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Abstract

This thesis begins by exploring the problem left open by Wilkinson of computing the distance
of a given diagonalizable matrix to the nearest matrix with degenerate structure. Algorithms
for finding the nearest nondiagonalizable matrix to a given matrix are presented and ana-
lyzed, and an algorithm based on the work of Alexander Malyshev is presented for finding
the nearest nondiagonalizable matrix with a specific nontrivial canonical form.

This thesis will then recast the Wilkinson problem in terms on a more general nonlinear
eigenvalue problem. Software written by the author to solve general nonlinear eigenvalue
problems is presented, as well as a variety of examples of problems which the software can
solve, including Local Density Approximation (LDA) problems arising in solid state physics.

Lastly, this thesis presents several algorithms for computing operators commonly arising
in LDA problems (Laplacian, pointwise multiplication, etc.) using a truncated basis of
interpolating scaling functions (the Deslauriers-Dubuc functions). The algorithms suggest a
means of improving the performance of common linear operations in any truncated compactly
supported wavelet basis.
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Chapter 1

Foreword

What is a nonlinear eigenvalue problem? For us, it has become a catch-all phrase for a flavor

of eigenvalue problem that one does not currently expect to see in an LAPACK style software

library or a Matrix Computations style text. One way to "nonlinearize" the usual Ax = Ax

problem is to have the elements of A depend on x and A. Another example arises when one

wishes to regularize the eigenstructure of A according to some prescribed canonical form

(i.e., given A what is the nearest A such that A has some prescribed eigenstructure). Char-

acteristic of such nonlinear eigenvalue problems is a variational or optimizational procedure

at the forefront of the computation. Polynomial eigenproblems are sometimes referred to as

nonlinear (e.g. Demmel [23] uses this nomenclature, but we are not in favor of this use of

the term).

Some nonlinear eigenvalue problems have structure from which specialized algorithms

for solution can be found. There is a wealth of geometric theory which can lead one to the

nearest defective A to a given A. This geometric theory is elaborated in Chapter 2. There

also appears to be some geometric structure to finding the nearest A to A with an arbitrary

canonical structure, though this is a much more difficult problem than defectiveness, and

the theory is still incomplete (Chapter 3).

More general nonlinear eigenvalue problems may not have as rich a geometric structure as

was found in Chapters 2 or 3 but can still be formulated as optimizations of some function

F(Y) over the set of k-dimensional subspaces of ER or Cn, much the same way that the



eigenvalue problem can be cast as an optimization of the Rayleigh quotient:

min xHAx.

This leads one to consider optimizations over the Stiefel or Grassmann manifolds (or a set

of manifolds in between which we call Stiefel-Grassmann manifolds a.k.a. flag manifolds).

Fortunately, these manifolds have enough structure that their differential geometry is com-

putable in terms of elementary functions and matrix exponentiation. Chapter 4 provides

the computational details for abstracting the optimization algorithms of flat spaces to their

curved analogues on Stiefel-Grassmann manifolds.

One particular Stiefel-Grassmann optimization (actually, it is a pure Grassmann opti-

mization) is the computation of electronic ground states in the Local Density Approximation

(LDA). In an LDA problem the eigenvalue problem is

A(Y)Y = YA,

where Y is n x k and A is diagonal. This is an eigenvalue problem where the operator A

depends on the eigenspace Y, of the sort mentioned earlier.

Work on this problem led to development of the practical aspects of wavelet computations,

as the Y were being represented in a wavelet basis of interpolating scaling functions. This

led to a digression from general nonlinear eigenvalue problems to the improvement of the

performance of common wavelet operators. Thus Chapter 5 may appear to be somewhat out

of place in this thesis, but I hope that this explanation suffices. Chapter 5 appears to have

generalizations to wavelet bases beyond those of interpolating scaling functions. Whether

this is possible or not remains to be seen.



Chapter 2

The Computation and Sensitivity of

Double Eigenvalues

2.1 Introduction

A fundamental problem in numerical analysis is to understand how eigenstructure affects the

numerical behavior of algorithms. Classical insights come from studying the conditioning of

the eigenvalue problem. From this point of view, ill-conditioning is related to nearness to a

defective matrix. More recent insights are based on pseudospectra where interesting behavior

is associated with non-normality. In this chapter, we revisit the classical insights with the

added technology of differential geometry. Pseudospectra are windows into n2 dimensional

space. Singularities in the spectral portrait are relics of a defective matrix. "Singularities"

of these singularities (to be defined later) indicate a center of curvature of the defective

matrices and play a role in conditioning.

If A is an n x n, diagonalizable matrix, we can find a neighborhood about A in matrix

space where the eigenvalues are all analytic functions of the elements of A. Thus we have

n analytic functions A = eigj(A). An eigenvalue Aj is said to be ill-conditioned if first

order variations A result in very large first order variations in Aj. A textbook example is the



12 x 12 Frank matrix

12 11 10 ... 3 2 1

11 11 10 ... 3 2 1

0 10 10 ... 3 2 1

F 12 = 0 0 9 ... 3 2 1

0 0 0 ... 2 2 1

0 0 0 ... 0 11

An c perturbation of the upper right element results in a change in the smallest two eigen-

values of order 10'6 (a relative change of order 2 x 108).

Wilkinson [67, 68] showed that if the conditioning of some of the eigenvalues of a matrix

is poor, then that matrix must lie near some defective matrix. He further presented several

bounds on this distance. In particular, the Frobenius norm distance from F12 to the nearest

matrix with a double eigenvalue is only 1.822 x 10-10.

Nearness to a defective matrix can also sometimes explain transient behaviors in the

matrix exponenital. Such transient behavior is explored by Trefethen [63], who exhibited

the transient behavior of

A = , (2.1)
0 -2

a matrix with distinct negative eigenvalues. His message from this example is that defective

eigenvalues are neither necessary nor sufficient for transient growth. It is curious, however,

that in his example, there is a defective matrix lurking. Let U be defined by the singular

value decomposition UEVT = A + I. Then

UTAU = -1.5 5.0495

0.049509 -1.5

and thus A is a distance 0.049509 (= 9x 10-31 IAl F) from a matrix A with a double eigenvalue,

-1.5. A plot of the norms of the exponentiations of A and A in Figure 2-1 shows that the

defective matrix does play a role.
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Figure 2-1: IletA 12 (solid) and IletA 2 (dashed) vs. t for A defined by (2.1) and its nearest
defective matrix

Given the significance of a lurking nearby defective matrix in these examples, this chapter

studies the computation of the shortest (least squares) distance of any matrix, A, with dis-

tinct eigenvalues, to the nearest matrix, A, with at least one repeated eigenvalue. Wilkinson

reviewed and critiqued several bounds on this distance, although no procedure was given for

this computation. Recently, Malyshev [49] has studied the 2-norm version of this problem.

There has also been recent work on the computation of the distance to more general Jordan

structures in [22, 33, 29, 30], and also in our sg_min template (see Chapter 4).

This chapter closely studies the n2 - 1 dimensional surface of defective matrices and

presents two methods (the sg_min approach is a third, though it will not be discussed in

this chapter) which will identify the A for a given A and give appropriate condition numbers

on A and its repeated eigenvalue. One method proposed will relate the nearby A to the

critical points of the spectral portrait. We shall find that the conditioning of A is directly

related to the degeneracy of the associated critical point. A second method proposed relies on

successive improvements to an approximation of the repeated eigenvalue. This method will

have a stability which is also dependent upon conditioning of the critical points of the spectral



portrait. Although we feel that there is more theoretical value in the first method, we present

the second because of its easy implementation in terms of common Matlab operations.

Throughout this chapter, unless otherwise stated, we will use the Frobenius matrix norm

and inner product. We also assume passing familiarity with concepts from differential ge-

ometry and singularity theory. (We recommend [13] as an excellent reference for singularity

theory.)

2.2 The geometry of eigenvalues

In this section, we will examine the level sets of the eig function and their envelope, the

double eigenvalue variety. We will consider a matrix A with eigenvalue A to belong to a

surface MA in matrix space. This is a surface of co-dimension 1 with a continuous normal

vector field almost everywhere. The envelope of the MA, D, the double eigenvalue variety

is comprised of all matrices with at least one repeated eigenvalue. This surface is also of

co-dimension 1 and also has a continuous normal field almost everywhere.

2.2.1 The level sets of eig

Consider the function eig(A) returning some eigenvalue of A. If A is diagonal, then eig may

be presumed analytic in a neighborhood of A. We define MA = eig-1 (A) to be the set of all

matrices over either R or C with eigenvalue A. MA is a variety which is differentiable almost

everywhere. MA may be thought of as a level set of eig . All A E MA can be characterized by

the constraint equation e(A, A) = 0 for A fixed, where e(A, A) = eig(A) -A in a neighborhood

of A.

It is well known (see [39], pp. 320-324) that if A = eig(A) is a simple eigenvalue with

right eigenvector x (Ax = Ax) and left eigenvector y (yHA = AyH), then variations in A relate

to the variations in A by the formula

y HAz
y= . (2.2)

This formula captures the differential behavior of A(t) eig(A(t)) at diagonalizable matrices.

This formula captures the differential behavior of A(t) = eig(A(t)) at diagonalizable matrices.



More generally, if A(t) is independent of A(t) the derivative of the constraint function, e, is

d yHAx
e(A(t), A(t))= -A. (2.3)

dt yHg:

(Note, the condition A(t) = eig(A(t)) implies e = e 0 reducing to Equation (2.2).)

The differential behavior of any scalar (analytic) function z = g(w) can be captured by

a gradient and a Riemannian (Hermitian) inner product.

S= (Vg, b) .

Therefore, using the Frobenius inner product on matrices (A, B) = tr(AHB), we may rewrite

the perturbation formula (2.2) as
yZH(YXA)

SHy'

from which we see that the gradient of eig is Veig = ~ , and the differential behavior of e

is

e(A(t), A(t)) = (Veig , A)- A.

Geometrically, the gradient of any function is perpendicular to that function's level sets.

Thus, 1 is normal to the surface MA. If we select y and x such that lyll = IIjxj = 1 then
xHy

N = yxH is the unit normal (unique up to sign [or phase]). We may identify s = xHy as the

inverse of the length of the gradient (also up to sign [or phase]).

There is an unfortunate characteristic of the constraint function e. At points of M\ where

the eigenvalue, A, is ill-conditioned, the right and left eigenvectors of A are close to being

perpendicular, thus s = xHy is very small and the magnitude of Veig approaches infinity. If

A were a matrix with a nontrivial Jordan block for A then xHy would vanish and the gradient

of eig (as well as the differential of e) would be infinite.

To obtain a better differential behavior at A with ill-conditioned A, we must dispense

with e and use a constraint equation with a better differential behavior to characterize the

MA surfaces. If we let f(A, A) = Umin(A - AI), we may define MA by the constraint equation



V eig = N/s

Figure 2-2: (Left) M defined by the constraint eig(A) - A = 0 for fixed A. The gradient of
the constraint function points in the direction of increasing A and has magnitude inversely
proportional to the distance to M+6A. (Right) the MA defined by the constraint amin(A -
AI) = 0 for fixed A, giving a gradient of unit length in the direction of increasing A, the
distance to next M\ being proportional to s = vHu.

f(A, A) = 0, A fixed. The function f has the differential behavior

f (A(t), A(t)) = uHAv - AuHv, (2.4)

where u and v are the right and left singular vectors of A - AI (when f(A, A) = 0 the phases

of u and v are such that the right hand side of (2.4) is real and nonnegative).

Observe that u and v are unit length left and right eigenvectors (respectively) of A, and

that setting df = 0 gives

uHV = (UVH, A), (2.5)

which recovers (2.2). The gradient f with A fixed is the unit normal to MA, while the cosine

of the eigenvectors weights the A term. Figure 2-2 summarizes the distinction between the

differential behaviors of e and f.

Another way to view f(A, A) is as the distance from A to M\. Since f is the distance

function to M, the magnitude of its gradient (with A fixed) must be of unit length and



perpendicular to MA. (One can derive 2.5 directly from this interpretation without differen-

tiating f.)

2.2.2 The double eigenvalue variety

The double eigenvalue variety, D, is the envelope of the family MA. Recall that the envelope

of a family of surfaces St parameterized by t can be defined as a tangent surface, E, having

the property that for x E E, there exists a to such that x E Sto and the tangent space of E

at x coincides with the tangent space of Sto at x.

The characterization of the MA in terms of f(A, A) = ,min(A - AI) allows us to analyze

2D. It is well known ([66], pp. 9-10) that A c D iff there exist A, u, and v such that Av = Av,

UHA = AUH, and UHv = 0. Thus, for a differentiable curve A(t) C D with repeated eigenvalue

A(t), we have by (2.4)

f(A(t), A(t)) = d f(A(t), A(t)) = 0 = uHAv = (uvH A),

giving the unit normal N = uvH of D9 at A(t), confirming that 2D is the envelope of the MX.

We can also recover an important property of envelopes since f(A, A) is the distance

function from A to MX. It is the case for all differentiably parameterized families of surfaces,

that the envelope is given by the the critical points of the distance function, i.e. A E D~ when

f(A(t), A) = 0 for some A where A is the nearest element of Mx to A (see Figure 2-3).

In some sense, we have arrived at a geometric reasoning for the choice of Wilkinson's "lo-

cally fastest" perturbation to a matrix A near D which would move A to D nearly optimally.

If one suspects that two eigenvalues, A1, A2, of A can be coalesced with a small perturbation

E, Wilkinson suggested using a perturbation of the form E = a(y1 + y2) (xl + x 2)H where the

yi and the xi are the left and right eigenvectors of Ai and a is adjusted so that A + E E D

(Section 9 of [68]).

From the preceding results, we see that if A E D then the normal line A + aruvH (pa-

rameterized by a) passes through D along a perpendicular, thus the perturbation E = auvH

can be thought of as the perturbation which maximizes the change in the distance to D for

small a and is then the "locally fastest" perturbation to a nearby diagonalizable matrix A.



Figure 2-3: The envelope can be identified by the critical points of the distance from A to
MA.

If one is close to D then one expects (x 1 + x2)/2 will be close to v and (yi + y2)/ 2 will

be close to u. The "locally fastest" perturbation is then expected to be close to the actual

normal of the variety at the actual minimizing point. We will elaborate on this heuristic in

Section 2.3.1.

2.2.3 An illustration by characteristic polynomials

For purposes of "picturing" D and MA geometry, we consider monic nth degree polynomials,

which may be thought of as projections of the n x n matrices via the characteristic polynomial.

Consider the cubic polynomials of the form p(x) = x 3 +ax +b (corresponding to the traceless

3 x 3 matrices). Polynomials with a fixed root A can be represented by a linear relation

between a and b of the form

A3 + aA + b = 0.

A collection of these fixed root lines is shown in Figure 2-4.

The envelope of those lines is a cusp. By varying the constraint equation

3A2A, + aA + tA + b = 0,
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Figure 2-4: A graph in the a-b plane of the lines of polynomials of the form p(x) = x3 +ax+b
satisfying p(A) = 0.

we obtain the gradient of A as a function of a and b,

-(,\, 1) - (a, b)
3A2 - a

We may define a unit normal N = ,1) and set the inverse magnitude of the gradient

3A2 +a
S 2 -+1

The envelope of the lines of this single root family of polynomials is given by s = 0, or

a = -3A 2 (and thus b = 2A3 by the constraint). This gives a curve of polynomials with

double root A, seen as the cusp-shaped envelope in Figure 2-4. Observe that the cusp point

is the polynomial p(x) = x3 , the triple root polynomial.

More complicated shapes arise for quartic polynomials of the form x 4 + ax 2 + bx + c. In

this case, the double root variety is a collection of multiple cusps, the swallowtail.
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Figure 2-5: A graph in a-b-c space of the double root variety, or swallowtail.

In matrix space, the cusp may be formed from the 1-dimensional family of matrices

v1 - 2A 2  A

-2A 1 - 2A2

0 A

0 0 0)

One then has det(xl - M(A)) - x3 - 3A 2x + 2A3, and it is clear that uvH= 0 0 0

1 0 0)
One can verify that det(xl - M(A) - auvH) - det(xl - M(A)) = c (Ax + 1), parallel to the

normals of the double root polynomials. For the quartic case, we may use the two parameter

surface
A

0

0

0

1 -A +A

-A - fl 1 + A4 -_ A2(1 _)

0 -A + ,/

A2

-A 3 +,

1

A)

for which det(zI - M(A, q)) = (Z 2 - A2) 2 -t(x - A)2.

/A
M(A)= 0

0



These matrix families embed the cusp and the swallowtail in matrix space as subsurfaces

in (respectively) 9 and 16 dimensional spaces.

2.2.4 A pseudospectra "movie"

Since we wish to find the nearest matrix A E D9 to a matrix A, it is useful to study the normal

line in matrix space, A + auvH (parameterized by a). We proceed by taking a journey along

a normal to D and plotting the pseudospectra as we go. The spectral portrait will be our 2

dimensional window onto n2 dimensional matrix space.

We have seen in the previous sections that along this line, the double eigenvalue separates

into two distinct eigenvalues which move apart initially with great speed. Additionally, they

will leave behind a stationary point whose location and character will remain invariant as

we go up the normal line for some finite length.

We start out on the cubic polynomial example matrix

(A /1 2A2 A

M(A) = 0 -2A V1 - 2A2

0 0 A

with A = 0.15. The series of spectral portraits presented (Figures 2-6 through 2-10) are those

of M - auvH for various interesting a.

The reader studying these plots may wish to recall a certain "conservation law" which

comes from planar bifurcation theory (see [59, 16]). The "law" is that if all the critical

points of a surface are nondegenerate, they may be assigned charges, all extrema get a

+1 charge and all saddles get a -1 charge, which will be locally conserved through all

continuous deformations of the surface. Additionally, spectral portraits are continuous, and

their contours approach concentric circles about the origin for large IA . Thus any spectral

portrait can be continuously deformed into a bowl and therefore has a total charge of +1.

The contour lines in Figures 2-6 through 2-10 are not uniform, but have been chosen to

be dense about the current value of a and to highlight other important qualitative features.

We can summarize the sights we have seen on this journey in Table 2.1. The reader
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Figure 2-6: At oa = 0 we have a single eigenvalue at -0.3 and a parabolic valley for the
double eigenvalue at 0.15. The conservation law indicates that there is also a saddle in the
portrait (it sits between the valleys).
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Figure 2-7: As we begin to move off D, the double eigenvalue splits into two complex
conjugates which move off from their origin very quickly. The valley of the double eigenvalue
(charge +1) has split into two valleys (+1 each) with a saddle (-1) between them.
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Figure 2-8: We then see a critical change to the left of A = 0.15 as the saddle which initially
sat between the two valleys at a = 0 decays into two saddles and a maximum.
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Figure 2-9: The maximum which was spun off from the decay collides with the saddle at
A = 0.15. At the focal distance a = 0.45 the maximum and saddle have annihilated each
other, creating a degenerate shoulder.
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Figure 2-10: After the collision, the critical points have exchanged charges. The A = 0.15
critical point is now a maximum while a saddle heads from it to the right.

a observation
a = 0.0 double eigenvalue

0.0 < a < 0.45 double eigenvalue splits leaving behind a saddle
a = 0.45 the saddle becomes degenerate
a > 0.45 the saddle has become a local maximum

Table 2.1: phenomena observed along the normal



may wish to review this section as he/she reads subsequent sections to understand the

mathematical significance of the observations listed here and to illustrate the mathematical

phenomena described in subsequent sections.

2.3 Finding the nearest double eigenvalue

One way to find the nearest A E D to a given A is by directly finding the repeated eigenvalue

A of A. If the repeated eigenvalue A were known then one can take A to be the nearest matrix

to A that has eigenvalue A (using the singular value decomposition to find A).

This section explores methods of calculating that A. We will begin by exploring the

common heuristic of averaging two nearby eigenvalues of A. A fixed point algorithm based on

an improvement of this idea will be presented. We then show that A can also be determined

by an examination of pseudospectra of A, namely via the critical points of the spectral

portrait.

2.3.1 A perturbative look at double eigenvalue averaging

A small perturbation in the normal direction of a generic point A E D~ results in a diagonal-

izable matrix A = A + auvH. The J2 block that is part of the structure of A bifurcates into

two J1 blocks. In this section, we will examine the heuristic of approximating the double

eigenvalue of A by the average of the two nearest eigenvalues of A by examining the Puiseux

series (see [43]) in a.

Puiseux series are nothing new in the description of the bifurcation of multiple eigenval-

ues, however, the additional contribution that we add is the derivation of the series along

the geometric normal of D. We will also derive the second order behavior of the series along

the normal which can be used to measure the error of the averaging heuristic.

We quantify the non-surprising fact that the averaging heuristic tends to break sooner

(i.e. for smaller a) when A is close to a nongeneric point of D, that is, is close to being more

defective than J2 or derogatory. Later sections will show that one cannot expect to find a

well-conditioned double eigenvalue if the nearby A is close to being nongeneric, and thus the



averaging heuristic must suffer from difficulties which will also plague the more sophisticated

algorithms suggested in this chapter.

We adopt the convention, in this section and throughout this chapter (with the exception

of Section 2.5.2), of using v and u for the right and left eigenvectors respectively, for A D

and of writing the singular value decomposition of A as

A = AI + uOv 'H

where U = (ul u 2 ... Un-1), V = (v 1  v2  ... vn-1 ), and E = diag(al,..., a_).

Additionally, we set r = UHv and 1 = VHu, noting that v = Ur and u = VI since uHv = 0

and (U u) and (V v) are unitary matrices.

We now consider a Puiseux series expansion of the eigenvalues and right eigenvectors of

A(a) = A + ruvH given by

1 3
A + A(a) = A + wo A1 + w2 A 2 + wcaA 3 + ---

and
1 3

v v(oa) = v + WUV 1 + w2 U 2 + W 32v3 + ...

satisfying

(A (A + A (a)) I) (v + v(r)) = 0, (2.6)

where w2 = 1 and vHvk = 0. Since vHvk = 0 we will write vk = Vrk for some n - 1 x 1 vector

rk and let r(a) = VHv(). The series for the average of the two eigenvalues is given by

A + -((a)(,= 1 + A(a) ,=_1) = A + OA2 + O2 4 + .'.2

Thus, averaging will be a good approximation to A as long as the A2 term is relatively small.

Substituting A(a) - A = auvH+ UfVH into (2.6) we have

(UEVH"+ UUvH A (o))(v + v()) = 0,



which can be simplified to

(U VH - A(u))v(c) - A(u)v + ou = 0. (2.7)

We split (2.7) into two sets of equations, first by multiplying on the left by uH

A(a)a = uH(), (2.8)

and then by multiplying on the right by UH,

tr(a) - A(a)&UHr(a) = A()r. (2.9)

We may invert Equation (2.9) to obtain

r(u) = A(u)( - ()UH)- 1 .

To find A(a) we substitute into (2.8) to get

a= (a))uHv(o) _) = A(c)lHr(r) = 2 (a) H(I - H()UH )-1 r

or

= Z uH(f-l UH)k0 k+ l(u) = Ck k+l(a), (2.10)
k>1 k>1

which must be inverted to obtain the series for A(a) (the reader may note that VC-iUH =

(A - AI)t, the Moore-Penrose inverse of A - AI, and that cl = u(A - AI) t v = uHw where w

is the right generalized eigenvector of A).

We seek only the first two coefficients of A(a). They are given by

1 = 1 (2.11)

UH(V -1 )2V2
A2 ()2 (2.12)
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From (2.11) and (2.12) we see that the second order term in the expansion becomes significant

when

(uHw)3

(UH(VV-1U) 2 V) 2

Thus we see that the averaging heuristic can be expected to work poorly if uHw (= lH-lr)

is small or if I VIE-1UH 2 = I (A-A)t i2 = 1 is large. There is an algebraic interpretation

for both of these cases. If uHw - 0 then it can be shown that A must have at least J3(A)

defectiveness. If I(A - AI)t 12 = oc, then A - AlI must have two vanishing singular values,

and thus has a derogatory Jordan structure in A.

In summary we see that the averaging heuristic will produce close approximations to

A for nearby A so long as the nearby A are not close to any less generic structure than a

J2(A) block. For all of the algorithms presented in this chapter to calculate nearby double

eigenvalues, analogous conditions will be found which govern their stability and/or accuracy.

2.3.2 An iterative fixed-point algorithm

Edelman and Elmroth [28] introduced an algorithm to find the nearest A E D to a given

matrix A. The algorithm is the simultaneous solution of "dual" problems which can be

stated as follows:

Problem 1:

Given a matrix A and an approximation to the perturbation bringing A to D), find the

repeated eigenvalue of A.

Problem 2:

Given a matrix A and an approximation of the repeated eigenvalue of A, find the smallest

perturbation bringing A to D.

For Problem 1, they use a clustering algorithm on the eigenvalues of A - auvH, where

uuvHis the approximation to the normal bringing A to D (a a scalar and uvH an approximate

normal). For Problem 2, they approximate u and v with the left and right singular vectors

of -min(A - AI) for the given approximate repeated eigenvalue A.

This resulted in an extremely compact Matlab routine, which reads roughly as



lam = guess;

while (1)

[u,s,v] = svd(A-lam*I);

Ahat = A - u(:,n)*s(n,n)*v(:,n)';

e = eig(Ahat);

lam = cluster_routine(e);

end

where the cluster routine takes the mean of two nearest elements of e.

The resulting algorithm converges linearly much of the time, but it will sometimes go into

cycles which are empirically not convergent. In Section 2.5.3, we present a detailed analysis

of the convergence of the fixed point algorithm.

The Figures 2-11 and 2-12 show the fixed point algorithm both succeeding and failing

for two different random matrices. We have plotted the new value of the variable e against

its value in the previous iteration.

2.3.3 The singularities of the spectral portrait

We have identified that the normal space of a matrix A e V is given by the line A + auvH,

parameterized by a, where u, v are left and right eigenvectors of A. Thus if A lies in the

normal space of its nearest matrix A E , then A = A+ auvH. There is, however, no obvious

way to compute u and v without knowing A in advance. In this section, we present a method

for this based on the spectral portrait of A.

Let a(x, y) = amin(A - (x + iy)I). In the case where a(x, y) is smooth, we have the

following theorem about the derivatives of a(x, y) due to Sun (see [60] ).

Theorem 2.3.1 Let U(x, y)E(x, y)VH(x, y) = A - (x + iy)I, where an(Xo, yo) is simple, and

let U = (Ul u2  ... Un-1), V = (vi v2  ... Vn-1), and = diag(al,. .. ,n-). We

have then

8x (xo, Yo) = -Real{uHvn},
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Figure 2-11: The fixed point algorithm converging.
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O (XoYo) = Imag{uHvn},

92j

X 2 (o, YO) = Real{rHJ1r + 1 H 1 + 21HRir} + Imag{u HVn} 2 /Un,

02o

OxOy (xo, Yo) = -Imag{21HIF r} + Imag UHVn Real uHvn /n,,

02 C2

02 (Xo, Yo) = Real{rHbr + 11 - 21Hr} + Realfvn 2 /u n,

where = (cr I - 2)-, - = u2 _ 2)-1, = CjHv, and 1 = V(un.

Sun's theorem implies that ax = ay = 0 iff uHv = 0. In this case, the matrix =

A - a(o, Yo)uvH E Mxo+,yo is a point on the envelope of the family of MX, i.e. Ac D. Thus

we have

Corollary 2.3.2 If a(x, y) is stationary for some A0 = xo + iyo then A lies on the normal

line of the matrix A c D with repeated eigenvalue A0 and left and right eigenvectors u and v

where A = A - or(xo, yo)uvH and u and v are the left and right singular vectors of A - Aol

with singular value a(x 0 , Yo).

Since the stationary points of a(x, y) correspond to normal lines off of D. An examination

of the spectral portrait of A can be used to determine the distance from A to A E D.

This would lead to an algorithm which is based on finding the repeated eigenvalue of A

first, i.e.

(xO,yO) = find lowest critical points of the spectral portrait;

lam = xO + iyO;

[u,s,v] = svd(A-lam*I);

Ahat = A - u(:,n)*s(n,n)*v(:,n)';

where one finds the critical point of lowest height by Newton's method or some other opti-

mization routine over the complex plane.



Another result of Sun's formulae is that at stationary points

det jrH1 r + 1Hr+ lI 2 _ 121HIgr12.

This formula will be useful in the later section on conditioning and stability (Section 2.5).

2.4 Nearest A's are basically J2 's

We have already seen that generically speaking, the matrix A - A is a rank one matrix and

A has a J2 structure. Of course, less generic Jordan structures may arise in special cases,

but in this section we will show that even when A has a less generic Jordan structure, A - A

still has the form of a generic J2 normal.

In Section 2.3.3, we showed that, with perhaps few generic conditions on A, the nearest

matrix, A c D, to A is always given by A - auvH where a = amin(A - AI) is stationary in A,

u and v are the associated singular vectors, and A is the repeated eigenvalue of A for which

u and v are right and left eigenvectors.

If one were to be cavalier, one might assume generically that the nearest element of D

was always some defective matrix with a J2 structure. If this were the case, then D can be

assumed to be locally differentiable about A. Consequently, there would be a unique normal

perturbation that would be of the form uvH where uHv = 0. Thus, the A would correspond

to a critical point of the spectral portrait of A - AI since the spectral portrait is a graph of

crmin(A - AI).

However, one might consider the ways in which this generic assumptions could be violated.

