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ABSTRACT

This work presents measurements of the dynamic resistance and photoresponse of high
impedance (10-1000) point contacts (SNPCs) between bulk superconducting tantalum
and an electrochemically etched ( 10-200nm radius at tip) tungsten whisker immersed in
superfluid He at 1.8K. The dynamic resistance of these nanoscale contacts is well
described by the ballistic BTK conductance model which includes the effects of Andreev
scattering at the Normal-Superconductor interface.

Deviations from the BTK conductance theory are also observed. The contacts show
resistance peaks at symmetric bias voltages much larger than the superconducting gap

(I V I>10 A). The voltage at which these peaks occur is found to be linear in the square
root of the measured contact resistance, strongly supporting a model in which the
resistance peaks result from the destruction of superconductivity by the magnetic field
produced by current flow through the ballistic contact. The model is in quantitative
agreement with observation and implies that each resistance peak corresponds to the
appearance of a single flux quantum at the contact.

Measurements of the photoresponse at 860nm of the Ta-W point contacts are reported. A
model which accurately describes these measurements is presented: The incident light
induces an increase in the effective electron temperature of the irradiated W tip and a
non-equilibrium quasi-particle density in the Ta resulting in a decrease in the
superconducting gap. The photoresponse signal is then proportional to the current



increment resulting from these changes and can be computed from the BTK theory
applied to an SNPC in the presence of incident light. Three novel effects and applications
follow from this model:

1) In several contacts, photoresponse measurements showed that the W metal electron
temperature varied with laser power as Teff3 -THe3=aPIser, implying heat conduction from
the W to the superfluid He via inelastic scattering of electrons off the W surface oxide.

2) The photoresponse is used in a direct observation of the destruction of
superconductivity at the contact when a finite bias resistance peak occurs.

3) The quasi-particle recombination time is measured from the roll-off of the
photoresponse signal (proportional to the induced quasi-particle density) as laser intensity
modulation frequency is increased. The thesis introduces a technique of measuring this
roll-off even when the roll-off frequency is beyond the front-end detection bandwidth of
the point contact. The measurement yields a value of zR=50ns, implying an average
phonon trapping enhancement factor of 10.

Thesis Supervisor: Ali Javan
Title: Francis Wright Davis Professor of Physics
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Chapter 1

Introduction

Point contact junctions formed between a sharpened tip and a bulk sample in

which either side can be a normal metal or a superconductor are important systems used

to study the basic properties of these materials. When the tip is sufficiently sharp, the

contact diameter can be less than the electron mean free path. Such contacts are said to

be in the ballistic regime and their conductance is very sensitive to the single scattering

event that occurs at the interface as electrons flow through the contact orifice. Moreover,

the current flow can be low enough that neither of the two materials is driven out of

equilibrium when a bias voltage is applied across the contact, and the scattering at the

interface is therefore sensitive to equilibrium properties of the materials. An important

advantage of point contacts is that they can be formed with bulk samples and are useful in

studying materials that cannot be formed into thin films. Point contacts have been used in

recent times to study the properties of many materials, such as ceramic high temperature

superconductors', heavy Fermion materials2, and the electron-phonon interaction in

metals3'4

This use of point contacts to analyze material properties is analogous to the use of

normal-metal superconductor tunnel junctions to measure the gap and electron-phonon

interaction in superconductors 5. However, the current voltage characteristic (IVC) of

superconductor normal-metal point contacts (SNPCs) is very different from that of



Superconductor Insulator Normal-metal (SIN) tunnel junctions. Although tunnel

junctions were well understood by the late 60s, very little work had been done to

understand the conductance of SNPCs until the late 70s when Green function techniques6

were first applied to explain the SNPC IVC. It was not until 1982 that Blonder7 et. al.

(BTK) published a more intuitive approach to computing the conductance of ballistic

Normal-Superconductor (NS) contacts. These authors generalized the method of

computing the tunneling IVC to include the crucial effect of Andreev reflection. In

Andreev scatterings , electrons incident on a clean NS interface reflect as holes, thus

carrying twice the current as electrons transmitted through a tunnel barrier. The presence

of this effect in low barrier NS contacts accounts for the difference between their IVCs

and those of tunnel junctions. The method of BTK can be used to compute the IVC of

contacts of arbitrary barrier height, including those in the cross-over regime of low

barrier, which is useful for analyzing the conductance of most SNPCs. Since its

introduction, this theory has been used extensively to compute the conductance of various

configurations including interfaces between superconductors and metals9, and more

recently, superconductors and semiconductors i0.

Although the basic conductance properties of SNPCs are well understood within

the BTK framework, deviations are observed from the IVC predicted by this theory. This

variability of the SNPC conductance is the main trade-off against the advantage of their

simplicity and versatility. Theoretical and experimental studies of these novel features

are interesting both from a fundamental standpoint and from the practical standpoint of

making point contacts more useful as a tool for studying new materials. It is important,



for instance, to know whether an observed conductance anomaly results from a

fundamental property of the new material being studied or whether the anomaly is to be

expected even in point contacts with well understood materials.

Tunnel junctions have also been used extensively to examine of the effect of light

on superconductors, a field of study begun in the early 70s with the work of Testardi". In

addition, optical studies on tunnel junctions proved to be an important tool in

understanding more generally the properties of nonequilibrium superconductors 2. In

contrast to the many optical studies performed on thin film SIN and SIS tunnel junctions,

few studies have examined the optical response of the SNPC system despite the large

amount of recent work analyzing the conductance properties of SNPCs.

A primary motivation for using tunnel junctions in optical studies was that

experiments could be easily interpreted using tunneling theory to compute the response to

light. The lack until recently of a similar theoretical framework to explain the

conductance properties of SNPCs whose tunneling barrier is low or non-existent accounts

in part for the small number of optical studies on this system. With the solid

understanding of the SNPC conductance that has been gained in the last 15 years using

BTK theory, one can now expect to develop a model of the response of SNPCs to visible

light. The photoresponse of an SNPC is of interest because the conductance is very

sensitive to the nonequilibrium properties of the sharpened tip and bulk sample.

Therefore the photoresponse should reveal the nature of the nonequilibrium state induced

by light. This is of special interest for the tip material which can be of nanoscale

dimensions and show effects that depend on its size. Another interesting possibility is the



use of light as a probe to study novel conductance features in SNPCs. Finally, high speed

processes, such as the quasi-particle relaxation rates in high temperature superconductors,

may be observed on SNPCs because of their small size.

Thesis Outline

This thesis reports measurements on Superconductor Normal-metal Point

Contacts (SNPCs) formed between a W metal whisker, electrochemically sharpened to

nanoscale dimensions, and a bulk sample of superconducting Ta. As is evident from the

background just discussed, these studies were motivated by two aims: 1) To explain

novel features observed in the conductance of SNPCs and 2) to measure the SNPC

photoresponse and develop a model to describe these observations. The photoresponse is

then used to study several effects and applications of the irradiated SNPC which are

addressed for the first time in this work: a) measurements of non-equilibrium electron

distribution in the confined, irradiated metal tip as well as the bulk sample, b) an optical

probe of the conductance properties of the SNPC, and c) a method of measuring the

superconducting quasi-particle recombination rate in real time.

The work of this thesis therefore reports on two sets of phenomena which were

measured experimentally and modeled theoretically: Chapter 3 examines the BTK and

non-BTK behavior of the dynamic resistance of the Ta-W SNPCs. Chapters 4 and 5 of

the thesis describe observations and modeling of the Ta-W SNPC photoresponse and

discuss its novel applications in studying conductance mechanisms and nonequilibrium

effects in the irradiated SNPC. Since the analysis of chapters 3-5 make use of the BTK



theory of the conductance of nanoscale NS interfaces, the theoretical background of BTK

is first reviewed in chapter 2. A summary of each of the thesis chapters follows.

Chapter 2: Theoretical Background.

This chapter gives an outline of the BTK model of ballistic conductance through

superconductor normal-metal interfaces with residual oxide barriers. The chapter will

first discuss the theory of the resistance of ballistic point contacts between two normal

metals, commonly known as the Sharvin resistance. This result is important in

understanding how the resistance of an SNPC changes as the force on the contact is

increased and will be used to relate the SNPC contact resistance to contact radius. A

brief summary of the BTK model used in this thesis follows. This model includes a

refinement of the original BTK model to take into account the effect of inelastic

scattering of quasi-particles in the residual barrier region separating the superconductor

and normal metal.

Chapter 3: Finite Bias Resistance Peaks.

This chapter discusses the BTK and non-BTK behavior observed in this thesis

work on Ta-W SNPCs. First, the dynamic resistance of the contacts near zero bias is

shown to be well described by the BTK model.

Then the chapter discusses in detail the measurements of a non-BTK feature

observed in the dynamic resistance of the Ta-W point contacts: Resistance peaks at

symmetric bias voltages significantly larger than the gap (V>10A). Such peaks have been

seen in other types of NS nano-constrictions. However, in this thesis, the ability to vary



the contact resistance, and hence contact radius of the Ta-W SNPCs leads for the first

time to a quantitative model of the mechanism generating the resistance peaks. The

voltage at which the peaks occur is found to be linear in the square root of the measured

contact resistance, strongly supporting a model in which the resistance peaks result from

the destruction of superconductivity by the magnetic field produced by current flow

through the ballistic contact. The model is in quantitative agreement with observation

and implies that each resistance peak corresponds to the appearance of a single flux

quantum around the current flowing through the contact.

Chapter 4: Photoresponse of Ta-W Point Contacts

This chapter presents measurements of the photoresponse at 860nm of the Ta-W

point contacts. A model of the photoresponse is presented which takes into account the

effect of light on the bulk superconducting Ta and the W metal tip. In this model, the

light induces an increase in the effective electron temperature of the irradiated W tip, 6T,

and breaks Cooper pairs in the Ta, resulting in an increase in quasi-particle density and

corresponding decrease in gap, 8A. When light intensity is modulated, these effects are

observed as an oscillating photoresponse voltage on the contact. The photoresponse

voltage is shown to be proportional to the current increment resulting from 8A and T,

and can be computed using the BTK current voltage characteristic discussed in Chapter 2.

An expression can then be written for the photoresponse voltage in terms of the

parameters 8A and 6T.



This two-parameter model is in excellent agreement with observation and shows

how the superconducting gap and metal electron temperature change with laser intensity.

The gap decreases linearly with power. The dependence of 6A on laser intensity is

derived from the theory of nonequilibrium superconductivity and found to be linear with

a slope that agrees with the value measured in the photoresponse experiments.

The observed effective temperature of the W metal electrons follows the relation:

Tmetal3-THe bath3= aPlaser, implying heat conduction from the W to the superfluid He via

inelastic scattering of electrons off the W surface oxide. This heat conduction is greatly

enhanced by the nanoscale dimensions of the tip which can be less than both the cutoff

wavelength of bulk phonons in the W tip and the inelastic mean free path of the W

electrons.

Lastly, this chapter shows how the photoresponse can be used to directly detect

the destruction of superconductivity at the contact which is assumed in Chapter 3 in the

model of the finite bias resistance peaks.

Chapter 5: Recombination Time Measurement

This chapter demonstrates a real-time method of measuring the quasi-particle

recombination time using the SNPC photoresponse. A consequence of the model of

Chapter 4 is that the optically induced quasi-particle density in the superconductor can be

determined from the SNPC photoresponse. A technique is introduced in this chapter

which exploits this aspect of the photoresponse to measure the quasi-particle

recombination rate in Ta. In this method, the quasi-particle recombination time is



determined from the roll-off of the photoresponse as the modulation frequency of the

laser intensity is increased.

Of special interest in this measurement is the method used to measure the roll-off:

Because the quasi-particle recombination time is very short, signals originating on the

point contact at the roll-off frequency cannot be reliably measured due to attenuation by

unavoidable stray capacitance and impedance mismatch. The measurement technique

presented in this chapter takes advantage of the nonlinearity of the SNPC current voltage

characteristic to convert the signal due to the optically induced oscillating quasi-particle

density to an intermediate frequency lying within the detection bandwidth. The signal at

the intermediate frequency can then be used to determine the roll-off frequency and the

recombination time.

The advantages and novelty of this roll-off measurement technique are twofold: 1) It

utilizes the simplicity and versatility of point contacts, allowing measurements on

superconductors that cannot readily be formed into thin films, such as crystalline and

certain high temperature superconductors. 2) It can be used to perform real-time

measurements of the quasi-particle recombination rate when the recombination rate is

beyond the bandwidth of the front end electronic detection system used to measure

signals on the point contact.

' See for example H. Srikanth, M. Rajeswari, and A. K. Raychaudhuri, Pramana-J. Phys.
36, 207 (1991); J. R. Kirtley, Int. J. Mod. Phys. (B), (1990).
2 See for example A. Novack, et. al., Phys. Rev. B 36, 2436 (1987).
3 I. K. Yanson, Sov. Phys.-JETP 39, 506 (1979). First report of NN point contacts in
shorted planar N-I-N junctions.
4 A. M. Duif, A. G. M. Jansen, and P. Wyder, J. Phys.: Condens. Matter 1, 3157 (1989).



5 See for example W. L. McMillan and J. M. Rowell, Superconductivity, edited by R. D.
Parks (Marcel Dekker, New York), Vol 1 p. 561; C. B. Duke, Tunneling in Solids,
(Academic Press) (1969).
6 S. N. Artemenko, A. F. Volkov, and A. V. Zaitsev, Pis'ma Zh. Eksp. Teor. Fiz. 28, 637
(1978) [JETP Lett. 28, 589 (1978)]; Zh. Eksp. Teor. Fiz. 76, 1816 (1979) [Sov. Phys.-
JETP 49, 924 (1979)]; Sold State Commun. 30, 771 (1979).
7 G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B 25, 4515 (1982).
8 A. F. Andreev, Zh. Eksp. Teor. Fiz. 46, 1823 (1964) [Sov. Phys.-JETP 19, 1228
(1964)].
9 See for example, S. Chaudhuri, and P. F. Bagwell, Phys. Rev. B 51, 16936 (1995); P. C.
Son, H. van Kempen, and P. Wyder, Phys. Rev. B 37, 5015 (1988); N. K. Allsopp, J.
Sanchez Canizares, R. Raimondi, and C. J. Lambert, J. Phys. Condens. Matter 8, L377
(1996); H. Pothier, S. Gueron, D. Esteve, and M. H. Devoret, Physica B 203, 226 (1994).
10 See for example, T. M. Klapwijk, Physica B 197, 481 (1994); B. J. van Wees, P. de
Vries, P. Magnee, and T. M. Klapwijk, Phys. Rev. Lett. 69, 510 (1992); C. W. J.
Beenakker, Phys. Rev. B 46, 12841 (1992).
1 L. R. Testardi, Phys. Rev. B 4, 2189 (1971).
12 See for example the review of A. Gilabert, Ann. Phys. Fr. 15, 255 (1990)



Chapter 2

Theoretical Background

Introduction

This chapter will review the theoretical framework of Blonder et. al.' (BTK),

which describes the conductance through Normal-metal Superconductor (NS) interfaces

with arbitrary barrier heights, and is applicable to the nanoscale superconductor normal-

metal point contacts (SNPCs) of this thesis. This model includes the effect of Andreev

scattering2 at the NS interface which accounts for the difference between the SNPC

conductance and that of the well know superconductor insulator normal-metal tunnel

junctions. Knowledge of the conductance of SNPCs is important for much of the work of

this thesis. The next chapter will show that the W-Ta point contacts studied in this thesis

can be accurately modeled using the BTK model. In the following chapter the BTK

current voltage characteristic will be used to model the optically induced current

increment in the contact, leading to applications of the point contact photoresponse in the

study of nonequilibrium properties of both the irradiated metal tip and the bulk

superconductor.

The first section of this chapter will describe the origin of resistance in a

nanoscale contact between two normal metals. The results of BTK calculations on

SNPCs are normalized to this "normal state resistance" of the NNPC that exists in the

absence of superconductivity. These calculations are also important because they relate



the contact radius to the contact resistance, a relationship that is important in

understanding the finite bias resistance peaks discussed in the next chapter.

This will be followed by a review of the BTK calculation of current flow through

an SNPC when a bias is applied across the contact. The calculation includes a

modification to the original BTK model to include the effect of inelastic scattering in the

barrier region. The BTK formulation is compared to the well known treatment of tunnel

junctions between a superconductor and a normal metal to emphasize the peculiarities of

the SNPC conductance resulting from Andreev reflection.

2.1 Resistance of Normal-Normal Contacts

When a sharpened metal tip is pressed into a bulk metal sample and a bias voltage

is applied between the tip and sample, the resulting current voltage characteristic (IVC) is

approximately linear for voltages (Vbias-lO0mV) significantly less than the Fermi energy

(EFermi-lOeV). This resistance arises mainly from the nanoscale dimensions of the

contact area joining the two materials, and not from the residual oxide barrier in the

region of contact between the two materials. The contact resistance is therefore a

measure of the radius, a, of the orifice through which current flow occurs. Depending on

the size of the orifice compared to the electron mean free path, te, two limiting cases

exist: The ballistic or Sharvin limit (£>a), and the diffusive or Maxwell limit (ee<a).

The two cases are summarized in Fig 2.1.



Ballistic: a < ,

Sharvin
Resistance

2(1+Z2) 1
RN = 7N(O)e 2 vF, a

Diffusive: a > t,

Maxwell
Resistance 2a- RN -

2a

Fig. 2.1 Ballistic vs Diffusive Conductance. Each diagram depicts a point contact
between a sharpened tip (the end of which is represented by the trapezoidal shape) and a
bulk sample.

2.1.1 Sharvin Resistance

The point contacts of this thesis are in the ballistic regime, which was first treated

by Sharvin3 . When a bias voltage Vbia is applied between the two sides, current flow

through the contact is essentially proportional to the product of the contact area and the

collision rate at the contact of electrons near the Fermi level:



ISharvin = e(2N(O)eVbia )v F a) (2.1)

N(O) is the single spin density of states at the Fermi energy and VF is the Fermi velocity.

