
Automating Design Intent Capture For

Component Based Software Reusability

by

Siva Kumar Dirisala

B.Tech, Civil Engineering
Indian Institute of Technology, Madras (1995)

Submitted to the Department of Civil and Environmental
Engineering

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1998

@ Massachusetts Institute of Technology 1998. All rights reserved.

A uth or
Department of Civil and Environmental Engineering

/I, ', ay 19, 1998

C ertified by ;..
Ce.iosky Pefia-Mora

Assistant Professor of Civil and Environmental Engineering
Thesis Supervisor

Accepted by...................... ...

Chairman, Department Committee on Graduate Studiessman
Chairman, Department Committee on Graduate Studies

J

1,~ "-A ! :1

Automating Design Intent Capture For Component Based

Software Reusability

by

Siva Kumar Dirisala

Submitted to the Department of Civil and Environmental Engineering
on May 19, 1998, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

With the growing interest for open architectures and standards, it is likely that reuse
methods would be part of the software development life cycles. Reuse of software
components requires the technology to build easily reusable components and sup-
port systems for cataloging and retrieving the right components. Object oriented
programming and component object models have made it possible to build easily
reusable components. Component technologies like COM and JavaBeans make it
possible to build large systems by seemlessly integrating several components based
mainly on their interface instead of implementation details. However, it is still nec-
essary to identify the right components that offer the required functional features.
Technology for classifying and retrieving the correct components is still far from ex-
pectation because earlier methods have used mainly either semantic information or
textual information. Systems based on semantic information often required learning
new specification languages while those based on textual information resulted in poor
classification and retrieval. This research uses both types of information to make
use of the complementary advantages of each and provides a better reuse support
system. Performance from using textual information can be improved by making use
of semantic knowledge derived from simple analysis on existing semantic information.
Capturing design intent, which gives the functional features of a component, can be
automated by using both types of information. A cost effective reuse technology is
provided by mainly using the existing project information that is produced without
reuse concern. While cost is an issue, it is also necessary to make the end user interface
simple without imposing the additional burden of learning new specification languages
or theorem proving techniques to retrieve components. This research presents a cost
effective, easily usable and efficient reuse technology for automating the capture of
design intent and retrieving multiple components to build large systems.

Thesis Supervisor: Feniosky Pefia-Mora
Title: Assistant Professor of Civil and Environmental Engineering

Acknowledgments

First and foremost I would like to thank Feniosky Pefia-Mora for his support, guidance

and constant encouragement. The attitude I have experienced from him is even a

drop of creativity in an ocean of research is significant and this very thought was a

motivating force in my research efforts.

I would like to acknowledge the support received from the School of Engineering,

the Department of Civil Engineering and NSF-CONACyT grant (Project Number

IRI-9630021).

I would like to thank the Head of the Department, Prof. Rafael Brass and the

administrative staff of the department who work behind the screens and make sure

that the students' academic life runs smoothly.

Pursuing higher studies requires a stronger foundation of fundamentals and the

credit in shaping my technical personality goes to my Alma mater Indian Institute of

Technology, Madras (IIT-M).

My special thanks to my undergraduate classmate Niranjan Krishnan (Ninja) who

helped me in coming to MIT and adjusting to US life. All those memorable weekend

dinners with Battu, Ghost, KK, Ninja and Rugby made me feel like still studying in

IIT-M instead of MIT.

Several friends at MIT helped in having a fun life abridge the academic and

research pressures. Chandra B, Chandra P, Deepak, Gangs, JP, Neeraj, Pulp, Sri

and Subbu are some of them.

Apart from academic and research advisors (who happened to be the same for me

right from the beginning), it is nice to have advice from others and I always had OP,

Ninja and Auroop for that.

Being in a friendly research group is very important and the DaVinci group has

provided such an environment with people like Lucio, Kareem, Sanjeev, Chun-Yi and

Yee-Sue. Thanks to Thomas, Nina and Gordon for tolerating my computer occupancy,

being friendly and sharing the den, 1-270. Special thanks to Joan McCusker who takes

care of all the administrative work of the IT group. I thank Petros, another IESL

4

labmate, for giving company several nights for doing assignments and doing our term

project in Graphics course. He is one of the very nice guys I met in MIT.

I express my deepest love to my parents for helping me in being what I am today

and always letting me do whatever I wanted to do. I would also like to express my

deepest love to my sister and brother for their affection and source of encouragement.

Contents

1 Introduction 12

1.1 Software Reuse and the Advantages 13

1.1.1 W hat can be Reused 13

1.1.2 Advantages of Software Reuse 14

1.2 Technology to Develop Reusable Software Components 15

1.2.1 Object Oriented Paradigm 15

1.2.2 Component Object Model 16

1.3 Software Development by Integrating Components 16

1.4 Scope of the Research 18

1.5 Roadmap to the rest of the Thesis 20

2 Background 22

2.1 Semantic Approach 23

2.1.1 Parameterized Programming, OBJ Language 23

2.1.2 Structured Algebraic Specification, Clear Language 24

2.1.3 Partially Interpreted Schemas, PARIS 25

2.1.4 Object Oriented Module Interconnection Language, MIL . . . 27

2.1.5 Summary of Semantic Approach 27

2.2 Statistical Approach 28

2.2.1 Faceted Classification Scheme 29

2.2.2 Conceptual Schemas 30

CONTENTS

2.2.3 Summary of Statistical Approach

2.3 Hybrid Approach

2.4 Design Recommendation and Intent Model Extended for Reusability

(D RIM ER) .

3 Requirements Analysis

3.1 Information in Software Projects .

3.1.1 Classification of Information used in Software Projects

3.1.2 Observations

3.2 Information Search - A Case Study

3.2.1 Search for a TextBook/Journal in a Library

3.2.2 Observations

3.3 Retrieving Multiple Components .

3.3.1 Retrieving and Ranking

3.4 Framework and Customization .

3.5 Summary of Requirements

4 Conceptual Model

4.1 Existing Reuse Models

4.1.1 Reuse based on Available Textual Information

4.1.2 Reuse based on Available Semantic Information

4.2 New Reuse Model

4.2.1 Reuse based on both Textual and Semantic Information.

4.3 Class Tree Provides Better Weights for Statistical Analysis . . .

4.3.1 Assum ptions

4.3.2 Class Tree .

4.4 Creational Patterns Suggest Abstractions of Functional Features

4.5 Software Component Representation

4.5.1 Simple External Representation

50

.. . 51

. . . 51

. . . 52

.. . 54

. . . 54

. . . 55

.. . 56

.. . 56

. . . 58

. . . 59

. . . 60

32

32

33

37

38

39

42

42

43

44

46

46

47

48

CONTENTS

4.5.2 Complex Internal Representation

4.6 Multiple Software Component Retrieval

4.6.1 Reggia's Generalized Set Cover Algorithm

4.6.2 Multiple Software Component Retrieval.

4.6.3 Ranking the Retrieved Solutions

4.7 Summary of the Conceptual Model

5 Prototype Framework

5.1 Framework

5.1.1 Client ..

5.1.2 Server ..

5.2 Tools

and Tools

6 Illustrative Examples

6.1 C lient .

6.1.1 Specifying Constraints and Features

6.1.2 Selecting for Composibility, Relevancy or Reusability

6.1.3 Online Software Component Browsing and Report Generation

6.2 Server .

6.2.1 Adding New Software Component

6.2.2 Browsing and Modifying Existing Components

6.2.3 Browsing Existing Software Features

6.3 T ools .

6.3.1 Chat Application

6.3.2 Analysis using Textual Information

6.3.3 Class Tree, a semantic analysis

6.3.4 Analysis using Textual Information and Semantic Information

7 Conclusions

7.1 Conclusions .

81

81

82

86

90

91

92

93

94

95

95

95

97

97

101

101

I.............

.............

.............

.............

CONTENTS 8

7.2 Future Research Directions 103

A OOP and Design Patterns 105

A.1 Object Oriented Programming (OOP) 105

A.2 Design Patterns 107

A.2.1 Creational Design Patterns 107

B COM and JavaBeans 109

B.1 Component Object Model, COM 109

B.2 JavaBeans 111

C CORBA 113

D Generalized Set Cover Algorithm 115

D.1 Generalized Set Cover (GSC) 115

D.1.1 GSC Pseudo code 115

D.1.2 Minimum Cardinality Set Solution 117

D.1.3 Light Weight Set Solution 118

List of Figures

1-1 Generic framework customization for specific domain applications

2-1 Parameterized List object representation using OBJ Language

2-2 Pseudo-Clear code for Group with Equivalence Relation

2-3 Schema Representation of Linked List iteration using PARIS

2-4 Home-heating System module specified using MIL

2-5 Representation of Software Components using Faceted Classifying Schei

2-6 Search genaralization using wildcards

2-7 A sample Conceptual Schema Card

2-8 DRIM model adapted from [FPn94]

2-9 DRIMER web based system adapted from [Vad96]

3-1 Classification of Project Information

4-1

4-2

4-3

4-4

4-5

4-6

ne

Reuse from Textual Information

Reuse from Semantic Information

Reuse from both Semantic and Textual Information

Class tree provides relative weights for the words .

Software Component Representation

Customization of Component Representation

4-7 Software components and features represented as bipartite graph .

4-8 Example of Set Covering

28

29

30

31

34

35

39

. 52

. 53

. 54

. 57

. 60

. 62

64

66

LIST OF FIGURES

5-1 W eb Client 74

5-2 Reusable Software Component Server 78

6-1 Specifying constraints for the required software component 83

6-2 Specifying software features and relaxing the constraints 84

6-3 Results and unavailable features 85

6-4 Searching for unavailable features by relaxing constraints 86

6-5 Search for better Composibility 87

6-6 Search for better Relevancy 88

6-7 Search for better Reusability 89

6-8 Online browsing of individual components 90

6-9 Report of selected components generated on the browser 91

6-10 Adding a New Software Component 92

6-11 Browsing Software Components 93

6-12 Browsing Software Features 94

6-13 Class Tree of the Chat Server 97

6-14 Class Tree of the Chat Client 97

A-1 Structure of Factory Method adapted from [GHJV95] 108

B-1 VTable to implement COM binary standard 110

C-1 Common Object Request Broker Architecture, CORBA adapted from

[ORB 97] . 114

D-1 Pseudo code for Reggia's GSC Algorithm 116

D-2 Pseudo code for Genset used in GSC Algorithm 117

D-3 Selection of disease/component for Minimum Cardinality Set Solution 117

D-4 Selection of disease/component for Light Weight Set Solution 118

List of Tables

5.1 Software Component File Fields 76

5.2 D atafile .. . 77

6.1 Constraint Attributes and valid values 82

6.2 Results of Analysis using only Textual Information 96

6.3 Relative Weights from the Class Tree of Chat Application 98

6.4 Results of Analysis using Textual and Semantic Information 99

D.1 Notation for Reggia's Genaralized Set Cover Algorithm 116

Chapter 1

Introduction

Legal Regulations Enforce Recycling efforts, Open Standards Reinforce Reuse efforts

Presently, at the turn of this century there is an implicit industrial revolution

for open architectures. This is especially true in the IT industry. Both the software

vendors and the consumers are preferring open architectures, the former to compete

against monopoly and the later to have flexibility in seeking services from various

vendors. Organizations like Object Management Group, OMG [OMG], are working

towards these open architectures and standardizing the software components in terms

of well defined business objects, services and facilities [BOB97, COS97, CFA97].

As a result of this industrial revolution, software reuse is no more an expensive

task and it will soon be a part of the software development lifecycles. This chapter

reviews the benefits of software reuse, the existing technology for developing reusable

software components, presents a couple of scenarios which illustrates the development

of software systems by integrating well defined software components, defines the scope

of this research and provides a road map to the rest of the thesis.

CHAPTER 1. INTRODUCTION

1.1 Software Reuse and the Advantages

Many software applications share certain common functionality like data manipula-

tion, data presentation, and use certain common algorithms for implementing these

functionalities. For example, in case of systems software, one could use the same back

end of a compiler with several front end compilers for different languages. Applica-

tions software is also being developed these days (by companies like 10Fold [TNF])

with a similar architecture by having a single horizontal framework (back end) and

several vertical domain applications (front ends) built on top of it. The horizontal

framework is reused in several domain applications as shown in Figure 1-1. With

standards for the domain applications like the business objects from OMG [OMG],

even the domain applications could be tailored from components of several vendors.

Domain Domain Domain Domain
1 2 3 4

Horizontal Framework

Figure 1-1: Generic framework customization for specific domain applications

1.1.1 What can be Reused

The final software artifact is not the only part of a software project that could be

reused. It is possible to reuse all design documents, test plans along with the final

source code. Infact, reusing the existing designs in the early phases of the software

development process leads to reusing all the corresponding artifacts in the subsequent

phases. This offers a significant reuse benefit.

CHAPTER 1. INTRODUCTION

However, in order to be able to reuse the design along with the final artifact design

rationale and intent of use of the artifact are required. Capturing design rationale

and intent is described in [PM94].

1.1.2 Advantages of Software Reuse

Reusing the existing software components has the following advantages

Reduction in the cost of product development

Similar to the reduction of price in hardware with technology and open architectures,

the cost of developing software systems is also decreasing. Open architectures will

improve the component reuse and accelerate the reduction of developmental cost.

Reduction in the duration of project

While it took years to complete projects earlier, the demand is in months. And

with the horizontal framework and vertical domain applications many companies are

promising to meet this demand. The change in business policies demands for constant

upgrading and enhancing of applications software and with less time to deliver the

product, the business strategies and processes will no more be limited by the software

systems. It would be possible to buy the best components from multiple vendors and

integrate them and depend on the integrated system for the business solution. Since

the system is developed using already existing components, the time to develop it

would be lesser.

Increase in the robustness of the product

Using a production tested and proven component will make the new system more

robust and this makes the policy makers implement several business strategies more

dynamically but with minimal risk.

CHAPTER 1. INTRODUCTION

1.2 Technology to Develop Reusable Software Com-

ponents

The above mentioned advantages of software reuse can be obtained only if it is possible

to develop complex software systems by integrating the reusable components with a

very little effort. This becomes possible if components could be integrated based on

the interface they provide and not their implementation details.

If not for reuse, software has been developed from the beginning in a structured

manner by using top down, bottom up and modular approaches mainly to make

the design, implementation and maintainance of complex software systems tractable.

With better understanding of software engineering and advent of object oriented lan-

guages the focus has broadened to software reuse as well. Microsoft's Component Ob-

ject Model, COM [COM95] (Appendix B) and Sun's JavaBeans [JBn97] (Appendix B)

provide a model to develop software as components which can be integrated with one

another very easily. Software reuse due to both object oriented paradigm and com-

ponent object models is discussed below. While object oriented paradigm provides

abstractions and reuse at object level, component object models provide abstractions

and reuse at component level.

1.2.1 Object Oriented Paradigm

Object Oriented Paradigm, OOP, provides abstraction, encapsulation, inheritance and

polymorphism (all these terms are explained in detail in Appendix A). Abstraction

and encapsulation helps in analyzing and organizing a complex system into manage-

able modules. Though these features do not directly contribute to the software reuse,

they act as a means of identifying the isolated functionality and publishing the inter-

face and hiding the implementation of the components. Inheritance makes it possible

to design systems from general abstractions to specific instances. This provides for

some software code reuse. A derived class can reuse the code from its parent class.

CHAPTER 1. INTRODUCTION

However, this is more like a glass box 1 type reuse because one has to understand the

implementation details of the parent class before designing the derived class. Poly-

morphism is another very important feature of OOP that makes the behavior of the

system dependent on the objects at the runtime. This helps in writing generic flexible

frameworks and customizing them as required by having a different implementation

for the required interface and creating these instances.

1.2.2 Component Object Model

In Component Object Model the software component is viewed as a functional unit

with a well defined interface. The components are integrated based on the interface

they provide and without the need to understand the implementation details of the

individual components. Hence, this is more like a black box type reuse. There are

development environments like the JavaBeans' BeanBox tester [JBn97] that help in

integrating and testing the Bean compliant software components.