If A were derogatory or had degeneracy less generic than J2, then there could be multiple

normal directions off of A, and A - A would not be of the assumed rank 1 form. One

particular example of where one might really be concerned is in the case where A actually

has a J3 structure and A might sit above all of the rank 1 normals of A as shown in Figure

2-13 (since a matrix with J3 structure is a cusp point of D, there is no reason to believe that

it has a continuous local normal field).

Clearly, one needs to have some lemmae to understand the conditions under which such
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Figure 2-13: A possible problem finding a normal from A to A illustrated in characteristic
polynomial space.

an event will or will not happen in order to make generalizations which are everywhere valid.

The purpose of this section is to clarify these possibilities. We present in this section a series

of lemmae which will progressively refine the possible form of N = A - A until we find that

it has the form of a normal to a generic J2. The reader who desires to skip the technicalities

of this chapter is advised to skip this section.

It will be useful to take a partial canonical decomposition of A in the repeated eigenvalue.

That is, let

A= (x X) 0 M ( Y  Y)H

where (Y Y)H(X X) = I and J(A) is the canonical matrix of the Jordan structure of

A at A.

Lemma 2.4.1 Let A be the nearest matrix in E) to A. Then

N = A- A= YWXH,



for some W.

Proof: We also decompose N = A - A according to the following (slightly twisted) decom-

position,
Nil

N = (Y 2) 1

one may check that (X

N12

(X Y)H

Y)H(y X) = I, and that the displacements YN 11X H, XN 12X H

YN 2 1Y H, and XN 22YH are mutually orthogonal.

Since A + XN 22 H has the same canonical structure in A as A, it is clear that N 22 =

0 for A to be the minimizer. Similarly, by observing that (A + YN 21YH)X = XJ and

YH(A + XN 12XH) = yH, we see that N 12 and N 21 must vanish.

For the next lemma, we consider the case where J, the Jordan structure of A at A, is

derogatory and thus of the form J = j()

partitioned into Y = ( Y Y2 ) and X = ( X

(2)) and the eigenvector

X 2 ). Decompose N as

's are correspondingly

N=(Y Y2) N
N2

2 ( X X 2 ) H.

Lemma 2.4.2 Suppose that the Jordan structure of A is derogatory. Then N is of the form,

N = YNiX Y2N2 2XH

Proof: Observe that A + X 2WY has the Jordan structure of ((

being possibly different from J, still has a repeated eigenvalue A.
j(2))

which, while

A+X 2WY 1 is closer to A than A if (X 2WY 1 , N) = (W, N 12) is greater than zero for some

arbitrarily small W. Thus, N12 = 0.

By a similar argument, N21 = 0. 0

Finally, we can, in a sense, eliminate the derogatory A matrices by the following lemma.

Lemma 2.4.3 If A has a derogatory canonical structure, J, then one of the irreducible



blocks of J, say J(1) is defective, and

N = Y1 NI X.

Proof: Suppose that all of the irreducible blocks of J were simple, i.e. J = AI. Then, from

the previous lemma, N = ylnx (where xl and Yl are vectors and n is a scalar).

A + pI has a repeated eigenvalue of A + p.

A+ p will be closer to A if (pl, N) = Real{pn} is greater than zero for some arbitrarily

small p. Thus n = 0 and A = A contradicting hypothesis.

Combining this with the result of the previous lemma gives the the conclusion. OI

We summarize with the following corollary.

Lemma 2.4.4 The nearest matrix AE D to A is reached by a perturbation of the form

N = Yp(J(O)T)XH

where p(x) is a k - 1-degree polynomial with vanishing constant term, and X, Y are the right

and (corresponding dual) left generalized eigenvectors of a canonical k x k Jordan block, J,

in the Jordan structure of A, and J(O) is the k x k Jordan block with eigenvalue 0.

Proof: Prior lemmae have shown that N is of the form N = YWXH. The similarity

transformation e~Me - ' m E D is closer to A for some arbitrarily small o whenever the

commutator, MA - AM has positive inner product with N.

Thus ([M, A], N) = (M, [N, A"]) must vanish for all M. Giving NAH - AHN = 0 which

implies that WJ(O)T = J(o)TW, and thus W = p(J(O)T). O

We now need only really consider the case where the Jordan structure of A is a single

canonical Jordan block.

Lemma 2.4.5 Let the Jordan block J of A be of size greater than 2. The polynomial p(x)

in

N = Yp(JT)xH,

must be of the form p(x) = axk- 1 + bxk - 2



Proof: Suppose that the coefficient, c, of xj (j < k - 2) is nonvanishing. Then we consider

the matrix A + XMYH, where Mkj = s (Mpq = 0 elsewhere).

A + XMYH, while not necessarily having the same canonical structure as J still has A

repeated at least twice, since

(A + XMYH) ( x l
2 ) =( 1( 2)

However, A + XMYH is closer to A so long as (M,p(J(O)T))

arbitrarily small s. Thus we must have c = 0.

Thus, for all A not in D, N = A - A is of the form that one

either a J2 or a J3 canonical structure. In what follows, we shall

take values in C then the A - A will be rank 1.

Theorem 2.4.6 Let A E D be the nearest matrix with

matrix A with distinct eigenvalues. Then

= sc does not vanish for

generically expects from

see that if we allow A to

a repeated eigenvalue to the given

N = A - A = auvH

where u and v are the left and right eigenvectors of A and a is a scalar.

Proof:

Assuming the canonical structure of A is J = Jk(A), we have from the previous lemmae,

we have that

N = Y(a(J(O)T)k- 1 + b(J(O)T)k- 2 )XH

b : 0.

Consider the matrix A + X(a'(J(O)T)k- 1 + b'(J(O)T)k-2)yH, where b' = ky k - 1 and a' =

-(k - 1)p k . It is easy to show that J + (a'(J(o)T)k- 1 + x(J(o)T)k- 2 ) has a repeated (J 2 )

eigenvalue A + p.

if for some arbitrarily small p (X(a'(J(O)T)k- 1 +b'(J(0)T)k-2)YH, N) is greater than zero,

A + X(a'(J(0)T)k - 1 + b'(J(O)T)k-2)YH will be closer to A than A.

(X(a'(J(O)T)k-1 + b'(J(O)T)k-2)yH, N) = Real{b'b + a'a}. Substituting for a' and b' we



have Real{b'b+a'a} = Real{pk-l(kb - (k- 1)fPa}. If we take [p| < and let select the phase

of p such that pk-lb is positive real, then (X(a'(J(O)T)k- 1 + b'(J(O)T)k-2)YH, N) > 0.

Thus, we have A + X(a'(J(O)T)k- 1 + b'(J(O)T)k-2)YH closer to A than A.

We must conclude that b = 0 and therefore that N is rank 1 of the form asserted. D

The reader will note that it is not always possible to find such a' and b' if one is constrained

to real matrices, but one can always do so over complex numbers. In fact, the illustration at

the beginning of this section demonstrates this shortcoming of the reals. If this illustration

had been drawn with complex a and b axes, then it would have been apparent that A was

closer to a complex A.

We have now established rigorously that any matrix A with distinct eigenvalues must lie

along a rank 1 normal from the nearest A E D. Thus A can be determined by examining

the singular values of A - AI.

What remains are some lemmae concerning the singular values themselves so that it

can be determined what sort of behavior one must look for in the singular values in order

to locate A. The previous section shows that the critical points of Ormin are the points of

interest in determining A. However, one may also wonder what happens when 'min is not

simple (and hence not rigorously differentiable), and whether or not one must examine the

critical points of the other singular values of A - AI. We assure the reader that this will not

be trouble for us. In Section 2.6, we will be able to show that the critical points of other

singular values will not produce minima, and that, the minimum will occur on a critical

point where -min is almost always simple.

2.5 Conditioning and stability

In this section, we wish to examine the conditioning of the problem of finding the A E D

nearest to A. The conditioning of A is closely related to the behavior of the singular value

decomposition of A - AI under first order variations. We will find that the matrices with

ill-conditioned A on D are sitting close to "focal points" of D analogous to focal points in

geometric optics, explained in Section 2.5.2.
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Figure 2-14: The normals of the cubic double root variety forming their parabola-like enve-
lope. The concave down arc in the plot is another part of the envelope which occurs over
cubics with complex coefficients.

2.5.1 Sensitivity analysis of A = A + auvH

Consider the normal lines passing through a matrix A E 2D. We can parameterize these lines

by the real or complex line A = A + auvH, where a is real and the phases on u and v are

arbitrary (alternatively, we could fix the phase of uvH and let a be complex). For most A we

expect this decomposition (A = A + auvH) to be locally invertible. We define a focal point

as some matrix A for which the decomposition is not locally unique, i.e., where the Jacobian

of this decomposition is singular.

Geometrically, we may think of the set of focal points as the evolute of D2, i.e., the envelope

of normals of D. A point which is in the evolute can be thought of as the intersection of two

infinitesimally separated normals.

It will be useful to do some dimension counting in both complex and real versions of D2

so that we might better understand where the degrees of freedom are. (We shall always refer

to one real parameter as one degree of freedom.)
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-3Figure 2-15: The normals of the swallowtail. A faint hood-like shape begins to emerge.

Figure 2-15: The normals of the swallowtail. A faint hood-like shape begins to emerge.

Figure 2-16: The swallowtail and its hood-like evolute of ill-conditioned problems.



The solution to the problem of finding a stationary point A to A can be expressed in

terms of decompositions of A as follows:

A = auvH + A, (2.13)

A = auvH  I+ UEV H  (2.14)

A = AI+ UEVH (2.15)

where uHv = 0, = diag(al,..., a- 1), E = diag(al,..., o-_, o-) = ( ), U = (U u),

V= (V/ v), and U, V are unitary matrices. For the real case, Equation (2.13) decomposes

the n 2 degrees of freedom of A into n(n - 1)/2 for U, n(n - 1)/2 for V, n for E, and 1

for A, which leaves exactly 1 degree of freedom extra to satisfy the constraint uHv = 0.

For the complex case, A has 2n 2 degrees of freedom, U has n 2, V has n2, has n, and A

has 2, leaving n + 2 surplus degrees of freedom. Since the complex decomposition is only

unique up to transformation of the form U, V - UA, VA (A a diagonal unitary matrix),

n of those surplus degrees of freedom are ineffective, leaving two to satisfy the constraints

Real{uHv} = 0, Imag{uHv} = 0.

Thus, by counting dimensions we see that the decomposition which reveals the nearest

AG eD to A is really a singular value decomposition in which one dimension has been removed

by the constraint uHv = 0 and one dimension has been added by the presence of the AI term.

Our strategy to vary A will be to vary the SVD (as in [60]), and then to use the variation

in A to satisfy the varied constraint (uHv = 0) equation.

Note, if we were to vary this decomposition for an element of A C D, we set a = 0 in

Equation (2.13). In the real case, this eliminates one degree of freedom corresponding to D's

real co-dimension of 1. In the complex case, this eliminates not only the degree of freedom in

a, but also the extra unitary freedom of u and v corresponding to A's complex co-dimension

of 1.

Theorem 2.5.1 Assuming that the singular values of A - AI are distinct, the first order

behavior of the decomposition

A = A - auvH



is given by

A = A + (uHAv)uvH + U(UHit)vH+ au(VHi)HVH

with
UH ( HA - I) v

VH H (a) 4 (a) V H (AH- Ai)

where 1() = a(a 21 - Z 2 )-, () = (_[ -_ 2)-1, and A is given by

( Oxx O Uxy Areal (Real{p + lHIp lq + qHir + pH4r}

Oy Oyy Azmag Imag{lHIp + 1'Hq + qHHir + pHr} J

where axx, axy, and ayy are given by Sun's theorem.

Proof: Varying the decomposition (2.13) along a differentiable curve A(t), we have

A = A + 6uvH+ aUivH+ aUU1H

where iHv + uHi = 0. We will proceed by solving for an expression for iHv + uHi, finding

values for a and the phase of uvH for which the variation of the constraint is satisfied (it is

convenient for us to take a to be real and to adjust the phases of uvH implicitly).

Differentiating (A - AI)v = an and uH(A - AI) = avH, we have that

(A - AI)v - &u = ai - (A - AI)i

and

(AH - I)U - v = aUi - (AH -AI)i.

We may substitute A - A = UEV H, obtaining

UH(A - AI)v - &en = aUHit - EVHU

and

VH(AH- AI)u - Tre, = aVHi - EUHiL,



... 0 1)H, which can be collected into 2n - 2 equations,

(ia
S UHl

UH(A -
(2.16)

and 2 identical equations,

UH(A - AI)v - & = a(uHit - vH'). (2.17)

If a = an is distinct from the other ai then we can invert the matrix in (2.16) obtaining

( UH V
() T(U) UH(A - AI)v

T(a) 4(or) \ VH(AH- AI)u'
(2.18)

where ((a) = a(a 2 1 - 2 )-1 and T(a) = t(a 21 - t2)-1. Since UHj and

skew-symmetric, (2.17) separates into real and imaginary parts

& = Real{uHAv}

- i(UHiL - vH) = Imag{uHAv},

VHV must be

(2.19)

(2.20)

where we have used uHv = 0.

We now apply the differentiated constraint,

*HV + Uh = (UHit)H + H(VZ) = 0,

where we have used v = Ur and u = VI (r = UHv and I = VHu). Substituting (2.18) into

this, we have

A(21H'Fr) + A(lHl + rH(r) = 1H p + HlHq + qH4r + pHr,

_1_ ~__~~~__~I1I _I11llr_ I / II II YIII 1111 111111 1111 1111111 111111111

where e n = ( 0

J

)u

(2.21)



where p = UHAv and q = HAHuH, which one can solve for A solving

(u axy Areal Real{lHp + lHbq + qH4Jr + pHIr}

Oxy O iyy "imag Imag{lHIJp + 1Hq + qH4r + pHbr}J

One then has

A = A - Real{uHAv}uvH - aU(UHUi)v H - 
(u(VHi)HVH (2.22)

A = A - Real{uHAv}uvH - aU(UHi1)vH - u(VH )HVH oU(uHji - ilHv)UvH (2.23)

A = A - (uHAv)uvH- OU(UHi)vH- Ou(VHj)HvH, (2.24)

where we have used Equation (2.20) to get (2.24) from (2.23). EO

One can interpret the formula for A as displacement resulting purely from the change in

the phase and length of the normal (second term) plus a tangential variation of A (third and

fourth terms) which results from a change in the direction of the normal from A to A. The

magnitude of the tangential part of the variation is ~i 2 + 2.

The set of A with A having infinite condition number is given by finding those A for

which A can be nonzero when A vanishes. In this case, we set the p and q terms in (2.21)

to 0 and solve

(cxx cxy (Areal
Uxy y'y Azmag

as an equation of o equivalent to

21H) lH(o)l + rHI(u)r,

which gives the following corollary.

Corollary 2.5.2 The nearby A E D to a generic matrix A is ill-conditioned whenever

2 -1H + r is small (i.. U y is nearly singular).
O-yx /yy



2.5.2 Ill-posed problems and principal curvatures

In this section we explore the differential geometry of D itself, as a co-dimension 1 manifold

embedded in Rn 2 or C2 . We will give an additional interpretation of the focal points of D

in terms of principal curvatures.

The classical study of principal curvatures is concerned with surfaces in R3 (as in [25]).

In this setting, one uses the unit normal field i of a surface M to construct a map from M

to S2 . Studying the local behavior of this map ultimately results in a quadratic form on the

tangent space of M at a point. The reciprocal lengths of the principal axes of this quadratic

form are called the principal curvatures, their sum the mean curvature and their product

the Gaussian curvature.

One way to generalize this approach which is suitable for any manifold of co-dimension

1 is to use the normal to construct a natural quadratic form on the tangent space and then

examine the eigenvalues of this form.

We first look at an n-sphere of radius 1 embedded in Rn+1. Geodesics on S n satisfy the

equations

dp
- V

dv v -v
dt L

where p is a point on the sphere and v is the velocity, satisfying pHv = 0, and h = p/1. One

might recognize the derivative of v as the centripetal acceleration in classical mechanics.

For a more general manifold of co-dimension 1, one has (at least locally) a unit normal

h and geodesic equations of the form

dp = v (2.25)
dt
dv

d = -(v, v) (2.26)
dt

where F(v, w) is the Levi-Civita connection. However, for manifolds of co-dimension 1, the

Levi-Civita connection must be of the form F(v, w) = a(v, w)i where the aceleration, a(v, w),

a-.I.XI?---~PII-----' ~~~-~ll-.--.~.I ~ I)^ -- .-.-.I---~ ---̂-~I~~~~-~ --- ~- ------P~-L ~~---~ ----~IIIII aa__ --C-.
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Figure 2-17: In the cubic polynomial space, a particle moves along the double root variety,
with velocity v and centripetal acceleration a(v, v).

is a symmetric bilinear (not complex sesquilinear) function defined on the tangent space at

p and determined by d v + v = 0.

If we consider a(v, v) to be an instantaneous centripetal acceleration along a geodesic

with velocity v through p (see Figure 2-17), then we may define the principal curvatures at p

as the extrema of the function la(v, v) I over the unit ball in the tangent space at p. As with

the sphere, the center of curvature is located at p - a(,) . We may refer to the reciprocals

of the principal curvatures as the focal lengths along f from p (see Figure 2-18)

With this in mind, we now consider the differentiable subset of D. For the remainder of

this section any matrix A is a point in a differentiable neighborhood of D with decomposition

A = J tV H  A

and normal N = uvH (uHv = 0). Any element H of the tangent space of A must satisfy

uHHv = 0.
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If A(t) is a differentiable curve in D through A then we differentiate uHHv = 0 to get

d
d (uHHv) = iHHv + uHHi - a(H, H)
dt

Hit) )Hp + q HfZv

= 0

= a(H, H),

where q = UHHv and p = V7HHv (note that since uHHv = 0 we have Hv = Up and

uHH = qHfH).

Since A E D we may set a = 0 and employ Equations (2.18, 2.21, 2.24) to see that

(tUHit, H'k,)
0 p - Ar

q -

with A given by

A(21H-lr) = 1H-1lpqHt-lr.

Substituting and simplifying, we have

(1Ut-lp + qH-1-lr)
2

a(H, H) = -2pH-lq +
21HE-1 r

Since UpvH + uqHVH is a tangent vector for any p and q, we may consider a(H, H) as a

function of 2n - 2 independent p and q vectors.

We see that the quadratic form a(H, H) can be written as zTWz, where

z = (2.27)
q

and
0

-t-1

1
+ 21T r C-l r

i-1T

(r T t-1 (2.28)

By a simple orthogonal similarity transformation we have

QWQT = Z + aaT,

-1 
-1

0

(2.29)



where Z = - and a =( 1 , a real diagonal matrix plus a
0 E-1 2 r (-1(r -

rank-1 matrix.

We now seek the extrema of zTWz where HI 2 = Ix12 + 1y12 = 1. Note that WT = W.

Varying IzTWzI we see that the condition for z to be an extremum of IzTWzl is

Wz = ( ,

a somewhat unusual eigenvalue equation over C.

Over R this reduces to the problem of finding the eigenvalues of a rank-1 update, Z+aaT.

An eigenvalue ( of this matrix then satisfies

aT((I - Z)-la = 1,

which, in our terms, is

((r + l) T t- 1 (r - l)TE-1) + 1)1) ( r + 1 = 41T t- 1 r.

O ((1 - t-)-1 -(r 1)

Multiplying this out and simplifying gives

-1 1 -1 1 1
rT (I - 2)-1r +T -_ 2)-11 + 2 1 T( -_ 2 ) -r = 0.

( C2 ( (2 (2

-- 1 -- 1 -- 1
r T(l )r + 1T4( )l+ 21T ( )r = 0,

where )(a) = a(a2I -_ 2)- 1 and I(a) = t(a2I- t2)-1. The center of curvature is then

A + auvH where a = 1 We may now interpret the vanishing of the second real-axis

derivative at a stationary point of the spectral portrait as equivalent to being on a focal

point of the real double eigenvalue variety.

Over C, we solve QWQH(Qz) = (Qf by first observing that given an eigen-pair z,( , the

eigen-pair zei2Z , (e-iz is also a solution. Thus, while acknowledging that A can have any



phase. we may restrict ( to the reals for purposes of computation, in which case we solve,

QWQH

-(I QWQH) ()
Following a derivation of the usual rank-i update formula, we rewrite this as

z
-(I

(zf)0

aa)
Letting k = aTz we have

(z Z(Z2 _ 21)-la
( ((Z 2 (2 )-la

k a+((Z2 - 2)-1 a

Z

K-(
((
z(

aT((

aTZ(

-(I z ak

Z ak

Z2 - 2Ia)-(l

Z2 - (2I)-la K

Note that the off

jugates, and that ((

f diagonals are real, while the diagonals are each others

) must be a fixed point of this matrix. A necessary
k/

complex con-

and sufficient

condition for such a k to exist is

det (aTZ(Z2 - (2 I)-a +- 1
aT( Z 2 _ (2) -l a

aT((Z 2 _ c2)-1r

CTZ(Z2 _ (2i)-1 +
= 0,

or equivalently,

laTZ(Z 2 _- (2+)-la + 11 = laT((Z 2 - (21)-lal.

Substituting and simplifying we have

-1 -1 -1 1
r ~( )r +t 1F( )1=|Fi/ r

Thus we have seen that an additional way to interpret these focal points is to imagine

an osculating circle of radius !, centered at the focal point and passing through D along a

=0

S0

- 0.

aaT
+ ( 0

- (I z)
Z ) (f



principal direction.

2.5.3 Stability of the fixed point algorithm

The fixed point algorithm can be viewed as a series of guesses at the repeated eigenvalue

A = limi,, ei, where ei+l = f(ei). In iterated systems of this sort, convergence is to some

fixed point x0 = f(xo), and the linear multiplier governing convergence is f'(xo).

If f'(xo) > 1 then the system diverges, either to another fixed point or to a limit cycle. If

f'(xo) < 1, but close to 1, then convergence can be very slow. We therefore need to examine

f'(xo) to understand the stability of this algorithm. We linearize f(x) about a fixed point

A.

f(A + 6A) = cluster(A - (a + 6r)(u + 6u)(v + 6v)H)

where u + 6u, v + 6v, and a + 6o are the singular vectors and value of A - (A + 6A)I and u,

v, and a are the singular vectors and value of A - AI. This may be rewritten as

f (A + 6A) = cluster(A - 6auvH - aSuvH - auvH).

Assuming that the cluster function simply averages the two nearest eigenvalues, we have

a first variation giving

f(A + 6A) = A + -tr((yl Y2 )H - 6 uvH - uvH - aU6vH) (X1 2 )),

where Y2 and x, are the left and right eigenvectors of A, yHA = yH, and Ax 2 = X1.

Since v is a right eigenvector and u is a left eigenvector, we may take xl = 1 _lV,

= U X2  -lr, and YI = U -1 1. Thus we see that

6 f (aOiH-- UHu + a6vVt-lr).
21Ht 1r

dll l IIIY I1141 N I, id'. 1. 1 Ji NI Y NN Eno NM I@IbI , J



Substituting from Theorem 2.5.1 (with A fixed), we have

Sf = 1  (6A21H(E - l + T)r + 6A(lHl + rHDr)),
21HE-1r

simplifying to
1

6f = 6A + (6A21Hr + 6A(IHl + rHr)),

which is the linearization of the iterated map f on a small perturbation 6A.

The behavior of this map will determine the nature of the fixed point. We recognize ele-

ments of the second derivative of the spectral portrait in this formula. Using Sun's formulae,

we have

1 UxcyyY9QC + Y+yy6f 6A- + - r (6A( - iaxy) + 6A( 2  ,2lH-r 2 2

from which we may assert the following theorem.

Theorem 2.5.3 The fixed point algorithm iteration linearizes to

rea a rmag ( xy \ (6Areal (2.30)

6Aimag i+1 1H -rimag -- IH-lrreal ay y 2.30)imag

We can make a number of qualitative statements about Equation (2.30). When the

Hessian of Omin is singular (i.e., near a focal point) this iteration can stagnate. Secondly,

if IH-lr is small (corresponding to the Puiseux expansion in Section 2.3.1 having poor

behavior), then the iteration is more likely to diverge. Lastly, since

(U Xz Y (yH-lrreal H -1rimag

Uaxyy YlH-lrimag -Ht-lrreal)

as a -+ 0, we see that fast convergence is assured for small enough a.

2.5.4 Sensitivity of the critical points of the spectral portrait

With results which will be derived in Section 2.6, the problem of finding the nearest A E D

to A can be reduced to locating the critical points of the spectral portrait of A, a(x, y) =



amin(A - (x + iy)I)) as suggested by Section 2.3.3. We now turn our attention to the

sensitivity of this problem, investigating the sensitivity of the critical points of a(x, y) to

small perturbations in A. To first order, a perturbation 6A in A will cause a perturbation

in the gradient of a(x, y) = (ax, ry) at the point (x0 , yo), which we may call (6ax, Say). By

inverting the Hessian (given by Sun's formulae) on this perturbation, one then has the first

order correction to (x0 , yo), which we write as (6x 0, 6So).

Theorem 2.5.4 Let (x0, Yo) be a stationary point of a(x, y) and 4, I, r, and I be defined

as above. Then let p = UH6Av and q = VHSAHu. Then

6xu(xo, yo) = Real{rHop + rHTq + pHHq1 + qH4l}

6ay(xo, Yo) = Imag{rHDp + r4q + p H T + qH4l}.

Proof: From Sun's theorem, we have

aX + iay = -vHu

and thus

6Ux + i6S, = -6vHU - vHu.

Since uHv = 0, we may substitute v = UUHv = Ur and u = VVHu - V1,

6a + i6Su = -- rHH6u - (VH6v)Hl.

From Theorem 2.5.1 we have a formula for UH6v and VHSu, which we substitute to give

ax + iay = rHp + rHq + pH 1 + qHl.

O



From this lemma and Sun's theorem, we see that the condition number on the critical

points of the pseudospectra is given by largest singular value of the 2 x (4n - 4) real matrix

O-yx  O-yy 6a y

where 6a, and 6ay are the real linear functions of the real and imaginary parts of p and q

defined by the lemma.

2.6 Nearest A's come from simple amin

In Section 2.5.2 we derived expressions for the centripetal acceleration of a geodesic along D.

We will now use this machinery to give us the prove the claims made at the end of Section

2.4, namely, that the only critical points of singular values one need examine are those of

amin and not any other ak. Once again, the reader who wishes to skip over technicalities is

advised to skip this section.

First we will make some fairly general derivations over co-dimension 1 manifolds. These

derivations will relate the extrema of centripetal acceleration through a point to the character

of that point as a minimizer of euclidean distance. Then we will apply these results to the

specific problem of minimizing I A - All.

We first consider a general manifold M of co-dimension 1 in 1nV or Cn. Suppose that

p C M locally minimizes the function

1 1
D(p, q) = -(p- q,p-q) -d(p,q) 2  (2.31)

2 2

for some point q in ER or C". Let p(t) E M be a geodesic passing through p at t = 0 satifying

(2.25, 2.26) with unit velocity v ((v, v) = 1). Differentiating (2.31) with respect to t, we have

dtD(p(t),q) = Real{(p-q,v)}

d2dt D(p(t),q) = Real{(v, v) + (p - q, -F(v, v))}



d
2

dt2D(p(t),q) = 1 - Real{(p - q, f(v, v))}.

Setting the first of these equations to zero at t = 0 for all v gives p - q = au where a is a

scalar (Ja = d(p, q)) and h is the unit normal of M at p. This gives

d
2

dD(p(t),q) = 1 - Real{(au, F(v,v))} (2.32)
d2

dt2 D(p(t), q) = 1 - Real{aa(v, v)}, (2.33)

where we have substituted the Levi-Civita connection, F(v, v) = a(v, v)i.

In order for p to be a stationary point of D(p, q) it is necessary that q = p+a U. However,

in order for this stationary point to be a local minimum, the second derivative must be

nonnegative for all v. Since a(v, v) is bilinear in v we may select the phase of v so that the

condition (2.33) becomes

1 - alIa(v, v) I> 0,

or
1
- > a(v, v), (2.34)

where we understand (2.34) as a comparison between magnitudes. Since (2.34) must be

true for all unit v, and since the principal curvatures of M at p are given by the extrema of

la(v, v)l over the set of all unit v, we have

Lemma 2.6.1 If d(p, q) is minimized by p then it is necessary that the focal lengths of M at

p be greater than or equal to d(p, q); i.e., if there is a focal point on the line segment p + sau

(0 < s < 1) connecting p to q, p cannot minimize d(p, q).

This relation of focal points to the characterization of the stationary points of d(p, q) can

be illustrated clearly in two dimensions. In Figures 2-19 and 2-20, we use a hemispherical

surface to illustrate these lemmae.

We may now move to the specific case of minimizing d(A, A) for A E D.

Lemma 2.6.2 Let

A =Uv H +A
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Figure 2-19: Below the focal point of a hemispherical surface, the distance minimizing p on
the hemisphere to a given q is at the bottom of the surface.
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local maximum

Figure 2-20: Above the focal point of the hemispherical surface, the bottom point of the
hemisphere is now a maximum of distance (the nearest p on the hemisphere to q has become
either of the end points of the hemisphere).



be an element of D. Let a(H, H) be the centripetal acceleration defined on the tangent vectors

of A by Equation (2.27)., Then, taking maximums over the unit tangent ball ((H, H) = 1),

1 <maxH a(H,H) , and, generically, 1 <maxHla(H,H)I.
Un- 1 <m(O'n- H

Proof: Using Equations (2.27, 2.28, 2.29) we write a(H, H) in terms of a quadratic form

a(H, H) = zT(Z + aaT)z

___-1 0 1 .1 (r + )

where Z =( -- and a = - (j-(r_))

We may bound the maximum magnitude of this form from below with the 2 x 2 quadratic

form formed from a submatrix

+ aaT)zl < max
z,llzll=1

IzT(Z + aaT)z ,
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We see that if we select 0 such that Real{(a 2 cos(0) + ial sin(O)) 2 } > 0 then

I 1

07n-1 0

1 + aaT)z| <

O'n- 1

max |zT(Z + aaT)z .
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Generically, we can expect that we can select 0 such that Real{ (a2 cos(8) +ial sin(O)) 2} >

0. Thus,
1 < zT( (1

Un1 ( 1
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and the inequality becomes strict.