The first term in parentheses is the excess density of electrons striking the contact from

the side at larger bias. The factor of t/4 results from an integral over all the directions of

incoming electrons. The resulting resistance is inversely proportional to the square of the

contact radius:

1
RSharvin = (2.2)

2N(O)e vF 4
a 2

2.1.2 Quantum Point Contact Regime

This form of the Sharvin resistance is useful in the discussions of BTK theory

below. It may also be expressed in two other forms which reveal more about the point

contact conductance. The Sharvin resistance can be related to the resistivity and mean

free path, resulting in a formula which is useful for comparison with the diffusive limit4:

4pe
Rsh i - 32 (2.3)Sharvin 3a(2.3)

With substitutions from free electron model formulas for the mean free path and

resistivity, this formula is the same as the previous one. The product Ple depends only on

the Fermi momentum and this results in yet another expression for the Sharvin resistance

in terms of the fundamental unit of resistance, h/e 2:



sharvin = 2 (2.4)

As is clear from the formula, when the contact resistance becomes of order the quantum

resistance, the contact size has become of order kF-'-lattice spacing, implying that the

contact is comprised of a single atom. In this "quantum point contact" regime the

conductance is affected by electron confinement in the contact region, and much

experimental and theoretical work has been done in this area4'5. The resistance of point

contacts in this thesis (10-100092) are all well below the quantum resistance (- 10 O), and

effects due to confinement of electrons in the contact may be neglected.

2.1.3 Diffusive Corrections

The limit of 4<a was first treated by Maxwell 6 . In this case the transport is

diffusive and the contact behaves like a effective resistor whose size is equal to the length

scale over which the voltage drop occurs in the contact. This length scale is simply a, and

so, in the Maxwell limit:

M (2.5)
w - 2a

Wexler7 used kinetic theory to derive a formula connecting these two regimes.

The result is expressed in terms of the Knudsen ratio K=e/a:

4p3na 3(2.6)



F(K) varies monotonically from 0.694 in the Sharvin limit to 1 in the Maxwell limit.

Therefore, the coefficient of the Maxwell term in the above equation is of order 1 for all

values of K.

The effect of a residual barrier on these results can be treated within the BTK

framework discussed below. The BTK result for the contact resistance is the same as the

Sharvin resistance except for a factor of I+Z 2 to take into account reflection off of the

barrier. The dimensionless parameter Z is proportional to the barrier strength and is of

order 0.5 in most point contacts, including those of this thesis. These results may be

combined into a formula for the "normal state resistance" RN of a contact between two

normal metals which includes the effect of a residual barrier as well as diffusive

corrections:

1 + Z2 37 a
RN= 7 1 + 8 F(K)T (2.7)

2N(0)e 2v 4 
a2

The contacts of this thesis are best described by the ballistic formulas*, and so the

diffusive term represented by the second term in parentheses will always be a small (but

at times noticeable) correction.

2.2 Superconductor Normal-Metal Point Contact Current Voltage

Characteristic

* Use of the diffusive formula to compute the contact radius from a contact resistance of
order 10~2 results in a contact radius a-(1 0- m)/(2x10)=5x1 0 0m that is inconsistent

with the assumption of a diffusive contact since e-~10-8 m.



When one side of a point contact is superconducting the dynamic resistance will

deviate from the normal state value RN derived in the last section. The resulting bias

dependent dynamic resistance is very different from the familiar result for a

superconductor-insulator-normal (SIN) tunnel junction.. The essential difference

between the conductance of NS contacts with tunneling barriers and those with very small

or no barriers results from the effect of Andreev scattering2: When the barrier between a

superconductor and normal metal is sufficiently low, incident electrons on the metal side

can reflect as holes, creating a Cooper pair in the superconductor. Such electrons carry

twice the current of normally transmitted electrons. The result, in the limit of a

barrierless contact is a factor of two decrease in the dynamic resistance at zero bias.

When a residual barrier exists at the NS interface, the zero bias resistance increases, as

would be expected in a tunnel junction. In the cross-over regime in between a large

tunneling barrier and a clean nanoshort, the dynamic resistance exhibits minima at bias

voltages equal to plus and minus the gap A. At bias voltages far above V=A, the IVC is

essentially ohmic, except for a bias-independent excess current that results from the

constant number of electrons Andreev reflecting at energies less than V=A. The excess

current is small at these bias voltages and linear in the superconducting gap A:

IexcessRNA.

Fig. 2.2 shows a schematic picture of a NS contact with a residual barrier and

depicts the Andreev and normal reflection that can occur at the interface, below this are

plots of the conductance of the contact for various barrier strengths.



*

At

N(E)

BTK Conductance

No Barrier
2.5

2

1.5

1

0.5

Intermediate Barrier VIA

Fig. 2.2 Normal-Superconductor Interface The top diagram depicts the
electron reservoirs in a normal metal and superconductor separated by an
oxide barrier. N(E) is density of states. Andreev reflection of electrons
(n) with E<A to holes (p) is shown. For E>A only normal reflection
occurs. The bottom plots show the BTK conductance for three barrier
heights including the familiar tunneling conductance.

Vbias

dl/dV



The next section will describe the development of the BTK model and some of its

refinements and place it in the context of other work on scattering off of NS interfaces.

This is followed by a review of the BTK conductance calculation and the version of the

model used in this thesis. The last section summarizes the meaning of all of the BTK

model parameters and their effect on the dynamic resistance.

2.2.1 Development of BTK Theory

The conductance of low barrier NS contacts was not studied in depth until the late

70s, unlike the conductance of tunnel junctions between superconductors and normal

metals which had been well understood since the 60s 8. The early measurements of

Likharev et. al.9 and Gubankov et. al.10 on superconductor normal-metal point contacts

showed that such low barrier contacts have fundamentally different current voltage

characteristics (IVCs) than tunnel junctions. They found that the zero bias dynamic

resistance is entirely different in such contacts and that the contacts showed a bias-

independent excess current in the ohmic regime at large bias voltages (V>A). These

studies were followed by the theoretical calculations of Artemenko et. al. ", and of

Zaitsev'2 These authors used Green function methods to compute the IVC of low barrier

normal-metal superconductor contacts. This work was followed by the important paper

of Blonder et. al.' (BTK) which is reviewed in the next section. This work presented a

unified view of the conductance properties of SN interfaces with barriers of any strength,

ranging from a pure short to a tunnel junction. These authors computed the IVC by

finding the reflected and transmitted components at a NS boundary in a manner

completely analogous to that used in tunneling theory only replacing the ordinary



Schrodinger equation with the coupled Schrodinger equation of Bogoliubov-deGennes' 3,

and considering two component wave functions with both hole and electron amplitudes.

As was noted by BTK, such methods had been used before to compute

components reflected from NS interfaces. Andreev's original calculation (1964) used

these equations to compute the thermal conductivity of a superconductor in a mixed state.

In this case the effect of total reflection of electrons as holes at the NS boundary of a

vortex greatly decreases the flow of heat since the reflected hole carries energy in the

reverse direction. They were also used by Kummel' 4 in calculations on charge balance

near a vortex core. Calculations of the transmission coefficients of N-S-N and S-N-S

structures were performed by Demers and Griffin' 5, and the boundary conditions at an NS

interface were also examined by Entin-Wohlman 6 . The main contribution of BTK

theory, as they themselves stated, was to compute for the first time the bias dependence of

current flow through an NS interface, and use the physical intuition gained by their

method better to understand the conductance features. The method is more intuitively

clear than the earlier Green function treatments, and has become widely used in the

analysis of the conductance properties of contacts between superconductors and metals

and semiconductors.

The original treatment of BTK accurately described the dynamic resistance of

clean SN contacts 17, however the model is not a good description for some contacts

which have surface contaminants. This is most significant in the dynamic resistance of

point contacts with High Tc superconductors in which it is believed that the effects of

surface oxides are unavoidable' 8 . This effect was first treated by Srikanth' 9 and later put



in more formal terms by Plecenik et. al.20 . They treated the effect of surface

contaminants by including an inelastic scattering term r in a manner very similar to the

treatment used by Dynes21 to explain broadening of tunnel junction characteristics. The

theoretical treatment used in this thesis includes this modification to the original BTK

theory.

2.2.2 BTK Formulation

This subsection is a review of the arguments of BTK along with the modifications

due to Srikanth and Plecenik to include the effects of inelastic scattering off of impurities

at the interface. Readers wishing to skip this discussion will find a review of the effect of

all the model parameters, A, T, Z, and F, on the IVC of an SNPC in the last section of this

chapter.

The idealized NS interface considered by BTK consists of a delta function

potential barrier H8(x) which represents the effects of residual scattering centers at the

NS interface, and a step function pair potential A(x) representing the transition from a

normal metal to a superconductor. The barrier strength is re-expressed by BTK as a

dimensionless barrier strength parameter, Z:

kH H
Z . (2.8)

2 EF hvF

As in the tunneling problem, current flow is computed by assuming an electron is

incident on the NS interface and calculating the reflection and transmission coefficients.

However, in the limit of very low barrier, the effect of the pairing potential A in the



superconductor must be taken into account in the reflection and transmission. The effect

of the pair potential is to couple electron and hole states in the superconductor, making

the low lying quasi-particle excitations in the superconductor superpositions of electron

and hole states. The effect of the pairing interaction on metal electrons incident on the

NS interface is to "Andreev scatter" them to reflected hole states in the metal. The

appropriate wave functions to use for the reflected and transmitted waves are therefore

two component wavefunctions:

[f(x, t) (2.9)S=g(x, t) (2.9)

The top component represents the electron-like amplitude and the bottom component

represents the hole-like amplitude of excitations in the metal or superconductor. In the

superconductor, these two components must satisfy the coupled Schroedinger equations

known as the Bogoliubov-deGennes equations":

af h2 v 2
ih-- - 2m -p + V(x) f + A(x)g

g 2 (2.10)
ih -2m + V (x) g + A(x)f

Where V(x) is the lattice potential, t is the chemical potential (=EFermi), and m is the mass

of both holes and electrons. When the superconductor becomes normal, A=0, and the

Bogoliubov equations decouple into the usual result for a metal. The equations are then

solved by assuming that V is constant and that



S(x)l iEt

Then the wavefunction for a metal electron incident the NS interface and the resulting

reflected and transmitted wavefunctions are (following the notation of BTK):

Sinc =[jeiq+x

efl= a[ ]eiqx + b[ei+x (2.11)

tran = c o eik+x +d vo e-ik-x
W LVoJ uoI

where,

hq± = 2m( + E)

hk± = 2m( (E2 _~2)1/2) (2.12)

U = -vo =2 1+ E

Here uo and v, are the usual BCS coherence factors proportional to the amplitude of the

hole and electron components of an excitation of energy E above the Fermi level in the

superconductor.



The metal electron incident on the NS interface represented by vn1 c can then

undergo one of four processes: The two terms of yren represent normal reflection of an

electron and Andreev reflection of a hole within the metal. The two terms of /trans

represent transmission into a hole-like or electron-like excitation in the superconductor.

These solutions must satisfy the boundary conditions at x=0:

Vs(O) = JN(0) (2.13)

h/2m(Vs(0)- N,(0))= HW(O).

The derivatives are with respect to x. The amplitudes a, b, c, and d can then be related to

the reflection and transmission coefficients. In the computation of the current only the

normal and Andreev reflection coefficients are needed, because current flow can be

determined by considering the electron and hole currents only on the metal side of the

contact.

2.2.3 Effect of Inelastic Scattering at the Contact: F.

This calculation must be modified if inelastic scattering at the NS interface is to

be taken into account. As discussed by Plecenik, the necessary modification to the

Bogoliubov-deGennes equations affects the time dependence of f and g. Inelastic

scattering results in an additional term:

=ih ih-g + iht- (2.14)
atL Ifield inelastic



In a linear approximation the rate of change of g (and f) due to inelastic scattering near

the contact is taken into account by a single inelastic scattering time tielasticF':

ih - - g = -irg. (2.15)
at -inelastic inelastic

The modified Bogoliubov-deGennes equations are then:

8f 2 2l
ih - iF + V f + Ag

a [ (2.16)
Sg _[ 2V2 _i + Vjg + Af

at 2m

The solution to these equations is the same as before but with E replaced by E+iF, and

squared amplitudes replaced by moduli squared of the resulting complex quantities. In

this picture the Andreev and normal reflection coefficients A and B, are then (See

Plecenik):

/(, 2 X)(2 + 2)
A(E, A,Z, F) 2 (2.17)

(, , ) (a - p)Z - 2i] + [2rz + (a -

B(E,AZ,F)=Z 2  2

with the substitutions

2 = [( + Z2(a (- )]2 + [-(2Z2 +1)]2



u[2 = c + r E+ 12 (2.18)
S2 E + iF

vo = P-i = 1-uo

2.2.4 Calculation of Current-Voltage Characteristic

As in a tunnel junction the current through the NS interface is an integral over the

current due to electrons at all energies. This integral requires knowledge of the

distribution of electrons and quasiparticles in the metal and superconductor. In the limit

that current flow does not greatly disturb equilibrium, one may assume that the

distributions on both sides of the contact can be approximated by Fermi functions with

Fermi levels p. and p-eVbias . The current is then exactly the same as in a tunnel junction

except that the tunneling transmission coefficient, proportional to the superconducting

density of states and equal to 1-B in the BTK model, is replaced by 1 +A-B to include the

effect of Andreev reflection:

I(v, A,z,F) =

2N(O)evF (ta2/4) dE[f(E - eV,T) - f(E,,T] [1+ A(E, A,Z,F) - B(E, A, Z,r)] (2.19)

where f(x) is the Fermi function. The factor lra2/4 comes from an average over all

incident angles for an orifice of radius a separating two semi-infinite regions.

Note that all of the bias dependence in this equation results from the structure in

the energy spectrum of the superconductor which is probed by current flow from the

metal. Since the excitation spectrum of the metal has no significant energy dependence



the temperature of the superconductor does not affect the bias dependence of I, except

through A(T). In Chapter 4 this is important in showing that the photoresponse of an SN

contact is not sensitive to the superconducting quasi-particle distribution. The quasi-

particle distribution can only be measured in a contact between two superconductors,

since then both sides have strong energy dependence in their excitation spectra.

This is the model used to fit the dynamic resistance observed on the W-Ta

contacts of this thesis. The solution was incorporated into a nonlinear fitting routine and

the dynamic resistance of all contacts could thus be characterized in terms of the BTK

parameters (See chapter 3). These parameters were then used in further fitting routines

to analyze the photoresponse of the contacts in Chapter 4 in terms of optically induced

changes in A and the temperature of the metal.

2.2.5 Summary of IVC Parameters.

It is important to note the effect of each BTK parameter on the two main features of the

IVC. These are the resistance minimum at V=A and flow of a bias-independent excess

current Imces-ARN/e for Vbia >A. Changes in T smooth out the sharp features of the

dynamic resistance but do not alter the excess current at large bias. Changes in A alter the

position of the minima in the dynamic resistance and change the excess current by an

amount linearly proportional to the change in A. The barrier parameter Z, which is

proportional to the strength of the delta function barrier assumed for the ideal NS

interface is of order 0.5 for most contacts. An increased Z means a larger barrier which

means that the resistance peak at zero bias will increase in size, making the dynamic



resistance look more like the tunneling dynamic resistance. Increasing Z also decrease

the excess current, and in the tunneling limit of very large Z -10, the excess current is

essentially zero. Finally, the parameter F accounts for inelastic scattering at the contact

and is typically much less than A. The effect of F is to smooth the features in the

dynamic resistance in a manner similar to the temperature. An increase in F will also

decrease the flow of excess current, because this corresponds to a more strongly

scattering barrier at the interface which pushes the dynamic resistance toward the

tunneling limit.
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Chapter 3

Finite Bias Resistance Peaks

Introduction

The last chapter described the BTK theory of conductance through Normal-metal

Superconductor (NS) interfaces. Current flow is modeled as scattering off of an idealized

delta function barrier potential and step function pair potential resulting in a resistance

dip at a contact bias voltage equal to the gap and an excess current in addition to the

ohmic current at large bias. Both of these effects are due to the extra current carried by

Andreev scattered electrons in the metal, which reflect as holes at the NS interface with

the creation of a Cooper Pair in the superconductor. The intuitive BTK picture has been

very successful in describing quantitatively the dynamic resistance of real NS interfaces,

and this chapter will show that the model accurately describes the dynamic resistance of

the Ta-W point contacts of this thesis for bias voltages V-A.

There are however NS interfaces exhibiting deviations from the BTK current

voltage characteristic (IVC) that are qualitatively different from this basic picture. The

deviations fall into two main categories: Finite bias and zero bias. The zero bias

deviations result from the breakdown in the assumptions of a simple barrier between the

superconductor and the metal assumed by BTK. The primary zero bias deviation is a

minimum (instead of a maximum) in the resistance at zero bias which can be much

smaller than the largest BTK resistance drop of 50%. Models of this feature involve, for



example, the assumption that the surface oxides near the interface must be treated as a

region of depressed superconductivity, making the interface N-S'-S rather than the simple

NS interface assumed by BTK.

The finite bias deviations from BTK theory are associated with suppression of

Andreev scattering at the NS interface, usually by destruction of the superconductivity at

bias voltages large enough to destabilize the superconductor in the high current flow

region near the contact. Other finite bias structure, including quantum resonances, can

then result from the characteristics of the barrier region that results after the transition.

This chapter will focus on observations and modeling of finite bias resistance

peaks observed in the Ta-W SNPCs of this thesis. A zero bias resistance minimum was

also observed on some of the contacts, but was not be explored in depth. These

observations and their implications are discussed in Appendix B.

The finite bias resistance peaks occur in a class of small area (estimated diameter

less than 10nm; see discussion below), high resistance (R> 10i) Ta-W SNPCs formed

between a sharpened tungsten whisker and bulk superconducting tantalum at symmetric

voltages far in excess of A (V>10A). To our knowledge this is the first report of

resistance peaks in such contacts. As in the work of other authors discussed below, the

peaks can be attributed to a decrease of excess current arising from Andreev reflection.

