysts
requirements analysis in the laboratory class analysis
Participation as reviewers in the review of the Requirement Analysts
requirements analysis in the laboratory class analysis
Audit to the Software Configuration Plan Software Software

Configuration Configuration Manager
Plan

(equirement analysis audit. Requirement

analysis

Analysts

Presentation of audit performed to the Requirement QC engineers
requirements analysis in the laboratory analysis audit
Presentation of audit performed to the Software QC engineers
software configuration work plan at the configuration
laboratory. work plan audit
Test plan audit Test plan Test engineer

Requirement analysis audit. Requirement Analysts
analysis

Presentation of the requirement analysis audit Requirement QC Engineers
in the laboratory class. analysis audit
Presentation of the test plan audit in the Test plan audit QC engineers
laboratory class.
Maintenance Engineer work plan audit. Maintenance Maintenance Engineer

Engineer work
plan

Preliminary design audit. Preliminary Designers
design

Participation as reviewers in the preliminary Preliminary Designers and QC
design review in the laboratory class. This design and Engineers
review will be a walkthrough. Preliminary

design review
Preliminary design audit. Preliminary Designers

design
Presentation of the review results made to the Preliminary QC Engineers
preliminary design in the laboratory class. design audit
Detailed design preparation review Detailed design Designers

Participation as reviewers in the detailed Detailed design Designers and QC
design review in the laboratory class. This and Detailed Engineers
review will be an inspection. design

preparation
review

Participation as witnesses in the code technical Source code Programmers
review at the laboratory class. This review will
be a peer review.
Audit to the changes recorded by software Changes record Software
configuration manager. Configuration Managei

'articipation as witnesses in the code technical

eview at the laboratory class. This review will

e a peer review.

Source code Programmers

Audit to the tests applied to the code modules. Test results Test Engineer
The test engineer must supply results
documentation.
Presentation of the audits made to the code Test results audit QC Engineers
module tests in the laboratory class.
Final audits to all deliverable documents: the User manual, Documentation
inal user manual, the software configuration Software Specialist, Software
document, the system and acceptance test Configuration, Configuration Manager
results document. System and and Test Engineer

Acceptance test
results.

Presentation of final audit results and the Final audits and QC Engineers
trend analysis at the laboratory class. Trend Analysis

MIT/CICESE

SOFTWARE CONFIGURATION MANAGEMENT PLAN

Marcela Deyanira Rodriguez Urrea, DISEL, October 30, 1997

INDEX

* INTRODUCTION

Purpose

Scope

Glossary of Terms

* SCM ACTIVITIES

Software Configuration Identification

Identifying Configuration Items

Naming Software Configuration Items

Software Version Control

Software Configuration Control

Software Configuration Status Accounting

Software Configuration Audits and Reviews

* BIBLIOGRAPHY

INTRODUCTION

This plan applies to the DISEL project in identification and definition of the

organization(s), activities, overall tasks, principles, and objectives of Software Configuration

Management. This document is based on ANSI/IEEE Std 828-1990. The Software

Configuration Management Plan (SCMP) policy statement is as follows:

* To keep the number of configuration changes to a minimum, and in connection to this it

needs to be kept in mind that technical or engineering feasibility are not in themselves

sufficient grounds for change authorization.

* Improvements not required to meet requirements will be approved and authorized only if

they can be justified on cost/effectiveness grounds.

The SCMP is a living document and as a result additions, deletions, and modifications will

occur as it is utilized. It will be updated, as work progresses and the necessity arises, and

additional configuration activities are defined.

The primary objectives of this document are:

* To provide a coherent view in pursing a compatible method and procedure for

configuration management of the systems, it's subsystems and SCI's.

* To establish a change status reporting method for the emerging Software Configuration

Items (SCI's).

* To provide a reference for the common terminology and vocabulary for configuration

management.

* To provide change status visibility of Software Configuration Management.

Purpose

The purpose of this document is to identify and describe the overall policies and methods

for Software Configuration Management (SCM) to be used during the system life cycle of the

system/subsystem and SCI's for the project. These policies and methods will be updated

progressively as the work proceeds and the necessity arises. This SCMP (Software

Configuration Management Plan) will establish and provide the basis for a uniform and

concise Software Configuration Management practice for the system/subsystem and SCI's

during the total system life cycle of the project. The primary intention of this SCMP is to

provide information on the SCM policy and methods to be adopted and implemented for the

project.

Scope

This Software Configuration Management Plan (SCMP) establishes the overall plan of the

Software Configuration Management requirements for the system, subsystems and Software

Configuration Items (SCI's) during total system life cycle of the project. This SCMP will

support the four main activities of SCM: Software Configuration Identification, Software

Version Control, Software Configuration Control, Software Configuration Status Accounting and

Software Configuration Auditing [Rigby].

A software system proceeds through a sequence of stages called a life cycle. This sequence

begins with the formulation of the system concept. The system concept is brought to maturity

through various development stages during which it is transformed into tested and refined

software. With the completion of these development stages, the system will have matured to

the point of deployment. After deployment, the system enters its final, but most significant

stage: the operational stage. The life cycle of a software system terminates when the

operational stage terminates. There are six stages in the system life cycle. Each stage culminates

in a baseline, a point at which management has the opportunity to view the system in detail in

order to examine its integrity, that is, its adherence to and satisfaction of the operational

requirements [Bryan 80].

The Requirements baseline is established when the requirements are completed and initially

approved. The Specification baseline includes the program external specifications together

with a cross-reference to the requirements and operational concept. The Design baselines are

established when the design is initially completed and inspected. As each unit is completed,

inspected, and tested a Unit baseline is established. After initial implementation and unit test,

the programs are placed in the Integration baseline. The Operational baseline is established at

the time of system shipment.

Once the initial product level has stabilized, a first baseline is established. With each

successive set of enhancements, a new baseline is established in step with development. Each

baseline is retained in a permanent database, together with all the changes that produced it.

The baseline is thus the official repository for the product, and contains the most current

version. Only tested code and approved changes are put in the fully protected baseline. It is

the official source that all the programmers use to ensure their work is consistent with that of

everyone else [Humphrey 90].

Glossary of Terms

Audit. An independent examination of a work product or process or a set of work

products or processes with the goal of assessing compliance with specifications, standards,

contractual agreements, or other criteria.