1
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We are now in a position to prove

Lemma 2.6.3 If A0 is a critical point of ak(A - AI) (with Ok(A - AolI) > Oan(A - Aol)) then

(using singular vectors u and v) A = A - kuvuH cannot locally minimize I A - All over all

A E D.

Proof: Since the smallest focal length (reciprocal principal curvature) of A is less than on,

it is impossible for d(A, A) = Uk > n to be locally minimized. O

We can also follow this sort of reasoning to establish that the points in the spectral

portrait which are crossing points of singular values will usually not produce local minimizers

of distance.

Corollary 2.6.4 Generically, oa,(A - AI) are simple in the neighborhood of A0 .

Proof: Generically, if Unl- = a, at A = A0, then A cannot be a local minimum of d(A, A).

2.7 Triple eigenvalues

The variety of matrices with triple eigenvalues, T, is a subvariety of D). It is the variety

of cusp points of D, the points where D) is not smooth. This might lead one to think that

higher order derivatives of Omin might shed light on the distance to T. This is not quite

the case, however, though some bounds are possible. This section will investigate relations

which can be made between T and the focal points of D.

It is easy to see that the intersection of D with its evolute is T. For A E D with repeated

eigenvalue A, we may take xz = v, x 2 = UZ-1r as the right eigenvector and generalized

eigenvector and y2 = U, 1 = V-11 as the left eigenvector and generalized eigenvector, with

(Yl y 2 )H(xI x 2 )=lH -r( 0

Note that if lHi-lr = 0 then the left and right eigenvectors cannot be duals and thus there

must be additional right and left generalized eigenvectors of eigenvalue A. Let us now suppose



that A has a focal length of 0 (thus A is in the evolute of D). Then, by the definitions of

previous sections,

IrHI(O)r + 1H(0)11 = 121H (0) r.

However, the LHS is zero. Thus we have 1HJ(O)r = lHY-ir = 0.

This is equivalent to the condition det )x axy = 0. Thus T can be thought of as

the locus of points satisfying

amin(A- A) = 0

dA
- min(A - A) = 0

for some A, with the additional constraint

d 2

dA2 min(A - A) = 0,

in contrast with the focal points which satisfy

amin(A - A) = 0

d
amin(A - A) = 0

d2

dA2 m i n ( A - A) = 0.

Unfortunately, while the first derivative of omin is independent of the value of Omin, the

second derivative is not, preventing us from being able to use this set of equations as a

method for finding the nearest element of T.

We can bound the distance to the nearest AE T from A if A e D is ill-conditioned. It

is easy to show that one can always find a A within |A - AiI(21HE-r) of A, where Ai is an

eigenvalue of A distinct from and closest to the double eigenvalue A.
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Chapter 3

The Computation of Nearest k-fold

Eigenvalues

3.1 Introduction

A curious formula presented by Malyshev [49] has the property that it will, in some cases,

determine the 2-norm distance of a matrix to the set of matrices with a given double eigen-

value. These results can be extended to a formula which gives the distance to the set of

matrices with a given eigenvalue of any multiplicity.

There is a sense in which our extension (when successful) decomposes the given matrix

A into A = A + aN where A is a matrix having Jk(A) structure for some given k and A, N is

a member of a set of transverse directions dependent only upon A, and a is a real number.

We can view the set of N for a given A as a set of normals to the set of all Jk (A) matrices,

although such an identification is not rigorously possible without an inner product between

matrices (which the 2-normed matrix space lacks).

The formula we present does not always produce the aforementioned decomposition.

Examples can easily be generated in which our formula fails. While we have reason to

believe that the nearness of A to the set of Jk(A) is an important factor, it is currently

unclear under what conditions our formula is guaranteed to succeed.

- hIter . . ................ . 1 I~ii itI~ IYii I I , i hi1 ''111111 oilII



3.2 Malyshev's formula for dist(A, J2)

We let dist(A, Jk(A)) denote the 2-norm distance from A to the set of matrices with a k-th

order Jordan block for the eigenvalue A. A tight estimate of this distance can be of great

value in regularizing the numerical computation of the Jordan canonical form of a given

matrix [40], as well as understanding the conditioning of the eigenvalues of A [67, 68].

Since dist(A, Jk(A)) = dist(A - A, Jk(O)), we need only consider nilpotent Jordan struc-

tures in what follows, setting Jk = Jk(O). Malyshev, in [49], proposed the following formula

for the 2-norm distance of a given matrix A to the set of matrices with a double 0 eigenvalue:

dist(A, J2) = maxo 2n_( , (3.1)

where 92n-1 is the second smallest singular value. In what follows, we see that this formula

has a natural generalization to more complicated Jordan structures. We do not give a proof of

the correctness of the generalized statement, and in fact it is does not take long to randomly

generate a failure. However, it may be that there is some appropriate generalization of (3.1)

which will reliably give dist(A, Jk) for any A.

3.3 Formula for dist(A, Jk)

Let A be an n x n matrix and B be k x k. We consider matrices of the form I 0 A - BT® I,

where 0 is the Kronecker product ((XT® Y) . vec(Z) = vec(YZX)). In (3.1) A is the given

matrix and B is the matrix with y indeterminant.
0 0

In general we will consider B to be a k x k strictly upper triangular matrix of indeter-

minants. Then we examine the generalization

dist(A, Jk) = max a(IO A - BT I), (3.2)
B

where a = Onk-k+1 (singular values in decreasing order). This equation, unfortunately, is

not always true. However, sometimes it is.



Lemma 3.3.1 Let A have the eigenvalue 0 with multiplicity of at least k. Then

ank-k+l (I0 A - BT0 I) = 0

for all k x k strictly upper triangular B.

Proof: Let X be a (n x k, full rank) matrix of right eigenvectors and Y a (n x k, full rank)

matrix of left eigenvectors such that

AX-XJk = 0

YHA - jYH = 0.

We proceed by showing that the equation AV - VB = 0 has at least k independent

solutions. Assuming that B is generic (i.e. all elements on the first superdiagonal are

nonzero), we have B = R- 1JkR for some upper triangular R and

AV - VB,

for V = XR. Since X is full rank, V is full rank.

Let V (j ) = VB j -1 (where 1 < j < k) then

AV (c ) - V ( )B = 0

for all j. Since V is full rank and the superdiagonal elements of B are all nonzero, the vectors

vec(V( j )) are linearly independent solutions of the equation (I 0 A - BTO I)v = 0.

Since a is a continuous function in B, it must vanish everywhere if it vanishes on generic

B.

Lemma 3.3.2 9nJk-k+1(I 0 A - BT® I) is maximized by some finite B.

Proof: It suffices to show that ank-k+l(10 A - sBT® I) -+ 0 as s - c00 for all B such that

l1B112 = 1-
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If A is nonsingular then we write

Unk-k+l(I 0 A - sBT® I) = 1/9k((I 0 A - sBTO I)-1)

Let m be the largest power of BT such that I I(BI)m I  0. We may substitute

(I 0 A - sBT® I)-1 = (I A-1)(I 0 I + sBT A -1 + --- + (sBT A-1)m),

to give (by perturbation theory)

ak((IA - sB TI) - ) > S'~k((BT)m A-m-1) _ m- I I(B)m-1l A-m 2-- -- I9A- 1 .

Thus we see that as s - oc, ak((I 0 A - sBT& I)- 1 ) _ 00.

If A is singular then we may modify this argument slightly. For any C > 0, let A, be

a nonsingular matrix such that A - A,1|2 < e. Then by the above argument there exists

so > 0 such that

Unk-k+1(I o AC - sBT I) < E

for all s > so. Since

Onk-k+1(I 0 A - sBTO I) < Unk-k+l(I 0 Ac - sBTo I) + C,

giving

ank-k+l(I 0 A - sBT® I) < 2e.

for s > so.

Theorem 3.3.3 Let dist(A, Jk) be the 2-norm distance from a matrix A to the set of matrices

with 0 as an eigenvalue of multiplicity at least k. Then dist(A, Jk) < dist(A, Jk).

Proof: Let A - A = A where A has at least k zero eigenvalues. By lemma 3.3.1,

O'nk-k+l (I o - BTo I) = 0



for all B. Substituting A = A - A we have

Unk-k+l(I A - I A - BT I) = 0,

and thus

ank-k+l(I 0A - B T I) < IAll 2

for all B. Since IIA 12 = dist(A, Jk) we have dist(A, Jk) = dist(A, Jk).

D

We see that dist(A, Jk) is always an underestimate of dist(A, Jk). If one could exhibit a A

such that A-A = A for some A with Jk(O) structure having the property IlAIl 2 = dist(A, Jk)

then optimality would follow.

As we shall see, finding such a A is often possible.

3.4 Finding A

We assume that Onk-k+1 (10 A - BTo I) is simple about the maximizing B. We also assume

that the elements of the first superdiagonal of B are nonzero (i.e. B is nonderogatory). The

reader should be warned that these are very questionable assumptions, and that in numerical

experiments one can readily observe violations of both. When these assumptions are made,

the construction of A is straightforward. When these assumptions are violated, it is unclear

how to construct A.

If one forms n x k rectangular matrices from the vectors u and v by taking

U = ( 1  2  ... Uk)

and

V = ( v v 2 ... Vk),



where

and

then the definition of singular vectors implies the following identities:

AV - VB

UHA - BUH

= aU

= aV H.

One consequence of the above identities is that

u(VHV - UHU) + (BUHV - UHVB) = 0. (3.3)

Since B maximizes a, a is stationary with respect to variations in B. The variation of a

(when simple) with respect to B, by Sun's formula [60], is given by

tr(UHV6B) = -6a.

Assuming that a is simple and is stationary with respect to variations in B, we will have

tr(UHV6B) = 0.

Thus, UHV must be upper triangular. Since the first term in (3.3) is symmetric and the

second term in (3.3) is strictly upper triangular, both terms must vanish, giving

UHU

BUHV

= VHV

= UHVB.

(3.4)

(3.5)



From (3.4) we have we have the following singular value decompositions for U and V:

U = PSZH

V = QSZH.

(Where we have taken the "economy sized" SVD, i.e., all entries on the diagonal of S are

nonzero, S is p x p, and Z is k x p for p < k.) We may then construct a matrix A = PQH

which has the properties

AV = U

UHA = V.

From these properties one can then construct a matrix A = A-aA, having the properties

AV-vB = 0

UHA - BUH = 0

IIA-All = o.

What remains is to show that A does have a 0 eigenvalue of multiplicity k.

Since B is nonderogatory, B is similar to a canonical Jordan block of size k by some

upper triangular similarity transformation r.

010 ... 0

r-4Br = J= 0 0 1 ... 0

0 0 0 ... 0/

The r matrix is not uniquely determined. Any matrix of the form r 2 = rlp(Jk), where

p(x) is any polynomial with nonvanishing constant term and rl = r will also satisfy Br2 =

r2 Jk(0). We will therefore leave r 2 undetermined until later, when it will become clear how to

exploit this freedom. For now, the reader should just keep in mind that the ri are similarity

transforms of B and that they are always upper triangular.
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We can employ rl and r2 to get

A(Vri) - (Vrl)Jk

(rT21UH)A - Jk(T21 UH) - 0,

or the canonical chain conditions

AX- XJ =

yHA - YH

(3.6)

(3.7)= 0,

where X = VrI and Y = Ur2H

We turn our attention to (3.5) which, in terms of X and Y, can be written as

r 2YHXrIlB = BT 2YHXrl.

Since B = rlJkrl = r2Jkr 1 , we have

Y HXJ k  JYk HX.

Thus YHX must be an upper triangular matrix with constant diagonals i.e. YHX = q0o +

q1Jk + q2J + ... + qk- 1 J k- . Since r2 can be written as r 2 = rlp(Jk), we may fix r 2 such

that YHX = Jk-m where m is the rank of YHX. For the remainder of this section, we take

r2 to be fixed in this manner.

3.4.1 Generic success: tr(UHV) -/ 0

Substituting from the definitions in Equations (3.6) and (3.7), we have

tr(UHV) = tr(p(Jk)Jk-m).

Thus if tr(UHV) :- 0, we may infer that m = k and YHX = I, and may interpret X and Y as

the dual right and left eigenvectors of A for a Jordan block Jk in the canonical decomposition



of A.

3.4.2 Nongeneric success: tr(UHV) = 0

Let

tr(p(Jk)J - m ) = 0.

Since p(Jk) is invertible, it must be that m < k. We will delay the proof that X and Y are

linearly independent to first discuss the interpretation of this case.

Suppose 0 < m < k. Then we must conclude that A actually has Jordan blocks of size

J2k- m (0) with right and left eigenvectors

P = (pl P2 P2k-mr)

Q=(q, q2  ' q2k-m),

where pi = xi and qk-m+i = yi for 1 < i < k. This follows from a fairly obvious consideration

of the canonical decomposition.

If m = 0 then we can say that A has a Jordan block with eigenvalue 0 of order greater

than or equal to 2k. By taking repeated powers of a regularized A-1 on the X and Y matrices

one could determine the size of the blocks and fill in the rest of the eigenvectors.

Thus, when a is stationary in the B variables and B - Jk, then A must be a matrix that

has Jordan structure Jm(O) for some m 2 k.

These conclusions rest on X and Y being full rank, however. For the remainder of this

section we will establish that they are (still assuming that B is nonderogatory).

Define rank(X) = rank(V) = ji and rank(Y) = rank(U) = j2. By (3.4) ji = j2 = j.

Since the U and V matrices are actually the unit vectors, they must have at least rank 1.

We now assume 0 < j < k and show that this leads to a contradiction.

By the chain conditions, one has

X1 = X -- =k- j = 0



and

Y+1 = "'" = yk = 0.

From the definitions of X and Y, we have

V 1 = - = vk 3 = 0

and

Uj+1 - - - - = Uk = O.

However, from (3.4), this also gives

U1 = - - - = Uk-j = 0

and

Vj+1 = - - -= .k = O.

Thus the rank of U and V must be max(0,j - (k - j)) which cannot be satisfied for any j

where 0 < j < k, a contradiction.

3.5 The 2-norm "normals"

In the Frobenius norm, which is derived from the inner product (A, B) = Real{tr(AHB)}, it

is possible to define the normals to the various repeated eigenvalue varieties at their generic

points from the equations (N, AX - XA) = 0 and (N, xiy) = 0 for each distinct eigenvalue

Ai of A with right and left eigenvectors xi and yi. For a generic point A on the variety of

matrices with a Jk(A) block (A fixed), this gives

N = Yp(JkT(o))XH



where p(x) is a k - 1 degree polynomial in x, and X and Y are canonical, dual right and left

eigenvector matrices satisfying

AX-XJk = 0

YHA - JkYH = o

YHX = I.

From this it is clear that the set of normals to A is a k dimensional vector space, comple-

menting the n2 - k dimensional tangent space at A, and we see that if the nearest Jk matrix

to A is A then

A = A + Yp(JT(0))XH. (3.8)

Additionally, we may recognize that if p(x) has nonvanishing constant term, then it can

actually be absorbed into the Y matrix, giving,

AX-XJkk = 0

YHA_ jk YH = 0

YHX = p(JA).

Since the third equation is implied by all X and Y satisfying the chain conditions, we see

that we may write any rank k normal as N = YXH where Y and X are any left and right

eigenvector matrices satisfying the chain conditions. This is a subtle shift in point of view.

The vectorial nature of the normal space has been obscured. Also, since p(x) could have a

vanishing constant term, we can only absorb p(J[T(O)) into Y by taking X and Y to be n x m

matrices (m = rank of p(Jk)) satisfying reduced chain conditions,

AX - XJm(0) = 0

YHA - jm()YH = 0

Y HX = P' (Jm(0)),



where P'(x) = X2(k-m)p(x), allowing us to write any rank m normal as YXH for matrices Y

and X satisfying both reduced chain conditions and the additional requirements of the third

equation.

Unfortunately, the matrix 2-norm does not arise from an inner product. It is therefore not

necessarily possible to construct normals and investigate decompositions similar to (3.8). Yet,

when the Malyshev method does give a simple maximum singular value with a nonderogatory

B, there is a decomposition of the form

A = A + aN. (3.9)

We then seek to understand how to construct, for a given generic A with a Jk block, the set

of all possible N such that A is the nearest matrix constructed by the Malyshev method to

A = A + aN for some or.

For a fixed A assume that there exists an A such that A = A + aN, constructed as per

the Malyshev method. We have n x k matrices, U and V satisfying

Av-VB = 0

UHA - BUH = 0

UHU = VHV = R

for some upper triangular, nonderogatory B, and the normal N given by N = UR-1VH. We

may decompose B = rJkr- 1 obtaining for X = Vr and Y = Ur - H the chain conditions on X

and Y with YHX = p(Jk) for some polynomial p(x) assumed to have nonvanishing constant

term.

Working this construction backwards, we see that given X and Y satisfying the chain

conditions for A, our task is to construct Xr - 1 = V and YrTH = U such that UHU = VHV.

This r determines B = rJkr- 1 and N = Y(YHY)- 1 (rHr)-lXH N = YrHr(XHX)-IXH. To

find r we first solve for rHr and then perform Cholesky factorization. rHr must satisfy

(XHX)(rr)- 1 = (rHr)(yHY). (3.10)



If we let X = Qu be the QR decomposition of X with upper triangular u and Y = P1 be the

QR decomposition of Y with lower triangular 1, we have rHr = -1(luHulH) - H satisfying

(3.10), from which we construct

N = P(luHulH)-luHQH

(note that luHulH = (uH)(luH)H is symmetric positive definite, allowing us to take the

unique symmetric positive definite inverse square root). This cumbersome expression can be

replaced with

N = PWHQH

where W is defined as the polar matrix in the polar decomposition ulH = WS (S =

(luHulH) ).

Since X and Y have not been assumed to be dual, we may replace Y with Yp(JT(o)) to

make this nonuniqueness manifest. This does not affect the P and Q matrices which result

from the QR factorizations of Y and X, but modifies W by giving the equation

WS = up(J)l1H. (3.11)

We see that W depends on the k parameters of p(x). However, since W does not depend on

the absolute scaling of the coefficients of p(x), we see that the set of W is of dimension at

most k - 1. The set of all N is the cone formed by N = aW for all a, and thus is expected,

in the generic case, to have k dimensions.

For comparison, we may rewrite the Frobenius normals as

N = PWHQH

where W = up(Jk)H. It is apparent that in some sense the 2-norm normals selected by

Malyshev's method correspond to the Frobenius normals, but with a polar decomposition

as an additional step, and it is that polar decomposition which destroys the vectorial nature

of the normal space.



Lastly, one can show that the lower rank normals can be written as

N = PWH Q",

where WS = up(Jm(O))lH and P1 = Y, Qu = X are the left and right partial eigenvector

matrices. In contrast to the Frobenius normals, the polar decomposition step in the 2-norm

normals makes the normals of different rank in the 2-norm case separate from the normals

of lower rank, i.e. they are not the limit points of the set of normals of higher rank.

3.6 A possible rationale for the 2-norm normals

When one has an inner product, one can derive the condition for normality by I N + T IF

having a local minimum at T = 0, where T is any first order variation in a direction tangent

to A. Expanding the norm in terms of the inner product and differentiating gives the familiar

formula

(N, T) = 0.

Although we cannot define normals with the inner product against tangent vectors, we

can, however, adopt the condition of IN+TI2 having a local minimum at T = 0 and see that

the set of N defined in the previous section satisfies this requirement. For rank k normals,

we may take W = ulH. Substituting, we see that we must examine IPWHQH + TI for a

local minimum at T = 0 (where we have suppressed the subscript on the norm). We can

write T = PT 1 QH+ PT 12 (Q)H+ PIT 21QH+ PlT 22(Q) H. By the unitary invariance of

the 2-norm, we have

IIPWHQH+ TI = IIWH + T 11 I,

where the other parts of T, being infinitesimal do not contribute to the norm.

The tangent space of A is independent of the norm being employed. Thus, since every

tangent of A must satisfy (T, Yp(JT(0))XH) = 0 for all p(x). Thus, we have

(PHTQ, lp(JT(0))uH) = Real{TlUp(Jk)lH} = 0. (3.12)



Using unitary invariance again, we have

IIWH+ T11I = II + T11WII.

From the perturbation theorem of singular values, the singular values of I will perturb to first

order by the eigenvalues of the symmetric part of T11W. Thus, the 2-norm is guaranteed to

increase if the symmetric part of T 11W does not have all positive or all negative eigenvalues.

Consider the equation

IxH(T11W + WHTH)x = RealxHT11Wx} = 0. (3.13)
2

(3.13) is satisfied by some x - 0 if and only if the symmetric part of Tl1W does not have all

positive or all negative eigenvalues. Expanding W = ulHS- 1 and letting y = S-2x, (3.13) is

equivalent to finding a y # 0 such that

Real{yHS TliulHS- y} = 0. (3.14)

But, we have

Real{trS TiulHS-} = Real{trTiiulH} = 0,

by (3.12). Thus, the sum of the eigenvalues of the symmetric part of SXT 1 ulHS- 1 vanishes,

so we may find y satisfying (3.14), and then an x satisfying (3.13). We see, that III+Tx WII >

1 for all tangent vectors to first order.

In conclusion, we see that the perturbations selected by the Malyshev method are all

2-norm minimizers. Thus, they can be considered "normal" even though the 2-norm does

not have an associated inner product. We also see that these normals are determined only by

properties of A. In this sense we say that the normal bundle to A is given by Yl-1WHu-HXH

where u and I are the upper triangular and lower triangular matrices of QR(QL) decompo-

sitions of X and Y, and W is the polar part of up(Jk)lH.



3.7 Concluding remarks

Investigation of the properties of formula (3.2) has not yet revealed the conditions for being

able to construct A after maximizing Unk-k+1. One can show for any A with Jk(A) structure

and normal N, that (3.2) recovers A from A = A + aN when

1
<Ink-k(I ® A- BT I),

2

where B = rJk(O)r - 1, r defined by Equation (3.10). This leads us to expect that (3.2) may

successfully locate the nearest Jk(A) matrix if A is close enough to the set of Jk(A) matrices.

It has also been observed experimentally that given A and a normal N, for small enough

a one can reconstruct A from A + uN while for large enough a one fails reconstruct A.

Further work will be required to see under what the the exact condition on a and A such

that A is recoverable from A = A + uN.

It is the belief of this author, that investigations along the various normal lines of A

will ultimately reveal the reasons for failure or success of the generalized Malyshev method

proposed here.



Chapter 4

Solving General Nonlinear

Eigenvalue Problems

(At this time, a copy of the matlab software mentioned in this draft can be found in

http://www.mit.edu/people/~ripper/Template/template.html.)

4.1 Introduction

This section increases the scope of the algebraic eigenvalue problem by focusing on the geo-

metrical properties of the eigenspaces. We discuss a template that solves variational problems

defined on sets of subspaces. Areas where such problems arise include electronic structures

computation, eigenvalue regularization, control theory, signal processing and graphics camera

calibration. The underlying geometry also provides the numerical analyst theoretical insight

into the common mathematical structure underlying eigenvalue algorithms (see [1, 31, 56]).

Suppose that one wishes to optimize a real valued function F(Y) over Y such that

Y*Y = I, where Y* is either transpose or Hermitian transpose as appropriate. Our template

is designed as a means to optimize such an F.

One simple case is optimization over square orthogonal (or unitary) matrices such as the

least squares simultaneous diagonalization of symmetric matrices (known as INDSCAL [21])

problem described later. Another simple case is optimization over the unit sphere, as in



symmetric Rayleigh quotient minimization. In between, we have rectangular n x p (n > p)

matrices Y with orthonormal columns such as the orthogonal Procrustes problem.

Furthermore, some functions F may have the symmetry property F(Y) = F(YQ) for all

orthogonal (unitary) Q with a specified block diagonal structure, which causes some search

directions to have no effect on the value of F. For example, if A is a symmetric matrix,

n > p, and F(Y) = tr(Y*AY), then F(Y) = F(YQ) for all p x p orthogonal Q. More

generally, some functions F have the property that F(Y) = F(YQ) where Q is orthogonal

(unitary) with the block diagonal form

Qi 0 ... 0

Q= 0 Q2 --- 0

0 0 ..- QP

where the Qi are orthogonal (unitary) matrices. More complicated problems with block

diagonal orthogonal (unitary) symmetry can arise in eigenvalue regularization problems (an

example of such a problem is the sample nearest Jordan block problem solved in the exam-

ples).

This chapter is organized as follows. Section 4.2 will discuss the basics of calling the

template code. Section 4.3 discusses the objective functions and their derivatives for the

example problems explored in this chapter. Section 4.4 contains sample runs of instances

of the examples problems. Section 4.5 explains the code structure and the places where a

user may wish to make modifications. Section 4.6 will cover some of the basic mathematics

concerning the geometry of the Stiefel manifold.

4.2 Calling sgmin

The matlab templates are ready for immediate use or as a departure point for generalization

e.g. problems over multiple variables with orthogonality constraints, or code optimizations.

In the simplest mode, the user need only supply a function to minimize F(Y) (and first

and second derivatives, optionally) in F.m (in dF.m and ddF.m) and an initial guess YO. The

calling sequence is then a single call to sg_min (named in honor of Stiefel and Grassmann).



Efopt, yopt] = sg_min(YO)

For example, if the function F.m has the form

function f=F(Y)

f=trace( Y' * diag(1:10) * Y * diag(1:3) );

we can call sgmin(rand(10,3)) which specifies a random starting point.

We strongly recommend also providing first derivative information:

function df=dF(Y)

df = 2 * diag(1:10) * Y * diag(1:3);

The code can do finite differences, but it is very slow and problematic. Second derivative

information can also be provided by the user (this is not nearly as crucial for speed as

providing first derivative information, but may improve accuracy):

function ddf=ddF(Y,H)

ddf = 2 * diag(1:10) * H * diag(1:3);

A sample test call where F(Y) is known to have optimal value 10 is

>> rand('state',0); . initialize random number generator

>> fmin = sg_min(rand(10,3))

iter grad F(Y) flops step type

0 1.877773e+01 3.132748e+01 2192 none

invdgrad: Hessian not positive definite, CG terminating early

1 1.342892e+01 2.011465e+01 146438 newton step

invdgrad: Hessian not positive definite, CG terminating early

2 1.130914e+01 1.368046e+01 290568 newton step

invdgrad: Hessian not positive definite, CG terminating early

3 5.974785e+00 1.063044e+01 434822 newton step

4 1.135397e+00 1.006835e+01 681414 newton step

5 5.526059e-02 1.000009e+01 929492 newton step



Table 4.1: A short list of the optional arguments for sgmin

6 5.087895e-05 1.000000e+01 1203160 newton step

7 1.706261e-05 1.000000e+01 1518165 newton step

fmin =

10.0000

The full calling sequence to sgmin is

[fopt, yopt]=sg_min(Y0,rc,mode,metric,motion,verbose,gradtol,ftol,partition),

where YO is required and the optional arguments are (see Table 4.1):

* rc The rc argument specifies whether the matrices will have complex entries or not.

Although most of the code is insensitive to this issue, rc is vital for counting the

dimension of the problem correctly. When omitted, sgmin guesses based on whether

YO has nonzero imaginary part.

* mode The mode argument selects the optimization method will be used. 'frcg' selects

Fletcher-Reeves conjugate gradient (popular in the electronic structures community),

and 'newton' selects Newton's method with a conjugate gradient Hessian inverter (fol-

lowing steepest descent directions whenever the steepest descent line minimum is less

than the Newton line minimum). While 'newton' is the default, the user may wish to

try the 'frcg', which can be less expensive computationally.

argument description
rc {'real', 'complex' }

mode {'frcg', 'newton' }
metric {'flat', 'euclidean', 'canonical' }
motion {'approximate', 'exact' }
verbose {'verbose', 'quiet'}
gradtol first convergence tolerance

ftol second convergence tolerance
partition partition of p indicating symmetries of f



* metric The metric argument selects the kind of geometry with which to endow the

constraint surface. This ultimately affects the definition of the covariant Hessian.

'flat' projects the result of applying the unconstrained Hessian onto the tangent space,

while 'euclidean' and 'canonical' add on connection terms specific to their geometries.

'euclidean' is the default.

* motion The motion argument selects whether line movement along the manifold will

be by the analytic solution to the geodesic equations of motions for the metric selected,

or by a computationally less expensive approximation to the solution (default). (For a

'flat' metric, there is no geodesic equation, so this argument has no effect in that case.)

* verbose The verbose argument determines whether the function will display reports

on each iteration while the function executes. When this argument is 'verbose' (the

default) data will be displayed and also recorded in the global SGdata. When this

argument is 'quiet' then no convergence data is displayed or recorded.

* gradtol and ftol We declare convergence if either of two conditions are true:

grad/gradinit < gradtol (default le-6) or (f-f old)/f < ftol (default le-8),

where gradinit is the initial magnitude of the gradient and fold is the value of F(Y)

at the last iteration.