Of special interest in the present work is the linear dependence of the resistance peak

voltage on the square root of the measured contact resistance. As will be shown below,

this dependence can be analyzed by considering the magnetic field produced by current

flow through the contact and treating the contact as a wire of nanoscale dimensions. The



resistance peaks occur when the magnetic field due to current flow reaches the critical

level for a wire of radius equal to the contact radius estimated from the theory of ballistic

contacts. The model is found to explain the dependence of resistance peak voltage on

contact resistance and also to be in quantitative agreement with the data.

3.1 Previous Observations of Finite Bias Structure

To place the present work in context, this section will discuss previous

observations of finite bias conductance which deviates from BTK behavior. Finite bias

resistance peaks have been seen in the dynamic resistance of other types of NS

nanoconstrictions showing BTK behavior. All of these have considerably larger area

and/or have different geometries than the Ta-W SNPCs examined in the present study.

Each study considered different mechanisms for the above gap structure, but all of the

explanations connect the resistance peaks to a decrease in excess current arising from

Andreev scattering at the NS interface(s).

The measurements of Xiong et. al.l considered the conductance through an NS

interface between thin films of Nb and Ag which were grown to overlap along one edge

by a controllable amount. The dimensions of these NS contacts were thus adjustable in

one dimension from 10-2500nm and were fixed in the other dimension at 284m. These

authors observed a single finite bias peak similar to those discussed in this chapter. (They

also observed a zero bias resistance minimum; see Appendix B.) The peak was observed

at various finite bias voltages in a range from 3.5 to 17mV. They recorded the

temperature dependence of the peaks and found that it had the same temperature



dependence as the gap regardless of how large the voltage of the peak was at low

temperature. They also recorded the magnetic field dependence of the peak voltage and

found that, again, regardless of peak voltage at H=0O, the peak voltage decreased in value

in the same way with increasing H field. These authors did not give a quantitative

explanation of the mechanism producing the peaks, but noted that because the peak

voltage's temperature dependence is the same as the gap, the peak may occur at a critical

current density. A high enough current density in a superconductor can be "de-pairing"

and cause the superconductor to become normal in the vicinity of the contact. This

mechanism was consistent with their observation, since the critical current density is

linear in the superconducting gap2.

Another NS interface that exhibited finite bias resistance peaks were the point

contacts studied by Hahn et. al.3,4,5. These were formed by growing a thin film of Ag on a

bulk crystalline sample of Ta and creating a nanoshort by subjecting the Ag-Ta interface

to a voltage pulse. The contact resistances were very small (R<1Q); the authors

estimated a contact radius from the Sharvin resistance formula (discussed in the last

chapter) of 70nm. The zero bias structure of these contacts was fairly well described by

the BTK theory although some deviations were observed near zero bias. At large bias

voltages (3-6mV), a sharp transition was observed which showed considerable voltage

hystersis. The sharp transition was accompanied at higher bias by several additional

resistance peaks whose shape and number varied from contact to contact. The first sharp

transition was attributed by these authors to the destruction of superconductivity at the

contact by thermal effects, however they did not present a quantitative explanation of the



destruction mechanism. The suppression of superconductivity extends into the sample

some distance, and the conductance structure at high bias was then related to quantum

interference inside this bubble of normal Ta near the contact. The bubble forms a

quantum box in which one side is the barrier potential at the Ag-Ta interface, and the

other side is the pair potential of the NS interface inside the superconductor. Normal

reflection occurs at the first interface and Andreev reflection at the second. As computed

by Hahn4 , the transmission and reflection coefficients of this box then determine the

conductance structure as a function of bias. A complication of this model is that the

bubble changes in size as the bias voltage is increased. Lack of knowledge regarding this

"melting depth" as well as the exact geometry of the contact resulted in some

discrepancies between theory and data, but the general structure of the conductance

followed the model. The dynamic resistance of these contacts was also studied in the

presence of a magnetic field, and additional oscillations were found to occur at large

biases. This behavior was explained by adding a supercurrent component to the normal

current flowing at the NS boundary. The supercurrent was modulated by the magnetic

field generated by the current flow, and this created the additional oscillatory component

in the dynamic resistance.

Finite bias peaks have also been seen in Superconductor-Semiconductor (S-Sm)

nanostructures6 . These were formed by growing 15nm thin film of InAs and then

depositing a thin film of Nb on top of this layer. The Nb film was interrupted by an AlSb

barrier. A voltage was applied across the Nb on either side of the barrier and current flow

occurred through the interface between the Nb-InAs barrier, then through the thin In As



layer under the Al Sb barrier and back into the other Nb film through a second Nb-InAs

S-Sm interface. These authors observed a single resistance peak at a bias voltage much

larger than the gap as well as a resistance dip at zero bias. They found that the

temperature dependence of the voltage of this peak was the same as the gap. The

conductance was explained by considering the effect of multiple reflections of electrons

off of the S-Sm interface as they propagate down the 15nm channel of InAs. Multiple

reflections resulted in a greatly increased Andreev scattering rate, and this caused the

large dip in resistance (peak in conductance) near zero bias. The explanation of the finite

bias peaks then followed by considering the trajectory of Andreev reflected holes. These

holes normally recombine with electrons in the InAs, but with sufficient quasi-particle

injection into the superconductor, they recombined with these excitations, canceling out

the increased excess current resulting from the multiple reflections of electrons.

3.2 Experiment

Ta-W point contacts were formed between an electrochemically etched tungsten

whisker and a mechanically polished tantalum (99.95% pure) post. The etching

procedure* consisted of an AC etch using either 3N or 2N KOH. The whisker was

connected to a variac AC voltage source and submerged in the KOH solution. An AC

voltage of 2-6Vrms was applied to the submerged tip. Etching continued for

approximately 1 second and then the tip broke, preventing further current flow. The

* Although this standard procedure was adequate, a refined method was also examined.
By etching the whisker down to -1 pm, raising the whisker so that the meniscus
surrounded the 1 pm diameter region, and repeating the AC etch, tips of 10nm radius
could be produced much more readily.



sharpness of the tip resulted from this fast switching off of the etch. The procedure

produced tips with radii in the range 10-200nm as seen in SEM micrographs.*

The contacts were formed as in Fig. 3.1. Before etching, the whisker was bent

into an L shape. Half of the L was used as a spring to press the tip into the tantalum.

Contacts were formed in superfluid He at 1.8K with a mechanical approach mechanism

driven by a motor outside the dewar. At this temperature the Ta is superconducting

(TC=4.5K) and the W remains normal.

The dynamic resistance was measured by recording the AC voltage developed on

the contact through a voltage divider as shown in Fig 3.2. This voltage is proportional to

the dynamic resistance, dV/dI, of the contact. It was measured with a lock-in amplifier at

a frequency of 1-10kHz. A bias voltage was imposed on the contact through another

resistor. The dynamic resistance vs voltage (RVC) curves were generated by plotting AC

voltage vs bias voltage. The current flowing through the contact was also recorded by

measuring the voltage across the bias resistor. The slope of this current with respect to

the bias voltage was used to measure the absolute resistance of the contact. The dynamic

resistance signal could then be normalized to this value.

The ability to change the force on the contact via the L-shaped spring allowed

stable contacts in the range from 10-1000ohms. After initial contact, increased force

produced a series of jumps to lower resistance, yielding a series of RVCs with decreasing

contact resistance

* Caution had to be used in forming the SEM image of very sharp tips (10s of nm).
Overexposure dulled these tips within 10s of seconds.
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Fig. 3.1 Ta-W Point Contacts. The point contacts of this thesis were formed in
superfluid He by pressing a sharpened tungsten whisker into a polished Ta post with a
mechanical positioning device. The whisker was bent into an L before etching and the
top half of the L was used to gradually increase the force on the contact until current
flowed from the W to the Ta. Increased force produced a series of decreasing contact
resistances. The top picture shows a schematic of the contact area with dimensions.
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Fig. 3.2 Measurement of Dynamic Resistance. The Ta-W point contact
resistance was measured by recording the AC voltage developed on the
contact through the voltage divider arangement shown.. A bias voltage
was also coupled to the contact and recorded along with the AC voltage.
The DC current was also measured across the bias resistor

43



Fig. 3.3 Dynamic Resistance of Ta-W Superconductor Normal-metal
Point Contacts. Normalized dynamic resistance vs bias voltage from Ta-
W point contacts at 1.8K. Data from four contacts is shown. Each series
of decreasing contact resistance is generated by increasing the force on the
contact. The dynamic resistance is normalized to 1 at a bias voltage of
5mV. Each division corresponds to a change of 0.2 in normalized
dynamic resistance. The curves are offset for clarity.
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3.3 Results and BTK Modeling

3.3.1 Dynamic Resistance

Fig. 3.3 shows four series of RVCs generated in this manner. Each plot shows the

curves generated on a given contact by increasing the force on the contact. The curves

are shown in order of decreasing resistance (increasing force). The resistance of each

RVC measured at a bias voltage of 5mV is shown next to the curve and each curve is

normalized to unity at 5mV. The curves are offset for clarity, but the scale is the same for

each. The decreases in resistance are produced by increasing the force on the contact as

described in the last section. The high bias peaks always occur in symmetric pairs. Very

little hysteresis is observed in scanning the bias voltage both ways over the finite bias

peak. The peaks can be both sharp or broad. For each contact the voltage at which the

peaks occur, Vpeak, is linear in the square root of contact resistance R (see Fig. 3.4):

Vpek = kR + Vo . (3.1)

Where k-1.8mV/4N on average and varies by 30% between contacts and Vo is 3mV on

average.

Although most contacts showed one peak, a few showed no peaks. The peak may

have been too broad to be observed in these contacts. The contacts could also show more

than one peak as in Fig 3.3d. The higher order peaks also fall on a line. The values of k

and Vo for the second set of peaks in Fig. 3.3d is 4.6mV/Ih and -4.5mV. Fig. 3.4 plots

the dynamic resistance peak voltage Vpeak VS the square root of the contact resistance for

the resistance peaks of all of the plot of Fig 3.3.
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Fig. 3.4 Resistance Peak Voltage vs Contact Resistance. Bias voltage of dynamic
resistance peaks (Vpeak) plotted vs the square root of the contact resistance (4RN). The
series of points are taken from Fig. 3.3 and have the same letter. The line shows a linear
fit to series a.

3.3.2 BTK fit of the Dynamic Resistance

The zero bias structure for all of the RVCs is well fit to the BTK model including

finite quasi-particle lifetime parameter, I, which was described in the last chapter. The

temperature was recorded during the run to be 1.8K. This value was fixed during the

fitting procedure and the BTK parameters A, Z and F were varied to produce the best fit.

The method used was a standard nonlinear least squares technique performed with the

Levenberg-Marquardt method7. Fig. 3.5 shows the fits to all of the curves of Fig 3.3.

The quality of the fits is excellent for R<2000 and less accurate for R>2000. The fits

show that as the contact resistance decreases, the BTK barrier strength Z tends to increase

slightly and the lifetime parameter F tends to decrease. For instance, in the curves in Fig.



3.3a, Z and F range from 0.47 and ImV (R=7802) to 0.67 and .05mV (R=6.60); the

curves in Fig. 3.3d yield Z and F ranging from 0.34 and 1.2mV (R=240C2) to 0.60 and

0.14mV (R=34Q). This trend is consistent with earlier measurements of contact

resistance as a function of the force on the contact, and is discussed in Appendix A. The

accuracy of the BTK model in describing the current flow through the W-Ta point

contacts will be exploited in the next chapter when a model of the photoresponse of these

contacts is developed. In this model, the BTK parameters derived from this fitting

procedure will be used to compute the current increment induced by light.

3.3.3 Ballistic Conductance and Contact Radius

The accuracy of the BTK fit is strong evidence that conduction through these

contacts is ballistic (contact radius, a, less than electron mean free path, fe) since the BTK

theory assumes ballistic conduction and is modified in the diffusive regime8'9. Moreover,

the barrier parameter Z is -0.5 for most contacts. This means that the contacts all have

low barriers and are very transmissive*. As a result the resistance is determined almost

entirely by the size of the contact.

Relating this resistance to the contact radius provides further proof that the

conduction through these contacts is ballistic. As discussed in the previous

* The BTK transmission coefficient9 is T=(1+Z 2)1 .



Fig. 3.5 BTK Fit of the W-Ta SNPC Dynamic Resistance. Solid line:
data; Dashed line: fit. The dynamic resistance vs bias voltage from Fig 3.3
is plotted along with the best fit dynamic resistance curve using a modified
BTK conductance model that includes the effects of inelastic scattering
near the contact via the lifetime parameter F.
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chapter,a<<,e, the resistance is related to the contact radius, a, by the ballistic BTK-

Sharvin resistance formula*:

1+Z 2

Rsh =

2N(O)e 2 vF 4 a 2

4

and, if a>>Le, by the diffusive, or Maxwell resistance formula:

* The formula is the same as the Sharvin resistance for ballistic constrictions except for
the factor (1+Z2) which accounts for reflection off of a residual oxide barrier. See
Chapter 2.
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Only one of these formulas will give a consistent value of the contact radius. For a

contact resistance of 100, the two formulas give Rsh=7nm (with values of the density of

states 10, and Fermi velocity", N(O)=1.6x1028states/eVm3 , and vF=8.9x10 5m/s) and

RMaxwe=O0.05nm (with a high estimate'2 for the low temperature resistivity of tungsten,

pw=O.1 2cm). Clearly, the contact resistance is too large to be well described by the

diffusive conductance formula. It is therefore assumed in the next section, that the BTK-

Sharvin formula can be used to relate the contact resistance and the contact radius.

Since Z is approximately the same for most contacts, the product Rsha2 is

approximately constant for all contacts, and the BTK-Sharvin resistance formula can

therefore be converted into a useful relation to estimate the contact radius from the

measured contact resistance:

RSha 2 =.1+ Z 2

2N(0)e2vF

With values for N(O) and vF for tungsten as given above, and taking Z=0.5,

Rsha2 =l9nmn. Using this relation, the inferred contact radius, a, for the RVCs in

Fig. 3.3 ranges from lnm to 10nm.

As can be expected, these contact radii for current flow are less than the

geometrical tungsten whisker tip radius of 10-200nm measured in an SEM micrograph.



This difference results from the plastic deformation that the W tip undergoes when it

pierces the native oxide layers (-1 nm of Ta20 5 [Ref 13]; -one monolayer of W0 3 [Ref.

14]) and forms the low barrier electrical contact with the Ta sample (See Refs 14,15, and

Appendix A). The result is a blunted W tip of radius 10-200nm, and a 1-1Onm contact

for current flow formed when the initially much sharper W tip, or an asperity on a blunted

tip, pierces the oxide layers.

3.4 Model of Finite Bias Resistance Peaks

3.4.1 Destruction of Superconductivity

The finite bias resistance peaks can be understood by considering the Andreev

scattering that occurs at the Normal-metal Superconductor (NS) interface between the

tungsten and tantalum. As discussed in Chapter 2, Andreev reflection at the NS interface

results in an excess current for bias voltages far above the superconducting gap, A. The

resulting current voltage characteristic in the region of the resistance peaks (V>>A) is:

V
I(V >> A) - + Iexcess (3.2)

RN

Iexcess is independent of voltage, and IexcessRN'-A/e. When superconductivity is destroyed

at the contact the excess current is reduced, and the resulting shift in the IVC appears as a

peak in the dynamic resistance. This process is depicted in Fig 3.6 which shows how a

finite bias resistance peak corresponds to a decrease in excess current just as the

resistance minimum at V=A corresponds to the build up of excess current. This argument



in indirect, however, section 4.5 of this thesis presents a direct optical measurement of the

destruction of superconductivity when the finite bias peak occurs.

The model of the finite bias peaks considered here assumes that superconductivity

is destroyed by the magnetic field produced by current flow through the contact. The

dependence of resistance peak voltage Vpek on contact resistance RN then follows by

considering the critical current of the constriction formed by the contact and the

relationship between the radius of the contact and its resistance.

Since the RVCs have large resistance and are well described by the BTK theory

(see section 3.3.3) one can reasonably estimate the contact radius from the measured

resistance in the absence of superconductivity using the ballistic BTK-Sharvin result:

1+ Z2

R, = (3.3)
2N(O)e2vF 4a2

Therefore:

1
a ac
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Fig. 3.6 Connection between Resistance Peaks and Excess Current.
The bottom plot shows a greatly exaggerated graph of the IVC associated
with the dynamic resistance of the top plot. The dashed lines correspond
to the ohmic current and constant dynamic resistance when both sides of
the contact are normal metals. These plots show that the resistance peak
corresponds to a decrease in excess current flowing through the contact,
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Fig. 3.7 Model of Resistance Peaks. The figure depicts the onset of
the critical field near the contact which results in destruction of
superconductivity at the contact. The result is a switching off of excess
current due to Andreev reflection which manifests itself as a peak in the
dynamic resistance.



3.4.2 Critical Current

Current flow through the contacts is restricted to a region of radius a and length of

order quasi-particle elastic mean free path 4. This current will be encircled by a

magnetic field whose maximum value can be computed as in a wire of radius a:

Hmax=I/( 2 ta). Therefore the critical current for such a constriction should be:

Ic = 2naHcl, (3.4)

where HI is the superconducting critical field. Previous measurements 16 on 99.95% pure

tantalum showed that it was a type II superconductor. A type II superconductor expels

magnetic flux up to a field He1 and supports a mixed state up to a field Hc2. Beyond this

is a surface superconducting state that exists up to a field H.3. This surface

superconductivity, though, exhibits no gap". Therefore the appropriate critical field for

Eq 3.4 is H 1, when magnetic flux first penetrates the superconductor and alters the

Andreev scattering at the NS interface. A diagram depicting the onset of the critical field

is shown in Fig 3.7.

3.4.3 Dependence of Vpeak on RN.

Combining equations 3.3 and 3.4 gives the correct dependence of Vpeak on RN:

Vp, = (27caHl)R, - I,.R, = kjRN + Vo  (3.5)

Ix,,c.RN- A/e and does not depend the contact radius.