While JavaBeans provide reuse of components developed in the same languages,

distributed object environments like CORBA (Appendix C) and DCOM [DC098]

makes it possible to integrate software components implemented in different languages

and on different platforms.

1.3 Software Development by Integrating Com-

ponents

With the emerging open architectures in all industrial domains and reuse enabling

technologies like COM, more and more companies will meet their IT needs by pur-

chasing components from various vendors and seemlessly integrating them.

'Black box testing and Glass box testing are two types of software testing. Black box testing is
not concerned with the implementation details. Whether or not input maps to the expected output
according to the test plans is verified in this type of testing. Glass box testing on the other hand is
done by going through the code covering all possible paths of execution.

CHAPTER 1. INTRODUCTION

Two examples are given below to illustrate the situations where software systems

are developed by integrating existing components. The first example is in an industrial

setting, the second is for developing a web page for personal use.

Example 1

Suppose Motawala, a chip manufacturing company, decides to automate their supply

chain management, they have the option of developing the entire software themselves

or buying the necessary software components from leading companies in supply chain

management like 12 technology or Manugistics. If these companies develop their com-

ponents in compliance with OMG's Manufacturing Business Objects, then Motawala

could integrate any third party component along with the software from these com-

panies. They need not wait for either of these companies to offer the lacking features

in their existing products. However, after the integration if Motawala finds that the

third party component is not offering good performance and finds yet another vendor

offering a high performance component, they could just buy the component from this

new vendor and integrate with their existing software. It is like plug and play for

hardware.

Example 2

More and more homepages are coming up on the web and everyone wants to be as cre-

ative as possible. But not everyone is a java [CH96] programmer or a Javascript [JS97]

writer to make their own web pages attractive. However, there are several applets

and script functions already written and available freely on the web [GAM, FRC].

These could offer functionality like menus, fancy buttons, toolbars or some sophis-

ticated applets like .dvi (DeVice Independent format used to display LATEX[Lam86]

files) formatters. Hence, one could collect several such applet components on the web

and prepare their web pages without really knowing the implementation details of

these applets. All they need to know is what functionality the applets provide, what

CHAPTER 1. INTRODUCTION

parameters are passed to these applets and what their values should be.

The above examples shows that software development using existing components

is by itself can be a new form of software development cycle with a component search

phase in the initial stages of design and there will be a large growing interest for this

kind of software development with open standards and enabling reuse technology.

1.4 Scope of the Research

Everyone in the industry acknowledge the above mentioned advantages offered by

software reuse. However, most of the companies do not invest money in reusing

software. They mainly follow the traditional software development life cycles. The

management in companies consider reuse effort as an additional investment without

realizing that they offer long term benefits there by amortizing the overall cost over

several projects. This is mainly a culture and attitude issue [dJ96]. On the other hand

technology is another issue. From the above description on the enabling technology

for developing reusable components and the growing interest for open architectures

and standards, the industry has the substantial knowledge in building reusable com-

ponents and overcoming the cultural and attitude barrier towards software reuse.

However, there is a limited research in how to represent and store the reusable

components in a library of reusable components and retrieve them when needed.

As mentioned in the above example of creating an attractive web page, there are

thousands of freely available applets on the web and in order to choose the right ones,

there should be a systematic way of storing and retrieving these applets.

Software Engineers have used several reuse techniques. They have used statisti-

cal and schematic techniques on informal textual documents (described in Chapter

2). They also have looked into defining formal means of representing the components

using specification languages and performing semantic analysis for searching the com-

ponents matching the given requirements. While one method offers ease of use the

CHAPTER 1. INTRODUCTION

other offers better classification and relevancy of search.

Also, earlier the main focus was on code reuse. However, over the years it has

been realized that the experience gained in the projects during various stages of

software development could also be reused. Capturing design rationale and intent

is key to the success of reuse of higher level design concepts [PM94]. And with the

component technology, once the right functional units are identified, it is just a matter

of integrating them to build the required system.

Glass box type reuse requires understanding the design rationale of the existing

components in order to be able to adapt the existing design. Design patterns (Ap-

pendix A) which are conceptual design abstractions can act as building blocks to

capture design rationale [Vad96]. On the other hand, black box type reuse requires

no such understanding of the underlying design decisions and implementation details.

Only knowing the functionality offered by the component may be required. The de-

veloper expresses the functionality as the intent for developing. However, from the

view of end user searching for reusable components, the intent is expressed as a set

of functional features required by the system. Black box reuse is suitable for build-

ing large systems that could be developed by integrating existing reusable software

components built using component object models. This is because each of the well

defined individual component abstracts certain functional features and in order to use

these components it is only required to know the functionality that they offer. The

implementation details are not necessary to integrate these components.

Automating the means of capturing the intent of use of a software component and

using the appropriate components when needed has been the focus of the research. A

hybrid approach of using information from both the informal specification documents

and the structured design documents to extract the component features is proposed

in this research. The drawbacks of using only either kind of information and how

they are complementary are described. The proposed hybrid approach exploits this

complementary nature.

CHAPTER 1. INTRODUCTION

The above examples in Section 1.3 suggests that large software systems could

be built by integrating well defined software components. This requires identifying

minimal set of components that could provide as much functionality as possible.

Hence, instead of retrieving individual components for reuse, set cover algorithm is

used to retrieve multiple components for composition based software development.

1.5 Roadmap to the rest of the Thesis

This chapter has introduced the growing interest for reuse, it's advantages, existing

enabling technology to develop reusable components and scenarios for developing

large software systems by composing several software components. It also mentioned

that design rationale and intent are required for making use of existing designs and

described the scope of the research which is mainly to automate the capture of design

intent from the documents and retrieving multiple components for composition based

software development. The remaining chapters review some of the research in this

area, requirements analysis for the developed reuse model, conceptual reuse model,

details of the system developed, couple of examples, conclusions and future research.

The appendices complement the thesis by providing some technical details which help

as a quick reference.

The chapters are organized as follows

Chapter 2 presents the related research. Models using informal design documents

as well as formal documents are presented and their advantages and disadvantages

are studied.

Chapter 3 gives the requirements analysis for the suggested framework and the

developed software system.

Chapter 4 presents the hybrid approach of information reuse for capturing design

intent and the use of setcover algorithm for component retrieval for composition based

software development

CHAPTER 1. INTRODUCTION

Chapter 5 explains the software system developed in the research, the underlying

design decisions and the organization of the framework.

Chapter 6 explains the intended use of the software system with a couple of

examples.

Chapter 7 concludes the thesis by summarizing some of the ideas developed and

understood in the research. Also, direction for the future research is presented.

Appendix A is a technical note on Object Oriented Paradigm and Design Patterns.

Appendix B is a technical note on COM and JavaBeans.

Appendix C is a technical note on CORBA.

Appendix D is a technical note on Reggia's Generalized Set Cover Algorithm.

Chapter 2

Background

Learn from the Past, plan for the Future

It has long been realized that reusability of software could be achieved by building

systems from composing the existing software components. Various means of achiev-

ing software reusability and the experiences and quantitative measures are present

in [BP89, PDF93, Sar96]. Efforts have been made to provide better programming

and specification languages that can support high levels of abstraction, interface be-

tween modules and templates. These methods help in writing reusable components.

However, the ability to reuse software components does not stop with the ability to

implement them. Selecting the appropriate software components for reusing them in

a given context and automating this process still remains as a challenging problem.

The main issues involved are pertaining to the representation of a reusable software

component in a catalog, the user interface for identifying the required components

and the retrieval mechanisms.

Components have been represented from simple forms like a set of keyword tuples

to complex forms like parameterized modules as described in Section 2.1 and 2.2. In

this case, the representation details were obtained from informal textual specification

CHAPTER 2. BACKGROUND

documents or from structured, detailed design documents. At the time of searching

for a component, the required functionality is specified as a simple text expressed in

natural language or by representing it in a specification language.

This chapter reviews several earlier research attempts which adopted some of the

above mentioned methods for representing components and obtaining information

from the user. These approaches are classified broadly as Semantic approach and

Statistical Approach. The definition of each of these approaches and their advantages

and disadvantages are presented.

2.1 Semantic Approach

Use of specification languages, module interface languages, logical programming lan-

guages and compiler technologies is considered under this approach. A couple of

examples are presented below and how they are difficult to use are mentioned.

2.1.1 Parameterized Programming, OBJ Language

OBJ is a language designed for Parameterized Programming [Gog89]. OBJ has four

kinds of entity at its top level: objects, theories, views and reductions [Gog89]. A

theory defines the interface of a parameterized module, that is, the structure and

properties required of an actual parameter for meaningful instantiation. A view ex-

presses that a certain module satisfies a certain theory in a certain way; that is a view

describes a binding of an actual parameter to a requirement theory. Instantiation of

a parameterized module with an actual parameter, using a particular view, yields a

new module. Figure 2-1 is a an example code written using OBJ [Gog89].

LILEANNA is another parameterized programming language which has similar

concepts of theories and views [Tra93]. This is a good example of a mechanism

for writing reusable software since it does not commit the list implementation to a

particular object type. However, this does not address the issue of identifying the

CHAPTER 2. BACKGROUND

obj LIST[X :: TRIV] is
sorts List NeList .
subsorts Elt < NeList < List.
op __ : List List -> List [assoc id: nil]
op _ : NeList List -> List [assoc]
op head_ : NeList -> Elt.
op tail_ : NeList -> List.
op empty?_ : List -> Bool.
var X : Elt.
var L : List.
eq head X L = X.
eq tail X L = L .
eq empty? L = L == nil.

endo

Figure 2-1: Parameterized List object representation using OBJ Language

right parameterized module suitable to implement the required functionality.

2.1.2 Structured Algebraic Specification, Clear Language

Clear is a language is designed for Structured Algebraic Specification [Tra93]. From

their experience on Raytheon project, the others have identified the problem of de-

signing an Ada-based software system, for maximum reusability of its component

modules within different systems has been identified [LM89]. The goal of Raytheon

project was to design a modeling system having a catalog of reusable Ada modeling

components and a means of connecting them into complete models. The authors

realized that a central part of the problem of designing the catalog was the problem

of rigorously specifying the allowable uses of each component, that is, specifying the

class of contexts into which a given component could meaningfully fit, and the kinds

of components that could fit within a given context.

Clear is a language for formal, well-structured specification of software compo-

nents [LM89]. It provides formalisms for expression of algebraic theories, operators

CHAPTER 2. BACKGROUND

for building new theories from combination of old theories, and the definition of theory

morphisms, which implement mappings between algebraic theories defined in terms

of theory-building expressions. The semantics of Clear are formally defined using

category theory. The authors believe "that much of this mathematics can be hidden

by a user-friendly interface to the library manager and by automated assistance in

mathematical reasoning". Figure 2-2 shows an example of how to specify a pack-

age that represents a group with equivalence relation on the data in a pseudo-Clear

notation.

procedure E_CLASSPACKAGE (Element: Groupwith_EquivRel) =
Element enriched by

data stores E_Class:
opns _*_ : EClass, E_Class = > EClass;
axioms axioms for equivalence classes ;

enden

Figure 2-2: Pseudo-Clear code for Group with Equivalence Relation

2.1.3 Partially Interpreted Schemas, PARIS

A partially interpreted schema is a program in which some parts remain abstract or

undefined [KRT89]. These abstract entities can include both program sections and

non-program entities such as functions, domains, or variables. For different inter-

pretations of abstract entities in the schema, the results will be different programs

performing different functions. PARIS has manual matching mode (also called shop-

ping list mode) and automated matching mode. It uses Boyer-Moore theorem prover

to carry out the verification. Figure 2-3 shows the schema for Linked List Insertion.

The following research directions that these authors mentioned are interesting

* Adding more schemas into the library, for a variety of computational models.

* Classifying all schemas within the library to increase searching efficiency.

CHAPTER 2. BACKGROUND

Entity List function f
function leq
function equal
domain D1, D1
variable data : D1
variable newdata : D1
structure node : D1 x pointer(node)
programsec S1

Applicability Conditions
f: -> D2
leq : D2 x D2 -> boolean
equal: D1 x D1 -> boolean
For all n : n in node : n -> next = NULL =>
leq(f(n -> data), f(n -> next) -> data))

Result Assertions ...
Section Conditions ...
Schema Body

struct node { struct node *next; D1 data; }
insert(listhead, newdata)
struct node *listhead;
D1 newdata;

{
struct node *p, *q, *new;
new = malloc(sizeof (struct node));
/* assign newdata to new->data */
S1
if(listhead == NULL)
{
listhead = new;

}
Figure 2-3: Schema Representation of Linked List iteration using PARIS

CHAPTER 2. BACKGROUND

* Defining additional keywords in the system's vocabulary.

* Developing a user-friendly interface to add more convenience for the user's for-

mulation of a problem statement and to provide more interactive communica-

tion during the process of matching and verification. In particular, when the

theorem prover fails to prove one of the two implications needed for a success-

ful matching, the user should not have to be an expert in automatic theorem

proving in order to understand the reason for the failure.

* Augmenting the theorem prover with facts in the problem domain of the schemas,

especially with facts about temporal logic assertions.

2.1.4 Object Oriented Module Interconnection Language,

MIL

Module interconnection languages (MILs) were introduced in 1976 by DeRemer and

Kron for "programming-in-the-large" [HW93]. Subsequently MILs have found impor-

tance in software reuse, as the means of interconnecting components. MILs permit

the description of components (or more generally "resources"), and the independent

description of their interconnection [HW93].The specification explicitly identifies not

just the methods it provides but also the methods it requires. Object specification

is a template which has provides and requires while Object implementation is a tem-

plate which has contains, external connections and internal connections. There are

other usual constructs like variables and methods. Figure 2-4 gives an example of

describing a home-heating system.

2.1.5 Summary of Semantic Approach

From the above mentioned cases, for adopting semantic approaches to reusability the

user has to be an expert in using the system, have to learn a new language and map

CHAPTER 2. BACKGROUND

object implementation home-heating
contains

control-clock; clock;
temp-controller; controller;
temp-guage; thermometer;
space-heater; heater;

external connections
home-heating.read-temperature-setting =
temp-controller.read-control-value;
home-heating.set-temperature-setting =
temp-controller.set-control-value;
home-heating.set-beat = control-clock.set-beat;

internal connections
control-clock.trigger = temp-controller.clock;
temp-controller.read = temp-guage.read-temp;
temp-controller.on = space-heater.on;
temp-controller.off = space-heater.off;

end home-heating

Figure 2-4: Home-heating System module specified using MIL

the functional requirements into these language constructs. While the final retrieved

components are more closer to what the user wants, there is a major burden on

the user to learn a new specification language and represent the requirements using

the specification language. This type of systems could not be useful especially for

preliminary design. However, it should be noted that MIL languages which emphasize

on the interconnection of modules rather than the specification of individual modules

are still very useful once the user identifies the appropriate reusable components from

the preliminary search.

2.2 Statistical Approach

Use of classification schemes based on syntactic clustering, statistical correlations

is considered under this approach. It should be noted that semantic relations are

CHAPTER 2. BACKGROUND

also used in this approach to representing a component. However, these relations

are derived from the informal textual description while it is expressed using formal

languages in the above approval. A couple of examples are presented below and how

they provide poor performance is mentioned.

2.2.1 Faceted Classification Scheme

A classification scheme is a tool for the production of systematic order based on a con-

trolled and structured index vocabulary [PD89]. This index vocabulary is called the

classification schedule. Classification schemes can be either enumerative or faceted.