* partition The partition is a cell array whose elements are vectors of indices that

represent a disjoint partition of 1:p. If F has no symmetry, then the partition is

num2cell(l:p). If F(Y) = F(YQ) for all orthogonal Q, then the partition is {l:p}.

The partition is {1:2,3:5} if the symmetry in F is F(Y) = F(YQ) for orthogonal Q

with sparsity structure

xx

xx

xxx

xxx

X X X



The user could equally well specify {3: 5, 1: 2} or { [5 3 4] , [2 1] } for the partition,

i.e. a partition is a set of sets. The purpose of the partition is to project away the

null-space of the Hessian resulting from any block diagonal orthogonal symmetries of

F(Y). If the argument is omitted, our code will pick a partition by determining the

symmetries of F (using its partition.m function). However, the user should be aware

that a wrong partition can destroy convergence.

4.3 Sample problems and their differentials

This section serves as a sample guide on the manipulation of objective functions of matrices

with orthonormal columns. We have found a few common tricks worth emphasizing.

Once one has a formula for the objective function F(Y), we define the formula for dF(Y)

implicitly by tr(V*dF(Y)) = _F(Y(t))t=o where Y(t) Y + tV (or any curve Y(t) for

which Y(O) = V). The reader may recall that tr(A*B) = Ei, A3,B 3 , so it functions just

like the real inner product for vectors1 and the implicit definition of dF(Y) is actually the

directional derivative interpretation of the gradient of F(Y) as an unconstrained function in

a Euclidean space.

For most of the functions we have used in our examples, the easiest way to obtain the

formula for dF is to actually use the implicit definition.

For example, if F(Y) = tr(AY*BY) one then has

tr(V*dF(Y)) = tr(AV*BY + AY*BV).

Since the value of the trace is invariant under cyclic permutations of products and transposes,

we may rewrite this equation as

tr(V*dF(Y)) = tr(V*BYA + V*B*YA*),

and, since V is unrestricted, this implies that dF(Y) = BYA + B*Y*A*.

lover complex numbers, we always take the real part of tr(A*B).



The process we recommend is:

* try to write F(Y) as a trace

* compute -F(Y(t))t=o where we let V = Y(t)

* use trace identities to rewrite every term to have a V* in the front

* strip off the V* leaving the dF(Y)

As a check, we recommend using the finite difference dF.m code supplied in the subdi-

rectory finitediff to check derivations before proceeding.

The software needs a function called ddF.m which returns -4dF(Y(t)) t=o for Y(O) = H.

The sort of second derivative information required by the software is easier to derive than

the first. If one has an analytic expression for dF(Y), then one need only differentiate.

If, for some reason, the computation for ddF.m costs much more than two evaluations of

dF(Y) with dF.m, the reader may just consider employing the finite difference function for

ddF.m found in finitediff (or simply use ddF.m as a check).

It is, however, strongly suggested that one use an analytic expression for computing

dF(Y), as the finite difference code for it requires a large number of function evaluations

(2 np).

4.3.1 The Procrustes problem

The Procrustes problem (see [32]) is the minimization of IAY - YBIIF for constant A and

B over the manifold Y*Y = I. This minimization determines the nearest matrix A to A for

which

Q*AQ= )
i.e. the columns of B span an invariant subspace of A.

The differential of F(Y) = I IAY - YB 2 = ltr(AY - YB)*(AY - YB) is given by

dF(Y) = A*(AY - YB) - (AY - YB)B*.



This can be derived following the process outlined above. Observe that

d 1
dF(Y(t)) t=o = -tr((AV - VB)*(AY - YB) + (AY - YB)*(AV - VB))
dt 2

= tr((AV - VB)*(AY - YB))

= tr(V*(A*(AY - YB)) - V*(AY - YB)B*).

The second derivative of F(Y) is given by the equation,

ddF(Y(t)) t=o = A*(AH - HB) - (AH - HB)B*,

where Y(O) = H, which can be obtained by varying the expression for dF.

4.3.2 Nearest Jordan structure

Now suppose that the B block in the Procrustes problem is allowed to vary with Y. Moreover,

suppose that B(Y) is in the nearest staircase form to Y*AY, that is:

B(Y) = 0 A2 *

0 0 ...

for fixed block sizes, where the *-elements are the corresponding matrix elements of Y*AY

and the Ail blocks are either fixed or determined by some heuristic, e.g. taking the average

trace of the blocks they replace in Y*AY. Then a minimization of I|AY - YB(Y)H F finds

the nearest matrix a a particular Jordan structure, where the structure is determined by the

block sizes, and the eigenvalues are Ai. When the Ai are fixed, we call this the orbit problem,

and when the Ai are selected by the heuristic given we call this the bundle problem.

Such a problem can be useful in regularizing the computation of Jordan structures of

matrices with ill-conditioned eigenvalues.

The form of the differential of F(Y), surprisingly, is the same as that of F(Y) for the



procrustes problem.

dF(Y) = A*(AY - YB(Y)) - (AY - YB(Y))B(Y)*.

This is because tr(-(AY - YB(Y))*YB) = tr((B(Y) - Y*AY)*B) = 0 for the B selected

as above for either orbit or bundle case, where B = $B(Y(t)) t=o.

In contrast, the form of the second derivatives is a bit more complicated, since the B

now depend on Y.

d d
ddF(Y(t)) t=o = -dFproc(Y(t)) t=o - A*YB - AYB* + YBB* + YBB*,
dt dt

where Y(0) = H, dFproc is just short for the Procrustes (B constant) part of the second

derivative, and B = -4B(Y(t)) lt=o which is the staircase part of Y*AH + H*AY (with trace

averages or zeros on the diagonal depending on whether bundle or orbit).

4.3.3 Trace minimization

In this case we consider a "Rayleigh quotient" style of iteration to find the eigenspaces of

the smallest eigenvalues of a symmetric positive definite matrix A. That is, we can minimize

F(Y) = ltr(Y*AY) [2, 36, 54]. The minimizer Y* will be an n x p matrix whose columns

span the eigenspaces of the lowest p eigenvalues of A.

For this problem

dF(Y) = AY.

It is easily seen that

ddF(Y(t))Jt=o = AH,
dt

where Y (0) = H.

4.3.4 Trace minimization with a nonlinear term

We consider a related nonlinear eigenvalue problem, to the trace minimication of section 3.3,

minimize F(Y) = 1(tr(Y*AY) + g(Y)), where g(Y) is some nonlinear term.
2\11~ 1/'Y1/,'"' \ UU"""""" ""



This sort of minimization occurs in electronic structures computations such as Local

Density Approximations (LDA) where the columns of Y represent electron wavefunctions, A

is a fixed Hamiltonian, and g(Y) represents the energy of the electron-electron interactions

(see, for example, [4, 57]). In this case, the optimal Y represents the state of lowest energy

of the system.

The only additions to the differentials of the trace minimization are terms from g(Y)

which vary from problem to problem. For our example, we have taken g(Y) = p Zi pi for

some coupling constant K, where p, = j Yij12 (the charge density).

In this case

dF(Y) = dFtracemin + Kdiag(p)Y,

and
d d d
ddF(Y(t)) t=o = -dFtracemin(Y(t)) t=o + Kdiag(p)H + Kdiag(-p)Y,

where Y(O)= H, and p t=0 = , YijH Hj.

4.3.5 Simultaneous Schur decomposition problem

Consider two matrices A and B which in the absence of error have the same Schur vectors,

i.e. there is a Y E O(n) such that Y*AY and Y*BY are both block upper triangular. Now

suppose that A and B are somewhat noisy, from measurement errors, or some other kind of

lossy filtering. In that case the Y that upper triangularizes A might not upper triangularize

B as well. How does one find the best Y?

This is a problem that was presented to us by W. Schilders [55] who phrased it as a least

squares minimization of F(Y) = '(|Ilow(Y*AY) I + Ilow(Y*BY)| ), where low(M) is a

mask returning the block lower triangular part of M, where M is broken up into 2 x 2 blocks.

For this problem the differential is a bit tricky and its derivation instructive,

tr(V*dF(Y)) = tr(low(Y*AY)*low(Y*AV + V*AY) + low(Y*BY)*low(Y*BV + V*BY))

tr(V*dF(Y)) = tr(low(Y*AY)*(Y*AV + V*AY) + low(Y*BY)*(Y*BV + V*BY))

tr(V*dF(Y)) = tr(V*(AYlow(Y*AY)* + A*Ylow(Y*AY) + BYlow(Y*BY)* + B*Ylow(Y*BY)))



dF(Y) = AYlow(Y*AY)* + A*Ylow(Y*AY) + BYlow(Y*BY)* + B*Ylow(Y*BY)

where the second equation results from observing that tr(low(M)*low(N)) = tr(low(M)*N),

and the third from properties of the trace.

With second derivatives given by,

d dF(Y(t))|t=o = AHlow(Y*AY)* + A*Hlow(Y*AY) + AYlow( d(Y*AY)

d(Y*AY)+A*Ylow( d(YAY) + BHlow(Y*BY)* + B*Hlow(Y*BY)
dt

+BYlow( Y*BY)* + B*Ylow( d(YBY),
dt dt

where Y(O) = H, d(Y*AY) It=o = H*AY + Y*AH, and d(Y*BY) It=o = H*BY + Y*BH.

4.3.6 INDSCAL

Another problem like simultaneous Schur problem, involving sets of matrices with similar

structures, is the problem of finding the best set of eigenvectors for a set of symmetric

matrices given that the matrices are known to be simultaneously diagonalizable, but may

have significant errors in their entries from noise or measurement error. Instances of this

problem arise in the Psychometric literature, where it is called an INDSCAL problem [21].

Phrased in terms of a minimization, one has a set of symmetric matrices Ai and wishes

to find Y E O(n) that minimizes F(Y) = jEi off(Y*AiY)| 2, where off(M) returns the

off-diagonal entries of M.

Similar to Schur problem (though with symmetric matrices and a somewhat different

matrix component) we have

dF(Y) = Z2YAioff(Y*AiY),

and

d dF(Y(t)) t=o = Z 2HAioff(Y*AiY), Z 2YAoff(H*AiY + Y*AH)
dti i



where Y(O)= H.

4.4 Running our examples

We have provided implementations for the sample problems described.

We present the examples and their verbose outputs. We have included these outputs so

the reader can check that his/her copy of the package is executing properly. The user should

be running matlab (version 5 or compatable) in the following directory:

>> !ls

Fline.m

README

connection.m

dgrad.m

dimension.m

dtangent.m

finitediff

grad.m

invdgrad.m

ip.m

move.m

nosym.m

partition.m

sg_frcg.m

sg_min.m

sg_newton.m

tangent.m

(note, there may also be the additional subdirectories example/, docs/, or @cell/).

Each example problem has a subdirectory in the examples subdirectory.

>> !ls examples

indscal jordan idatoy procrustes simschur

Each of these subdirectories contains an implementation for F(Y) (dF(Y) and ddF(Y, H)),

a parameters function to set a global, FParameters, of fixed parameters of F(Y) (this

function must be called before any other), a guess function to generate an initial guess, and

possibly some auxiliary functions for computing F(Y), related quantities, or instances of a

specific problem.

>> !is examples/idatoy

F.m dF.m

Kinetic.m ddF.m

>> !is examples/jordan

Block.m dBlock.m

F.m dF.m

guess.m

parameters.m

ddF. m

frank .m

guess.m

parameters.m

tracemin

post .m



We executed the examples in the two supported optimization modes ('frcg', and 'newton')

and either 'flat' or 'euclidean'. For different instances of the same problem, different modes

might perform best, so the reader should not feel that a particular mode will exhibit superior

performance in all instances.

4.4.1 A sample Procrustes problem

In this example, we attempt to find a Y which minimizes I IAY-YBIlF for a pair of randomly

selected A (12 x 12) and B (4 x 4).

>> !cp examples/procrustes/*.m

>> randn('state',0);

>> [A,B] = randprob;

>> parameters(A,B);

>> YO = guess;

>> [fn,Yn] = sg_min(YO,'newton','euclidean');

iter grad

0 1.967151e+01

invdgrad: Hessian not

1 1.201377e+01

invdgrad: Hessian not

2 6.998543e+00

invdgrad: Hessian not

3 6.754473e+00

invdgrad: Hessian not

4 7.037159e+00

invdgrad: Hessian not

5 2.716002e+00

invdgrad: Hessian not

6 2.611537e+00

F(Y)

3.145130e+01

positive definite,

1.334642e+01

flops step type

4365 none

CG terminating early

299347 newton step

positive definite, CG terminating early

7.885178e+00 549026 newton step

positive definite, CG terminating early

4.082520e+00 828756 newton step

positive definite, CG terminating early

2.156004e+00 1143569 newton step

positive definite, CG terminating early

1.264874e+00 1481879 steepest step

positive definite, CG terminating early

7.828101e-01 1779148 newton step

3.540531e-014.749149e-01 2339394 newton step
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Figure 4-1: Procrustes Problem

2.098621e-02

7.350907e-05

1.832068e-05

3.361052e-01

3.360631e-01

3.360631e-01

2858664

3426059

3991138

newton step

newton step

newton step

Figure 1 shows the convergence curve for this run.

4.4.2 A sample Jordan block problem

We now look for a nearby matrix with a Jordan structure J4 (a) E J2 (3) E (don't care) to

the 12 x 12 Frank matrix, a matrix whose Jordan structure is known to be very difficult.

>> !cp examples/jordan/*.m

>> A = frank(12);

>> evs = sort(eig(A)); eigvs = [mean(evs(1:4)) mean(evs(5:6))];

>> parameters(A,eigvs, [4; 2],'bundle')

>> YO = guess;

>> [fn,Yn] = sgmin(YO,'newton','euclidean');

iter grad F(Y) flops step type



flops

Figure 4-2: Jordan Problem

0 1.775900e-02

invdgrad: Hessian not

1 1.797005e-03

invdgrad: max iterati

2 1.615236e-03

invdgrad: max iterati

3 2.100793e-04

4 7.793143e-05

5 3.826000e-07

6 1.766973e-08

9.122159e-06 15535 none

positive definite, CG terminating early

4.382300e-07 4539120 newton step

ons reached inverting the hessian by CG

1.320791e-07 9451244 newton step

ons reached inverting the hessian by CG

1.364935e-08 14602068 newton step

3.098557e-09 19631237 newton step

2.924257e-09 24466406 newton step

2.924253e-09 26592864 newton step

Figure 2 shows the convergence curve for this run.

4.4.3 A sample trace minimization problem

In this problem we minimize trace(Y*AY) where A is a 12 x 12 second difference operator

in 1-dimension and Y is 12 x 4.
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Note: we do not recommend that this problem be solved this way, since, for constant A,

it can be done faster with conventional eigenvalue solvers.

>> !cp examples/tracemin/*.m

>> A = Kinetic(12);

>> parameters(A);

>> YO = guess(4);

>> [fn,Yn] = sg_min(YO,'frcg','euclidean');

grad

2.236291e+00

1 .413602e+00

9.159910e-01

5.663336e-01

4.366693e-01

2.676809e-01

1.943933e-01

1.200285e-01

5.106617e-02

2.633155e-02

1.009583e-02

4.054257e-03

1 .416079e-03

7.175948e-04

4.258507e-04

3.065818e-04

1 .260472e-04

3.596692e-05

F(Y)

3.833127e+00

1 .903903e+00

1.307258e+00

1.057510e+00

9.440163e-01

8.724658e-01

8.462110e-01

8.319293e-01

8.279622e-01

8.272484e-01

8.270559e-01

8.270313e-01

8.270275e-01

8.270269e-01

8.270268e-01

8.270267e-01

8.270267e-01

8.270267e-01

Figure 3 shows the convergence curve for this run.
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Figure 4-3: Trace Minimization Problem

4.4.4 A sample LDA toy problem (trace minimization with non-

linear term)

We attempt to solve a toy Local Density Approximation problem described in section 3, for

four electrons on a 1D grid with twelves points and a coupling constant of 20. In this case,

we use the first four eigenvectors of the linear problem as a starting point.

>> !cp examples/ldatoy/*.m

>> K = Kinetic(12);

>> parameters(K,20);

>> YO = guess(4);

>> [fn,Yn] = sg_min(YO,'newton','euclidean');

iter grad F(Y) flops step type

0 2.432521e+00 7.750104e+00 4104 none

invdgrad: Hessian not positive definite, CG terminating early

1 4.769809e-01 7.546426e+00 303003 steepest step

2 4.665924e-02 7.531450e+00 725498 newton step

101
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Figure 4-4: LDA Toy Problem

3.363281e-04

1.678208e-06

7.531232e+00

7.531232e+00

1243707

1868470

newton step

newton step

Figure 4 shows the convergence curve for this run.

4.4.5 A sample simultaneous Schur decomposition problem

In this case we use the sample problem given to us by Schilders.

>> !cp examples/simschur/*.m

>> [A,B] = noisy;

>> parameters(A,B);

>> YO = guess;

>> [fn,Yn] = sg_min(YO,'newton','flat');

iter grad F (Y) flops

2.205361e-01

6.688045e-03

1.386562e-04

1.687421e-02

4.928702e-03

4.913259e-03

54763

4808445

8560957

none

newton step

newton step

102

22 '
0 2 10 12 14

x 10



flops

Figure 4-5: Simultaneous Schur Problem

2.377737e-06

2.314313e-07

4.913255e-03

4.913255e-03

11891025

14846552

newton step

newton step

Figure 5 shows the convergence curve for this run.

4.4.6 A sample INDSCAL problem (simultaneous diagonaliza-

tion)

We attempt to simultaneously diagonalize two noisy versions of diag (1: 10) and diag (1: 10) ^2.

Our initial point is the QR-factorization of the average of the eigenvectors of the two matri-

ces.

>> !cp examples/indscal/*.m

>> randn('state',0);

>> [A,B] = noisy;

>> parameters(A,B);

>> YO = guess;

>> [fn,Yn] = sg_min(YO,'newton','euclidean');
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iter grad

0 1.871820e+03

invdgrad: Hessian not

1 1.141235e+03

invdgrad: Hessian not

2 6.017399e+02

invdgrad: Hessian not

3 3.157921e+02

invdgrad: Hessian not

4 1.908635e+02

invdgrad: Hessian not

5 1.385145e+02

invdgrad: Hessian not

6 1.274498e+02

7 2.162910e+00

8 3.022615e-03

9 1.708804e-03

F(Y) flops

5.837012e+02 29736 none

positive definite, CG terminating early

1.996926e+02

positive definite

7.364112e+01

positive definite

2.351357e+01

positive definite

1.450185e+01

positive definite

1.136202e+01

positive definite

9.160689e+00

5.662713e-03

2.224608e-06

2.223022e-06

2514846 steepest step

a, CG terminating early

8191352 newton step

i, CG terminating early

11094356 newton step

, CG terminating early

15838109 steepest st

, CG terminating early

20790540 steepest st

, CG terminating early

25701418 newton step

34638359 newton step

42237728 newton step

43731038 newton step

ep

ep

Figure 6 shows the convergence curve for this run.

4.5 Making modifications (the structure of the code)

This template is written to function as is, but can be tailored to specific problems, resulting

in substantial improvements in performance. There are also functions which could be in-

lined and computations which can be reused of which we have not taken advantage for the

sake of having a more readable code. Many components are the usual routines found in

the literature (our line minimization routine is matlab's fmin for example). Certainly it

is possible for improvements to be made in the optimization routines themselves and we

welcome suggestions from optimization experts.

To make modifications as painless as possible, we present a section sketching the basic
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Figure 4-6: (INDSCAL) Simultaneous Diagonalization Problem

structure of the sgmin code. Readers who do not wish to modify any of the functions

beyond F.m, dF.m, and ddF.m can skip this section.

4.5.1 Subroutine dependencies

Figure 7 shows the dependencies of the various subroutines on each other. We have grouped

together the routines based on four loosely defined roles:

* Objective Function These are the routines which implement the objective function

and its derivatives. This group is the only group that a user interesting only in the

basic functionality need ever modify to adapt the template. Functions in this group

are used by functions in the Geometrized Objective Function group and High Level

Algorithm group.

* Geometric Implementation These routines implement the geometric features of the

Stiefel manifold. This includes the projection of unconstrained vectors onto the con-

straint (i.e. tangent) space (tangent), line movement (move), and the connection term

used for covariant differentiation (connection). These routines are independent of the
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Figure 4-7: Our code tree: dependencies of various modules
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HIGH LEVEL ALGORITHM

sg_min

sgnew on sg_frcg

Fline.m

GEOMETRIZED OBJECTIVE FUNCTION

invdgrad.m grad.m

dgrad.m dimension.m

nosym.m

partition.m

OBJECTIVE FUNCTION

F.m

dF.m

ddF.m

GEOMETRIC IMPLEMENTATION

move.m
connection.m

tangent.m
1p.m

dtangent.m



Objective Function group, but are essential to the Geometrized Objective Function

group.

* Geometrized Objective Function This group uses the routines of the Geometric

Implementation to project the differential and second differential of F(Y) onto the

constraint (i.e. tangent) surface producing the geometrically covariant gradient (grad)

and Hessian (dgrad). Additionally, the routine for inverting the covariant Hessian

by conjugate gradient (invdgrad) is located here. This group provides the raw tools

out of which one builds implementations in the High Level Algorithm group. Lastly,

functions which detect (partition) and remove (nosym) block diagonal orthogonal

symmetries are found in the group.

* High Level Algorithm This group implements the constrained versions of various

optimization algorithms. It is here search directions are selected, line minimizations

are performed (using Fline), and convergence criteria are defined.

Lastly, every function reads from a global SGParameters structure whose fields contain

information about the manifold and the computation. In our examples we have used a

separate global FParameters to store information related to the computation of F(Y). The

fields of SGParameters are set in sg_min.

4.5.2 Under the hood

sgmin is built from a couple fairly elementary optimization codes which have been put

through a geometrization that allows them to sit on the Stiefel manifold. The basic elements

of a geometrization are the rules for how to take inner products, how to turn unconstrained

differentials into constrained gradients, how to differentiate gradient fields covariantly, and

how to move about on the manifold.

The sgmin routine parses the arguments and sets the defaults. Finally, it calls either

sgnewton or sgfrcg. The source for these routines (in pseudocode) follows:
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function [fn,Yn]= sgnewton(Y)

ginitial = grad(Y); g = ginitiai;

f = F(Y); fold = 2*f;

while (llgll > eps) & (lglI/lgintiaill >gradtol) & (Ifold/f-1 I > ftol)

sdir = -g;

% steepest descent direction and line minimization on different scales

fsa = minimize F(move(Y,sdir,sa)) for sa E [-1, 1] I i-

fsb = minimize F(move(Y,sdir,sb)) for sb E [-1, 1] I (gsdisdr4A -rd

ndir = -dgrad - 1 - g;

% newton direction and line minimization

fna = minimize F(move(Y,ndir,na)) for na E [-1, 1]

fnb = minimize F(move(Y,ndir,nb)) for nb E [-1, 1]

r)

Si f

(g,ndir)
" I (ndir,dgrad.ndir) I;

% compare the best newton function value with the best steepest

if (fsa < fsb) st=sa; fst=fsa; else st=sb; fst=fsb; end

if (fna < fnb) nt=na; fnt=fna; else nt=nb; fnt=fnb; end

if (fst <fnt)

dir = sdir; t = st; fnew = fst;

else

dir = ndir; t = nt; fne = fnt;

end

% move to the new point

Y = move(Y,dir,t); fold= f; f = fnew,;

g=grad(Y);

end

fn = f;

Yn = Y;
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These are fairly generic routines for optimization. At this level of description, one would

not necessarily be able to tell them from unconstrained routines (see [34, 37, 52, 50]. What

places them on the Stiefel manifold are the definitions of grad, dgrad, ip (the dot product),

and move, which have been made in such a way that the constraints of the Stiefel manifold

are respected.

4.5.3 What to modify

Here is a sketch of specific modifications a user may wish to make on the code.

* Fline Currently line minimizations are being performed by the matlab fmin function

in conjunction with our Fline function. However, fmin is not necessarily the best
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function [fn,Yn]= sgfrcg(Y)

ginitial = grad(Y); g = ginitial;

f = F(Y); fold = 2*f;

while (Jllg > eps) & (lglll/lginitialll >gradtol) & (Ifold/f-1 I > ftol)

dir = -g;

% get a Hessian conjugate direction

if (not first iteration)

dir = dir - dir.(draddir, ) *dirod;dirld.(dgrad-dirld)

end

% line minimization

fcga = minimize F(move(Y,dir,cga)) for cga E [-1, 1] - (g,dir)

fcgb = minimize F(move(Y,dir,cgb)) for cgb E [-1, 1]. - (dir,d ir) ;

if (fcga < fcgb) t=cga; fnew=fcga; else t=cgb; fnew=fcgb; end

% move to the new point

[Y,dirold] = move(Y,dir,t); fold= f; f fne,,,;

g=grad(Y);

end

fn =f;

Yn = Y;
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function to employ for line minimization. If one wished to use a function other than

fmin then one could modify sgnewton.m and sg_frcg.m appropriately.

" High Level Algorithms The user may wish to use a minimization routine different

from or more sophisticated than sgfrcg or sg_newton, or one may just have a different

stopping criteria [6] that we did not anticipate. It is possible to adapt flat optimization

algorithms to new sg algorithms without having to know too many details. Most

unconstrained minimizations contain line searches (y -+ y+t*v), Hessian applictions

(H*v) and inner products (v'w). To properly geometrize the algorithm, one has to do no

more than replace these components with move (Y, V, t), dgrad (Y, V), and ip (Y, V, W)

respectively.

* Hessian Inversion We currently provide codes to invert the covariant Hessian in the

function invdgrad (which uses a conjugate gradient method). Any matrix inversion

routine which can stably invert black-box linear operators can be used in place of these

and no other modifications to the code would be required. Another feature the user

may wish to add is an inversion routine to produces dog-leg steps.

* Workspaces To make the code more readable we have not implemented any workspace

variables even though there are many computations which could be reused. For ex-

ample, in the objective function group, for many of the sample problems, products of

the form A*Y or Y*B or complicated matrix functions of Y such as B (Y) in the Jordan

example could be saved in a workspace. Some of the terms in the computation of grad

and dgrad could likewise be saved (in fact, our current implementation essentially

recomputes the gradient every time the covariant Hessian is applied).

* In-lining Although we have separated the tangent and dtangent functions from the

grad and dgrad functions, one often finds that when these functions are in-lined, that

some terms cancel out and therefore do not need to be computed. One might also

consider in-lining the move function when performing line minimizations so that one

could reuse data to make function evaluations and point updates faster.

110



* Sphere or O(n) Geometry Some problems are always set on the unit sphere or on

O(n), both of which have simpler geometries than the Stiefel manifold. Geodesics on

both are easier to compute, as are tangent projections. To take advantage of this, one

should modify the Geometric Implementation group.

* Globals In order to have adaptable and readable code, we chose to use a global

structures, SGParameters and FParameters, to hold data which could be put in the

argument lists of all the functions. The user may wish to modify his/her code so that

this data is passed explicitly to each function as individual arguments.

* Preconditioning The Hessian solve by conjugate gradient routine, invdgrad, does not

have any preconditioning step. Conjugate gradient can perform very poorly without

preconditioning, and the preconditioning of black box linear operators like dgrad is a

very difficult problem. The user might try to find a good preconditioner for dgrad,

but this may be difficult.

4.6 Geometric technicalities

This section is a brief explanation of the geometric concepts used to produce the methods

employed by sg_min and its subroutines.

4.6.1 Manifolds

A manifold, M, is a collection of points which have a differential structure. In plain terms,

this means that one is able to take derivatives of some reasonable class of functions, the

C" functions, defined on M. What this class of differentiable functions is can be somewhat

arbitrary, though some technical consistency conditions must be satisfied. We will not be

discussing those conditions in this section.

We consider the manifold StiefR(n, k) (for purposes of clearer explanation we restrict our

discussion to the real version of the Stiefel manifold) of points which are written as n x k

matrices satisfying the constraint Y*Y = I. We will select for our set of C' functions those

real valued functions which are restrictions to Stief(n, k) of functions of nk variables which
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are C"(Rnxk) about Stief(n, k) in the Rnxk sense. It should not be difficult to convince

oneself that the set of such functions must satisfy any technical consistency condition one

could hope for.

Additionally, M = Stief(n, k) is a smooth manifold. This means that about every point

of Stief(n, k) we can construct a local coordinate system which is C'. For example, consider

the point

Y=

and a point in the neighborhood of Y,

A)

For small B, we can solve for A in terms of the components of B and the components of

an arbitrary small antisymmetric matrix A by solving S*S = I - B*B for symmetric S and

letting A = eAS. This can always be done smoothly and in a locally 1-to-1 fashion for small

enough B and A. Since the components of B are all smooth functions (being restrictions

of the coordinate functions of the ambient Rnxk space), and since the solution for A is

C"(R(n- k)xk D Rkxk) for small enough B and A, we have shown that any point of Stief(n, k)

can be expressed smoothly as a function of (n - k)k + k(k - 1)/2 = nk - k(k + 1)/2 variables.

The only difference between is a euclidean rigid motion; therefore, this statement holds
(0

for all points in Stief(n, k).