Authentication. The procedure (essentially approval) used by the approval authority in

verifying that specification content is acceptable. Authentication does not imply acceptance or

responsibility that the specified item will perform successfully.

Baseline. A Baseline is a Configuration Identification formally designated and applicable at

a specific point in an item's life cycle. Baselines, plus approved changes from those baselines,

constitute the current configuration identification. A Configuration identification document,

or a set of such documents, are formally designated by the acquirer (Customer) at a specific

time during a Software Configuration Item (SCI) life cycle.

Components. Components are the named "pieces" of design and/or actual entities

(subsystem, SCI's, software units) of the system/subsystem. In system/subsystem

architectures, components consist of subsystems (or other variations), SCI's, and manual

operation.

Configuration. The functional and/or physical characteristics of hardware/software as set

forth in technical documentation and achieved in a product.

Configuration Control Board. A board composed of technical and administrative

representatives who approve or disapprove proposed engineering changes to an approved

baseline.

Configuration Documentation. Configuration documentation is the sum of all the

documents that define the physical and functional characteristics of a system, subsystem, or

SCI such as specifications, design documents, engineering drawings, and source code listings.

Engineering Change Order. The formal documentation that is prepared for specification

change request in accordance with the SCMP Change Procedure.

Engineering Change Proposal. The formal documentation that is prepared for proposed

change in accordance with the SCMP Change Procedure.

Interface Control. Interface control comprises the delineation of the procedures and

documentation, both administrative and technical, necessary by contract, for identification of

functional and physical characteristics between two or more configuration items which are

provided by different contractors/acquiring agencies, and the resolution of the problems.

Item. A non-specific term used to denote any product, including systems, subsystems,

assemblies, sub-assemblies, units, sets, accessories, computer programs, computer software or

parts.

Life Cycle. A generic term covering all phases of acquisition, operation, and logistics

support of an item, beginning with concept definition and continuing through disposal of the

item.

Software Configuration Control. The systematic evaluation, co-ordination, approval or

disapproval and dissemination of proposed changes and implementation of all approved

changes in the configuration of any item after formal establishment of its configuration

baseline.

Software Configuration Identification. The current approved or conditionally approved

technical documentation for a configuration item as set forth in specifications, drawings, and

associated lists, and documents referenced therein.

Software Configuration Item (SCI). A configuration item is an aggregation of hardware or

software that satisfies an end user function and is designated by the acquirer for separate

configuration management.

Software Configuration Management (SCM). A discipline applying technical and

administrative direction and surveillance to:

* Identify and document the functional and physical characteristics of SCIs

* Audit the SCIs to verify conformance to specifications, interface control documents and

other contract requirements

* Control changes to SCIs and their related documentation, and

* Record and report information needed to manage SCIs effectively, including the status of

proposed changes and the implementation status of approved changes.

Software Configuration Management Plan. The configuration management plan defines

the implementation (including policies and methods) of software configuration. The

application of Software Configuration Management on a particular program/project is the

Software Configuration Management Plan (SCMP).

Software Configuration Status Accounting. The recording and reporting of information

needed to manage configuration effectively, including:

* A listing of the approved configuration identification

* The status of proposed changes, deviations, and waivers to the configuration

* The implementation status of approved changes, and

* The configuration of all units of the SCI in the operational inventory.

Software Unit. An element in the design of an SCI such as a major subdivision of an SCI, a

component of that subdivision, a class, object, module, function, routine, or database.

Software units may occur at different levels of a hierarchy and may consist of other software

units. Software units in the design may or may not have a one-to-one relationship with the

code and data entities (routines, procedures, databases, data files, etc.) that implement them or

with the computer files containing those entities.

Status Accounting. The process of documenting the correct, approved status of the system,

including a historical record of the development of SCIs and all approved changes.

Technical (Formal) Reviews. A series of system engineering activities by which the

technical progress on a project is assessed relative to its technical or contractual requirements.

The formal reviews are conducted at logical transition points in the development effort to

identify and correct problems resulting from work completed before the problem can disrupt

or delay the technical progress. The reviews provide a method for the contractor to determine

that the development of a CI and its identification has met contract requirements before

proceeding to the next activity.

Version. An identified and documented software body. Modifications to a version of

software (resulting in a new version) requires configuration management actions either by the

supplier, acquirer, his agent, or both [Rigby].

SCM ACTIVITIES

Software Configuration Identification

Identifying Configuration Items

The first step in managing a collection of items is to uniquely identify each one. In the

configuration management sense, a baseline is a document, or a set of documents, formally

designated and fixed at a specific time during a SCI's life cycle.

In practice, a series of different baselines are established to permit an ordered flow of

development work [Rigby]. These baselines are:

* Requirements baseline.

* Specification baseline.

* Design baseline.

* Unit baselines.

* Integration baseline.

* Operational baseline.

Once an initial product level has been stabilized, a first baseline is established. With each

successive set of enhancements, a new baseline is established in step with development. Each

baseline is retained in a permanent database, together with all the changes that produced it.

The baseline is thus the official repository for the product, and it contains the most current

version. Only tested code and approved changes are put in the fully protected baseline. It is

the official source that all the programmers use to ensure their work is consistent with that of

everyone else [Humphrey 90].

Naming Software Configuration Items

To control and manage software configuration items, each must be named uniquely and

then organized. Each item has a name and a label that identifies it uniquely. The name is given

by the creator of the item (document, diagram, plan etc.). with the label being given by the

Software Configuration Manager. This label consists of three parts, the first part consists of a

role identifier as depicted in table 1 and the second part as a character indicating the type of

the document as depicted in table 2. The third part of the label is an identification number

that will be provided by the Software Configuration Manager according to the type and

sequence of document. A list of all the items generated during the life cycle of the software

will be published in this page. The second and third parts are to be separated by a hyphen.

Appendix A-SCM Table 1 : Role identifier

Appendix A - SCM Table 2 : Characters indicating the type of the document.

SOFTWARE VERSION CONTROL

Since any of the SCI's can change at anytime within the software life cycle, the SCI's will

have a label indicating their actual version. This label will consist of three numbers separated

by a period, and they will change when the reviewers (CCB) consider it necessary. The

criterion that they will have to use is the following:

Appendix A- SCM Table 3 : Criteria.