The constant Vo is negative in this formula, however the measured value of Vo is

in fact positive. (See Fig 3.4) This can be accounted for by including the Maxwell

correction Is to RN via Eq. 2.7 of the last chapter:

1+Z2 31 a
RN = 1 + F(K)

2N(0)e 2V F 4 a 2

where K=l/a. The coefficient (3r/8)F(K) is close to unity* for all values of K and so an

approximate form for this result may be used:

RN Rsh 1+

1+ Z 2

RSh = (3.6)
2N(O)e 2v 4 a2

This refinement gives the same k as before but changes Vo:

VPeak = kV + Vo + O(a/le), (3.7)

where

k = 2H Rsba2  (3.8)

and

*(3n/8)F(K) varies from 0.817 in the Sharvin limit K>>1 to 1.18 in the Maxwell limit
K<<1. See Chapter 2.



VO = l - IexRN (3.9)

The measured value of k=-l.8mV/4., along with the value of Rsha 2 -19nm40n

computed in section 3.3.3 implies a value of H,=l.53x104A/m=193gauss. This may be

compared with the value of Hr, from the measurement of Ref. 16 on 99.95% tantalum

which was Hc1=375gauss at 1.8K. The discrepancy between these values can be due to

impurities, which reduce the value of H, in a type II superconductor' 9. A decreased Hc,

can also result from ohmic heating at the contact, an effect discussed in the next section.

As a check of consistency, the mean free path 4, may be estimated from the value

of Vo, which was -lmV in most of the contacts. The value IexcessRN varied between

contacts due to the variation of Z and I'. This quantity was determined from the

measured current vs voltage, as well as an integral over the properly normalized dynamic

resistance. These two methods agreed, and on average IexcessRN~0.3mV. Taking these

values, the above formula gave a mean free path ~e-13nm. This value is consistent with

the assumption of a ballistic microconstriction, since the values of RN implied contact

radii of 10 nm or (in most cases) less.

3.5 Discussion

3.5.1 Effect of local heating.

At large enough bias voltages, one expects to see an effective temperature

increase of the superconductor in a small volume near the contact due to power



dissipation in this region. This increase in temperature depends only on the power

dissipated in the contact and results in a decreased critical field H,1, which is consistent

with the low value inferred from the model of section 3.4. It is important to note that the

dependence of Vpa on RN implies that the power dissipated in the contact when the peak

occurs is always the same(neglecting the small offset Vo):

VpeakocRN Vpea&2/RN =constant-4gW.

This means that the increase in effective temperature near the contact will be the same for

all contacts. As a result, the same reduced value of Ho applies for all values of RN on a

given contact, in agreement with observation.

To estimate the heating in the contact we assume that the quasi-particles injected

into the bulk tantalum sample form a region with an elevated effective temperature T* of

dimension equal to the quasi-particle diffusion length, Lq,. A simple rate equation

argument shows that the steady state increase in density of quasi-particles in this region is

proportional to the power P dissipated in the contact: Most of the dissipated energy is

distributed among the quasi-particles, with very little excess energy in the phonons20.

The dissipated power divided by the average quasi-particle energy (-A), is thus the rate of

quasiparticle creation. Multiplying this rate by the lifetime of a quasiparticle 'R (the time

for two quasi-particles to recombine), and dividing by the volume of the region of

increased quasi-particle density, Lqp, then gives the excess density':

8Nqp,-(P/A)('hR/Lqp3).

* This result uses an average value for the pair recombination time rR(T*) and L,(T*)



The effective temperature T* can then be estimated from the relationship between the

total number of quasi-particles and the temperature21:

N, NT = 4N(O)[rtA(T)kBT/2]' /2 eA(T)kT. (3.10)

The typical dissipated power at Vpea is 4p.W. The exact value of Lqp and ZR are

not known for these contacts, but taking typical values of Lqp=5ptm and TR=2x10-8 sec (See

Chapters 4 and 5) a temperature increase of order 1K results. According to Ref. 16, this

would decrease the critical field to -200 gauss consistent with the value inferred from the

model of the finite bias peaks.

3.5.2 Temperature Dependence of Finite Bias Peaks.

The temperature dependence of Vpeak was also measured. The helium in which

the contact was immersed was allowed to slowly warm from 1.8K through the superfluid

to normal He transition at 2.15K and up to 4.3K while the dynamic resistance was

continuously scanned. Fig. 3.8 shows the finite bias peak of Fig 3.3b at several

temperatures. These measurements showed that Vpeak decreased by about 10% before

flattening to nothing at a temperature of -3K.

These observations can be qualitatively understood by considering the effect of

both heating and magnetic field at the contact. The resistance peak voltage Vpeak is linear

in the critical field Ho1 (See Eq 3.8 and 3.7.), however Hc1 depends on the effective

temperature due to power dissipation at the contact as well as the thermal bath
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Fig. 3.8 Temperature Dependence of Finite Bias Resistance Peaks.
Each dynamic resistance curve has the same scale but is offset for clarity.
Each curve has a different temperature. Starting with the top curve,
T=2.00K, 2.28, 2.56, 2.82, 3.06.

emperature. The weak temperature dependence results if the quasi-particle density

generated by power dissipation at Vpca is much larger than the initial thermal quasi-

particle density. In this case the effective quasi-particle temperature when the bias

voltage equals Vpeak depends mainly on the dissipated power Vpeak2/RN, and so Vpek will

have a weak dependence on thermal bath temperature. Moreover, at a high enough bath

temperature, one expects heating to destroy the superconductivity via a smooth 2 nd order

transition before the magnetic field is large enough to destroy superconductivity. This is

also observed in Fig 3.8.



Above 3K the contact of Fig 3.8 showed occasional sharp peaks at bias voltages

near the finite bias peak. These could originate from resonances inside the normal region

in a manner similar to the mechanism of Hahn4. The peaks may also be due to changes in

the liquid He: These temperature measurements could be complicated by the superfluid

to normal helium transition at T=2.15K. Additional, unwanted temperature dependence

due to the turbulence and altered thermal conduction in the normal helium can not be

ruled out.

3.5.3 Comparison with Previous Work.

Having inspected other mechanisms for the finite bias peaks, the following are

inconsistent with the observations of the point contacts of this thesis: As mentioned

above, simple heating of the contact would cause a gradual transition, inconsistent with

the sharp change in Iexcess. Mechanisms that involve a critical current density, such as

depairing current density, Jc are ruled out because of the dependence of Vpeak on RN: If

the peak always occurred at a critical current density value, J0, then, neglecting Iexcess,

Vpeak =RNJc7ta2 , and since RNocl/a2 , Vpeak would not change as RN changed. This would

exclude the depairing current density mechanism considered in Ref 1. Also, the

mechanism of reabsorption of Andreev holes proposed as an explanation for the RVC

peaks in the S-Sm-S structure of Ref. 6 has little applicability in the W-Ta SNPCs used

here since it relies on current confinement in a thin planar region bounded by the

superconductor. The quantum interference which is discussed in Ref 4 does not easily

explain the dependence of Vpeak on RN. Instead, the W-Ta PCs of this thesis seem to



show only the first rapid decrease in excess current observed in Ref. 5, and none of the

subsequent interference oscillations observed by these authors.

3.5.4 Flux Quantization.

A calculation of the magnetic flux surrounding the current implies that each peak

corresponds to a single flux quantum:

(o = 2e = 2.07 x 10- 7 gauss - cm 2

A single flux quantum carrying a field equal to the critical field must be approximately

100nm in radius. This is of order the contact radius and implies that field destroying

superconductivity at the contact is contained in a single flux quantum. This dimension is

of order the penetration depth X of magnetic fields in the Ta. Note that this is not the

dimension of the region where superconductivity is destroyed at the contact. The

dimensions of the destroyed region are of order the coherence length 4 of Ta, which is

much small than the penetration depth. Both of these lengths have been measured in

crystalline Ta samples22 at low temperature and found to be ~-100nm and ~31nm. The

added impurities in the 99.95% polycrystalline Ta of this thesis would make A go up and

4 go down, which is in closer agreement with dimensions of the vortex which is expected

to form in these contacts when superconductivity is destroyed at the contact. If the

coherence length of the tantalum is small enough, a single flux quantum may not be

enough to completely eliminate the SN boundary. Therefore when the current increases



enough to produce another quantum of flux a further decrease in excess current, and

corresponding resistance peak, will be observed as in Fig. 3.4d.

3.6 Summary

Above gap RVC peaks have been observed in high impedance, small area W-Ta

SNPCs. The voltage of these peaks is linear in the square root of the contact resistance.

This observation points to a model in which the RVC peak corresponds to a destruction

of superconductivity near the contact from a critical field produced by current flow

through the contact. Multiply peaked RVCs and the small size of the contact point to the

conclusion that each peak appears when a single additional magnetic flux quantum

encircles the current. When heating at the contact is included, the model is in quantitative

agreement with observation, the critical field Hel being reduced by heating. The

mechanism at work in these contacts is different from those considered in other systems

with above gap structure, however these systems have different geometries and larger

contact area than the SNPCs in the present study.

1 P. Xiong, G. Xiao, and R. B. Laibowitz, Phys. Rev. Lett. 71, 1907 (1993).
2See for example M. Tinkham, Introduction to Superconductivity, (Krieger), p 119
(1975).
3 A. Hahn, and H. Lerchner, in Prodeedings of the 1 7th International Conference on Low
Temperature Physics, Karlsruhe, 15-22 August 1984, edited by U. Eckern, A. Schmid,
W. Weber, and H. Wihl (North-Holland, Amsterdam, 1984), pt. II, DL 9, p. 803.
4 A. Hahn, and K. Humpfner, Phys. Rev. B 51, 3660, (1995).
5 A. Hahn Phys. Rev. B 31, 2816, (1985).
6 C. Nguyen, H. Kroemer, and E. L. Hu, Phys. Rev. Lett. 69, 2847, (1992).
7 W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery 1992, Numerical
Recipes in C 2 nd Ed. (Cambridge University Press) p. 681.
8 G. E. Blonder and M. Tinkham, Phys. Rev. B 27, 112, (1983).
9 G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B 25, 4515, (1982).



10 S. V. Vonsovsky, Yu. A. Izyumov, and E. Z. Kurmaev, Superconductivity of Transition
Metals, Their Alloys, and Compounds, (Spring-Verlag) p 203, (1982).
11 D. A. Papconstantopoulos, Handbook of the Band Structure of Elemental Solids
(Plenum Press) p. 176 (1986).
12 Desai, et. al., J. Phys. Chem. Ref. Data 13(4), p 1091, (1984).
13 H. J. Mathieu, M. Datta, and D. Landolt, J. Vac. Sci. Technol. A 3(2), p. 331 (1985).
14 H. D. Riccius and K. J. Siemsen, Appl. Phys. A 35, p. 67 (1984).
"5 K. C. Liu, MIT PhD Thesis, P. 51 (1979).
16 F. T. J. Smith, and H. C. J. Gatos, Appl. Phys., 39, 3793, (1968).
17 P. G. deGennes, Superconductivity ofMetals andAlloys (Addison Wesley: Advanced
Book Classics), p. 11 (1989).
8 A. G. M. Jansen, A. P. van Gelder, and P. Wyder, J. Phys. C 13, 6073 (1980); A. M.

Duif, A. G. M. Jansen, and P. Wyder, J. Phys.: Condens Matter 1, 3157 (1989).
19 See for example M. Tinkham, Introduction to Superconductivity, (Krieger), p 111-114
(1975).
20 W. H. Parker, Phys. Rev. B, 12, 3667, (1975)
21 W. H. Parker and W. D. Williams, Phys. Rev. Lett. 29, 924 (1972).
22 T. J. Greytak, and J. H. Wernick, J. Phys. Chem. Solids 25, 535 (1964).



Chapter 4

Photoresponse of Ta-W Point Contacts

Introduction

Optical methods have been used extensively to study the nonequilibrium

dynamics of both superconductors and normal metals. The most commonly used systems

in these studies are thin film tunnel junctions between two superconductors or between a

metal and a superconductor. The conductance properties of such tunnel junctions have

been well understood since the early 60s. This theoretical understanding makes

experiments on tunnel junctions easy to interpret and is the basis for their utility in

studying nonequilibrium effects as well as the basic parameters of superconductors and

metals, such as the superconducting gap and the electron phonon interaction.

In contrast to this, there have been almost no optical studies using visible or near-

infrared radiation on cryogenic point contacts between a sharpened tip and a bulk material

where one or both sides are superconducting. In part, this is due to the fact that, as

discussed in previous chapters, the conductance properties of these nanoscale point

contacts, in which the tunneling barrier is very low or nonexistent, have only been well

understood in the last 15 years using the theory of Blonder et. al. (BTK) and its

refinements. (See Chapter 2.) Optical measurements of point contacts are promising for

several reasons: They are sensitive to the nonequilibrium properties of the irradiated

nanoscale tip as well as the bulk material; they should also be useful as a probe of the

conductance properties of the contact; finally, point contacts can be formed with materials



that cannot easily be grown in thin films such as certain novel superconductors and

crystalline materials.

This chapter presents photoresponse measurements of the superconductor normal-

metal point contacts (SNPCs) formed between a nanoscale tungsten metal tip and bulk

superconducting tantalum which were described in the last chapter. Optical illumination

of these point contacts affects both the metal tip and the bulk superconductor: The effect

of light on the superconductor is to induce a nonequilibrium quasi-particle density, which

manifests itself as a change in gap of the superconductor; the effect of light on the metal

tip can be described by an increase in the effective temperature of the metal electrons.

Therefore the photoresponse depends on only two parameters: The changes in the gap of

the superconductor, 8A, and the change in the effective temperature of electrons in the

metal tip, 6T. The photoresponse signal is then proportional to the optically induced

current increment resulting from the change in these two parameters and can be computed

from the BTK theory of the current voltage characteristic. A fit of the data to this model

then yields values of the superconductor gap decrease and metal electron temperature

increase as a function of laser intensity. These results will be used in this chapter and the

next to describe several novel effects and applications: 1) The photoresponse can be used

as an electron thermometer to determine the increase in effective electron temperature of

the tungsten metal tip. The dependence of electron temperature on laser intensity points

to a previously unobserved mechanism of heat transfer between the irradiated nanoscale

W tip and the superfluid He. 2) Since the photoresponse measures the change in gap of

the superconductor, the photoresponse can be used as a probe of the flow of excess



current in the contact. As will be shown in this chapter, this probe is very useful in

verifying aspects of the model of the finite bias resistance peaks discussed in the previous

chapter. 3) Finally, the fact that the photoresponse is sensitive to the optically induced

quasi-particle density will be used in the following chapter in a real-time measurement of

the quasi-particle recombination time in Ta.

In view of the extensive background section which follows, a brief summary of

this chapter will be given: The background section will review theoretical and

experiment treatments of nonequilibrium effects in both metals and superconductors.

This will be followed in section 4.2 by a description of the photoresponse experiment and

presentation of the photoresponse data. In section 4.3 the model of the photoresponse

will then be developed and the fit of this model to the photoresponse data will be

described. Finally, sections 4.4-4.6 describe the implications of the fit of the model to the

photoresponse data. Section 4.4 discusses the linearity of 5A with power. Section 4.5

discusses use of the photoresponse as a probe of the SNPC conductance mechanisms.

Section 4.6 examines the dependence of 8T on laser intensity.

4.1 Background

4.1.1 Optically Induced Nonequilibrium Superconductivity

The nonequilibrium state of a superconductor irradiated by visible light was first

studied by Testardi1 in 1971 who performed measurements of the resistance of thin

superconducting films irradiated by pulsed Argon ion laser light at 514nm. These early

measurements showed that superconductivity could be destroyed by light and, more



importantly, that the nonequilibrium state of an irradiated superconductor could not be

described by simple heating of the quasi-particle and phonon distributions. Following

this early work, many experimental and theoretical examinations of the problem of an

irradiated superconductor have greatly improved our understanding of the interaction

between light and superconductors. This work has been part of a larger effort to

understand the properties of nonequilibrium superconductivity: The thermal equilibrium

state of a superconductor is sensitive to many perturbations such as quasi-particle or

phonon injection, microwave radiation, and high energy particles as well as visible and

infrared radiation. This section will focus only on the nonequilibrium state induced by

visible and infrared radiation. The general topic of nonequilibrium superconductivity has

been treated extensively in several works2'3'4 and a review of the interaction of light with

superconductors has also been published5 .

Absorption of Photons. Since visible and infrared photons have energy far in

excess of the superconducting gap (leV>>lmeV), their effect on the superconductor is

simply to break Cooper pairs resulting in highly excited quasi-particle excitations. These

excitations decay very rapidly via electron-electron and then electron-phonon scattering to

energy levels of order A. These very fast processes are similar to those occurring in a

metal since the energy scales are much larger than the gap energy. However, as the quasi-

particles relax to energies near the gap edge, the dynamics become fundamentally

different from that of an irradiated metal. This is because the ground state of a

superconductor is of course fundamentally different from that of a metal: One must to

take into account the pair condensate as well as the quasi-particle excitations and the



phonons. In a superconductor, a high energy or "pair-breaking" phonon with E>2A can

break a Cooper pair resulting in the addition of two quasi-particles to the condensate.

Two quasi-particles can also recombine into a Cooper pair resulting in the emission of a

high energy phonon. Low energy phonons can only scatter inelastically or elastically off

of quasi-particles as in a metal. There are therefore, three intrinsic time scales that

characterize nonequilibrium steady state of an optically illuminated superconductor: the

quasi-particle recombination time zR, the phonon pair breaking time Ts, and the inelastic

electron-phonon scattering rate Tin. A fourth time scale is the time for a phonon to escape

the sample, and is dependent on sample size and configuration. For instance, in thin

superconducting films, phonons can escape directly into an underlying insulating

substrate.