Summarizing, a manifold is a set of points, with a set of differentiable functions defined

on it as well as a sense of local coordinatization in which the dependent coordinates can

be represented as smooth functions of the independent coordinates. Specifically, we see

that there are always nk - k(k + 1)/2 independent coordinates required to coordinatize

neighborhoods of points of Stief(n, k). This number is called the dimension of the manifold,

and it should be the same for every point of a manifold (if not, then the manifold is either

disconnected or not actually smooth).
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4.6.2 The difference between a tangent and a differential

Given a smooth point x on any manifold and a smooth path p(s) in the manifold such that

p(O) = x, one can construct a differential operator on the C" functions defined near x by

the rule

Dpf = df(p(s)) S=o0ds

Now, it turns out that these differential operators at x form a finite dimensional vector space,

and the dimension of this vector space is equal to the dimension of the manifold. This vector

space is called the tangent space of M at x, and is often denoted Tx(M).

For the Stiefel manifold, and, generally, all smooth constraint manifolds, the tangent

space at any point is easy to characterize. The constraint equation Y*Y = I can be thought

of as k(k + 1)/2 independent functions on Stief(n, k) which must all have constant value. If

H is a tangent vector of Stief(n, k) at Y, it must then be that

H*Y + Y*H = 0,

which is obtained by taking dY(t)*Y(t) = 0 t=o (where Y(0O) = H). In a constraint manifold,

the tangents at Y can equivalently be identified with those infinitesimal displacements of Y

which preserve the constraint equations to first order.

For H to be a tangent, its components must satisfy k(k + 1)/2 independent equations.

These equations are all linear in the components of H, and thus the set of all tangents is a

nk - k(k + 1)/2 dimensional subspace of the vector space Rnxk.

A differential operator DH may be associated with an n x k matrix, H, given by

d
DHf = f (Y + tH) t=o.

dt

DH is the directional derivative operator in the H direction. One may observe that for H

to be a tangent vector, the tangency condition is equivalent to DH(Y'Y) = 0.

While tangents are n x k matrices and, therefore, have associated differential operators,

differentials are something else. Given a C o function f and a point Y, one can consider the
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equation DHf for H E Rnxk (H is not necessarily tangent). This expression is linear in H

and takes on some real value. It is thus possible to represent it as a linear function on the

vector space Rnxk,

DHf = tr(H*Z),

for some appropriate n x k matrix Z whose values depend on the first order behavior of f

near Y. We identify this Z matrix with df, the differential of f at Y. This is the same

differential which is computed by the dF functions in the sample problems.

For any constraint manifold the differential of a smooth function f can be computed

without having to know anything about the manifold itself. One can simply use the differ-

entials as computed in the ambient space (the unconstrained R n xk derivatives in our case).

If one then restricts one's differential operators to be only those in tangent directions, then

one can still use the unconstrained df in tr(H*df) to compute DHf for H E Ty(Stief(n, k)).

This is why it requires no geometric knowledge to produce the dF functions.

4.6.3 Inner products, gradients, and differentials

In flat spaces, we often identify the differential of a function with its gradient. However,

when dealing with a more general setting, one can run into problems making sense out of

such a definition.

For example, the gradient is a vector, and it should be possible to think of vectors as

infinitesimal displacements of points. In Stief(n, k), any infinitesimal displacement 6Y must

satisfy 6Y*Y + Y*6Y = 0. Thus, df may not always be a vector, since it does not necessarily

satisfy this equation. A gradient should be an infinitesimal displacement that points in the

direction of the displacement which will give the greatest increase in f.

If the tangent space has an inner product, though, one can find a useful way to identify

the df uniquely with a tangent vector. Let ip(Hi, H2) be a symmetric nondegenerate bilinear

form on the tangent space of Stief(n, k) at Y. Then one can define the gradient, G, implicitly

by,

ip(G, H) = tr(H*df) = DHf.
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Figure 4-8: The unconstrained differential of F(Y) can be projected to the tangent space to
obtain the covariant gradient, G, of F.

Since ip is a nondegenerate form, this is sufficient to define G. The function tangent carries

out this projection from differentials to tangents (shown in Figure 4-8). This operation is

performed by grad to produce the gradient of the objective function.

4.6.4 Getting around Stief(n, k)

We've now laid the groundwork for a meaningful definition of the gradient in the setting of a

constraint manifold. At this point, one could run off and try to do a steepest descent search

to maximize one's objective functions. Trouble will arise, however, when one discovers that

there is no sensible way to combine a point and a displacement to produce a new point

because, for finite s, Y + sH violates the constraint equations, and thus does not give a

point on the manifold.

For any manifold, one updates Y by solving a set of differential equations of motion of

the form

d
Y=H

dt
d

H = -F(H,H).
dt

The F term is crafted to ensure that H remains a tangent vector for all times t, thus keeping

the path on the manifold. It is called the connection. (The connection term also depends on

Y.)

To see how these equations could be satisfied, we take the infinitesimal constraint equation
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for H,

H*Y + Y*H = 0,

and differentiate it with respect to t, to get

F(H, H)*Y + Y*F(H, H) = 2H*H.

This can be satisfied generally by F(H, H) = Y(H*H) + T(H, H) where T(H, H) is some

arbitrary tangent vector.

In the next subsection, we will have reason to consider F(HI, H 2) for H 1 : H 2. For

technical reasons, one usually requests that F(H 1, H2) = F(H2 , H 1) (this is called the torsion

free property), and that ip(F(H1, H3 ), H2) + ip(Hi, F(H 2, H3 )) = 0 (this is called the metric

compatability property). These two properties uniquely determine the T(H1, H 2) term, and

thereby uniquely specify the connection. On any manifold, the unique connection with these

properties is called the Levi-Civita connection.

The connection for the Stiefel manifold using two different inner products (the Euclidean

and the canonical) can be found in the work by Edelman, Arias, and Smith (see [1, 31, 56]).

The function connection computes F(H 1, H2 ) in the template software.

Usually the solution of the equations of motions on a manifold are very difficult to carry

out. For the Stiefel manifold, analytic solutions exist and can be found in the aforementioned

literature, though we have found very little performance degradation between moving along

paths via the equations of motion and simply performing a QR factorization on Y + sH,

as long as the displacements are small. Since QR factorization is cheaper, the software

has this as its default (motion= 'approximate'). We have provided the two equations of

motion solvers (for the Euclidean and canonical connections) as well as movement by QR

factorization in move to satisfy both the purists and the pragmatists respectively.

4.6.5 Covariant differentiation

With the notion of a gradient and a notion of movement that respects the constraints of the

manifold, one might wish to begin with an optimization routine of some sort. A steepest
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Figure 4-9: In a flat space, comparing vectors at nearby points is not problematic.

Figure 4-10: In a curved manifold, comparing vectors at nearby points can result in vectors
which do not lie in the tangent space.

descent could be implemented from these alone. However, in order to carry out sophisti-

cated optimizations, one usually wants some sort of second derivative information about the

function.

In particular, one might wish to know by how much one can expect the gradient to change

if one moves from Y to Y + EH. This can actually be a difficult question to answer on a

manifold. Technically, the gradient at Y is a member of Ty(Stief(n, k)), while the gradient

at Y + EH is a member of Ty+eH(Stief(n, k)). While taking their difference would work fine

in a flat space (see Figure 4-9), if this were done on a curved space, it could give a vector

which is not a member of the tangent space of either point. (see Figure 4-10).

A more sophisticated means of taking this difference is to first move the gradient at

Y + EH to Y in some manner which translates it in a parallel fashion from Y + EH to Y,

and then compare the two gradients within the same tangent space. One can check that for

V E Ty+EH(Stief(n, k)) the rule

V -4 V + eFr(V, H),
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where F(V, H) is the Levi-Civita connection, takes V to an element of Ty(Stief(n, k)) and

preserves inner product information (to first order in c). This is the standard rule for parallel

transport which can found in the usual literature ([14, 69, 44, 41], and others).

Using this rule to compare nearby vectors to each other, one then has the following rule

for taking derivatives of vector fields:

d
DHG = G(Y + sH)s=0o + r(G, H),ds

where G is any vector field (but we are only interested in derivatives of the gradient field).

This is the function implemented by dgrad in the software.

In an unconstrained minimization, the second derivative of the gradient g = Vf along a

vector h is the Hessian [ f ] times h. Covariantly, we then have the analogy,

&2[2f - ]h = ( -. V)g - DHG.

4.6.6 Inverting the covariant Hessian (technical considerations)

Since the tangent space of Stief(n, k) is a subspace of Rnxk, the covariant Hessian must be

inverted stably on this subspace. This requires any algorithms designed to solve DHG = V

for H to really be pseudoinverters in a least squares or some other sense.

A second consideration is that many useful functions f(Y) have the property that

f(YQ) = f(Y) for all block diagonal orthogonal Q (i.e.

Q 0 ... 0

Q= 0 Q2 ... 0
0 0 ... Qp

where the Qi are orthogonal matrices). In this case, all tangent vectors of the form

(A, 0 ... 0

H=Y 0 A 2  -.. 0

0 0 --- AP
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where the Hi are antisymmetric, have the property DHf = 0. These extra symmetry vectors

are then null vectors of the linear system DHG = V. Because of these null directions, the

effective dimension of the tangent space is reduced by the dimension of this null space (this

is the dimension returned by the dimension function).

Thus, we see that in order to invert the covariant Hessian, we must take care to use

a stable inversion scheme which will project out components of H which do not satify the

infinitesimal constraint equation and those which are in the direction of the additional sym-

metries of f. The invdgrad function carries out a stable inversion of the covariant Hessian by

a conjugate gradient routine, with the dgrad function calling the function nosym to project

out any extra symmetry components.
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Chapter 5

Multiscale Computation with

Interpolating Wavelets

5.1 Introduction

Wavelets offer a means of approximating functions that allows selective refinement. If regions

of an image or a signal have exceptionally large variations, one need only store a set of

coefficients, determined by function values in neighborhoods of those regions, in order to

reproduce these variations accurately. In this way, one can have approximations of functions

in terms of a basis that has spatially varying resolution. This approach reduces the memory

storage required to represent functions and may be used for data compression.

Physical applications often involve multiple physical fields which interact in space with

non-linear couplings. Efficient implementations must minimize not only storage to represent

the these fields but also the processing required to describe their interactions. It is highly

desirable to perform the needed operations with a fixed, limited number of floating point

operations for each expansion coefficient and to minimize the number of points in space at

which physical interactions must be evaluated.

As a concrete example of a realistic application, consider the computation of the quantum

mechanical electronic structure of a collection of atoms in three dimensions. For other

examples of physical applications, the reader may wish to consult [7], [9], [35], et al.. Arias
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and coworkers [15],[5], and other works which have appeared after the original submission of

this manuscript nearly one year ago [65],[64], have studied the use of multiresolution bases in

quantum mechanical computations. (For a review, see [3].) It is a consequence of quantum

physics that, near atomic nuclei, electronic wave functions vary rapidly and, that far from

the nuclei, the wave functions tend to be much more smooth. From this observation, one can

anticipate that the fine scale coefficients in a multiresolution analysis of the electronic wave

functions and associated physical fields will be significant only near the atomic cores, allowing

for truncation. This problem is thus an ideal candidate for multiresolution techniques.

Within density functional theory [42], the quantum physics of electrons and nuclei in-

volves two types of fields, the Schr6dinger wave function {4'(r)} for each electron i and the

electrostatic potential O(r) arising from the average electronic density n(r) - Ei i (r) 2.

Within the local density approximation (LDA) [45], the solution for the correct values of

these fields is obtained at the saddle-point of lowest energy of the Lagrangian functional

L'LDA({4ij}, ) = f3 r I3VV (r)1 2 + d3r Vnuc(r)n(r) + d3 r c,(n(r))n(r)

- Jd3r (r)n(r) - Jd3r IV(r)1 2 . (5.1)

Here, we work in units h = m = e = 1, Vnuc(r) is the total potential which each electron

feels due to the presence of the atomic nuclei, and e,,(n) is a non-algebraic function known

only through tabulated values. (For a review of density functional theory, see [51].)

In practice, one finds the fields {4(r)}, O(r) by

" expanding the fields in terms of unknown coefficients within some basis set

O' (x) = Zcib,(x) (5.2)
a

(x)= db,);

* evaluating Equation (5.1) in terms of the unknown coefficients c and d;

* determining analytically the gradients of the resulting LLDA (c, d) with respect to those

coefficients; and

122



* proceeding with conjugate gradients to locate the saddle point.

All follows directly once one has expressed the Lagrangian as a function of the expansion

coefficients.

In doing this, we note that each term represents a local coupling in space, but that one

coupling, 0(r)n(r), is cubic in the field coefficients c and d, and another, 'xc(n(r))n(r), is

only known in terms of tabulated values. Expanding the product of two wavelets in terms of

wavelets on finer levels would make possible the treatment of the cubic coupling to some level

of approximation. (See, for example, [10].) However, this route becomes increasingly difficult

for higher order interactions and is hopeless for non-algebraic or tabulated interactions, such

as exc(n(r)). For higher order interactions it is natural, and for non-algebraic and tabulated

interactions necessary, to evaluate the interactions at some set of points in space and then

recover expansion coefficients for the result. One then relies upon the basis set to provide

interpolation for the behavior at non-sample points.

The benefits of both truncated wavelet bases and interpolation on dyadically refined grids

are given by the use of interpolating scaling functions [27], [11], [12], [24], [26] (or interpolets

[70], [3]), which are functions with the following properties (from [26], pp. 6-7).

Let O(x) be an interpolet, then

(INT1) cardinality: 0(k) = 6 0,k for all k E Zn

(INT2) two-scale relation: 0(x/2) = ZEycz cy,(x - y)

(INT3) polynomial span: For some integer m > 0, any polynomial p(x) of degree m

can be represented as a formal sum EYC, a(y)o(x - y).

Cardinality allows the fast conversion between uniform samples and interpolating scaling

functions and has subtle yet profound consequences for the resulting multiresolution basis.

In particular, as is evident from our algorithms below, the expansion coefficient for a ba-

sis function on a particular scale is independent of the samples of the function for points

associated with finer scales. Consequently, the expansion coefficients which we obtain for

functions maintained in our basis are identical to what would be obtained were function sam-

ples available on a complete grid of arbitrarily fine resolution. This eliminates all error in

123



the evaluation of non-linear, non-algebraic and tabulated interactions beyond the expansion

of the result in terms of a finite set of basis functions.

The cy in the two-scale relation are referred to as scaling coefficients, and cardinality

actually implies that c, = 0(y/2). The two-scale relation allows the resolution to vary

locally in a mathematically consistent manner.

The polynomial span condition captures, in some sense, the accuracy of the approxi-

mation. By cardinality, we actually have a(y) = p(y). We shall call m the polynomial

order.

Interpolets thus can be thought of as a bridge between computations with samples on

dyadically refined grids and computations in a multiresolution analysis. The former point

of view is useful for performing local nonlinear operations, while the latter is useful for the

application of local linear operators.

This manuscript explores O(N) algorithms that calculate transforms and linear operators

for grids of variable resolution but return, for the coefficients considered, exactly the same

results as would be obtained using a full, uniform grid at the highest resolution without the

need to introduce artificial temporary augmentation points to the grid during processing.

We thus show that with relatively mild conditions on the variability of the resolution pro-

vided by the grid, interpolet bases provided the ultimate economy in the introduction of grid

points: only as many samples in space need be considered as functions used in the basis. The

four transforms (forward, inverse, and the dual to each) mapping between coefficients and

functions samples which we discuss here are particular to interpolet bases. For the applica-

tion of operators in such bases, we show that the familiar non-standard multiply of Beylkin,

Coifman and Rokhlin[8] shares with the transforms the property of correctness without the

need to introduce additional grid points. Furthermore, we weaken the condition on grid vari-

ability by using a modification of the non-standard multiply. We generalize the non-standard

multiply so that communication may proceed between nearby but non-adjacent levels and

thereby obtain less stringent conditions on the variability of the grid. All of theoretical re-

sults in this manuscript are presented in a general d-dimensional space. Illustrative examples

for the purpose of discussion will be given in d = 1 and d = 2 dimensions. The examples

of applications in the final section will be in d = 3 dimensions. Our focus is entirely on
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Ck 2k - Zn for k > O, Z n for k < 0.
Dk Ck-1 -Ck for k > 0, for k < 0.

Ok min(k, m) where m is the largest integer such that 2m divides all the
components of y.

Fk (S) the space of functions over S C Z n .

Ik( , S) the space of linear combinations of q((x - y)/2 0 k(Y)) for y E S c Zn.

L¢ the mapping from S - ZIk(, S) which takes y -+((x - y)/2 0 k(Y)) and

linearly extended to a map from Fk(S) - Ik(0, S).

SFkl(Z")/Fk(Zn - S).

4(() Ik(0, Zn)/I_(0, Zn _ S).

'i the zero-lift representative of v E FS , i.e. ' E Fk, such that b(y) = v(y),
y S and i(y) = O, y V S.

V* the dual space of the vector space V.

Jk1 ,k 2  the map, k, - k 2, given by Jkl,k2 = O Lk1

Jk short for Jo,k.
J-k short for Jk,0.

(f101g) the matrix element f f(x)Og(x)d"x.

Table 5.1: Notation for multiscale computations.

interpolet bases, and so it remains an open question whether these results hold true or can

be adapted to more general wavelet systems.

Our organization is as follows. In Sections 2 and 3, we explain how to manipulate and

construct interpolet expansions and some aspects of how well they perform. These sections

will present nothing new to the experienced wavelet user, but will explain our notational

conventions (which are summarized in Table 5.1) and recapitulate common theorems ([19],

[53], [20], [58], et al.) for wavelet novices. In Section 4, we describe how nonuniform bases

can be conceptualized in the framework of interpolet expansions and then use our results

to develop algorithms for the transforms. Section 5 details the algorithm for V 2 and other

operators. Section 6 gives some practical details for the reader interested in implement-

ing these algorithms. Finally, Section 7 compares, in three dimensions, timings of these

implementations with the timings of naive algorithms. This final section also explores the

convergence of a preconditioned conjugate gradients algorithm in the solution of Poisson's

equation for the full three dimensional electrostatic potential arising from the nuclei in the

nitrogen molecule.
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5.2 Introduction to interpolets

There is a unique set of interpolets on R having symmetry and minimal support for a

given polynomial order m = 21 - 1 (the Deslauriers-Dubuc functions [24]). These are the

functions with which this article is primarily concerned (our results carry over to more general

interpolets, and no use will actually be made of minimal support or symmetry).

To determine the cy's, one sets c2j = 6m0 and c, = c-_. One may solve the Vandermonde

system,
S1 1 .. 1 / c

1 32 --- (21- 1)2 c3

1 34 -.. (21- 1)4

1 321-2 ... (21 - 1)21-2 C2 1- 1

to obtain the remaining cy's. These coefficients satisfy the

21- 1.

The scaling coefficients for m = 1 are

C_1 = C1 = 0.5, co = 1,

and for m = 3 (the example used for Figure 5-1.) they are

) 0)
conditions for polynomial order

3 = 16 _1 = C1 = 16, co 1.

One may then take tensor products of q's and cy's to form interpolets in higher dimen-

sions.

5.2.1 Interpolet Multiresolution Analysis

We are concerned with recursive representations of functions from samples at integer points

on both uniform and refined grids. There are many definitions which make the exposition

more clear.
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1

0.5

0

-8 -7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8
b

1

0. 5 '

8 -7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8

Figure 5-1: (a) shows q(x/2) = .q5(x - 3) + '2( - 1) + O(x) + -2-(x + 1) + =10(x + 3).
(b) shows the functions 1( - 3), -q(x - 1), O(x), 'q(x + 1), 0(x + 3).

Definition 5.2.1 For k > 0, let Ck = 2kZ n , and let Dk = Ck-1 - Ck. For k < 0, let

Ck = Zn, and Dk = .

We consider Ck to be the set of coarse lattice points on the lattice 2k-lZn and Dk, the

detail lattice points, to be those points on 2k-lZn which are not coarse. Note: Dk U Ck

Ck-1, and Z = Ck U Dk U Dk-1 U ... U D 1 is a partition of Z.

Definition 5.2.2 We let Ok(y) = min(k, m) where m is the largest integer such that 2m

divides all of the components of y. We call Ok(y) the level of the point y.

Given the partition Zn = Ck U Dk U Dk-1 U ... U D 1, we have

Ok (Y) k, yE C k

1-1, y EDi.

Definition 5.2.3 Let S C Z n . Let O(x) be an interpolet. Let Ik(o,S) be the space of

functions given by formal sums of the form Eyes a(y)O(- ).
2 k(Y)
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Where q and S are understood, we may simply write k.

Definition 5.2.4 Let S C Zn . Let Fk (S) be the vector space of R- or C- valued functions

on Z n which are zero at any point not in S (i.e. with support contained in S).

Where S is understood, we may simply write Fk. Note: TYk(S) = Fk(S n Ck) ( .Fk(S n

Dk) Fk(S n Dk-1) ED Fk(S n D).

The meaning of the k subscript will be established by the next definition, which will link

vectors in Fk with functions in 1k. It is for this reason that while the F's are technically

identical, they are semantically different. In practice, the Y's are the actual data structures

being stored on the computer.

Definition 5.2.5 Let O(x) be an interpolet. Let to : S - ZIk(/, S) be defined by

x- y

2k (Y)

This definition extends linearly to the mapping to : Fk(S) - Ik(, S) defined by:

yeS

Z. e.

(LkV)(X) = E v(y)q((x- y)/2k)± E v(y)((x - y)/2k-1).+ + v(y)(x- y).
yEsnCk yESnDk yESnD1

The set S can be thought of as the set of points in a refined grid. The to identifications

allow one to think of S as a set of functions, { (tY)y E S}, which form a basis of IZk (, S). We

will sometimes refer to S as a refined grid and sometimes as a basis with this identification

understood.

One should think of the Fk as spaces of coefficients for function expansions in the corre-

sponding Ik spaces, in the basis S. The o simply associate a set of coefficients in Fk with

a function in Ik. When 0 is understood, we may write just tk.
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We are now in a position to state the basic theorems of interpolet expansions on uniform

grids.

Theorem 5.2.6 Let O(x) be an interpolet on R n . Then each mapping Lk : Yk(S) -+ Zk(q, S)

(k = 1, 2,...) is an isomorphism.

Proof: Since the map Lk is surjective, it is only necessary to show that tk is injective.

By the definition, tkV = 0 if and only if there exist v E .Fk such that

v(y)((x - y)/2k) +
yESnDk

v(y)O(x - y).v(y)((x - y)/2k - 1) + . + E:
yESnD1

Let z E SnCk. By (INT1), we have 0((z-y)/2k) = 6(z-y)/2k,o = 6z,y, for y e SnCk, and

also ((z - y)/2') = 0, for y E SnD,. So, (tkV)(Z) = V(Z),Z E Sn Ck, therefore v(z) = 0, z E

Sn Ck. This being so, one then has (Lkv)(z) = v(z), z ES n Dk, SO v(z) = 0, z c S n Dk.

Once again, (tkV)(z) = v(z),z c Sn Dk-l, thus we must have v(z) = O,z E Sn Dk-1.

Continuing in this manner, we deduce that v(y) = 0, y c S, thus v = 0.

Corollary 5.2.7

Ik(S) = k(S n Ck) Ik (Sn Dk) E '.' " ZEk(S n Di)

Since the sum is direct, the expansion is unique.

This corollary is a consequence of observations in the above proof.

Theorem 5.2.8 Let O(x) be an interpolet on R . Then

Vk, k (0, Z n ) = Ik-1(0, Z"n).

Consequently,

Vkl, k2,i kl (, Z n ) = Ik 2 (, Zn).
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Proof: To prove that 'k C 'k-1 we note that Ik C k-1 U k(Ck). Thus we just need

to show Ik(Ck) C $k-1.

Translating by z E Ck and inserting powers of 2 where appropriate, one can rewrite

(INT2) for 0 as

((x - z)/2k) = ((x - z)/2k-1) + Cy/2k-1 0(( - z - y)/2k-1).

yEDk

The terms in the right hand side are elements Ik-1. Thus Ik C -k-1-

To prove Ik-1 C Zk note that any element of Ik-1 can be expressed as:

f(x)= E
YECk-1

a(y)q((x - y)/2 k - 1 ) + E
yGDk-1

a(y)o((x - y)/2k- 2 ) +---
yCD 1

All the terms in this expansion but the first are elements of Zk. Since Ck-1 = Ck U Dk we

may split the first sum up as,

a(y)¢((x - y)/2 k - 1) = E a(y)cb((x - y)/2±k -
1

) + : a(y)o((x - y)/2 k - 1)
yEDk

The second term is also an element of k-.

Rewriting (INT2) one has (y E Ck):

((x - y)/2 k - 1 ) = ¢((x - y)/2k) - Cz/2k-14((x - z - y)/2k-1).
zEDk

y E Ck, z E Dk, so y + z E Dk, thus the right hand side is made up of elements of Ik. Thus,

Ik-1 C Zk
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5.2.2 Interpolet transforms

Corollary 5.2.9 Interpolet Decomposition

The set of isomorphisms Lk induces a set of isomorphisms

Jkl,k2 Yki -4 k 2

Jkl,k2 = L Lk
i-

We refer to these isomorphisms as interpolet transforms. It is our convention to let Jk = JO,k

and J-k = Jk,o. The reader will note that the Ji are linear transformations on the coefficient

spaces, and are thus the primary object of computation.

We now turn to a study of the J's. It is clear from the definition that for kl < k2 ,

Jkl,k2 = Jk 2-1,k 2 O Jk 2-2,k 2-1 O ... Jkl,kl+l, and similarly for kl > k2 . Thus, we need only

study the Jk,k+l and Jk+l,k mappings.

Theorem 5.2.10 Computation Theorem

Let v E Fk (Zn).

(Jk,kV)(y) = v(y), y V Dk+1

where v'(y) = v(y) - EECk+1 C(y-z)/ 2 k(Z).

(Jk+l,kv)() = v (y), y B Dk+1

v'(y), y Dk+1

where v'(y) = v(y) + EzECk+1 c(y+z)/2kv(z).

Proof: For v E Fk we have

LkV = E v(y)o((x - y)/2k) + v(y)((x - y)/2k-1) + . + v(y)( - y)
yECk yEDk yED1
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expanding the first term,

tkV = E v(y)q((x - y)/2k) + E v(y)q((x - y)/2k) + E v(y)o((x - y)/2 k - 1 ) + .

yECk+1 yEDk+1 yEDk

using (INT2), 0((x - z)/2k) = 0((x - z)/2 k +l ) - ZyEDk+1 C(y-z)/ 2 k ((X - y)/2k),

tkV = v(y)q((x - y)/2k+1) + Z v'(y)q((x - y)/2k) + Z v(y)q((x - y)/2k-1) +...
YECCk+1 yDk+1 yCDk

- v(y), y C Dk+1

v'(y), yE Dk+1

where v'(y) = v(y) - ZZECk+1 C(y-z)/2kv(Z).

The proof for Jk+l,k is similar.

O

Similar to what one might get with wavelets, we see that we can compute the coefficients

of interpolet expansions on uniform lattices by a pyramid algorithm. Computationally,

this procedure can be carried out by first computing the D 1 coefficients with Jo,1, then by

computing the D2 coefficients from the C 1 data with J 1,2, and so on. In this sense, it is no

different from standard multiresolution decompositions.

A feature of the interpolet decomposition is that the transformations all have a particular

lower triangular form. That is, if we write v E Fk as a vector with its Ck+1 components first,

its Dk+1 components second, and the rest of its components third, then the transformation

takes the form,
I 0 0 0 0 1VCk+

M I 0 0 0 VDk+l

Jk,k+lv = 0 0 I 0 0 VDk

0 0 0 I 0

The0 0 0 0 inverse, is obtained by replacing with -

The inverse, Jk+l,k, is obtained by replacing M with -M.
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5.3 Accuracy of interpolet approximation

Given a function f(x) on R", one can form an interpolet approximation to f by the formula:

f (x) ~ f (y)(x - y) = tof,
yECo

where f on the right hand side is thought of as a function restricted to Co = Z (a more cum-

bersome but more precise notation is Loff(Y)})vezE). This approximation has the property

that (tof)(z) = f(z),z E Zn.

Starting from the expansion tof E T o (, Zn) one can construct equivalent expansions,

tk(Jkf) E Zk(¢, Zn). The coefficients Jkf are referred to as the interpolet transform of the

function f.

If f(x) is sufficiently smooth, then we can expect that the coefficients (Jkf)(y), y E D1, 1 <

k, will be small. This statement is captured rigorously by the following lemma and theorem.

Lemma 5.3.1 Let ¢ be an interpolet with polynomial order of m then

p(x) ZIN(, CN)

for any integer, N, and any polynomial, p, of degree m.

Proof: p(2Nx) is a polynomial of degree m. By (INT3), p(x) can thus be represented by a

formal sum in o(, Co), namely

p(2Nx) = Z p(2Ny)O(x - y).

yEZ
n

By changing variables, we may rewrite this as

p(x) = p(2Ny)q(x/2N -y)
yEZ

n

- p(2Ny) ( ( x - 2Ny)/2N)
yEZ

n

= p(y)q((x - y)/2N)
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= p(y)¢((x - y)/2 N()).

yECN

Theorem 5.3.2 (Residual Theorem)

Let f(x) be a polynomial function of degree m. Let q be an interpolet with a polynomial

order of m. Then

(Jkf)(Y) = f(Y)' y E Ck
0, y E D,

Proof:

By (INT3), f(x) CE 0o(, Co). By the lemma, we also have f(x) E Ik(0, Ck). Recalling

that Jkf gives the unique expansion coefficients of f(x) in the decomposition of Io(, Co)

given by Ik(q, Ck) ® k (, Dk) ED'" ( -Ek (I , D 1), we see that the Ik (0, DI) coefficients must

vanish, while the Ik(q, Ck) coefficients are given by the lemma, namely f(y) for y E Ck.