Not meaningful some corrections and minimum changes

Meaningful Important updates and improvements

Very meaningful Great modifications

SOFTWARE CONFIGURATION CONTROL

The roll of software configuration control is to provide the administrative mechanism for

precipitating, preparing, evaluating, and approving or disapproving all change proposal

processing. Software configuration control focuses on managing changes to SCIs (existing or

to be determined) in all of their forms.

The engineering change proposal (ECP), a principal control document, contains

information such as a description of the proposed change, identification of the originating

organization, rationale for the change, identification of affected baselines, SCIs (if appropriate)

and others. ECPs are reviewed and coordinated by a configuration control board (CCB),

which is typically a voting body representing organizational units that have a vested interest

in proposed changes. The CCB consist of one person from each of the following roles: Project

Manager, Designer, Programmer, V&V Engineer and Software Configuration Manager.

ECP's can be made in response to a variety of events. These include:

* Software deficiencies

* New operational requirements

* Economic savings

* Schedule accommodation

Change control combines human procedures and automated tools to provide a mechanism

for the control of change. The procedure to propose a change is the following:

An ECP is submitted to the SCM and it is evaluated by the CC, the group that will make

a final decision on the status and priority of the change. The results of the evaluation

100

(approved or disapproved) are presented as a change report in the same ECP form. If the

change is approved an engineering change order (an approved ECP) will be sent to the

responsible party to implement the change. But if the change was disapproved, the person(s)

who requested the change will be notified. The object to be changed is "checked out" of the

project database, the change is made, it is reported to SCM, and the appropriate SQA activities

are applied. The object is then "checked in" to the database and the appropriate version

control mechanisms will be used to create the next version of the software. Once the change is

implemented, SCM will notify the person(s) who requested the change [Pressman 92].

Change incorporation is not an SCM function, but monitoring the change implementation

resulting in change incorporation is such a function. The analysis that may be required to

prepare an ECP is also outside the SCM responsibilities. The ECPs not approved by the CCB

are not simply discarded but are archived for future reference [Bryan 80].

SOFTWARE CONFIGURA TION STA TUS A CCOUNTING

Software configuration status accounting is the administrative tracking and reporting of all

software items formally identified and controlled. Software configuration status accounting is

thus the means by which the activity associated with the other four SCM functions is

recorded; it therefore provides the means by which the history of the software system life

cycle can be traced.

A Status Accounting Report (SAR) will be made regularly by the SCM to keep

management and practitioners informed of important changes. A report will be made when

one or more of the following events occur [Pressman 92].

An SCI is assigned new or updated identification

101

A change is approved by the CCB

A configuration audit is conducted by SQA

The SARs generated will be placed in an on-line database, so that software developers or

maintenance can access change information.

SOFTWARE CONFIGURA TIONA UDITS AND REVIEWS

Identification, version control, and change control help the software developer to maintain

order in what would otherwise be a chaotic and fluid situation. However, even the most

successful control mechanisms can track a change only until an engineering change order is

generated. How can we ensure that the change has been properly implemented? The answer is

twofold: formal technical reviews and the software configuration audit.

Software configuration auditing provides the mechanism for determining the degree to

which the current state of the software system mirrors the software system in baseline and

requirements documentation. It also provides the mechanism for formally establishing a

baseline.

The formal technical review focuses on the technical correctness of the configuration

object that has been modified. The reviewers assess the SCI to determine its consistency with

other SCIs, omissions, or potential side effects. A forma technical review should be conducted

for all but the most trivial changes.

A software configuration audit complements the formal technical review by assessing a

configuration object for characteristics that are generally not considered during the review

[Pressman 92].

102

Bibliography

[Bryan80] Bryan, William, Tutorial: Software Configuration Management, IEEE Computer

Society Press 1980.

[Buckley92] Buckley, Fletcher J., Implementing Configuration Management, IEEE

Computer Society Press, 1992.

[Humphrey90] Watts S., Managing the Software Process, Ed. Addison-Wesley 1990.

[Pressman92] Pressman, Roger S., Software Engineering, Practitioner's Approach, Ed.

Mc. Graw Hill 1992. Hoek, A., The Configuration Management Yellow Pages.

[Lorial]http://www.cs.colorado.edu/users/andre/configuration_management.html Loria, M.,

CM.

[Loria2]http://www.loria.fr/-molli/cm-index.html Key Practices of the Capability Maturity

Model Versionl. 1.

[Rigby]http://www.rbse.jsc.nasa.gov:80/process_maturity/CMM/TR25/tr25_12f.html Rigby,

K., Configuration Management Plan.

[Standard] http://www.airtime.co.uk/users/wysywig//cmp.htm IEEE Std 828-1990,

IEEE Standard for Software Configuration Management Plans.

103

MIT/CICESE

PLAN OF TEST TEAM

Juan Francisco Garcilazo Ortiz. Juan Jose Contreras Castillo, DISEL, February 2, 1998

104

INTRODUCTION:

The testing plan was developed with the purpose of providing confidence in the correctness of

a program. With testing, the only way to guarantee a program's correctness is to execute it on

all possible inputs, which is usually impossible. The following Test Work Plan is intended to

guarantee that the final product satisfies the requirements given by the client in addition to

assessing program quality by executing the program in a test environment with test data.

Quality doesn't only mean correctness, but also concepts like reliability, performance,

robustness, usability and so on.

The main objective of this plan was to design a test that systematically brings to light different

error classes, in minimal time and manpower without loss of efficiency as a preventive

measure and not a curative one.

COMPONENTS OF TESTING METHODOLOGY

Different testing concerns can be related to each component. The testing methodology is

composed of the following components.

the program to be tested and the testing environment,

methods for obtaining test cases,

methods for executing test cases and for evaluating the results, and

methods for assessing the quality of the program based on the results.

PROGRAM DEVELOPMENT

The development of a program involves many concerns, some of which do affect testing. As

an example, object-oriented development will lead to different kinds of errors, and hence

different testing techniques, compared to more traditional development processes.

105

TESTING ENVIRONMENT

The testing environment affects how easy it is to control the execution and observe faults.