Faceted schemes were used in describing the software components. Software compo-

nents can be described by (1) the function they perform, (2) the way they perform it,

and (3) their implementation details [PD89]. Under this assumption, the components

were represented as tuples describing the functionality and environment. Function-

ality is represented as a < function, object, medium >. Classifying a component

consists of selecting the sextuple that best describes the component. Some examples

are shown in Figure 2-5

< add, integers, array, matrix - inverter, modeling, aircraft - manufacture >
< compress, files, disk, file - handler, DB - management, catalog - sales >
< compare, descriptors, stack, assembler, programming, software - stop >

Figure 2-5: Representation of Software Components using Faceted Classifying Scheme

The end user interface provided by this system is interesting. The user has to

enter a sextuple as above. Generalization can be achieved by making any of the six

attributes as wildcards. An example is shown in Figure 2-6

While the user could use the generalization technique to browse and refine his/her

query, query expansion technique uses conceptual distances from the conceptual graph

to provide queries of closely related terms. However, this could be automated by syn-

onyms substitution. More importantly, the expressive power of the user to describe

CHAPTER 2. BACKGROUND

substitute/backspaces/file/text-formatter/program-development/*
substitute/backspaces/file/text-formatter/*/*
substitute/*/*/*/*/*

Figure 2-6: Search generalization using wildcards

the required system is limited to six attributes that could only describe smaller soft-

ware components.

However, providing the user interface in terms of informally describing the func-

tional requirements of the systems and not as mappings using specification languages

makes the system easier to use. But the relevancy of the retrieved components might

be lower.

2.2.2 Conceptual Schemas

Reusable conceptual components are defined as Generic Conceptual Units with associ-

ated Meta-Conceptual Units, which provide guidelines for reuse in a given application

[CA93]. Conceptual schemas are properly defined according to a selected model such

as Entity-Relationship (E-R) model, or Object-Oriented (0-0) models. The authors

used a meta-model whose meta-constructs allow the definition of the constructs of

both the E-R and 0-0 models. The main meta-constructs used were Conceptual

Unit (CU), Structural Property (SP), Behavioral Property (BP) and Dependency (D)

[CA93]. In [CA93] these meta-constructs are defined as

Conceptual Unit (CU) it allows the definition of constructs used to describe ob-

jects of the real world within the schema (e.g., entity, object class).

Structural Property (SP) it allows the definition of constructs used to describe a

static feature of an object in a schema. SPs are expressed by means of attributes

in both E-R and 0-0 models.

CHAPTER 2. BACKGROUND

Behavioral Property (BP) it allows the definition of constructs used to describe

the behavior of an object in a schema. SPs are expressed by means of attributes

in both E-R and 0-0 models.

Dependency (D) it allows the definition of constructs used to describe relationships

between two or more CUs in a schema.

A schema appears to be a kind of document suitable for automatic indexing:

it is structured at both syntactic and semantic levels, and even belongs to a well

identifiable domain. Schemas in the Library are grouped and classified with respect

to the domain they belong to. For schema indexing, each schema S is associated to a

set of Schema Descriptors (SDs), extracted from the schema itself, according to the

criteria that privilege their capability of representing the schema subject. Only the

labels of the Conceptual Units (CUs) are used as schema descriptors. The procedure

for extracting SDs from a given schema S is composed of the following steps:

* assignment of a weight W to each CU of S;

* definition of a threshold for selecting SDs from the weighted CUs.

A sample Schema-card [CA93] is shown in Figure 2-7

Schema name: < string >
Application name: < string >
Domain name: < string >
Weighted Schema Descriptors: < listof (SDs, weight) >
Total No. of terms : < number >
Model : < typeo fmodel >
Schema code: < schemaidentifier >
References: < textualdescription >

Figure 2-7: A sample Conceptual Schema Card

Similarity Coefficient, Structural and Behavioral Affinity and Hierarchy Affinity

[CA93] are calculated by examining the SPs and BPs of CUs and used in the retrieval

CHAPTER 2. BACKGROUND

process. The success of the above approach depends on assigning the appropriate

weights to the conceptual units.

2.2.3 Summary of Statistical Approach

From the above mentioned cases, for using Statistical Approaches, the user need

not be an expert in a new language and not much work is required for searching

for appropriate components. However, this approach results in poor classification

and retrieval. The performance depends on the appropriate statistical weights used.

Hence, this approach could be used mainly during the preliminary design stage to

select limit the search space. Since, the search results may not be highly relevant, the

user than has to go through them manually.

2.3 Hybrid Approach

Both the Semantic and Statistical approaches have their own advantages and dis-

advantages. While one provides more relevant solutions the other has some noise.

While one requires substantial manual effort and technical expertise the other re-

quires lesser manual effort and technical expertise. However, the interesting fact is

that these approaches are complementary in nature.

During the preliminary design stage it is better to use the Statistical classification

and retrieval approach to limit the search space. Also, with the use of component

models which provide easy integration, the need for module interconnection languages

and algebraic specification languages reduces. Once the user identifies the right com-

ponents offering the required functionality, they could be easily integrated using suit-

able editors like the JavaBean's BeanBox tester [JBn97]. Also, as mentioned in the

Chapter 1, creating a fancy webpage using several individual applets does not require

integrating them at code level. As long as the applets with required functionality

are identified it is possible to make the webpage. Hence, using open architectures

CHAPTER 2. BACKGROUND

and component object models, the focus shifts from spending time to integrate the

individual components to identifying the right functional components. Coming up

with better ways of using statistical classification approaches there by reducing the

noise is the primary focus of the research.

Capturing and utilizing the Design Rationale and Intent is the means of reusing

design at conceptual level [PM94]. The intent of the design could be best viewed

from the end users as the features offered by the artifacts. How to extract these

features from the software design documents is the primary concern. While it is

possible to use either the semantic or the statistical method for this, for the above

mentioned complementary nature of both these methods, a hybrid approach can be

used which analyses both the informal textual specification documents and formal

structured design documents. The user interface is similar to those provided in sta-

tistical approaches since they are easier to use and less effort is needed from the end

user. However, the noise in retrieval is reduced by using the information from the

analysis on the formal structured design documents. All these details are explained

in the next three chapters.

2.4 Design Recommendation and Intent Model

Extended for Reusability (DRIMER)

DRIM is a model developed for capturing the design rationale and intent of the

product development [PM94]. Figure 2-8 shows the DRIM model. DRIMER (DRIM

Extended for Reusability) is an extended DRIM model for reuse of design concepts

augmenting design patterns with design rationale [Vad96]. DRIMER model assumed

the use of Case Based Reasoning (CBR). However, as mentions in [MS93], "empirical

studies indicate that these reuse tasks are difficult, even for experienced software

engineers". Also, it mentioned "Most software reuse research has ignored the role

of the software engineer. However, software engineers tend to be better reasoners

CHAPTER 2. BACKGROUND

Legend

0- sub-part zero or more

< sub-class one to one

derived

Figure 2-8: DRIM model adapted from [FPn94]

and have more experiences to recall than tool-based reuse mechanisms". Hence, with

the present technology the ability for tools to automatically and efficiently adapt the

software components to provide the required functionality is difficult. Also, most

of the CBR Systems like Caspian [Pri97] require a set of indices so that they could

retrieve partial matches or similar cases based on these indices. In Caspian, if these

indices are numbers then the degree of matching is based on interpolation of the

numerical values. Non numeric indices are usually a set of values belonging to a

class (e.g., FilelnputStream and DataInputStream defined in the class InputStream)

and the rank of matching varies based on perfect matching to belonging to the same

CHAPTER 2. BACKGROUND

class. A software component cannot be however described using a few numeric and

non-numeric attributes.

Figure 2-9 shows the web based system of DRIMER. DRIMER has a web based

Figure 2-9: DRIMER web based system adapted from [Vad96]

client interface which provides facility to query for components based on intent field,

name of the code and also keywords serving as indices. It is also possible to retrieve

design patterns using queries based on similar fields. There are a few shortcomings

with this approach and also the software framework. They are

CHAPTER 2. BACKGROUND

* While components could be retrieved based on keywords describing their func-

tionality similar retrieval mechanisms for design patterns may have limited ap-

plicability. This is because, from the requirements of a new product it is possible

to identify the features that are required but it is not easy to find out whether

or not a design pattern could be used unless one knows the pattern in the first

place. Hence, searching for design patterns based on names and even intent

is of limited applicability, the system provides as a database for components.

Tools that could recognize the need for a specific design pattern based on the

functional description of the software are needed.

* It is only possible to retrieve individual components based on the search fields.

However, if the required functionality of the system is large it requires compo-

sition of several smaller components. This composition is not considered.

* CGI scripts and HTML forms are used for processing and user interface respec-

tively. Using forms limits the user interaction capabilities. Even if sophisticated

user interface is built using just the forms, the interface looses the intuition and

ease of use.

This research focuses on capturing the design intent of software component and

also addresses the last two shortcomings mentioned above.

Chapter 3

Requirements Analysis

Besides other factors, incomplete understanding of the System results in Versions

Two most important factors considered in designing the reuse model are the cost

of implementing an effective reuse technology and the ease of use of the technology.

It is necessary to utilize as much of the already generated information during soft-

ware projects as possible to minimize the cost and effort of reuse. To design a reuse

technology that minimizes the cost of implementation it is necessary to understand

and classify the kind of information generated during the software design projects.

Classification of information based on availability and formality are proposed in the

research presented by this thesis. A case study of obtaining required information

from a library maintaining a catalog is presented. This is useful in coming up with

the representation for a reusable software component. This case study also helps in

understanding the kind of support one would expect from a tool during the prelimi-

nary design stage. Retrieving multiple components whose composition gives as much

of the required functionality as possible is required to increase the search relevancy.

As mentioned in Chapter 1, most of the application software in the commercial

world is being built by developing a customized domain software on top of a hor-

CHAPTER 3. REQUIREMENTS ANALYSIS

izontal framework. This results in reusing the base framework for several domain

applications. The same could be done even for the software reuse tools. Instead of

developing a specific reuse framework for each individual domain like finance, manu-

facturing and medicine, a general framework based on the above requirements analysis

is developed and this could be customized to support reuse of software components

of each individual domain.

3.1 Information in Software Projects

The following are some of the various kinds of documents generated during the soft-

ware development life cycle

* User's Requirement Specification (URS)

* System's Requirement Specification (SRS)

* High Level Design documents (HLD)

* Low Level Design documents (LLD)

* Test Plans

* Programs

* Programmer's/Reference Manual

* User's Manual

The research presented in this thesis proposes a classification of the above in-

formation in order to be able to develop a cost effective and efficient reuse model.

This information is classified as available and inherent information and, semantic and

textual information. This classification helps in studying the means of capturing the

design rationale and intent of software projects.

CHAPTER 3. REQUIREMENTS ANALYSIS

Figure 3-1: Classification of Project Information

3.1.1 Classification of Information used in Software Projects

All the above mentioned documents contain various kinds of information related to

the software product. The entire information that is used in the software development

process is classified in two different ways which is presented below. One is based on

the availability of the information at the end of the project and the other is based on

the formality of the information. Figure 3-1 shows the information classification.

Classification based on Availability

Information used in a project may or may not be documented and this classification

is based on documentation of information.

Available Information: This is the information that is available in some document

or the other at the end of the project. This information is produced as a part of the

need for the project, i.e., this information is required to be documented to implement

the project without concerning it's reuse. Making use of available information for

preparing reusable information reduces the cost and effort. One of the issues of

CHAPTER 3. REQUIREMENTS ANALYSIS

software reuse is the extra cost required to introduce it in the existing software life

cycle models. Hence, if it is possible to design the reuse techniques based on the

available information itself then such a technique could easily be integrated into the

existing software development practices.

Inherent Information: This is the information that is not available in any of

the documents at the end of the projects. This is because this information is not

documented as a part of the project and remains in the minds of the people involved in

the project. This type of information is mainly related to the justification of the design

decisions (the results of the decision are usually available in the available information)

and design rationale. It is the information used in obtaining the available information.

Inherent information is very useful because of its meta information nature which helps

in choosing one design over the other. But often this just remains in the minds of

the people who participate in the project and seldom gets recorded. Making inherent

information reusable requires additional cost of documenting such information. At

the end of the project each person participated in the project (irrespective of his/her

designation) could be asked to spend a couple days on documenting such inherent

information. This could add to the overall cost of the present project. However, over

a period of time this will reduce the cost of any new project.

Available information alone is not enough to define design rationale. Inherent

information is also required. For example, inspite of identifying the existing design

patterns in the design, it is also necessary to have information related to these patterns

which helps in understanding the reason for choosing the particular design possibly

among several alternatives. However, most of the design intent could be obtained from

the available information. This information will be mostly available in the textual

specification documents and user's manuals. Black box type reuse requires mainly

classifying and retrieving components based on the functionality they offer (Chapter

1) and hence design intent which could be obtained from the existing documents could

CHAPTER 3. REQUIREMENTS ANALYSIS

be used for classification and retrieval. Glass box reuse on the other hand requires

design rationale (Chapter 1) and hence the need for the inherent information. This

type of reuse is possible only if there is an initial investment towards reuse.

Classification based on Formality

Information in the software projects might be represented using a formal or natural

language. This another classification can be based on formality of information.

Semantic Information: Information that is represented using formal specification

language, mathematical formulae or design notations (like OMT or UML) falls un-

der this category. Programs contain only semantic information. Also, HLD, LLD,

Test Plans which are documents generated during the design contain mostly semantic

information. Programmer's Manuals also contain some semantic information. This

kind of information is mainly useful for semantic analysis described in chapter 2.

However, most of the semantic analysis techniques propose a separate specification

language making it necessary to express the reusable components in this language.

Also, expressing the required functionality in the specification language has to be

manually performed at the time of search for the components. Hence, both main-

taining and searching for component results in additional activities apart from the

normal activities in the software life cycles. It would be useful to develop tools that

could use the existing semantic information itself eliminating the need to express the

components in a new specification language.

Textual Information: Information that is represented using natural language falls

under this category. URS, SRS and User's Manuals which are design documents gen-

erated during the the software development contain textual information. This kind of

information is mainly useful for statistical analysis described in chapter 2. As men-

tioned in Chapter 2, since reuse tools developed using statistical analysis are easy

to use, the aim of the research presented in this thesis is to represent reusable com-

CHAPTER 3. REQUIREMENTS ANALYSIS

ponents by extracting information from these documents and semantic documents.

Semantic analysis on the semantic information is used to increase the classification

accuracy and retrieval relevancy.

3.1.2 Observations

The following observations could be made from the above classification

* Minimizing the cost of implementation requires using only the available in-

formation as opposed to using inherent information which requires additional

documentation specifically for reuse.

* Maximizing ease of use requires statistical analysis on textual information as

opposed using semantic approach which requires learning new specification lan-

guage.

* Maximizing the relevancy of search requires semantic analysis on the available

semantic information as opposed to using statistical approach whose accuracy

depends on assigning the right weights.

Hence, the reuse technology should be based on available textual and available

semantic information and use both the statistical and semantic analysis. Seman-

tic analysis on the available semantic information is performed only to increase the

classification accuracy and search relevancy of the statistical analysis approach.

3.2 Information Search - A Case Study

This case study is mainly based on personal experience in searching for relevant

research material. The user interface for the proposed reuse model is mainly motivated

from the observations from this case study 1

'It should be noted that only the conventional online cataloging and search facilities are studied
and recent technologies like digital imaging and and related search technologies are not considered

CHAPTER 3. REQUIREMENTS ANALYSIS

3.2.1 Search for a TextBook/Journal in a Library

Searching for a reusable component has similarities with searching for a text book

on a particular topic in a library. In a big university library like in MIT, with sev-

eral floors and books covering different disciplines providing a facility to search for

books is very important. Organization of the books and journals is crucial. Books

are separated from Journals. Books belonging to a particular discipline are all placed

at the same place. With in this structural layout, books related to the same special-

ization are placed together. Each book is given a call number. An online catalog is

maintained to make it easier for people to find out where the books are located.

When a person wants to search for a book he/she might have different levels of

information about the book he/she wants. If the call number of the book or the ISBN

is known it is very easy to locate the book. Even if the author name or the exact

name of the book is known it is possible to precisely locate the book. This is same

with journals. If the volume number and the publication of the journal is known it

is easy to locate the journal. But several times a student wants to find out all the

related books and journals that are of interest to his/her research. In such a situation

he/she will not have a particular book/journal in mind but he/she is only interested

in books with his/her research topic.