O

The coefficients (Jkf)(y),y E Dj,l < k, are called residuals. The Residual Theorem

suggests that the magnitude of the residual coefficients (Jkf) at a point y E D1 are expected

to be proportional to the (m + 1)th derivative of f(x) at y. See Figure 5-2.

5.4 Truncated bases

Typically, one truncates an expansion by eliminating elements of a basis, setting their co-

efficients to 0. One is said to be working in a truncated basis when one works within the

subspace formed by the remaining basis elements. In the notation of this chapter, this

corresponds to taking expansions in Ik (0, S) with coefficients in .Fk(S).

One may also view a truncated basis as the set of expansions one gets when the coefficients

of some of the basis elements have been set to "don't care" values. Mathematically, this is

accomplished by quotienting out the "don't care" elements.
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Figure 5-2: (a) the smooth function f(x) = ( + 3)3 e-()4 . (b) the approximation to f(x) in
Zo(Z). (c) component of the approximation in II(C 1). (d) component of the approximation
in 1 (D 1).

Definition 5.4.1 Let

I = Ik ( , Zn)/Ik(0, Zn - S)

and

.F = Fk(Zn)/ k(Z - S).

When the identification of Fk (S) with F$ can be made will be dealt with later in this chapter.

For now, one may view these definitions as a trick to make the proofs less complicated and

for understanding exactly why and in what sense the algorithms are correct. Once again, we

think of Fs as a grid on which the elements outside of S have "don't care" values, and -Fk(S)

as a grid on which the elements outside of S vanish. The tk continue to be isomorphisms

(since Lk(Fk (Zn - S)) = ZIk(, Z n - S)).

However, it is not necessarily true that Is = Is  When this condition fails, then it is

no longer possible to define Jk,,k2 = o tk-

To be sure, one could still define some sort of Jkl,k2 by setting the elements in Z" - S

to zero, then applying the full grid version of Jkl,k2 , and then considering only the elements
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in S of the answer. This definition by itself has some drawbacks. Mathematically speaking,

this is the same as Jk,k 2 = P O Lki o r, where r -: F Fkl, is some lift to the full

grid, and p : Ik 2 -+ I is the standard projection operator onto the quotient. Generally, if

one follows this approach one will no longer have Jkl,k2 = Jk 2 -1,k 2 O Jk 2 -2,k 2 -1 0 ... o Jkl,kl+l

because IZ are not all equal. In terms of diagrams, where we once had

-1

ki 4 kl- -k 2  T Fk 2,

we now have
-1

What one needs is a condition on S such that Zkl (Z - S) = 'k 2 (Z - S). If this were

true, then the definition of the operator as Jkl,k2 = L Lk would actually be independent

of the values of the elements of Z" - S. In that case the quotient spaces are identical.

Definition 5.4.2 We say that the set S is a good basis when it satisfies the condition

Vkl, k,Zkl(Z - S) = Zk2(Z n - S), and thus _I = s

To get a handle on this definition, one sees that this is achieved when Ik(Zn - S)

k+1 (Z n - S). For this to be so, whenever y E Z" - S, every z such that q(x/2 ON(z) - z) is

in the two-scale expansion for ¢(x/2 N(Y) - y), must also be a member of Z n - S.

This can be captured in the following table (in which we let Ok(y) = Ok(Z) + 1).

in expansion? zE S z E Z" - S

yES ok ok

y E Z" - S not ok ok

The good basis condition for fast synthesis and reconstruction has also been discovered by

Cohen and Danchin (see S-trees in a coming work[17]) which appeared after the original

submission of our manuscript.

For some of the algorithms presented, we may employ additional conditions based on the

supports of the functions themselves (not just the support of their expansions).

Definition 5.4.3 We say that functions f and g touch whenever supp{f} n supp{g} has

nonzero measure.
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Figure 5-3: A visual summary of the 1-level touching condition. Solid plots represent func-
tions centered at points in S. Dotted plots represent functions centered at points in Z - S.
Tick marks delimit the overlap of the two functions.

For p > 0 we say that S has the p-level touching property when it satisfies the condition,

that for y E Zn - S, z E Z n, Ok(Z) <_ Ok(y) - p, and tkY touches tkZ implies z E Z' - S.

A less formal way of phrasing this definition for the case of 1-level touching is that if a

level 1 point,y, is a member of Zn - S then any point, z, at level 1 - 1 or lower for which LkY

touches LkZ must also be in Zn - S. For 2-level touching, one only considers any points at

level 1 - 2 or lower, and so on for p-level touching.

The allowed touching possibilities can be summarized the following table (in which we

let Ok(y) > Ok(Z) + p), or Figure 5-3 (for p = 1).

touch? z ES Z--S

yES ok ok

yE Zn - S not ok ok

One example of a 1-level touching good basis for one dimensional 3rd order interpolets
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Figure 5-4: Our example of the 1-level touching good basis in one dimension. Note that the
two functions plotted do not touch. Tick marks denote the set S C Z.

(the ones being used as an example) is the set of interpolets centered at the points

S= cou U {-7-21-5- **, - 7 ..., ,.21

(see Figure 5-4). The support of the interpolet on level 0 at y is [-3 + y, 3 + y], the union of

all the supports of the interpolets in S on level 0 is [-10, 10]. The support of an interpolet

on level 1 at y is [-6 + y, 6 + y], thus the only interpolets on level 1 which touch the

interpolets on level 0 are precisely those ones at points -14,...,14, which are precisely the

ones included in S. No interpolet not included on level 1 touches an interpolet included on

level 0 so the definition is satisfied. The argument proceeds similarly on higher levels. In

three dimensions, this example corresponds to nested concentric cubes of size 15 ... 21 at

each level 1 < n. Figure 5-5 shows a randomly generated generic example.

An example of a 2-level touching good basis for 3rd order is the set of interpolets centered

at the points

nU -5 -2' -3- 27,...3 21, 2 '
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o o 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 000000 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0000000000000

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 000 0 0 0 0
00000

o 0 0 0 0 0 0 0 0000000 0 0 0 0
0000000

0 0 0 0 0 000000000 0 0 0 0
0000000

o 0 0 0 0 0 0 000000000 0 0 0 0 0
0000000

0 0 0 0 0000000 0 0 0 0 0 0
00000

0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0
0000

0 0 0 0 0 0000000 0 0 0 0 0
000000

o 0 0 0 0 0 0 0 0000000 0 0 0 0
0000000

0 0 0 0 0 0 0000000 0 0 0 0
000000

S 0 0 0 0 0 0 0 0 0000000 0 0 0
000

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0000000000000

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

o O 0 0 0

o O 0 0 0

0 0 0 0 0

0 0 0 0 0

Figure 5-5: A generic example of a truncation which meets our definitions of good and 1-level
touching. In black are the points of S c Z n .
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0 0 0 0 0 0 0 0 0 0 0 0

00000

00000

000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000

00000

000000
0 0 0 0 0

0 0 0 0 0 0 0

0

0 0 0 0 0 0 0

0

0 0 0 0 0 0 0

0

0 0 0 0 0 0 0

0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

00000

00000

000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000

00000

00000
0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

Figure 5-6: An example of a 2-level touching good basis which can be used for a diatomic
molecule (two atomic cores). The points
significant.

in S C Z n are where residual values could be

Note (for n > 2) that this set is not 1-level touching since the level 1 interpolet centered at

y = 12 is not included, while an interpolet it touches, namely the level 0 interpolet centered

at y = 5, is included. Figure 5-6 shows an example of a 2-level touching good basis.

Finally, the set of points

S= C U {-3- 2' -1. 2' 1- 2',3 21)
l=0

forms a good basis, but is not 1-level touching or 2-level touching, but it is 3-level touching.

The above examples are meant to suggest that the good basis and the p-level touching

definitions can be thought of, informally, as conditions telling one how quickly one can change

from one resolution to another. Essentially, any nested set of refined regions can satisfy these

conditions so long as the margins around the set of points at a given resolution are wide

140

0 0

0
0 0

0

0 0

0O
0 0

0

0 0



enough.

From a computational point of view, what these conditions do is ensure that data-paths

which carry coefficient information between different resolutions are not broken by zeroed

coefficients at intermediate levels.

It is clear from the preceding discussion, in a good basis, one has Jkl,k2 = Jk 2 -1,k2 O

Jk2-2,k 2 -1 ... o Jkl,ki+l1 We may now generalize the computation theorem to a truncated

basis.

Theorem 5.4.4 Good Basis Computation Theorem

Let S be a good basis. v E .Fk(S), y e S

and , is any member of the equivalence class of v

(Jk,k+lf)(Y) f v(y), y E S - Dk+1

Sv'(y), y e Dk+1

where v'(y) = v(y) - EzEznCk+1 C(y-z)/2kv().

(l,(Y) v(y), y E S - Dk+1
Sv'(y), yE Dk+1

where v'(y) = v(y) + EzEsnck+l C(y+z)/ 2 kv(Z).

Proof:

In a good basis, the computations of all Jkl,k2 are independent of the representative.

Thus, this algorithm computed on v gives a member of the same class as would be computed

on v.

O]

Thus, the pyramid algorithm of the uniform basis, Z, has a counterpart in a good basis

S, allowing the computation of the expansion coefficients in .Fk(S) from the values of the

function in To(S) (and also has the lower triangular structure).

In a good basis, one thus has the ability to perfectly reconstruct the multiscale coefficients

of a function for the basis functions associated with the points of the refined grid S by simply

applying the pyramid algorithm on zero-lifts at each stage of the algorithm. The above
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theorem establishes this as true, even though we do not necessarily expect the data zeroed

during the lift to be small. (The function may have significant sample values throughout

the domain of the representation). Also, with exact recovery of sample values, it is easy to

perform local nonlinear point-wise operations of the form f(x) -4 G(f(x)) (e.g. ef(x)), or

point-wise multiplication (i.e. f(x), g(x) - f(x)g(x)), despite the truncation.

The reader may note that this result is "analysis-free" in that we have sparsified the com-

putation, not by proving that the coefficients vanish outside of the truncation for some class

of functions, but by showing the the coefficients we wish to compute have no dependency on

the coefficients we omitted. Computationally, this means the data-structure in the computer

requires no intermediate augmentations (contrast with [38]).

The advantages conferred by the additional the p-level properties are seen in the context

of operator evaluation, and will be the subject of the next two sections.

5.5 Multilevel algorithms for V2 and other operators

Given v, w E Fk (Zn), we may compute the stiffness matrix of a model operator, V2,

KtkVJV2 tkW) = J(tkv)(X)V 2(tkw) (x)d X

by changing the expansions,

(toJ-kV V2 LOJ-kW) Z (J-kv)(y)(Jkw)(Z) - Y)V 2 0(x - z)dnz.
y,zE Z

n

This reduces the computation to the computation of the matrix elements ( (x - (y - z)) V2 10(x))

which can be done by solving the associated eigen-problem obtained by applying (INT2).

In particular, let L - (,( - y) V2 1¢(x)), then

L= cz cZ2 ((2x- 2y- z1 -Z 2) + V2 (2x)
zi,z 2 EZ

n

L = 5 2 2 -nCziCz 2 Ly+z -Z2
zi,z 2 EZ

n
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which we solve by standard methods (found in [58], for example). In subsequent sections

of this article, we will also define L + = (¢(x - y) V 2 1¢(x/2)), L ++ = (¢(x - y)lV21(x/4)),

L- = (0((x - y)/2)|V 2 1(x)), and L = (0((x - y)/4) V 2 1q(x)), which can be computed

from L by employing (INT2). Although it is true by Hermiticity that L- = L+ and

L-- = L+ + , we will make no use of this fact.

One can write a matrix expression (LkVIV 21LkW) = vttkLLJ-kW, where the L is the

Toeplitz matrix with coefficients L'. In practice, one typically formulates the preceding as

a computation of u = JtkDJkw for some w E .Fk(Z). Then (tkV V 2 1kw)= vtu. u may be

thought of as an element of Fk(Zn)*, the dual space of Yk(Zn). The task is then to compute

the coefficients u(y), y C Z n = Ck E Dk E ... D 1. Any algorithm for computing xtAy can be

adapted to an algorithm for Ay, and for purposes of making proofs, it is somewhat easier to

keep thinking of the computation as (Lkv V 2 LkW), which is the point of view we shall take.

However, computing (tk' V72 LkW)= v t kLJkCV, by just applying the transforms, and

the Toeplitz matrix is problematic, since this process makes it necessary to either represent v

and w on a uniform grid, or to compute a matrix element between each pair of functions in the

truncated expansion which touch. In the first case, one ends up with an O(N) computation

for (typically) a very large N. In the second case, one chooses between extremes which are

O(N) and quite complicated or simple and O(N2 ).

The following sections outline the design of multilevel algorithms for V 2 for both 1-level

and 2-level touching bases. Both algorithms are derived according to the following format:

break up the expansion of (tkV V72 I kW) into a decomposition over elements at the same

level and adjacent levels.

rewrite the expansions in terms of the matrix elements between elements of those levels

and the transforms of higher/lower level elements.

implement the algorithm by computing those terms separately.

establish correctness in a p-level truncated basis.

Although only the 1-level and 2-level algorithms have been explored in any detail, this

same process will generally work to produce O(N) p-level algorithms for any p.
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5.5.1 V 2 in 1-level decomposition

The 1-level decomposition of (tkVIV 2~LkW) is

LkV IV2 LkW = kIVv2 ItkW)± + KLkv IV2 LkW) + tkV V2 ItkW)

where

( kVj'V2kW)0

tkVU2 LkW)+

tLkVIVkW

= S
Ok ()=k (z)

= S
Ok()<Ok(Z)

= (
Ok (Y)>Ok (z)

tLkjv2tLkz) v(Y)W(Z)

KLkyv2 LkZ) y(Y)W(Z)

KLkjV2 Lkz) V(Y)W(Z).

That is, we express the product as contributions from levels to the same level, higher levels,

and lower levels. We will now investigate each of these terms individually. In the language

of matrices, these respectively correspond to diagonal, above diagonal, and below diagonal

blocks of the V2 matrix.

L(kV2 1 kW)= V t

() 0

(I)-

(I)-

()+ ()+ (1)+

()0 ()- (I)()- () (()-( (

Diagonal blocks: (I)O

For some fixed 1, 0 < 1 < k a term of the form

E
Ok(z)=Ok(y)=l

(((x - y)/2 ) 2|¢((x - z)/2')) v(y)w(z)

contributes to (1)O

However, (((x - y)/2) IV2l((X - z)/2')) = 2(n-2) (q - y) (- z)) = 21(n-2)Loz-y"
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Thus we have

(tk v2k w)O = 2'(n--2) Lzv()y)w(z)

Super-diagonal blocks: (J)'

For some fixed 1, 0 < 1 < k a term of the form

S (0((x - y)/21) I2((X - z)/2") v(y)w(z)
0 k(z)=l'>I=Ok(y)

contributes to ()+ .

Applying the inverse transform (Jk,l+l) to the w coefficients in the sum allows us to write

this term as

0((x - y)/2 ) V 2 $((x - z)/2'+1)) v(y)(Jk,l+lw)(z).

1+1 (z)=1+1>=0k(Y)

Thus we have

KkUlV2 kw)+ = 21(n-2) LE Lyv(y)(Jk,l+w)(z).

Sub-diagonal blocks: (I)-

For some fixed 1, 0 < 1 < k a term of the form

EOk(Z)=1<1'=Ok(Y)
(¢((x - y)/21') 21 ((x- z)/21)) v(y)w(z)

contributes to ()-.

This time applying the inverse transform (Jk,I+) to the v coefficients in the sum allows

us to write this term as

OkE(z)=<l+1= 1+1 () ((x - y)/21+1) Vl2 ((x- z)/2')) (Jk,+lVu)(y)(z).
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Thus we have

(tkVVZ2Lkw) = 21(n-2) E L;_(Jk, v)(y)w(z).
1

Implementations

The above observations demonstrate the correctness of the following algorithm:

input: v, wEFk(Zn)

output: ans = (LkV V 2I1Lk) E R

Let wtmp = w, let vtmp = v, let ans = 0

for 1 = 0 to k

ans +- ans + 21(n-2) ZOk(y =O(z)=1 LOv(y)w(z)

end for

for 1 = k - 1 down-to 0

ans +- ans + 21(n - 2 ) 0k(y)=1,0i+1(z)=l+1 L+-yv(y)wtmp(z)

wtmp +- Jl+x,(wtmp)

end for

for 1 = k - 1 down-to 0

ans -- ans + 21(n - 2) O1 +1 (y)=1+1,0k(z)=1 L-vtmp(y)w(z)

vtmp - J+1,l,(vtmp)

end for

Note, we have made use of the fact that Jk,I = J+1,1 ..'' Jk,k-1 so that at the beginning of

each iteration in the second (last) loop wtmp = Jk,+lW (vtmp = Jk,l+lv).

We observe that this algorithm is O(N) in time and space.

We may adapt this to an algorithm to compute u E .Fk(Zn)* such that u(v) = (LkIV 2 1 kW) .

input: w E Fk(Z n )

output: u such that u(v)= (tkv7V2 1kW)

Let wtmp = w, let u = 0 E Fk (Zn)*, let utmp = 0 E To(Zn)*

for 1 = 0 to k

u(y) +- u(y) + 21(n - 2) fk(Y)=rk(z)=- L-yw(z)

end for
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for 1 = k - 1 down-to 0

u(y) +-- u(y) + 21(n - 2) Lek(y)=1,m+1(z)=+ L+,- w t m p (z)

wtmp - Ji+1,twtmp

end for

for 1 = 0 to k - 1

utmp +- Jt+1 ,utmp

utmp(y) +- utmp(y) + 21(n- 2) -Ot+(y-)=+l,Ok(z)=l L-_,w(z)

end for

u +- u + utmp

The third loop is the result of transposing the linear operator J+1,1 in the last loop in

the previous algorithm. We have also used the fact that Jk, = J,k-1 ... " J+1,l to ensure that

at the beginning of each iteration in the third loop, utmp E T+1 (Zn) *.

It is easy to check that this is an O(N) algorithm in both time and space. It is very

important for atomic structures computation that this algorithm scales linearly with the

number of atoms. Without such a scaling, one can only compute electronic configurations

for small molecules.

The reader may note a similarity between this algorithm and other matrix-vector mul-

tiplies used to apply operators in a uniform wavelet basis. In fact, the 1-level algorithm

presented above is identical to the nonstandard multiply found in [8] and developed for or-

thonormal wavelet bases. The nonstandard multiply was introduced by Beylkin, Coifman,

and Rokhlin to sparsify integral operators whose kernels were smooth or vanishing off the

diagonal, while keeping a uniform basis.

However, in contrast to that program of sparsification, interpolets allow one to sparsify the

basis, and, with out introducing additional grid points, still be able to apply the nonstandard

multiply routines, with any local operator. With interpolets, we remove any elements from

the expansion that we believe will be insignificant, still having a good approximation to

our function at the points we retain. Beylkin et al. [8] express the matrix elements of the

operator itself in a nonstandard orthonormal basis and then remove those matrix elements

which are determined to be very small to produce a sparse matrix.

The use of interpolating scaling functions has achieved some degree of simplicity and
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convenience in carrying out fast point-wise operations. Although there is no associated dif-

ficulty in electronic structure calculations[3], for other applications, the loss of orthogonality

might be too great an expense. In those cases, one might consider employing compactly

supported approximations to orthogonal interpolating functions found in [9]. It appears

that with some additional complexity one might be able to extend the present algorithms

to other wavelet bases. The additional complexity of other schemes and the need for fast

point-wise operations in our applications are the chief reasons we do not consider doing this

in the present work. Finally, there is a large body of work the reader may wish to consult

([10], [35], [18], [46], and [47]) for adaptive refinement techniques when, in contrast to the

case of electronic structure calculations, the behavior of the needed refinement is not known

a priori.

Correctness in a 1-level touching good basis

The above decomposition of the product and the associated algorithm is what we seek to

extend to a good truncated basis. In practice, one takes the zero-lift representatives of v

and w E Fs and computes (tk_ 2 LkD). By the computation theorem of good truncated

bases, the value of (Jkl,k2 1)(y), y E Y is independent of the representative (likewise for w),

however, we must also address the issue that (Jkl,k2i)(y) # 0, y S (i.e. Jkl,k 2 / # Jk1 ,k2 v),

and thus y V S may have a contribution to the decomposition above, requiring us to augment

S in order to get the right answer.

Theorem 5.5.1 If one replaces Z n with S everywhere in the Multilevel algorithm for (LkVV 21Lkw),

then the algorithm computes

Proof: As mentioned in the remarks, the multilevel algorithm requires Jk,l = Jl+1,1 ... Jk,k-1,

which is true in a good bases.

The (I)o computation proceeds identically for either Z or S, so the first loop will con-

tribute correctly the term (tkOV2 Lk21C) 0

148



To check the (1)+ contribution, one observes that the necessary term is

tk 2lV tkfVW) = 21(n-2) L-,(Jk,1+1 9 -E = I E Lz-(Jk,l + l ) ) (y)')i(z).
1 yEZn,zEZn:01+l(y)=1+1,0k(z)=1

Suppose that 3y S and z E S such that L+_ : 0. This implies that supp{t ~i+y} n

supp{tkz} has nonzero measure. Since supp{ti+ly} C supp{(tky we conclude that supp{kyj}

supp{tkz} has nonzero measure. This cannot be so if S is 1-level touching, and since

wv(z) = 0, z V S we may restrict the sums over y and z in the contribution,

21(n-2) L-(Jk, ))D)
yES,zes:01+i (y)=1+1,Ok (z)=

The proof for (I)- is identical with v's and w's reversed.

O

Immediately we have the following:

Corollary 5.5.2 If one replaces Z n with S everywhere in the Multilevel algorithm for u such

that u(v) = (LkVIV 2 Lkw), then the algorithm computes

U E (Fs)* u(v) = LkIv 2ILk .

The computation of (Lkv V2 tkW) serves as a template for another common computation

one may wish to perform, namely (tkltkW) = (LkV )(X)(Lkw)(x)dnX, i.e. the L 2(R n ) inner

product of tkV and tkW.

5.5.2 Computing other operators

To compute (tk ILkwz), one simply replaces Lo, L + , and L- with Go = (O(x - y)O(x)), G+ =

(¢(x - y) 1(x/2)), and Gy = (0((x - y)/2)q(x)), and then replaces the factors of 21(n- 2)

with 2I" . After that, the algorithms and theorems for V 2 carry over directly.

The above procedure can be used for creating a multilevel algorithm for any operator,

O, which is
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local :supp{Of} C supp{f}

translation invariant :Of(x + a) = (Of)(x + a)

homogeneous :Of(sx) = s0 (Of)(sx)

by forming the appropriate coefficients, O'0,+ ,-}, and inserting appropriate factors of 21(n+d)

However, locality is the only property which is really required for O(N) multilevel algo-

rithms so long as one can compute O~,,+ , efficiently.

As an example of a local, homogeneous, but not translationally invariant operator, we

shall discuss the coefficients for the multilevel algorithm for the Y1 operator in two dimen-

sions.
{0,+,-}We first consider the coefficients ^1lt,m,m, given by

(l,om, = ((x-m)/2+))((X2--2)/2(+1))xl((xl-m')/2 (+L))O ((x2-m2)/2(+l))dldz2,

i.e.

l^mm' = J((xl - mj)/2'1)((x2 - m2)/2')xlo((xl - ml)/21)¢((x 2 - m2)/21)dx1 dx2

l m , m
, = / ((xi - m 1 )/21) ((x 2 - m 2)/2)x 1 ((x 1 - m')/21 1)0((x 2 - m2)/2 1+l)dxldx2

^1',-m,m, = ((l-m - m)/2)(( - m2 )/21+')xl((x - m')/2')((x2 - m2)/21)dxdx2.

Separating the zx and x 2 integrations, we see from this that we may write fo,+,-} =

21(d-1)G{O,+,-} X({0,+,-} where(ml -nl)/2' l,m2 ,n2

X J= ((x - m)/21(+l))x0((x -n)/2l(+l))dx

and G is defined above. The problem of computing the i 1j coefficients has been reduced to

computing the X coefficients and then doing a multiply with the already known G coeffi-

cients.
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In addition, one has

f 0((x - m)/2'(+1))xq((x - n)/2'())dx = n ((x + n - m)/2(+))(x/2(+))dx+

f 0((x + n - m)/21(+X))x¢(x/21(+1))dx,

and thus

f ((x - m)/21(+))xO((x - n)/21(+l))dx - n2G(o,+,-)2 + 221So(,+,}2

(m-n)/21 (m-n)/21

where

S = f O(x - y)x(x)dx

S,+ = (x - y)xO(x/2)dx

S,-= q((x - y)/2)x(x)dx.

Thus we see that for the ix operator,

-,m,n (m2-n2)/ 21 (n21G -)1  + 221

giving an efficient means to compute the multilevel coefficient for this operator.

5.5.3 V 2 in 2-level decomposition

The previous algorithm for 1-level touching good bases can be expanded to 2-level touching

good bases. One may wish to do this because one finds that the 1-level touching property

is too stringent and requires one to augment one's basis set far too much to be practical

computationally.

Much of the reasoning for the 2-level case can be found in the details of the 1-level case,

so the exposition here will be more compact. The resulting algorithm will be correct for

2-level touching good bases.
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The 2-level decomposition of (tkv V 2 LkW) is

(VLUV2 Lk) = (LkU V2 tkW)O + (LkV 72 tk)+ + (LkV 2 IkW)

+(tkV V2 LkW) + + + (Lk 2 ~ 2 LkW)--

where

LkV 12 tkW 0

tkV ,2 LkW)

(tkVIV 2 tkW

tk IV 2 -tkW +

tkV V2 tkW

(EY ( L Lk 2 Lkz )W(Z)
Ok(y)=Ok(z)

Ok(Y)+1=Ok(z)

E (tLkY 2 LkZ V(Y)W(Z)

Ok(y)±1<Ok(z)

E (kylk V2 tkZ) V()W(Z)
Ok()-l>Ok(Z)

Which corresponds to the matrix decomposition:

Lk VIV2 LkW)

The key idea is to evaluate the diagonal and first off diagonal blocks of the V 2 matrix and

then to compute the other blocks above and below the tridiagonal through the transforms.

() o, (+1, (-, I++, and (I)--

The definitions for the contributions in the decomposition proceed just as they did for the

1-level case.

(tkV V 2 LkW) ° = 21(n-2) Lo ,v(y)w(z)
SOk()=Ok(y)= Z
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K LkVIVjkkW )+

K kVIVILkW)

KLkVIV2ILkW)

k tkVIV2 kW)

- 21(n-2)

1

= 21(n-2)

1

= 21(n-2)

= 21(n-2)

1

S L-y,v(y)w(z)
k (z)- = k (y)=l

Lv (y) (z)
Ok(z)=Ok(y)-=1

S Lzfv(y) (Jk,1+2W) (z)
Ok(Z)-l>l= k (Y )

S L-,(Jk,1+2v) (y)w(z)
Ok(z)=1<Ok(y)-l

Implementations

input: v, wE k(Z n )

output: ans = (tkV 2 1tkw) E R

Let wtmp = w, let vtmp = v, let ans = 0

for 1 = 0 to k

ans

end for

for 1 = 0 to

ans

end for

for 1 =0 to

ans

- ans + 21(n-2) Ok(y)=O(z)=1 L-yv(y)w(z)

k-1

+- ans + 21(n-2) Ok(y)=,Ok(z)=l+l L+-yv(y)w(z)

k-1

- ans + 21(n- 2) Zk(y)=+l,0k(z)=, Lz-yv(y)w(z)

end for

for 1 = k - 2 down-to 0

ans - ans+ 21(n- 2) Ok(y)=1,O +2(z)=1+2 Lz-Yv(y)wtmp(z)

wtmp +- J+l,,wtmp

end for

for 1 = k - 2 down-to 0

ans +- ans + 21(n-2) Ol+ 2(y)=1+2 ,0k(z)=1 L-ivtmp(y)w(z)

vtmp +- Ji+l,tvtmp

end for
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We adapt this algorithm to compute u E .Fk(Zn)* such that u(v) = (tkV21LkW).

input: w E TFk(Z n )

output: u such that u(v)= (LtkV 2 LkW)

Let wtmp = w, let u = 0 E k (Zn) *, let utmp = 0 E .Fo(Zn)*

for I = 0 to k

u(y) +- u(y) + 21(n - 2) ZOk(y)=Ok(z)=1 Lzyw(z)

end for

for l = 0 to k - 1

u(y) +- u(y) + 21(n-2) Ok(y)=l,Ok(z)=l+1 L+yw(z)

end for

for 1 = 0 to k - 1

u(y) +- u(y) + 21(n - 2) zk(y)=l+l,Ok(z)=! L-yw(z)

end for

for 1 = k - 2 down-to 0

u(y) +- u(y) + 21(n - 2) >k (), +2(z)=+2 L_++Iwtmp(z)

wtmp +- J+li,twtmp

end for

for I = 0 to k - 2

utmp +- Jt+l,iutmp

utmp(y) -- utmp(y) + 21(n- 2) Oz+2(y)=t+2,0k(2)=1 L -w(z)

end for

u -- u + utmp

5.6 Efficient implementation

We have produced a very successful 3D implementation of all of the above algorithms for the

interpolet used as this chapter's example (m = 3). Implementation details are given in this

section. The ideas used to make this implementation efficient for all of the above algorithms.