Model Distributions: L* and T*. Although the steady-state nonequilibrium

distribution of quasi-particles in an irradiated superconductor must in general be

computed using kinetic theory, there are two limiting cases in which the nonequilibrium

quasi-particle distribution can be described simply by a Fermi distribution with changes

in either the chemical potential or temperature of the quasi-particles. These are known as

the j * and T* models. The t* model was first proposed by Owen and Scalapino6. It

assumes that quasi-particle recombination is the slowest step in the relaxation process of

the irradiated superconductor and that the phonons are strongly coupled to the

surrounding thermal bath. In this model the phonons and quasi-particles equilibrate to the

bath temperature, but the quasi-particles do not equilibrate with the condensate, resulting

in a quasi-particle distribution described by the bath temperature and a chemical potential,



pL*, different from that of the condensate. This model applies best to very thin films at

low temperatures since the phonons are strongly coupled to the thermal bath of the

substrate and the recombination time for quasi-particles is very long at low temperatures

due to the small density of quasi-particles present at low T. An important consequence of

the j* model is that if the rate of quasi-particle generation is high enough the

superconductor will undergo a 1st order phase transition to the normal state. This

prediction was confirmed7 by experiments on thin film tunnel structures using current

injection to drive the superconductor out of equilibrium.

If, on the other hand, the phonons are weakly coupled to the surrounding thermal

bath and the recombination time is relatively fast, then the energy relaxation will be

dominated by quasi-particle recombination and generation with emission and absorption

of pair-breaking phonons. In this case the quasi-particles will be in thermal equilibrium

with the pair-breaking phonons and both distributions will be described by an effective

temperature T*. The low energy phonons will remain at the bath temperature since they

can only exchange energy with the quasi-particles via the much slower process of

inelastic scattering. The T* model was first proposed by Parker'7 and is applicable in

most experiments since phonon escape rates, even in thin films, are often slow compared

to the quasi-particle recombination times for temperatures above -1K.

In a bulk superconductor, such as the Ta used in this thesis, the phonon escape

time is long due to the low surface area to volume ratio and low transmission rate of

phonons across the Ta superfluid-He boundary. In this case inelastic scattering of high

energy phonons to low energies (E<2A) becomes the dominant relaxation mechanism of



the high energy phonons. The inelastic scattering rate is typically much less than the pair-

breaking time8 . Therefore very little energy is transferred from the high energy to the low

energy phonons and the T* model will be applicable.

An important consequence of the weak coupling of phonons to the bath is the

effect known as "phonon trapping". The phonon resulting from the recombination of two

quasi-particles is more likely to break a Cooper pair than to escape from the sample or

scatter inelastically to E<2A. The result is that the effective lifetime of a quasi-particle is

enhanced by the factor 1+tes/B, since the recombination phonons regenerate quasi-

particles an average of Tes/TB times before the escaping. This effect will be apparent later

in this chapter and in the next when the dynamics of the quasi-particle and phonon

densities is discussed.

Kinetic Theory Calculations. It is important to mention briefly that these two

models are in reasonable agreement with more involved calculations using kinetic theory,

but that these more complete treatments also predict new phenomena when the

superconductor is strongly perturbed from equilibrium. As mentioned above, in general

the quasi-particle and phonon distributions f(E) and F(Q2) must be calculated from kinetic

theory using the electron phonon interaction a 2(Q)F(Q). Such calculations have been

performed for superconductors under optical illumination 9' 10. For weak coupling of

phonons to the thermal bath, these calculations show that optical radiation results in a

quasi-particle distribution intermediate between the T* and a simple heating model".

This result is in agreement with experiment 12. The deviation from T* is to be expected

since the low energy phonons will experience some heating under these conditions, but



not as much as the high energy phonons which can interact more directly with the quasi-

particles via pair breaking. For strong coupling to the thermal bath, kinetic equation

calculations have been carried out by Elesin13 and show that for certain values of the

temperature and phonon trapping factor 'rsrB the gap can be multivalued. Therefore a

mixed state results. Many of the predictions of Elesin have been observed 14 however

questions remain concerning the mixed state 15' 16. Note however that the prediction of a

multivalued gap is in qualitative agreement with the p* model prediction of a 1st order

phase transition.

Nonequilibrium Dynamics. As will be seen below, the photoresponse

measurements of this chapter are not sensitive to the exact quasi-particle distribution

induced in the superconductor because they are performed on superconductor normal-

metal point contacts rather than contacts between two superconductors. The

photoresponse of an SNPC gives information only about the change in gap of the

irradiated superconductor. It is therefore important to understand the connection between

the change in gap and changes in the quasi-particle distribution. Parker 17 showed thatfor

small departures from equilibrium, the decrease in gap is proportional to the increase in

the total number ofquasi-particles. The relationship is the same for both the p* and T*

distributions as well as intermediate distributions. For this reason it is not necessary to

examine the time evolution of the full quasi-particle and phonon distributions: Only the

dynamics of the total quasi-particle density is important.

The time evolution of the total quasi-particle density was first addressed by

Rothwarf and Taylor'8 . They took into account the fact that the dynamics of the quasi-

-1 I



particles is coupled with that of the pair breaking phonons and developed coupled rate

equations for the total densities of quasi-particles and pair breaking phonons. These rate

equations take into account all of the processes discussed above: quasi-particle

recombination, pair breaking, inelastic electron-phonon scattering and phonon escape

from the sample, as well as external sources of quasi-particles and phonons such as

optical illumination or quasi-particle currents. A modification to the original equations is

the inclusion of diffusive terms to account for spatial variation of the quasi-particle and

phonon densities' 9. With all of these considerations Rothwarf and Taylor's equations

take the form:

-D V2 N =Ih 2RN 2 +1 N p
t p p * TB ph

1 Nph Nph
-- DhVNNh =ph +RN - N h p

Sph ph ph B  ph Tes

In these equations, Nqp is the total number of quasi-particles, Nph is the total number of

pair-breaking phonons (phonons with E>2A), and NphT is the number of pair-breaking

phonons present in thermal equilibrium. As mentioned above, TB is the time for a phonon

to break a Cooper pair and Tes is the time for a phonon to leave the sample or scatter

inelastically to E<2A, where they can no longer break Cooper pairs and are no longer

included in the density Nph. The rate tes1 appearing in these equations is in fact equal to

the sum of the phonon escape rate and the rate of inelastic scattering to low phonon

energies E<2A. The terms Iph and Iqp are source terms for quasi-particles and phonons.

The recombination time does not appear explicitly in these equations because the rate of

decrease of the total number of quasi-particles due to recombination is proportional to the



number of pairs of quasi-particles present and hence to the square of Nqp. For small

deviations from thermal equilibrium, however, the quasi-particle density decay rate is

linear in the increase in quasi-particle density Np-NqpT, and the decay time is

TR=(2RNqpT)-l , where Nq,T is the number of quasi-particles present in thermal equilibrium

in the superconductor. These equations also include diffusive terms with diffusion

constants Dqp and Dph. The diffusion terms are generally left out in the treatment of thin

films, but are important in describing the evolution of the quasi-particle density in the

bulk superconducting samples of this thesis.

It should be noted that these rate equations can be derived from energy averages

over the appropriate coupled Boltzmann equations lo. The Rothwarf Taylor equations are

valid because, at low temperatures, kBT<<A, most of the quasi-particles and pair-breaking

phonons have energy EqpA or Eph-2A, therefore one may use energy averaged relaxation

rates and densities.

4.1.2 Optically Induced Nonequilibrium in Metals

The non-equilibrium state of an irradiated metal can be described by considering

the flow of energy between the electron, phonon and bath reservoirs. In this picture one

considers the dynamics of the total energy of the electrons and phonons. The electrons

and phonons are described by effective thermal distributions, but are not necessarily at the

same temperature. Optical illumination couples to the electron energy reservoir and this

energy is transferred to the phonons by inelastic electron-phonon scattering. Wellstood

et. al.20 have shown both experimentally and theoretically that the rate of energy transfer



from the electrons to the phonons is, in the absence of diffusion: I(Tes5 Tph), where Z is

the thermal contact parameter, T, is the effective electron temperature and Tph is the

effective phonon temperature. These authors have also shown how this temperature

dependence is modified by diffusive effects due to the temperature dependence of the

inelastic mean free path of electrons.

The phonon energy couples from the metal to a surrounding insulator or cryogenic

liquid via a thermal boundary resistance. The flow of phonon energy across a boundary

between a metal and either an insulator or metal has been treated by many authors since

Kapitza21 first observed a thermal resistance at such boundaries. The origin of the

thermal resistance is the acoustic mismatch between the phonons in the two materials

which results in a finite phonon reflectivity at the boundary. The resulting heat flux was

calculated by Khalatnikov 22 for metal superfluid He boundaries and by Little23 for metal

insulator boundaries to be: J=aph(Tph4-Tbath 4). The T4dependence arises from an energy

integral over the product of the phonon density of states F(Q)-~Q 2, and the phonon energy

2. The observed T dependence differs from the ideal, and many modifications have been

considered 24 including inelastic scattering of electrons off of a surface oxide, effects of

surface roughness, and interaction of electrons directly with the He.

Recent studies have shown how sample size plays a role in determining which

energy transfer rates dominate the energy relaxation and how the effective temperatures

of the electrons and phonons are related to the power driving the metal out of thermal

equilibrium2 5 20. Such measurements have been performed on thin film and wire

geometries. The metal is driven out of thermal equilibrium by applying an E field and



temperature measurements are made by measuring changes in noise20 or in current-

voltage characteristic (IVC) of the microstructure26 . Optical measurements have also

been used to study non-equilibrium properties of metals both at room T and at cryogenic

temperatures. These measurements have been performed primarily on thin film tunnel

junctions between a normal metal and a superconductor and have provided information

on the non-equilibrium state of both the superconductor and normal metal. As in the

study of nonequilibrium superconductivity, very few measurements 27 have been

performed to examine the nonequilibrium properties of cryogenic metals using the optical

response of point contacts at cryogenic temperatures. As will be seen below, the

photoresponse of a superconductor normal-metal contact acts as a thermometer of the

effective temperature of electrons in the metal tip, and provides another tool for studying

heat transfer mechanism between metals and superfluid He.

4.2 Photoresponse Experiment

Fig. 4.1 shows the experimental setup used in measuring the photoresponse of the

Ta-W superconductor normal-metal point contacts (SNPCs). These were previously

described in Chapter 3: The 15pm tungsten whisker was etched to a 10-100nm radius tip

and the Ta was polished to an optical flat. Light at 860nm from a Ti:Sapphire laser was

focused through a window in the cryogenic dewar and was centered on the contact. The

angle of incidence of the laser beam was -150 to the surface normal of the Ta (near

normal incidence on the Ta). The laser power was 10-1000pW, and the laser spot

diameter was either 15 or 26pm. The laser intensity at the contact was therefore between



Fig. 4.1 Photoresponse Experiment

Fig. 4.1. Photoresponse Experiment. Light is focused through a
window in the He dewar onto the W-Ta normal-metal superconductor
point contact, which is immersed in superfluid He. The light is chopped
on and off at 1kHz and the change in voltage on the contact is detected by
the lock-in. A bias voltage is coupled to the contact with a bias resistor.
This voltage is scanned and recorded along with the lock-in signal
yielding a photoresponse plot vs bias voltage. (See Fig. 4.2.)

one and a few hundred W/cm2 . The light was chopped at 1kHz in one set of

measurements and modulated sinusoidally at 50% in another using an AOM. (Fig. 4.1

shows only the chopper.) The change in voltage on the contact was measured with a

lock-in amplifier. As in the dynamic resistance measurements, a bias voltage was

coupled to the contact through a resistor and measured with an opamp (not shown). The

bias voltage was scanned and recorded along with the photoresponse, generating a plot of



photoresponse vs bias voltage across the contact. Fig. 4.2 shows 4 sets data. Fig. 4.2a

and 4.2b used chopped light and Figs 4.2c and 4.2d used the 50% modulated light.

a

b

Fig. 4.2 Photoresponse vs Bias Voltage. Four data sets generated with the setup of Fig.
4.1. Each curve was generated with a different laser intensity. Plots a and b were
generated with chopped light. The laser intensities, in W/cm 2, starting with the smallest
plot are: (a) 45, 83, 89, 199 (b) 14, 24, 30, 39, 50, 58, 71, 86. Plots c and d were
generated with 50% sinusoidal modulation. The peak to peak laser intensity swings are:
(c) 32, 65, 132, 254; (d) 108, 184, 214, 222, 399, 403, 849.

30

a 10

-20 -

-30

-6 -4 -2 0 2 4 6
Bias Voltage (mV)



30

20

10

0

-10

-20

-30

-6 -4 -2 0 2 4 6
Bias Voltage (mV)

80
60 -

40 -

-20 -0P 0S-20
a -40

-60 -

-80

-6 -4 -2 0 2 4 6
Bias Voltage (mV)

Fig. 4.2 (cont.)

0>
0

0



4.3 Photoresponse Model

The SNPC photoresponse can be understood by considering the change in the IVC

of the irradiated point contact. As previously discussed, the BTK current through a

ballistic contact between a normal metal and a superconductor is:

I= k fdE[f(E- eV,T)- f(E,T)].[l + A(E,A,Z,F)- B(E,A,Z,F)], (4.1)

where A is the probability of Andreev reflection and B is the probability of normal

reflection at the NS boundary, A is the superconducting gap, T is the temperature of the

metal (the superconductor temperature enters only via the gap), V is the bias voltage

across the contact, Z is proportional to the small, residual barrier at the contact, and F

takes into account the finite lifetime of quasiparticles in the superconductor. As

discussed in the last chapter, the BTK parameters A, T, Z, and F vary between contacts,

and must be determined for each contact by performing a least-squares fit of the dynamic

resistance of the contact to the theoretical BTK dynamic resistance. See Chapter 3.

To understand the photoresponse, the effect of irradiation on both the tungsten tip

as well as the bulk tantalum must be taken into account. The effect of irradiation on the

tungsten metal tip is to increase locally the effective electron temperature in a region

extending up the tip a length equal to the laser spot size. Due to diffusion of electrons,

this region will extend beyond the laser spot a length of order the electron diffusion

length. The effect of irradiation on the bulk superconductor is to break Cooper pairs in

the superconductor, resulting in an increase in the density of quasi-particles and

corresponding decrease in the superconducting gap in a region at the surface of the



superconductor of depth equal to the diffusion length of quasi-particles in the

superconductor. The diffusion length scales of both quasi-particles and metal electrons

are large compared to the elastic mean free path of electrons impinging on the NS

boundary. This means that current flow in the irradiated SNPC will be well described by

a BTK IVC with different values of the superconductor gap and effective metal electron

temperature which take into account the laser irradiation. The resulting photoresponse is

then proportional to the difference of the unirradiated and irradiated IVCs:

Photoresponse oc 61 = I(V,T+6T,A-8A,Z,F)-I(V,T,A,Z,F). (4.2)

The parameters Z and F are not expected to change appreciably because they

depend mainly on impurities near the contact (See chapter 2), and these are unaffected by

non-equilibrium changes in the quasi-particle and metal electron distributions. Moreover,

it is not clear how changes in Z and F could result in the observed linear dependence on

laser power of the finite bias photoresponse signal. (See below and Fig. 4.6)

Further evidence that Z and F do not change in the illuminated IVC were obtained

from a study of the temperature of the dynamic resistance. As mentioned previously, the

effect of light is similar to an effective heating, so the dependence of F and Z on T should

be similar to their dependence on laser intensity. Dynamic resistance measurements were

performed as the temperature of the He was gradually allowed to increase from 1.8K to

4.3K, the boiling point of He under a few atms of pressure. The temperature was

recorded on a thermal diode and the series of RVCs were all fit using the BTK model to

obtain the temperature dependence of the parameters A(T), Z(T), and F(T). The results



for one of the runs are shown in Fig. 4.3. The gap shows the characteristic decrease with

temperature, but Z and F remain approximately constant. The only trend is that F

decreases slightly with temperature. A decrease in F, though, cannot account for the

observed signal, since a decrease in F results in increased excess current flow (See

Chapter 2) and hence an increase in the finite bias signal which was not observed.

Fig. 4.4 shows graphically how the photoresponse is equal to an optically induced

current increment. The top half of the figure shows an irradiated and unirradiated BTK

current voltage curve, greatly exaggerated for the purpose of argument, and the bottom

figure shows a photoresponse and the best fit 61 from the model.

Fitting Procedure. The actual signal voltage measured by the lock-in amplifier is

equal to this change in current divided by the conductance of the contact:

Photoresponse = (I(V,T+5T,A-8A)-I(V,T,A))/(dI/dV) (4.3)

Fig. 4.5 shows the fits of the model to the curves of Fig. 4.2. The curves are easy to fit

"by hand,", and this was fully adequate for the purpose of comparing data and model.

The reason for this is that the constant photoresponse signal at large bias depends only on

the change in gap 8A. This is clear from Fig. 4.4, which shows that this signal arises only

from the change in excess current which is proportional to the gap of the superconductor.

(See Chapter 2). Changes in the metal tip temperature only smear out the photoresponse

signal, but do not affect the finite bias signal. The manual fit therefore had two steps:

Adjust 8A to match the observed photoresponse signal at large bias and then adjust 8T to
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Fig. 4.4 Model of Photoresponse. The point contact photoresponse is proportional to
the change in current induced by light. The top plot shows an irradiated and an
unirradiated IVC (exaggerated). The bottom plot shows the model curve generated by
taking the difference of two such BTK IVCs along with an actual photoresponse curve.
The effect of light is taken into account by using an irradiated IVC that has an increased
effective metal electron temperature, T+8T, and a decreased gap value, A-SA.
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letter as in Fig. 4.2. The photoresponse model curves are given by:
(IBTK(V,A-6A,T+6T,Z,F)-IBTK(V,A,T,Z,F))/(dI/dV). The fit is performed
by adjusting 6A and ST, while A, T, Z, and F are held fixed at values
determined by the BTK fit to the dynamic resistance of the contact.
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Fig 4.5 (cont.)

fit the structure at zero bias. Changes in 8T affected only the height of the maxima and

minima near V=A. The values of A, F, and Z used in the fitting procedure were

determined by fitting the dynamic resistance of that same contact to the BTK model as



described in Chapter 2. The value of T was measured during the experiment. The 50%

data required adjustment of both T and 5T to account for the DC laser intensity.