Concerns include testability, design for testability, and managing test scaffolding (stubs,

drivers, instrumentation code). Different testing takes place in the developer's environment

than in the user's environment.

OBTAINING TEST CASES

Methods to obtain test cases are the main concern in testing. Some concerns in this category

include:

how to select "good" test cases, (where good may mean good at catching errors or

representative of user input);

how to compute the inputs to exercise a particular program element;

how to create test cases that are modular, easy to understand and easy to use.

TEST EXECUTION

The execution of test cases is a very tedious job and can usually be easily automated.

EVALUATION OF TEST RESULTS

The evaluation of test results may mean determining whether the program output is correct

with respect to the specification. Evaluation is even more difficult for usability testing: we

need to determine if the program was "easy to use" for the test case.

ASSESSMENT OF QUALITY

The whole goal of testing is the assessment of the quality of the program. Assessing quality is

more advanced for reliability testing than correctness testing. There have been very few

methods developed to assess the correctness of a program, and these generally apply only to

very small programs.

106

TEST TEAM ACTIVITIES

Knowing the language, platform and environment in which the software will be developed is

very important. As mentioned above this influences the ease of obtaining and developing the

test cases.

With the language, platform and environment, the test cases will be designed using diverse

parts including the design document, analysis document and requirement analysis document.

As a test team it is necessary to participate in the revision of the analysis document to get

familiar with the user requirements and the design methodology

After that, the design tests will be realized in such a way that the functionality, performance

and good application of the methodology will be assured.

Usually testing is divided into three levels: unit, integration, and system.

At the unit level, we test each unit individually, using abstraction to enable us to ignore the

rest of the system.

At the integration level, we must abstract away the internal working of each unit, and focus

on the interactions between units.

Finally, at the system level, we must abstract away even the high-level structure and

concentrate solely on the external behavior.

REASONS FOR TESTING AT DIFFERENT LEVELS

The testing of a program happens at different levels of abstraction in order to reduce

complexity and consequently increase our ability to control and observe test results, thereby

allowing us to use more realistic and precise test criteria.

UNIT TESTING

At the unit level, it is easier to achieve complete coverage criteria. The test is usually structural

and code-based, but a functional technique based only on the specification of the unit is

107

sometimes used. However, when all units have been tested individually, the overall system has

undergone a structural test.

Unit test alone cannot guarantee that the program produces the desired global behavior. The

first reason is that only a part of the behavior of a unit is explicitly specified. Thus, unit testing

can fail to notice extra behavior that is produced as a side effect of computing the desired

behavior, and missing behavior that is expected implicitly by another unit. The second reason

is that even if all units are correctly implemented, the global behavior may be incorrectly

implemented because the specifications for the units are wrong or they are incorrectly

combined.

INTEGRATION TESTING

Integration testing focuses on finding errors that occur due to interaction of units. Since the

structure of interacting units is so complex, it is important to take advantage of the fact that

each unit has already been tested, and abstracts away its structure. In addition, it is important

to work at different levels of abstraction. Integration should start with small groups of units.

When these are tested, the structure of the groups is abstracted away, and more units are

integrated into the groups. The process proceeds until all units are integrated into one large

group.

Another feature of integration testing is that there is no specification for the behavior of a

group of units, whereas behavior for a unit is usually specified, and behavior for the whole

system must always be specified. The required behavior of the group is implicitly defined by

the structure of the group. Thus, it is impossible to use functional testing for the integration

level. It is also more difficult to decide if the program behaves correctly or not.

108

SYSTEM TESTING

Since integration testing is structural, it has the disadvantage of not being able to eliminate

variant behaviors; this is done in system testing. System testing may also benefit from

knowledge of structure in order to reduce the number of functional tests.

TEST DOCUMENTATION

For the report elaboration of the realized tests we designed a format that should have the

following information.

Test identifier.

Version of the test.

Name of the test.

Level of the test.

Modules to be test.

Test Objective

Test date

Required time

Inputs

Expected outputs

Results

Comments

Conclusions

With the information obtained we could have a history of all the tests applied to the system,

as well as a database of errors found in the design and the programming stages. The following

is the information to be included in this database .

109

BUGS DATABASE

Date.

Stage (Design or Programming}.

Type of error

Syntax

Incongruent with respect to the last stage

Class

Relation

Function

Attribute

Other (Specify)

Level of error (High, Medium, and Low).

Section of the design document or code where the error was found (Row, Page, and Diagram).

Comments.

PROBLEMS THAT MAY ARISE

Some of the problems that could prejudice the good performance of the tests are:

The design does not correspond to the programmer's code.

There are delays in the previous stages to tests.

The code does not present a uniform programming style.

The code is not documented well enough for third parties to interact with it.

There are no final versions of design or code.

110

Appendix A - TE Table 1: List of Activities

DOCUMENTS GENERATED

Test Plan

Results of test applied to modules and methods

Results of integration test

Result of usability test

Result of regression test*

If is necessary

111

MIT/CICESE

VALIDATION AND VERIFICATION PLAN

Gregorio Cruz and Lidia Gomez, December 1997

112

INTRODUCTION

Software verification examines the products of each development activity. The

examination is to determine if the outputs meet the requirements established at the beginning

of the activity. Validation ensures that the software is a correct implementation of the system

requirements for which the software is responsible. In addition, validation ensures that this

check is conducted concurrently with, and at the end of, all software development activities.

Software V&V tasks analyze, review, demonstrate or test all software development outputs.

A review process can be defined as a critical evaluation of an object. Walkthroughs,

inspections and audits can be viewed as forms of review processes. This document presents the

first version of the V&V plan for the project. This plan depends on the project's plan since

V&V has to adjust their schedule to the one proposed by the project manager.

OBJECTIVES OF THE V&V WORK PLAN

The main objective of this plan is to make sure that the final product will satisfy all the

requirements established by the client, both at a functional and performance level.

PARTICULAR OBJECTIVES

* Correctness. Making sure that the final product is free of errors

* Consistency. Making sure that the product is consistent with itself and with the other

products. For example, the definition of a function key should be the same for all

interfaces (e.g. F1 = help).

Necessity. The system must have all that is necessary in order to operate in accordance with

the requirements of the client. That is, we should not add more capacities to the system then

the ones needed.