The purpose of this section is to give additional information to readers who wish to

implement these algorithms themselves.
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5.6.1 Data structures

The interpolet data and function samples are kept in a sequence of blocks at various levels.

Each block at level k contains the points of a rectangular subset of Ck-1. Since Dk =

Ck-1 - Ck, we use the collection of blocks at level k < p (p being the top level) to represent a

rectangular subset Ok, ignoring the Ck points of each of these blocks. In our implementation,

these extra Ck points hold the value 0 in between operations and take on useful intermediate

values during operations. Since we are working in 3 dimensions, this multiplies the storage

required by a factor of about 7, which we found an acceptable cost for its advantages.

The coefficients for the transforms and operators are kept in various 3D arrays. Al-

though it is possible to build the coefficients upon demand from a set of 1D arrays of

coefficients, we have found that the arithmetic cost of doing this is much greater than the

cost of storing them (about 10 flops are required for each V2 coefficient, while the 3D ar-

rays are still small enough to be stored in cache). We have (in Fortran notation) the filters

cs(0:3,0:3,0:3), SAMELEVEL(0:5,0:5,0:5), ONELEVEL(0:8,0:8,0:8), and (for 2-level algo-

rithms) TWOLEVEL(0:14,0:14,0:14) (note: we have made use of the fact that our operators

are symmetric to cut the size of these arrays by a factor of 1 and use ONELEVEL and

TWOLEVEL for both upward and downward inter-level communication).

5.6.2 Implementation overview

The blocks described in the previous section are used as the fundamental objects for manip-

ulation. The computation proceeds by employing block-to-block subroutines for the various

operations, having every block at a level send data to every block at the same level, one level

up or down, or (for 2-level algorithms) two levels up or down.

The number of blocks at each level is not very large, and if a subroutine determines

that the intersection of two blocks is empty (which it does by examining the bounding

rectangles), then it returns immediately. Thus, while this algorithm is to be O(B 2) where B

is the number of blocks, it remains O(N) where N is the number of actual points, because

B is much smaller than N.
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5.6.3 Block-to-block subroutines

The block-to-block subroutines are all designed to take two blocks (source and destination)

and a set of filter coefficients and place the result of convolving the filter with the source

block in the overlapping points of the destination block. There is a block-to-block subroutine

for the interpolet transform, its transpose, its inverse, and its inverse transpose, as well as

operator application routines for the same-level operator, up-one-level operator, down-one-

level operator, up-two-level operator, and the down-two-level operator.

All of these routines precompute the bounding box for the points in the destination

block which are in the range of influence of the source block and, for each point in this

sub-block, the bounding box for the points in the source block in the domain of influence

of the destination point. The result of this precomputation is that the only data values of

the source (destination) which are accessed are the ones which are read (modified). This

decreases the number of data accesses in our test problems by a factor of 7.

Additionally, blocking the computation generally increases the locality of access for the

data. More data requests hit the cache than would occur in a more arbitrarily arranged

construction.

5.7 Results and conclusions

With interpolets, it is possible to carry out O(N) computations in truncated bases, where

N is the number of elements retained in the truncation, without having to augment the

grid of points associated with the functions maintained in the basis. Along with allowing

one to compute common linear physical operations, interpolet algorithms also allow one to

transfer between function values and multiscale expansion coefficients on grids of variable

resolution recovering the same results as one would obtain working with data on a full grid

of arbitrary resolution but without introducing additional grid points into the calculation.

This allows local nonlinear couplings to be computed quickly without the introduction of

additional sample points and without the introduction of additional approximations which

must be controlled.
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These algorithms have been implemented in Fortran90 and have subsequently been

adopted for use in electronic structure computations as described in the introduction. Prior

to this, we had been using very simple, naive O(N 2 ) algorithms which implement each trans-

form and operator as multiplication by the multiscale representation of the corresponding

matrix. These multiplies check all points for being within interaction range and then con-

struct the appropriate matrix element as needed. This is required in the na'be approach

because the variety of inter-scale matrix elements is too wide to store in table of reasonable

size. This algorithm ultimately scales quadratically with the number of refinement levels for

our application. This is because, as described in the introduction, basis functions are kept

in the basis whenever they contain an atomic nucleus within their support. All functions

in this subset of significant size of the basis functions associated with each atomic center

therefore touch one another, and the multiscale matrices contain dense blocks connecting

all of these elements of a given center with one another. Because the number of functions

associated with a given center grows linearly with the number of refinement scales k, the

number of operations required in the naive approach of multiplying directly by these dense

matrices scales quadratically with the number of functions in the basis. For reference, a typ-

ical number of refinement levels in electronic structure calculations of the lighter elements

would be k = 5, as employed in the carbon atom [5] and the nitrogen molecule [3].

A comparison with the previous implementation in Fortran90 on the same processor

(Superscalar SPARC Version 9, UltraSPARC) demonstrates the speed improvements and

scaling which can be achieved with the new approach. The "time" axis is the CPU time

taken by one application of the V2 operator. The "k" axis represents the number of levels

of refinement made in the basis and is proportional to the number of points in S.

Figure 5-7 compares the runtimes of V2 in three dimensions on a 1-level touching good

basis with 3rd order interpolets consisting of concentric cubes of size 153 centered about

one atomic nucleus, as would be appropriate for the calculation of the electronic structure

of a single atom. Although there is initially a significant O(N) contribution, as a function

of the number of refinement levels k, the times for the naive approach show the constant

increments in slope characteristic of a quadratic function. The new approach compares very

favorably and is about 40 times faster for typical values of k. (Note the difference in vertical
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Figure 5-7: The previously used implementation is on the left, and the implementation
employing a 1-level touching algorithm is on the right. (Note the difference in scale on the
vertical axes.)

scale between the two figures.)

Although the comparison in Figure 5-7 is quite favorable for the new algorithm, one must

bear in mind that given the typical decay in the interpolet expansion coefficients about an

atom[5], [3], the functions which are appropriate to maintain in the expansions tend to have

the 2-level touching property, not the 1-level touching property. Figure 5-8 compares the

runtimes of V 2 in three dimensions on a 2-level touching good basis of concentric cubes of

size 93, where the speed up just as dramatic as before, now by approximately a factor of 30.

Figure 5-9 compares the runtimes of V 2 in three dimensions on a 2-level touching good

basis of two refinement centers, with refinements now consisting of cubes of size 93 (similar

to figure 6). This situation arises in the the calculation of the electronic ground state of the

nitrogen molecule, N2. Note that with the introduction now of two atomic centers the times

are again consistent with the scalings described above: The runs times only double in the

multilevel algorithm but quadruple in the naive algorithm.
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Figure 5-9: The previously used implementation is on the left, and the implementation
employing a multilevel algorithm is on the right. (Note the difference in scale on the vertical
axes.)
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Having considered the efficiency of the algorithms, we next turn to the use of these

algorithms in the solution of Poisson's equation to determine electrostatic fields, which was

the rate limiting step in the calculations carried out in [5] and [3]. From those calculations,

we were aware that the combination of conjugate gradients with the simple preconditioning

consisting of just applying the inverse of the diagonal elements of the Laplacian matrix leads

to an algorithm requiring very few iterations. It was the application of the operator within

each conjugate gradient iteration which limited the efficiency of those earlier calculations.

Figures 5-10,5-11,5-12 illustrate results for varying levels of refinement in the two different

systems. The first system consists of refinements centered about a single atomic center within

a cubic super cell of side 15 Bohr radii with periodic boundary conditions. (One Bohr radius

is approximately 0.529 Angstroms.) The second system contains two refinement centers

separated at a distance of 2 Bohr radii, approximately the inter-nuclear separation in the

nitrogen molecule. This latter system resides within a rectangular supercell of dimensions

(15 Bohr) 2 x (17 Bohr). In both cases, the spacing of the grid at the coarsest scale is 1 Bohr,

and the finest spacing is 2
- k Bohr. At k = 22, the greatest refinement considered in our

numerical experiments, the finest grid spacing is approximately 0.24 x 10- 6A. A full grid

at this resolution would contain 2.8 x 1023 points. Our truncated basis contains only about

60,000 functions in this case.

Figure 5-10 compares, as a function of the number of refinement levels k, the condition

number of the Laplacian represented in a truncated interpolet basis (the "stiffness matrix"

for the basis) and in an untruncated orthogonal basis at the corresponding resolution. The

figure also shows the effect on the condition number of the interpolet stiffness matrix of the

simple diagonal preconditioner described above. The condition numbers for the truncated

interpolet bases were determined numerically using the operators implemented as described

above. The curves indicate results for the system with a single atomic center, and the

symbols indicate results for the two atom system. Comparing the results for the one and

two atom cases suggests that apart from some transient behavior for small k, the condition

number is not sensitive to the number of atoms and depends primarily on the number of

refinement levels k.

Although finite basis representations of the Laplacian constructed from orthogonal func-
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Figure 5-10: The condition number of the Laplacian operator represented in truncated mul-
tiresolution interpolet basis as a function of the number of refinement levels k with and
without simple diagonal preconditioning and compared with the condition number in an or-
thogonal basis with the same resolution. Lines indicate results for bases with a single atomic
center of refinement, and points represent results for two atomic centers corresponding to
the nitrogen molecule.
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A 10 -

10a)

10

10-10
0 20 40 60 80 100 120

Number of iterations ->

Figure 5-11: Convergence of the solution to Poisson's equation for the nuclear potential in a
nitrogen molecule in an interpolet basis with k = 8 levels of refinement about each nucleus.
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Figure 5-12: Effective condition number of Poisson's equation for the nuclear potential in
a nitrogen molecule with simple diagonal preconditioning as a function of k, the number of
levels of refinement about each nucleus.
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tions at a given resolution should all have similar condition numbers, the fact that the inter-

polet basis is not orthogonal allows the condition numbers of multiscale interpolet operators

to be quite different that their single-scale counter parts. Compared to an orthogonal basis,

the condition number in the interpolet representation is already over two orders of magnitude

superior at the typical k = 5 levels of refinement. This comparison continues to improve

with increasing scale. The orthogonal condition number scales inversely as the square of the

spacing on the grid of maximum resolution whereas the interpolet condition number scales

inversely with approximately the 5/4 power of the resolution, as determined from the slope in

the figure. The interpolet basis itself therefore provides an intrinsic form of preconditioning.

Figure 5-10 shows that our simple explicit, diagonal preconditioner improves the scaling of

the condition number, which now scales merely as the inverse of the resolution. (Note the

lower slope of the lower curve.) At k = 5 levels of refinement the improvement is only a

factor of three but becomes more significant as the number of refinements increases.

Figure 5-11 shows the convergence of the preconditioned conjugate gradient algorithm

in the solution of Poisson's equation. As a simple example, we solve for the electrostatic

potential which arises from the two nuclei in a nitrogen molecule. In this calculation we use

k = 8 levels of refinement, a somewhat higher level of resolution than would be employed in

calculations of the N2 molecule. For this calculation, the charge density of each nucleus is

modeled as a three dimensional Gaussian of root mean square width a along each direction

equal to the spacing on the finest scale. After an initial phase of about twenty iterations, the

convergence becomes nearly perfectly exponential. This procedure reduces the magnitude of

the residual vector by ten orders of magnitude in one hundred iterations. This is very good

performance for a system consisting of 14,000 degrees of freedom with a Laplacian operator

with a nominal single-scale condition number of about 65,000 at this level of resolution.

The slope of this exponential portion of the convergence curve corresponds to a reduction

in error at each iteration by 25%. One would obtain the same error reduction in a simple

weighted iterative Jacobi algorithm (with the inverse of the maximum eigenvalue as the

weight) applied to an operator with condition number c e 4. The quantity c, the inverse

of the fractional improvement in the magnitude of the residual, we define as the effective

condition number for the algorithm.
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Figure 5-12 shows this effective condition number c for the conjugate gradient algorithm

with simple diagonal preconditioning as a function of the number of refinement levels k for

the solution of Poisson's equation for the nuclei in the nitrogen molecule. In all cases the

extent of the nuclei a is again set to the spacing of the finest grid. We note that after about

six refinements, the effective condition number is essentially constant. The example from

Figure 5-11 is therefore representative of the typical rate of convergence attained. These

results indicate that, regardless of the amount of refinement, a constant number of iterations

will suffice to produce a result of a given accuracy, even as the nominal condition number

for an orthogonal stiffness at the corresponding resolution approaches 1.8 x 1013 at k = 22.

Because the computational work involved in each iteration is linear in the number of points

in the basis, this approach appears to produce the solution to Poisson's equation in O(N)

time for these multiresolution bases.
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Appendix A

Matlab source for Stiefel-Grassmann

optimization

This appendix presents the source code for the sgmin routines that were dicussed in chapter

4. We have included the sources for the basic routines followed by the sources for the various

examples.

Sources from the top-level sg_min directory:

function [fn,Yn] = sgmin(YO,varargin)

% SGMIN Stiefel/ Grassmann minimization meant for template use.

% [fn, Yn] = SG MIN(YO) minimizes F(Y) where F is

% a matlab function defined in F.m (dF.m and ddF.m),

% where Y satisfies Y'*Y=L

% [fn, Yn] = SGMIN(YO, rc,mode,metric,verbose,gradtol,ftol,partition)

% Required Argument: YO expected orthonormal, YO'*YO = I

% Optional Arguments: (may be specified in nearly any order)

167



% rc={ 'real', 'complex'} specifies real vs complex computation.

% mode={'frcg', 'newton'} picks search direction:

% Fletcher-Reeves Nonlinear Conjugate Gradient

% Newton's method (Linear CG Hessian inverter)

% metric={ 'flat', 'euclidean', 'canonical'}

% motion={ 'approximate', 'exact'}

% verbose={ 'verbose', 'quiet'}

% gradtol={ first of any scalar arguments } convergence tolerance

% ftol ={ second of any scalar arguments } convergence tolerance 20

% partition = cell array describing symmetries in F

% Defaults:

% rc: 'real' if isreal(YO), 'complex' otherwise

% partition: automatically determined

% SGMIN(YO,rc, 'newton', 'euclidean', 'approximate', 'verbose', e- 6, l e- 8, partition)

% Output:

% fn = function minimum

% Yn = minimizing argument will satisfy Yn'*Yn=I.

% role parses the arguments, sets the global parameters and calls the

% minimizers 30

if - exist('F', 'file'), error('F.m must be in matlab''s path'), end

if - exist('dF', 'file'), error('dF.m must be in matlab' 's path'), end

if - exist('ddF','file'),error('ddF.m must be in matlab''s path'), end

global SGParameters;

SGParameters = [];

[YO,r] = qr(YO,O);

SGParameters.verbose = 1; 40

nas = length(varargin);

metarg = 0; rcarg = 0; partarg = 0; ftolarg = 0; gradtolarg = 0;

mdarg = 0; motarg = 0;

for j=l:nas,

if (ischar(varargin{j }))
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if (strcmp(lower(varargin{j}), ' approximate'))

SGParameters.motion = 0; motarg=1;

elseif (strcmp(lower(varargin {j}), 'exact '))

SGParameters.motion = 1; motarg=1; 50

elseif (strcmp(lower(vararginf{j}), 'flat '))

SGParameters.metric = 0; metarg=l;

elseif (strcmp(lower(varargin{j }), 'euclidean'))

SGParameters.metric = 1; metarg=1;

elseif (strcmp(lower (varargin {j}), ' canonical'))

SGParameters.metric = 2; metarg=l;

elseif (strcmp(lower(varargin {j}), 'real'))

SGParameters.complex = 0; rcarg=1;

elseif (strcmp(lower(varargin{j }), 'complex'))

SGParameters.complex = 1; rcarg=1; 60

elseif (strcmp(lower(varargin{j }), 'quiet'))

SGParameters.verbose = 0; verbarg=1;

elseif (strcmp(lower (varargin {j }), 'verbose'))

SGParameters.verbose = 1; verbarg=1;

elseif (strcmp(lower(varargin{j}), 'frcg'))

SGParameters.Mode = 1; mdarg=1;

elseif (strcmp(lower(varargin{j }), 'newton'))

SGParameters.Mode = 0; mdarg=1;

end

elseif (iscell(varargin{j})) 70

part = varargin{j}; partarg=1;

elseif (isnumeric(varargin{j }))

if (gradtolarg)

SGParameters.ftol = varargin{j}(1);

ftolarg=1;

else

SGParameters.gradtol = varargin{j} (1);

gradtolarg=1;

end

end 80

end
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% SGParamters.complex = 0 for real and 1 for complex.

if (rcarg)

if (-isreal(YO)) & (1 -SGParameters.complex)

warning('YO has imaginary part, but real computation has been declared.

end

else

SGParameters.complex = ~isreal(YO);

end

% SGParameters.metric = 0 for flat, 1 for euclidean, and 2 for canonical 90

if (-metarg)

SGParameters.metric = 1;

end

% SGParameters.motion = 0 for approximate, 1 for exact

if (-motarg)

SGParameters.motion = 0;

end

if (-gradtolarg)

SGParameters.gradtol = le-6;

end 100

if (-ftolarg)

SGParameters.ftol = le-8;

end

if (-mdarg)

SGParameters.Mode = 0;

end

% Make a partition using a possible given one given one

if (partarg)

SGParameters.partition = part;

else 110

SGParameters.partition = partition(YO);

end

SGParameters.dimension = dimension(YO);

if (SGParameters.Mode == 1)
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[fn,Yn] = sgfrcg(YO);

else

[fn,Yn] = sg_newton(YO);

end 120

function [fn,Yn]= sg_newton(Y)

% SG_NEWTON(Y) Optimize the objective function, F(Y) over all

% Y such that Y'*Y = L Employs a local iterative search with

% initial point Y and terminates if the magnitude of the gradient

% falls to gradtol*(initial gradient magnitude) or if the relative

% decrease in F after some iteration is less than ftol.

% [fn, Yn]= SG NEWTON(Y)

% Y is expected to satisfy Y'*Y = I.

% Yn will satisfy Yn'*Yn = L to

% role high level algorithm, Newton's Methods

global SGParameters;

gradtol = SGParameters.gradtol;

ftol = SGParameters.ftol;

if (SGParameters.verbose)

global SGdata;

flps = flops;

SGdata=[];

end 20

g = grad(Y); mag = sqrt(ip(Y,g,g)); oldmag = mag;

f = F(Y); oldf = 2*f; N = 0;

if (SGParameters.verbose)

SGdata = [];

disp(sprintf('%s\ts\t\ts\t\ts\t\t%s', 'iter', 'grad', 'F(Y)',' flops' , 'step type'));

SGdata(N+1,:) = [N mag f flops-flps];

disp(sprintf(' %d\tYe\t%e\t%9d\ts ',N,mag,f,flops-flps, 'none'));

end

while (mag>eps) & (mag/oldmag>gradtol) & (abs(oldf/f-1)>ftol)

N= N+1; 30
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sdir = -g;

gsdir = ip(Y,sdir,-g); sdir=sdir*sign(gsdir); gsdir=abs(gsdir);

sa = fmin( 'Fline',-abs(f/gsdir),abs(f/gsdir),[O le-4],Y,sdir);

fsa = F(move(Y,sdir,sa));

Hsdir = dgrad(Y,sdir); sdirHsdir = ip(Y,sdir,Hsdir);

sb = fmin ('Fline',-abs(gsdir/sdirHsdir) ,abs(gsdir/sdirHsdir),[O le-4],Y,sdir);

fsb = F(move(Y,sdir,sb));

ndir = invdgrad(Y,-g,gradtol*oldmag); 40

gndir = ip(Y,ndir,-g); ndir = ndir*sign(gndir);

na = fmin('Fline' ,-abs(f/gndir),abs(f/gndir),[O le-4],Y,ndir);

fna = F(move(Y,ndir,na));

Hndir = dgrad(Y,ndir); ndirHndir = ip(Y,ndir,Hndir);

nb = fmin (' Fline' ,-abs(gndir/ndirHndir),abs(gndir/ndirHndir),[O le-4],Y,ndir);

fnb = F(move(Y,ndir,nb));

if (fsa<fsb) st=sa; fst=fsa; else st=sb; fst=fsb; end

if (fna<fnb) nt=na; fnt=fna; else nt=nb; fnt=fnb; end 50

if (fst<fnt)

if (SGParameters.verbose) steptype=' steepest step'; end

dir = sdir; t = st; newf = fst;

else

if (SGParameters.verbose) steptype='newton step'; end

dir = ndir; t = nt; newf = fnt;

end

if (newf>f)

if (SGParameters.verbose) disp(' sg_newton: fmin overshoot!'), end

fprime = ip(Y,g,dir); 60

while (newf>f)

t = t^2*fprime/ (t*fprime+f-newf) /2;

newf = F(move(Y,dir,t));

end

end
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Y = move(Y,dir,t); oldf= f; f = newf;

g=grad(Y); mag=sqrt(ip(Y,g,g));

if (SGParameters.verbose)

SGdata(N+1,:) = [N mag f flops-flps];

disp(sprintf(' .d\te\te\t%9d\ts ' ,N,mag,f,flops-flps,steptype)); 70

end

end

fn = f;

Yn = Y;

function [fn,Yn]= sgfrcg(Y)

% SG_FRCG(Y) Optimize the objective function, F(Y) over all

% Y such that Y'*Y = I. Fletcher-Reeves CG iterative search with

% initial point Y and terminates if the magnitude of the gradient

% falls to gradtol*(initial gradient magnitude) or if the relative

% decrease in F after some iteration is less than ftol.

% fn, Yn]= SG CG(Y)

% Y is expected to satisfy Y'*Y = L

% Yn will satisfy Yn'*Yn = I. 10

% role high level algorithm, Fletcher-Reeves Method

global SGParameters;

gradtol = SGParameters.gradtol;

ftol = SGParameters.ftol;

if (SGParameters.verbose)

global SGdata;

flips = flops;

SGdata= ;

end 20

g = grad(Y); mag = sqrt(ip(Y,g,g)); oldmag = mag;

f = F(Y); oldf = 2*f; N = 0;

olddir = 0;

if (SGParameters.verbose)

SGdata = H;
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disp(sprintf('7s\ts\t\ts\t\t%s', 'iter' 'grad', 'F(Y) ',' flops'));

SGdata(N+1,:) = [N mag f flops-flps];

disp(sprintf( '%d\te\tZe\t%9d' ,N,mag,f,flops-flps));

end

while (mag>eps) & (mag/oldmag>gradtol) & (abs(oldf/f-1)>ftol) 30

N= N+1;

dir = -g;

if (N>1)

Hessolddir = dgrad(Y,olddir);

alpha = ip(Y,dir,Hessolddir)/ip(Y,olddir,Hessolddir);

dir = dir-alpha*olddir;

end

gdir = ip(Y,dir,-g); dir = dir*sign(gdir);

cga = fmin ( 'Fline',-abs(f/gdir),abs(f/gdir),[O le-4],Y,dir); 40

fcga = F(move(Y,dir,cga));

Hessdir = dgrad(Y,dir); dirHdir = ip(Y,dir,Hessdir);

cgb = fmin('Fline',-abs(gdir/dirHdir),abs(gdir/dirHdir),[O le-4],Y,dir);

fcgb = F(move(Y,dir,cgb));

if (fcga<fcgb) t=cga; newf=fcga; else t=cgb; newf=fcgb; end

if (newf>f)

if (SGParameters.verbose) disp(' sg_frcg: fmin overshoot!'), end

fprime = ip(Y,g,dir);

while (newf>f)

t = t^2*fprime/(t*fprime+f-newf)/2; 50

newf = F(move(Y,dir,t));

end

end

[Y,olddir] = move(Y,dir,t); oldf= f; f = newf;

g=grad(Y); mag=sqrt(ip(Y,g,g));

if (SGParameters.verbose)

SGdata(N+1,:) = [N mag f flops-flps];

disp(sprintf(' %d\tYe\te\t%9d' ,N,mag,f,flops-flps));

end

end 60

174



fn = f;

Yn = Y;

function G = grad(Y)

% GRAD computes the gradient of the energy F at the point Y.

% G = GRAD(Y)

% Y is expected to satisfy Y'*Y=L.

% G will satisfy G = tangent(Y,G)

% role geometrized objective function, this is the routine called to produce

%5 the geometric gradient of the unconstrained differential of F.

% The analog is G = A*Y-b. 10

G = tangent(Y,dF(Y));

function W = dgrad(Y,H)

% DGRAD Computes the tangent vector, W, which results from applying the

% geometrically correct hessian at the stiefel point, Y, to the

% tangent vector H.

% W = DGRAD(Y,H)

% Y is expected to satisfy Y'*Y = I

% H is expected to satisfy H = tangent(Y,H)

%W will satisfy W = tangent(Y, W)

10

% role geometrized objective function, the is the routine called to apply

% the covariant hessian of F to a tangent vector. The analog is

% W = A *H, here A is the hessian of F.

global SGParameters;

met = SGParameters.metric;

if (met==O)

W=tangent(Y,ddF(Y,H));

else

df = dF(Y); g = tangent(Y,df);
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W = connection(Y,g,H)+... 20

dtangent(Y,df,H)+...

tangent(Y,ddF(Y,H));

end

% this line removes the grassmann degrees of freedom from Y

W = nosym(Y,W);

function H = invdgradcg(Y,W,tol)

% INVDGRAD_CG Inverts the operator dgrad. i.e. solves for H satisfying

dgrad(Y,H) = W. Uses a conjugate gradient algorithm with

a tolerance of gep*norm(W), or a tolerance of tol if given.

H = INVDGRAD CG(Y, W)

% Y is expected to satisfy Y'*Y=I

% W is expected to satisfy W = tangent(Y, W)

% H will satisfy H = tangent(Y,H)

% 10

% role geometrized objective function, this is the function called when one

% wishes to invert the geometric hessian. The analog is H = Hess\ W.

global SGParameters;

dim = SGParameters.dimension;

gep = SGParameters.gradtol;

b = W;

% p = reshape(dgrad(Y, reshape(q,n,k)),n*k,1) is the black box which

% applies the hessian to a column vector, q, to produce a column vector p. 20

% Any iterative inversion algorithm that applies the matrix as a black

% box can be used here.

oldd = 0;

x = 0*b;

r = -b;

rho = ip(Y,r,r);

if (nargin==3)
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gepr = tol;

else

gepr = sqrt(ip(Y,r,r))*gep;

end

posdef=1;

cn = 0;

while (posdef & sqrt(ip(Y,r,r))>gepr & cn<2*dim)

% application of the hessian.

cn = cn+l;

if (cn==l)

d = -r;

else

beta = rho/oldrho;

d = -r+beta*oldd;

% It is important

% off the tangent

end

to make sure long term roundoff does not blow us

surface. So we reproject.

d = tangent(Y,d);

Ad = dgrad(Y,d);

dAd = ip(Y,d,Ad);

if (dAd<0)

posdef=0;

else

dist = rho/dAd;

x = x+dist*d;

r = r+dist*Ad;

oldd = d;

oldrho = rho;

rho = ip(Y,r,r);

end

end

if (SGParameters.verbose & posdef==0)

disp(' invdgrad: Hessian not positive definite, CG terminating early');

if (cn==l) x = -b; end

end
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if (SGParameters.verbose & cn==2*dim)

disp(' invdgrad: max iterations reached inverting the hessian by CG'),

if (cn==l) x = -b; end

end

H = tangent(Y,x);

function H = tangent(Y,D)

% TANGENT produces tangent H from unconstrained differential D.

% H will be the unique tangent vector such that for any

% tangent W, real(trace(D'*W)) = ip(Y,W,H).

H = TANGENT(Y,D)

% Y is expected to satisfy Y'*Y=I

% D is expected to be the same size as Y

% H will satisfy H = tangent(Y,H)

% 10

% role geometric implementation, this function helps produce the gradient and

%covariant hessian.

global SGParameters;

met = SGParameters.metric;

vert = Y'*D;

verts = (vert+vert')/2;

if (met==O)

H = D - Y*verts;

elseif (met==l)

H = D - Y*verts; 20

elseif (met==2)

H = (D - Y*vert')/2;

end

function T = dtangent(Y,H,dY)

% DTANGENT computes the differential of the tangent map. That is

% T = d/dt tangent(params, Y+t*dY,H).
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% T = DTANGENT(Y,H,dY)

% Y is expected to satisfy Y'*Y = I

% H is expected to satisfy H = tangent(Y,H)

% dY is expected to be the same size as Y

% T will be the same size as Y

10o

% role geometric implementation, helps to produce a geometrically

correct covariant hessian.

global SGParameters;

met = SGParameters.metric;

vert = Y'*H; verts = (vert+vert')/2;

dvert = dY'*H; dverts = (dvert+dvert')/2;

if (met==O)

T = -dY*verts-Y*dverts;

elseif (met==l)

T = -dY*verts-Y*dverts; 20

elseif (met==2)

T = (-dY*vert'-Y*dvert')/2;

end

function [Yo,Ho] = move(Yi,Hi,t)

% MOVE moves the point Yi and direction Hi along a geodesic of length t

% in the metric to a point Yo and a direction Ho.