Initially the user might search for books with a few keywords. This gives the

location of a couple of books having these keywords in their title. Then the user can

go to the appropriate stacks and look into the listed books and select those books

that are most appropriate to him/her. Also, many times some of these selected books

gives references to new books relevant to the interested topic. While this keyword

search does not retrieve only the relevant books, it does help the research student to

start with something that eventually leads to the required books/journals. However,

ways of improving search results should be provided to the cataloging system. Once

the user browses through these books and picks up a few then the user goes through

them and further limit his/her selection. This shows that while in the initial stage

CHAPTER 3. REQUIREMENTS ANALYSIS

the automatic retrieval can ease the effort of selecting books, human judgment is

necessary for the final books necessary for the research.

While search based on keywords in the title of the book alone might be sufficient

the search can be improved if every book is represented with a small description of

what the book contains, similar to the abstract of a paper. Using this description

while searching will improve the relevancy of the retrieved books. However, proper

search mechanisms that retrieve relevant information should be provided because

keywords are likely to match for more books because of using larger text for keyword

matching. Displaying the description along with the title and other details of the

book will let the user to decide whether or not to read the book without actually

going to the stacks and going through the book.

Sometimes the user might find only a single chapter in the book relevant to

him/her. The system has the option of retrieving each relevant chapter from a book

(or a paper from a journal) or just the book (or journal). The granularity of informa-

tion units that are retrieved is, hence, another important factor. In a big university

with too many books and journals it might not be appropriate to index on individual

chapters and papers. Not only does this require a lot of effort for the catalog main-

tainers but also for the end users since they have to browse through several search

results before they actually find what they require. The time required to search also

becomes a limiting factor. This could defeat the purpose of the search unless the

search is structured and guided semantically.

3.2.2 Observations

Following observations can be made from the above case study

* After filtering the totally irrelevant books/journals users would browse the re-

trieved list of books to find out precisely the books that are useful to them.

Similarly a designer can first filter irrelevant software components through au-

tomated search and then study the retrieved components to decide on using them.

CHAPTER 3. REQUIREMENTS ANALYSIS

* From the preliminary stage of searching for books users find other relevant

books/journals from the initial set of books they choose. The new books are

referred in the selected books. This observation suggests that a software compo-

nent should not only be represented with its own design documents and code frag-

ments but it should also contain references to other similar or related reusable

components, if possible.

* Giving a small description of the book along with the title and author will often

save the user the effort of locating the book and going through it to decide on

using it. Similarly, reusable software components should have descriptions and

comments by people who have reused them before. This will be very helpful at

the time of manual search which the user does by browsing through the retrieved

components.

* Granularity of the information unit directly relates to the human effort. In-

dexing every chapter of the book is a major effort for the catalog maintainer.

Also, the end user has to go through several retrieved results and the degree of

relevancy will be poor. Granularity plays an important role for software com-

ponents as well. Reusing smaller components offers lesser benefits because the

cost of integrating the components could be more than the benefit of reusing

them. However, smaller components have higher relevancy.

* Describing the book/journal and keyword search based on the description will

increase the search relevancy. Search based on just the title might miss some

useful books/journals. Similarly a software component should be represented

with a set of features that best describe its functionality. Search will be based

on these features.

* Search should also be possible on fixed attributes like Call Number and ISBN.

People who have been reusing a set of components often or are referred to by

CHAPTER 3. REQUIREMENTS ANALYSIS

other members in the organization can access them easily by using these unique

ids.

* Search for relevant information is a process in which the search effort shifts

from the computer to the human. Automating the search for the initial part of

the search saves significant amount of time and effort to the user. Then the

user has to use his/her discretion to further limit the search. Only the degree

of computer vs human effort changes with intelligent retrieval techniques but

ultimately human judgment is necessary.

All the above observations should be taken into account while designing the rep-

resentation of software component and also the search user interface.

3.3 Retrieving Multiple Components

A reusable software component could have a more than a single functional feature

as explained in Section 3.2. The larger the component the more features it is likely

to contain. Since there should be no restriction on the granularity of the reusable

software component, it is assumed that the same component could have several func-

tional features. Similarly, there could be several functional features required for a new

software system. The same component could offer more than one of these features.

As a result there could be several possible solutions each having multiple components

and there should be a means of ranking these solutions. The next section describes

the requirements for retrieval and ranking.

3.3.1 Retrieving and Ranking

To begin the search, the user would have a set of functional features required by

the system to be developed. The user could specify each of these required features

separately and get a number of components satisfying that feature or specify all the

CHAPTER 3. REQUIREMENTS ANALYSIS

features and get sets of components each of which contain components that offer as

much of the required functionality as possible. It is preferable to reuse the set of fewer

components that could provide maximum functionality since it minimizes the effort

of integrating the components. Hence, it is necessary to provide a search mechanism

in which it is possible to specify all the required functional features and obtain a

minimal set of components that offers as much of the functionality as possible. Other

alternatives should also be provided because some of the components in the minimal

set could be very large with several irrelevant features while the user is interested in

developing a light weight component. Also, if there are no components that could

offer some of the required features, then the components should be retrieved for some

of the required features and the uncovered features should be presented back to the

user. This helps the user in estimating which components need to be modified or

what additional development effort is required.

If there are multiple solutions possible, the user should be presented with all the

solutions and the solutions should be ranked on some criteria in helping the user

to make decisions. One of the criteria could be ease of reuse. Composibility and

Relevancy are some other criteria mentioned in Chapter 4.

3.4 Framework and Customization

First the details of CORBA [ORB97] framework and how commercial applications

are being built is described. Similar model is used in designing the reuse framework

and hence it is useful to know how the CORBA applications are being developed.

Apart from specifying CORBA, a distributed computing architecture, OMG [OMG]

also standardizes Object Services, Common Facilities and Application Objects. Ser-

vices are necessary to construct any distributed application and are always indepen-

dent of application domains [COS97]. A collection of services that many applications

may share are developed as Common Facilities. These facilities are again divided into

CHAPTER 3. REQUIREMENTS ANALYSIS

two major categories; Horizontal Common Facilities, which are used by most systems,

and Vertical Market Facilities, which are domain-specific. Application Objects are

specific to particular commercial products or end user systems. Application Objects

correspond to the traditional notion of applications and so they are not standardized

by the OMG. Both Object Services and Horizontal Common Facilities could be used

in building the Application Objects. Vertical Market Facilities help in providing the

interoperability between various application objects of the same domain [CFA97]. As

mentioned in Chapter 1, many consulting firms are also having a general framework

which could be used in several applications built for different domains. Applications

are built on top of the framework by customizing it for the specific domains.

Part of the component representation and search techniques can be common and

not depending on the application domain. Also, black box type reuse which mainly

depends on the design intent could be modeled as much as possible independent of the

domain. However, using design rationale for glass box type reuse requires substantial

domain knowledge and hence customization for individual domains.

Hence, it is preferable to design a reuse technology with a general framework and

customizing it for individual domains using domain specific knowledge. The main

focus of the research in this thesis is building the general framework for capturing

and reusing the design intent.

3.5 Summary of Requirements

From the above observations, the following are the requirements identified in devel-

oping the model for design intent capture.

* The reuse technology should be based on the available information to minimize

the cost of implementing the technology so that it could be seemlessly integrated

with the existing software life cycle practices.

CHAPTER 3. REQUIREMENTS ANALYSIS

* To provide an easy end user interface and minimize the effort of preparing

input. Understanding the required functionality is essential for all software

development life cycles. However, expressing this functionality in a specification

language is an additional burden on the designers. One need not be an expert

in understanding theorem proving and logical reasoning. This will only hinder

people from using tools based on such methods. It is, hence, necessary to have a

simple user interface for identifying the reusable components in the preliminary

design stages.

* To increase the accuracy of classification and relevancy of retrieval by using a

hybrid approach mentioned in Section 2.3.

* Retrieving multiple components to suggest the possible composition to increase

the search relevancy. Suggesting the least number of components offering the

same functionality helps in reducing the effort of integrating the components.

* To provide a horizontal reuse framework. Reuse is fundamentally a concept

independent of the domain. Hence, several reuse facilities could be common

for all the applications and hence the reuse technology should be based on a

general horizontal reuse framework. This framework can be further customized

by providing a domain specific knowledge.

Chapter 4

Conceptual Model

Perhaps, even the Universe is based on a Model

This chapter presents the conceptual model on which the design intent capture

framework and tools are developed. First the conceptual models related to reuse

techniques based on either only available textual or available formal information are

reviewed. Then the model using both kinds of available information is suggested.

This is mainly based on statistical analysis on available textual information together

with the semantic knowledge from semantic analysis on available semantic informa-

tion. This has the benefits of using both types of available information; accuracy of

classification and high relevancy of retrieved information and, ease of use. Two types

of knowledge from semantic analysis that are used along with the textual informa-

tion for statistical analysis are presented. One increases the classification accuracy

while the other helps in identifying those features of a component that could easily

be customized while using the rest of the framework.

The representation of software component is broken into two parts. One is part of

the general framework which is presented in this chapter. The other is specific to the

individual domain and could be customized. The component representation is pre-

CHAPTER 4. CONCEPTUAL MODEL

sented from the end user's point of view. More sophisticated internal representations

could be used and customized by providing the appropriate mapping.

Reggia's Generalized Set Cover [RNW85, RNWP85] algorithm and how it could

be used to retrieve multiple components for composition based component reuse is

presented.

4.1 Existing Reuse Models

As mentioned in Chapter 2, reuse techniques are mostly based either on textual

information and statistical analysis or semantic information and semantic analysis.

Several examples are presented in Chapter 2. These two types of information usage

can be conceptually modeled as follows.

4.1.1 Reuse based on Available Textual Information

User's requirement specification (URS) document contains mainly the functionality

needed by the final product. Some of the functionality may not be finally available

in the product because it may not be feasible or not required. System's requirement

specification (SRS) document gives any additional assumptions that need to be made

in building the product. Since all this information is in textual form extracting

the right component features requires natural language processing. One could also

consider extracting features based on the statistical relevancy of the words used in

these documents by using techniques like WAISindexing and clustering algorithms.

However, this could still lead to a lot of redundancy and poor relevancy. Figure 4-1

gives the conceptual model of using textual information and statistical analysis for

automating component reuse.

CHAPTER 4. CONCEPTUAL MODEL 52

Project

Library of Reusable

Project Components

The system should textual Statistical Analysis indices, documents>

provide a away to information Clustering a
store all the design
documents of a ndexing The system should

project in a centraliz(provide a away to

database store all the design
documents of a

project in a centralize(
database

New Prtject sJrR
equirem ents

F 4 Rreusable project documents
Design documents keywords,
should be stored along indices Inr
with the requirements Retrieval

documents in a The system should
database. It should be partial matches provide a away to
possible to retreive store all thedesign
these documents for documents of a

project in a centralize c
database

Figure 4-1: Reuse from Textual Information

4.1.2 Reuse based on Available Semantic Information

Reusable information can mainly be obtained from the high level design diagrams,

low level algorithms, flow charts and to some extent from the programs themselves.

Obtaining reusable information from these documents requires semantic analyses like

data flow and control flow analysis. Design patterns provide a level of abstraction to

work with when retrieving information from high level design diagrams. Obtaining

reusable information from algorithms and programs may be very difficult if not im-

possible. Also, matching the description of a problem with the reusable information

from these documents is very difficult and requires a lot of expertise in topics like the-

orem proving and logic reasoning as mentioned in Chapter 2. It also requires complex

parametric type representation and matching, pre and post condition representation

and satisfying as well as data and control flow analysis. Hence, in general for any

CHAPTER 4. CONCEPTUAL MODEL

documents

partial matches

x+y=100

AX+Y<B

Figure 4-2: Reuse from Semantic Information

type of product, extracting and using the reusable information from semantic infor-

mation is very difficult and some times may not be practical. Also, mapping a given

problem from the informal description to a formal representation suitable as input to

the retrieving agent has to be done manually and this might itself be a difficult and

time consuming task defeating the purpose of reuse. Figure 4-2 gives the model of

using semantic information for automating component reuse.

CHAPTER 4. CONCEPTUAL MODEL

Figure 4-3: Reuse from both Semantic and Textual Information

4.2 New Reuse Model

4.2.1 Reuse based on both Textual and Semantic Informa-

tion

From the above description it is clear that extracting and using reusable information

from either available textual information or available semantic information requires

various degree of effort and each offer various degree of relevancy and accuracy. How-

ever, these are complementary in nature. Hence, one could do limited semantic analy-

CHAPTER 4. CONCEPTUAL MODEL

sis on available semantic information and use the derived semantic knowledge together

with the available textual information for statistical analysis and get reusable infor-

mation whose accuracy and relevancy is increased, if not complete. Figure 4-3 gives

the model of using both semantic and textual information for automating component

reuse.

The next two sections presents the means of improving the efficacy of statisti-

cal analysis on textual information by using the semantic knowledge derived from

semantic analysis on semantic information.

4.3 Class Tree Provides Better Weights for Sta-

tistical Analysis

As mentioned in Chapter 2, most of the reuse techniques based on textual informa-

tion use some kind of statistical analysis. And these empirical methods use suitable

weights based on certain assumptions. In [DA96], the authors propose a method of

constructing design representations from Text analysis. Given any textual document

of a design, the document is first parsed to get all the words omitting the most com-

mon words like the, is and are. Once a set of words are retrieved, statistical analysis

is done on the words. The words are clustered and Bayesian networks are built. This

representation is used in later retrieval of the relevant information.

It is assumed that the more frequent a word is, the more general it is in the domain

of the problem and hence given lesser weightage because they do not serve as good

discriminators of concepts. At the same time words with lower frequency should not

be given too much of weightage because some long, infrequently used sophisticated

words could be given higher weights even though they do not actually represent the

details of the component. Coming up with the right weights for the words to serve

as good discriminators of concepts is the main challenge in this approach.

Since a software artifact also has semantic information associated with it, it is

CHAPTER 4. CONCEPTUAL MODEL

better to use some knowledge from this information to come up with appropriate

weights for the words. One possible way of doing that is suggested in this section.

Before explaining the semantic analysis and its use in textual analysis, it is necessary

to understand the underlying assumptions. These assumptions are described below.

4.3.1 Assumptions

Suppose an application is built using a pure object oriented programming language

like Java. The applications are designed such that higher level abstractions which

represent the software system are built making use of lower level abstractions which

represent the implementation details. It is assumed that class names are not arbitrary

and are chosen based on the vocabulary of the application domain. Hence the words

in the names of classes representing higher level abstractions are more likely to contain

information of what the application is all about than those representing some lower

level implementation details. Then it remains to identify automatically the higher

level classes from the application. A formal means of achieving this is presented

below.

4.3.2 Class Tree

An object oriented software component has a set of classes and these classes have

various relations like inheritance, uses and contains among themselves. Assume that

a Graph (V,E) where V, the vertices represent the classes in the design and E, the

edges represent the uses or contains relation between any two classes. In Java, any

application has a single class from which the execution of the program starts. Let

this be the root class. Similarly, it is assumed that a component with a well defined

interface has such a root class, say X. Starting from X and traversing the graph

using breadth first search will give a tree with X as the root. For any component,

it can be observed that the classes in the top few levels of this class tree represent

high level abstractions directly related to the functionality of the component. On the

CHAPTER 4. CONCEPTUAL MODEL

A Classes abstracting functionality

With increasing depth

B C D F the relative weight of the

classes decreases in representing

the higher level functionality

G I JK M

N O P

Classes abstractubg the implementation

Figure 4-4: Class tree provides relative weights for the words

otherhand, classes down the tree are more related to the implementation details and

serve as building blocks of the highlevel classes. Figure 4-4 shows such a Class Tree

and an example is given in Chapter 6.