Fig. 4.6 shows plots of the fit values 5A and 8T taken from the photoresponse

curves of Fig. 4.2. These are plotted vs incident laser intensity. The plots show that 8A is

linear in the laser intensity. The temperature change was not linear in laser intensity.

Instead, the irradiated metal temperature is related to the laser intensity by: Teffmetaln-THe

bathn-laser, where is 3 in all the plots except 5a, in which n=4 The next three sections will

discuss the significance of these results.

4.4 Change of Gap Under Laser Illumination

The linear dependence of the decrease in gap 6A on laser power follows from 1)

Parker's result 17 relating the decrease in gap to the increase in quasi-particle density and

2) a solution of the linearized Rothwarf and Taylor equations. Specifically, Parker's

result states that, if 8A is small, then 6A/A is proportional to the excess quasi-particle

density induced by the light:

5A/A=-28Nqp/(4N(O)A) (4.4)
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8Nq,/(4N(O)A)<0.1 (4.5)

Where N(O) is the single spin density of states at the Fermi energy. Parker showed that

this result is approximately independent of the exact non-equilibrium quasi-particle
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distribution as long as the change in quasi-particle density does not exceed the limit set by

Eq. 4.5. This result is to be expected since the superconducting order parameter is a

measure of density of Cooper pairs in the superconductor, and so a small increase in the

number of quasi-particle excitations (broken Pairs) should be reflected in a decrease in

the Cooper pair density.

The relationship between the laser intensity and the induced quasi-particle density

follows from a solution of the Rothwarf-Taylor equations with diffusion included. As

discussed in the background section these equations are:

D V2 N = I 2RN2 2
qp qp qp _ + Nph

1 Nph-N T  (4.6)

S-DphV 2 N h ph RNp - Nph ph

where, if NqpT is the number of quasi-particles in thermal equilibrium, then (2RNqpTy)l is

the recombination time, TR; Nqp is the total number of quasi-particles of all energies, Nph

is the total number of "pair-breaking" phonons, i.e., those with Eph<2A, TB is the time for

a phonon to break a Cooper pair (averaged over energy), tes is the time for a phonon to

leave the sample or equilibrate without breaking cooper pairs, Dqp and Dph are the

diffusion constants, and Iqp and Iph are source terms.

The equations imply that, Nqp, the density of quasi-particles is in general

nonlinearly related to the laser power, which is proportional to the quasi-particle source

term, Iqp. However, as can be seen in Fig 4.6, the observed 8A is linearly related to the

incident laser intensity. Therefore, using Eq. 4.4 8Nqp varies linearly with Iqp and the



linearized version of these equations is sufficient to analyze the data. A linear solution of

the equations will be valid as long as the increase in quasi-particle density is small

compared to the thermal number of quasi-particles in the superconductor.

In addition to the linearity assumption, two other assumptions can be made in

solving these equations: 1) The phonon diffusion length and time are small enough that

the phonon density follows the quasi-particle density adiabatically' 9 (i.e. phonons break

Cooper pairs before diffusing appreciably). This assumption follows from the fact that

the phonon velocity (Vsound-2xl03m/s) is much less than the quasi-particle velocity

(vfemi- 106m/s), and that the phonon pair breaking time is of order the phonon elastic

scattering time8. The space and time derivatives in the second Eq of 4.6 are then zero,

resulting in a relationship between Nqp and Nph that can be used to eliminate Nph from the

first equation of 4.6. 2) The laser spot is large enough (25mn) compared to the quasi-

particle diffusion length that the one may assume one dimensional diffusion in the

direction normal to the surface (x-direction).

Under these assumptions, the linearized equation for the steady state value of

8Nqp=Np-Nqp T results:

26N qp 2
D 2 = Ip= qp - 2S 8Nqp (4.7)

Note that in this equation the recombination time TR is enhanced by the phonon trapping

factor (1 +Ts/tB), resulting from the fact that the phonons emitted in quasi-particle



recombination generate more quasi-particles by breaking pairs before they escape or relax

via other mechanisms.

The quasi-particle source term Iqp is related to the incident laser power as follows.

The incident light decays exponentially into the sample with decay constant a. The rate

of creation of quasi-particles can be computed from the Poynting vector of the optical

field by using conservation of energy:

S(x)= Soe
-ax (4.8)

V. S = -- aS(x) = Q(x) (4.9)
at

Q is the volume rate at which energy is deposited in the superconductor due to the

Poynting vector S. Since the average energy of quasi-particles is of order A, the rate of

energy deposition is related to the source term Iqp as Iqp(x)=Q(x)/riA, where 1 is of order 1

and takes into account the fact that the average energy of quasi-particles is slightly larger

than A and that the laser energy is held largely by the quasi-particles as opposed to the

phonons' 7. The value of the Poynting vector at the surface of the superconductor is

related to the reflectivity of the tantalum and the incident laser power/area: So=Si,,(l-

R)=(Plaser/Abeam)(1-R). Therefore the source term has the form:

I(x) = R) e - x  (4.10)ariA



The linearized equation can then be solved with the boundary condition that no

quasi-particles flow across x=0: dNqp/dxlx=o=0. The solution of the linearized equation is

then the sum of two exponentials:

N,(x)- N T = i(1-a/R) 1 -x -- x) (4.11)

In this equation --r=R (1GT+sTB)/ 2 is half the enhanced recombination time and D is the

diffusion coefficient for quasi-particles. The optical penetration depth, 1/a, is very small

compared to the quasi-particle diffusion length diffusion length, -fD, and this makes the

solution essentially an exponential with a decay length equal to 8:

So (1 - R) x/
N,(x) -Np iA 1 R5e- -(4.12)

Current flow through the contact is only sensitive to the value of this solution within a

quasi-particle mean free path (-10nm) of the contact. Since this is much smaller than the

quasi-particle diffusion length, this expression may be taken at x--0 and related to the

observed change in gap:

8A (N, (0) - N) 2 Sinc (1 R)S2 - (4.13)A 4N(O)A - 4N(O)A rlA D

This slope of 8A/A vs Sinc(l-R) may be compared with the graphs of Fig. 4.6a. Taking

parameters for Ta: N(O)=7x1028 states/eVm3 , A=0.7meV, r=40nsec (see next chapter),

VF=0.6x106m/s, and eastic=10nm, the slope becomes 1.3x10-3m2/W. This is very close to

the average observed value of 1.7x10 3m2/W. The agreement is very good considering



that parameters such as D=(1/ 3 )VFermi elastic and the enhanced recombination time z are not

known with great accuracy for the sample.

To address the assumption of linearity one can calculate the value 6A/A for which

the total number of quasi-particles is equal to the thermal number of quasi-particles. The

total density of quasi-particles in a superconductor at temperature T is calculated from the

quasi-particle distribution and density of states and is:

N = 4N()A 1/2 -A/kBT

Using this result, for T=1.8K, the maximum value of 6A/A is

8A/Almax=2Nqp/(4N ( 0)A) =0. 13 (4.14)

Many of the measurements are below this value, although linearity is observed above this

value.

4.5 Use of Photoresponse as a Probe of SNPC Conductance

As discussed in chapter 2, the excess current flow through an SN contact at bias

voltages above A is proportional to the gap of the superconductor. Since the constant

photoresponse signal at bias voltages greater than the gap is proportional to the change in

gap, it can be viewed as a probe of excess current flow through the contact. This probe

can be used to directly verify one of the assumptions of the model of the finite bias peaks

of the last chapter: The destruction of superconductivity at the finite bias peak can be

directly observed with the photoresponse, because, if the superconductivity is destroyed
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Fig. 4.7 Optical Probe of the Transition at the Finite Bias Resistance Peak. The top
curve shows the dynamic resistance of an SNPC with three finite bias peaks. The lower
curve shows the photoresponse of this contact. The photoresponse signal at bias voltages
V>>A(=0.7mV) is proportional only to the optically induced change in gap, 8A. The fact
that this signal is constant up to the first peak and then vanishes provides convincing
evidence that the first finite bias peak corresponds to a destruction of superconductivity at
the contact (making A=O) while the higher voltage peaks must arise from a different
mechanism. (See model of Chapter 3.)

then the gap goes to zero in the vicinity of the contact. This should be observable as a

sudden decrease in the photoresponse signal. In fact, in some contacts, where there is

more than one finite bias peak, this probe of the excess current will distinguish whether
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the gap goes to zero in steps, or whether the higher order peaks have some other origin.

Fig 4.7 shows both the dynamic resistance and the photoresponse of such a contact. The

photoresponse signal goes to zero at the first finite bias peak, indicating that the gap near

the contact as well as the excess current have gone to zero after the first peak. The higher

order peaks result from other processes such as quantum interference. This is the first

direct observation of this effect, and clearly points to applications of light as probe of

conductance mechanisms in other systems with NS interfaces such as, for instance, the

systems discussed in Chapter 3 that displayed finite bias peaks.

4.6 Electron Temperature vs Laser Power

The raw temperature data of Fig. 4.6b can be understood by plotting the change in

temperature according to the formula (Te3-Tbath3 )=aIlaser. When the light is chopped on

and off, this formula may be applied directly and the laser intensity will be linear in the

difference of the cubes of the temperature. This is shown in Fig. 4.8b. (4.8a is plotted as

in 4.8b, but with the fourth powers and will be discussed below.) For the 50%

sinusoidally modulated light, the data cannot be plotted as a straight line. Instead the

temperature changes can be plotted vs: (2aIlaser+Tbath 3)1 3-(aI1aser+Tbath3) 1/3 . This formula

has the same single adjustable parameter, a, and takes into account the 50% intensity

modulation of the light. The first term is the temperature with light at its maximum

value, and second term is the temperature with the light at its minimum. The peak-to-

peak amplitude of the oscillating laser intensity is still Iaser. Figs. 4.8c and 4.8d show the

data of series c and d from Fig. 4.6 along with a fit using this formula. Clearly Figs 4.8b

and 4.8c follow this T3 law quite well. Fig. 4.8d is very noisy, but also follows the law
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Fig. 4.8 Fit of 8T vs Intensity to Model. Each plot shows one of the sets

of data points of Fig. 4.6 along with a fit (line) to the model:
TenTbath -- laser, where n=3 for all the curves except (a), and Te=Tbah6T.
(ST is taken from the fit of the photoresponse to the model.) Each curve
has the same letter as Fig. 4.6. The model curve in each figure is: (a) Te4-2-0.4 1 0 3 2 3Tbath4 VS laser; a=2.6cm2K4 ; (b) Te3-Tbath VS Ilaser; a=l.9cm 2K3Wl; (c)
(2alaer+Tat (alaser Intensity to3)1 ; a=Modlcm. Each plot(d) shows oname fit equation
and a value as (c). (The formula for (c) and (d) take into account the 50%

modulated light used in these two measurements.)

102



approximately. One is thus led to consider mechanisms of heat transfer from the

irradiated nanoscale W tip to the superfluid He that result in a flow of heat proportional to

the difference of the cubes of the electron and He bath temperatures.

It was proposed by Little23, that, in the presence of a oxide layer the conduction

electrons can scatter inelastically off of the oxide layer, thereby transferring heat directly

to the He Bath. The T3 dependence then results from the two dimensional nature of the

phonons in the surface oxide, since the flow of energy is an integral over the product of

the surface oxide phonon density of states F(Q)- 2 and the energy transferred from the

electron, which is equal to the phonon energy Q. This mechanism is consistent with the

small size of the contact it two ways. The contact size can be less than the cutoff

wavelength for thermal phonons, greatly suppressing the usual phonon flow of heat due to

bulk phonons (Kapitza effect; see background section.). Secondly, the tip size can be

small compared to the inelastic mean free path of the electrons. This means that the high

energy electrons excited by the light can only equilibrate by inelastic collisions with the

oxide on the tungsten.

Another mechanism which can result in T3 behavior, also proposed by Little23,

considers the effect of surface roughness on the normal phonon Kapitza effect which

produces a heat flow proportional to the difference of the fourth powers of the

temperature. Little showed that the presence of defects and other roughness can result in

a phonon heat flow proportional to the difference of the cubes of the phonon and bath

temperature. The T3 dependence results from need to treat long wavelength phonons

differently from short wavelength phonons. In the presence of roughness, the long

103



wavelength phonons see a smaller effective surface area. Taking the effective surface

area to be A(2)--1', the T3 dependence results. However, because this mechanism relies

on conduction via bulk phonons, which may be suppressed in the nanoscale tip region,

this mechanism is likely to be weaker than the mechanism of inelastic scattering off the

surface oxide.

To our knowledge this T3 dependence has not been observed previously, and

because of the tip's small size, may be much more efficient than the heat conduction

mechanisms that are observed in bulk measurements. The magnitude of the heat flow can

be compared with previous measurements on bulk Cu which also gave T3 dependence.

These measurements showed that Jheat= a(Te3-Tbath 3) where o=0.007K3 cm 2/W. To

compare the present results with this work ones assumes that all of the power which is

absorbed at the tip is flows out of the tip via this heat flux. The laser power absorbed in

the tip is IAer(1-R), where R is the total power reflected from the W tip. The heat flux, J

occurs over twice the area over which light is absorbed. Therefore: Jheat=l1aser(1-R)/ 2 , and

o=(l-R)/2a, where a is the constant from the plots of Fig 4.8. Using the dielectric

constant for tungsten at room temperature, which is not expected to be very different at

cryogenic temperatures, (I-R)~0.5, and a=0.1, 0.2 and 0.2 K3cm 2/W for Figs 4.8b, 4.8c,

and 4.8d respectively.

Another consequence of the small size of the tip is that the effect of diffusion is

minimized near the contact. The region within one mean free path of the tip ( 1Onm)

which is important for the conductance properties of the contact, is much smaller than the

diffusion length in the metal. As a result the induced effective electron temperature is
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uniform in this region, and the flow heat from this region due to diffusion can be small

compared to the heat flux across the W-superfluid He boundary. The electron

temperature distribution farther up the tip requires the solution of a set of coupled

equations for the effective electron and phonon temperatures. The solution requires a

complete knowledge of the geometry of the tip which is not known exactly in this

experiment. The details of the electron temperature distribution farther away from the

contact do not affect the optical response, though, since, as mentioned, the current voltage

characteristic is sensitive only to the electron temperature near the contact.

Since the T3 heat conduction mechanism occurs only when the tip is of small

enough size, one expects to see deviations from the T3 behavior for larger tips. Although

current flow occurs through a nanoscale orifice, some tips have radii as large as 1 jtm,

especially after the plastic deformation that occurs when a sufficiently large force is

applied to the contact. For a large enough tip the bulk phonon Kapitza effect will begin

to dominate and a heat flux out of the tip proportional to the difference of the fourth

powers of the bath and W temperatures will be observed. This can be seen in the data Fig

4.8a which showed this T4 behavior.

4.7 Conclusion

In summary, the photoresponse of SNPCs has been accurately modeled by

assuming that the effect of light can be described by two changes in the BTK IVC of the

contact: A optically induced decrease in the superconducting gap, and an optically

induced increase in the effective electron temperature of the metal tip. The observed
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linear change of gap with laser power is shown to be consistent with theory. The

sensitivity to the gap leads to use of the photoresponse as a probe of the flow of excess

current in the contact. This probe was used to observe directly the destruction of

superconductivity at the contact which was assumed in the model of Chapter 3. The

photoresponse was also used in a novel measurement of the effective non-equilibrium

change in electron temperature of a nanoscale W metal tip. The dependence of the

effective electron temperature on laser power indicates that heat is conducted away from

the tip region via inelastic electron scattering off of the surface of the metal tip in the

constricted region. The inelastic electron scattering is expected to dominate because of

the decreased dimension of the tip, which can be less than the thermal phonon

wavelength and electron inelastic scattering length for electrons in W at 1.8K.
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Chapter 5

Measurement of Quasi-particle Recombination Time

Using the Photoresponse of a Ta-W Point Contact

Introduction

The previous chapter discussed how the nonequilibrium state of a superconductor

can be characterized by the total number of excited quasi-particles and total number of

pair breaking phonons (Ephonon>2A). For small deviations from equilibrium, the quasi-

particle density relaxes to its equilibrium value at a well defined rate. This quasi-particle

density recombination rate is a function of only equilibrium parameters and the basic

parameters of superconductivity, and is well approximated by the recombination time for

individual quasi-particles with energy close to the gap energy A. The quasi-particle

recombination time is important because it is often much longer than the other scattering

processes for quasi-particles and is therefore often the limiting step or bottleneck in the

dynamics of a nonequilibrium superconductor. The quasi-particle recombination time is

also important because it is related to basic parameters in the microscopic theory of

superconductivity, and so it provides a check on this theory.

In the description of the photoresponse of a superconductor normal-metal point

contact (SNPC) given in the last chapter, it was discussed how the effect of light on a

superconductor is to break Cooper Pairs, resulting in an increase in quasi-particle density

and a corresponding decrease in gap. When the light is modulated on and off, this effect
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is observed as an oscillating photoresponse voltage on the contact. It was shown that for

bias voltages V>A, this oscillating voltage is linearly related to the change in gap and

therefore measures the optically induced quasi-particle density directly. When the

modulation frequency of the laser intensity exceeds the relaxation rate of the quasi-

particle density, (or equivalently, the inverse of the response time of the quasi-particle

density) the photoresponse signal will be decreased from its value at low frequencies.

This roll-off of the photoresponse signal can therefore be used to measure the quasi-

particle recombination time which, as mentioned above, is the same as the relaxation rate

of the quasi-particle density. This chapter will present a quasi-particle recombination

time measurement using the roll-off of the photoresponse.