% [Yo,Ho] = MOVE(Yi,Hi,t)

% Yi is expected to satisfy Yi'*Yi = I

% Hi is expected to satisfy Hi = tangent(Yi,Hi)

% Yo will satisfy Yo'*Yo = I

% Ho will satisfy Ho = tangent(Yo,Ho)

% o10

% role geometric implementation, the analog to Yo = Yi+Hi*t, Ho = Hi.

global SGParameters;

met = SGParameters.metric;

mot = SGParameters.motion;

[n,k] = size(Yi);
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if (t==O)

Yo = Yi;

if (nargout==2)

Ho = Hi;

end 20

return;

end

if (met==O)

% Move by straight lines with a qr projection back to the manifold

if (nargout==2) magl = sqrt(ip(Yi,Hi,Hi)); end

[Yo,r] = qr(Yi+t*Hi,O);

if (nargout==2)

Ho = tangent(Yo,Hi);

mag2 = sqrt(ip(Yo,Ho,Ho));

Ho = Ho*magl/mag2; 30

end

elseif (met==1)

if (mot==0)

% This section computes approximate euclidean geodesics

% using polar decomposition

if (nargout==2) magl = sqrt(ip(Yi,Hi,Hi)); end

[U,S,V] = svd(Yi+t*Hi,O); Yo = U*V';

if (nargout==2)

Ho = tangent(Yo,Hi);

mag2 = sqrt(ip(Yo,Ho,Ho)); 40

Ho = Ho*magl/mag2;

end

else

% This section computes exact euclidean geodesics

if (nargout==2) magi = sqrt(ip(Yi,Hi,Hi)); end

a = Yi'*Hi;

[q,r] = qr(Hi-Yi*a,O);

mn = expm(t*[2*a, -r'; r, zeros(k)]);

nm = expm(-t*a);

Yo = (Yi*mn(l:k,l:k) + q*mn(k+l1:2*k,l:k))*nm; so
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[Yo,r] = qr(Yo,O);

if (nargout==2)

q =(Yi*mn(1:k,k+1:2*k)+q*mn(k+1:2*k,k+1:2*k));

Ho = Yi*a+q*r*nm;

Ho = tangent(Yo,Hi);

mag2 = sqrt(ip(Yo,Ho,Ho));

Ho = Ho*magl/mag2;

end

end

elseif (met==2) 60

if (mot==0)

% this section computes approximate canonical geodesics using approximate

% matrix inverse.

if (nargout==2) magl = sqrt(ip(Yi,Hi,Hi)); end

a = Yi'*Hi;

[q,r] = qr(Hi-Yi*a,O);

geo = t*[a, -r'; r, zeros(k)];

mn = (eye(2*k)+geo/2)/(eye(2*k)-geo/2);

mn = mn(:,l:k);

Yo = Yi*mn(l:k,:) + q*mn(k+1:2*k,:); 70

if (nargout==2)

Ho = Hi*mn(l:k,:) - Yi*(r*'mn(k+1:2*k,:));

Ho = tangent(Yo,Hi);

mag2 = sqrt(ip(Yo,Ho,Ho));

Ho = Ho*magl/mag2;

end

else

% This section computes exact canonical geodesics

if (nargout==2) magl = sqrt(ip(Yi,Hi,Hi)); end

a - Yi'*Hi; so

[q,r] = qr(Hi-Yi*a,O);

geo = t*[a, -r'; r, zeros(k)];

mn = expm(geo);

mn = mn(:,l:k);

Yo = Yi*mn(l:k,:) + q*mn(k+1:2*k,:);
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if (nargout==2)

Ho = Hi*mn(l:k,:) - Yi*(r'*mn(k+1:2*k,:));

Ho = tangent(Yo,Hi);

mag2 = sqrt(ip(Yo,Ho,Ho));

Ho = Ho*magl/mag2; 90

end

end

end

function f = Fline(t,Y,H)

% FLINE the energy, e, along the geodesic passing through Y

% in the direction H a distance t.

% f= FLINE(t, Y,H)

% Y is expected to satisfy Y'*Y = I.

% H is expected to satisfy H = tangent(Y,H)

% role high level algorithm, basic window dressing for the fmin function

f = F(move(Y,H,t)); 10

function C = connection(Y,H1,H2)

% CONNECTION Produces the christoffel symbol, C, for either the canonical

or euclidean connections at the point Y.

% C = CONNECTION(Y,H1,H2)

% Y is expected to satisfy Y'*Y = I

% Hi and H2 satisfy H1=tangent(Y,H1) and H2=... (similarly)

% C will be a matrix of the same size as Y

% role geometric implementation, an important term in computing the hessian to

and in defining the geodesics.

global SGParameters;

met = SGParameters.metric;

if (met==O)
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% the unconstrained connection

C = zeros(size(Y));

elseif (met==l)

% the euclidean connection for stiefel

C = Y*(H1'*H2+H2'*H1)/2;

elseif (met==2) 20

% the canonical connection for the stiefel

b = H1'*H2-H1'*Y**Y'*H2;

C = (H1*H2'*Y+H2*H1'*Y)/2+Y*(b+b')/2;

end

function i = ip(Y,H1,H2)

% IP computes the inner produce of H1,H2 which are tangents at the

% stiefel point Y.

% i = IP(Y,H1,H2)

% Y is expected to satisfy Y'*Y=I

% H1,y are expected to satisfy H1 = tangent(Y,H1), H2 = tangent(Y,H2)

% role geometric implementation, the analog of real(H1'*H2)

global SGParameters; 1o

met = SGParameters.metric;

if (met==O)

% unconstrained metric

i = sum(sum(real(conj(H1).*H2)));

elseif (met==1)

% euclidean metric

i = sum(sum(real(conj (H1).*H2)));

elseif (met==2)

% canonical metric

i = sum(sum(real(conj(H1).*H2)))-sum(sum(real(conj(Y'*H1).*(Y'*H2))))/2; 20

end

function H = nosym(Y,H)
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% NOSYM Orthogonal projection to remove the block diagonal components

% of the tangent vector H corresponding to the block diagonal

% right symmetries of F(Y).

% H = NOSYM(Y,H)

% Y is expected to satisfy Y'*Y=I

% H is expected to and sill satisfy H = tangent(Y,H)

% role geometrized objective function, necessary to reduce the number of 10

% dimensions of the problem and to have a well conditioned hessian.

% Somewhat analogous to projecting H to a feasible set of search

% directions.

global SGParameters;

part = SGParameters.partition;

vert = Y'*H;

for j = 1:length(part),

H(:,part {j})=H(:,part{j}) -Y(:,part{j})*vert(part{j} ,part{j});

end

function part = partition(YO)

% PARTITION makes a guess at the partition of the function F

% based on the properties of dF at a randomly selected point Y.

% part = partition(YO);

% YO is expected to satisfy YO'*YO = I

% P = size(YO,2)

% role geometrized objective function, determines the feasible subspace

% of possible search directions for the function F. 10

global SGParameters;

cm = SGParameters.complex;

[N,P] = size(YO);

[Y,r] = qr(randn(N,P)+i*cm*randn(N,P),O);

A = Y'*dF(Y);

As = (A+A')/2;
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Aa = (A-A')/2;

M = (abs(Aa)<1e-7*abs(As));

scorebd = ones(1,P); np=O; 20

for j=l:P,

if (scorebd(j))

np=np+l;

part{np} = find(M(j,:));

scorebd(part np}) = O*part{np};

end

end

Mcomp = O*M;

for j=l1:length(part), 30

Mcomp(part {j },part {j }) = ones(length(part {j}));

end

goodpart = (sum(sum(abs(Mcomp-M)))==0O);

if ~goodpart

warning('unable to find consistent partition of F.');

part = num2cell(l:P);

end

function dim = dimension(YO)

% DIMENSION correctly counts the dimension, dim (stiefel dimension minus

% the grassmann degrees of freedom).

% dim = DIMENSION

% role geometrized objective function, used to set the parameters describing

%o the particular submanifold of the stiefel manifold on which the

% computation will occur.

global SGParameters; 10

part = SGParameters.partition;

cm = SGParameters.complex;
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[N,P] = size(YO);

np = length(part);

if (-cm)

dim = N*P;

dim = dim - P*(P+1)/2;

for i=l:np,

k = length(part{i}); 20

dim = dim - k*(k-1)/2;

end

else

dim = 2*N*P;

dim = dim - P ^2 ;

for i=l:np,

k = length(part{i});

dim = dim - k^2;

end

end 30
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Sources from the sg_min/finitediff subdirectory:

function df = dF(Y)

% dF Computes the differential of F, that is,

% df satisfies real(trace(H'*df)) = d/dx (F(Y+x*H)).

% df = DF(Y)

% Y is expected to satisfy Y'*Y = I

% df is the same size as Y

% role objective function, this is the routine called to compute the

% differential of F. 10

[N,P] = size(Y);

ep = le-6;

for k=1l:P, for j=1:N,

Yp = Y; Yp(j,k) = Yp(j,k)+ep;

Ym = Y; Ym(j,k) = Ym(j,k)-ep;

df(j,k) = (F(Yp)-F(Ym))/ep/2;

end, end

function ddf = ddF(Y,H)

% ddF Computes the second derivative of F, that is,

% ddf = d/dx dF(Y+x*H).

% ddf = DDF(Y,H)

% Y is expected to satisfy Y'*Y = I

% H is expected to be the same size as Y

% ddf will be the same size as Y

% role objective function, the function is called to apply the 10

/0 unconstrained hessian of F to a vector.

ep = le-6;

ddf = (dF(Y+ep*H)-dF(Y-ep*H))/ep/2;
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Sources from the sg_min/examples/procrustes subdirectory:

function f = F(Y)

% F Computes the energy associated with the stiefel point Y.

% In this case, by the equation f = l|AY- YB|I 12/2.

f = F(Y)

% Y is expected to satisfy Y'*Y=I

% role objective function, the routine called to compute the objective

%function.

global FParameters; 10

A = FParameters.A;

B = FParameters.B;

q = A*Y-Y*B;

f = sum(sum(real(conj(q).*(q))))/2;

function df = dF(Y)

% dF Computes the differential of F, that is,

% df satisfies real(trace(H'*df)) = d/dx (F(Y+x*H)).

df = DF(Y)

% Y is expected to satisfy Y'*Y = I

% df is the same size as Y

% role objective function, this is the routine called to compute the

% differential of F. 10

global FParameters;

A = FParameters.A;

B = FParameters.B;

q = A*Y-Y*B;

df = A'*q-q*B';

function ddf = ddF(Y,H)
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% ddF Computes the second derivative of F, that is,

% ddf = d/dx dF(Y+x*H).

% ddf = DDF(Y,H)

% Y is expected to satisfy Y'*Y = I

% H is expected to be the same size as Y

% ddf will be the same size as Y

% role objective function, the function is called to apply the to

% unconstrained hessian of f to a vector.

global FParameters;

A = FParameters.A;

B = FParameters.B;

dq = A*H-H*B;

ddf = A'*dq-dq*B';

function Y = guess()

% GUESS provides the initial starting guess Y for energy minimization.

% In this case it makes a somewhat random guess.

% Y = GUESS

% Y will satisfy Y'*Y = I

% role objective function, produces an initial guess at a minimizer

% ofF.

global FParameters; 10

inA = FParameters.A;

inB = FParameters.B;

[n,n] = size(inA);

[p,p] = size(inB);

Y = randn(n,p);

Y = (inA*Y)/inB;

[Y,r] = qr(Y,O);
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function parameters(A,B)

% PARAMETERS initializes the parameters for an instance of a

minimization problem.

% PARAMETERS(A,B)

% A is expected to be a square matrix

% B is expected to be a square matrix

% role sets up the global parameters used at all levels of computation.

10

global FParameters;

FParameters = [];

FParameters.A = A;

FParameters.B = B;

function [A,B] = randprob(

A = randn(10);

B = randn(4);
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Sources from the sg_min/examples/jordan subdirectory:

function f = F(Y)

% F Computes the objective value associated with the stiefel point Y.

% In this case, by the equation f = IAY- YB(Y)II ^2/2.

% f = F(Y)

Y is expected to satisfy Y'*Y=I

% role objective function, the routine called to compute the objective

% function.

global FParameters; 10

A = FParameters.A;

Ab = Block(Y);

f = A*Y - Y*Ab; f = sum(sum(real(conj(f).*f)))/2;

function df = dF(Y)

% dF Computes the differential of F, that is,

df satisfies real(trace(H'*df)) = d/dx (F(Y+x*H)).

% df = DF(Y)

Y is expected to satisfy Y'*Y = I

% df is the same size as Y

% role objective function, this is the routine called to compute the

% differential of F. 10

global FParameters;

A = FParameters.A;

Ab = Block(Y);

f = A*Y - Y*Ab;

df = A'*f - f*Ab';

function ddf = ddF(Y,H)

% ddF Computes the second derivative of F, that is,
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ddf = d/dx dF(Y+x*H).

ddf = DDF(Y,H)

Y is expected to satisfy Y'*Y = I

% H is expected to be the same size as Y

% ddf will be the same size as Y

%o role objective function, the function is called to apply the 10

% unconstrained hessian of F to a vector.

global FParameters;

A = FParameters.A;

Ab = Block(Y);

dAb = dBlock(Y,H);

f = A*Y - Y*Ab;

df = A*H - H*Ab - Y*dAb;

ddf = A'*df - df*Ab' - f*dAb';

function Y = guess()

% GUESS provides the initial starting guess Y for energy minimization.

Y = GUESS

% Y will satisfy Y'*Y = I

% role objective function, produces an initial guess at a minimizer

% ofF.

global FParameters;

inA = FParameters.A; 10

blocks = FParameters.blocks;

eigs = FParameters.eigs;

[n,k] = size(inA);

[ne,ns] = size(blocks);

off = 0;

Q = eye(n); A = inA;
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for i=l:ne, for j=l:ns,

if (blocks(ij) -= 0)

[u,s,v] = svd(A(off+1:n,off+ l1:n)-eye(n-off) *eigs(i)); 20

v = v(:,n-off:-1:1);

q = [eye(off) zeros(off,n-off); zeros(n-off,off) v];

A = q'*A*q;

Q = Q*q;

s = diag(s); s = flipud(s);

off = off + blocks(i,j);

end

end, end

Y = Q(:,l:off);

function [B,eigvs] = Block(Y)

% BLOCK computes the matrix B appearing in the energy function

% F = IIAY- YB(Y)II ^2 for jordan block problems.

% [B,eigvs] = Block(Y)

% Y is expected to be a stiefel point (Y'*Y= I)

% B will be an upper triangular matrix in staircase form the

%size of Y'*Y

% eigvs will be the eigenvalues along the diagonal of B. If

% FParameters.type == 'orbit' then eigvs == FParameters.eigs. o10

% role objective function, auxiliary routine used by F, dF, ddF

global FParameters;

A = FParameters.A;

eigvs = FParameters.eigs;

blocks = FParameters.blocks;

bundle = FParameters.bundle;

[n,k] = size(Y);

B = Y'*A*Y; 20

[ne,ns] = size(blocks);

off = 0;
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for i=l:ne,

if (bundle)

eigvs(i)= trace(B (off+1 :off+sum(blocks(i,:)),off+1 :off+sum(blocks(i,:))))/sum(blocks(i,:),

end

for j=l:ns,

if (blocks(i,j)>O)

B(off+ 1:k,off+1 :off+blocks(i,j))= eigvs(i)*eye(k-off,blocks(i,j));

off = off + blocks(i,j); 30

end

end

end

function B = dBlock(Y,H)

% dBLOCK This is an auxiliary procedure used by ddF which computes

% B = d/dx Block(Y+x*H)

% B = DBLOCK(Y,H)

% Y is expected to be a stiefel point (Y'*Y= I)

% H is expected to satisfy H = tangent(Y,H)

% B will be a staircase matrix the size of Y'*Y

% role objective function, auxiliary function for ddF 10

global FParameters;

A = FParameters.A;

eigvs = FParameters.eigs;

blocks = FParameters.blocks;

bundle = FParameters.bundle;

[n,k] = size(Y);

B =H'*A*Y+Y'*A*H;

[ne,ns] = size(blocks);

off = 0; 20

for i=l:ne,

if (bundle)

deigvs(i)= trace(B (off+1 :off+sum(blocks(i,:)),off+1 :off+sum(blocks(i,:))))/sum(blocks(i,:)
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else

deigvs = O*eigvs;

end

for j=l:ns,

if (blocks(ij)>O)

B(off+1 :k,off+1:off+blocks(i,j))= deigvs(i)*eye(k-off,blocks(i,j));

off = off + blocks(i,j); 30

end

end

end

function parameters(A,eigvs,serge,type)

% PARAMETERS initializes the parameters for an instance of a

minimization problem. This functions must be executed

before any attempts to do any jordan structure minimzations.

% PARA ME TERS(A, eigvs, serge, type)

% A is expected to be a square matrix

% eigvs is expected to be a lxp matrix of eigenvalues, assumed to

% be distinct.

% serge is expected to be a pxq matrix of serge characteristics. o10

% structures (zero padded).

% for example, if one wishes to describe a matrix that

% has a substructure of

SJ_4(1 .0)xJ 2(1.0)xJ 2(1.0)xJ3(2.0)xJ 3(2.0)

%o then one has

% eigvs = [1.0 2.0]

serge = [4 2 2; 3 3 0]f

% type is expected to be the string 'bundle' or 'orbit'

% role sets up the global parameters used at all levels of computation. 20

global FParameters;

FParameters = 0;

FParameters.A = A;
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FParameters.eigs = eigvs;

serge = fix(max(serge,0*serge));

% convert the serge characteristics into weyr characteristics.

blocks = [];

for j = 1:size(serge,1),

for k=l1:max(serge(j,:)), 30

blocks(j,k) = sum(serge(j,:)>=k);

end

end

FParameters.blocks = blocks;

if (strcmp(lower(type), 'orbit'))

FParameters.bundle = 0;

elseif (strcmp(lower(type), 'bundle'))

FParameters.bundle = 1;

else

'Either bundle or orbit must be specified.', 40

end

function [M,eigvs] = post(Y)

% POST Computes the matrix which corresponds to the one nearest to

% FParameters.A with the jordan structure FParameters.blocks

% and eigenspace Y.

% [M,eigvs] = post(Y)

% Y is expected to be a stiefel point (Y'*Y=I)

% M will be the same size as FParameters.A with jordan structure

% encoded by FParameters.blocks, eigenvalues of eigvs, and eigenspace

% of Y. 10

% eigvs will be the vector of jordan eigenvalues of M.

global FParameters;

A = FParameters.A;

[B,eigvs] = Block(Y);

M = A - (A*Y-Y*B)*Y';
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Sources from the sg_min/examples/tracemin subdirectory:

function f = F(Y)

% F Computes the energy associated with the stieffel point Y.

% In this case, by the equation f = trace(Y'AY)/2.

% f = F(Y)

% Y is expected to satisfy Y'*Y=I

% role objective function, the routine called to compute the objective

%o function.

global FParameters; 10

A = FParameters.A;

f = sum(sum(real(conj(Y).*(A*Y))))/2;

function df = dF(Y)

% dF Computes the differential of F, that is,

de satisfies real(trace(H'*df)) = d/dx (F(Y+x*H)).

% df = DF(Y)

% Y is expected to satisfy Y'*Y = I

% df is the same size as Y

% role objective function, this is the routine called to compute the

differential of F. 10

global FParameters;

A = FParameters.A;

df = A*Y;

function ddf = ddF(Y,H)

% ddF Computes the second derivative of F, that is,

% ddf = d/dx dF(Y+x*H).

ddf = DDF(Y,H)
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% Y is expected to satisfy Y'*Y = I

% H is expected to be the same size as Y

% ddf will be the same size as Y

% role objective function, the function is called to apply the 10

% unconstrained hessian of F to a vector.

global FParameters;

A = FParameters.A;

ddf = A*H;

function Y = guess(P)

% GUESS provides the initial starting guess Y for energy minimization.

% Y will be nxP where FParameters.A is an nxn matrix. Uses a

% random matrix.

% Y = GUESS

% Y will satisfy Y'*Y = I

% role objective function, produces an initial guess at a minimizer

% ofF. 10

global FParameters;

inA = FParameters.A;

[n,n] = size(inA);

[Y,r] = qr(randn(n,P),0);

function parameters(A)

% PARAMETERS initializes the parameters for an instance of a

% minimization problem.

% PARAMETERS(A)

% A is expected to be a square matrix

% role sets up the global parameters used at all levels of computation.

198



global FParameters; 1o

FParameters = U;

FParameters.A = A;

function K = Kinetic(n)

K = 2*eye(n) - diag(ones(1,n-1),-1) - diag(ones(1,n-1),l);
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Sources from the sg_min/examples/ldatoy subdirectory:

function f= F(Y)

% F(Y) computes the energy of a toy Ida particle in a box configuration.

% F(Y) = 1/2*trace(Y'*A *Y)+c*1/4 *sum(sum(Y. ̂ 2,2). ^2,1).

% f = F(Y)

% Y is expected to satisfy Y'*Y=I

% role objective function, the routine called to compute the objective

% function.

global FParameters; 10

A = FParameters.A;

c = FParameters.c;

f = trace(Y' *(A*Y))/2+c*sum(sum(Y. ^2,2).^2,1)/4;

function df = dF(Y)

% dF Computes the differential of F, that is,

% df satisfies real(trace(H'*df)) = d/dx (F(Y+x*H)).

% df = DF(Y)

% Y is expected to satisfy Y'*Y = I

% df is the same size as Y

% role objective function, this is the routine called to compute the

% differential of F. 10

global FParameters;

A = FParameters.A;

c = FParameters.c;

df = (A*Y)+c*( (sum(Y.^ 2,2)*ones(1,size(Y,2))).*Y);

function ddf = ddF(Y,H)

% ddF Computes the second derivative of F, that is,

% ddf = d/dx dF(Y+x*H).
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% ddf = DDF(Y,H)

% Y is expected to satisfy Y'*Y = I

% H is expected to be the same size as Y

% ddf will be the same size as Y

% role objective function, the function is called to apply the to

% unconstrained hessian of F to a vector.

global FParameters;

A = FParameters.A;

c = FParameters.c;

ddf= (A*H);

ddf = ddf+c*( (sum(Y.^ 2,2)*ones(1,size(Y,2))).*H );

ddf = ddf+c*( (sum(2*Y.*H,2)*ones(1,size(Y,2))).*Y);

function Y = guess(p)

% GUESS provides the initial starting guess Y for energy minimization.

% Y = GUESS

% Y will satisfy Y'*Y = I

% role objective function, produces an initial guess at a minimizer

% ofF.

global FParameters;

A=FParameters.A; 10

n = length(A);

[V,D]=eig(A); D=diag(D);

[D,I] = sort(D); V = V(:,I);

Y = V(:,l:p);

function parameters(A,c)

% PARAMETERS initializes the parameters for an instance of a

% toy lda problem with laplacian A and self coupling

%constant c.
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% PARAMETERS(A,c)

% A is expected to be a square symmetric matrix

% role sets up the global parameters used at all levels of computation.

10

global FParameters;

FParameters = [;
FParameters.A = A;

FParameters.c = c;

function K = Kinetic(n)

K = 2*eye(n) - diag(ones(1,n-1),-1) - diag(ones(1,n-1),1);

202



Sources from the sg_min/examples/simschur subdirectory:

function f = F(Q)

% F Computes the objective value associated with the stiefel point Q.

% In this case, by the equation

S f = sum(sum(qAql. ̂ 2))/2+sumsmsum(qBql. ^2))/2;

%0 where qAql = masked out part of Q'*A *Q and qBql similarly.

% f = F(Q)

% Q is expected to satisfy Q'*Q=I

% role objective function, the routine called to compute the objective 10

% function.

global FParameters;

A = FParameters.A;

B = FParameters.B;

mask = FParameters.Mask;

qAq = Q'*A*Q;

qBq = Q'*B*Q;

qAql = (1-mask).*qAq;

qBql= (1-mask).*qBq;

f = sum(sum(qAql.^2))/2+sum(sum(qBql.^2))/2; 20

function df = dF(Q)

% dF Computes the differential of F, that is,

% df satisfies real(trace(H'*df)) = d/dx (F(Q+x*H)).

% df = DF(Q)

% Q is expected to satisfy Q'*Q = I

% df is the same size as Q

% role objective function, this is the routine called to compute the

% differential of F. 10

global FParameters;

A = FParameters.A;
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B = FParameters.B;

mask = FParameters.Mask;

qAq = Q'*A*Q;

qBq = Q'*B*Q;

qAql = (1-mask).*qAq;

qBql = (1-mask).*qBq;

df = Q*(qAq' *qAql+qAq*qAql' + qBq' *qBql+qBq*qBql');

function ddf = ddF(Q,dQ)

% ddF Computes the second derivative of F, that is,

% ddf = d/dx dF(Q+x*dQ).

% ddf = DDF(Q,dQ)

% Q is expected to satisfy Q'*Q = I

% dQ is expected to be the same size as Q

% ddf will be the same size as Q

% role objective function, the function is called to apply the to

% unconstrained hessian of F to a vector.

global FParameters;

A = FParameters.A;

B = FParameters.B;

mask = FParameters.Mask;

qAq = Q'*A*Q;

qBq = Q'*B*Q;

qAql = (1-mask).*qAq;

qBql= (1-mask).*qBq;

dqAq = dQ'*A*Q+Q'*A*dQ; 20

dqBq = dQ'*B*Q+Q'*B*dQ;

dqAql = (1-mask).*dqAq;

dqBql = (1-mask).*dqBq;

ddf = dqAq' *qAql+dqAq*qAql'+ dqBq' *qBql+dqBq*qBql';

ddf = ddf+qAq' *dqAql+qAq*dqAql' + qBq' *dqBql+qBq*dqBql';

ddf = Q*ddf;

ddf = ddf+dQ*(qAq' *qAql+qAq*qAql' + qBq' *qBql+qBq*qBql');
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function Y = guess()

% GUESS provides the initial starting guess Y for energy minimization.

% Y = GUESS

% Y will satisfy Y'*Y = I

% role objective function, produces an initial guess at a minimizer

% ofF.

global FParameters;

A = FParameters.A;

B = FParameters.B;

% use average

[Y,T] = schur(A+B);

% using random guess

Y = randn(size(Y));

% use identity

% Y = eye(size(A));

function parameters(A,B)

% PARAMETERS initializes th

% a Schilders problem.

% PARAMETERS(A,B)

% A,B are expected to be real
%o

% role

e parameters for an instance of a

matrices of the same size.

sets up the global parameters used at all levels of computation.

global FParameters;

FParameters.A = A;

FParameters.B = B;

n = length(A);

Mask = triu(ones(n));

for 1=1:2:n-1,

Mask(l+l,1)=l;
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end

FParameters.Mask = Mask;
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Sources from the sg_min/examples/indscal subdirectory:

function f = F(Y)

% F Computes the energy associated with the stiefel point Y.

% In this case, by the equation f = sumi IISi- Y D i Y1 ^2/2.

% f = F(Y)

% Y is expected to satisfy Y'*Y=I

% role objective function, the routine called to compute the objective

% function.

global FParameters;

Ss = FParameters.Ss;

df = 0;

for k=1:size(Ss,3),

S = Y'*Ss(:,:,k)*Y; D = max(diag(S),0);

f = sum(sum( (S - diag(D)).^2 ))/2;

end

function df = dF(Y)

% dF Computes the differential of

% df satisfies real(trace(H'*df))

% df = DF(Y)

Y is expected to satisfy Y'*Y

% df is the same size as Y

% rol

that is,

d/dx (F(Y+x*H)).

e objective function, this is the routine called to comp

differential of F.

global FParameters;

Ss = FParameters.Ss;

df = 0;

for k=1:size(Ss,3),

S = Y'*Ss(:,:,k)*Y; D = max(diag(S),0);

df = df+2*Y*S*(S - diag(D));
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end

function ddf = ddF(Y,H)

% ddF Computes the second derivative of F, that is,

% ddf = d/dx dF(Y+x*H).

% ddf = DDF(Y,H)

Y is expected to satisfy Y'*Y = I

% H is expected to be the same size as Y

% ddf will be the same size as Y

% role objective function, the function is called to apply the

% unconstrained hessian of F to a vector.

global FParameters;

Ss = FParameters.Ss;

ddf = 0;

for k=1:size(Ss,3),

S = Y'*Ss(:,:,k)*Y; D =max(diag(S),0);

dS = H'*Ss(:,:,k)*Y+Y'*Ss(:,:,k)*H;

dD = (D>0).*diag(dS);

ddf = ddf+2*H*S*(S - diag(D));

ddf = ddf+2*Y*dS*(S - diag(D));

ddf = ddf+2*Y*S*(dS - diag(dD));

end

function YO = guess()

% GUESS provides the initial starting guess Y for an F minimization.

% Y = GUESS

% Y will satisfy Y'*Y = I

% role objective function, produces an initial guess at a minimizer

% ofF.

global FParameters;
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Ss = FParameters.Ss; to

Q = 0;

% take an average

% av = Ss(:,:,l);

% for k=2:size(Ss,3)

% av = av +Ss(:,:,k);

% end

% [YO,D] = eig(av);

% using random guess

% YO = randn(size(av));

% using the identity 20

YO = eye(size(Ss(:,:,1)))+ le- 1*randn(size(Sz(:,:,1)));

function parameters(varargin)

% PARAMETERS initializes the parameters for an instance of a

% INDSCAL minimization problem.

% PARAMETERS(S1,S2,...,Sn)

% Si are expected to be symmetric matrices of equal size.

% role sets up the global parameters used at all levels of computation.

global FParameters; 10

FParameters = U;

FParameters.Ss = cat(3,varargin{:});

function [A,B] = exact()

A = diag(1:10);

B = diag((1:10).^2);

function [A,B] = noisy()

[A,B] = exact;

randn('state',0);
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A = A + le-4*randn(size(A));

B = B + le-4*randn(size(B));
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