From the class tree the weights are derived such that the words in the class name

at the root level has maximum weight and decrease for class names with increasing

depth. Let the depth of a class in the Class Tree be d. Equation 4.1 is used to derive

the relative weight, rw.

rw = 1/(1 + d) (4.1)

Hence, the weights, W, of the words are modified as rw * W. It should be noted

that the names of the classes present at the bottom of the Class Tree might not

have the words that are present in the specification documents. This is because these

classes might be more related to the implementation details related to algorithms

and data structures. Even though these words have relative weights calculated from

the above formula, their absolute weight will still remain zero. Suppose h be the

maximum depth of a class in the Class Tree whose name has words present in the

specification documents. The relative weight of all words present in the documents

but not in the Class Tree is

rw = 1/(2 + h) (4.2)

CHAPTER 4. CONCEPTUAL MODEL

The relative weights computed using the above formulae are used to modify the

weights obtained from statistical analysis.

4.4 Creational Patterns Suggest Abstractions of

Functional Features

Creational design patterns abstract the instantiation process. They help make a sys-

tem independent of how its objects are created, composed, and represented. Cre-

ational patterns become important as systems evolve to depend more on object

composition than class inheritance. There are two recurring themes in these pat-

terns. First, they all encapsulate knowledge about which concrete classes the system

uses. Second, they hide how instances of these classes are created and put together

[GHJV95].

Generic components are reusable in more situations than the specific components.

Good generic components are usually built using Design Patterns. Creational patterns

are used to provide the flexibility of creating objects that could potentially change

the behavior of the system based on the class they belong to, yet having the same

interface. Objects that are created using Creational Patterns are good candidates for

identifying the functional features of the components. Hence, for example, if Factory

Method design pattern (Appendix A) is used to create objects, then the base class of

these objects abstracts a functionality that could be modified by plugging in objects

of a newly derived class.

While the program as a whole has a single class that has the main entry point,

and hence the root class in the Class Tree, classes whose instances are created using

Creational Patterns are by themselves likely to have high level abstractions. In this

case, even though these classes occur at some depth, d, in the Class Tree, their

relative weight, rw, should not be calculated directly using the formula given in the

previous section. The relative weights of these classes and all other classes which are

CHAPTER 4. CONCEPTUAL MODEL

in the tree rooted by these should be higher then other classes at the same depth.

For example in Figure 4-4 if the instances of class D are created using Creational

Design Patterns, then the relative weights of D, K, L and P should be more than the

values calculated using the above formula. Suppose, the depth of the class of objects

created using Creational Patterns is d', then rw is increased by a factor of (1 + l/d').

This means that with increase in depth, again, the factor decreases indicating that

the flexibility in creating implementation objects does not provide much information

about the functional features.

4.5 Software Component Representation

A reusable software component should be stored with all the related documents and

the code fragments. While this entire information is presented to the user when a

component is selected, a component should have a representation for the process of

searching. Various models have been suggested varying from simple representation

of attributed tuples and schemas to specifications using some high level languages.

Each has it's own advantages and disadvantages as mentioned Chapter 2. While the

search agent can use any degree of formal representation, the user should be given

a simple way of describing the required functionality. This is even more essential

during the preliminary stages of the design. However, a suitable mapping should be

adopted by the search agent to convert from the simple description provided by the

end user to it's complex internal representation. The designed reuse framework uses

a suitable simple software component representation from the end user perspective to

provide all the required functional features. The simple representation is presented

and possible extensions for complex internal representations are suggested.

CHAPTER 4. CONCEPTUAL MODEL

4.5.1 Simple External Representation

A fixed number of predetermined attributes cannot cover all the necessary features

to classify software components from various domains. Hence a list of attribute-value

pair alone cannot classify software components. Only certain properties like the lan-

guage of implementation, the Operating Systems in which the component can be used,

application domain and version number may be used as attributes. These attributes

limit the use of the components based on factors external to the functionality of the

components and are applicable for classifying all software components. One should be

able to describe a software component by a set of features provided by the component

along with a set of attribute-value pairs. The advantage with this approach is that it

will not limit describing the reusable components only in terms of the predetermined

attributes because they will not be usually sufficient to describe all the components.

Figure 4-5: Software Component Representation

A given software component is represented as a fixed set of attribute-value pairs

and a variable length set of features describing the software component, Figure 4-5.

The attributes chosen are, as mentioned above, those that limit the use of a component

Software Component

Fixed Attributes
Domain = Finance

Language = C++

OS = Windows NT

CHAPTER 4. CONCEPTUAL MODEL

based on factors such as implementation language and Operating System. However,

if a person wants to search for components irrespective of language, he/she will be

able to do it by specifying it as a wild card. If the user is more interested in the design

rather than the implementation, he might not be concerned about the language of

implementation. Also, if the user is looking for CORBA/DCOM based components,

language is not a concern. Similarly, if the user is interested in components written in

pure Java, he/she may not need to specify the Operating System. In all these cases,

search based on wild cards will be very useful.

Before putting the software component into the component library, all the relevant

features of the components are to be automatically identified. This is done using the

above mentioned analysis on both semantic and textual documents. Identifying the

values of the attributes like language of implementation and version does not need

any analysis. The component manager can easily obtain this information.

This representation of a software component makes it easier to get all the relevant

components for reuse. The user can retrieve the relevant components by specifying the

features required by the new component. This will be very useful at the early stages of

analysis and design. If appropriate components are found, various documents stored

in the library about that component can be used at different stages of the project.

The user only has to have an understanding of the application to be developed and

no mapping of this information into a semantic representation for retrieval of reusable

components is necessary.

4.5.2 Complex Internal Representation

Component features described in simple phrases will not match exactly with the

existing feature descriptions. Several natural language processing techniques could

be used for a better match. An equals operator is polymorphic which provides the

degree of equality between two component features. A threshold could be used on this

value and various mapping techniques could be used to improve the search. Synonym

CHAPTER 4. CONCEPTUAL MODEL

Figure 4-6: Customization of Component Representation

based extension is a simple technique that could be used to increase the matching

[MV97].

Apart form the natural language processing techniques, some of the representa-

tions like the Conceptual Schemas [CA93] and Bayesian networks [DA96] could be

used. Accuracy of classification for representing components using complex internal

representations could be achieved by using the above mentioned hybrid approach of

performing both semantic analysis and statistical analysis. Figure 4-6 shows how to

customize the software component representation both for complexity and domain

dependency.

4.6 Multiple Software Component Retrieval

Medium to large size applications will have several functionalities. However, reusable

components are usually small with well defined interface and limited functionality.

Queries with multiple functionalities without considering composition will result in

the retrieval of several individual components each offering a part of the required

CHAPTER 4. CONCEPTUAL MODEL

functionality. This results in poor degree of relevancy for each individual retrieved

component because composition of the smaller components to get higher functionality

is not considered. The user has to look at the various combinations of these reusable

components. Integrating fewer components is easier and less error prone. Hence, one

should try to find the minimum set of components in the library that can provide as

much functionality as possible.

For example, suppose the user wants features fl, f3 and f5 (Figure 4-7). If the

composition of the components is not considered, the user will be presented with the

components cl, c2, c4 and c5 and the degree of relevancy will be lower because the

ratio of the number of features a component can cover to the total required features

is low. However, if the composition of the components is considered to cover all the

given features, the user will be presented with the solutions (cl c4), (cl c5), (c2 c4)

and (c2 c5). This will also give higher degree of relevancy. This gives the user an

immediate idea of which components can be composed for the required features.

Sometimes, the user might be more interested in building a light weight system.

Minimal set solution will not necessarily produce a light weight solution. This is

because the components in the minimal set solution might have several features that

are not required. In this case, a solution with more components but with fewer

unrequired features would produce a light weight solution 1. For example, suppose

the user wants features f2, f7 and f8 (Figure 4-7). While the minimal set solution

would give (cl c6) and (c4 c6), the light weight solution would provide (cl c7 c8) and

(c4 c7 c8). Again the solution (cl c7 c8) is lighter than (c4 c7 c8) because the first

solution has one unrequired feature while the other has two.

The efficiency of retrieval of software components can be increased by taking care

of the composition of the individual components. This is mainly motivated from a well

known problem in AI; identifying the set of all diseases which can cover a given set of

'The user can always remove the extra functionality from the components but that requires
understanding the implementation breaking the black box reuse model.

CHAPTER 4. CONCEPTUAL MODEL

Components Features

Figure 4-7: Software components and features represented as bipartite graph

symptoms [RNW83, NR86]. Software component retrieval based on a set of features

is similar to this problem because, there is a many-to-many correspondence between

the domain (diseases/software components) and the range (symptoms/features) in

both the problems. While diseases can be considered as the software components,

symptoms can be considered to be features provided by these software components.

So the problem can be restated as identifying the set of all the software components

that can cover a given set of features. This can be achieved by using the Reggia's

Generalized Set Cover algorithm [RNW85, RNWP85].

CHAPTER 4. CONCEPTUAL MODEL

4.6.1 Reggia's Generalized Set Cover Algorithm

Let S be a set. Let S1, S2, ... Sn be the subsets of S. Let R be the set of sets S1,

S2, ... Sn. Let S' also be a subset of S. Reggia's Generalized Set Cover is one of the

several Set Cover algorithms used to find most of the minimal cardinal sets G which

contains those sets Gi of S1, S2, ... Sn the union of which covers the set S' (or is

superset of S'). Other solutions are also possible with higher cardinality. Let all these

solutions be G1, G2, ... G1.

In the above description, if S' represents the set of patient's symptoms (required

features) and S1, S2, ... Sn represent the set of symptoms of individual diseases (fea-

tures of individual components), then Reggia's Generalized Set Cover algorithm gives

the minimum number of diseases (components) required to cover all the symptoms

(diseases). S is the total set of symptoms (features) that are known to the system.

Figure 4-8 shows an example with S, S' and S1,S2, ... S11. S' is covered by the sets

S1, S3, S5, S6, S7 and S9.

However, a software component having a set of features may have additional con-

straints like the language in which the component is implemented and the operating

system in which it can be used. Hence, even though a software component has a

particular feature, it may be implemented in a language different from what the user

wants. This software component should not be considered to cover the corresponding

features. In the disease and symptoms analogy, it is like not considering the possi-

bility of certain disease because of the patient's gender even though it can account

for some of the symptoms. Here, gender of the patient acts as a constraint which

prevents the possibility of the disease.

As an example, suppose components c2 and c5 are implemented in C++ and cl

and c4 are implemented in Java. Then for the same query as above, i.e., compo-

nents with features fl,f3 and f5, together with the constraint that Java should be the

implementation language will give only (cl c4) as the possibility.

CHAPTER 4. CONCEPTUAL MODEL

e55 e56

Figure 4-8: Example of Set Covering

Set Cover algorithms are NP-Complete. This will have a great impact on perfor-

mance. As the library of reusable components increases, the time to run the set cover

algorithm increases non-polynomially. Hence, it is necessary to reduce the search

space based on some of the constraints like language, application domain and oper-

ating system. However, the user is given the option of not setting these constraints

and searching the entire search space.

4.6.2 Multiple Software Component Retrieval

Reggia's Generalized Set Cover algorithm provides a solution set with minimal car-

dinality. However, it might be necessary to use several smaller components to build

CHAPTER 4. CONCEPTUAL MODEL

a light weight application. Also, all the required features might not be available from

the existing reusable components. In such a case, a solution that could cover as much

of the functionality as possible should still be provided and the uncovered features

should be notified to the user. Since the set cover algorithm is NP-complete the

search space should be pruned where possible.

From the above considerations, a few steps are added before, after and during the

use of Reggia's Generalized Set Cover algorithm. The following steps are used for

retrieving multiple reusable software components

* A list of all the available features are maintained. Hence, when a new compo-

nent is added to the library, all the new features that it has and that are not

existing so far are added to the available features list. At the time of query, first

the required features are filtered using this list. Then the remaining features

are covered using the Reggia's Generalized Set Cover algorithm. In the above

description of the algorithm, the set S' is filtered to S". This is done prior to

using the algorithm.

* As mentioned, the search can be pruned based on a few attributes like the

language of implementation, operating system and application domain. Hence,

the components are first filtered by verifying the specified attribute-value con-

straints. Then the remaining components are used to cover the filtered features,

i.e., the subsets S1,S2, ... Sn are filtered based on the constraints. Let the fil-

tered set of subsets be R'.

* Set Cover algorithm is run using R' and S". It gives the possible solutions G1,

G2 ... Gm. Depending on the how the next component is selected in the Genset

(Appendix D) of the algorithm 2 minimum set solutions or light weight solutions

are obtained.

2A modified implementation of this algorithm in Scheme was given in the 6.034 course. I have
reimplemented it in Java and converting a program written in a functional language to a pure object
oriented language is an interesting experience.

CHAPTER 4. CONCEPTUAL MODEL

* The solutions are ordered in the decreasing order of reusability.

4.6.3 Ranking the Retrieved Solutions

Because the same feature could be offered by multiple components, it is possible to

have multiple solutions. When multiple solutions are possible there should be a way of

ranking the goodness of these solutions. While it is not possible to have a theoretical

expression for defining the goodness, empirical formulae could be provided. This

ranking of the solutions will help the end user in making the decision of picking up

the best solution.

The goodness of the solution is given as the Reusability Index on a scale of 100.

Two main factors are considered for computing the reusability; relevancy and composi-

bility. It is assumed that higher the relevancy, i.e., lesser the unrequired functionality

in the solution, lighter is the solution. Few simple empirical formulae are used to

provide three indices, composibility, relevancy and reusability. The formulae are only

to have a feel for the ranking of the solutions and should not be given too much of

importance 3. However, the formulae are derived on certain relevant parameters. The

indices and the relevant parameters are given below

Composibility Complexity of integrating components increases non linearly with

increasing number of components. Hence, composibility which is a measure

of ease of integrating effort decreases with increasing number of components

non linearly. Also, larger the individual components greater is the integrating

effort. Hence, composibility of a component is assumed to depend on the feature

density of the solution Gi, and is calculated using the Equation 4.3.

featureDensity = ESi/IGiI where Si E Gi (4.3)

3several times I found the internet search results with lower relevancy percentage to b more
relevant to my search

CHAPTER 4. CONCEPTUAL MODEL

Composibility is then calculated using the Equation 4.4.

C = f (noComponents, featureDensity) (4.4)

Relevancy Presently it is assumed that the features are matched hundred percent.

However, feature matching using both natural language processing and domain

knowledge would result in lowering the relevancy. Also, as the number of un-

required features present in the solution increases it's relevancy decreases. It is

calculated using the Equation 4.5.

R = f (requiredFeatures, totalFeatures) (4.5)

Reusability Reusability depends on both relevancy and composibility of the solu-

tion. It increases as either factors of the solution increases. Hence, it is simply

measured as Ru = C*R.

The above indices can be used to help the user in choosing among the solution.

These empirical formulae might depend on other factors but within the designed

framework they are appropriate.

4.7 Summary of the Conceptual Model

Based on the requirements analysis presented in Chapter 3, a framework is developed

for reusing software components. Following are the main functional features of this

framework

* Automating the capture of design intent of reusable software components by

improving the statistical analysis on available textual information by using the

semantic knowledge derived from semantic analysis of available semantic infor-

mation

CHAPTER 4. CONCEPTUAL MODEL

* Providing a simple external view of the reusable software component to the end

user

* Retrieving multiple reusable software components the composition of which

could offer as much of the required functionality and ranking multiple solutions

* Serving as a framework which could be customized for individual domains

The following two simple semantic analysis on available semantic information

are suggested which would increase the accuracy of classifying the components and

identifying functional features using statistical analysis on textual information

* Constructing a Class Tree which provides the relative importance of individual

classes in representing the high level functionality

* Analyzing for Creational Design Patterns to identify flexible functional features

Since the above reuse support model is based on the available information it does

not add significant additional cost for implementing reuse methods as part of the tra-

ditional software life cycles. Such reuse methods could break the cultural and attitude

barriers towards reuse. While keeping the cost of implementation low is attractive

from the management point of view, keeping the user interface simple without the

need for learning new specification languages and theorem proving techniques makes

it attractive to the software development staff. Hence, reuse methods which could

make both the top management and the development staff comfortable are more likely

to become part of the existing software life cycles.