113

Sufficiency. Making sure that the system is complete (finished).

Performance. Making sure that the system satisfies all the requirements established by the

client. In the case where they are not specified, the system must match the capabilities of other

similar products that exist in the market.

REVIEW LOGISTICS

AGENDA

The review agenda is provided in advance as a planning device for the project team in

preparing its presentation and as a scheduling notice for the panel members. In order to assure

an efficient review, the agenda needs to be adhered to by the presenters and the panel

members.

Preparation by the panel members is often a key factor in meeting the agenda schedule.

The agenda will be available each Tuesday, that way all the members of the group will be able

to access it and know in advance the activities that will take place.

Part of the responsibility of every review attendee is to return from meals and breaks on

time@.

CONDUCTING THE REVIEW

The moderator is responsible for ensuring that the reviews add value to the engineering

process. The moderator will serve as a facilitator to elicit participation by the panel members

and encourage open discussion of issues by project team members. At the same time, the

moderator needs to exercise control of the review activity to ensure that discussions are

pertinent to the review.

114

REVIEW METHODOLOGIES

There are many ways to perform technical reviews. Most of these approaches involve a

group meeting to assess a work product; however, variations of reviews exist that do not

require a review group meeting. V&V will focus on reviews that involve a group meeting.

WALKTHROUGHS

Walkthroughs are presentation reviews in which a review participant, (usually the

developer of the software being reviewed) gives a description of the software and the rest of

the review group provides their feedback throughout the presentation.

The walkthroughs can be done at any phase of the project. The recommended group size

should be 4 to 6 people going through the following process:

An agenda will have been prepared that will have product definition and revisions needed,

participants selection, role assignments and obligations, type of revision, place, date, duration

of the revision, specific points that will be discuss and the time assigned to each activity.

All the members from the selected reviewers group will be notified about the meeting

where they are to review the selected product. Each notified person must confirm their

participation.

Each reviewer will be notified about the product material to be evaluated. This is the

author's responsibility.

In addition, each reviewer will have the responsibility of reading and revising the material

before the meeting with the goal of make the meetings more productive. It will be optional

for the reviewer to make annotations about the details (errors, defects and observations) found

during his/her individual revision which he/she might consider necessary to discuss during

115

the revision meeting. During the revision session, the author will present the product material

to be revised.

The people making the revisions must evaluate the material being presented. The revision

will focus primarily on the detection of errors as well as explore possible problem areas. Once

the presentation of the product is finalized, a time will be assigned to each reviewer so that he

can present any corrections or questions according to his criteria and experience.

The author in this case will be the person responsible for the revised material and answer,

clarify, and explain all the questions that the revision team may ask. The secretary will note all

of the points discussed in the meeting, and will be recorded in the minutes of the meeting.

During each session, a moderator will be present and will be responsible for keeping the

agenda on track. The time recommended for this type of revision is 2 hours but in DISEL an

hour and 20 minutes will be used. This will be barely enough time to revise the material

therefore V&V will have to cover the principal aspects of the material and ensure that all the

participants are focused on the revision.

INSPECTIONS

Inspections should be presented in more formal approaches that can be viewed as work

product reviews. Inspections require a high degree of preparation by the review participants,

but the benefits include a more systematic review of the software and a more controlled and

less stressful meeting. Software formal inspections are in-process technical reviews of a product

of the software life cycle conducted for the purpose of finding and eliminating defects. The

main difference between walkthroughs and inspections is that an inspection process involves

116

the collection of data that can be used as feedback on the quality of the development and

review process.

The formal inspections can be applied to total or partial products in the software process,

including requirements, specifications, designs and code. Usually, formal inspections are done

during the first phases of the project, their goal being to make sure that defects found are fixed

during the early phases of the project, when they are easier to detect and their correction is

less expensive. The process that V&V will follow for the formal inspections contain 5 phases,

which are detailed as follow:

SCHEDULE

The schedule is the moderator's responsibility. The schedule is the time used for:

* Determine the starting criteria for the product to be inspected

* Select the team of inspectors and assign them roles

* Schedule the meeting agenda, and

* Prepare and distribute the formats and material for the inspection.

PREPARATION

During this phase, the inspectors will individually prepare for the inspection. They will

revise the product in detail with the purpose being to get familiar with the material and find

potential defects. Lists that contain different types of typical defects that can be found in the

inspection of the material help the inspectors do the revisions. For example, if it is a code

inspection, some typical defects would be syntax errors, the need of initializing variables, the

117

different types of variables and so on. The inspectors should, during preparation, register in a

special format the defects that were found and the time used.

Each inspector needs to send the format that contains all the defects found before the

session to the moderator. The moderator will then revise these formats and determine how

well the team is prepared. In addition, the moderator will check to determine which problems

found will require extra attention during the inspections.

INSPECTION MEETING

The objective is to detect errors in a partial or total product and verify it.

The activities in this phase are:

The moderator will monitor the meeting, going over the agenda for the inspection

meeting at the beginning. In addition, he will ask if the reviewers are prepared for the

inspection. If they are not prepared, the revision will not occur. The moderator will then

check to see if the producer is fully prepared. For example, whether the reviewers' error logs

have been analyzed, duplicates consolidated, and discussion notes prepared.

The producer will then review each major error either to clarify why it is an error and

understand what the reviewer(s) meant, or verify that it is not an error. Pertinent data on each

error will be recorded. This will include error location, a brief description, the error category,

and the cause of the error if readily apparent. After discussing all major errors, the product

will be briefly reviewed to identify any other areas of confusion or concern. Data errors

identified in this process will also be recorded. Throughout the meeting, the moderator will

keep the discussion focused on identifying and explaining the errors.

118

At the conclusion of the meeting, the moderator will check that all participants have

voiced their concerns and questions, that all action items are clearly defined and understood,

and that the responsibilities and planned resolution dates are established. All the necessary

forms will be reviewed to ensure that all required data was obtained. The basic forms are the

error logs, the preparation form, the inspection report, and the inspection summary. Based on

the inspection results, and after asking the reviewer for their views, the moderator will then

decide whether a re-inspection is required.