An important aspect of this measurement, described in this chapter, is the method

used to measure the roll-off: Because the quasi-particle recombination time is very short,

signals originating on the point contact at the roll-off frequency may be beyond the

electronic detection bandwidth of the experimental setup. This bandwidth is limited by

unavoidable stray lead capacitances and impedance mismatch between the contact and the

coaxial cables carrying the signal to the lock-in amplifier. The measurement technique,

which takes advantage of the nonlinearity of the SNPC current voltage characteristic,

converts the signal due to the optically induced oscillating quasi-particle density to an

intermediate frequency lying within the detection bandwidth. As will be shown below

this intermediate frequency signal is proportional to the derivative of the photoresponse

and can be used to determine the roll-off frequency.
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The advantages and novelty of this roll-off measurement technique are threefold:

1) It utilizes the simplicity and versatility of point contacts, allowing measurements on

any superconductor that can be used in a point contact configuration. This includes

materials that can only be easily made in bulk form, such as crystalline and some ceramic

high temperature superconductors. 2) It can be used to perform measurements of the

quasi-particle recombination rate in real time even when the recombination rate is beyond

the bandwidth of the front end electronic detection system used to measure signals on the

point contact. 3) Since the photoresponse signal is linearly related to the induced quasi-

particle density (see chapter 4), the real time relaxation rate measured by this method can

be clearly related to the decay of the quasi-particle density.

Section 5.1 will review calculations of the quasi-particle recombination time from

the theory of superconductivity. This will be followed by a review in section 5.2 of

various techniques of measuring the quasi-particle recombination time which will serve

to place the measurement of this chapter in the context of the large number of

recombination time measurements performed over the past 30 years. Section 5.3 will

describe the experimental method, showing how the intermediate frequency signal is

generated. Section 5.4 will then show how the recombination time can be obtained from

the roll-off of this signal as laser intensity modulation frequency is increased. The

chapter concludes with a discussion in section 5.5 of sources of variation in the quasi-

particle recombination time and fundamental quantum limits on the detection method

discussed in this chapter.
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5.1 Calculations Of The Recombination Time

The first calculations of the quasi-particle recombination time were done by

Schrieffer and Ginsburg1 using Golden Rule arguments to compute the rate at which two

quasi-particles recombine to form a Cooper pair. More recently Kaplan2 et. al. have

published the most authoritative set of calculations of quasi-particle and phonon

scattering rates in superconductors. These results are computed from the BCS theory of

superconductivity using Green's function methods. Their results show that all of the

quasi-particle scattering rates for a given superconductor are related to a basic time scale:

or=Zl(0)h/27tb(kBT) 3  (5.1)

Where Zi(0) is the real part of the energy dependent renormalization parameter taken at

zero energy. This parameter is approximately equal to 2 for metallic superconductors,

and is 1.69 for Ta. The parameter b is the coefficient in the approximate expression for

the electron phonon coupling parameter c2 (Q)F(Q)=b22 in which C2 is the phonon

energy, a2(Q) is the electron-phonon coupling constant, and F(Q) is the phonon density

of states. The approximate expression is valid for Ta up to phonon energies 2A, hence it

is used by Kaplan et. al. in calculations of the Ta quasi-particle recombination time. For

Ta the parameter b is 1.73x10 -3 meV-2. Using these parameters one finds that for Ta:

to=1.78x10-9sec.

The parameter to sets the scale for the recombination time, however, the actual

recombination time also depends on the quasi-particle energy and the distribution of the

quasi-particles. In thermal equilibrium the recombination time is therefore temperature
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dependent. For quasi-particles with energy near A(T) and for low temperatures, Kaplan

gives an approximate expression for the recombination time which is valid for the

temperatures considered in this chapter:

-1 1 z/ 2A(0) '5/2 1/2

=-1 -1 1/2 e-A(O)/kT . (5.2)

The temperature dependence in this expression results from averaging over a thermal

quasi-particle distribution which is exponential due to the gap in the quasi-particle energy

spectrum. This expression can be understood by considering the expression for the total

number of quasi-particles in thermal equilibrium:

NqpT=4N(0)A(7kaT/2A)l/exp(-A/kBT) (5.3)

The recombination rate is then proportional to the density of quasi-particles:

TR-l= 2 RNqpT  (5.4)

where R is known as the recombination coefficient. This result is also clear from the fact

each recombination event requires two quasi-particles, and Eq. 5.4 was derived this way

in the last chapter from the Rothwarf-Taylor equations.

The relaxation rate of an excess quasi-particle density is different from the

recombination time of individual quasi-particles in two ways. Firstly, since the

recombination time of a quasi-particle is dependent on energy, it must be averaged over

quasi-particle energy to arrive at the recombination time for the quasi-particle density.

However, at low temperatures, most of the quasi-particles will be at energies close to
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E=A, hence the relaxation rate of the quasi-particle density is well approximated by the

recombination time of quasi-particles near the gap energy.

Another more important modification to the recombination time is the effect of

phonon trapping, which was mentioned in the last chapter. When two quasi-particles

recombine, they emit a phonon to conserve energy. This phonon will in turn create two

new quasi-particles unless it scatters inelastically to an energy too low to break a Cooper

pair (E<2A) or escapes from the superconductor into a surrounding insulator. As a result,

excess quasi-particle density will decay more slowly than an individual quasi-particle by a

phonon trapping factor equal to (1 +Tes/TB).

5.2 Review Of Recombination Time Experiments

Measurements of the quasi-particle recombination time were first performed in

the late 60s, and have been repeated on many materials with many different techniques.

All of the methods involve some means of changing the quasi-particle density, either

electrically or optically, and some way of detecting the relaxation rate of the

nonequilibrium quasi-particle density, either directly in real time or indirectly by

inference from measurements of steady state nonequilibrium parameters. A brief review

of these methods follows.

Early measurements 3,4' 5' 6 were all indirect and used thin film double

superconductor-insulator-superconductor tunnel junctions in the configiuration: S-I-S-I-S.

One tunnel junction was used to inject quasi-particles into the center superconductor and

the resulting change in quasi-particle density was detected by measurements of the
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voltage across the second tunnel junction. The steady state quasi-particle density was

proportional to the injection rate times the recombination time and so the recombination

time could be inferred from measurements of the injection current and voltage produced

in the second junction. Direct measurements using current pulse methods were also

employed with SIS tunnel junctions5 using aluminum, which has a very long

recombination time. The recombination time was inferred from the voltage transient

produced by a current pulse through the tunnel junction.

A fundamentally different technique followed from the work of Schmid7 . This

method employs the fact that the kinetic energy of the pair current has associated with it a

kinetic inductance (see Schmid). The kinetic inductance is inversely proportional to the

London pair density, and so a time rate of change in the pair density generates an emf in

the superconductor. A measurement of this emf can then be used to determine the

dynamics of the London pair density in real time. This method was used by Peters8 who

measured the roll-off of such an emf as the frequency of a small RF driving voltage was

increased. The method has more recently been used by Bluzer9 to detect the dynamics of

quasi-particle recombination and generation in an irradiated thin film. In Bluzer's

method, a thin film of superconducting material is placed on the end of a cylindrical

waveguide and irradiated with fast laser pulses. The resulting pulse of induced emf is

then observed on a fast oscilloscope and is proportional to the change in quasi-particle

density. Bluzer was able to observe the dynamics of both quasi-particle generation as

well as quasi-particle recombination. Using a similar experimental setup, Johnsonio was
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able to measure the recombination time of quasi-particles in Niobium by examining the

decay of optically induced emfs.

Other optical methods have also been used to measure the quasi-particle

recombination time. Parker'" and Jaworski' 2 performed an indirect measurement of the

recombination time by using the change in IVC of an SIS junction to infer the change in

quasi-particle density induced by light in a thin film of Pb. Real-time optical

measurements using SIS junctions have also performed. Care had to be taken to ensure

that these junctions had a bandwidth sufficiently high to measure the recombination time.

Finally, microwave reflectivity measurements 13 have also been used as a probe of the

optically induced nonequilibrium. The reflectivity of a superconductor at frequencies less

than the A/h (-10GHz for metallic superconductors) is strongly dependent on the value of

the gap, which can be related to the quasi-particle density.

Since the discovery of high temperature superconductors it has become clear that

new methods of measuring recombination times must be employed. Because the gap of

these superconductors is significantly larger than the classical metallic superconductors,

their recombination times are also much faster. The primary tool used to measure the fast

recombination time of these materials has been pulsed radiation. Bluzer 9 has used the

kinetic inductance technique mentioned above to measure quasi-particle dynamics in high

temperature superconductors.

Other authors have used changes in optical reflectivity14 caused by a laser pulse to

probe the optically induced nonequilibrium. Light generation by high T, superconductors
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has also been used to observe the optically induced nonequilibrium' 5 . The proper

interpretation of these effects is still a subject of research.

Despite the many measurements of the recombination time discussed above a

measurement of the recombination time of Ta was not found. The only previous

measurement was of the branch imbalance 16 relaxation time for temperatures near T,.

This work therefore represents, to our knowledge, the first measurement of the quasi-

particle recombination time in Ta at temperatures far from T.

All of the above measurements were performed on thin films of various

thicknesses. This has presented a difficulty with some novel materials, such as the

ceramic superconductors and also with crystalline materials, which can be difficult to

form into thin films. Also, the primary tool in real time optical measurements has been

pulsed excitation. Because the recombination times are very short for most

superconductors (>1 e-8 sec) pulsed techniques require novel detection methods or special

coupling with the superconducting sample to ensure a high enough system bandwidth to

accurately observe the system response. In some methods, the measured relaxation rate is

not easily related to the fundamental recombination time. As will be described in the next

section, the method considered in this chapter addresses these measurement issues: 1)

use of bulk samples 2) limited signal bandwidth of superconducting structure studied, and

3) ease of interpretation.

5.3 Experimental Method
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As discussed in the introduction and the previous chapter, optical illumination of

an SNPC breaks Cooper pairs in the superconductor resulting in an increased quasi-

particle density and a decrease in the gap. When the light intensity is modulated, the

decrease in gap manifests itself as an oscillating photoresponse voltage on the contact.

For bias voltages greater than gap, this oscillating signal is linearly related to the gap

decrease. By Parker's result (Eq. 4.4 and Ref 17) the gap change is proportional to the

amplitude of the oscillating optically induced quasi-particle density. Therefore the

photoresponse voltage at large bias is proportional to the optically induced quasi-particle

density. To measure the relaxation rate of the quasi-particle density and hence the quasi-

particle recombination time, the laser intensity modulation frequency is increased until a

roll-off is observed in the large bias photoresponse signal. Because the quasi-particle

recombination time is very short the roll-off frequency is beyond the bandwidth of the

lock-in detection system used to measure the photoresponse. At the frequencies of

interest in this measurement (100MHz), this bandwidth is limited by two unavoidable

factors: Stray lead capacitance at the contact; and the mismatch of the contact

impedance, which varies between contacts (10-200n), to the characteristic impedance of

the coaxial cables carrying signals from the contact to the lock-in amplifier.

Instead of detecting the photoresponse directly, then, the voltage resulting from

the oscillating quasi-particle density must be converted to a frequency which lies within

the bandwidth of the detection system. This is accomplished by coupling a local

oscillator (LO) voltage to the contact which differs from the laser intensity modulation

frequency by an intermediate frequency (<100kHz) that is within the detection
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bandwidth. A signal at the intermediate frequency is then generated because of the

nonlinearity of the photoresponse characteristic as a function of bias voltage and can be

detected by referencing the lock-in to the intermediate frequency. As will be shown in

the next section, the signal at the intermediate frequency is proportional to the derivative

of the photoresponse, and integration of this signal recovers the information necessary to

determine the roll-off of the induced oscillating quasi-particle density with modulation

frequency. The derivative signal is also proportional to the LO voltage and therefore the

LO voltage amplitude must be measured to determine the roll-off frequency. This

measurement is also performed using the nonlinearity of the contact as described in

section 5.3.3.

5.3.1 Optical Setup.

The experimental setup used in the measurement of the derivative photoresponse

signal is shown in Fig. 5.1. As in the photoresponse measurement, light is coupled to the

SNPC with a lens. The chopped power modulation used in the photoresponse

measurement was replaced by sinusoidal power modulation for the derivative

measurements. For frequencies below 10MHz direct sinusoidal modulation of the first

sideband of an AOM was used. At 110MHz and 220MHz, sinusoidal modulation was

produced by interfering two sidebands of the AOM. Care was taken to ensure that the

overlap of the two sidebands was maintained a few meters before and after the contact. A

portion of the modulated light was split off before entering the dewar and detected on a

PIN diode to measure the intensity modulation depth and to generate the reference

frequency for the lock-in, which is the intermediate frequency: Ao =COmod-OLo. The
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reference was produced by mixing the local oscillator frequency, OLO, with the

modulation frequency, COmod, detected on the PIN diode.

Fig. 5.1 Recombination Time
Measurement

Laser

-MW-rn®

Fig. 5.1 Recombination Time Measurement. The recombination time is
determined from the roll-off of the photoresponse at frequencies 0mod

which are beyond the signal detection bandwidth. A local oscillator is
coupled to the contact and the lock-in is referenced to detect at the
intermediate frequency COmod-OLO which is generated on the mixer. The
nonlinearity of the contact then generates a signal at this difference
frequency which can easily be detected. The roll-off is measured by
increasing O)mod while keeping Cmod~OLO constant.
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5.3.2 Electronics.

The electronics used in the derivative measurement are also shown in Fig 5.1.

The point contact was formed as in the previous chapters. Voltages were sent to and

carried away from the SNPC with separate micro-coax cables connected very close to the

point contact to prevent unwanted signal rectifications by the lock-in and other

components. As in the photoresponse measurements, the bias voltage was scanned as the

lock-in signal was recorded, yielding in a plot of derivative signal vs bias voltage. The

local oscillator was coupled to a double balanced mixer using a high frequency buffer.

The other channel of the double balanced mixer was the laser intensity modulation signal

detected on the PIN diode which was also coupled via a high frequency buffer. The

difference frequency COLO-COmod was sent to the reference input of the lock-in. The same

LO was also coupled to the contact via a capacitor.

5.3.3 Measurement of Local Oscillator Voltage.

The local oscillator voltage amplitude on the contact was measured using

thenonlinearity of the SNPC IVC: The -100MHz local oscillator was modulated at 1kHz

and the rectified signal from the contact was measured with the lock-in as a function of

applied bias voltage. The voltage could then be computed from the size of the rectified

LO signal. The rectified LO signal is proportional to the second derivative of the IVC

multiplied by the dynamic resistance of the contact*:

This result is valid in the limit of oLO<<A; see section 5.5.3 concerning quantum limits.
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Vr - dV L/ dV v(5.5)

Plots of the measured LO signal as a function of bias voltage as well as fits using this bias

dependence are shown in Fig. 5.2. The fit was performed by adjusting only the LO

voltage amplitude VLO. In the actual roll-off measurements, the LO voltage amplitude

was adjusted so that this signal was the same in each measurement.

8

6 6 -- Data
4

2 - ...... F it

:. 0 -

-2

-4

-6

-8

-5 -4 -3 -2 -1 0 1 2 3 4 5

Bias Voltage (mV)

Fig. 5.2 Local Oscillator Recitification. The LO voltage on the
contact is measured by modulating the LO and detecting the rectified
voltage at the modulation frequency. The plot shows the rectified LO
voltage and the best fit theoretical curve: VLo-(d2I/dV2)/(dI/dV).
Accurate measurement of the LO voltage on the contact is necessary
to measure the roll-off of the photoresponse signal.

5.3.4 Measurement Procedure

To procedure used to measure the roll-off was as follows: The derivative signal

was recorded on a given contact for several laser intensity modulation frequencies. All
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other parameters, local oscillator voltage amplitude, laser intensity modulation depth, and

DC laser power remained the same between measurements. Any decrease in derivative

signal was then due solely to the increased modulation frequency. Each measurement

was performed for at least two realignments of the laser beam on the contact to eliminate

any dependence on misalignment of the optics.

Derivative photoresponse signals vs bias voltage from 4 different contacts are

shown in Fig. 5.3. In the first measurements (Figs 5.3a,b), modulation frequencies

between 1 and 110MHz were used, and the modulation depth was 50%. These runs

showed that there was little roll-off in derivative photoresponse signal up to 10MHz.

Later runs (Figs. 5.3c and d) used 90% modulation depth and included only 0.1MHz as

the low frequency modulation, and 110 and 220Mhz modulation to give a more accurate

measurement of the roll-off.

5.4 Determination Of Recombination Time

5.4.1 Analysis of Derivative Signal

The first step in extracting the recombination time from the roll-off measurements

is to show that the measured signal is proportional to the derivative of the photoresponse.

This can be seen by writing the photoresponse signal as a function of a bias voltage plus a

small local oscillator voltage term and Taylor expanding about the bias voltage:
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Fig. 5.3a

-2 -1 0 1 2 3
mV

Fig. 5.3b

-5 -4 -3 -2 -1 0 1 2 3 4 5
mV

Fig. 5.3 Derivative Photoresponse Signals. These plots show four sets
of derivative photoresponse measurements all taken on separate contacts
with the setup of Fig. 5.1 This is the signal generated on the contact at the
intermediate frequency, Cmod-0 LO when the light is modulated at oSmod and
a local oscillator voltage at frequency COLO is coupled to the contact.
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8I(Vbias,+LO)'I(Vbias)+(dSI/dVbias)VLO

Each term in the Taylor series is proportional to the laser power which is modulated at

Wmod, and so the second term on the right hand side contains a term which oscillates at the

intermediate frequency OLO-Omod. This is the derivative photoresponse signal which is

detected by the lock-in amplifier. Eq. 5.6 therefore gives the bias dependence of the

signal and shows that the underlying photoresponse signal (proportional to 8I; see

Chapter 4) is the integral of the derivative signal detected at the intermediate frequency.