Chapter 5

Prototype Framework and Tools

Prototypes helps to study, understand and observe new models

Chapter 3 presented the requirements analysis and Chapter 4 presented the con-

ceptual model for automatic capture of design intent which could be used for building

large software systems by integrating reusable software components. This chapter

describes the software framework and the tools developed based on the conceptual

model. This framework is the design intent part of the DRIMER, a design recom-

mendation and intent model extended for reusability [Vad96].

A reuse support system is developed as a client-server model. The client ap-

plication provides a means of querying for required functionality and browsing the

appropriate components. The server application provides a means of cataloging and

retrieving the software components. Tools are developed to perform simple semantic

analysis on the programs to derive semantic knowledge and use it in the statistical

analysis of textual information.

The entire system is developed using Java [CH96] on Sun Sparc 5. The client

application is a web based application. JavaCC [JCC97] is used to build the tools.

CHAPTER 5. PROTOTYPE FRAMEWORK AND TOOLS

5.1 Framework

The design intent capture model is developed for building large software systems by

integrating reusable software components. They are developed with the intention

of making reuse methods part of the software development life cycles. It has been

decided to have the reuse framework as a client-server model for the following reasons.

o Quality assurance is a part of traditional software development projects. It is

necessary to have the same quality assurance for reusable components as well.

Each company can define its own standards for deciding which component can

be classified as reusable component and the implementation standards for soft-

ware components. In order to maintain the quality of the reusable components,

only a few people should have the permission to maintain the component li-

brary. Only these people will be able to use the tools to classify the component

and add it to the library. The server takes care of administration permissions,

storing the components and serving the clients in retrieving the appropriate

components.

* It is assumed that the operating environment is behind a firewall and hence

all the software documents could only be accessible to the employees of the

companies.

The system has been implemented using Java for the following reasons.

* Java promises "write once and run every where" concept. This is important

because most of the software companies have heterogeneous platforms.

* Java has constructs for concurrency as part of the language. Server implemen-

tation usually requires concurrency to serve multiple clients simultaneously.

* Java has libraries for user interface. This helps in providing friendly user inter-

faces for both the client and server applications.

CHAPTER 5. PROTOTYPE FRAMEWORK AND TOOLS

* Java has libraries for network communication. Network communication is needed

for client-server architecture.

5.1.1 Client

The client is developed as a Java applet accessible on any browser supporting Java.

The DRIMER framework was initially developed using HTML forms [Vad96]. At that

time Java was still in the initial stages and CGI scripts and HTML forms were more

popular. However, forms can only be used for trivial user interface. Dealing with

input errors requires either sending the information unprocessed to the server and

getting the error information back or writing large Java Scripts for doing the error

checking at the client side. Also, forms did not provide all the high level intuitive user

interface that is possible using sophisticated user interface environments. Hence it

has been decided to use Java and make the client application as an applet. Figure 5-1

shows the user interface of the client.

The user can first limit the search space by choosing the values for the following

attributes

* Language of Implementation: The available options are C,C++ and Java.

* Operating System : The available options are Unix, Linux, Windows NT and

Windows 95.

* Application Domain : The available options are Finance, Manufacturing, E-

Commerce and Medical.

The user also has the option of specifying ANY for all these attributes. ANY

means that the user is not concerned about the value of the attribute 1. For example

the user may not be particular about the language implementation. Also, some

generic components may not be classified under any particular application domain.

1This is like a wild card '*' to mention file names. Like "Is chap*.tex"

CHAPTER 5. PROTOTYPE FRAMEWORK AND TOOLS

Figure 5-1: Web Client

Once the required attribute values are selected, the user can describe the required

functional features of the components. Phrases like "capacitated transportation net-

work" and "network communication using sockets" can be used. Once the features

are specified and submitted, all these details goes to the server which returns the

following results

* Set of uncovered features

* List of sets of components. Each set is a possible solution. Since several so-

lutions could be possible, the user also has the option of specifying whether

CHAPTER 5. PROTOTYPE FRAMEWORK AND TOOLS

he/she wants the solution optimized for Composibility, Relevancy or Reusability

as shown in the Figure 5-1. In all cases the results are ordered in the decreas-

ing order of Reusability. Composibility and Relevancy of each solution are also

displayed.

The user can browse the results and select them into a folder. Once the compo-

nents are placed in the folder the user can obtain the documents of each component

online and browse them. A couple of examples describing the querying and browsing

process is explained in Chapter 6.

At the end of the search process, the user can request for generating a report of

the final selected components. The report is generated as a html page and is shown

in a separate browser window. This is done by obtaining the JSObject of the applet's

browser window and evaluating the JavaScript [JS97].

5.1.2 Server

The server is written in Java. Since the client is written as a Java applet, it is

necessary to run the server on the same host from which the client url is accessed.

This is because, Java has a security restriction that confines the applet's network

communication capability to only the host from which it is loaded.

The server can be launched from the command line using the following command.

java SWCompMaintainer [-d < file.dat >] [-h]

The -d option is to load the details of reusable software components and fea-

tures from a flat file. The -h option provides help on the server. If no -d option

is specified then the server loads a default data which is useful for demonstration.

File < file.dat > should contain all the functional features followed by the software

components. One blank line should be left after the features. One feature is spec-

ified in each line as id;feature. Similarly, one component is specified in each line as

name;an;aemail;udir;pl;os;adomain;feature-ids.

CHAPTER 5. PROTOTYPE FRAMEWORK AND TOOLS

id
feature

name
an

aemail
udir
pl
os

adomain
feature-ids

an unique name of the feature to be used in describing components
the functional feature of the component
name of the component
component's author (or any contact person) name
author's email
url directory of the component
programming language of the component
operating system of the component
application domain of the component
a list of ids used in uniquely naming the features

Table 5.1: Software Component File Fields

A sample data file containing the details of software features and components is

shown in Table 5.2 2

The various documents of a software component are stored in the html documents

directories so that they can be accessed by the client over the web. Since most of

these documents are large text files and images, they are stored as normal files and

no database is used. This also makes it easier to access them over the web. However,

each of the component has a corresponding representation within the for the purpose

of cataloging and retrieving. The server could have internal representation, external

representation and also domain specific representation as mentioned in Chapter 4.

The prototype presently has just the simple external representation. Sophisticated

cataloging and retrieving can be achieved by providing the suitable equals function

for the component features which is described in Section 4.5.2.

Adding new components into the component library requires the knowledge about

the functional features of the component. If these details are readily available the

library administrator could directly use the server to add these details. However, if

these details are not readily available, a set of tools can be used to obtain the function-

2 Each component is specified in only one line in the file. In the example shown in Table 5.2 is
split to fit the page and in such cases the subsequent lines of a component are indented

Field I Description

CHAPTER 5. PROTOTYPE FRAMEWORK AND TOOLS

sl;capacitated transportation
s2;network communication
s4;search algorithms
s5;markov model
s6;graphics editor
s7;single runway parameter calculation
s8;software component maintaining
s9;software component retrieval
sl0;web based chat
sll;multiple discussion rooms
sl2;remote console administration
sl3;producer-consumer model
sl4;html report generation
sl5;web advertising agent

Algorithm for solving Capacitated Transportation Problems;*;*;csas;C;
ANY;ANY;sl

Socket Library;*;*;socket;C++;ANY;ANY;s2
AI Search Algorithms; *;*;ais;C++;ANY;ANY;s4

Graphics Editor;*;*;gescreen;C++;ANY;ANY;s6
Algorithm for Calculation of single runway parameters;*;*;runway;C;

ANY;ANY;s7
Software Component Reuse Support System;Siva K Dirisala;discu@mit.edu;

http://web.mit.edu/discu/www/research/;JAVA;ANY;ANY;s2;s8;s9
Web Based Chat Application;Siva K Dirisala;discu@mit.edu;

http://web.mit.edu/discu/www/chat/;JAVA;ANY;ANY;s2;slO;s11

Table 5.2: Datafile

ality of the component automatically. The details of the tools is given in the below

section on Tools. Once the functional features of the component are obtained the user

can enter these details along with other details like the language of implementation,

operating system and application domain. Other details like the contact information

of the component's author and the version number of the component also have to be

input. Figure 5-2 shows the server side user interface for adding new components.

It is also possible to browse, edit and delete software components. Browsing

features is also provided. This facility is useful for the component administrator to

see if any of the features provided by the component are already existing and if so

CHAPTER 5. PROTOTYPE FRAMEWORK AND TOOLS

Figure 5-2: Reusable Software Component Server

whether to refine the feature of the new component so that it is classified differently.

The user interface for all these features of the server are provided in the next chapter

on examples.

5.2 Tools

A Tool for simple semantic analysis of available semantic information is developed.

The tool performs the first type of semantic analysis suggested in Chapter 4, which is

CHAPTER 5. PROTOTYPE FRAMEWORK AND TOOLS

the construction of Class Tree to obtain relative weights. Construction of Class Tree

requires parsing the programs. The tool is developed for parsing Java programs.

JavaCC [JCC97] is used to write the parser for parsing Java programs. JavaCC

is a Java version of Compiler Compiler similar to LEX and YACC 3. The grammar

for Java is also available in the examples of using JavaCC. This grammar is used for

parsing the Java code.

A tool is developed using JavaCC to perform semantic analysis on the programs.

This tool can be run on the existing java programs and the corresponding information

for building the class tree. This information is further used by the textual analysis

tool which perform statistical analysis on textual documents and finally provide the

possible words/phrases for functional features. The reusable component administra-

tor could run all these tools, obtain the functional features of the component and

then finally place the component in the library by specifying the component details

to the server.

It is possible to come up with additional simple semantic analysis techniques to

obtain semantic knowledge. New tools could be written for these techniques. The

component administrator should be familiar with using all these tools. However,

using these tools does not require learning new specification languages.

Presently only simple textual analysis is performed to provide the proof of the

concept. The word frequencies are gathered and the weights are assumed to be pro-

portional to these frequencies. Relative weights obtained from the semantic analysis

are used to modify the weights obtained from textual analysis. This results in in-

creased weights for the words representing the functional features. An example is

provided in Chapter 6 showing how adding semantic information improves the per-

formance. The semantic analysis tool stores the class names, their depth in the class

tree and the relative weights in a file. Class names are sometimes abbreviated if

they are long. For example, SWCompMaintainer actually means Software Compo-

3However, the functionalities of both LEX and YACC are put together in JavaCC.

CHAPTER 5. PROTOTYPE FRAMEWORK AND TOOLS

nent Maintainer . Presently, it is assumed that the user supplies the actual name

of the class in such cases. Hence, the user has to explicitly edit the relative weights

file giving the full name of the class. Then, the textual analysis tool is run by giving

the name of the text document file and the weights of the words are obtained. Then

both the semantic and textual information is used to obtain new weights and then

the resulting words with higher weights are presented to the user.

Sophisticated textual analysis like natural language processing and statistical anal-

ysis on pairs of words instead of individual words could be used to obtain phases in-

stead of individual words. More about this is mentioned in the suggestions for future

research directions in Chapter 7.

Chapter 6

Illustrative Examples

A picture is worth thousand words, so is an example

This chapter presents several examples showing the use of the client, server and

the tools. The examples illustrate the retrieval of multiple components at the client,

maintaining reusable software components at the server and using the tools to deter-

mine the design intent (functional features) of the component.

6.1 Client

The functionality of the client side interface is described in this section by giving

several examples. The following main functionality is covered in the examples

* specifying constraints

* using wildcards to specify constraints and searching for multiple features

* uncovered features and relaxing constraints

* multiple solutions and the solution ranking

CHAPTER 6. ILLUSTRATIVE EXAMPLES

* selecting the solution for composibility, relevancy or reusability

* component bin and selecting preliminary components

* browsing the solutions online

* online report generation of the final selected components

6.1.1 Specifying Constraints and Features

The user can search for components by specifying the constraints and giving the

features. The specification of constraints are shown in Figure 6-1. The constraints

shown in the figure and their values are

Table 6.1: Constraint Attributes and valid values

Consraint Attributes Values
Implementation Language ANY, C, C++ and Java
Operating System ANY, UNIX, LINUX, WINDOWS NT and

WINDOWS 95
Application Domain ANY, FINANCE, MANUFACTURING,

E-COMMERCE and MEDICINE

The value ANY serves as a wild card. Specifying ANY will relax the particular

constraint 1. This is useful because sometimes even though there may not be a

component with the required features and given implementation language, it would be

useful to search irrespective of language and use the high level design documents of the

retrieved components. Similarly, if one is looking for CORBA compliant components,

both implementation language and the operating system can be ANY 2. Also, certain

features are common across multiple domains and in such cases they need not be

classified as belonging to the one for which they were initially developed.

Ithe present prototype has very few components and hence they are constrained using only the
implementation language

2provided the ORBs exist for the particular platform and there is a COBRA IDL mapping to
the language

ILLUSTRATIVE EXAMPLES

Figure 6-1: Specifying constraints for the required software component

CHAPTER 6.

CHAPTER 6. ILLUSTRATIVE EXAMPLES

Figure 6-2: Specifying software features and relaxing the constraints

Figure 6-2 shows relaxing constraints and specifying required features. Also, the

user has to choose the search to optimize for Composibility, Relevancy or Reusability

discussed in Chapter 4. Examples are given in the next section explaining these

alternative search goals.

The results of the search are shown in Figure 6-3. The search resulted in a single

solution. The feature web based chat could not be covered by the existing components

with the given constraints.

At this point, the user can change the language of implementation, say to Java

CHAPTER 6. ILLUSTRATIVE EXAMPLES

Figure 6-3: Results and unavailable features

and try for a solution that could cover all the features. However, this resulted in

not providing some other functionality. If the user is more interested in high level

design he/she can set the implementation language to be ANY and search again as

shown in Figure 6-4. There are two possible solutions and the feature web based chat

is also covered. Similarly, other constraints can be relaxed as needed and relavant

components can be studied.

CHAPTER 6. ILLUSTRATIVE EXAMPLES

Figure 6-4: Searching for unavailable features by relaxing constraints

6.1.2 Selecting for Composibility, Relevancy or Reusability

When multiple solutions are possible the user should have an idea of choosing one over

the other. Solutions are ranked according to the Reusability. The Composibility and

Relevancy indices are also shown to the user. The following examples illustrates the

concept of selecting the search for optimal Composibility, Relevancy or Reusability.

Figure 6-5 shows search requested for Composibility and there is one solution. The

number of components given in the solution is two. The search for better Composi-

bility tries to find solution with minimum number of components. Lesser the number

CHAPTER 6. ILLUSTRATIVE EXAMPLES

Figure 6-5: Search for better Composibility

of components, lesser the integration effort and hence greater Composibility.

Figure 6-6 shows search requested for Relevancy and there are two possible solu-

tions. The number of components in each of these solutions is three. The search for

better Relevancy tries to minimize the number of unrequired features of the compo-

nents there by increasing the Relevancy of the solution to the requirements. Hence,

the solutions in this search alternative usually consist of more components. It can

be observed from Figure 6-5 and 6-6 that in the first case the Composibility is higher

while in the second case the Relevancy is higher.

CHAPTER 6. ILLUSTRATIVE EXAMPLES

Figure 6-6: Search for better Relevancy

Both Composibility and Relevancy directly effect Reusability. If the user has no

preference one over the other, then search can be selected for Reusability. This actu-

ally presents the solutions obtained in the other two cases.

Figure 6-7 shows search is requested for Reusability and all the above three solu-

tions are provided.

ILLUSTRATIVE EXAMPLES

Figure 6-7: Search for better Reusability

CHAPTER 6.

CHAPTER 6. ILLUSTRATIVE EXAMPLES

6.1.3 Online Software Component Browsing and Report

Generation

Figure 6-8: Online browsing of individual components

When there are multiple solutions possible, the user can browse the components

online and decide on using them. A separate browser window is launched to browse

the component details as shown in Figure 6-8.

All the useful components during the search process can be collected and a report

can be generated as a web page as shown in Figure 6-9.