Once the meeting has ended, a brief summary about the defects found will be given and it

will then be decided if there will be a new product inspection. In addition, the moderator and

author will determine correction times and the date(s) for the moderator to check if changes

have been done. Finally, all that occurred in the meeting will be registered. The secretary will

be charged with this activity and it is recommended that the meeting time be a maximum of 2

hours.

CORRECTIONS

During this phase, the authors will fix the defects found during the inspection and that

were found in the list of defects.

FOLLOW UP

The moderator and author will determine if the defect correction in the product has occurred.

If all the defects are corrected, then the product will satisfy all the requirements specified and

the moderator will log the final report of the inspection. If not, the correction phase must be

repeated until the requirements are satisfied.

119

Peer Reviews

The purpose of peer reviews is to remove defects from the software work product early

and efficiently. An important corollary purpose is to develop a better understanding of the

software work products and of defects that might be prevented. Peer review activities will be

planned, review plans will be documented and peer reviews will be performed according to a

documented procedure. Then defects in the software work products will be identified and

removed. In addition, adequate resources and funding will be provided to perform peer

reviews on each software work product to be reviewed. Reviewers who participate in peer

reviews will receive required training on the objectives, principles, and methods of peer

reviews.

AUDITS

Audits are an external review process and serve to ensure that the software is properly

validated and that the process produces intended results.

When a technical revision is to be done, the revising team or inspectors will consist of a

moderator, author and secretary amongst others. These reviewers will be charged with finding

defects in the product missed or overlooked during the internal preparation and inspection

meetings. The Moderator will guide the inspection team and will be responsible with ensuring

that a good inspection is performed. The moderator will be active during the whole section.

The author is the creator of the product under revision and will present the material for

revision. The secretary will be responsible for registering the information generated during the

meeting, the defects found and the agreements reached.

120

The observing team in the revision will take note of all that is happening during the audit.

That is, they will only be observers and will not be able to make any opinions about the

revision.

It is recommended that the revising team be chosen according to the products that will be

revised. For example, if the requirement specification document is to be analyzed, then it is

efficient to invite the designers, V&V engineers and Quality Control engineers, to revise the

product.

V&V DURING THE SOFTWARE LIFE CYCLE

V&V engineers must have continuous collaboration with the testing and quality control

engineers. The following describes how V&V will apply the V&V process at each phase of the

development of the Cliq! system.

Software Concept and Initiation Phase

During this phase, the software concept is developed, the feasibility of the software system

is evaluated, and the acquisition strategy is developed. The most important document to verify

then will be the portion of the system requirement document that applies to software.

Software Requirements Phase

During this phase, the software concept and allocated system requirements are analyzed

and documented as detailed software requirements. The requirements document should be

revised for completeness and accuracy, for traceability back to previous level documents, and

121

to assure that a sufficient base is provided for the software design. In addition, V&V will

perform the following activities:

* Evaluation of the defined concept to determine whether it satisfies user needs and project

objectives in terms of system performance requirements, feasibility (such as compatibility

of hardware capabilities), completeness, and accuracy.

* Evaluation of the software requirements for accuracy, completeness, consistency,

correctness, testability, and understandability.

* Assessment of how well the software requirements accomplish the system and software

objectives.

Software Architectural (Preliminary) Design Phase

During this phase, the overall design for the software is developed, implementing all of the

requirements in software components. V&V and other DISEL project members will review

the design to ensure satisfaction of and trace-ability to the requirements, correctness, clarity,

code-ability, testability, and consistency.

Software Detailed Design Phase

During this phase, the architectural design will be specified to the unit level. Constraints

and system resource limits will be re-estimated and analyzed, and staffing and test resources

validated. The detailed design will follow the base-lined higher level design exactly, and will be

inspected for the same characteristics. In addition, the design will be inspected for satisfaction

122

of software quality engineering standards such as information hiding and the use of simple

structures.

Software Implementation Phase

During this phase, the software will be coded and unit tested. All documentation will be

produced in quasi-final form, including internal code documentation. Code verification will

check for technical accuracy and completeness of the code, verifying that it implements the

planned design, and ensuring that good coding practices and standards are used. Documents

will be inspected for accuracy, completeness, and traceability to higher level (previous phase)

documents. The revision team will be selected from participants in the detailed design, code,

test, verification and validation, or from within software quality assurance.

Software Integration and Test Phase

During this phase the software units will be integrated into a completed system; non-

conformance will be detected, documented, and corrected; and Cliq! will be demonstrated that

it has meet client requirements. The integration and test plan will be executed, the software

documentation updated and completed, and the products finalized for delivery. The final

version of the Acceptance Test Plan will be verified to detect defects in the definition of test

cases and to verify that each test case verifies the requirements with which it is associated.

In this phase, the objectives of the software integration test will be established as well as

the strategies to be employed, the coverage requirements, reporting and analysis, and

elimination of anomalies. In addition, interface testing of reused software from other system

123

software may be planned and tracing of test design, cases, procedures, and execution results to

software requirements.

The inter-unit communication links and test aggregate functions formed by groups of units

will be checked, confirmation that anomalies during test are software anomalies, and not

problems detected for other reasons. Finally, functional, structural, performance, statistical,

and coverage testing of successfully integrated units after each iteration of software integration

and successful testing of interfaces and interactions.

Software Acceptance and Delivery Phase

The formal acceptance procedure will be carried out during the acceptance and delivery

phase. The objectives of the software system test, the strategies to be employed, the coverage

requirements, reporting and analysis, and close-out of anomalies will be established. System

and software requirements to test software design, cases, procedures, and execution results will

be traced.

In addition, testing the operation of the software as an entity; confirming that anomalies

during test are software anomalies, ensuring that any changes to software have been made; and

conduct a re-test as necessary needs to be done. Finally, it will be determined that all software

outputs needed to operate the system are present and checks done to ensure that the software

installed in the system is the software that underwent software V&V.

Software Maintenance and Operations Phase

In this final phase, Cliq! will be used to achieve the objectives for which it was developed

and acquired by the client. Corrections and modifications will be made to the software to

124

sustain its operational capabilities and, as necessary, upgrade it

phase, software changes may range in scope from simple

modifications that require a full life cycle process. V&V will be

degree of new development activity involved.

to support new uses. In this

corrective action to major

scheduled in response to the

Appendix A - V&V Table 1: Scheduled V&V Activities.