Fig. 5.3 clearly shows a decrease in the derivative signal as )mod is increased, and

these signals can be used in a rough estimate of the roll-off. However, this decrease may

not be due solely to a decrease in the amplitude of the laser induced quasi-particle

density. As discussed in Chapter 4, the photoresponse signal around zero bias is

determined partly by the change 8A, which is proportional to the change in quasi-particle

density, but also partly by 8T in the metal tip temperature which is not related to the

quasiparticle density. To be certain of measuring only the decrease in 6A, one computes

the integral of the derivative signal with respect to bias voltage, which, as stated above,

will be proportional to the photoresponse that would have been measured with the given

laser intensity modulation. As shown in the last chapter, the finite bias value of the

resulting photoresponse signal will be proportional only to the 8A induced by the light

and hence to the amplitude of the induced quasi-particle density. Fig. 5.4 shows plots of
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integralst of each curve in Fig 5.3 vs bias voltage. The plots clearly show that the

induced quasi-particle density rolls off as the laser power modulation frequency increases.

5.4.2 Determination of Roll-off

Clearly the recombination time is of order /vron-off. The exact relationship

between the roll-off of 8A and the recombination time follows from 1) the relationship

between the laser-induced quasi-particle density and SA, and 2) the relationship between

the amplitude of the laser-induced quasi-particle density and the frequency at which the

power of the laser is modulated.

A discussed in the last chapter, if 5A is small, then 8A/A is proportional to the

excess quasi-particle density induced by the light: 8A/A=-28Nqp/(4N(O)A), where N(O) is

density of states at the Fermi energy. The result is approximately independent of the

exact non-equilibrium quasi-particle distribution"7 , and follows from the fact that A is a

measure of the Cooper pair density.

The roll-off of 8A with increasing laser intensity modulation frequency is computed by

considering the dynamics of the total quasi-particle density under laser illumination. The

incident light breaks Cooper pairs in a region of thickness equal to the light penetration

depth. The quasi-particles and phonons generated by this process diffuse into the

superconductor a distance of order the quasi-particle diffusion

t The derivative signals must be multiplied by dI/dV before integrating since the
derivative photoresponse measured on the lock-in is actually proportional to
(d8I/dVbias)/(dl/dVbias)-
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Fig. 5.4b
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Fig. 5.4 Integral of the Derivative Photoresponse Signal. The plots are
integrals of the curves in Fig. 5.3. The large bias value of these signals is
proportional to the induced quasi-particle density. The roll-off of this
quantity as laser modulation intensity yields the value of the quasi-particle
recombination time.
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Fig. 5.5c
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length. This region is characterized by a reduced gap which, as stated above, is

determined only by the increase in total quasi-particle density in the region. The

dynamics of the total quasi-particle density in this region is governed by the rate
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equations of equations of Rothwarf and Taylor18 with an added diffusive term 19 (See

Chapter 4)

-- DqpV2)N =Ip -2RN 2

SNh-N T (5.7)1-D VN
SDph V2 )ph ph qp _ B ph Ph

In these equations, if NqpT is the number of quasi-particles in thermal equilibrium, then, as

stated in the introduction, (2RNqpT )-1 is the recombination time, TR; Nqp is the total

number of quasi-particles of all energies, Nph is the total number of "pair-breaking"

phonons, i.e., those with Eph<2A, TB is the time for a phonon to break a Cooper pair

(averaged over energy), -r. is the time for a phonon to leave the sample or equilibrate

without breaking Cooper pairs, and Dqp and Dph are the diffusion constants.

The equations can be linearized and solved by making the same assumptions as in

Chapter 4: 1) The phonon diffusion length and time are small enough that the phonon

density follows the quasi-particle density adiabatically (i.e. phonons break cooper pairs

before diffusing appreciably); 2) the increase in quasi-particle density is small compared

to the thermal number of quasi-particles in the superconductor; 3) the laser spot is large

enough (25pm) compared to the quasi-particle diffusion lengthS that the one may assume

one dimensional diffusion in the direction normal to the surface (x-direction). Under

these assumptions, a linearized equation for 8Nqp=Nqp-Nq,T results:
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a _2 = 2 B
-DP Dp 8Nqp = qp I- - (5.8)

trff qp

As in the previous chapter, Teftl=R(l+-es/B). The enhancement factor 1+te/tB is due to

phonon trapping as discussed earlier.

The shape of the roll-off is determined by assuming that the incident laser

intensity is a quasi-particle source of the form:

Iqp=Ioexp(-ax)(0.5)(1-coSamodt). (5.9)

Here c is the optical penetration depth which is very small compared to the quasi-particle

diffusion length (c-~20nm). The roll-off of 8Nqp with modulation frequency )mod Can

then be derived and related to the roll-off of 8A using the linear relationship between SA

and 8Nqp. The resulting amplitude 8A as a function of mod is:

8A((mod)/8A(O.mod=0) = (l+(Wmodteff )2 )-1/ 4. (5.10)

This is the roll-off function for the finite bias photoresponse signal, and may be compared

with the experimental results to obtain the recombination time.

5.4.3 Recombination Time of tantalum.

The recombination time is determined by fitting Eq. 5.10 to the measured roll-off

functions taken from the integrated curves of Fig. 5.4. The measured roll-off function for

a given set of curves in Fig 5.4 is obtained by taking the large bias value of the integral of

each derivative photoresponse signal, and plotting these values vs modulation
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frequency. The lowest modulation
1

frequency in each data set was

always chosen to be well below the

0 roll-off frequency. Early

0.1 I I I I I measurements showed little roll-off

0.01 0.1 1 10 100 1000
up to frequencies of 10MHz (See

Power Modulation Frequency (MHz) Fig. 5.3a), and therefore every run

Fig. 5.5 Roll-off. The plot shows the
average roll-off function deduced included a data point at either 1 or
from the four measurements of Fig.
5.2. This is plotted along with a 0.1 MHz. All data points in a given
theoretical curve which takes
diffusion into account. run were normalized to this value to

obtain the roll-off function. Fig. 5.5

shows a plot of the measured roll-off function averaged over all five measurements along

with the expected roll-off function of Eq. 5.10. The value of the quasi-particle

recombination time, averaged over all four measurements was cReff 50nsec. The values

ranged between about 10 and 100nsec. The theoretical value of R for tantalum at 1.8K

was computed by Kaplan et. al.2 to be rR=5nsec. Therefore the average phonon trapping

enhancement factor is TRef R= l 0.

5.5 Discussion

5.5.1 Sources of Variation in the Observed Recombination Time

The range of observed recombination times can be accounted for by several

factors. Uncertainty in the temperature measurement can account for up to a factor of
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40% variation in the observed recombination time. The temperature was measured with

.05K accuracy using a temperature diode. Alignment gave errors of up to a factor of 50%

between measurements. This was reduced by recording the derivative with at least two

alignments. Finally, the effect of phonon trapping must be considered. According to

these measurements the phonon trapping factor was -10 on average. The variability of

the measured recombination time is accounted for in part by the phonon trapping factor.

Phonon escape and equilibration is sensitive to the nature of the tantalum surface.

Roughness and oxides can alter the phonon escape rate into the superfluid He as well as

changing the pair breaking and phonon equilibration times within the superconductor.

5.5.2 Effect of Large Signal Local Oscillator

In some of the derivative measurements the LO voltage had large amplitudes

approaching 0.4mV or half the gap value of A=0.7meV. When the LO is large enough,

higher order terms in the Taylor expansion of I (Eq. 5.6) must be included. The result is

that the integral of the derivative signal is no longer proportional to the photoresponse.

However, most of the correction terms which alter the integral of the derivative signal are

still linear in the small change in gap induced by the light. Therefore the finite bias signal

will still be proportional to the induced change in gap 8A, and can still be used in a roll-

off measurement. The highest order term in the derivative signal which does not depend

on 8A and still gives nonzero finite bias signal is a term that depends goes as

(d2I/dV 2)(d'8I/dTdV2)STVLO3. But since ST is of the same order of magnitude as 8A,

this quantity can be neglected.
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To verify
1

this, the derivative

signals of Fig. 5.3d

were recorded with

SO.1 mV
4 0two local oscillatorj0.33mV

- Theory levels, 0.1mV and

0.3mV. The roll-

0.1 ' ' ' off observed with
0.01 0.1 1 10 100 1000

the local oscillator
Power Modulation Frequency (MHz)

set to 0.3mV is

Fig. 5.6 Effect of Large Local Oscillator. The plot
shows two sets of data taken on the same contact, but plotted in Fig 5.6
with different LO levels. The difference in inferred
recombination times is 30%. This shows that local along with the roll-

oscillators up to 0.3mV and even 0.4mV can be
off measured using

a local oscillator of 0.1mV. The results are the same to within 30%, an error which can

be accounted for by other sources of variation. Therefore the use of local oscillator levels

up to 0.3mV and even slightly beyond this level may be tolerated.

5.5.3 Quantum Limit

This measurement technique has one fundamental limit which however is rarely

of concern. When the LO frequency is close to the gap frequency A/h, quantum effects

must be taken into account. The classical mixer response used to measure the LO voltage

and used in the derivative measurements to relate them to the underlying photoresponse

signal must be replaced by quantum mechanically correct expressions. The classical
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nonlinearity is observed only when the currents flowing through the contact are averaged

over times long compared to h/A. When the frequency is of order A/h, this is impossible,

and the resulting response must include the absorption and emission of quanta of the LO

photon field. The result is that the "Fermi sea" in the metal and superconductor are

replaced by a linear superposition of "Fermi seas". The current is then a sum of the

current from each of the excited Fermi seas of electrons. The coefficients in the sum

depend on the probability of excitation to that level.

In the quantum regime, the two classical mixing responses, the LO rectification

and the derivative signal, then become discrete sums, and the signals are difficult but not

impossible to interpret. However, the quantum regime rarely need be considered in

measuring quasi-particle recombination time. This is because the quasi-particles are well

defined excitations in the superconductor and therefore have lifetimes that are long

compared to their energy which is always bigger than A, making cR<<A. Even near To the

recombination time will be of order A/10, (See Ref. 2) so that derivative measurements

should be valid for the full temperature range of superconductivity.

Summary

This chapter has demonstrated a novel, real-time technique of measuring the

quasi-particle recombination time utilizing the photoresponse of an SNPC between a

sharpened tungsten whisker and bulk superconducting tantalum. The SNPC

photoresponse was shown to measure the change in quasi-particle density induced by the

light. The recombination time is measured in the frequency domain by recording the roll-
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off of the SNPC photoresponse as the power modulation frequency of the light is

increased. Limited system bandwidth is overcome by performing the measurement in a

derivative mode: A local oscillator differing from the laser power modulation frequency

by a frequency within the system bandwidth is coupled to the contact, and synchronous

detection is performed at the difference frequency between the local oscillator and the

power modulation frequency. The average measured value of the recombination time for

tantalum is ReR=50nsec. This implies a sample dependent phonon trapping factor whose

average value is 10.
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Chapter 6

Conclusion and Future Possibilities

This thesis has explored the properties of superconductor-normal metal point

contacts (SNPCs) in new regimes. The ability to control the impedance of the contacts

gave new insight into some of the anomalous behavior observed in their conductance and

shed new light on the mechanisms of destruction of superconductivity at an NS interface.

The thesis also presented the first extensive measurements of the response of these

cryogenic SNPCs to laser irradiation in the near IR at 860nm. These measurements were

described quantitatively using a model based on BTK conductance theory. This resulted

in several novel measurements on both the conductance properties of the NS contact and

of the nonequilibrium properties of irradiated metals and superconductors. This chapter

will briefly describe refinements to these measurements and consider new research

possibilities that flow from this work.

The recombination time measurement can be improved by using a semiconductor

laser instead of the Ti:Sapphire laser used in these measurements. Commercial

semiconductor lasers can be easily modulated internally at frequencies up to 10GHz,

extending the range of the roll-off measurement. Moreover, several frequencies could be

used, adding more points to the roll-off. A more subtle advantage of the semiconductor
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laser is that, because there are no losses in modulating the light (as there were in the

second sideband of the AOM used in the 220MHz modulation setup), the spot size can be

greatly increased, while maintaining laser intensities at the level needed for the

measurements. A larger spot size can improve the stability of the measurements. As

pointed out in the thesis, the exact frequency of operation of the laser is unimportant since

the laser light act only to break Cooper pairs in the superconductor. Therefore, there

would be no need for line narrowing and frequency stabilization in the laser. Such a

semiconductor laser could be purchased for a fraction of the cost of a high power

Ti:Sapphire laser.

Because the point contacts respond at high frequencies, the recombination time

measurement technique can be adapted for use on high temperature superconductors

whose recombination times are much shorter than classical superconductors. Power

modulation would be provided by mixing two lasers beams on the contact as done in this

thesis. If these came from two separate lasers, the modulation frequency could then be

easily tuned. Such laser mixing measurements have been performed on room T normal-

normal point contacts with two CO 2 lasers', and could be adapted to a shorter wavelength

regime.

Finally, the point contact can be studied in a more controlled manner by forming

the contact in an STM. Such studies have been performed 2' 3'4 , but the full utility of the

cryogenic STM in studying the properties of point contacts has yet to be realized. One

advantage of using an STM is that the region of the contact could be studied before and

after formation of the contact, providing information on the nature and size of the contact
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region. The barrier could also be easily controlled in such a contact. Finally, the optical

response of such contacts at visible frequencies, although examined at room temperature

in normal-normal point contacts, is unstudied at cryogenic temperatures and promises the

possibility of high speed nonlinear effects as well as being a tool for studying the

optically induced nonequilibrium state.
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Appendix A

Force Dependence of Barrier Strength

This appendix will discuss an apparent inconsistency in the observed Ta-W SNPC

dynamic resistance. The fits of chapter 3 showed that the barrier strength increased as the

contact resistance decreased. This result seems at first to be inconsistent, since the

contact resistance should increase with greater barrier strength. However, the change in Z

is typically less than 50% between the highest and lowest resistance contacts, and

therefore it cannot account for the change of 10-100 in the contact resistance. The large

change must therefore be due to the increase in contact area, and so the change in barrier

strength need not be related to

Fig A. 1. W-Ni Force vs Contact R the change in contact

resistance.100
10
1

0.1
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1.E+00

i

1.E+02 1.E+04 1.E+06

Fig. A.1 W-Ni Force vs Contact
Resistance. The plot shows the measured
resistance of a point contact between a
sharpened W whisker and bulk Ni vs the
force of the W tip on the Ni sample.

It still remains to

S understand, though, how the

1 .E+08 barrier strength can increase

when the force on the contact

is increased. The conflict can

be resolved by examining the

dependence of the contact

resistance on the force applied
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to the contact.

The dependence of contact resistance on force was measured by Liu' on point

contacts between W whiskers and bulk Ni. Force on the contact was measured by

mounting the Ni sample on a balance and recording the force and contact resistance as the

W whisker was pushed into the sample. The resulting plot is shown in Fig A. 1, which is

reproduced from Liu's thesis. The contact resistance remains approximately constant for

low force and then drops rapidly to -100 where it is again slowly varying with force.

The region of rapid change corresponds to a plastic deformation of the tip as force is

increased (See Liu 79).
Fig A.2. W-Ni Pressure vs Contact R

Behavior similar to this

S 10 is observed in the Ta-

0.1 W contacts of this
0.01

0.001 -
0.0001 thesis

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08 The important

determinant of the
R ()

Figure A.2. W-Ni Pressure vs Contact barrier strength is not

Resistance. The y-values are the force values of
Fig A. 1 multiplied by the contact resistance for that force but pressure on
point. The x values are the same. Because R in
inversely proportional to area, (force)x(R) is the contact. A measure
proportional to pressure on the contact

of the pressure on the

contact can be

extracted from the force by noting that since this is a ballistic contact, the contact

resistance is proportional to the inverse of the contact area (See chapter 2). Therefore the

quantity (Force)x(Resistance) is a measure of the pressure on the contact. This quantity is
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plotted in Fig A.2. Clearly the pressure goes down rather than up as the contact resistance

is decreased. This is consistent with the picture put forward by Liu that the contact

undergoes a plastic deformation, which relieves stress and decreases the pressure.

Therefore although the area increases as the force increases, the pressure on the added

area is less, and one expects that the barrier will actually increase.

1 K. C. Liu, MIT PhD Thesis, P. 51 (1979).
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Appendix B

Zero Bias Resistance Minimum

As discussed in Chapter 3, the dynamic resistance of Ta-W superconductor

normal-metal point contacts often deviates from the simple bias dependence which results

from the assumption of a normal-super interface with an oxide barrier which is assumed

in the BTK model. These deviations can be categorized as either finite bias or zero bias
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Bias Voltage (mV)
2 3 4

Figure B.1 W-Ta Dynamic Resistance.
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anomalous behavior. The Ta-W point contacts of this thesis exhibited both types of

deviation from simple BTK behavior, and Chapter 3 discussed a model of the finite bias

resistance peaks observed on these contacts. This appendix presents data showing non-

BTK behavior at zero bias. This was not studied in detail for this thesis, however, the

temperature dependence was recorded and is displayed in this appendix.

Fig. B. 1 shows the zero bias dynamic resistance of a Ta-W point contact recorded

for several temperatures as the liquid He in which the contact was immersed was allowed

to warm from 1.8 to 4.3K. The curves are all normalized to 1 at a bias voltage of 5mV.

This dynamic resistance has a minimum at zero bias, unlike the maximum predicted by

BTK theory. This dynamic resistance was observed in several contacts. The minimum at

zero bias could be large, so that the minimum at V=A was barely visible, or so small that

the dynamic resistance was essentially BTK in character except for a small dip at zero

bias.
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Figure B.2. Zero Bias Resistance vs Temperature
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Fig. B.2 shows the value of the dynamic resistance at zero bias for each

normalized curve plotted as a function of temperature. The dependence is approximately

linear.

This feature has been observed before in normal-super contacts1' 2 and has been

analyzed theoretically3. The true explanation is still a matter of debate. The explanation

most likely to be true for these contacts is based on the proximity effect. It is assumed

that the barrier region is not a simple NS interface, but that a region of depressed

superconductivity exists in the barrier region. This region has a decreased value of the

gap. The resulting dynamic resistance will then show minima at both gap values.

Therefore the peak in resistance usually observed zero bias becomes a minimum. The

temperature dependence of the zero bias dynamic resistance in this model has been

computed4 and is linear for various values of the proximity parameters, consistent with

the linear dependence observed on this contact.
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