CHAPTER 6. ILLUSTRATIVE EXAMPLES

Selected Components For Reuse

Search Information :

Constraints

Implementation Language : ANY
Oierating System : Unix
Application Domain
Application Domain

: E-Commerce

Required Features

1. network communication
2. graphics editor
3. audio and video facilities
4. web based chat

Uncovered Features

1. audio and video facilities

Search Results :

Component Id Namponent URL

SWC.oo1002.0 1.00 Socket Library ttIanesh.mit.edu/drim/socket

iSWC.i1004. 1.00 Graphics Editor xttpqplanesh.mit.edu/drim/gescreen
Web Based Chat

W Application btt p:/Iwebmit.edu/discu/ww /ch-at

Copyright 1998. DRIMER

Figure 6-9: Report of selected components generated on the browser

6.2 Server

The server is used to both catalog reusable software components and to serve the

queries from the clients. The conceptual model in Chapter 4 and the architecture

in Chapter 5 have described about the server and the retrieval algorithms. The

cataloging functionality of the server is described using examples

o adding new reusable software component

* browsing existing reusable software components

CHAPTER 6. ILLUSTRATIVE EXAMPLES

* browsing existing features

6.2.1 Adding New Software Component

Figure 6-10: Adding a New Software Component

Adding a new component is shown in Figure 6-10. There are three constraints shown

in the figure namely programming language, operating system and application do-

main. The values of the constraints are specified. The values for these constraints

can be easily obtained from the component's documents. Then the features are added.

CHAPTER 6. ILLUSTRATIVE EXAMPLES

Features are obtained by using the tools described later. The details of the person to

be contacted regarding the component are optional.

6.2.2 Browsing and Modifying Existing Components

Figure 6-11: Browsing Software Components

The user can browse all the components. Components to be browsed can also be

selected by specifying the above mentioned constraints. Firgure 6-11 shows an ex-

ample of browsing all the components without specifying any constraints. Selecting

an individual component will further popup a window (Figure 6-11) giving a detailed

description of the component. Then the component can be modified or deleted. Delet-

ing a component will also delete all the associated features if they are not present in

ILLUSTRATIVE EXAMPLES

any other component.

6.2.3 Browsing Existing Software Features

The user can also browse all the features. Figure 6-12 shows an example of browsing

all the software features.

Figure 6-12: Browsing Software Features

CHAPTER 6.

CHAPTER 6. ILLUSTRATIVE EXAMPLES

6.3 Tools

Tools are developed to construct Class Tree and to perform a simple word frequency

based statistical analysis. These tools are used to find out how the semantic infor-

mation could help in the statistical analysis of textual information. Both types of

information and analysis is done on a known Java application which is a client server

based chat application. First the details of the chat application are given and then

results of the statistical analysis, construction of Class Tree and finally the combined

results are presented. The results in either cases are compared and observations are

presented.

6.3.1 Chat Application

It is a client-server application written in Java. It allows several users to chat with

each other over the web. It is possible to have several discussion channels and the

user can enter any of these channels. It is possible to send messages to individual user

or to the entire channel. The server administrator can remove a client or a channel.

It is also possible to perform remote server monitoring to find out who is entering

and leaving the chat and what are the new discussion channels being created.

This application has three separate parts, the server, the remote console and the

client. While the server is a Java Application, the remote console and the client are

Java Applets providing access to them over the web.

6.3.2 Analysis using Textual Information

The above mentioned application has a user's manual written as part of the project

and without concerning reuse. The textual analysis tool simply parses the plain

textual document and obtains the statistical frequency of individual words. Based on

the frequency, they are given weight of importance to represent functional features of

the application. Here the weights are directly taken as the frequency count.

CHAPTER 6. ILLUSTRATIVE EXAMPLES

The tool presently has a common words dictionary that has words used mainly

for the structure of the sentence and also the most common words. The tool also

considers only words that have atleast three characters. Presently it does not have

the capabilities to identify the different forms of a word as a single word.

Table 6.2: Results of Analysis using only Textual Information

Word/Phrase Freq [Weight I Rank II Word/Phrase Freq IWeigth Rank

channel
channels
persistant
message
description
chatserver
transient
user
server
remove
commands
client
channelid
send
see
list
clients
case
above
syntax
userid
possible
people
enter
connected

47
18
15
13
13
13
12
11
11
11
10
10
10
9
8
8
8
8
8
7
6
6
6
6
6

When this tool is run

words with atleast three

run
root
insensitive
given
follows
add
using
time
shutdown
sent
running
java
displayed
details
created
create
chatting
chatclient
chat
channeltype
cannot
below
always
about
users

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

on a three page manual 3, there are 257 unique non-common

letters. The weight (frequency) and the ranking based on

3the manual has 222 lines, 1559 words and 11,104 characters. This information is obtained using
wc utility on Unix

CHAPTER 6. ILLUSTRATIVE EXAMPLES

the weights for the first 50 words are given in Table 6.2.

6.3.3 Class Tree, a semantic analysis

Class Trees are constructed for the server, client and the remote console modules of

the chat application. The class trees for the server and client are shown in Figures 6-13

and 6-14.

Figure 6-13: Class Tree of the Chat Server

Figure 6-14: Class Tree of the Chat Client

The class tree for the console module is similar to the chat client except the root

class is ChatConsole instead of ChatClient 4

6.3.4 Analysis using Textual Information and Semantic In-

formation

The relative weights given to the class names based on the class tree are shown in

Table 6.3. These relative weights are used to modify the weights found from the

textual based on the frequency count. As a result the rank of some of the words have

4actually, most of the code has been reused

CHAPTER 6. ILLUSTRATIVE EXAMPLES

Table 6.3: Relative Weights from the Class Tree of Chat Application

Words/Phrases Class Tree Depth Relative Weight Factor

ChatClient 0 1.000
ChatServer 0 1.000
ChatConsole 0 1.000
Message 1 0.500
Header 1 0.500
MessageOutputStream 1 0.500
ServerInstructions 1 0.500
ClientCommands 1 0.500
MessageInputStream 1 0.500
ClientPanel 1 0.500
ConsoleHandler 1 0.500
ConsolePanel 1 0.500
ClientHandler 1 0.500
ChannelHandler 1 0.500
ConsoleCommands 1 0.500
MessageOutputStream 2 0.333
ConsoleConsumer 2 0.333
Buffer 2 0.333
ConsoleProducer 2 0.333
ClientConsumer 2 0.333
ClientMessage 2 0.333
NonNode 3 0.250

changed. The first 50 words, their frequency, modified weights and the new rank are

shown in Table 6.4.

Following observations can be made from Tables 6.2 and 6.4

* The word channel which had a initial weight of 47 is much higher than the

other words. This might mislead the user to give high importance to this. The

modified weights are much closer to each other there by reducing the chance of

giving too much of weightage to a particular word.

* The word channel which ranked 1 with the initial weights is ranked 2 with the

modified weights. The word chatserver got rank 1 and this actually serves as

CHAPTER 6. ILLUSTRATIVE EXAMPLES

Table 6.4: Results of Analysis using Textual and Semantic Information

Word/Phrase I Freq Weight I Rank]1 Word/Phrase Freq I Weight Rank

chatserver
channel
message
channels
chatclient
persistant
description
transient
chatconsole
user
server
remove
commands
client
channelid
send
see
list
clients
case
above
syntax
userid
possible
people

13.00
11.75
6.50
4.50
4.00
3.75
3.25
3.00
3.00
2.75
2.75
2.75
2.50
2.50
2.50
2.25
2.00
2.00
2.00
2.00
2.00
1.75
1.50
1.50
1.50

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

enter
connected
run
root
insensitive
given
follows
add
using
time
shutdown
sent
running
java
displayed
details
created
create
chatting
chat
channeltype
cannot
below
always
about

6
6
5
5
5
5
5
5
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

1.50
1.50
1.25
1.25
1.25
1.25
1.25
1.25
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

a primary functional feature than the fact that the chatserver has discussion

channels.

* The word chatconsole which has a frequency of 3 is not ranked among the top 50

even though the application provides remote server monitoring console. With

the modified weights, it is ranked 9. Hence, when the weights are assigned

directly from the textual analysis assigning a threshold frequency count, which

is the frequency count beyond which the words need not be considered, is very

''

CHAPTER 6. ILLUSTRATIVE EXAMPLES 100

difficult. However, once the weights are modified with the relative weights de-

rived from the semantic analysis, important words tend to obtain better weights

making them to move up to get a better rank. Hence, it is possible to set a

threshold weight beyond which the words may not be considered.

Chapter 7

Conclusions

Intelligence is Natural, Knowledge is Acquirable and the search for it is Perennial

This chapter first presents the conclusions from the research and then suggests

the future research directions.

7.1 Conclusions

After a careful study of the existing literature both on the technical and cultural

aspects of software reuse it has been realized that the reuse is practical only if the

technology is oriented in a direction that breaks the cultural and attitude issues

towards software reuse. To that effect, two major factors have been identified

* Keeping the cost of implementing the reuse technology as minimal as possible.

This made designing the reuse technology using as much of the existing infor-

mation as possible to derive the knowledge for reusing the software components.

Once the cost of implementation of reuse methods is negligible it attracts the

high level management to initiate the reuse process.

101

CHAPTER 7. CONCLUSIONS

* The reuse techniques should be easier to use. Programming itself is a non-

ending bug fixing process and it is difficult to express the details of the software

component in yet another specification language and get it right at the first

attempt. Especially at the stage of preliminary design phase it is necessary to

have simple methods to identify the existence of reusable components. Suppose,

if the user formally expresses the required functionality and could not find a

reusable component satisfying the functionality then he/she looses a day or week

of work in formalizing the requirements using the new specification language.

So, the component search should be as simple as possible initially. However, if

there are several components with similar functional features then one could use

more rigorous methods to find the most appropriate component among those

retrieved from the initial search.

From the above considerations a reuse model which automatically captures the

design intent of the software components and helps in retrieving multiple components

whose composition could offer the required functionality has been designed. The

functionality uses only the information that already exists as part of the project

without reuse as a concern. Also, it provides a simple interface for the end user.

The main conclusions made in this research are

* Reuse techniques could be designed based on only the available information

without the need for a new specification language. Since this reduces the cost

of implementation such techniques are more likely to become part of the new

software life cycle models.

* Textual information and statistical analysis provide simple user interfaces. How-

ever, to better the performance based on these it is necessary to use some se-

mantic knowledge that could be derived from simple semantic analysis on the

available semantic information.

102

CHAPTER 7. CONCLUSIONS

* The representation of the software component should be simple from the end

user's point of view for the preliminary search. Complex internal representa-

tions and domain knowledge could be used to further enhance the classification

accuracy and search relevancy.

Even though this research has mainly focused on the design intent reuse of software

components, it is possible to extend the model to the reuse of any artifact. Usually

any artifact development has both textual and semantic information. Coming up with

some means of deriving the semantic knowledge that enhances statistical analysis is

the key to extending this model to reuse other types of artifacts.

7.2 Future Research Directions

This research has concentrated mainly on the automatic design intent capture from

available information. As mentioned in Chapter 3, capturing design rationale requires

inherent information along with the available information. It could be however, pos-

sible to try capturing design rationale automatically from the design of the artifact

itself when the design is based on the design patterns. Instead of making the user

express the product in a new specification language, restricting the user to use design

patterns could help in capturing the design rationale. Capturing both the design

rationale and intent will significantly improve the reuse support system. But at the

same time, the model for design rationale capture should mostly depend only on the

available information and the possibility of such models could be investigated.

It would be interesting to study the relation between the simple external rep-

resentation of the software component with some complex internal representations

mentioned in Chapter 4 and how to map from one to the other. Also, more nat-

ural language processing techniques could be added to the user interface by giving

the flexibility to the user to express the features in English more naturally without

confining to simple phrases.

103

CHAPTER 7. CONCLUSIONS

It could also be possible to use databases providing textual information as one

of the data type and also providing SQL (Structured Query Language) extensions

to retrieve information from the textual documents. For example, Oracle's Con-

Text [ORA97] extends SQL to provide retrieving relevant information from textual

documents. In addition to exact word and phrase searches and traditional Boolean

operations, ConText handles multilingual stemming, to match plurals, past tenses,

and other alternate forms of words; and uses fuzzy-match and sounds-like, to match

misspelled words and other "close" words. ConText also features proximity searching,

relevance ranking, stop lists and an ISO-compliant thesaurus framework for synonym

and category-type searching. Hence, this type of databases could be used to perform

statistical analysis on textual documents more accurately with their rich natural lan-

guage processing capabilities.

104

Appendix A

OOP and Design Patterns

Objects Provide Life, Patterns Provide Longevity

A.1 Object Oriented Programming (OOP)

Object Oriented Programming is a paradigm that helps in developing "industrial

strength" software [Boo94]. The main shift in this paradigm is from procedure centric

computation to data (object) centric computation. It is easier to understand and

decompose large real life systems in terms of objects. Also, it is easier to develop

generic frameworks using object oriented paradigm with the concept of polymorphism

and inheritance. The following language features are required for developing object

oriented software systems

Abstraction is the means of decomposing large sytsems into several smaller ob-

jects (class of objects) that have a well defined behavior and interact with each

other to provide the required functionality. It is the isolation of a well de-

fined entity/functionality/process. Physically tangible objects are the primary

candidates for abstraction. Once these objects are identified the relations and

105

APPENDIX A. OOP AND DESIGN PATTERNS

interactions among these objects become either messages or abstractions by

themselves depending on the degree of flexibility and granularity required for

the objects and the system.

Encapsulation is the means of providing the public interface of an abstraction.

The same interface of an object can have different implementations and often

not all the implementation data/functions are needed as the public interface.

Hence, encapsulation provides a means of hiding the implementation details

and providing only the interface of an abstraction.

Inheritance is the means of organizing the objects (classes) hierarchically. More

generic the abstractions, higher are they in the hierarchy. There are two types

of inheritance; implementation inheritance and type inheritance [Boo94]. It is

possible to have multiple inheritance by inheriting from multiple abstractions.

However, it is better to have only multiple type inheritance and not multiple

implementation inheritance. 1

Polymorphism is the means of having different behavior based on the target object.

The same interface can be implemented in different ways based on the type

(class) of the object. Irrespective of the specific object, it is often possible to

generalize the computation based on certain interface from the participating

objects. This interface is defined in the base class and the framework is written

using the base class. However, the actual behavior of the system depends, at

the runtime, on the specific target object (class) derived from the base class.

The derived object (class) has its own implementation of the interface.

Languages providing the first two features mentioned above are object based and

those providing all the above features are object oriented. Object oriented languages

'C++ does not distinguish between implementation and type inheritance and but it provides
multiple inheritance. However, Java differentiates implementation and type inheritance to some
extent. It provides single implementation inheritance and multiple type inheritance.

106

APPENDIX A. OOP AND DESIGN PATTERNS

are more useful for developing generic frameworks.

A.2 Design Patterns

Software design patterns are tested and proven recurring programmatic idioms offer-

ing flexibility. There are several kinds of design patterns and Creational patterns,

Structural patterns and Behavioral patterns can be found in [GHJV95] 2. Only the

details about Creational patterns taken from [GHJV95] are reviewed here.

A.2.1 Creational Design Patterns

Creational design patterns abstract the instantiation process. They help make a

system independent of how its objects are created, composed and represented. A

class creational pattern uses inheritance to vary the class that's instantiated, whereas

an object creational pattern will delegate instantiation to another object. Creational

patterns can be thought of as virtual constructors.

Creational patterns become important as systems evolve to depend more on object

composition than class inheritance. As that happens, emphasis shifts away from hard

coding a fixed set of behaviors toward defining a smaller set of fundamental behaviors

that can be composed into any number of more complex ones. Thus creating objects

with particular behaviors requires more than simply instantiating a class.

There are two recurring themes in these patterns. First, they all encapsulate

knowledge about which concrete class the system uses. Second, they hide how in-

stances of these classes are created and put together. All the system at large knows

about the objects is their interfaces as defined by abstract classes. Consequently,

the creational patterns give you a lot of flexibility in what gets created, how it gets

created, and when. They let you configure a system with "product" objects that vary

widely in structure and functionality. Configuration can be static (that is, specified

2The authors are well known as gang of four, GOF

107

APPENDIX A. OOP AND DESIGN PATTERNS 108

at compile-time) or dynamic (at run-time).