A walkthrough will be given on the client

requirements.

Audits to the analysis of requirements will be

done.

Audits done on the requirement analysis will

be presented by the Quality Control and

V&V Engineers.

Project specifications applied to the

inspection technique will be presented and

revised.

Project specifications review.

Testing plan revision.

Specification audits by Quality control and

V&V.

125

Elaborate of plan tor product acceptance

requirements.

Walkthrough of the preliminary design of the

product.

Presentation of tests and audits made to the

design.

Inspection of a detailed revision of the design.

Peer review of code presentation (modules).

Presentation of tests made to the code

modules.

peer review of code presentation (modules).

Presentation of the tests and audits made to

the code modules.

Presentation of the tests and audits made to

the code modules.

An audit will be done to the integration of

the system.

An acceptance test will take place.

126

127

MIT/CICESE

MAINTENANCE CONTRACT

Juan Jose Contreras Castillo, DISEL, November 12, 1997

128

INDEX

MISSION

OBJECTIVES

WORK PLAN

MISSION

To adapt the system to changes in its external environment, making enhancements requested

by users, and reengineering an application for future use.

OBJECTIVES

* Assure that the development team is informed of the errors found in the program.

* Try to maintain the software modernized by means of changes carried out in it.

* Modify the software in order to adapt new functions or modify some already existent.

WORK PLAN

The maintenance activities are carried throughout the development of the project.

There are activities geared to each phase of the project, from preventive to corrective

maintenance. The maintenance organization consist of members from each role, therefore this

means that maintenance will consist of 10 persons including the maintenance engineer.

129

Appendix A - ME Table 1: Scheduled Activities.

130

MIT/CICESE

DOCUMENTATION SPECIALIST WORK PLAN

Diana Ruiz, DISEL, October 23, 1997

131

INDEX

* Document Standard
* Process Standard
* Product Standard

* Documentation Format
* Structure Standard

* Interchange Standard
* DISEL Home Page Description
* Information Repository

* Database
* File System Structure
* Document Storage
* Query Functions

* Meeting Minutes and Documentation of Agreements
* Minutes
* Documents and Agreements

* User's Manual
* Documentation Specialist Schedule

DOCUMENT STANDARD

Document standards act as a basis for document quality assurance. Documents

produced according to appropriate standards have a consistent appearance, structure and

quality. The documentation standard includes the process standards, product standards and

interchange standards.

PROCESS STANDARDS

Process standards define the approach to be taken in producing documents. There are a

large variety of editors that allow creation of document in HTML format. Editors including

Microsoft Word and Netscape Gold Navigator Editor are WYSIWYG Editors that have a lot

of functions for HTML documentation.

As a part of the process standard it is necessary to use a spelling and grammar checker

tool. This will avoid a lot of errors and generate a better document. It is recommended the

team developing the document reviews performs these checks. This process ensures that all the

132

team members agree to the document content. In addition, it is easier to detect errors when

more than one person reviews the document.

PRODUCT STANDARD

Products standard apply to all documents in the software development life-cycle.

Documents should have a consistent appearance with documents of the same class having a

consistent structure. The documentation format defines its presentation.

The documentation structure standard defines the distribution of the elements of the

different documents that will be developed. These standards purpose is maintaining the

consistency of the documents and are based on HTML format.

INTER CHANGE STANDARDS.

Each one of the documents created during the development of the project will be in

HTML format. This will simplify their publication on the World Wide Web (WWW).

INFORMATION REPOSITORY

Before designing a repository of information it is necessary to determine the necessary

characteristics. For the DISEL project it is desirable that the repository of information be

accessible from several places. This characteristic is necessary because the team is distributed.

Therefore, it was determined to create and use a Home Page for the project as a starting

interface to consult the documents. A database will be developed for that purpose and will

include query functions as necessary into the DISEL repository.

The database will contain references to all the documents that are generated during the

process, including agendas, minutes, agreements, requirements, analysis, design, code, tests,

audits, work plans, schedules and reports. The database will include only a reference to the

name of the document and important data about it including date of generation and authors.

The documents will be stored in a file system. This file system will contain all the files

for DISEL.

133

The only information the database will not contain are the e-mails sent between the

participants, since these will be stored in a hyper-mail archive.

DATABASE.

The database used will be ORACLE and this will be accessed through JAVA routines,

using query forms elaborated in JAVA (Applets), HTML forms and Servlets (JAVA

functions).

The following information will be stored in the database:

Project:

* Id.

* Name.

* Description.

Meeting:

* Portfolio of the meeting.

* Project.

* Date.

* Type of meetings.

* Participants.

* Role of each participant in the meeting.

Participants:

* Names

* Role.

* Password.

* E-mail address.

* Place (MIT or CICESE).

* Project.

Documents:

* Date of publication.

* Version (managed by the Software Configuration Manager).

134

* Physical name of the document (file in disk).

* Author(s).

* Type of document.

Reports:

* Participant.

* Receive date.

* Date of assignment.

* Advance.

* Number of report.

Audits:

* Date.

* Document audited.

* Information.

FILE SYSTEM STRUCTURE.

The file system will consist of a directory structure. Some of the directories will contain

sub-directories. The root level will be a public_html/ directory. The structure will be similar

to the structure of the Home page for consistency and ease of use. The root directory will

contain the folders of the sections and files.

* Activities. This directory will contain the information of the Activities section. It will

contain the following directories and files:

* Activities.html. Frame definition file of the section.

* ActivitiesIndex.html. Index of the section of activities.

* Contract.htm. Team contract file.

* Homework.html. Index of the Homework's.

* Homeworks. Directory that contains assignment given.

* ProgressReport.html. Form of progress report.

* Documents. This folder will contain the files of the documents developed like work

plans, requirements, design, etc.

135

* DocIndex.html. Index of the section of Documents.

* Documentation.html. Main file (query form) of the last documents version.

* Documents.html. Frame definition file of the section.

* Plans. Contains the work plans of the roles.

* ProjectSchedule. Contains the different versions of the project schedule.

* Requirements. Contains the different versions of the requirement document.

* Images. This folder contains all the images used in the home page except the logos of

the roles.

* Instructor. This folder contains the DISEL Role Selection Form.

* Lectures. This folder contains the slides of the presentations (each group of slides are in

different folders).