Factory Method lets a class defer instantiation to subclasses. Only the interface

for creating an object is defined, but which class to be instantiated is given to

the subclasses. Figure A-1 shows the structure of this pattern.

Creator

Product FactoryMethodO

AnOperationO 0 ---------- product = FactoryMethod

Concrete Product ConcreateCreator

FactoryMethod() ----------- returnn w Conctduc

Figure A-1: Structure of Factory Method adapted from [GHJV95]

Appendix B

COM and JavaBeans

Language, environment and location are no barriers for communication

COM and JavaBeans are two component object models. While COM defines a

binary and network standard for interoperability and hence language independent,

JavaBeans is specific to Java. The next two sections present these two component

models.

B.1 Component Object Model, COM

COM defines a binary standard to allow interoperability on any operating system

or hardware platform, and a network standard for interaction on multiple platforms.

Figure B-1 shows the diagram of a VTable to implement COM binary standard.

These standards allow interoperability of object and applications written by dif-

ferent programmers. The following example from [COM95] tells why the binary and

network standards are important.

"For example, a word processor application from one vendor can connect to a

spreadsheet object from another vendor and import cell data from that spreadsheet

109

APPENDIX B. COM AND JAVABEANS

Client

Variable VTBL pointer VTBL

pointer to function function(pObj,argl,arg2,...)
private object data pointer to function {

pointer to function

Figure B-1: VTable to implement COM binary standard

into a table in the document. The spreadsheet object in turn may have a "hot"

link to data provided by a data object residing on a mainframe. As long as the

objects support a predefined standard interface for data exchange, the word proces-

sor, spreadsheet, and mainframe database don't have to know anything about each

other's implementation. The word processor need only know how to connect to the

spreadsheet; the spreadsheet need only know how to expose its services to anyone who

wishes to connect. The same goes for the network contract between the spreadsheet

and the mainframe database. All that either side of a connection needs to know are

the standard mechanisms of the Component Object Model."

Some of the features of COM [COM95] are,

* It uses globally unique identifiers to identify object classes and the interfaces

those objects may support.

* It provides methods for code reusability without the problems of traditional

language-style implementation inheritance.

* It has a single programming model for in-process, cross-process, and cross-

network interaction of software components.

* It encapsulates the life-cycle of objects via reference counting.

* It provides a flexible foundation for security at the object level.

110

APPENDIX B. COM AND JAVABEANS

The standards set by COM allows object interoperability through the use of in-

terfaces. If a generic component is designed it can be reused offering many interfaces

for many programs.

The use of interfaces offer several benefits:

* The evolution of applications

* Low overhead of component object interaction

* Local/remote transparency

* Language independence

B.2 JavaBeans

The definition of a Java Bean as given in [JBn97] is

"A Java Bean is a reusable software component that can be manipulated visually

in a builder tool."

JavaBeans allows developers to create reusable software components that can then

be assembled together using visual application builder tools from independent soft-

ware developers. JavaBeans is designed to be the platform-neutral, component ar-

chitecture for Java. The JavaBeans specification defines a set of standard component

software APIs for the Java platform.

The typical unifying features that distinguish a Java Bean are [JBn97]

* Support for "introspection" so that a builder tool can analyze how a bean works.

* Support for "customization" so that when using an application builder a user

can customize the appearance and behavior of a bean.

* Support for "events" as a simple communication metaphor that can be used to

connect up beans.

111

APPENDIX B. COM AND JAVABEANS

* Support for "properties", both for customization and for programmatic use.

* Support for persistence, so that a bean can be customized in an application

builder and then have its customized state saved away and reloaded later.

Java Beans is designed to work well in a distributed world-wide-web environment

and the three primary network access mechanisms that are available to Java Bean

developers on all Java platforms are Java RMI, Java IDL and JDBC.

Scenarios of building applets using Java Beans are given in [JBn97].

Studying the features of both COM and Java Beans shows that these standards

make it possible to write reusable components that can be easily integrated.

112

Appendix C

CORBA

Be it stocks or objects, trading needs a broker

Common Object Request Broker Architecture, CORBA, is an architecture from

the Object Management Group (OMG). It is an architecture for developing dis-

tributed object oriented systems. Typically multi-tire applications are built using

CORBA.

The advantage of using CORBA is that the client and the server can be on different

types of platforms and also they can be implemented in different languages. For

example, the server can be written in C++ on a Sun Sparc workstation and the

client can be an applet written in Java and browsed on a PC.

In a distributed environment, the objects could reside at the client or on several

servers. With CORBA, the application programmer need not be concerned about

the location of the object because the methods are automatically invoked on the

corresponding objects. To the client application programmer it appears as if writing

a single application, i.e., as if the objects exist in the same address space. Figure C-1

shows the CORBA distributed object model [ORB97].

CORBA specifies an Interface Definition Language, IDL, for defining the services

113

APPENDIX C. CORBA

Client

1

Dynamic
Invocation

3

IDL

Stubs

114

Object Implementation

1

ORB
Interface

4 (
ORB CORE

1

ORB

Interface

) J
,)

3 1 2

IDL Dynamic Object
Skeleton Skeleton Adapter

ORB CORE

Network

1 Interface Identical for all ORB Implementations

2 There may be multiple Object Adapters

3 There are stubs and a skeleton for each Object type

4 ORB-dependent interface

Up-call Interface

Normal call Interface

Figure C-1: Common Object Request Broker Architecture, CORBA adapted from
[ORB97]

provided by the server. Once the services are published using IDL, both the server and

the client can be developed independently on different types of machines and using

different languages. This provides greater flexibility in design and implementation

choices.

\

Appendix D

Generalized Set Cover Algorithm

Hard problems can be often solved by suitable modeling, algorithms and heuristics

D.1 Generalized Set Cover (GSC)

Generalized Set Cover Algorithm (GSC) is proposed by Reggia, et al [RNW85, RNWP85].

It tries to produce several possible minimal cardinality set solutions. A set covering

problem is typically stated along the following lines:

For a finite set S of elements and a family F of subsets of S, a cover K of S from

F is a subfamily K C F such that U(K) = S. A cover K is called minimum if its

cardinality is as small as possible [RNW85]

GSC is described using the notation given in Table D.1.

D.1.1 GSC Pseudo code

Figure D-1 shows the pseudo code for the GSC [RNW85] using the notation defined

in Table D.1. Figure D-2 gives the pseudo code for the Genset function used in the

pseudo code for GSC.

115

APPENDIX D. GENERALIZED SET COVER ALGORITHM

Table D.1: Notation for Reggia's Genaralized Set Cover Algorithm
Symbol Description

d

consequences(d)
causes(s)

D
M

Cc DxM
M+ M

P = (D, M, C, M+)
order(P)

disease
symptom
set of symptoms of disease d
set of diseases causing s
set of all known diseases
set of all possible symptoms
relation with domain(C) = D and range(C) = M
distinguished subset of M
diagnostic problem
is the cardinality of an explanation for M +

function Solve[P]
variables n integer, S generator-set; /* initialize n < order(P)

s = q indicates unknown solution */
begin

n:=O; S:=;
while S=O do

begin
S:= Genset[causes(M +), M+, n]; /* s is assigned 0 if n < order(P),

generator set for Sol(P) if n = order(P) */
n:= n+1 /* increment n and try again */

end;
return S

end.

Figure D-1: Pseudo code for Reggia's GSC Algorithm

1.
2.

3.
4.
5.
6.
7.

8.
9.

10.
11.

116

APPENDIX D. GENERALIZED SET COVER ALGORITHM 117

1. function Genset [scope,manifs,n]
2. variables I set-of-disorders, F G H genarator-set;
3. if n=0
4. then
5. if manifs = /* check if there are no manifestations to cover */
6. then return {¢} /* if so, empty solution */
7. else return q /* if not, n=0, so no solution is possible */
8. else
9. if jscopel < n

10. then return 0 /* not enough causes to cover. so no solution */
11. else /* recursively try to construct the solution */
12. select d E scope;
13. I:= {d' E scope-man(d') A manifs = man(d) A manifs};
14. F:= Genset[scope-I,mainfs,n];
15. H:= Genset [scope-I,manifs-man(d),n-1];
16. G:= {Hi - (I) I Hi E H}; /* - is a list append operation */
17. return G V F
18. endif
19. endif.

Figure D-2: Pseudo code for Genset used in GSC Algorithm

On line 12 of Genset, one disease, d, among the scope has to be selected. If there

is a disease with a pathognomonic symptom, then it has to be selected because it

will appear in all solutions. If not, the way we choose this disease will give solution

that has minimal cardinality or one with lesser unaccountable symptoms. How d is

selected for each of these cases is given below.

D.1.2 Minimum Cardinality Set Solution

If there is a disease with a pathognomonic symptom, then it is selected. Otherwise,

for minimal set solution d is selected as shown in Figur D-3.

dselect = d E scope s.t |consequences(d)n |manifs| is maximum

Figure D-3: Selection of disease/component for Minimum Cardinality Set Solution

APPENDIX D. GENERALIZED SET COVER ALGORITHM

The disease is selected such that more number of manifestations are accounted by

the disease. This selection will always give the optimal solutions.

D.1.3 Light Weight Set Solution

If there is a disease with a pathognomonic symptom, then it is selected. Otherwise,

for light weight set solution d is selected as shown in Figure D-4.

dselect = d E scope and S ={lunrequired(d) = 0} s.t
if ISI 1
then d E S s.t consequences(d) is maximum
else lunrequired(d, manifs)l is mininum

where unrequired(d,manifs) is defined as consequences(d) - manifs.

Figure D-4: Selection of disease/component for Light Weight Set Solution

The disease is selected such that if there are diseases in the scope with no unre-

quired features, then a disease with more consequences is chosen among them. But

if there are no such diseases, then we pick up the one with the least number of unre-

quired diseases. This is a greedy selection and may not necessarily produce optimal

solutions 1 like in the case of minimum cardinality set solution.

1 Dynamic Programming could be used for definitely getting optimal solution

118

Bibliography

[BOB97] Business Objects DTF, Common Business Objects. Object Management

Group, 1997.

[Boo94] Grady Booch. Object-Oriented Design with Applications. The Ben-

jamin/Cummings Publishing Company, Inc., 1994.

[BP89] Ted J. Biggerstaff and Alan J. Perlis. Software Reusability, Volume 1,

Concepts and Models. Frontier Series. ACM Press, 1989.

[CA93] S. Castano and V. De Antonellis. A constructive approach to reuse of

conceptual components. In William B. Frakes Ruben Prieto-Diaz, editor,

Advances in Software Reuse. IEEE Computer Society Press, 1993.

[CFA97] Common Facilites Architecture. Object Management Group, 1997.

[CH96] Gary Cornell and Cay S. Horstmann. Core Java. SunSoft Press/Prentice-

Hall, 1996.

[COM95] The Component Object Model Specification. Microsoft Corporation, 1995.

[COS97] CORBA Services: Common Object Services Specification. Object Man-

agement Group, 1997.

[DA96] Andy Dong and Alice M. Agogino. Text analysis for constructing design

representations. In Artificial Intelligence in Design, 1996.

119

BIBLIOGRAPHY

[DC098] DCOM Architecture. Microsoft Corporation, 1998.

[dJ96] D. de Judicibus. Reuse: a cultural change. In Marjan Sarshar, editor,

Systematic Reuse: Issues in Inititating and Improving a Reuse Program,

pages 44-51, 1996.

[FRC] http://www.freecode.com/.

[GAM] http://www.gamelan.com/.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-

sign Patterns, Elements of Reusable Object-Oriented Software. Addison

Wesley, 1995.

[Gog89] Joseph A. Goguen. Principles of parameterized programming. In Alan

J. Perlis Ted J. Biggerstaff, editor, Software Reusability, Volume 1, Con-

cepts and Models, Frontier Series. ACM Press, 1989.

[HW93] Pat Hall and Ray Weedon. Object oriented module interconnection lan-

guages. In William B. Frakes Rub6n Prieto-Diaz, editor, Advances in

Software Reuse. IEEE Computer Society Press, 1993.

[JBn97] JavaBeansTM. Sun Microsystems, 1997.

[JCC97] Java Compiler Compiler Manual. Sun Microsystems, 1997.

[JS97] JavaScript Guide. Netscape, 1997.

[KRT89] Shmuel Katz, Charles A. Richter, and Khe-Sing The. Paris: A system for

reusing partially interpreted schemas. In Alan J. Perlis Ted J. Biggerstaff,

editor, Software Reusability, Volume 1, Concepts and Models, Frontier

Series. ACM Press, 1989.

[Lam86] Leslie Lamport. A Document Preparation System, LATEX, User's Guide

& Reference Manual. Addison-Wesley Publishing Company, 1986.

120

BIBLIOGRAPHY

[LM89] Steven D. Litvintchouk and Allen S. Matsumoto. Design of ada sys-

tems yielding reusable components: An approach using structured alge-

braic specification. In Alan J. Perlis Ted J. Biggerstaff, editor, Software

Reusability, Volume 1, Concepts and Models, Frontier Series. ACM Press,

1989.

[MS93] N.A.M Maiden and A.G. Sutcliffe. People-oriented software reuse: the

very thought. In William B. Frakes Ruben Prieto-Diaz, editor, Advances

in Software Reuse. IEEE Computer Society Press, 1993.

[MV97] F. Pefia Mora and S. Vadhavkar. Augmenting design patterns with design

rationale. Artificial Intelligence for Engineering Design, Analysis and

Manufacturing (AI EDAM), 11(2), 1997.

[NR86] Dana S. Nau and James A. Reggia. Relationships between deductive and

abductive inference in knoweldgebased diagnostic problem solving. In Ex-

pert Database Systems, Proceeding from the first International workshop,

pages 549+, 1986.

[OMG] http://www.omg.org/.

[ORA97] ORACLE Magazine, volume XI. Oracle, 1997.

[ORB97] The Common Object Request Broker: Architecture and Specification. Ob-

ject Management Group, 1997.

[PD89] Ruben Prieto-Diaz. Classification of reusable modules. In Alan J. Perlis

Ted J. Biggerstaff, editor, Software Reusability, Volume 1, Concepts and

Models, Frontier Series. ACM Press, 1989.

[PDF93] Rub6n Prieto-Diaz and William B. Frakes, editors. Advances in Software

Reuse. IEEE Computer Society Press, 1993.

121

BIBLIOGRAPHY

[PM94] Feniosky A. Pefia-Mora. Design Rationale for Computer Supported Con-

flict Mitigation during the Design-Construction Process of Large-Scale

Civil Engineering Systems. PhD dissertation, Massachusetts Institute of

Technology, Department of Civil and Environmental Engineering, 1994.

[Pri97] Chris Price. CASPIAN manual. 1997.

[RNW83] James A. Reggia, Dana S. Nau, and Pearl Y. Wang. Diagnostic expert

systems based on a set covering model. International Journal on Man

Machine Studies, 37:227-256, 1983.

[RNW85] James A. Reggia, Dana S. Nau, and Pearl Y. Wang. A formal model of

diagnostic inference. 1. problem formulation and decomposition. Infor-

mation Sciences, 37:227-256, 1985.

[RNWP85] James A. Reggia, Dana S. Nau, Pearl Y. Wang, and Yun Peng. A formal

model of diagnostic inference. 11. algorithmic solution and application.

Information Sciences, 37:257-285, 1985.

[Sar96] Marjan Sarshar, editor. Systematic Reuse: Issues in Initiating and Im-

proving a Reuse Program. Springer, 1996.

[TNF] http://www.10fold.com/.

[Tra93] Will Tracz. Lileanna: A parameterized programming language. In

William B. Frakes Ruben Prieto-Diaz, editor, Advances in Software

Reuse. IEEE Computer Society Press, 1993.

[Vad96] Sanjeev S. Vadhavkar. Augmenting design patterns with design rationale.

Master's thesis, Massachusetts Institute of Technology, Department of

Civil and Environmental Engineering, 1996.

122