* Meetings. This folder contains:

* Agendas. This folder contains the agendas.

* Agendas.html. Index of agendas.

* Agreements.html. Index of agreements documents.

* Meetings.html. Frame definition file of the section.

* MeetingsIndex.html. Index of the section.

* Minutes. Folder that contains the minutes.

* Minutes.html. Index of minutes.

* Overview. This folder contains the files of the vision, mission and objective of the

project and the frame definition file.

* Participants. This folder contains the index of the participants and the frame definition

file of the section.

* Roles. This folder contains the folders of the description of each role, the index file of

the section and the frame definition file of the section. The role description folders are:

* Analyst. Contains the files of the role description of the Analyst, their logo and

title (GIF images)

* Design. Contains the files of the role description of the Designer, their logo

and title (GIF images)

136

* DocSpec. Contains the files of the role description of the Documentation

Specialist, their logo and title (GIF images)

* Maintenance. Contains the files of the role description of the Maintenance

Engineer, their logo and title (GIF images)

* Programming. Contains the files of the role description of the Programmer,

their logo and title (GIF images)

* ProjMan. Contains the files of the role description of the Project Manager,

their logo and title (GIF images)

* QControl. Contains the files of the role description of the Quality Control

Engineer, their logo and title (GIF images)

* SCM. Contains the files of the role description of the Software Configuration

Manager, their logo and title (GIF images)

* Test. Contains the files of the role description of the Test Engineer, their logo

and title (GIF images)

* VandV. Contains the files of the role description of the Validation &

Verification Engineer, their logo and title (GIF images).

Each one of these folders contains the following files:

* XAct.html. Activities of the role.

* XBib.html. Bibliography

* XFrame.html. Frame definition of the role

* Xlntro.html. Introduction of the role.

* XLogo.gif Logo of the role (image)

* XMeth.html. Methodology of the role.

* XObj.html. Objective of the role.

* XProfhtml. Profile of the role.

* XRelat.html. Relation with other roles.

* XSup.html. Supporting tools of the role.

* XTitle.html. Title file of the role.

* XTitle.gif Title Image of the role.

137

* XWp.htmL General Work plan of the role.

Where the X is denoted as necessary by:

* An- Analyst

* D- Designer.

* Ds- Documentation Specialist

SM - Maintenance Engineer.

* P- Programmer.

* Pm - Project Manager.

* Qc - Quality Control Engineer.

* Scm - Software Configuration Manager.

* Test - Test Engineer.

* Vv - Validation & Verification Engineer.

Files:

* Contents.html. Main index of the Home Page.

* Introduction.html. Introduction to the Home Page

* Lectures.html. Index of lectures.

* index.html. Frame definition file of the main page.

The following figure shows the file structure of DISEL.

138

Public_html

Activities Documents Images Lectures Meetings Overview Participants Roles

Homeworks Plans Agendas Analyst

ProjectSchedul Minutes Design

Requirements Agreements
Programming

VandV

Appendix A-Figure 1: DISEL file Structure.

DOCUMENT STORAGE.

The storage routine for the participants will be the one used to generate the project

advance reports. The activities reports forms are included in the Home Page of the project

(section activity-project progress). A reference to the report will be included in the database,

once the participant fills and submits the form. In addition, a new document in HTML format

is generated. In order to submit the progress report it will be necessary to provide a password,

to deter use of the form by non-project members. The user name part of the e-mail address

will be used as the password.

All the other documents will be stored by the documentation specialist. The purpose

will be maintenance of a information and structure control of what is in the database and file

system.

The documents generated by each one of the participants in the project will be sent to

139

the documentation specialist who will include them in the database where they may be

consulted by project team members. Document submission will be through e-mail with the

documents included as attachments and indicating anything to be taken into consideration in

the main body of the e-mail.

Once the document(s) are received, document references will be stored in the database.

The document(s) will be verified so that it fulfills the structure and specified format. In case

the document doesn't fulfill the format, it will be returned to the authors with a list of the

corrections that need to be done.

QUERY FUNCTIONS.

The following functions are included for information query:

* Documents search. This will allow searching the documents by date, author, type of

document (analysis, plan of work, etc.). These functions will be included in frozen

documents and last version documents in the Documents section.

* Audits search. These will be included in documents-audits and will allow searching by

date, the team that carried out the audit, document audited and/or the meeting in

which the audit was carried out.

* Meetings search. These functions will be included in the sections of meetings-agendas,

meetings-minutes and meetings-agreements. These functions will allow a search of

these documents by date and by objective of the meeting.

* Reports search. These functions will allow searching the reports by activities, by date

and by author.

These functions will be accessible to all the participants or to people outside the project.

MINUTE AND DOCUMENT OF MEETING'S AGREEMENTS.

MINUTES.

The minutes will be taken during the meetings of the project. These will highlight the

140

issues of importance, questions and answers that occur during the meeting. These will be used

to keep track of the meetings.

The minutes will then published so that the participants in the project can review

them, make their comments, suggest changes, or otherwise approve them as they are.

At the beginning of the following meeting the proposed changes or comments will be

reviewed. After that the minutes will be considered approved and designated as a final version.

This final version will be included in the database and in the file system.

DOCUMENT OFA GREEMENTS.

During the meetings a series of agreements will usually be generated and require to be

recorded. At the end of each meeting the documentation specialist will read this document so

the entire team can review the agreements.

During the following meeting these agreements will be previewed, with the purpose of

verifying if the proposed activities were carried out.

The final document of agreements will be published and stored in the database and in the file

system.

USER'S MANUAL.

The user's manual is the document that will be used as a guide by the users of the system.

This document will be developed almost upon project completion.

141

DOCUMENTATION SPECIALIST SCHEDULE.

The schedule of the documentation specialist is listed as follows.

Activities

Blabc rate .ocumnt
Staindard

Hoa'r PagE
Mairntenano

Elabrate kInules artd
Documrent of Agrements

Veify the Format of
the ocn aerts

Raborate InIfomanon
Repms et

Mainenance of tho
informati. Repstcr

Elaberale User's Manml

Sep Oct Nov Dec January Feb. March Apdr

Month

Appendix A-Figure 2. Documentation Specialist Schedule.

142

